
diss . eth no. 26064

O P T I M A L T R A N S P O RT I N V E S T M E N T A N D
P R I C I N G I N A M U LT I M O D A L C I T Y

A thesis submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

allister loder

Master of Science ETH in Energy Science and Technology

born on 28.07.1989

citizen of Germany

accepted on the recommendation of

Prof. Dr. Kay W. Axhausen, examiner
Prof. Dr. Thomas F. Rutherford, co-examiner

2019



Allister Loder: Optimal transport investment and pricing in a multimodal city,
© 2019



For the curious.



iv



A B S T R A C T

People’s mobility behavior is often very ambivalent and selfish: Everyone
wants to drive alone in his own vehicle, while at the same time wanting no
one else to demand the same, as this would lead to congestion. In cities,
transportation alternatives to the car exist and can be competitive in terms
of travel times. However, transport policies that favor the car too much
will create too many undesirable negative externalities at urban scale, for
example, congestion and pollution. In the end, such a system will not pro-
vide the optimal level of mobility for everyone and the agglomeration
economies that improve productivity. This brings us to the overarching
question of this thesis: How should cities invest in infrastructure and price
transportation to maximize everyone’s mobility and productivity gains?

To this end, this thesis makes several methodological contributions. First,
I investigate how individuals’ mobility tool ownership (e.g., cars and pub-
lic transport season-tickets) and travel activity (trip frequency) choices are
a function of accessibility, a frequently used measure to analyze the level
of mobility. I propose a methodology that captures multimodal aspects of
accessibility necessary to understand multimodal travel behavior. I use this
novel accessibility measure in a framework recently proposed by Chandra
Bhat to model multi-dimensional choice environments. I find that our pro-
posed multimodal accessibility measure is a strong predictor of mobility
tool ownership as well as travel activity.

Second, considering urban traffic as a simple system, I contribute two
elements: (1) With the first large-scale empirical comparison of urban-scale
traffic of many cities, I provide evidence that such a system perspective is
legitimate, as macroscopic urban traffic follows a deterministic relationship
- the macroscopic fundamental diagram (MFD) - which is indeed a func-
tion of the underlying network’s topology. (2) Such a system perspective
requires a physically consistent, but simple multimodal congestion mech-
anism. With this thesis, I propose three different mechanisms to model
the congestion effects of bus and car interactions, using the multimodal
MFD or 3D-MFD: an empirical approach, a geometric approach and a Bose-
Einstein condensate approach.

Third, I use the geometric approach to estimate the 3D-MFD to develop a
static traffic assignment in a mixed complementarity problem formulation.
With this assignment procedure, I propose two approaches to identify op-
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timal pricing and investment decisions. One approach considers only the
effects within the transportation system, with a network design problem,
the other approach considers individuals’ choices in an integrated model
of urban housing, labor, and transportation markets, with a computational
economic equilibrium model.

In closing, this thesis provides a macroscopic perspective on the ques-
tion of how many cars are too many for a city and allows cities to identify
their strategies subject to their policy constraints to improve traffic and mo-
bility for everyone. As transport systems are sensitive to political decisions
and public debate, this thesis provides approaches to derive quantitative
arguments that may help to identify the optimal transportation policy for
a city.
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Z U S A M M E N FA S S U N G

Das menschliche Mobilitätsverhalten ist oft egoistisch und ambivalent: Je-
der möchte am liebsten alleine in seinem Auto fahren, und gleichzeitig
soll niemand sonst Auto fahren, damit kein Stau entsteht. In Städten gibt
es üblicherweise Alternativen zum motorisierten Individualverkehr, wel-
che ähnlich attraktive Reisezeiten ermöglichen können, jedoch kann eine
Verkehrspolitik, welche zu stark das Auto bevorteilt, zu viele ungewoll-
te negative Externalitäten wie Stau oder Umweltbelastungen hervorrufen.
Schlussendlich wird so ein Verkehrssystem nicht die optimale Mobilität
für jeden Einwohner bereitstellen und den ökonomischen Agglomerati-
onsprozess nicht bestmöglich unterstützen, um Produktivitätsgewinne zu
erzielen. Dieses Problem bringt uns zu der übergeordneten Frage dieser
Doktorarbeit: Wie müssen Städte in Infrastruktur investieren und die Prei-
se für Mobilität festsetzen, um Mobilität und Produktivitätsgewinne zu
maximieren?

In diesem Zusammenhang macht diese Arbeit mehrere Beiträge. Ers-
tens, erarbeiten wir wie der Mobilitätswerkzeugbesitz (Auto und Zeitkar-
te) und Reiseverhalten (Anzahl an Wegen) als Funktion von Erreichbarkeit
dargestellt werden kann. Erreichbarkeit ist dabei ein häufig verwendetes
Mass für das Level an Mobilität, welches das Netz bereitstellt. In dieser
Arbeit schlagen wir eine Methode vor, um in der Betrachtung von Erreich-
barkeit multimodale Aspekte abbilden zu können. Wir verwenden dieses
neue multimodale Erreichbarkeitsmass in einem von Chandra Bhat vorge-
schlagenen ökonometrischen Modell, um Mobilitätswerkzeugbesitz und
Reiseverhalten zu erklären. Dabei finden wir, dass das vorgeschlagene Er-
reichbarkeitsmass eine sehr starke erklärende Variable für Mobilitätswerk-
zeugbesitz und Reiseverhalten ist.

Zweitens, in der Betrachtung von städtischem Verkehr als einfaches Sys-
tem, leistet diese Arbeit zwei wesentliche Beiträge: (i) mit dem ersten gross-
formatigen empirischen Vergleich von Verkehr in vielen Städten zeigen
wir auf, dass eine einfache Systemperspektive mit dem makroskopischen
Fundamentaldiagram (MFD) ein legitimer Ansatz ist, da wir für das MFD
deterministischen Zusammenhängen mit der Systemkonfiguration identi-
fizieren. (ii) eine solche Systemperspektive verlangt für den städtischen
Verkehr auch einen physikalisch konsistenten multimodalen Staumecha-
nismus. Diese Arbeit leistet dazu mit drei verschiedenen Ansätzen einen
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Beitrag: einen empirischen datengetriebenen Ansatz, einen geometrischen
Ansatz und einen Ansatz basierend auf der Bose-Einstein Kondensation.

Drittens, wir verwenden den geometrischen Ansatz für das 3D-MFD für
den multimodalen Staumechanismus, um eine multimodale Verkehrsum-
legung im mixed complementarity problem Format zu entwickeln. Basie-
rend auf dieser Umlegung schlagen wir zwei Ansätze vor, um optimale
Investitions- und Preisentscheidungen zu machen. Der erste Ansatz ana-
lysiert die Effekte nur innerhalb des Transportsystems und stellt die Fra-
ge nach der optimalen Netzkonfiguration von motorisierten Individual-
verkehr und dem öffentlichen Verkehr. Der zweite Ansatz analysiert in
einem ökonomischen Gleichgewichtsmodell Preis- und Investitionseffekte
im Transportsystem auf Produktivitätsgewinne.

Diese Thesis bietet eine makroskopische Perspektive auf die Frage «wie
viele Autos sind genug für eine Stadt?». Die Beiträge dieser Arbeit erlau-
ben es Städten, Strategien unter Berücksichtigung ihrer politischen Rah-
menbedingungen abzuleiten, um optimale Mobilität für alle und Produk-
tivitätsgewinne zu realisieren. Da viele Aspekte des Verkehrssystems sen-
sitiv auf politische Entscheidungen sind, können die Beiträge dieser Dok-
torarbeit dabei helfen, quantitative Argumente zu erarbeiten, die schlus-
sendlich dabei helfen, ein optimales und nachhaltiges Verkehrssystem zu
schaffen.
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1
I N T R O D U C T I O N

Es irrt der Mensch so lang er strebt.
— Goethe (1808)

We build our transportation infrastructure for connecting people, ex-
changing goods and facilitating the transfer of ideas. The resulting interac-
tions between people, traders and companies produce positive externalities
for societies (Smith, 1776; Ricardo, 1817; Krugman, 1991; Fujita et al., 2001).
However, negative externalities (e.g., congestion and pollution) usually in-
crease with the number of travelers and the tipping point of the system
is usually considered the infrastructure’s capacity: when loaded beyond
capacity, the collective flow of travelers no longer increases with the num-
ber of travelers, but instead decreases (Schaar, 1925; Greenshields, 1935;
Daganzo, 1997).

The positive externalities as well as negative externalities of human in-
teractions can be seen as forces that together should balance, such that no
traveler would benefit further from engaging in more interactions because
the benefits would be consumed by more congestion externalities. It is not
surprising then, that the question of an optimal equilibrium between these
two forces is recurring and timeless (e.g., Vickrey, 1969; Small and Verhoef,
2007). Arguably, in a transport system, this equilibrium can be influenced
and shifted to a more desired social optimum by, for example, investment,
pricing and new technologies (e.g., Stopher, 2004; Prud’homme and Bo-
carejo, 2005; Arnott and Small, 1994).

Nevertheless, in the observed equilibrium, these two forces are of course
not the only determinants. There is substantial evidence of at least two
universal laws governing human behavior and choices influencing the equi-
librium as well. Broadly speaking, the driving force beyond each of them is
the density of people: When population density increases, human interac-
tions and economic output scale in a superlinear manner, resulting from ag-
glomeration economies and increased productivity (e.g., Fujita and Thisse,
2002, 2013; Melo et al., 2009; Duranton and Puga, 2004; Bettencourt, 2013),
and people tend to use transit more (e.g., Cervero and Kockelman, 1997;
Ewing and Cervero, 2001, 2010). There is another density effect, namely,
that many supply-side networks scale in a sublinear manner (Kühnert
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et al., 2006; Samaniego and Moses, 2008), that is, in the economic terms
economics of scale or density. The idea of an equilibrium in our complex
cities might be unrealistic, but empirical observations show recurring and
predictable mobility patterns (González et al., 2008; Çolak et al., 2016; Wang
et al., 2012; Lopez et al., 2017) that somehow emphasize that individuals
have no incentive to change their behavior, as if they were in an equilib-
rium.

All these forces push and pull the decisions of firms as well as house-
holds (Fujita and Thisse, 2002). When cities invest in infrastructure and ad-
just pricing, people will reconsider their choices and adopt their behavior.
These reactions to policies have shaped our cities (Brueckner and Fansler,
1983; Louf and Barthelemy, 2014; Batty, 2008). One of the most notable reac-
tions is summarized as the fundamental law of road congestion (Downs, 1962).
Worldwide empirical evidence suggests that vehicle mileage increases with
added road capacity, with a short- and long-run elasticity of below one
(Goodwin, 1996; Cervero and Hansen, 2002; Graham and Glaister, 2004;
Cervero, 2002, 2003; Weis and Axhausen, 2009), and more recently, close
to one (Duranton and Turner, 2011; Hsu and Zhang, 2014). In either case,
these elasticity values imply that the driving grows slower than the infras-
tructure, resulting in less congestion - at least in the short term.

Although the above mentioned forces and transport policies may have
created the problems we currently attribute to our transportation system,
they provide at the same time opportunities for solving these problems.
However, with ongoing and expected further urbanization (Department
of Economic and Social Affairs of the United Nations Secretariat, 2014),
the pressure on transportation systems will increase (Schafer and Victor,
2000; Duranton and Turner, 2012). Consequently, the pressure to identify
optimal transport policies to achieve the optimal balance of the mentioned
forces is increasing and will be a key challenge of the 21

st century. This
thesis contributes with novel approaches to understand the interaction of
forces in the equilibrium and to derive strategies for optimal policies.

In Figure 1.1 I illustrate the overarching perspective of this thesis. We
generally consider that we can abstract the urban transportation system
into the system shown in Figure 1.1a. Such a perspective is common in
many engineering sciences such as mechanics or signal theory, while in
transportation there have been a few early attempts (e.g., Smeed, 1968;
Herman and Prigogine, 1979), but only the recent advances by Daganzo
(2007) and Geroliminis and Daganzo (2008) follow up on this idea with a
physically consistent system perspective using the macroscopic fundamental
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Figure 1.1: The overarching perspective of this thesis on the complex urban
transportation systems. (a) illustrates the engineering system per-
spective with elements demand Λ, system settings X, systems out-
flow (arrivals) O, all linked by function G. (b) summarizes the objec-
tive as finding X∗ that maximizes mobility and or productivity given
demand Λ.

diagram (MFD). The system has a characteristic function G that translates
the demand Λ, depending on the system’s parameter settings X into ar-
rivals or system outflow O. X can describe a wide range of information,
from the size and design of the network, to the pricing strategy and trans-
port policies.

In urban transport policy making, the overall collective objective should
be to improve mobility for everyone (Daganzo, 2007). This social optimum
perspective is hard to identify due to the complexity of cities. However,
among the key concepts of transport planning and politics is accessibility,
which allows a quantitative and spatial assessment of mobility with just a
single metric (Hansen, 1959). Further, accessibility also links to economic
activity, and even is related to agglomeration economies (Vickerman et al.,
1999; Melo et al., 2017; Weiss et al., 2018). Thus, accessibility is not only a
measure of the level of mobility the urban transportation system provides,
but also an indicator of the output for which we, basically, build our infras-
tructure. Finally, bringing together the system perspective from Figure 1.1a,
the overall collective objective of improving mobility for everyone and the
concept of accessibility result in the overarching question of this thesis, il-
lustrated in Figure 1.1b: Which system parameters X∗ for given demand Λ
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maximize mobility (accessibility), and then the agglomeration economies
that increase productivity?

This link between congestion, accessibility, and agglomeration has been
previously investigated (e.g., Zhang and Kockelman, 2016; Venables, 2007),
but those approaches lack a multimodal congestion mechanism, in other
words, a way to capture the interaction of cars and buses (and other modes),
and a mechanism that can capture multimodal investment effects. Such a
mechanism is important for analyzing the allocation of scarce urban re-
sources. Thus, closing this gap with such a congestion mechanism is par-
ticularly important for improving mobility in our cities, as relying on cars
alone for urban transportation is a blind alley. Further, our overall question
is only one aspect in a wider perspective on the success of cities. Betten-
court (2013) proposes that cities exist when the balance of social benefits
and costs is positive, most likely to have an optimum at a certain levels
of infrastructure provision and economic output. Venables (2017a) pursues
the question of which infrastructure and economic factors lead a city to
produce internationally tradable goods that are potentially subject to in-
creasing returns to scale. In other words, can we invest in infrastructure so
that it increases productivity (Aschauer, 1989; Chatman and Noland, 2011;
Rokicki and Stȩpniak, 2018) and “spur[s] local economies” (Hymel, 2009),
that is economic growth? Consequently, the contributions of this thesis are
helpful not only for transport policy decisions, but also for regions and
cities in the global south (see Section 8.2.4).

As cities are complex, the function G as well as X can arguably be com-
plex, too, if we do not focus on the most essential underlying dimensions of
the transport system. Referring to the introduced forces mentioned at the
beginning, I therefore focus only on congestion externalities for G and on
two policy levers for X: investment decisions in infrastructure and pricing.

The objective from Figure 1.1b is of course to simplify, and so it is neces-
sary to break down this perspective into a sequence of research questions.
First, the perspective introduced in Figure 1.1a suggests a fully mechani-
cal system, which is of course the case with simply a vehicle perspective
(e.g., Nagel and Schreckenberg, 1992; Daganzo, 1994), but from a traveler’s
perspective the system has to consider the choices people make that can
most of the time, be only partially explained: where to go, which mode to
use, which route to take, when to depart. Consequently, the first research
question relates travel choices and accessibility:

1. How do people choose their multimodal travel behavior as a function
of accessibility?
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Second, determining accessibility of the road network is a well under-
stood exercise (e.g., Geurs and van Wee, 2004; Handy and Niemeier, 1997;
Morris et al., 1979), but for the chosen system perspective, we wish to avoid
modeling traffic on every link, and instead to abstract traffic into a sys-
tem: the MFD (Daganzo, 2007; Geroliminis and Daganzo, 2008). However,
the MFD so far lacks a thorough consideration of interaction with other
modes. Consequently, we need a simple approach to model multimodal
traffic with the MFD:

2. How can one model multimodal traffic in cities as a simple system?

Third and last, we then need to find a way to identify X∗ from Figure
1.1b. Recall that X considers pricing and investment decisions. This encom-
passes not only aspects of finding X∗ from a technical perspective, but also
how it can be embedded in wider models that also account for nontraffic
externalities.

In theory, the question of optimal investment and pricing has already
been widely discussed (Pigou, 1920; Vickrey, 1969; Small and Verhoef,
2007), and when asked, many theoretical researchers would argue it has
been solved. In reality, however, the theoretical marginal social cost pricing
is impossible to achieve due to multiple price components, various (com-
peting) agencies involved as well as the spatial and temporal heterogeneity
of the transportation market. Consequently, we require a framework that
reflects these aspects in the search for X∗

3. How can one identify optimal prices and infrastructure provision
with the system perspective of improving mobility and productivity?

Generally, it should be clear that there is no unique answer to the ques-
tion of optimal investment and pricing in a city as each city has a different
topology, various existing transport systems, different choice behavior of
residents, and overall divergent demand levels, as shown in Figure 1.1b.
However, the work presented in this thesis provides methods to identify
the strategies for each city separately.

1.1 thesis contributions

The contributions of this thesis are mainly in the methodological dimen-
sions, because deriving strategies for optimal investment and pricing poli-
cies is context dependent and the strategies vary from city to city. Never-
theless, in this thesis, I provide numerical examples for London and Zürich
and comment on how cities can use the proposed methods.
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The particular contributions of this thesis are at least fourfold. First, I
propose an approach to quantify multimodal accessibility as an indicator
for describing travel behavior. Second, I present substantial empirical evi-
dence for the existence and physical properties of the MFD, which implies
that the urban road network can indeed be simplified into a system, as
given in Figure 1.1a. Third, I present three multimodal congestion mech-
anisms for the MFD that capture the interactions between cars and buses.
This allows modeling of passenger choices and vehicle interactions at the
same time in the system described in Figure 1.1a. Fourth, I introduce a
static multimodal network assignment based on the MFD. Its simple math-
ematical formulation underlines the required system perspective that I
then illustrate in two macroscopic equilibrium models to identify optimal
investment and pricing in a multimodal city.

This thesis has a strong emphasis on modeling traffic and transport is-
sues in Switzerland; however, in the discussion in Section 8.2.4 I discuss
the applicability and implications for developing countries. I further dis-
cuss the implications of this thesis for the expected large-scale vehicle au-
tomation in the upcoming decades, in Section 8.2.4.

1.2 outline of the thesis

Chapter 2 provides an overview of the literature of the four overarching
forces discussed in this chapter: why people demand mobility (Section
2.1.1), how their movement generally creates negative externalities (Sec-
tion 2.1.2), and the ideas of agglomeration effects (Section 2.2.1) and how
city structure (i.e., accessibility) influences travel behavior (Section 2.2.2).
Subsequently, I summarize the policy levers of pricing (Section 2.3.1) and
investment (Section 2.3.2).

In Chapter 3 I discuss the link between travel behavior and accessibility
in a Swiss context. Chapter 4 presents the newly developed multimodal
congestion mechanisms that can partially reflect investment effects. Then,
Chapter 5 formulates mathematically the static traffic assignment based on
the multimodal MFD, which is subsequently applied in a network design
optimization problem in Chapter 6, as well as a general computational eco-
nomic equilibrium model in Chapter 7, addressing urban housing, labor
markets, and transportation markets. Finally, Chapter 8 discusses the im-
plications of this thesis for the literature, policy makers, and practitioners
before the summary concluding remarks in Chapter 9.
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L I T E R AT U R E R E V I E W

Not only does traffic have economic and safety effects,
but it produces noise, it pollutes the atmosphere and it
has adverse effects on the appearance of our towns.
But on the other hand, it gives us extensive
opportunities for enriching our lives.

— Smeed (1968)

This chapter aims at providing a comprehensive, but critical review on
the overarching literature of the topics introduced in the previous chapter.
In addition to this chapter, we provide in each following chapter further
literature reviews more aligned to the actual content of each chapter.

We organize this chapter as follows. Firstly, Section 2.1 reviews the pri-
mary transport-related reasons and effects of human interactions. Here, fol-
lowing Smeed’s 1968 quote, we discuss first in this chapter the “opportu-
nities for enriching our lives” or in broader terms the demand for travel in
Section 2.1.1. Thereafter, we introduce the reader to the negative effects of
human interactions, namely congestion externalities in Section 2.1.2 that
have been summarized by Wardrop (1952) with “increases in the amount of
traffic generally produce corresponding decreases in speed”. Second, this chap-
ter then continues with discussing in Section 2.2 the two additional forces
that affect the equilibrium and which commonly scale with population
density. In detail, we first discuss agglomeration externalities in Section
2.2.1 which can be seen as the glue that allows cities to exist as higher
output compensates for many disamenities experienced (e.g. congestion,
pollution). Second, we introduce the reader to the vast research field of
the relationship between the build environment (accessibility) and travel
behavior in Section 2.2.2, which Ewing and Cervero (2017) summarized as
“Does Compact Development Make People Drive Less? The Answer Is Yes”. We
then end this chapter by discussing the constituents of the macroscopic
system parameter settings X, which are the transport policy levers. In par-
ticular, pricing in Section 2.3.1 and investment in infrastructure in Section
2.3.2. For completeness, we add traffic control in Section 2.3.3 to X as it
is a frequently used mechanism. We summarize and synthesize the most
relevant concepts and ideas of chapter in Section 2.4.

7
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2.1 human interactions

When people travel, they usually travel to obtain utility, a measure of plea-
sure or satisfaction (Ben-Akiva and Lerman, 1985), at the destination. In
only few cases, e.g. hiking or taking the train up to the Jungfraujoch, trav-
eling itself becomes part of creating utility. In transportation, the most no-
table source of utility reducing factors are travel time, cost and congestion
delays (Small and Verhoef, 2007). The equilibrium is then that situation
in which the utility obtained from more travel is consumed by more con-
gestion delays. In the following, we therefore introduce the generation of
utility in Section 2.1.1 and the generation of congestion externalities in
Section 2.1.2.

2.1.1 Opportunities

Reasons for traveling are plentiful, making the term trip purpose a key ele-
ment in the quantification of travel demand that we need for the analysis
and modeling of our transport systems (Ortúzar and Willumsen, 2011).
The most recent 2015 Swiss travel survey offered 13 different trip purposes
(Swiss Federal Statistical Office and Swiss Federal Office for Spatial De-
velopment, 2017), e.g. working, going to school, shopping, leisure activity,
accompanying other people. Figure 2.1 shows that commuting, shopping
and leisure activities constitute the main reasons for travel.

With plentiful choices and opportunities to reach, a fundamental ques-
tion for policy making and related fields is to which extent is mobility
behavior predictable? At the individual level, Schlich and Axhausen (2003)
noted that “travel behaviour is neither totally repetitious nor totally variable” us-
ing data from a six-week travel diary (Axhausen et al., 2002). Analyzing col-
lective dynamics of human behavior with anonymous mobile phone data
then shows that human mobility behavior follows simple reproducible pat-
terns (González et al., 2008), which is further supported by evidence that
the number of frequently visited locations is limited (Alessandretti et al.,
2018; Schönfelder and Axhausen, 2003), both of which in turn means a
high level of predictability of human mobility behavior (Song et al., 2010).
Consequently, the answer to question of predictability is “yes”, at least
partially. Consequently, policy makers have to consider, but also can take
advantage of these recurring patterns in their decision making.

In Sections 2.2.2 and 3.1 we provide an in-depth review on the relation-
ship between the built environment - in other words accessibility - and the
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Figure 2.1: Distribution of trip purposes from the 2015 Swiss travel survey
(Mikrozensus Mobilität und Verkehr).

demand for mobility. Therefore, we focus here on the research topics for
travel demand. There are at least two topics related to information- and
telecommunication technologies (ICT) which need to be mentioned. On
the one hand, these technologies shift our demand to less active mobility:
working from home, online shopping or ordering food online. On the other
hand, ICT enabled innovative and radical car-sharing, ride-hailing and ride
sourcing services (Farag et al., 2003; Mokhtarian et al., 2006; Cramer and
Krueger, 2016; Schmid and Axhausen, 2018). However, these new services
are disruptive to present business models, e.g. the taxi industry for which
the earnings declined (Berger et al., 2018), and public transport where some
studies suggest a decline in ridership (e.g. Becker et al., 2017a,b), even to
that extent that it raises public concern as with London’s Underground1,
while others report complementarity of these new services with public
transport (Hall et al., 2018).

Last, we have so far only considered the individual’s utility from trav-
eling, however, as individuals prefer to cooperate (Tomasello, 2009), the
economic or utility effects from that interaction or cooperation between
individuals must not be necessarily included in the travel utility. For ex-
ample, trade interactions generate further benefits - the added value - than
just giving the driver a salary (e.g. Levinsohn and Leamer, 1995); or fur-

1 https://www.wired.co.uk/article/tfl-finances-transport-for-london-deficit-passenger-
numbers
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ther the wider economic benefits from agglomeration (e.g. Venables, 2007;
Graham, 2007a).

2.1.2 Congestion externalities

Traffic and all transport systems are physical multi-particle systems (Hel-
bing, 2001; Treiber and Kesting, 2013), meaning that too many particles
lead inevitably to crowding, jamming and congestion. In other words, con-
gestion is occurring when the supply of road capacity is not sufficient
for the travel demand. Important to note, as traffic is assumed to be in
an equilibrium as pointed out by Wardrop (1952), congestion can be an
equilibrium outcome although nobody wants it. The social importance of
transport and its adverse effects in terms of congestion has resulted in a
high degree of standardization of practices over the past seven decades (e.g.
Forschungsgesellschaft für Straßen- und Verkehrswesen e.V., 2009; Trans-
portation Research Board, 2016) as well as interest far beyond traffic engi-
neers to understand the physical properties (e.g. Zhao et al., 2005; Wu et al.,
2006; Nagatani, 1993; Li et al., 2015).

The nature of these multi-particle systems implies that the time T to
traverse a link is dependent on the number of flowing particles or vehicles
N as expressed in Eqn. 2.1. The important physical property of the Eqn.
2.1 that annoys car drivers, planners and politicians is that the function is
always increasing as shown in Figure 2.2.

T = T (N) (2.1)

This increasing relationship has an important link to economics, where
the delays imposed to all other drivers are negative externalities. In detail,
an important question for policy making is how marginal costs, either so-
cial or private, evolve as a function of N. In other words, it is important to
understand by how much the travel time for everybody on a link would
increase if one additional traveller is present on the link? Mathematically,
we can investigate this by Eqn. 2.2.

MC =
∂ N T (N)

∂N
= T (N) + N

∂T (N)

∂N
(2.2)

The two-terms on the right-hand side have two distinct meanings. The
first one is the average costs on the link, while the second term corresponds
the additional delay to all other vehicles by the vehicle at the margin (Small
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and Verhoef, 2007; Ortúzar and Willumsen, 2011). The second term is al-
ways positive as Eqn. 2.1 is always increasing. There exist a substantial
variety of functional formulations for Eqn. 2.1, where the most commonly
used is the Bureau of Public Roads-function (Bureau of Public Roads, 1964)
as given by Eqn. 2.3.

T = T0

(
1 + α

(
N

Nmax

)β
)

(2.3)

Here, T0 is the free-flow travel time on the link, Nmax is the capacity,
i.e. the maximum flow, and α and β are model parameters for calibra-
tion. It usually holds that β ≥ 2. Figure 2.3 schematically shows the rela-
tionship between average and marginal link costs and strongly underlines
that marginal costs are growing faster than average costs with traffic. For
further insights, we refer the interested reader to (Branston, 1976; Spiess,
1990; Ortúzar and Willumsen, 2011) and to the sibling of volume-delay
functions, the fundamental diagram (e.g. Del Castillo and Benitez, 1995a,b;
Transportation Research Board, 2011; Bliemer and Raadsen, 2018).

There is widespread consensus that the provision of public transport is
a congestion relief (e.g. Sherman, 1971; Small and Verhoef, 2007; Beaudoin
et al., 2015; Arnott and Yan, 2000; Harford, 2006). The rationale is that in
a two mode case with cars and buses the equilibrium travel costs of both
modes are identical. In other words, with less transit services available,



12 literature review

Tr
av

el
 ti

m
e

Traffic volume

Average cost
Marginal cost

Figure 2.3: Comparing average and marginal cost curve of travel times based on
the BPR function.

more cars will be used until the car costs match again the transit costs
(Small and Verhoef, 2007). In real world experiments these effects have
been revealed, either in context of intermittent closures of transit services,
e.g. in Los Angeles (Anderson, 2014), Rotterdam (Adler and van Ommeren,
2016), and Melbourne (Nguyen-Phuoc et al., 2018), or in context of transit
line extensions, e.g. in Beijing (Yang et al., 2018a).

Last, we already mentioned the idea of two natural laws of congestion
in the first chapter. The first natural law is induced demand, meaning that
adding capacity to the road network is increasing vehicle kilometers trav-
eled (VKT). Here, in order to evaluate whether the investment is a con-
gestion relief, one has to see at which rate VKT grows compared with the
network expansion, i.e. in economic terms the elasticity. Empirically, short-
term and long-term values have been found to be well-below one (Downs,
1962; Goodwin, 1996; Mogridge, 1997; Hansen and Huang, 1997; Cervero
and Hansen, 2002; Weis and Axhausen, 2009), with the notable expection
of the recent work by Duranton and Turner (2011) who provide a value
close to one. In other words, an elasticity close to unity means that the
investment did not result in congestion relief. Importantly, as it sometimes
difficult to identify causality in demand-supply analyses, one can also see
the problem from the supply side, namely induced supply (Levinson and
Karamalaputi, 2003; Cervero and Hansen, 2002). The second natural law is
about, despite literally nobody liking congestion, that people collectively
recurringly create similar congestion patterns (e.g. Wang et al., 2012; Lopez
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et al., 2017; Olmos et al., 2018), and they create congestion patterns accord-
ing to predictable features such as road network topology, demand (e.g.
Çolak et al., 2016; Wang et al., 2015).

2.2 density effects

It seems like a natural law that individual animals’ and plants’ use of re-
sources is scaling approximately by 3/4 of their size or body mass, imply-
ing some sort of economies of scale (West et al., 1997; Enquist et al., 1998).
A substantial amount of literature suggests evidence that cities also ex-
hibit such scaling relationships in their infrastructure that result from the
intense competition for urban space (Batty, 2008; Bettencourt, 2013; Bet-
tencourt et al., 2010). In particular, Bettencourt et al. (2007), Kühnert et al.
(2006) and Levinson (2012) report a variety of scaling relationships, e.g.
that the number of petrol stations, length of power cables and road surface
is sublinear scaling with city size.

The size of a city then usually also has effects on the topology of road
networks and then accessibility. Levinson (2012) reports that larger cities
are usually more interconnected, quantifying that a one percent increase
in accessibility is reducing average commute time by 90 seconds in the US.
Comparing to biological systems, Samaniego and Moses (2008) report that
urban road networks are less centralized making per capita road capacity
independent of the size cities. Scaling effects, however, also are observed
for transit networks that allow to predict with city area, population and
income the length, number of stations and ridership of subways and rail
networks (Louf et al., 2014).

In this thesis, we focus on two (scaling) effects of population density that
push and pull households and firms in their decisions (Fujita and Thisse,
2002). Consequently, we discuss first agglomeration effects in Section 2.2.1
and second the built environment effects in Section 2.2.2.

2.2.1 Agglomeration effects

There exist a vast amount of empirical evidence that output of individuals
and firms per unit, i.e. productivity, is increasing or is scaling superlinear
with density, as measured in, e.g., wages and patents at a scaling factor
of about 1.05 to 1.2 (e.g. Henderson, 2003; Bettencourt et al., 2007; Melo
et al., 2017; Holl, 2016; Ciccone, 2002; Melo et al., 2009; Hanlon and Miscio,
2017; Axhausen et al., 2015). In other words, doubling density, is not only
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doubling output, but is generating additional output according to the scal-
ing relationship. These productivity gains are externalities resulting from
agglomeration or urbanization economies (Fujita et al., 2001; Fujita and
Thisse, 2002; Duranton and Puga, 2004; Rosenthal and Strange, 2004, 2001;
Krugman, 1991). Mathematically speaking, output y is produced from in-
puts x with a production function f and the process is subject to external
productivity scaling that result from z and follow function h. Total out-
put is then y = h (z) f (x). Consequently, an increase in productivity h (z)
requires less input for the same output (Graham, 2007a).

Levinson (2012) provides an intriguing explanation as it is “the efficiency
of interaction (and hence the number of contacts per unit time, and the amount
of time spent with contacts rather than in transport) that brings about that super-
linear scaling”. Using mobile phone data, Schläpfer et al. (2014) then actually
showed that the number of interactions indeed scale with city size. How-
ever, there are economic reasons for agglomeration: Marshall (1920) named
labor market pooling, input sharing and knowledge spillovers, while al-
ready Thünen (1826) formulated an expression on the forces that load to
agglomeration when asking whether firms are better off when they lo-
cate in cities (Fujita and Thisse, 2002). We refer the interested reader to
the work by Rosenthal and Strange (2001, 2004) as well as Duranton and
Puga (2004) that provides a throughout review on the (micro) mechanisms
underlying agglomeration economies. Consequently, the reasoning is that
improvements in infrastructure will increase the number interactions per
unit time as less time is spent in transport, which affects z in such a way
that productivity is increased.

The accessibility approach by Hansen (1959) is a widely accepted mea-
sure of proximity of economic activity as it basically quantifies the price
of access to markets, both for households and firms (Vickerman, 2008; Ro-
kicki and Stȩpniak, 2018). The Hansen (1959) measure of accessibility is
usually expressed as the sum of opportunities weighted by the general-
ized transportation costs between locations (see also Section 3.2). Conse-
quently, improving speeds at one location in the network is improving
accessibility of the entire network and as Graham (2007a) reports that “if
transport investment changes the densities available to firms [...] then there are
likely to be positive gains from agglomeration”. In other words, reducing the
generalized transportation costs or increasing accessibility can lead to a
substantial relocation of economic activity and thus accelerate the agglom-
eration process (Krugman, 1991; Venables, 2007; Glaeser, 2008; Vickerman
et al., 1999; Vickerman, 2008). However, when a region already has a high
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quality transportation system, more investment to improve accessibility
must not necessarily leads to increasing productivity gains (Banister and
Berechman, 2001), but can only provide additional capacities. Generally,
the reported elasticity for agglomeration economies is around, and often
less than 0.1, but the effect is robust and substantial (Graham, 2007a; Melo
et al., 2009, 2017).

This superlinear relationship implies that allocating more resources to
urban areas compared to non-urban areas results in larger productivity
gains (Melo et al., 2017). Consequently, it is not surprising that many coun-
tries initiated programs to promote collaboration in agglomeration of cities2.
Here, it is then important to consider how the agglomeration effects atten-
uate over distance (e.g. Rosenthal and Strange, 2004; Graham et al., 2010;
Melo et al., 2017).

2.2.2 Travel behavior

Travel behavior is frequently considered to be not uniform across space:
Neighborhoods with large population density, land use diversity, accessi-
bility and better access to public transport are generally found to reduce
driving (Ewing and Cervero, 2017). As the quantification of travel demand
is key in transport modeling and research (Ortúzar and Willumsen, 2011),
the analysis of the influence of the built environment or land-use on travel
behavior has attracted substantial research interest and is one of the most
studied subjects in the field (for comprehensive revies we refer here to the
work by Ewing and Cervero, 2001, 2010).

Cervero and Kockelman (1997) summarized their findings into the con-
cept of “three Ds” of the build environment, namely density, diversity and
design. Ewing and Cervero (2010) follow their classification, but also in-
clude two further “D” variables: destination accessibility and distance to -
and quality of - public transport. In the following, we focus on accessibility
as it at the same time provides a link to agglomeration externalities as in-
troduced above in Section 2.2.1. Further, it can be seen as a social indicator,
because as Geurs and van Wee (2004) define accessibility as “the extent to
which land-use and transport systems enable (groups of) individuals to reach activ-
ities or destinations”. As already mentioned in the introduction, this makes
accessibility a good indicator to model mobility (see also Daganzo, 2007).

2 For example in Switzerland: https://www.are.admin.ch/are/

de/home/staedte-und-agglomerationen/strategie-und-planung/

agglomerationspolitik-des-bundes-2016-.html

https://www.are.admin.ch/are/de/home/staedte-und-agglomerationen/strategie-und-planung/agglomerationspolitik-des-bundes-2016-.html
https://www.are.admin.ch/are/de/home/staedte-und-agglomerationen/strategie-und-planung/agglomerationspolitik-des-bundes-2016-.html
https://www.are.admin.ch/are/de/home/staedte-und-agglomerationen/strategie-und-planung/agglomerationspolitik-des-bundes-2016-.html
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In their review, Geurs and van Wee (2004) identify four components of
accessibility to which an accessibility measure should be sensitive. First, it
should result from travel times or costs. Second, the accessibility measure
should describe the amount, quality and spatial distribution of opportu-
nities. Third, it should capture temporal constraints regarding the oppor-
tunity availability of individuals to access these, e.g. congestion. The last
component may include an individual’s needs and constraints. However,
the authors themselves concluded “applying the full set of criteria would imply
a level of complexity and detail that can probably never be achieved in practice”.
In a similar vein, Handy and Niemeier (1997) concluded that no best ap-
proach exists to measure accessibility, whereas Owen and Levinson (2015)
stated that the location based measure of cumulative opportunities is the
most probably simplest approach. The cumulative opportunities measure
counts all opportunities at destinations that can be reached within a travel
time radius and is consequently simpler as Hansen (1959) as opportunities
are not weighted by the generalized cost of travel.

2.3 policy levers

The aforementioned forces in Sections 2.1 and 2.2 are likely to result in
an equilibrium that is rarely considered optimal, i.e. too many vehicles,
resulting in too much congestion. Thus, we discuss in the following sec-
tions how the market failures of too many vehicles can be corrected with
pricing (Section 2.3.1), investment (Section 2.3.2) and control (Section 2.3.3).
Although out of scope of this thesis, we include the latter for reasons of
completeness, as it is generally important

2.3.1 Pricing

In economic theory, the mechanism to control and correct inefficient hu-
man behavior is pricing (Pigou, 1920; Small and Verhoef, 2007). The price
results from the equilibrium between supply and demand, i.e. the intersec-
tion of the demand and supply curves. Using taxation, either of the two
curves can be shifted, e.g. as a policy to correct for a less optimal market
outcomes (Pigou, 1920).

With congestion being considered the most costly externality of road
transportation (Small and Verhoef, 2007), consequently, substantial interest
in the literature emerged aiming to correct for this market failure, i.e. in-
ternalizing the congestion externalities. Further, Vickrey (1969) noted that
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prices have the advantage over infrastructure investment that they affect
demand at short notice. The theory of road pricing is to charge a toll for
driving in a network exactly at the cost of the additional delays the driver
at the margin will impose on all other drivers. As this is again a timeless
issue in transport research, we refer the interested reader to the textbooks
and reviews by Small and Verhoef (2007), Parry (2009), Anas and Lindsey
(2011) and de Palma and Lindsey (2011). Although, many argued that these
road pricing schemes work only in theory, but not in practice, some cities
had the courage to implement such systems successfully: Most notably are
the systems in London (the Congestion Charge), where evidence suggests
that congested levels declined in London (Leape, 2006; Prud’homme and
Bocarejo, 2005; Santos and Shaffer, 2004), similarly in Stockholm (Eliasson,
2009), Milano (Rotaris et al., 2010), as well as in Singapore (the electronic
road pricing (ERP) system). As the system exists for so long and Singapore
is strongly limiting car ownership, now it is difficult to access quantita-
tively its success independently.

As public transport is considered a congestion relief, how should transit
be priced in a multimodal city? In a simplified context with a substantial
preference for cars as well as usually lower travel times by car without
congestion, in theory, the fares for the transit system should be subsidized
from the revenue collected from car drivers (Small and Verhoef, 2007). Em-
pirical evidence suggests that current subsidy levels are justified and eco-
nomically efficient, while further fare reductions would increase welfare
further (Parry and Small, 2009). However, in case public transport would
be free, it is not expected to attract as many car drivers as needed to allevi-
ate congestion (see for experiments Cats et al., 2014; Thøgersen, 2009), and
thus most likely not to maximize mobility for everybody.

In transportation systems, however, the idea of marginal cost based pric-
ing and taxation is for a variety of reasons not applicable or too difficult.
For example, different modes are competing and interacting in a dynamic
system which makes the marginal (external) cost functions also dynamic.
In addition, in many cities, the prices and taxes have several elements (e.g.
fixed and variable components) with many involved agencies. Therefore,
in this thesis, we use the structure of existing pricing schemes to correct for
the less optimal equilibrium and consequently do not follow the idea from
economic theory of first or second-best pricing (Small and Verhoef, 2007).
With the rationale of this thesis to maximize mobility for everyone (Da-
ganzo, 2007), the prices of all modes should be adjusted while accounting
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for mode interactions (Kraus, 2012; Tirachini and Hensher, 2012; Tirachini
et al., 2014).

2.3.2 Investment

Investment in infrastructure, either for roads or public transport might be
more appealing than increasing prices as it not only means cutting ribbons,
but also is supposed to provide benefits for travelers and society. Related to
this is the paper “Roads to prosperity?” by Fernald (1999) that summarizes
the question whether we can achieve with infrastructure investment not
only improvements for the convenience of traveling, but also in terms of
productivity gains.

As already mentioned in Section 2.1.2 for congestion, building roads
does not necessarily improve traffic due to induced demand. Undoubtedly
does more infrastructure increase the total capacity of networks, however,
as Smeed (1966) analytically derives are the returns of investment decreas-
ing. Unfortunately, the analysis by Wong and Wong (2016) of the network
topological effects on the network performance does not consider this fea-
ture, while they intuitively recover that intersection density is reducing the
free-flow speed in networks.

With investment made to reduce travel time, people are likely to increase
not only their range of accessible destinations, but also to cover larger dis-
tances as they now can drive faster (Metz, 2008). This is among the effects
that lead to the widely observed urban sprawl (Brueckner and Fansler,
1983), where especially highway expansions led to a substantial decentral-
ization of metropolitan areas in the US (Baum-Snow et al., 2017).

When investing in public transport, especially underground lines that
run independently of car traffic, the rationale is to provide alternative
transport modes and thus congestion relief. Empirical studies indeed show
that this short-term effect was present after the opening of line extensions
(e.g. Beaudoin et al., 2015; Yang et al., 2018a), while similar effects have
been observed during transit strikes (e.g. Adler and van Ommeren, 2016).
However, Stopher (2004) summarizes in his report on reducing congestion
that “achievement [to attract more public transport travellers] would be relatively
small on the overall congestion of the road system, and that these effects would
also be likely to be fairly short-lived”. Then, at some point transit networks
become more complete and as Roth et al. (2012) conclude that there ex-
ist a long-term limit of underground networks’ shapes such as it would
be a universal mechanism that is governing investment decisions. This
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is further in line with Louf et al. (2014) findings on the predictability of
network design. In other words, at some point, investing further in under-
ground lines might not help much as the entire network is already quite
complete. Last, similar to the freeway expansion, Gonzalez-Navarro and
Turner (2018) noted an decentralization effect as well, although in this case
the effect is smaller than the effect from highways.

Coming back to Fernald’s 1999 question on the productivity gains from
infrastructure investment, he himself concluded that “at the margin, however,
road investments do not appear unusually productive. Intuitively, the interstate
system was highly productive, but a second one would not be. Road-building thus
explains much of the productivity slowdown through a one-time, unrepeatable pro-
ductivity boost in the 1950’s and 1960’s”. This view is supported by Aschauer
(1989) who reported a positive relationship between investment and pro-
ductivity gains, but also noted that the decline in productivity gains in
the 1970s is due to the decline in investment. Regarding the effects, elas-
ticities of around 0.2 between investment and productivity improvements
have been reported (Graham, 2007a; Duranton and Turner, 2012). Thus, we
can conclude that investment can be indeed productive and this has been
formalized and analytically explained by Venables (2007), but still further
research is necessary, especially for public transport, to evaluate impacts
on agglomeration (Chatman and Noland, 2011).

2.3.3 Traffic control

Traffic control is are a further mean to influence the choices of people as it
manages which mode has to wait longer and has higher generalized trans-
portation costs. In other words, which mode is getting allocated more time
and space? In contrast to investment, traffic control is less radical than
building roads, but one can argue that the effects will not dramatically
change the system. To get a wider perspective on urban traffic control, we
refer the interested reader to textbooks (Daganzo, 1997; Guberinić et al.,
2008) and reviews (e.g. Papageorgiou et al., 2008; Stevanovic, 2010; Hamil-
ton et al., 2013).

In this thesis, we are concerned with a system perspective of urban traf-
fic, in particular the MFD, and its subsequent applications. We accordingly
focus in the following on network-wide traffic control measures. As a gen-
eral notice, it should be clear that not all measures can be combined as
some of them are evidently contradicting, e.g. transit priority and signal
propagation for cars.
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The first measure is perimeter control (Haddad and Geroliminis, 2012;
Geroliminis et al., 2013; Yang et al., 2018b; Haddad and Mirkin, 2017; Kou-
velas et al., 2017; Aboudolas and Geroliminis, 2013). Here, the idea is to
define an area, usually the CBD, within the network that should be pro-
tected against congestion. This protection is ensured as follows. The traffic
states within the protected area are measured by the MFD, once the density
of the network reaches the critical density, the signals on the inbound arte-
rials reduce the green time to such a level that the amount of inflow equals
the outflow (leaving the protected area or end their trip). This approach of
course creates congestion outside the perimeter, but storing cars along arte-
rials is simpler, less costly in terms of space and less conflicting routes and
modes are usually present. So far, no city has such a MFD-based perime-
ter control, however, the city of Zürich implemented a similar scheme but
instead of density it operates with flow thresholds (Dönier et al., 2013; Am-
bühl et al., 2018c).

The second strategy is to implement a system with adaptive signals. In
other words, the offsets between signals adapt according to the flow of
vehicles, i.e. the size of platoons, to maximize the flow of vehicles (Webster,
1958; Hunt et al., 1982; Daganzo et al., 2018; Daganzo and Knoop, 2016;
Lämmer and Helbing, 2008). These systems are widely used nowadays as
several companies provide large scale solutions for monitoring and control.
So far, most of the network-wide adjustments are done manually and none
is based on the MFD so far. However, the work by Daganzo et al. (2018)
provides starting points.

A third measure is transit priority (Garrow and Machemehl, 1999; Baker
et al., 2002; Smith et al., 2005; He et al., 2016; Guler and Menendez, 2014;
Guler et al., 2016; Kohla and Fellendorf, 2015), where transit vehicles not
only operate on their dedicated lanes, but also have priority at intersections.
In other words, once a bus or tram approaches an intersection, signals for
all vehicles except the public transport vehicle turns red and the public
transport vehicle can drive over the intersection with almost no delays.
Again, these kind of systems are already widely operating similarly as
adaptive signals. For example, the city of Zürich operates such as system
where in most cases, a transit vehicle has to wait less than three seconds at
a red signal.

Last, a rather novel idea are intermittent bus lanes (Eichler and Daganzo,
2006; Chiabaut et al., 2012). The idea is that once a bus actually requires
a dedicated bus lane, the bus lane is dedicated to buses and in all other
cases, the space is available for cars. Operating bus lanes only during peak



2.4 summary 21

hour, as it is currently done in London, is a less dynamic alternative of
this idea, but already allows for some flexibility in sharing space. So far,
however, an actual intermittent system has only been tested in Lyon and
first results show that this kind of control measure is promising (Chiabaut
and Barcet, 2018).

2.4 summary

In this chapter, we have outlined the most relevant ideas within literature
for this thesis. In particular, we see how this thesis is aligned with recurring
and timeless questions from economics, engineering and social sciences.
Nevertheless, this review also emphasizes that many mobility problems
we face today will persist as long as individuals populate the city. Conse-
quently, the social optimum will most likely mean that travel times will
still be unsatisfactory for most travelers.
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3
A C C E S S I B I L I T Y A N D T R AV E L B E H AV I O R

Humans follow simple reproducible patterns. This
inherent similarity in travel patterns could impact all
phenomena driven by human mobility, from epidemic
prevention to emergency response, urban planning
and agent-based modelling.

— González et al. (2008)

As mentioned in Section 2.2.2, it seems like a universal law governing
individual’s mobility behavior: more dense environments, i.e. better acces-
sible areas, make people drive less and take other modes of transporta-
tion (Ewing and Cervero, 2017). Although this pattern has been observed
around the world, the investigation has mostly been from a car or transit
perspective. However, for countries like Switzerland (or the Netherlands
or Singapore) with a competitive public transport system, this universal
law requires a comprehensive multimodal perspective. This chapter con-
tributes with a procedure to quantify multimodal accessibility and to in-
corporate the newly derived accessibility measure in the analysis of mul-
timodal travel behavior. As this thesis deals with a Swiss context, the di-
mensions of multimodal travel behavior are car ownership, season-ticket
ownership as well as the number of car, transit and non-motorized trips.

Therefore, we deepen our understanding of this universal law from
Chapter 2 with focus on multimodal aspects in Section 3.1. We introduce
our approach to model multimodal accessibility in Section 3.2 with an em-
pirical application to Switzerland. Thereafter, we propose an econometric
model, introduced by Bhat (2015), to analyze multimodal travel behavior in
Section 3.3 where we use the multimodal accessibility measure as explana-
tory variable. We then present the results of the model estimation for the
2010 Swiss travel survey in Section 3.4. Last, we summarize the findings
and conclusions of this chapter in Section 3.5.

3.1 background

The analysis of the relationship between travel behavior and the built envi-
ronment is predominantly focusing on the influence of car-related travel

23
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behavior. Accordingly, most existing methods have been developed for
cars, for example, ownership models (e.g. de Jong et al., 2004; de Jong
and Kitamura, 2009; Anowar et al., 2014) and driving distance (e.g. Hamil-
ton Ailsa, 1982), or car ownership and use (e.g. Bhat and Sen, 2006; Tanner
and Bolduc, 2014; Jäggi et al., 2012). Other mobility tools such as public
transport season tickets or bicycles, however, have been far less of inter-
est, especially the jointness of choices (e.g. Scott and Axhausen, 2006; Ya-
mamoto, 2009; Simma and Axhausen, 2001).

The lack of interest in analyzing multimodal choices of travel behavior is
then also reflected in low interest of capturing multimodal aspects in mea-
suring accessibility. So far, most studies focused either on accessibility by
car or public transport (see for an overview Ewing and Cervero, 2010) and
only a few combined both modes (e.g., Kuzmyak et al., 2006; Shen, 2000;
Scott and Axhausen, 2006; Jäggi et al., 2012). Capturing multimodal aspects
in accessibility is important to describe the nuances in the competition of
modes, e.g. when at almost similar levels of accessibility transit offers a
small advantage, we would expect that individuals will make slightly more
decisions for public transport, while we expect the opposite if transit has a
small disadvantage. Further, this idea is not yet comprehensively linked to
Hansen’s 1959 notion of accessibility which offers a simple quantification
of the level of mobility as well as a link to economic impacts (see Section
2.2.1).

As we focus in this thesis on multimodal travel activity of mobility tool
ownership and use, it is necessary to consider briefly the relevant literature
as well. First, mobility tool ownership is usually a discrete question, either
a car is owned or not. There is a vast number of textbooks that introduce
to the field of discrete choice modelling and thus we refer the interested
reader to this work (e.g. Ben-Akiva and Lerman, 1985; Train, 2009; Greene,
2012). In most of the discrete choice models, the underlying idea is that the
decision maker has a latent propensity score, i.e. a utility function, which
is affected by individual attributes (e.g. income, age) and outcome-related
attributes (e.g. price, travel time). This score is mapped to discrete choices
with a specific function, e.g. the logistic function for the logit model or
the cumulative normal distribution function for the probit function. The
parameters are usually estimated from observations with maximum likeli-
hood (see Appendix D.1 for details).

Second, travel activity is a continuous (how far will I drive?) or ordered
choice (How many trips will I make?). Thus, the model can be a simple linear
model (e.g. Bento et al., 2005), but the nature of only positive driving dis-
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tance can be accounted for in a truncated Tobit model (e.g. Redmond and
Mokhtarian, 2001). As causality is not trivial in the question of how mul-
timodal travel behavior is affected by land use, structural equation mod-
elling (SEM) can be used (e.g. Cervero and Murakami, 2010). If travel activ-
ity is count data or ordered, but not continuous, Poisson or ordered Probit
models (e.g. Redmond and Mokhtarian, 2001) can be used. In addition,
the sample might be corrected for sample selection as people without a
car available might not be eligible to answer on how many kilometers they
traveled (Heckman, 1979).

Third, Bhat (2005) proposed an econometric model to jointly model sev-
eral discrete-continuous choices in the multiple discrete-continuous ex-
treme value (MDCEV) model. This modeling framework has been fre-
quently applied for household’s vehicle holdings (e.g. Bhat and Sen, 2006;
Jäggi et al., 2012), time-use models (e.g. Bhat, 2005) and household’s expen-
diture models (e.g. Ferdous et al., 2010). However, also much simpler struc-
tural equation models can be used to estimate multiple discrete-continuous
choices (e.g. Simma and Axhausen, 2001).

3.2 multimodal accessibility calculation

The methodology to a obtain multimodal Hansen (1959)-based measure of
accessibility first requires as an input travel times or costs cijm from origin
i to destination j for a set of modes m. The set of modes has at least two
elements: cars and public transport. We further require spatial information
about the distribution of a set of opportunities o at each destination Ojo.
This set has usually at least one element, but here we use two elements:
population and employment to illustrate how this method generalizes into
the dimensions of modes and opportunities. In transport planning, origin
and destinations are typically zones (i.e. traffic analysis zones (TAZ)) that
overlap fully or partially with statistical zones. The travel costs then are
obtained from each (arbitrarily chosen) centroid to other centroids of TAZs.

Second, with given travel costs and opportunities, we then calculate
the Hansen (1959)-based accessibility measure Aimo as given by Eqn. 3.1.

Aimo = log

(
N

∑
j=1

Ojo · exp
(

βmocijm
))

(3.1)

Aimo is a measure of destination accessibility of TAZ i to all other zones
N with mode m and for opportunities o. The distance decay parameter
βmo takes into account that more distant destinations are less attractive.
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For Switzerland, βmo has been estimated for each mode by Sarlas et al.
(2015): βc = −0.261 and βb = −0.034. Typically, the generalized cost of
travel cijm are equal to the in-vehicle time from i to j for each mode, but for
public transport additionally contains access & egress time, waiting time
and transfers.

Third, the previously computed |m| · |o| accessibility measures expected
to correlate strongly. Using each of them in further econometric analy-
sis provides an inevitable risk of multicollinearity. Reasons for this are
that at larger scale, the distributions of opportunities and travel costs are
likely to be similar, but not identical, e.g. both modes frequently share
infrastructure and residential areas overlap with work places. Thus, to re-
duce the available accessibility measures to their most defining underlying
structure, we carry out a principal component analysis following the idea
of Jäggi et al. (2012). The obtained principal components then recover the
essential directions of accessibility in the data (Jolliffe, 2002).

We apply this procedure to Switzerland with two modes: cars and public
transport and two opportunities: employment and population. The travel
times are available from the 2010 national macroscopic transport models
for car and public transport. In both transport models, TAZ zoning fol-
lows the municipality boundaries, except for large cities that are further
subdivided, but still boundaries follow the statistical zoning. In total, both
models have 2949 zones within Switzerland. From the same model and
accordingly for the same zoning, we have information on the population
and employment numbers for each TAZ. Thus, we compute for each TAZ
i accessibility Aimo with Equation 3.1.

Four accessibility measures are then available: (1) population accessibil-
ity by car, (2) job accessibility by car, (3) population accessibility by public
transport, and (4) job accessibility by public transport. In the next step,
we uncover the essential directions of accessibility in the four accessibility
measures using a principal component analysis. Results of the analysis are
presented in Table 3.1.

The first component explains more than 90 % (as measured in the pro-
portion of the Eigenvalue) of the variation in the data and we interpret it
as general accessibility. The second component explains 7.6 % of the vari-
ation and describes comparatively better accessibility by public transport
and the third component explains 0.3 % of the variation in the data and de-
scribes comparatively better job accessibility. The fourth component does
not have a meaningful interpretation for this analysis and is thus omitted.
A prominent criterion for the selection of the number of principal com-
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ponents is the Eigenvalue criterion. All components with an Eigenvalue
of equal or greater than one should be selected. In this analysis, only the
first principal component satisfy this criterion. Nevertheless, for three rea-
sons we do not follow this criterion and select the first three principal
components. First, we identify for the first three components a meaningful
interpretation. Second, if we would consider only the first principal com-
ponent, which is highly similar to each of the four accessibility measures,
the principal component analysis would be pointless because we would
ignore the differences in the accessibility measures. Third, we compared
different model specifications including either only the first, the first two
or the first three principal components with a likelihood ratio test and
found that using all three components improves the model significantly.

After the estimation of the principal components, we calculate for each
TAZ the score values of the general accessibility, comparatively better ac-
cessibility by public transport and better job accessibility. The calculation
multiplies for each zone the four original accessibility values with the load-
ings from Table 3.1 for the considered principal component. We illustrate
the spatial distribution of the score values in Figures 3.1 and 3.2. Figure 3.1
shows that the general accessibility is highest in metropolitan regions and
the densely populated Swiss plateau, but low in Alpine regions. We have
added the Swiss motorway (purple lines) and railway (black lines) network
to the map. The zones with high levels of general accessibility overlap with
motorways and dense railway networks in large parts of the country. Fig-
ure 3.2 shows spatial distribution of the second component, comparatively
better accessibility by public transport. Again, we have added the motor-
way and railway network to the map. The value distribution does not fol-
low the population distribution, as in the case of the general accessibility,
but we observe that many municipalities close to the motorway network
score low in this accessibility measure. The values do not score highest in
centers of metropolitan regions, but in the agglomeration and countryside/
Alpine regions. We can, for example, explain high values in Alpine regions
by citing existing railway and limited car networks.

3.3 econometric model

As aforementioned, we want to model the multimodal travel behavior in
Switzerland in its five dimensions: Car and season-ticket ownership as well
as the number of car, transit and non-motorized trips. Thus, we model mo-
bility tool ownership and use with a multivariate probit-based model for
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Figure 3.1: General accessibility levels in Switzerland. The values correspond to
the scores calculated from the accessibility values of each municipal-
ity and the loading from Table 3.1. Higher values mean greater gen-
eral accessibility. The purple lines show the Swiss highway network
while the black lines correspond to the main railway network.

mixed type of outcomes, as introduced by Bhat and his colleagues (Paleti
et al., 2013; Bhat, 2015; Bhat et al., 2016). For a detailed description, we
refer the interested reader especially to Bhat et al. (2014). In this model,
relationships between choice outcomes are established by allowing for cor-
relations of error terms and endogenous variables’ structural effects. This
probit based model is an extension of the traditional multivariate probit,
e.g. (e.g. Scott and Axhausen, 2006; Yamamoto, 2009; Andrés and Gélvez,
2014).

For the readers’ convenience, we omit in all equations the subscript for
number of the outcome equation. The choice of owning a mobility tool is
modeled with a binary probit. We define a latent propensity Y∗ = βx + ε,
with β a vector of coefficients to be estimated, x a vector of exogenous
covariates and the normally distributed error term ε. If Y∗ > 0, the ob-
served outcome is chosen, i.e. Y = I(Y∗ > 0). The outcome of number
of trips is modeled as a generalized ordered probit (Bhat et al., 2014; Bhat,
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Figure 3.2: Comparatively better accessibility by public transport. The values
correspond to the scores calculated from the accessibility values of
each municipality and the loading from Table 3.1. Higher values
mean comparatively better accessibility by public transport. The pur-
ple lines show the Swiss highway network while the black lines cor-
respond to the main railway network.

2015). The generalized ordered probit also has a latent propensity Y∗ = ε,
which is mapped to the observed count outcome j by threshold parame-
ters ψn. For the observed count value j = n, the following condition holds
ψn−1 < Y∗ < ψn. The threshold parameters ψn are determined by the
function

ψn = Φ−1

(
(1− c)θ

Γ (θ)

n

∑
r=0

(
Γ (θ + r) cr

r!

))
+ ϕn (3.2)

with

c =
exp (βx)

exp (βx) + θ
(3.3)

Dispersion parameter θ and flexibility parameter ϕ in Equations 3.2 and
3.3 allow flexible count distribution modeling. Φ is the cumulative normal
distribution function, Γ is the gamma function, x is a vector of exogenous
and endogenous covariates and β a vector of parameters to be estimated.
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Error terms of each outcome equation correlate pairwise with ρ and consti-
tute the correlation matrix P. For identification, we set ϕ−1 = −∞, ϕ0 = 0
and ϕn>0 = ϕ for each count outcome. The model parameters β, θ, ϕ and
P are estimated with maximum likelihood. For each observation the likeli-
hood is defined by

L (β, θ, φ, P) =
∫ γupp

γlow

φ5 (ũ|P) dũ (3.4)

The probability is obtained by integrating the five-dimensional normal
density distribution φ5 from γlow to γupp, both five-dimensional vectors.
For the binary outcome, the lower integration bound is −∞ and the upper
integration bound is determined by evaluating the corresponding outcome
equation for Y∗. For the count outcome, the integration domain is deter-
mined by individual threshold values ψn−1 and ψn. For the estimation
of the model parameters, we use the maximum approximate composite
marginal likelihood (MACML) (Bhat and Sidharthan, 2011) for which Bhat
(2011) reported that the MACML approach recovers estimates just as well
- but faster - as the simulation approach and that reduction in efficiency
by the marginal compared to the simulation approach is “in the range of
nonexistent to small”.

3.4 results

We use the newly derived accessibility measure from Section 3.2 and the
econometric model from Section 3.3, to investigate the link between our
derived multimodal accessibility measures and mobility tool ownership
and use. For this, we present in Section 3.4.1 the data that we use for the
model estimation and thereafter the model estimates in Section 3.4.2.

3.4.1 Travel behavior data

Data on mobility tool ownership, number of trips and accompanying socio-
demographic information is provided by the Swiss national transportation
microcensus for the year 2010. The transportation microcensus is a large-
scale survey carried out every five years with approximately 1 % of the
Swiss population. In 2010, 59’771 households and - within these house-
holds, 62’868 individuals - were interviewed about their travel behavior
(Swiss Federal Statistical Office and Swiss Federal Office for Spatial Devel-
opment, 2012). We exclude anyone who can only move with outside sup-
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Mobility tool
Season ticket

No Yes Total

N % N % N %

Car
No 9’496 18.10 8’309 15.83 17’805 33.93

Yes 29’364 55.96 5’307 10.11 34’671 66.07

Total 38’860 74.05 13’616 25.95 52’476 100

Table 3.2: Jointness in mobility tool ownership, illustrated by the cross tabula-
tion of car and season ticket ownership.

port, all cases where we cannot impute the income and all cases younger
than 18 from the sample. When two persons of a household reported on
their travel behavior in the census, the second observation was in most
cases a child. The final sample has 52’476 complete observations.

This analysis models individuals’ decision making. For each individual
in the data set, we extract five dependent variables of interest, car and
season ticket ownership and the number of car, public transport and non-
motorized trips as follows: car ownership is defined as having a car ex-
clusively available. All individuals without driver’s license are coded as
having no car available. Season ticket ownership is defined as having any
kind of season ticket subscription offering unlimited use of public trans-
port, on either a regional or national scale. The number of trips is taken
from the microcensus’ travel diary, encompassing a single day. In each of
the three trip variables, we pool the count outcomes of 1 and 2 trips into
a single outcome and all outcomes larger than 11 to the outcome of 11.
We did the first because just one trip was rarely observed and the latter
because we wanted to avoid long tails in the distribution.

Table 3.2 shows that 55.96 % of all observations only have a car, 18.1 %
have neither a car nor a season ticket, 15.83 % have only a season ticket
and 10.11 % have both mobility tools available. Table 3.3 shows the uni-
variate distributions of the number of trips by car, public transport and
non-motorized modes. The total share of immobile persons in the dataset
is 10.6 %. However, we cannot ignore the potential influence of soft-refusal
(not reporting of shorter trips), especially for the non-motorized trips (Ma-
dre et al., 2007). The accumulation of zero trips is highest for public trans-
port trips and lowest for car trips, which also shows the longest tail. In
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Number of trips

Mobility tool Car Public transport Non-motorized

Car
No 0.489 0.477 1.103

Yes 1.660 0.130 0.727

Season ticket
No 1.489 0.088 0.831

Yes 0.616 0.701 0.922

Total 1.262 0.247 0.855

Table 3.3: Average number of car public transport and non-motorized trips con-
ditional on mobility tool ownership. The ownership of a car or a sea-
son ticket corresponds to an increase in car or public transport trips,
respectively.

Table 3.3 we present the average number of trips distinguished by mobil-
ity tool ownership. Intuitively, car ownership increases the number of car
trips and reduces the number of public transport and non-motorized trips,
while the opposite occurs for season ticket ownership. For season ticket
ownership, we observe a slight increase in the number of non-motorized
trips.

Besides the multimodal accessibility measure from Section 3.1, we in-
clude further spatial control variables and common socio-econometric con-
trol variables. Section C.1 in the Appendix summarizes all extracted vari-
ables as well as the sample’s summary statistics in Table C.1. In particular,
we use the spatial topology on a three level scale (living in the city, the
agglomeration or countryside) and the quality of public transport at the
household location on a five level scale(A to E) as further spatial control
variables. The latter we use as an instrument for the structural effects of
mobility tool ownership on travel activity.

3.4.2 Model estimates

Table 3.4 lists the model estimates for the independent land-use variables
of interest, while Table 3.5 presents the additional parameters of the corre-
lation matrix. For readability, the socio-economic control variables are not
shown, but are given in Loder and Axhausen (2018). As we find most of
these parameters statistically significant, we conclude that univariate mod-
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els cannot provide the behavioral insights generated by the multivariate
model. Further, we find all count parameters to be significantly different
from zero. Therefore, the count models are between a traditional negative
binomial and a Poisson count model.

Each of the three new derived measures of accessibility - general acces-
sibility, comparatively better access by public transport and comparatively
better job accessibility - show a negative effect on car ownership. The ef-
fects on season ticket ownership are positive for all three variables. We find,
for gradually decreasing quality of public transport at household locations,
likelihood of car ownership increases and likelihood of season ticket own-
ership decreases. In the agglomeration, car ownership is greater than in the
urban center and the countryside, while car ownership is greater in rural
areas than in the city center. Living in the city center shows a greater like-
lihood of subscribing to a season ticket than living in the agglomeration
and the countryside.

For each of the three count outcomes of the number of trips we find
significant structural effects of the two mobility tools. The observed differ-
ences for the number of car trips and season ticket ownership in Table 3.3
are replicated by the model estimates in Table 3.4, except for the effects
of season ticket on the number of non-motorized trips. Table 3.3 show a
slightly greater average of non-motorized trips for season tickets holder,
but the effect in Table 3.4 is negative. This is anticipated because in Table
3.3 further control variables are not considered. The number of car trips in-
creases in the countryside and even more in the agglomeration. The num-
ber of public transport trips is highest in the city center and decreases in
the agglomeration and even more so in the countryside. This pattern is
also observed for the number of non-motorized trips. With increasing gen-
eral accessibility, the number of car trips declines and the number of public
transport trips increases. The effect of general accessibility on the number
of non-motorized trips is insignificant.

Table 3.5 lists the cross-equation parameters of all five outcomes. Ex-
cept for the correlations between equations of season ticket ownership and
number of non-motorized trips as well as between equations of the num-
ber of public transport trips and non-motorized trips, all correlations are
significant. A positive correlation implies common unobserved factors act
in a similar way, while a negative correlations implies that they act in the
opposite way. In other words, a positive correlation indicates that both out-
comes are complementary goods, while a negative correlation means sub-
stitute goods. Here, the negative correlation between car and season ticket
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Between the mobility tools

ρ21 Car and season ticket −0.489∗∗∗ (0.007)

Between mobility tools and the number of trips

ρ31 Car and car trips −0.022∗∗ (0.008)

ρ41 Car and public transport trips 0.036∗∗∗ (0.010)

ρ51 Car and non-motorized trips 0.016∗∗ (0.006)

ρ32 Season ticket and car trips 0.028∗∗∗ (0.008)

ρ42 Season ticket and public transport trips −0.037∗∗∗ (0.009)

ρ52 Season ticket and non-motorized trips −0.006 (0.008)

Between the number of trips by

ρ43 Car and public transport −0.355∗∗∗ (0.007)

ρ53 Car and non-mot. modes −0.281∗∗∗ (0.005)

ρ54 Public transport and non-mot. modes −0.013 (0.008)

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3.5: Estimates of the correlation between unobserved factors.

ownership indicates that both are substitutes. This finding is intuitive and
consistent with previous findings (Scott and Axhausen, 2006).

We expect that the counter-intuitive negative correlations between car
ownership and use as well as season-ticket ownership and use might cap-
ture unobserved factors such as the impetus to use the mobility tool due to
a large financial commitment. For positive correlations of structural effects,
we assume they might describe a general factor of demanding mobility.
We validate these counter-intuitive correlations with Poisson and linear
regression models with endogenous covariates and the same sign for the
correlations. Thus, we conclude that joint modeling is necessary to capture
all of the unobserved effects.

3.5 summary

This chapter contributes with an approach to reduce highly-correlated ac-
cessibility measures of different transport modes to their most essential un-
derlying structure. We then use the new multimodal accessibility measures
to explain multimodal travel behavior in the dimensions of ownership and
use in Switzerland.

We generally find that the land-use effects widely reported in literature
are also present in Switzerland (Ewing and Cervero, 2010), but further we
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find that our newly derived accessibility measures are strong predictors
of travel behavior: The first dimension captures general accessibility and
follows the universal law of people driving less in denser (more accessi-
ble) neighborhoods. The second dimension describes comparatively better
accessibility by public transport and emphasizes that people choose those
mobility tools that are of comparatively lower generalized cost of travel.
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4
M O D E L I N G C O N G E S T I O N I N C I T I E S

The feeling that something should be done to mitigate
the harmful effects of motor vehicles is almost
universal, but the opinions on what should be done
are widely conflicting. There are groups in our society
who would like to travel everywhere by car, there are
other groups who believe that nobody should be
allowed to travel by private transport - at any rate in
our larger towns - and there are groups with every
variety of view in between.

— Smeed (1968)

Road traffic congestion is of considerable concern across the globe as
nicely summarized by Smeed (1968) in the quote. Its physical and mathe-
matical understanding is key to derive strategies to improve accessibility
and thus mobility for everyone. The interest started in the era of motor-
ization after the first world war, notably with the work by Schaar (1925)
and Greenshields (1935). Both where interested in understanding how
many vehicles a road can carry, i.e. in modern terms the capacity of a
street. Their research lead to the foundation of what has now become the
Fundamental Diagram (FD) of a street.

Since then, we have seen a substantial growth in the understanding of
the physical mechanisms of congestion (e.g. Lighthill and Whitham, 1955;
Underwood, 1961; Nagel and Schreckenberg, 1992; Treiber and Kesting,
2013; Helbing, 2001; Nagatani, 2002; Daganzo, 1994) which may lead us
to the conclusions that we understand street level traffic and congestion.
However, this is less the case for understanding urban traffic at the net-
work level. In cities, traffic is often disturbed by, for example, traffic signals,
spillback, buses, pedestrians and cyclists.

In the past fifty years, we have seen a few theories of collective vehicular
traffic movement in cities at the network level (e.g. Smeed, 1961; Godfrey,
1969; Herman and Prigogine, 1979). The rationale of such theories is to
predict the average network speed (and its distribution) as a function of
demand and infrastructure constraints. It was only recently that this per-
spective on urban traffic regained interest, after almost two decades of mi-
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40 modeling congestion in cities

croscopic research, with the formulation of the macroscopic fundamental
diagram (MFD) by Daganzo (2007).

In this chapter, we review first in Section 4.1 the theories of urban net-
work traffic prior to the MFD before we discuss the MFD throughoutly in
Section 4.2. Thereafter, we present the contributions this thesis makes: The
empirical evidence for the influence of network topology on the MFD in
Section 4.3 and the proposal of three multimodal macroscopic congestion
mechanisms based on the MFD in Section 4.4 that account for the influ-
ence of buses, bicycles and other disturbances in the flow of cars. Last. we
summarize this chapter in Section 4.5.

4.1 macroscopic congestion in cities

The inevitable benefit of a macroscopic or network-wide perspective on
urban traffic is that, compared to microscopic and link-based perspectives,
it is usually much simpler in terms of mathematical complexity, but at
the same time insightful for a long-term oriented policy decision making
(Williams et al., 1987; Williams, 2001).

Intuitively, with a robust speed-flow-density relationship on every link
as seen in Figure 2.2, it is not surprising to expect a similar relationship
also for an entire network (as observed by, e.g. Thomson, 1967; Olszewski
et al., 1995; Wong and Wong, 2016). The understanding of this “mechanism
of a road network” (Godfrey, 1969) was initiated by traffic engineers in Lon-
don, where first key questions were to identify the capacity of a network
and how journey speeds are linked to the number of vehicles (Smeed, 1961,
1966; Wardrop, 1968; Godfrey, 1969). Slightly later, Zahavi (1972) proposed
that all features of a read network (apart the network density for normal-
ization, measured in length or area of roads per unit area) are captured in
the single parameter α that defines the relationship between network-wide
speed and flow. Importantly, Williams (2001) concludes that “α may serve
as a measure of the combined effects of the network characteristics and traffic per-
formance, and can possibly be used as an indicator for the level of service”, from
which we conclude that it would be more desired to disentangle network
characteristics from traffic performance a network congestion mechanism.
However, all these models consider a monotonically decreasing relation-
ship between flow and speed, but “monotonicity only makes sense if traffic is
light, since it cannot capture crowded states with very low speeds and flows; e.g.,
approaching gridlock” (Geroliminis and Daganzo, 2008). Consequently, these
models are less reliable in the congested regime, but with our pressing con-
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gestion problems, we require physically reliable mechanisms to identify
the optimal resource allocation in cities.

A first macroscopic model that physically accounts for overcrowding is
the two-fluid theory proposed by Herman and Prigogine (1979). In essence,
their theory is that the average speed in the network is a function of the
fraction of stopped vehicles, where the fraction of stopped vehicles is con-
sidered to follow a power law as a function of vehicle density. With traffic
data becoming more available, Herman and Ardekani (1984), Ardekani
and Herman (1985), and Ardekani et al. (1992) empirically show how the
two-fluid parameters are likely to be influenced by network topology. How-
ever, “the idea was not sufficiently developed to create a macroscopic model with
variable inputs and outputs that could describe a rush hour dynamically” (Gero-
liminis and Daganzo, 2008). In other words, the two-fluid model cannot be
used for dynamic traffic models.

All mentioned approaches, except for the two-fluid model have been pro-
posed by traffic engineers, while there has been - somehow unnoticed (or
unreported) by the engineers - interest on understanding network traffic
traffic by the physicist community. In particular, how the network struc-
ture, e.g. intersection spacing and network topology, influences the jam-
ming transition in networks (e.g. Maniccam, 2003; Nagatani, 1993; Sasaki
and Nagatani, 2003; Mendes et al., 2014).

The last and seminal step that combines a simple macroscopic approach
with a physical representation of congestion, captures the effect of network
topology and models network dynamics has been taken by Daganzo (2005,
2007).

His approach relates the trip end rate or network exit rate to the accu-
mulation of vehicles in the network. As the vehicle accumulation A inside
a network can be managed or controlled, this approach is particularly use-
ful for maximizing trip ends and thus directly helps to derive strategies
to improve accessibility for everyone. This approach is centered around
Eqns. 4.1 and 4.2. In detail, Eqn. 4.1 states that the change of vehicle accu-
mulation A equals to the balance of the inflow to the system by demand
Λ (t) and the outflow of the system O (A). Importantly, outflow O (A) is
considered to be only a function of A, but not t.

∂A
∂t

= Λ (t)−O (A) (4.1)

The outflow O - the trip ends or network exit rate - per unit time interval
follows from Eqn. 4.2 and is the total travel production Π per unit time
interval divided by the (average) trip length l in the network. Importantly,
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a b

Figure 4.1: Comparing the modeling ideas for traffic routing in cities. (a) shows
conventional routing in urban road networks, (b) shows the idea of
routes in the MFD context (reservoir idea).

it is only the number of vehicles inside the network and the trip length
that determine determine how many vehicles can exit the network due to
congestion effects.

O (A) =
Π (A)

l
(4.2)

The relationships O (A) and Π (A) are defined as the Macroscopic fun-
damental diagram (MFD). The thinking of an urban network as a reservoir
or bathtub with inflow and outflow with a MFD (Arnott, 2013; Fosgerau,
2015) is diametrical to most existing perspectives on (urban) traffic which
consider vehicles always mapped to a sequence of connected links. Figure
4.1 illustrates the different modeling perspectives of how a vehicle propa-
gates through the network. Figure 4.1a shows the common, conventional or
traditional thinking of a vehicle being routed on links through the network,
while Figure 4.1b shows that the network and route can be abstracted into
a simple reservoir or system where the trip end rate and journey speeds
are still key measures of the system.

In the remainder of this chapter, the focus is on the static behavior of
Π (A), the MFD. The interested reader is directed to the work by Mariotte
et al. (2017), Aghamohammadi and Laval (2018) and Lamotte and Geroli-
minis (2018) for the dynamic aspects of Eqn. 4.1.
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4.2 the macroscopic fundamental diagram

This section introduces to the MFD in two ways. First, we provide a com-
prehensive review of the MFD theory and adjacent literature in Section
4.2.1. Second, we summarize the approaches to estimate analytically as
well as empirically MFDs in Section 4.2.2.

4.2.1 Theory

The MFD as formulated with Π (A) provides a well-defined link between
travel production (and with l trip end rate or network exit rate) and the
accumulation A of vehicles in the network. Intuitively, A, O (A) and Π (A)
and their relationships are difficult obtain, neither empirically with data
nor analytically. Therefore, it was the seminal contribution by Daganzo
(2007) and subsequently by Geroliminis and Daganzo (2008) to show how
O (A) and Π (A) can be approximated by a relationship between the net-
work’s average flow q and the average vehicle density k, where both mea-
sures and their relationship can be obtained1. Therefore, in the remainder
of this thesis, we always refer to the MFD in average network flow q versus
average network density k if not stated otherwise.

In detail, the MFD links the network average vehicle density k (in vehi-
cles lane-km-1) to the network average vehicle flow q (in vehicle h-1 lane-1)
with a smooth, concave and reproducible curve with a maximum flow q∗,
defined as capacity, at the so called critical density k∗. In the following, we
define that k∗ and q∗ mark the critical point of a network. If k > k∗, the
network is congested and vehicular flow decreases; in turn, if k < k∗, the
network is uncongested. Figure 4.2 shows MFD from Zürich, Switzerland,
where we emphasize by color whether the network is congested or not. Ac-
cordingly, to maximize vehicle throughput, traffic control has to act at the
critical point to avoid network-wide congestion (Daganzo, 2007; Haddad
and Geroliminis, 2012).

In theory, the MFD shape is related to the underlying fundamental dia-
gram, network topology, public transport operations, and origin and des-
tination streams, i.e. route and mode choice (e.g. Boyaci and Gerolimi-
nis, 2011; Geroliminis and Boyaci, 2012; Leclercq and Geroliminis, 2013;
Leclercq et al., 2014; Castrillon and Laval, 2018). For a well-defined MFD
to exist in an urban road network, more or less homogeneous traffic condi-

1 Assuming that the considered network has a total length of L, it follows A = L · k and
Π = L · q. For the outflow O then Eqn. 4.2 still holds
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Figure 4.2: MFD from Zürich Wiedikon (see Figure B.2) in the flow density (a)
as well as speed density (b) representation. The critical point and
macroscopic traffic states are indicated.

tions in the network are required (Daganzo and Geroliminis, 2008; Geroli-
minis and Sun, 2011). Therefore, MFDs typically exist for multiple, smaller
regional networks, around 10 km2 in size, within a city. Regional networks
are identified with network partitioning algorithms (Ji and Geroliminis,
2012; Saeedmanesh and Geroliminis, 2016, 2017), which, unfortunately, so
far only apply to Lagrangian observations, i.e. trajectory or simulation data,
but not to Eulerian observations, i.e. stationary detectors. Section 4.2.2 com-
pares the MFD estimation for the different data sources.

The shape of the MFD can be modelled in different ways. While some
only use curve-fitting with a polynomial function (e.g. Kouvelas et al., 2017;
Ramezani et al., 2015) or exponential functions (e.g. Amirgholy and Gao,
2017; Ampountolas et al., 2017) or step-wise linear functions (e.g. Mari-
otte et al., 2017; Gao and Gayah, 2017). Helbing (2009) and Ambühl et al.
(2018a) propose functional forms for the MFD with meaningful parameters
that allow not only curve-fitting, bot also to estimate the MFD shape using
additional measurements or estimates of the parameters instead. The func-
tion by Ambühl et al. (2018a) has only five parameters, where most relate
to the method proposed by Daganzo and Geroliminis (2008).

Last, which applications aside of dynamically modeling traffic at the net-
work level can be build or advanced using the MFD? First and foremost,
due to the ease of identifying the critical point of a network, the MFD al-
lows a variety of traffic control applications, in particular perimeter control
approaches that aim to control traffic inside the perimeter at or before the
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critical point to maximize vehicle or passenger throughput when consider-
ing buses as well (e.g. Yang et al., 2018b; Aboudolas and Geroliminis, 2013;
Kouvelas et al., 2017; Haddad and Geroliminis, 2012; Haddad and Mirkin,
2017). Second, as the MFD further allows to measure the distance between
the actual traffic state and the optimal or desired traffic state, while at the
same time quantifying caused congestion externalities, it can be used to
calculate optimal road pricing to improve mobility (e.g. Zheng et al., 2012;
Gonzales and Daganzo, 2012; Geroliminis and Levinson, 2009; Amirgholy
and Gao, 2017). Third, as the MFD links network topology to the system
performance, the MFD is a novel tool to discuss (multimodal) space alloca-
tion and optimal city and network design from a macroscopic perspective
(e.g. Tsekeris and Geroliminis, 2013; Zheng and Geroliminis, 2013; Zheng
et al., 2017; Amirgholy et al., 2017).

4.2.2 Estimation

At the time of writing this thesis, three different methods to estimate the
MFD have been established in the literature (Leclercq et al., 2014). In this
section, we summarize the existing methods: One of these methods is an
analytical method, i.e. the method of cuts in Section 4.2.2.1. The other two
methods estimate the MFD from Eulerian observations in Section 4.2.2.2,
Lagrangian observations in Section 4.2.2.3, and from simulation data in
Section 4.2.2.4.

However, their seminal work, Daganzo and Geroliminis (2008); Geroli-
minis and Daganzo (2008) actually combined Eulerian with Lagrangian
observations to improve the MFD estimation and to reduce the bias result-
ing from empirical measurements. This approach has subsequently been
defined as data fusion in the MFD (e.g. Ambühl and Menendez, 2016; Am-
bühl et al., 2017; Dakic and Menendez, 2018).

4.2.2.1 Method of cuts

The idea of the method of cuts is to approximate the upper bound of the
MFD with a set of linear functions in the (k, q) plane. The method has
been developed by Daganzo and Geroliminis (2008) and all subsequent
mathematical formulations have been taken from Daganzo and Gerolimi-
nis (2008) and Leclercq et al. (2014) to which we refer the interested reader
for the full description and discussion of this method. The linear functions
are defined as cuts and are parameterized as given by Eqn. 4.3. Each cut
corresponds to a moving observer that has no mass, no dimension and is
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not delayed by traffic signals. In Eqn. 4.3, u is the associated speed of the
moving observer in the network, while R (u) is the associated maximum
passing rate that a particular moving observer can encounter at speed u.

q = ku + R(u) (4.3)

The upper bound notion of the MFD means that all observed flow traffic
states must be less or equal to this upper bound as given by Eqn. 4.4.

q ≤ ku + R(u) (4.4)

Instead of evaluating R (u) for all possible values of u, Daganzo and
Geroliminis (2008) proposes to use discrete values of u and thus obtain-
ing three families of “practical” cuts. The cuts are based on observers that
either do not move at all u = 0, move forward u > 0 and move back-
ward u < 0. The first family of cut relates to stationary observers and the
practical cut is the observer standing, i.e. u = 0, at the most constraining
intersection as formulated in Eqn. 4.5, where si is the maximum discharge
rate of intersection i with cycle length Ci and green time Gi.

q ≤ min
i

(
si

Gi
Ci

)
(4.5)

The second family relates to forward moving observers. Here, R (u) is
evaluated at γ different speeds, where γmax is the maximum number of
signals a fast moving observer can pass without stopping at extended red
light phases. The resulting uγ is calculated as if the observer is moving
with free flow speed u f , but needs to stop at every γ-th signal, where
the fraction of time being stopped at that signal is fγ (see the Appendix
in Daganzo and Geroliminis (2008) for exact formulae for uγ and fγ). Then
the cuts for the forward moving observer is given by Eqn. 4.6, where qm is
the capacity of the associated fundamental diagram.

q ≤ kuγ + qm fγ (4.6)

The third and last family of cuts is for the case when the observer is
moving backward. This case is very similar to the second family of cuts,
but where the observer is now moving at speeds u = −wγ, i.e. in the
opposite direction of the traffic stream. Then, the third families of cuts is
given by Eqn. 4.7 where bγ is the fraction of time the observer is stopped at
signals, while wγ/w is the fraction of time the observer is moving and r is
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Figure 4.3: The three cut families: forward, stationary and backward cuts

the maximum passing rate when the observer is moving (see the Appendix
in Daganzo and Geroliminis (2008) for exact formulae for wγ and bγ).

q ≤ −kwγ + qmbγ + r
wγ

w
(4.7)

In Figure 4.3 we show the cuts and thus the creation of the upper bound
and clearly shows the familiar shape of a MFD as given, for example, in Fig-
ure 4.2. Although Daganzo and Geroliminis (2008) show that their method
is also applicable in heterogeneous networks, Leclercq and Geroliminis
(2013), Leclercq et al. (2014) Geroliminis and Boyaci (2012) and Boyaci and
Geroliminis (2011) clearly emphasize that in complex and heterogeneous
networks the estimation of cuts is not trivial anymore and the recovery of
the parameters is difficult, even impossible.

To overcome the issue of inhomogeneous corridors with the analytical
approximation, Laval and Castrillón (2015) proposes a stochastic approx-
imation to the MFD when the block length and signal timings are con-
sidered random variables with mean and standard deviation. The authors
conclude that the MFD’s shape can be well described using the mean block
length to green ratio and the mean red to green ratio.

4.2.2.2 Eulerian observations

The Eulerian observations of vehicular flow or in general any particle flow
in motion are measurements from a specific, i.e. fixed, location in space
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Figure 4.4: Comparing Eulerian and Lagrangian observations or speed measure-
ments. This figure is adopted from Bliemer (2001).

bounded by [x, x + ∆x]. Figure 4.4 illustrates the measurement procedure:
During an observation interval [t, t + ∆t], a certain number of vehicles or
particles flows through that window and spends a certain time inside this
space-time window. In traffic, these observations result from fixed or sta-
tionary detectors (see Appendix A.1.1 for further details), e.g. inductive
loop detectors or ultrasonic detectors. This data has been frequently been
used in empirical MFD estimation (e.g. Geroliminis and Daganzo, 2008;
Buisson and Ladier, 2009; Loder et al., 2017) (also in Figure 4.2). In a net-
work with links i of length li, the MFD from Eulerian observations is then
estimated by averaging flows qi and densities ki of all links weighted by
their length as given by Eqn. 4.8.

qMFD =
∑ qili
∑ li

(4.8)

The density is estimated in a similar way as given by Eqn. 4.9.

kMFD =
∑ kili
∑ li

(4.9)

Last, we obtain the time-mean speed of the MFD by applying the funda-
mental traffic equation as given by Eqn. 4.10 (Daganzo, 1997).

vMFD =
qMFD
kMFD

(4.10)
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Importantly, stationary traffic detectors have their own issues as they
measure only the traffic conditions at their exact location in space and
only measure occupancy for technical reasons instead of reporting den-
sity (Bickel et al., 2007). Thus, we refer the reader to Appendix A.1.1 for a
detailed summary of measuring traffic with stationary detectors.

4.2.2.3 Lagrangian observations

Contrary, Lagrangian observations of vehicles or particles follow an indi-
vidual vehicle through space and time. In traffic research, this corresponds
to the trajectory of the object (see Appendix A.1.2 for further details) and is
frequently provided by taxis and other fleet-operating vehicles. This data
source has also already been used in empirical MFD estimation (e.g. Ji
et al., 2014). Consequently, for each vehicle j the travel distance dj as well
its travel time τj inside the space-time windows defined by by [x, x + ∆x]
and [t, t + ∆t] is known. Then, the MFD space mean speed is simply ob-
tained by dividing the total travel time of all vehicles by the total distance
traveled of all vehicles.

vMFD =
∑j dj

∑k τj
(4.11)

The density is then obtained by the total travel time of all vehicles di-
vided by the length of the observation interval ∆t and the total monitored
network length L.

kMFD =
∑k τk
Lδt

(4.12)

Last, we obtain the MFD flow by applying again the fundamental traffic
equation as given by Eqn. 4.10. Importantly, usually not vehicles provide
trajectory data, which might not be a substantial problem for the speed
estimation, but it is for the density and flow estimation. Consequently,
additional information is required to scale flow and density accordingly
with the probe penetration rate.

4.2.2.4 Edie’s definition

In the special case of obtaining data from a traffic simulator, all vehicle tra-
jectories are available and thus the unbiased MFD can be estimated using
Edie’s generalized definitions Edie (1963). This approach follows two steps
(Leclercq et al., 2014). First, from the trajectories, the link averages of flow
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qi and density ki for link i in observation interval [t, t + ∆t] are calculated
as given by Eqns. 4.13 and 4.14.

qi =
∑j dj

li∆t
(4.13)

ki =
∑j τj

li∆t
(4.14)

Second, we then average the link flows as in case of Eulerian observa-
tions with Eqns. 4.8 and 4.9.

4.3 understanding traffic capacity of urban networks

The MFD theory predicts that the shape of the MFD, and thus ultimately
networks’ capacities depend on the network topology (Daganzo and Ge-
roliminis, 2008; Leclercq and Geroliminis, 2013; Geroliminis and Boyaci,
2012). This is intuitive and not surprising as for many other macroscopic
flow models, the influence was not only theoretically predicted (e.g. Smeed,
1961), but also empirically proven (e.g. Wong and Wong, 2016; Ardekani
et al., 1992). So far, however, the empirical evidence for the MFD and thus
the empirical quantification of the effects is still missing. Therefore, in this
section we provide this first comparative empirical evidence of such rela-
tionship.

We analyze critical points, with data from 41 cities worldwide, includ-
ing 107 regional networks (see Table B.3). We use a newly assembled, rich
empirical data set of billions of vehicle observations from stationary traf-
fic detectors (i.e. Eulerian observations as introduced in Section 4.2.2.2;
see Appendix A for further information) to estimate critical points. We
pair this data with networks from OpenStreetMap to explain how network
topology drives the critical point.

The estimation of critical points requires first the identification of suit-
able regional networks where the MFD, critical points as well as the net-
work topology are estimated and analyzed. We define regional networks
heuristically, as existing partitioning algorithms (e.g., Ji and Geroliminis,
2012; Ji et al., 2014; Saeedmanesh and Geroliminis, 2016, 2017) cannot be
applied to our data and limited detector coverage usually prevents a sys-
tematic and automatic zoning at large scale across all cities. Second, we
estimate MFDs using a re-sampling methodology to account for hetero-
geneity in the network because we want to clearly identify the boundary
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a b

Figure 4.5: Comparison of urban traffic capacity across 107 urban networks. (a)
Positive relationship of network capacity against critical accumula-
tion (R2=0.92). (b) Kernel density estimate of critical speeds of all
networks emphasizes that congestion starts at different speeds in
different networks (mean 18.8km/h).

of traffic states as independent as possible of demand and traffic irregular-
ities (Ambühl et al., 2018b). Third, we fit an MFD function18 in the upper-
most 20-quantile (quantile regression approach) of the estimated MFDs to
functionally describe the boundary of traffic states (Ambühl et al., 2018a).
The critical point is then the maximum of the estimated function. This al-
lows a more robust estimation of the critical point because this procedure
borrows information from all observations in the MFD.

Figure 4.5 compares the critical points of all 107 networks with sample
statistics Π∗ = 12236± 551 vehicle-km h-1 km-2 (mean ± standard devi-
ation) and A∗ = 653 ± 308 vehicles km-2 (mean ± standard deviation).
Figure 4.5a shows the intuitive positive relationship between critical accu-
mulation and network capacity with R2 = 0.91. R2 < 1 implies – ignoring
measurement uncertainties - that other factors create variation in critical
points as well. This variation is also emphasized by the kernel density
estimate of the critical speed in Figure 4.5b, revealing a substantial varia-
tion of critical points across regions. This implies that in some regions, car
drivers can experience low speeds, but against intuition, the network is not
macroscopically congested. The distribution of critical accumulation in our
sample is consistent with the traffic physics literature (Chowdhury et al.,
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2000) that predicts that critical accumulation does not exceed one third of
the jam accumulation.

To quantify the critical point relationship in Figure 4.5a and the influence
of bus and road network topology on the critical point, we use a two-stage
least squares regression analysis because the influence of critical accumu-
lation on capacity is endogenous and requires instrumental variables. We
focus on exogenous variables linked to the full network properties of bus
and road network topology that are not only macroscopic, but also measur-
able from OpenStreetMap, common to all cities, and clearly interpretable.
We do not consider city-specific factors, e.g. bicycle policies, although they
undoubtedly also influence the critical point. On a broader level, the exoge-
nous variables should describe conflicts between vehicles that cause delays.
For example, delays appear when two vehicles want to be at the same time
at the same place (i.e. at intersections), or when cars must follow buses
or cyclists. All these conflicts influence the total travel time of drivers or
even the travelled distance of vehicles, both of which affect the location
of the critical point. Accordingly, we define four variables. First, road net-
work density R (lane-km km-2) with sample statistics R = 23.46± 10.36
lane-km km-2 (mean ± standard deviation). Second, network redundancy,
measured in the network average betweenness centrality bc (-) with sam-
ple statistics bc = 0.084± 0.039 (mean ± standard deviation). Third, the
average distance between or spacing of signalized intersections (LSA) in
the network I (LSA network-km-1) with sample statistics I = 0.385± 0.188
LSA network-km-1 (mean ± standard deviation). Fourth, the bus produc-
tion density B (bus-km h-1 km-2) that combines the density of the bus
network per unit area with the average headway with sample statistics
B = 147± 85.5 bus-km h-2 km-2 (mean ± standard deviation). We expect
that R, bc and I affect the critical accumulation (via total travel time) and B
affects capacity (via total travelled distance). Consequently, the first three
variables correspond to the required instruments for the critical accumula-
tion. In particular, we expect that A∗ increases with R as more road space
per unit area generally allows more vehicles to circulate, but denser net-
works provide more opportunities for conflicts (at intersections, through
lane changes, etc.), resulting in a sublinear scaling (Smeed, 1968; Nagatani,
1993; Miller, 1970) between R and A∗. In low redundancy networks with
few alternative routes, the concentration of vehicles on these routes re-
duces the critical accumulation compared to networks with many alterna-
tive routes (Maniccam, 2003; Mendes et al., 2014; Ortigosa and Menendez,
2014), i.e. A∗ decreases with bc. In a network of density R, we expect that
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a denser intersection spacing increases travel times due to more waiting
compared to a network of the same density R with a larger intersection
spacing (Transportation Research Board, 2016; Ardekani et al., 1992; Gero-
liminis and Boyaci, 2012; Wong and Wong, 2016), consequently we expect
that the interaction of I and R has a negative effect on Π∗. Last, buses are
usually larger than cars and can behave as either stationary bottlenecks
at bus stops, or as moving bottlenecks when driving, consequently, Π∗

should decrease with B (Loder et al., 2017; Nagai et al., 2005; Castrillon and
Laval, 2018; Geroliminis et al., 2014).

Table 4.1 shows the model estimates. We have to reject the hypothesis
that critical accumulation is exogenous, consequently, the two stage least
squares is required. We find that we can significantly explain around 90 %
of the observed critical point variation with just four exogenous variables
describing bus and road network topology. We cannot explain the entire
variation because we do not include city-specific factors, nor those that are
not clearly measurable. Further, we see that the elasticity of A∗ is not sta-
tistically significantly different from one, meaning that efforts to increase
the critical accumulation affect capacity proportionally. Contrary, we find
that the elasticity of R on the critical accumulation is significantly different
from one, with ε ≈ 0.8.

In Figure 4.6, we illustrate the effects underlying the results from Ta-
ble 4.1 graphically to show how the variation in the data drives the critical
point variation. We conclude that even with the rather small empirical vari-
ation in bus and road network topology across cities, there is substantial
variation in the critical point.

The results emphasize macroscopic trade-offs for urban transportation
policies. Clearly, Figure 4.6a shows that more roads in the network increase
the total production of the network, but the elasticity of road network den-
sity from Table 4.1 points towards the important policy implication of de-
creasing marginal returns of road network expansion. Figures 4.6b-c de-
scribe the macroscopic trade-off between vehicular and non-vehicular traf-
fic and walkability of a city. More intersections provide more right of way
to pedestrians and a concentration of vehicular traffic on few routes could
mean less negative car externalities for non-vehicular modes elsewhere in
the network. Figure 4.6d emphasizes a universal trade-off between buses
and cars allowing cities to optimize passenger throughput under further as-
sumptions on vehicle occupancy levels and bus services. The results from
Table 4.1 and the illustrations in Figure 4.6 imply that cities can now un-
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derstand how investment measures benefit or harm the capacity of entire
networks. Importantly, these measures go beyond just building roads.

Our findings have practical implications. First, the possibility to identify
a city’s optimal infrastructure may help to attain the full benefits of urban
scaling (Bettencourt et al., 2007). Second, the estimates provide means for
discussing urban space allocation. However, our study also faces limita-
tions. First, our sample is still relatively small and mostly located in Eu-
rope, limiting our findings’ (geographic) validity. Second, we cannot con-
sider some topological and operational features (e.g. intersection design,
transit priority) as they are either unavailable or not clearly measurable.
Last, we do not cover traffic control. However, since control strategies are
typically derived from between-vehicle conflicts, which we do consider, we
expect to explain many traffic signal effects with our four variables (Web-
ster, 1958; Daganzo and Geroliminis, 2008; Geroliminis and Boyaci, 2012;
Laval and Castrillón, 2015). Future research can use the collected data to
analyze the dynamics of network traffic, in particular to investigate at net-
work level the determinants of when they reach congestion and for how
long cities stay congested.

In closing, the variables derived from bus and road networks, signifi-
cantly explain the critical point and the traffic capacity of urban networks,
making it predictable. This has profound implications for transportation
investments. Cities can now identify their optimal infrastructure level and
the macroscopic effects of investment decisions on the (multimodal) net-
work performance. This new understanding of traffic capacity of urban
networks may not solve congestion problems, but it is crucial for the de-
velopment of new strategies to improve traffic.

4.4 modeling multimodal interactions at the network level

In cities, car traffic streams are rarely homogeneous as they are frequently
disturbed by other modes of transportation, notably pedestrians, buses,
motorbikes and bicycles. Geroliminis et al. (2014) proposed to account for
the bus-car interactions in the MFD by adding a third dimension to the
MFD, to obtain the so called 3D-MFD. Typically, in the 3D-MFD, the ac-
cumulation of cars Ac and the accumulation of buses Ab are related to
the total travel production Π of vehicles or passengers (Geroliminis et al.,
2014; Loder et al., 2017). Note that the accumulation has units of vehicles,
whereas the travel production has units of either vehicle or passenger kilo-
meters per unit time.
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a b

c d

Figure 4.6: Illustration of the effects in the critical point model. (a) Influence
of road network density on critical accumulation. (b) Influence of
betweenness centrality (network redundancy) on critical accumula-
tion. (c) Influence of intersection density on critical accumulation.
(d) Capacity reduction by bus operations in the network. (a)-(c) are
constructed as follows. We first residualize the x- and y-variables on
the other control variables of the critical point model as given in Ta-
ble 1. Secondly, we add back the unconditional mean of the x- and
y-variables to the residuals. (d) is constructed by calculating each
network’s capacity at zero bus production and then calculating the
relative difference to the observed capacity. The solid black line in
each panel corresponds to the linear fit of the scatterplots.
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So far, the understanding of the other modes’ local interaction effects
on the MFD is growing, but mostly for buses, descriptive and generated
from simulations (e.g. Boyaci and Geroliminis, 2011; Castrillon and Laval,
2018; Zhang et al., 2018), except for pedestrianized streets (e.g. Daganzo
and Knoop, 2016). Therefore, we propose in this section three approaches
to estimate the 3D-MFDs as a multimodal congestion mechanism for the
system perspective of urban traffic: (i) an empirical approach in Section
4.4.1, (ii) an analytical, but geometric approach in Section 4.4.2, and (iii) a
Bose-Einstein condensation approach in Section 4.4.3.

4.4.1 An empirical approach

In this empirical approach, we focus on the city of Zürich. The data is
described in Section B.1 and the two regions (City center and Wiedikon) we
analyze are given in Figure B.2 in the Appendix.

The overall Zürich network can be split into three parts. In the first part,
only cars circulate, in the second part only public transport vehicles cir-
culate, and in the third part both modes share the same road space. It is
important to note that even when both modes share the same link they do
not necessarily share the same lane. Consequently, the total network length
is not simply the sum of the car network length and the public transport
network length. The total length of primary road network is 39 km in the
City Center and 31 km in Wiedikon. In the City center, the public transport
network length includes 22 km for trams and 12 km for buses (approx. 75 %
dedicated), while in Wiedikon, 7 km are for trams and 18 km for buses (ap-
prox. 60 % dedicated). Given that both regions have a high share of ded-
icated lanes for public transport, interactions between both modes occur
particularly at intersections and curbside stops.

The interactions between the private and public mode affect the speeds
of both modes. Thus, we compare the speed of both modes - aggregated
into 15 min intervals to avoid systematic variation due to the relatively
rigid timetable in Zürich - in Figure 4.7a during Tuesday, October 27

th

2015. In the City center, we observe that the car speeds drop during the
morning peak to 11 km/h and during the afternoon peak to 9 km/h, but
recover during the day up to 13-14 km/h. The speed of public transport
vehicles is around 12 km/h all the time, but decreases slightly to around
10 km/h during the afternoon. In Wiedikon, speeds of both modes are gen-
erally higher than in the City center and show a greater range, where in

This section is taken in large parts from Loder et al. (2017).
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Figure 4.7: Bi-modal relationships in the city of Zürich. (a) compares the speeds
and (b) compares the vehicle densities. Recall that the speeds of pub-
lic transport vehicles contain the dwell times.

the afternoon, car speeds drop remarkably below public transport speeds.
We use the vehicle densities instead of total vehicle accumulations, to nor-
malize for the different regions. We compare in Figure 4.7b the vehicle
densities of both modes over time, where the effect of the rigid timetable
can be clearly seen.

In Figure 4.8, we present the observed 3D-MFDs for the City center and
Wiedikon. The horizontal plane represents the accumulation of both modes
and the vertical axis the total production. We calculate total production by
adding the production of each mode. Figure 4.8 shows trends similar to
those found in Geroliminis et al. (2014) for the 3D-MFD using simulation
data, but our data does not exhibit similar experimental variation because
it is empirical, especially for public transport densities due to the constant
timetable (see also Figure 4.7b). However, we can still compare the two
similarly-sized regions. In general, we register higher public transport ac-
cumulation for the City center than for Wiedikon, due to the very high
number of public transport lines in the City center, and the longer public
transport network.

We use a statistical model to describe the available, but limited data. We
use both modes’ speeds, i.e. car speed, vc, and bus speed, vb, as dependent
variables. As we do not observe a full range of public transport densi-
ties, we cannot use the exponential function proposed by Geroliminis et al.
(2014) because we must arbitrarily define extreme values to fit the curve.
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a b

Figure 4.8: 3D-MFDs in Zürich. (a) is from the region City center, and (b) is
from the region Wiedikon. The red points indicate the measurements.
The black points indicate the projection of total production onto the
density plane.

Therefore, for simplicity and as a first order approach, we model vc with
Greenshields’s 1935 linear model between density and speed that has also
been applied at the network level (Mahmassani et al., 1987). Thus, the first
equation as defined in Eqn. 4.15 links car speeds vc to the free flow speed of
cars βc,0, the density of cars kc, and the density of public transport vehicles
kb. βc and βb are coefficients to be estimated and represent the marginal
effect of each mode on car speeds.

vc = βc,0 + βckc + βptkb (4.15)

The speed of public transport vb is modeled as a linear function of vc,
as proposed by Geroliminis et al. (2014) and Zheng and Geroliminis (2013)
as defined in Equation 4.16. Thus, public transport speeds do not explic-
itly depend on vehicles’ densities kc and kb. However, vc is a function of
vehicle densities and therefore vb depends implicitly on vehicle densities
as well. The coefficients to be estimated are βb,0 and βc,b. βc,b captures the
aspect that public transport vehicles typically move slower than cars due
to frequent stops, and βb,0 adjusts for the fact that public transport speeds
might exceed car speeds during congested times due to dedicated lanes.
This effect is observed in both regions during the evening peak, see Figure
4.7a.

vb = βc,bvc + βb,0
Eq.4.15
= βc,b(βc,0 + βckc + βbkb) + βb,0 (4.16)

In Table 4.2 we show the model results. All estimates are statistically
significant and show the expected signs. Wiedikon shows a slightly higher
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City center Wiedikon

Car Public transport Car Public transport

Car density (veh/km) -0.288 -0.345

Bus vehicle density (veh/km) -5.659 -6.726

Car speed (km/h) 0.116 0.197

Constant (km/h) 27.933 9.574 28.448 10.794

R2
0.96 0.49 0.94 0.79

N 360 360 360 360

Table 4.2: Model estimates for the 3D-MFD for the data from Zürich (5 week-
days, 06:00-24:00, 15min intervals; total 360 observations) estimated
with OLS. The dependent variables are the space-mean speeds of cars
and public transport vehicles. All estimates are significant at 1 % level
of significance.

free flow speed than the City center and a marginal effect of car density in
the same order of magnitude. The higher free flow speed can be attributed
to longer links and fewer signalized intersections in Wiedikon. Comparing
the marginal effects of public transport vehicles, we find a decrease in
speeds of 5.7 km/h per additional public transport density of 1 veh/km in
the City center whereas this decrease amounts to 6.7 km/h in Wiedikon.
At a density of one public transport vehicle per kilometer, the elasticity
of public transport vehicles on car speeds in the City center is −0.4 and
in Wiedikon −0.7. We expect that the lower impact of public transport
vehicles in the City center is due to the larger share of dedicated lanes.
Considering public transport speeds, we observe 10.8 km/h in Wiedikon
and 9.6 km/h in the City center for the constant βb,0 and around 0.12 km/h
change in public transport speeds for 1 km/h change in car speed in the
City center and 0.2 km/h in Wiedikon. These findings are in line with
Figure 4.7a.

With the model estimates for the 3D-MFD we can then predict the full
shape of the MFDs of both regions. For this, the speeds v̂c and v̂b are cal-
culated over a range of densities kc and kb. We obtain the total production
as the sum of both modes’ productions2 where L is the mode’s respec-
tive infrastructure length, i.e. Ac · v̂c + Nb · v̂b. Then, Figures 4.9a and 4.9b
show the predicted 3D-MFD. It should be clear that our predicted MFDs
are more accurate for points closer to, or within the region of the empirical

2 We obtain the production of each mode by v k L = v N
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a b

Figure 4.9: Predicted 3D-MFD shape. The red dots represent the range of empir-
ical observations. (a) is from the region City center, and (b) is from
the region Wiedikon.

data. Any extrapolation of our model beyond the observed range of data
should be considered with caution. Nevertheless, our model has a strong
indicative character and gives a first empirical insight regarding the inter-
actions of multimodal traffic at a network level. The model is intuitive and
when we compare the results of our extrapolated 3D-MFD with the ones
from simulations, such as the one from San Francisco, estimated by Geroli-
minis et al. (2014), we see similar trends. Both, the simulation and our pre-
diction model show concave curves with a maximum vehicular production
for zero public transport accumulation, and a similar skewness. Arguably,
the curves’ shapes are mainly determined by the functional form of the
model.

4.4.2 A geometric approach

The idea of the geometric approach is to find a lower envelope or func-
tional form for the 3D-MFD that encapsulates the observations from the
observed 3D-MFD as shown in Figure 4.8. In other words, it provides an
upper limit for the travel production, for any given combination of accumu-
lations of both modes. Here, we first introduce in Section 4.4.2.1 to the new
functional form in general. Then, in Section 4.4.2.2 we apply this general
functional form to the 3D-MFD case. Thereafter, we show how to derive
each mode’s speed from the functional form in Section 4.4.2.3 and discuss
how the lower envelope can be estimated in Section 4.4.2.4. We end this
section with a validation of the lower envelope in Section 4.4.2.5 and the
proposed speed functions in Section 4.4.2.6.
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4.4.2.1 A new functional form for the multimodal macroscopic fundamental dia-
gram

The proposed geometric approach to derive a functional form for multi-
modal MFDs considers an urban network of total length L with M dif-
ferent modes circulating on it. Each mode m ∈ M can have its dedicated
infrastructure, using a ηm share of L. The share of mixed-used infrastruc-
ture used by all modes is then ηmixed = 1−∑m∈M ηm. Each mode’s vehicle
accumulation is Am, and we define that A in RM

+ is the vector of vehicle
accumulations with elements (A1; A2; . . . ; AM). Each mode has a travel pro-
duction of πm ∈ R+ and all modes together have a joint travel production
of Π ∈ R+.

Physical constraints limit the number of vehicles an urban network can
accommodate, as well as the travel production for any accumulation A.
Thus, we are interested in identifying the M + 1 dimensional boundary
between the physically possible and impossible traffic states (i.e. the max-
imum travel production that can be obtained for different combinations
of Am, ∀m ∈ M). That multi-dimensional space includes M dimensions
(one for the accumulation of each mode), plus one dimension for the total
travel production Π across all modes. The boundary then corresponds to a
theoretical best-case situation, which for a variety of intuitive reasons will
never be achieved in reality, e.g. heterogeneity of traffic, dynamics of the
different modes, vehicle interactions.

We expect the boundary to look differently in each network as infras-
tructure and vehicle technology parameters can substantially influence the
theoretical best-case situation and thus the resulting boundary. This makes
a general mathematical formulation difficult. Suppose that we can define
a set of J functions Πj∈J : A → Π, where each Πj provides a physically
meaningful constraint of one feature of multimodal traffic (e.g. gridlock,
saturation) relating A and the theoretical best-case travel production Π.
Then the network overall theoretical best-case situation across all modes
and traffic states is the lower envelope (i.e. minimum ) of all Πj functions
as formulated by Eqn. 4.17. Each Πj function can be seen as a hyperplane
of M + 1 dimensions.

Π (A) = min
(
Π1 (A) ; Π2 (A) ; . . . ; ΠJ (A)

)
(4.17)

The definition of functions Πj (A) is context specific (e.g. in our appli-
cation to the 3D-MFD in Section 4.4.2.2, we use seven linear functions, i.e.
planes, to create the lower envelope). Nevertheless, the function resulting
from Eqn. 4.17 must satisfy the following physical properties.
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First, we denote κm as the maximum accumulation of vehicles of mode m
in the network, and we assume that each possible maximum accumulation
leads to gridlock. κm is clearly a function of the number of vehicles A
across all modes, because different modes might share a portion of the
infrastructure, ηmixed. Eqn. 4.18 shows this constraint for κm. Assuming
lm is the jam spacing for mode m, then κm (A) is equal to the gridlock
accumulation of mode m on its dedicated and mixed-used infrastructure,
minus the number of vehicles from other modes m′ ∈ M \ {m} present on
the mixed-use infrastructure. For simplicity, we assume that each mode m
is fully using its dedicated infrastructure. Thus, κm has lower and upper

bounds given by
L
lm

ηm ≤ κm ≤
L
lm

(ηm + ηmixed) , ∀m ∈ M.

κm (A) =
L
lm

(ηm + ηmixed)− ∑
m′∈M\{m}

lm′
lm

(
κm′ −

L
lm′

ηm′

)
, ∀m ∈ M

(4.18)
Second, we require that travel production is always positive as long as

the accumulation of any mode is non-negative and not all modes are grid-
locked. See Eqn. 4.19.

Π (A) > 0 for 0 < Am < κm, ∀m ∈ M (4.19)

Third, we define the average network speed as V ≡ Π/ ∑m Am, so that it
must always decrease with any accumulation of vehicles, as given by Eqn.
4.20.

∂V
∂Am

< 0, ∀m ∈ M (4.20)

Fourth, we require that the production is zero, i.e. Π (A) = 0, if either
no vehicles circulate on the network, or all modes reach κm, or any combi-
nation of these two cases, as formulated in Eqn. 4.21.

Π (A) = 0, if Am = κm ∨ Am = 0, ∀m ∈ M (4.21)

Fifth, we require that that the total production Π (in Eqn. 4.22) equals
the sum of all modes’ productions πm. As Eqn. 4.17 provides a lower enve-
lope for the theoretical best-case situation, we are particularly interested in
the maximum possible production for any accumulation of vehicles. Thus,
we have to find the distribution of vehicles among ηm and ηmixed that max-
imizes Π.
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Π (A) = max ∑
m∈M

πm (Am) (4.22)

Eqns. 4.17-4.22 provide a meaningful lower envelope for a theoretical
best-case situation. As it is expected that this best-case situation will never
be achieved, we propose to reduce the travel production by λ (A), as for-
mulated in Eqn. 4.23 with the smooth approximation of the minimum op-
erator (Cook, 2011; Bliemer et al., 2017; Ambühl et al., 2018a).

Π
(
A
)
= −λ

(
A
)

log
(

exp

(
−

Π1
(
A
)

λ
(
A
) )+ exp

(
−

Π2
(
A
)

λ
(
A
) )+ . . .

· · ·+ exp
(
−

ΠJ
(
A
)

λ
(
A
) )) (4.23)

The smoothing parameter λ (A) has an interesting interpretation in this
context as it quantifies with a single metric the losses in the travel pro-
duction due to vehicle interactions not captured by the functions Πj. It is
clear that this parameter is non-linear, but provides an opportunity to re-
duce the complexity of the problem. The larger the value for λ (A) is, the
stronger the vehicle interactions become, resulting in higher reduction of
the total production. In case λ (A) = 0, no vehicle interactions in addition
to those captured by functions Πj take place.

To be precise, as Ambühl et al. (2018a) show, λ (A) is also a measure of
heterogeneity in the network. Thus, λ (A) not only describes the flow re-
duction from the theoretical best-case due to between-vehicle interactions,
but also other unobserved factors that lead to an observed production that
is normally below the theoretical best-case, e.g. spatial and temporal het-
erogeneity of flow, irregularities in traffic operations, etc. Unfortunately, so
far, no approach exists to determine the precise contributions of all these
sources to λ (A).

A potential procedure to estimate λ (A) is to use a non-linear regression
on multimodal MFD observations, e.g. empirical or simulation data (Am-
bühl et al., 2018a). More details are provided later in this paper. However,
future research could explore whether λ (A) can be derived analytically or
predicted with a model estimated from empirical observations.



4.4 modeling multimodal interactions at the network level 65

4.4.2.2 A functional form for the 3D-MFD

Here, as a particular application of the multimodal MFD described above,
we create a functional form for the 3D-MFD by defining a three dimen-
sional lower envelope consisting of J planes, which provides an upper
limit for the travel production, given different accumulations of cars and
buses. The 3D-MFD must be specified for each city context. The set of
planes required for a fully operational functional form for the 3D-MFD
must create a geometric shape of a closed cover without holes and other ir-
regularities. Further, the chosen planes should result in a geometric shape
that resembles the 3D-MFD very closely. Therefore, planes should describe
free-flow, saturated and congested traffic conditions as well as mark the
gridlock states for both modes. Only when the planes are carefully se-
lected, the functional form will provide a physically meaningful repre-
sentation of macroscopic bus and car traffic in cities. Here, we propose
to use seven planes. For this, we use the following notation. Eqn. 4.24

defines plane j in the three-dimensional space given by Ac, Ab, and Π,
where

(
car0,j, bus0,j, π0,j

)
are the coordinates of a point in plane j, and(

carn,j, busn,j, πn,j
)

is the corresponding normal vector.
 Ac

Ab

Π

−
 car0,i

bus0,i

π0,i




T

·

 carn,i

busn,i

πn,i

 = 0 (4.24)

After solving Eqn. 4.24 for Π, we obtain Eqn. 4.25 for plane Πj as a
function of both modes’ vehicle accumulations. Recall that each plane
Πj (Ac, Ab) is a function required for the general functional form as given
in Eqn. 4.23.

Πj (Ac, Ab) =

π0,j −
(
carn,j

(
Ac − car0,j

)
+ busn,j

(
Ab − bus0,j

))
/πn,j (4.25)

The planes for Eqn. 4.23 will be defined from eleven points that we will
introduce below. Figure 4.14 shows the location of all these points in the
3D-MFD. Here, we focus primarily on planes defining a theoretical best-
case situation based on geometric and operational issues. For the opera-
tional features, we follow in most cases the basic ideas by Daganzo and
Geroliminis (2008) to calculate the points that account for the delays at the
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network level caused by intersections and signals. Importantly, our pro-
posed set of planes can be further extended and refined with city-specific
operational features of multimodal traffic. All planes are defined by at least
three points in the 3D-MFD, which are given in the Cartesian coordinate
system in the order of Ac, Ab and Π. All resulting planes are summarized
in Table 4.4.

Definition of points

In this section, we consider that intersections are spaced on average at a dis-
tance l. The entire network length is, as before, given by L and expressed
in lane-kilometers. We distinguish three different types of lanes: dedicated
car lanes, dedicated bus lanes, and mixed lanes. Here, we consider ηb and
ηc, i.e. the fraction of the network length where only buses and cars circu-
late, respectively. Thus, the total network length where only cars circulate
is ηcL, where only buses circulate is ηbL, and where both modes circulate
is (1− ηb − ηc)L. The bus stops are spaced on average with a distance p.
The headway of buses then follows from the design of the network and the
number of buses (Daganzo, 2010). Table 4.3 summarizes all variables and
parameters used here.

One trivial point in the system is point P0 = (0, 0, 0)T at the origin,
where no vehicles in the network circulate and there is no travel produc-
tion. Consider then the top down view on the car and bus accumulation
coordinates in Figure 4.10. Cars can drive on (1− ηb) L of the network and
have a jam spacing lc. The point P1 is the maximum accumulation in the
network of cars that can be achieved when no public transport operates
and the network is gridlocked. The point then equals to:

P1 =

 (1− ηb) L/lc
0

0


The point P2 considers the case when no cars circulate and the bus sys-
tem is gridlocked on (1− ηc) L of the network. For buses, we make the
assumption that the bus-car equivalent is ϕ. Then, the point is defined by:

P2 =

 0

(1− ηc) L/ (lc ϕ)

0
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Name Key Unit

Variables

Accumulation of cars Ac (veh)

Accumulation of buses Ab (veh)

Total travel production Π (veh-km/h)

Average speed in the network vMFD (km/h)

Speed of cars in the network vc,MFD (km/h)

Speed of buses in the network vb,MFD (km/h)

Parameters

Smoothing parameter λ (-)

Total network length L (km)

Fraction of car only roads ηc (-)

Fraction of bus only roads ηb (-)

Jam spacing of cars lc (km)

Passenger car equivalent of buses ϕ (-)

Average car delay at intersections δc (h)

Free-flow speed of cars in links vc,0 (km/h)

Backward wave speed of cars in links wc,0 (km/h)

Free-flow speed of buses in links vb,0 (km/h)

Backward wave speed of buses in links wb,0 (km/h)

Car saturation rate at intersections sc (veh/h-lane)

Bus saturation rate at intersections sb (veh/h-lane)

Average link length l (km)

Average bus stop spacing p (km)

Average dwell time ∆Td (s)

Average cycle length C (s)

Average effective green time G (s)

Public transport strategy ∇ (-)

Table 4.3: 3D-MFD variables in the upper part and input parameters for the
lower envelope for the 3D-MFD. Further parameters calculated from
these input parameters are not shown for convenience.
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Figure 4.10: Top-down view on the 3D-MFD which shows the bimodal vehicle
accumulation plane. For the defined points, total travel production
is zero. The lines connecting the points also represent all combina-
tions of accumulations where travel production is zero.

Next, we define the gridlock boundary under mixed traffic conditions
with points P3 and P4, where the production of traffic is still zero. The
point P3 describes the gridlock case for all car and mixed lanes, as well as
the gridlock scenario on all dedicated bus lanes:

P3 =

 (1− ηb) L/lc
ηbL/ (lc ϕ)

0


On the other hand, the point P4 mirrors this behavior for buses and is
defined with

P4 =

 ηcL/lc
(1− ηc) L/ (lc ϕ)

0


We now consider the situation where no public transport operates, i.e.

Ab = 0 (Figure 4.11). At intersections, cars experience on average a delay
of δc that reduces the road free-flow speed vc,0 at the network level to
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Figure 4.11: Side view on the 3D-MFD on the total travel production and car
accumulation plane. For the defined points, no public transport op-
erates.

vc. Here, we approximate the network-wide average free-flow speed vc
as by Eqn. 4.26, although other more sophisticated approaches could also
be used, e.g. by Daganzo and Geroliminis (2008). We use the procedure
by Daganzo and Geroliminis (2008) to obtain the network-wide average
backward wave speed for cars wc based on Eqn. 4.26. In detail, Daganzo
and Geroliminis (2008) reverse the direction of the moving observer by
replacing vc,0 with wc,0 and account for the cycle length in the signal offsets
(for simplicity not included here).

vc =
l

l
vc,0

+ δc

(4.26)

Figure 4.11 shows the discussed situation with Ab = 0 and the network-
wide speeds vc and wc, which is basically the car MFD. The points P0 and
P1 are already defined (see Figure 4.10) and only points P5 and P6 remain
to be defined. Both points share the common total travel production given
by Eqn. 4.27.

Πc = sc
G
C
(1− ηb) L (4.27)
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Equation 4.27 is derived from the stationary cut defined by Daganzo and
Geroliminis (2008) with the saturation flow sc, the average cycle length C,
and the average effective green time G. We derive Ac for both points with
the fundamental relationship of traffic using the free flow speed vc and
backward wave speed wc as shown in Figure 4.11. Then, points P5 and P6
equal to:

P5 =

 Πc/vc

0

Πc



P6 =


(1− ηb)

L
lc
−Πc/wc

0

Πc


We now follow the same rationale for the case with only buses operat-

ing and no cars circulating, i.e. Ac = 0. Figure 4.12 exhibits this situation
where the points P0 and P2 are already defined (see Figure 4.10). Thus, we
define points P7 and P8 similarly to P5 and P6. However, buses have to stop
not only at intersections but also at bus stops for boarding and alighting
of passengers during the total dwell time period ∆Td that has a constant
or fixed component and a demand-dependent component (see Eqn. 4.74

in Section 4.4.3 for details). For simplicity, we assume that the dwell time
includes deceleration and acceleration, and that the public transport oper-
ator has defined for each stop a scheduled arrival and departure time so
that ∆Td is, under normal circumstances, independent of the demand and
human behavior.

Some public transport agencies might include a buffer in the travel time
between two stops that allows an operation within a rigid time table even
under more congested traffic situations. For that purpose, buses would be
equipped with a device that gives drivers advice about the scheduled travel
time and that tells them to drive faster or slower, e.g. as implemented in
Zürich’s bus and tram system. As a consequence, buses would drive at a
maximum speed vb,0 lower than that of cars vc,0 in light traffic conditions.
Bus stops are placed at an average distance p. Some cities, e.g. Zürich, have
decided to give public transport full priority at each intersection to mini-
mize delay for public transport vehicles, but other cities do not make a
difference between cars and public transport vehicles so that public trans-
port vehicles experience the same delay as cars. To capture these different
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Figure 4.12: Side view on the 3D-MFD with the total travel production versus
the accumulation of buses. For the defined points, no cars are oper-
ating.

strategies, we define the public transport strategy parameter ∇ ∈ [0, 1].
The value zero means full public transport priority and one means buses
are fully integrated in traffic, i.e. they experience all car delays. Thus, the
maximum commercial speed of buses vb that includes dwelling, intersec-
tions delay, and the time table buffer is given by Eqn. 4.28 that follows the
idea by Daganzo (2010), but accounts for the public transport priority strat-
egy ∇ and simplifies the dwelling behavior. The bus backward wave speed
wb is then obtained using the same procedure as for cars in Eqn. 4.26.

vb =
p

p
vb,0

+ δc∇
p
l
+ ∆Td

(4.28)

We assume that the maximum travel production of buses Πb is achieved
for the case of full public transport priority (∇ = 0) with no delay at
intersections. Πb will be lower in case of similar delays at intersections for
buses and cars (∇ = 1). Similar to Πc in Eqn. 4.27 for car traffic, we then
define Πb for the bus system in Eqn. 4.29 with two parts. First, the left part
with term sbL (1− ηc) quantifies the possible maximum production in case
of no delays or in case no bus stops are considered. Second, the right part
quantifies the fraction of this possible maximum production that can be
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realized when delays and stopping behavior are accounted for. This idea
is inspired by the stationary cut in Daganzo and Geroliminis (2008), where
in the G/C ratio G describes moving and C moving and waiting part. Here,
this part considers the average fraction of time buses are moving during
the journey from one stop to the next, where buses move for time p/vb,0,
but also experience intersection delays δc∇ at p/l crossing between two
stops and delays due to dwelling ∆Td.

Πb = sbL (1− ηc)


p

vb,0
p

vb,0
+ δc∇

p
l
+ ∆Td

 (4.29)

Consequently, points P7 and P8 are defined by:

P7 =

 0

Πb/vb

Πb



P8 =

 0

(1− ηc) L/ (lc ϕ)−Πb/wb

Πb


We then define two additional points P9 and P10. They describe the in-

fluence of dedicated bus lanes on the multimodal capacity of the network.
Consider the case with buses running on dedicated lanes. Car traffic is not
obstructed by buses and when more buses are added to the system, the
travel production is increased at the same level of car accumulation. Given
that in this framework we are interested in providing an upper bound for
bi-modal traffic, the highest travel production is achieved when all dedi-
cated bus lanes operate at capacity and the remaining part of the network,
i.e. all dedicated car and mixed lanes, are saturated with cars.

Thus, the points P9 and P10 are at the same car accumulation as P5 and
P6, and at a public transport accumulation where capacity is reached on
the dedicated bus lanes. The latter sounds rather unrealistic when buses
only use their dedicated lanes and not the mixed lanes as they usually run
on fixed routes. Nevertheless, as we are interested in finding the highest
possible production of bus kilometers points P9 and P10 are then defined
as:
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Figure 4.13: Additional points for the capacity in the 3D-MFD when buses on
their dedicated lanes increase travel production from saturated car
traffic.

P9 =


Πc/vc

Πb
ηb

1− ηc
/vb

Πb
ηb

1− ηc
+ Πc



P10 =


(1− ηb)

L
lc
−Πc/wc

Πb
ηb

1− ηc
/vb

Πb
ηb

1− ηc
+ Πc


The previously discussed set of points describes the physical limits of

the system from a geometric perspective, from which we derive the lower
envelope for the 3D-MFD. Points P0 to P4 clearly satisfy conditions for the
functional form proposed in Eqn. 4.18 and 4.21, while points P5 to P10 sat-
isfy Eqn. 4.22. However, there are many operational features in multimodal
networks that might further limit their productivity. These operational as-
pects can describe conflicts in mixed traffic, bus bunching, dwelling behav-
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Plane Points Description

I P0, P7, P9 Free flow traffic conditions in both modes. The tilt-
ing of the plane describes the trade-off between
cars and buses achieving the same travel produc-
tion.

I I P1, P3, P10 Congested traffic states for car traffic.

I I I P5, P6, P9, P10 Describes increase in travel production when car
network is saturated and buses on their dedicated
network add to the travel production.

IV P3, P4, P9 Wave speed of mixed traffic. The points P9 is fa-
vored over P10 as traffic states might deteriorate
faster due to mixed traffic conditions.

V P7, P8, P9 Capacity trade-off between buses and cars when
the bus system operates in the saturated state.

VI P2, P8, P9 Capacity trade-off between buses and cars when
the bus system operates in the congested state.

VII P2, P4, P9 Capacity trade-off between buses and cars when
both system operate in the saturated state. We ex-
tend this plane also to the congested state of buses
to reduce the number of planes.

Table 4.4: Construction of the seven planes from the eleven points.

ior, effects of the built environment, bus stop design (curb side or bus bay),
public transport network design, and routing in the network.

Definition of the planes

Based on the eleven points introduced above, we now propose a lower en-
velope for the 3D-MFD defined by a set of seven planes. Table 4.4 numbers
the planes and shows which combination of points defines each plane.
Figure 4.14 shows the resulting planes, as well as the resulting shape of
the 3D-MFD for an artificial network3. We consider this set as the mini-
mal amount of planes required to describe the fundamental relationships
in the 3D-MFD. The proposed set of planes then satisfies Eqns. 4.19 and
4.20. It should be clear, however, that this set of eleven points and the set

3 In Figure 4.14 and in Section 4.4.2.5, we use the vehicle density (having the unit of vehicles per
lane-meter) instead of accumulation, and express the travel production in vehicle kilometers
per second instead of hour to achieve manageable and more comprehensible numbers.
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a b

c d

Figure 4.14: (a-b) illustrate with two different angles the location of the points
and planes. (c-d) show with two different angles the shape of the
resulting 3D-MFD.

of seven planes is not the ultimate and complete solution to describe the
3D-MFD. Some other points can also be defined to capture certain traffic
characteristics. Also, more planes can be introduced, out of which some
can become non-binding. It is also worth mentioning that there might be
other combinations of points for the proposed planes that lead to a com-
parable 3D-MFD shape. Following the rationale for points P9 and P10, for
example, one would argue for two similar points and the related planes to
describe the influence of the dedicated car lanes. However, we omit those
because the resulting planes would chop the lower envelope and thus create
an unreasonable 3D-MFD shape for typical common bus and car param-
eters. In the following, we explain the psychical meaning of each of the
defined planes.

Plane I characterizes mixed traffic conditions when both modes operate
in the free flow conditions. The tilting of this plane represents the number
of cars that can be replaced by a bus to maintain the same travel produc-
tion. Plane I I captures the traffic states when car traffic is congested and
buses operate in the free flow conditions. Plane I I I describes the behavior
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in the network such that, when all roads where cars can circulate operate in
the saturated state, running more buses on the dedicated bus network in-
creases the total travel production. This contribution is usually rather small,
but can become substantial in case of bus rapid transit systems and when
the traffic performance is analyzed from a passenger perspective. Plane IV
models the congested states in both modes and all sub-networks. We pro-
pose to use P6 instead of possibly more obvious P10 for two reasons. First,
once the multimodal system reaches its capacity, we consider that the sys-
tem in mixed traffic deteriorates faster to gridlock than if only cars would
circulate. Second, with this approach, we require a fewer number of planes,
making the entire formulation of the 3D-MFD much simpler. We include
planes V and VI to complement plane I in the domain of saturated and
congested bus operations and to limit the travel production between the
defined maximum points of buses and cars. Although these traffic states
might be rarely observed in bus networks, considering these planes might
be relevant to cities where bus lines at central hub locations are overlap-
ping to a large extent, e.g. in Zürich or Brisbane. The last required plane
is plane VII that closes the 3D-MFD and creates the familiar shape. It de-
scribes the trade-off between buses and cars when both are operating in
the saturated state. We extend this plane to the congested regime of buses
so that we can reduce the number of planes and thereby the complexity of
the formulations.

In Figures 4.14c and 4.14d we then use the set of planes from Table 4.4
and Eqn. 4.23 to derive the functional form for the 3D-MFD and to obtain
the familiar shape as introduced by Geroliminis et al. (2014). For simplicity,
we assume an average value of λ that we set to λ = 0.1. This ensures
a tight fit of the curve to the shape defined by the planes, resulting in a
rather edged-shape 3D-MFD. Recall that the larger the value for parameter
λ is, the smoother the entire shape would become.

It is important to underline that the definitions and assumptions for the
points are optimistic and describe the highest possible travel production
for any combination of bus and car accumulations. Although empirical
observations will be, by definition, always below the defined curve of the
3D-MFD, the deviation can be substantial when the vehicle interactions
(measured by λ) are rather strong and spatial heterogeneity is large (for
details see Ambühl et al. (2018a)). However, as Eqn. 4.23 is flexible to ac-
commodate more realistic points and planes, especially in terms of bus op-
erations, a more accurate 3D-MFD for the specific context can be obtained.
For example, the method of cuts by Daganzo and Geroliminis (2008) can
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further be used - if applicable - to derive more points and planes, poten-
tially resulting in a tighter 3D-MFD shape.

In this section, we implicitly assume that all points for the planes are
defined based on external data and that λ is the only free parameter that
can either be estimated from observations or simply derived from other
studies. However, it is also possible to estimate some points for the planes
from observations to obtain a tighter (and better) fit of the lower envelope
(lower RMSE), but this may partially cut down the functional form’s physi-
cal interpretation. In the end, the analyst has to decide and balance his/her
priorities in how (s)he wants to work with this flexible functional form.

4.4.2.3 Derivation of speed functions

Unfortunately, in the definition of the 3D-MFD as given in Eqn. 4.23, bus
speed vb,MFD and car speed vc,MFD cannot endogenously be derived from
the 3D-MFD itself as the 3D-MFD only provides the average speed of the
system with vMFD : = Π/ (Ac + Ab). Thus, to solve for each mode’s com-
mercial speed, we require another constraint. Geroliminis et al. (2014) pro-
posed to use a linear relationship between the speeds of both modes as
provided by Eqn. 4.30.

vb
∼= θvc + β (4.30)

The parameter β is the intercept and θ is the slope of the linear relation
and the parameters have to be estimated from data. Based on Eqn. 4.30,
the speed of buses vb and of cars vc then follow according to Eqns. 4.31

and 4.32, respectively.

vb =
Π− βAb
Ac + θAb

θ + β (4.31)

vc =
Π− βAb
Ac + θAb

(4.32)

For our analysis, we propose to approximate θ and β of Eqn. 4.30 with
the parameters of the 3D-MFD shape as provided by Table 4.3 instead
of an estimation from data. As we require only two points for a linear
relationship, we evaluate bus speeds, first, at the maximum car speed
(vc,MFD = vc) and, second, at the minimum car speed vc,MFD = 0. First,
in light traffic, i.e. vc,MFD = vc, buses are not obstructed by cars, and thus
buses are running at vb,MFD = vb. Second, when the entire car network is
jammed, i.e. vc,MFD = 0, buses are only able to move on their dedicated
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lanes with vb and are jammed everywhere else. Thus, we simply consider
vb,MFD = vbηb/(1− ηc) because only the fraction of buses running on ded-
icated lanes are producing vehicle kilometers. Then, the approximations
for β and θ follow according to Eqn. 4.33 and 4.34, respectively.

β = vb
ηb

1− ηc
(4.33)

θ =
vb
vc

(
1− ηb

1− ηc

)
(4.34)

Nevertheless, we consider that Eqn. 4.30 only holds approximately and
not over the entire range of vehicle accumulations, especially at the interval
borders of one of the variables. Thus, we require additional constraints for
the speed of buses from Eqn. 4.31 and cars from Eqn. 4.32 to ensure that
speeds do not exceed physical limits. In particular, we require that, for
each mode, the speed is always within the fundamental diagram of that
mode by using the minimum operator as given for bus speeds in Eqn. 4.35

and car speeds in Eqn. 4.36. Here, we consider a trapezoidal fundamen-
tal diagram (Daganzo, 1994) with parameters from Table 4.3. The speeds
are obtained by evaluating the fundamental diagram at the respective den-
sity (dividing vehicle accumulations by network length) of each mode, for
buses ϑb (Ab/(1− ηc)) and for cars ϑc (Ac/(1− ηb)). Additionally in Eqn.
4.35, we require that the bus speed equals the MFD speed in cases when
the car network is approaching gridlock to avoid negative bus speeds.

vb,MFD (Ab, Ac) =

min
(

ϑb (Ab) ;
Π− βAb
Ac + θAb

θ + β; vMFD (Ab, Ac)

)
(4.35)

vc,MFD (Ab, Ac) = min
(

ϑc (Ac) ;
Π− βAb
Ac + θAb

)
(4.36)

4.4.2.4 Derivation of the lower envelope and the smoothing parameter

The proposed functional form for the 3D-MFD must be estimated sepa-
rately for each network by finding the values for each parameter listed in
Table 4.3. Here, we have to distinguish between parameters that can be
easily derived from the topology of the bus and road networks and the
operational parameters of cars and buses.
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First, network topology parameters L, ηc, ηb, l and p can be found us-
ing spatial data of the road and bus networks, e.g. from OpenStreetMap
and the public transport agency. The network cutout for the 3D-MFD can
be identified with network partitioning algorithms (e.g. Saeedmanesh and
Geroliminis, 2016; Ambühl et al., 2019). Then the network topology param-
eters can be calculated using spatial analysis tools. Importantly, ηb denotes
the share of the total infrastructure devoted to buses; thus overlapping bus
routes must not be counted multiple times, but only once.

Second, operational parameters might be obtained from prior traffic
measurements, or approximated based on fundamental traffic principles.
The jam spacing of cars lc can be approximated using traffic departments’
or car clubs’ vehicle statistics, while the passenger car-equivalent ϕ can be
calculated using the mean vehicle length of the entire fleet of the public
transport agency. The average cycle length C and effective green time G
can be observed on the real network or obtained directly from the traffic
departments. For cars, detector and trajectory measurements can be used
to estimate the fundamental diagram, including values for the cars’ free
flow speed vc,0 and backward wave speed wc,0, as well as the saturation
rate sc. The average intersection delay δc can either be measured or cal-
culated using the formula provided by Daganzo and Geroliminis (2008).
For public transport, many agencies record the vehicle trajectories which
allow to determine or approximate the fundamental diagram parameters
vb,0, wb,0, and sb, as well as the average dwell time ∆Td. The strategy param-
eter ∇ must be either measured or derived from the bus-priority control
algorithm.

Third, the smoothing parameter λ can be estimated from observations
in at least two different ways: (i) If bus and car measurements are available
and the empirical 3D-MFD can be estimated, λ can be obtained with a non-
linear regression minimizing the difference between the 3D-MFD from the
calibrated lower envelope and the empirical 3D-MFD. (ii) If only the MFD
from car measurements can be estimated, but we also have bus headway
information and the desired commercial speed, then, Eqns. 1-4 provided
by Daganzo (2010) can be used to approximate the number of buses and
the bus travel production. This production can be added to the car MFD
to obtain an approximation of the 3D-MFD. We illustrate this procedure in
Section 4.4.2.5 using the Zürich data. With this approximated 3D-MFD we
can calculate λ as before. In this case, however, we expect λ to be smaller,
because the approximated 3D-MFD does not account for all interaction ef-
fects given that we use the scheduled and not the actual bus production.
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That being said, as we find in the next section that λ always falls within
a certain range, the 3D-MFD for a given network can even be estimated
without an observed (3D)-MFD, by assuming a λ value within the reported
range in Table B.4 scaled by network length (see Section 4.4.2.5).

4.4.2.5 Validation of the 3D-MFD

Using planes I-VII for the 3D-MFD, we now compare Eqn. 4.23 to the
outcome of a microscopic traffic simulation and to two empirical data sets
(see Appendix A for details). Here, we consider an average, i.e. constant,
λ for the entire network and all vehicle accumulations. For the simulation,
we use an abstract network with a 10 × 10 grid, with 180 links and the
average block length of 150 m. For the simulation platform, we use a VIS-
SIM microsimulation. Two network configurations are investigated: (i) a
homogeneous network with identical links and no road hierarchy (Figure
4.15a); and (ii) a heterogeneous network with three levels of road hierarchy
denoted as L1, L2, and L3 (Figure 4.15b). In the former configuration, each
signalized intersection was modeled with a saturation flow of s = 1800 ve-
h/h, cycle length of C = 60 sec, and G = 30 sec of green (including 3

sec of lost time) for all conflicting signal phases. In the latter configura-
tion, we vary road capacity and signal timing parameters as follows: L1

has s = 2000 veh/h, C = 80 sec, and G = 40 sec; L2 has s = 1800 veh/h,
C = 70 sec, and G = 35 sec; and L3 has s = 1600 veh/h, C = 60 sec, and
G = 30 sec. For intersections between different capacity roads, the cycle
and green time for the highest capacity road is used. Notice that this hier-
archical network leads to more heterogeneous traffic conditions (Muhlich
et al., 2015). The tested traffic scenarios have public transport lines covering
20 % of the network length, where buses operate in a mixed-lane fashion,
i.e. no dedicated lanes are allocated to public transport vehicles. For the
empirical data sets, we use data collected from inductive loop detectors,
providing vehicle flows and occupancy in London and Zürich. Figures
4.15c to d show the experimental sites in London and Zürich. The bus data
is collected from the automated vehicle location devices (AVL), used to re-
construct the trajectories of vehicles and to estimate the averages of speed
and density. The data from Zürich has been previously used by Loder et al.
(2017) and Dakic and Menendez (2018). All required parameters for apply-
ing the proposed functional form on both simulation and empirical data
sets are listed in Table B.4 in the Appendix, where those related to the net-
work topology of London and Zürich are obtained from OpenStreetMap.
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Figure 4.15: Network exhibits for the estimation of the 3D-MFDs. (a) shows
the grid network in a homogeneous road configuration, while (b)
shows a heterogeneous network with road hierarchy L1>L2>L3. (c)
shows the neighborhood in London (UK) and (d) the neighborhood
selected in Zürich (CH).

For all four data sets, we estimate λ with non-linear least squares. The
estimated value for each 3D-MFD is given in Table B.4 in the Appendix. We
show in Figure 4.16a to l the fitted functional form with the measurements
given in red. Here we see that our proposed functional form aligns well
with the observations for all four case studies. The third figure in each row
in Figure 4.16 provides the residuals of the fit. We find residuals of around
30 % of the observed capacity for both simulation networks, with a slightly
larger value for the heterogeneous network, and around 5-10 % for the em-
pirical cases. Arguably, the residuals for the simulation are larger because
the wider range of densities amplifies two effects not accounted for in the
lower envelope: nonlinearities and network dynamics. When further com-
paring the estimated 3D-MFDs from both simulation networks, we find
two different patterns. In the homogeneous network, the curve describes
well the observed capacity and then overestimates the congested branch,
while it underestimates the capacity and congested traffic states in the het-
erogeneous case. Arguably, this difference is caused by the difference in
the two networks. With more heterogeneity, the similarity between the ob-
served traffic states and the lower envelope decreases. Capturing this in
our functional form’s single parameter λ is difficult and consequently, the
fit of the functional form in Figure 4.16 is less ideal in the heterogeneous
case compared to the homogeneous case. Nevertheless, even in the case of
a heterogeneous network, our proposed functional form stills provides a
meaningful 3D-MFD shape.
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Figure 4.16: Validating the functional form for the 3D-MFD: homogeneous net-
work (a to c), heterogeneous network (d to f), London (g to i), and
Zürich (j to o). Here, (j to l) show the case if bus data is available
and (m to o) if bus data is only approximated using Eqns. 4.37 and
4.38. Column one and two provide different angles of the fit, while
the third column provides the residuals of the λ estimation.
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For the value of λ, we normalize the accumulations to vehicle densities,
while we keep the vertical axis in terms of production. As a result, and as
previously noted by Ambühl et al. (2018a), λ is not scale-invariant; hence
it cannot be directly compared across networks. However, scaling λ by L
brings λ to the order of magnitude of λ ≈ 10−2 in this study, which is in
the same range reported by Ambühl et al. (2018a) for the unimodal case.
Therefore, even if no observations are available for the λ estimation, it is
possible to use the previous finding of λ ≈ 10−2 (normalized for network
length) to approximate it with reasonable certainty. We further conclude,
that this holds even in heterogeneous network configurations as shown in
Figure 4.15b. That being said, if the heterogeneity increases significantly,
the network should be further partitioned to guarantee that the MFD ho-
mogeneity requirements are satisfied. Further research is required to in-
vestigate whether λ can be analytically derived as a function of different
explanatory variables.

We now discuss the estimation of λ if no public transport measurements,
like the ones we used for the validation of London and Zürich, are avail-
able. To do so, we follow Daganzo’s 2010 idea and we use the Zürich case
as an example. In this case, we require the total network length for buses
B and the headway H. Using GIS tools, B can be calculated from spatial
bus network data, which is usually available from the local agency. For
our Zürich network, we have a total network length of B = 43.6 km. Note
that this is more than the total infrastructure for buses in Table B.4 in the
Appendix as many routes overlap. According to the time table of Zürich,
during peak hour, most services run with a headway of H = 0.1 h. Then,
the production of buses during peak hour is given by Eqn. 4.37.

πb =
B
H

= 436 veh-km h-1 (4.37)

With our observed data from Zürich, we find that during peak hour the
maximum public transport production is πb ≈ 470 veh-km h-1. This means
an error of around 7 % with Eqn. 4.37 and the proposed approach; so we
can conclude that this is a reasonable approximation.

We now need to calculate the number of buses during peak hour Ab
with Eqn. 4.38 as used by Daganzo (2010).

Ab =
πb
vb

(4.38)

Here, vb is the commercial speed of buses, which can be either derived
using Eqn. 4.28 from this paper, Eqn. 4 from Daganzo (2010), or based on
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measurements during peak hour. Suppose that we estimate vb during peak
hour at vb ≈ 11 km h-1 as Loder et al. (2017) reported. This then results
in Ab = 436/11 ≈ 40 veh, which is close to the observed Ab ≈ 43 veh
during peak hour (with an error of about 7 %). Adding πb and Ab to the
observations of car traffic and then estimating the 3D-MFD function leads
to λ = 1.120 with a standard error of 0.006 (normalized λ ≈ 0.024). This
value is very close to the λ estimated for the measured 3D-MFD (see Table
B.4 in the Appendix). Consequently, the resulting estimated 3D-MFD in
Figures 4.16 m to o looks very similar to the 3D-MFD estimated using all
empirical data in Figures 4.16 j to l.

We then compare our proposed functional form with Drake’s general-
ized exponential function proposed by Geroliminis et al. (2014). The lat-
ter function has six model parameters that need to be fitted to the data
and cannot be defined a priori, as they do not have any physical mean-
ing. Our functional form, on the other hand, has a single parameter, λ,
and as we already showed, it can be reasonably assumed given that it
seems to be always within the same range when normalized for network
length. Not surprising, we find a better fit of Drake’s generalized exponen-
tial function to the data compared to our functional form. In particular,
we first obtain for the simulation an RMSE of 0.323 for Drake’s general-
ized exponential function and 0.770 for our proposed functional form for
the homogeneous network, as well as 0.306 for Drake’s function and 0.820

for our functional form in case of heterogeneous network configuration.
This increase in RSME (error) of our proposed function is intuitive. The
similarity between the theoretical best-case situation and the observed traf-
fic states decreases with heterogeneity, which makes it difficult to describe
with just a single parameter the observed traffic states. Second, for London
we obtain an RMSE of 1.80 for Drake’s generalized exponential function
and 2.28 for our proposed functional form, although MATLAB’s fmincon
solver exited for Drake’s generalized exponential function with the status
“local minimum possible” (see the resulting issue in Figure 4.17). Third,
for Zürich we obtain an RMSE of 0.110 for Drake’s generalized exponen-
tial function and 0.183 for our proposed functional form. However, Figure
4.17 emphasizes that it is difficult to obtain a satisfying 3D-MFD shape
with Drake’s generalized exponential function: Only with a full range of
densities as exclusively available from a simulator, the 3D-MFD shape is
satisfying. For empirical observations, the resulting 3D-MFD shapes are
inevitably unsatisfying and consequently not applicable without concerns:
As the parameter estimation for London converged only to a possible local
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a b

c d

Figure 4.17: Estimation of Drake’s exponential function as proposed by Geroli-
minis et al. (2014): (a) results from the simulation with the homoge-
neous network configuration, (b) results from the simulation with
the heterogeneous network configuration, (c) shows the function es-
timated for London with the inset showing that the speed constraint
is satisfied, and (d) shows the function estimated for Zürich.

optimum, the familiar 3D-MFD shape is clearly not recovered, although
the proposed constraints are satisfied. For Zürich, we see that at least a
shape similar to a 3D-MFD is recovered, but production decreases towards
zero for higher bus accumulations faster than what is observed in reality,
and production is non-zero at jam density of cars and zero accumulations
of buses. None of these issues can arise with our proposed functional form,
which in addition, can be potentially constructed from scratch without any
traffic data, in contrast with Drake’s exponential function that needs the
full range of observations across the two modes.

4.4.2.6 Validation of speed functions

Here, we validate the approximation of the speed relationship between
buses and cars proposed by Geroliminis et al. (2014) in Eqns. 4.30-4.32 as
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well as our proposed speed model in Eqns. 4.35 and 4.36. Figure 4.18 shows
the bivariate scatter plots of the observed speeds of cars and buses for the
four previously used data sets. Recall that these are the average speeds in
the network, so they account for all delays including that from stopping
at intersections and/or bus stops as well as congestion. We add to the
scatter plots a linear fit (dashed lines) and our proposed speed model (solid
line). Generally, we observe a linear trend between both modes’ speeds
despite the scatter. Even though there are some differences between the
proposed model and both the linear fit and the observations, the overlap
is still significant. Therefore, we can reasonably assume that the proposed
linear relationship by Geroliminis et al. (2014) as well as our proposed
speed model approximates the observed behavior relatively well.

4.4.3 A Bose-Einstein condensate approach

This sections proposes a novel and general methodology to capture ana-
lytically the effects of local and microscopic interactions between different
transport modes in the MFD. We use a recently formulated functional form
for the MFD (Ambühl et al., 2018a) in conjunction with the two-fluid theory
of town traffic by Herman and Prigogine (1979), based on the Bose-Einstein
condensation, to bring the effects of multimodal microscopic interactions
to the network level.

4.4.3.1 Linking delays to the MFD

The proposed interaction model applies to the interaction of m modes.
Here we focus on the interactions between cars (subscript c), buses (sub-
script b), and bicycles (subscript v, for velo - french bicycle). We define k as
the three-dimensional state vector of the system with elements car density,
kc, bus density, kb, and bicycle density, kv. Each mode has a well-defined
MFD. Generally, the MFD is an upper envelope to all possible states in the
relationships between network’s average flow, q, and density, k (Daganzo,
2007; Daganzo and Geroliminis, 2008). Originally defined for car traffic
only, we transfer the idea to buses and bicycles as the three modes only
differ in propulsion and some operational characteristics, e.g. speeds, pas-
senger occupancy, vehicle size. Here, we denote this upper envelope as the
upper MFD (uMFD) and assume that it is known a priori (Ambühl et al.,
2018a; Daganzo et al., 2018). Then, all observed traffic states will always
be located below this uMFD due to traffic heterogeneity (e.g. Mazloumian
et al., 2010; Geroliminis and Sun, 2011; Gayah and Daganzo, 2011; Daganzo
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Figure 4.18: Validation of the proposed speed functions: (a) results from the sim-
ulation with the homogeneous network configuration, (b) results
from the simulation with the heterogeneous network configuration,
(c) shows the relationship for London, and (d) shows the relation-
ship for Zürich.
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Figure 4.19: Fundamental relationships of urban-scale traffic. (a) illustrates the
λ MFD function with a trapezoidal uMFD, and (b) the fundamental
relationship of the two-fluid theory of urban traffic.

et al., 2011) and network dynamics (e.g. Mariotte et al., 2017). Here, we use
the functional form for the MFD proposed by Ambühl et al. (2018a) that
captures the gap between the a priori known uMFD and the observed MFD
with just a single parameter, λ0. This parameter can be seen as a quantifi-
cation of network heterogeneity or the between-vehicle interactions. Eqn.
4.39 shows this functional form for a trapezoidal uMFD. Such uMFD shape
has been used, for example, by Daganzo et al. (2018). For the reader’s con-
venience we omit the subscript m for the mode as it appears for every
equation for all variables and parameters.

q (k) =

− λ0 ln

(
exp

(
−v f k

λ0

)
+ exp

(
− Q

λ0

)
+ exp

(
− (κ − k)w

λ0

))
(4.39)

Here, v f is the free flow speed in the network, Q is the network’s capacity
as defined by the most constraining intersection (Daganzo and Geroliminis,
2008), κ is the jam spacing in the network, and w is the backward wave
speed. Arguably, each mode m has its characteristic values. In Figure 4.19a
we illustrate the behavior of this MFD function for different values of λ0
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in comparison with the uMFD as defined by the minimum operator with
the trapezoidal shape (Eqn. 4.39). Here, each of the trapezoidal shape’s
three segments enters as an argument to the minimum operator. With λ0

approaching zero, the resulting curve approaches the uMFD, in this case
the trapezoidal shape. When λ0 increases, the curve moves further down
but still describes the familiar MFD shape.

We also define the pace (travel time per unit length) Tm of mode m. It
consists of two parts as given by Eqn. 4.40. The first term, T0

m (km), denotes
the undisturbed pace of mode m given its current accumulation levels, km,
i.e. without any interactions with other modes. The second term, Γm (k),
describes the additional delays caused by the interactions across modes. In
other words, the undisturbed pace of m is given by each modes’ own MFD,
while the additional interaction delays Γm jointly depend on all modes’
accumulations.

Tm (k) = T0
m (km) + Γm (k) (4.40)

The additional interaction delays Γm (k) will decrease the flow of all
vehicles as interactions always negatively effect each other. This means,
that an increase in Γm (k) will increase λ in Eqn. 4.39. In other words, we
want to find µ (k) as defined in Eqn. 4.41, which increases λ0 to λ̆ due
to the interactions between modes at a given state vector k. Here, µ (k)
is a function with Rm → R. The model proposed in this paper allows to
calculate µ (k), and then either λ̆ or λ0 if one of the latter two values is
measured.

λ̆ = λ0 + µ (k) (4.41)

We will now establish the link between the additional interaction delays
Γ and λ with the well-established two-fluid theory of urban traffic (Herman
and Prigogine, 1979). The two-fluid theory of urban traffic is analogous to
the Bose-Einstein condensation of particles at low temperatures (Ardekani
and Herman, 1982; Dixit, 2013). In this theory, traffic consists of running
vehicles (subscript r) and stopped vehicles (subscript s), where the running
speed of vehicles vr is related to the fraction of running vehicles fr by Eqn.
4.42 and by definition Eqn. 4.43. Here, n is a network-wide constant and
assumed to result from driving behavior, network topology, and signal
settings, v f is the free-flow speed, and v is the average space-mean speed
in the network. The inverse of v is equal to the pace or travel time per unit
distance T. As there are stopping and moving vehicles, T equals the sum of
stopping time per unit distance Ts and the running time per unit distance
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Tr, i.e. T ≡ Tr + Ts. We assume that the two-fluid theory of urban traffic
applies to all considered modes m in the same fashion. For each mode, the
parameter n is derived from λ as we show later.

vr = v f ( fr)
n (4.42)

v = vr fr (4.43)

By definition the fraction of vehicles stopped fs and the fraction of run-
ning vehicles fr always add up to one: fs + fr ≡ 1. Then, the space-mean
speed in the network v results from Eqn. 4.44.

v = v f (1− fs)
n fr = v f (1− fs)

n+1 (4.44)

Importantly, Herman and Prigogine (1979) pointed out that fs is propor-
tional to a power law with exponent h of the density to jam density ratio.
In an empirical study, Lu et al. (2018) reported that h ≈ 1, making com-
putation easier. Here, however, we carry the h further as it can be context
specific.

fs =

(
Ts

T

)
∝
(

k
κ

)h
(4.45)

The fundamental equation of the two-fluid theory results from Eqns.
4.42 and 4.44 and is given by Eqn. 4.46 (see for derivation Herman and
Prigogine (1979)). This equation establishes a relationship between the total
travel time per unit distance T, the running time per unit distance Tr, the
free flow speed v f as well as the network parameter n. We illustrate the
functional behavior of the two fluid theory in Figure 4.19b for different
values of n. For higher values of n, the fraction of stop time out of the total
trip time decreases.

log Tr =
n

n + 1
log T +

1
n + 1

log
(

1
v f

)
(4.46)

With the MFD expressed by Eqn. 4.39, we can algebraically derive for-
mulae for T, Tr, Ts. The total trip time per kilometer or pace, T, is simply
obtained by the inverse of the space-mean speed in the MFD as shown by
Eqn. 4.47.

T (k) =
k

−λ0 ln
(

exp
(
− v f k

λ0

)
+ exp

(
− Q

λ0

)
+ exp

(
− (κ−k)w

λ0

)) (4.47)
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Then, we obtain the running time per kilometer, Tr, by using Eqns. 4.43,
4.45 and T (k) from Eqn. 4.47.

Tr (k) =

(
1−

(
k
κ

)h
)

T (k) (4.48)

Last, we obtain the stopping time per kilometer, Ts, by subtracting the
running time from the total trip time as given by Eqn. 4.49.

Ts (k) = T (k)− Tr (k) (4.49)

In their empirical work, Herman and Prigogine (1979), Ardekani and
Herman (1985) and Ardekani et al. (1992) estimated n econometrically from
measurements of Tr and T. As we obtained formulae for T and Tr, we can
derive n analytically. Thus, after some algebra, we can solve Eqn. 4.46 for
n, resulting in Eqn. 4.50.

n =
1/ log v f − log Tr

log Tr − log T
(4.50)

In the following, we define λ0, n0, T0, T0
r and T0

s with superscript 0 to
denote the case of a steady-state traffic stream without any cross-modal
disturbances, i.e. interaction with other modes. Let us then consider that
the interactions with other transport modes create additional delays Γ. We
assume that these delays either affect only the stopping time with Γs (k)
or the running time Γr (k). We discuss these functions in detail later in
this section. Here, Γ is a scalar function with Rm → R. Accordingly, the
two-fluid travel time variables can be rewritten for the case with additional
delays with Eqns. 4.51-4.53.

Tr (k) = T0
r (k) + Γr (k) (4.51)

Ts (k) = T0
s (k) + Γs (k) (4.52)

T (k) = T0
r (k) + Γr (k) + T0

s (k) + Γs (k) (4.53)

With the additional interaction delays Γ on pace or travel times quan-
tified (for a given λ0 and k), we can identify the network performance
measures n̆ and λ̆ in the presence of cross-modal interactions. We use the
inverse hat to indicate that the measure includes cross-modal delays. Then,
for n̆, we use Eqn. 4.50 and Eqn. 4.51-4.53 to obtain Eqn. 4.54.
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n̆ (k) =

1/ log v f − log
(
T0

r (k) + Γr (k)
)

log
(
T0

r (k) + Γr (k)
)
− log

(
T0

r (k) + Γr (k) + T0
s (k) + Γs (k)

) (4.54)

Then, to obtain λ̆, we equate in Eqn. 4.55 the space-mean speed of the λ
trapezoidal function from Eqn. 4.39 and the speed of the two-fluid theory
from Eqn. 4.44. Note that the information of k is now carried along with
n̆ and that the right-hand side of Eqn. 4.55 is similar to the inverse of Eqn.
4.47, but the λ0 is replaced by n̆ to calculate the interaction effects.

v f

(
1−

(
k
κ

)h
)n̆(k)+1

=

− λ̆
ln
(

exp
(
− v f k

λ̆

)
+ exp

(
−Q

λ̆

)
+ exp

(
− (κ−k)w

λ̆

))
k

(4.55)

Eqn. 4.55 can simply then be solved as a root problem using a mathe-
matical software when transformed into Eqn. 4.56. The only unknown is
λ̆.

0 = −λ̆
ln
(

exp
(
− v f k

λ̆

)
+ exp

(
−Q

λ̆

)
+ exp

(
− (κ−k)w

λ̆

))
k

− v f

(
1−

(
k
κ

)h
)n̆(k)+1

(4.56)

The problem formulated in Eqn. 4.56 must be solved for each mode m
separately and because of the high non-linearity of model, we propose to
solve Eqn. 4.56 for each demand situation separately, i.e. for all possible
values of k, instead of assuming constant n or λ values over all densities.

delay functions

In the following, we focus on identifying delay functions, i.e. Γ (k) for an
urban network with given MFDs for each mode. Here, we firstly consider
that the interactions between modes are uniformly distributed over time
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and space (we discuss later spatial heterogeneity of delays). The methodol-
ogy presented above is generic and allows to use any formulation of Γs (k)
and Γr (k) functions for all modes that can be represented with an MFD,
but here we focus on bicycles, buses, and cars.

We use the following notation: Γc→b
s describes the interaction stopping

delays caused by cars on buses. We use the → operator to indicate which
mode affects which other mode. Where we do not provide the→ operator,
Γ corresponds to the total interaction delay caused by all other modes com-
bined. Intuitively, the interaction delay functions depend on the network
topology, i.e. in case all modes run on dedicated infrastructures the inter-
action delays are zero, while they are non-zero when their infrastructure
is (partially) overlapping.

As mentioned before, Γ (k) has two mechanisms: stopping delays Γs (k)
and running delays Γr (k). We assume additivity of delays within each
mechanism as formulated in Eqn. 4.57 for the additional stopping delays
for cars Γc

s (k), i.e. we calculate additional delays pairwise, and their sum is
then the total interaction delay. In other words, this assumes no combined
or second order effects, e.g. from bicycles and buses on cars.

Γc
s (k) = Γb→c

s (kc, kb) + Γv→c
s (kc, kv) (4.57)

In Table 4.5 we summarize for each of the two mechanisms the delay
model used for quantifying the interactions between all considered modes.
In total, we use four different delay models: A continuous multiclass fun-
damental diagram (FD) taken from Bliemer (2001), a discrete multiclass FD
proposed by Wierbos et al. (2018), a platoon dispersion model as proposed
by Robertson (1969), and a bus dwelling behavior model based on Da-
ganzo (2010). We do not use a continuous multiclass model for the inter-
actions that involve bicycles as we assume that in the congested case of
cars and buses, bicycle speeds do not converge to that of the other modes,
i.e. bicycles can sneak through the vehicle queues. Therefore, we provide
a separate discrete multiclass FD. We generally expect no analytical mech-
anism for additional interaction stopping delays caused by cars on buses
and bicycles, but that, for example, in congested traffic states, additional
interaction stopping delays are function of additional interaction running
delays, i.e., Γs = f (Γr).

For the additional running delays, the general modeling idea is to ex-
press the additional delay as the difference in pace between the pace from
the multimodal FDs and the unimodal FDs. In other words, the difference
between the case where both modes are interacting and the case without
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Interaction case Running delay Stopping delay

c→ b Continuous multiclass FD f (Γr)

b→ c Continuous multiclass FD Bus dwelling behavior

b→ v Discrete multiclass FD Bus dwelling behavior

v→ b Discrete multiclass FD Bicycle platoon dispersion

c→ v Discrete multiclass FD f (Γr)

v→ c Discrete multiclass FD Bicycle platoon dispersion

Table 4.5: Assignment of delay models to the mechanisms of running and stop-
ping delays.

interaction. For the interaction stopping delays, the general modeling idea
is to quantify the sources of additional stopping delays caused by the inter-
actions. In this case, we do not need to subtract anything from these delays
as they are fully additional, i.e. in the uninterrupted case, no such delays
are to be expected.

For the formulation of the delay functions, we consider an urban net-
work, where the interactions are continuously distributed. The features of
the urban network are as follows. Intersections are spaced at distance l,
each intersection has a width of c, the number of lanes per driving direc-
tion is d, and bus stops are placed at distance p. Following Daganzo’s 2010

formulation of bus network design, the design of the bus network is α.
For α, 0 < α ≤ 1 must hold. Close to its lower bound, α describes a hub-
and-spoke network, while at its upper bound it describes a grid network.
Values in between are hybrid networks where one can see α as the frac-
tion of network exhibiting a grid structure. Each mode has a given MFD
as formulated in Eqn. 4.39. To distinguish between the speeds obtained
from the MFD and those from the fundamental diagram, we define ϑ (k)
as the speed from the fundamental diagram and v (k) as the speed from
the MFD. Following the idea of the two fluid theory, we assume that the
MFD running speed corresponds to the FD speed, i.e. vr (k) = ϑ (k). We
further define that ϑm (km) always refers to the unimodal speed-density re-
lationship, while ϑm (k) refers to the speeds obtained from the multiclass
FDs that we introduce in the following.
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Continuous multiclass fundamental diagram

The continuous multiclass fundamental diagram used in this delay model
has been proposed by Bliemer (2001). This model enters the additional
running delays between cars and buses Γc→b

r and Γb→c
r . Consequently, we

express the equations provided by Bliemer (2001) for this specific interac-
tion type with two vehicle classes. Similar to Bliemer (2001), we consider
class 1 to be the standard passenger and class 2 to be buses that are mov-
ing bottlenecks (Muñoz and Daganzo, 2002; Eichler and Daganzo, 2006;
Castrillon and Laval, 2018), similar as trucks on a motorway as studied
by Bliemer (2001).

The fundamental diagram for the two mode case consists primary of
three equations. The first equation is given by Eqn. 4.58 and is the inverse
of the speed-density relationship for cars. In Eqn. 4.58, µ1, µ2, and µ3 are
parameters to be estimated and v f

c is the free-flow speed for cars. Note
that in Eqn. 4.58 we omit the density argument for ϑc as the speed-density
relationship is given as the inverse.

kc (ϑc) =
1

µ1 +
µ2

v f
c − ϑc

+ µ3ϑc

(4.58)

The second equation makes the simplifying assumption that the speed of
buses ϑb is a function of the (faster) car speed ϑc, i.e. ϑb = f (ϑc). There are
several functional forms possible but Bliemer (2001) proposes Eqn. 4.59,
which we for simplicity use here as well. Importantly, the differences in
free flow speeds can be substantial in case agencies have a desired bus
speed to which bus drivers have to stick in order to maintain the schedule.
In Eqn. 4.59, parameter νb has to be estimated from data.

ϑb (kb, kc) =
ϑc (kb, kc)

1 + νb (ϑc (kb, kc))

(
log
(

v f
c /v f

b−1
)
−log(νb)/ log

(
v f

c

)) (4.59)

The third equation quantifies the effective density k, measured in the
size of the standard passenger car size of class 1 as formulated in Eqn. 4.60.
Here, ϕ (ϑc) is the passenger car equivalent of a bus that we assume to be
a function of car speed ϑc (kb, kc) and ψbc (ϑc) is the interaction parameter,
also assumed to be a function of ϑc (kb, kc).

k = kc + ϕ (ϑc) kb + ψbc (ϑc) kbkc (4.60)
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Consequently, we need to estimate the parameters of Eqns. 4.58, 4.59

and 4.60 with observations of speed and densities by both modes. To ac-
count for the effective density k in the unimodal fundamental diagram, we
substitute Eqn. 4.60 for kc (ϑc) from Eqn. 4.58 to obtain Eqn. 4.61.

1

µ1 +
µ2

u f
c − ϑc (kb, kc)

+ µ3ϑc (kb, kc)
= kc + ϕ (ϑc) kb + ψbc (ϑc) kbkc (4.61)

For convenience, we assume that we can express ϕ (ϑc) as a linear func-
tion as given in Eqn. 4.62, and we assume for ψbc (ϑc) a linear function as
well as given in Eqn. 4.63.

ϕ (ϑc) = ϕ0 − ϕ′ϑc (kb, kc) (4.62)

ψbc (ϑc) = ψ0 ϑc (kb, kc) (4.63)

Discrete multiclass fundamental diagram

The discrete multiclass fundamental diagram used here has been recently
introduced for bicycles and cars by Wierbos et al. (2018). This model enters
all running delay formulations where bicycles are involved. Namely, Γv→c

r ,
Γv→b

r , Γb→v
r , and Γc→v

r . Consequently, we define for this section a subset
m′ ∈ {b, c} to generalize the equations.

The multiclass traffic flow is illustrated in Figure 4.20. Here, let us define
two threshold density values for the bicycle density kv. The first value,
k′v, defines an upper limit up to which vehicles experience no obstruction
by cyclists as they are only loosely spaced as shown in Figure 4.20a. The
second threshold value, k′′v , where k′′v > k′v, describes the situation where
vehicles can still overtake bicycles at a reduced speed of vm′ ,red as presented
in Figure 4.20b. If the number of bicycles exceeds k′′v vehicles need to adopt
the speed of bicycles as we illustrate in Figure 4.20c.

We define the speed of bicycles ϑv (km′ , kv) as outlined in Eqn. 4.64. In
case vehicles (cars or buses) are loosely spaced, i.e. km′ < k′m′ , the speed of
bicycles is ϑv (kv), but if traffic gets denser, bicycles reduce their speed to
δ of ϑv (kv).

ϑv (km′ , kv) =

ϑv (kv) , if km′ < k′m′

δ ϑv (kv) if km′ ≥ k′m′
(4.64)
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Figure 4.20: Illustration of bicycle and car interactions within the link causing
additional running time delays for cars, Γv→c

r . In case bicycles are
only loosely spaced in the network with kv < k′v as shown in (a)
then cars experience no additional delay at all. When the bicycle
density increases, but it holds k′v < kv < k′′b , then cars overtake bicy-
cles with a reduced speed for safety reasons as shown in (b). Once
the bicycle density exceeds kv > k′′v the speed of cars is determined
by the speed of bicycles as illustrated in (c). The car by Pablo Rozen-
berg from the Noun Project and the bicycle by Jens Tärning from
the Noun Project.

As aforementioned and shown in Figure 4.20, we define in Eqn. 4.65

that the speed of vehicles, ϑm′ (km′ , kv) is equal to the unimodal speed of
vehicles ϑm′ (km′) in case the bicycles are only loosely spaced, i.e. kv < k′v.
In the case of k′v < kv < k′′v , we expect that vehicles drive either at a
reduced speed for overtaking cyclists or their unimodal speed ϑm′ (km′) if
it is less than vm′ ,red. Then, when kv > k′′v , we expect that vehicles need to
adopt the speed of cyclists ϑv (km′ , kv) or their unimodal speed if it is less
than the speed of cyclists.

ϑm′ (km′ , kv) =


ϑm′ (km′) if kv < k′v.

min
(
vm′ ,red, ϑm′ (km′)

)
if k′v < kv < k′′v .

min (ϑv (km′ , kv) , ϑm′ (km′)) if kv > k′′v

(4.65)

Bicycle platoon dispersion

This model’s output enters the additional stopping delays for cars caused
by bicycles, Γv→c

s , and for buses caused by bicycles, Γv→b
s . The key element
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Figure 4.21: Illustration of the bicycle platoon dispersion at a traffic signal. At
t = t0 all bicycles are located upfront of the cars and the signal
turns green. Then, first the bicycles move but cars cannot at t = t1
as the bicycle platoon is still blocking the intersection. Cars can clear
the intersection and overtake the bicycles once the bicycle platoon
has dispersed and cleared most intersection space at t = t2. The car
by Pablo Rozenberg from the Noun Project and the bicycle by Jens
Tärning from the Noun Project.

of this delay model is the situation-adopted Robertson’s platoon dispersion
model (Robertson, 1969; Paul et al., 2016; Axhausen and Körling, 1987).

First, consider the situation in the panels of Figure 4.21. During a red
signal phase of length R, b1 bicycles accumulate in a so called pocket in
front of the stop line of cars. This kind of intersection design is becoming
more and more common in cities like London and Zürich. At time t = t0
the signal turns green. Now, the bicycle platoon starts to move, but the cars
cannot accelerate as all lanes are blocked with bicycles at time t = t1. At
time t = t2, the bicycle platoon cleared the intersection and has dispersed
to that extent that cars can now discharge and drive into the next link. In
this model, we generally assume that with more bicyclists in the pocket,
cars have to wait longer before discharging.

At the beginning of the discharge phase, t = 0, the bicycle platoon is of
size b1 that is calculated by Eqn. 4.66 as the number of bicycles that arrive
during red phase R at most of density kv and the maximum possible speed
ϑv (kv)

v f
v .

b1 = R kv v f
v (4.66)

To model this platoon dispersion, we adopt Robertson’s 1969 layout def-
inition and consider the intersection length c as the context-specific dis-
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persion corridor as shown in Figure 4.21. Further, we know the average
time, Ta, and standard deviation thereof, σ, of a cyclist to cover distance
c. We define the additional delay for stopping as the time until the frac-
tion ψ of the initial platoon b1 traversed the dispersion corridor. In other
words, we need to find the time duration τ, where the cumulative sum of
downstream arrivals of bicycles bd

t , is equal to or greater than ψ b1. The
downstream arrivals bd

t is expressed in Eqn. 4.67 (Seddon, 1972) and T is
expressed in units of g, which is the length of the modeling interval in g
seconds.

bd
t =

0 if t ≤ T

∑t−T
i=1 biF (1− F)t−T−i if t > T

(4.67)

Where the factor F is calculated by Eqn. 4.68.

F = g
√

g2 + 4σ2 − g
2σ2 (4.68)

We obtain the minimum time to travel along c using Eqn. 4.69.

T = βnTa (4.69)

Where we calculate βg using Eqn. 4.70.

βg =
2Ta + g−

√
g2 + 4σ2

2Ta
(4.70)

For simplicity of the model, we assume that the bicycle platoon upstream
is only non-zero at t = 1, i.e. b1 is non-zero. This then simplifies Eqn. 4.67

into Eqn. 4.71.

bd
t =

0 if t ≤ T

b1F (1− F)t−T−1 if t > T
(4.71)

Then, we define Eqn. 4.72 which determines how many modelling in-
tervals or time steps are required until γ of the initial bicycle platoon b1
cleared the way for cars.

γ b1 ≥
τ

∑
t=1

bd
t (4.72)

We expect that γ depends on the initial platoon size b1. Arguably, at
low densities there will be close to no additional difficulties in passing the
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dispersing platoon, while at very high bicycle densities we expect that car
drivers have to wait until almost the entire platoon has cleared the intersec-
tion. Thus, for simplicity, we assume a linear relationship as formulated in
Eqn. 4.73, where ψ is the platoon clearing factor and b is the bicycle clear-
ing limit. Both together mean that cars have to wait when b bicycles are
waiting until ψ have cleared the bicycle stopping box before start moving.
Both parameters need to be estimated from data.

γ = ψ
b1

b
(4.73)

Consequently, the time until the vehicles beyond the bicycle platoon can
pass the intersection is given by g τ.

Bus dwelling behavior

For quantifying additional stopping delays caused by buses on cars and
bicycles, we concentrate on the feature that buses stop on the curbside and
thus force other vehicles to stop behind them. A network perspective to this
has been provided by Daganzo (2010) with the average commercial speed
of buses vcom as formulated in Eqn. 4.74. The commercial speed combines
the running speed ϑb (k) with the average network-wide dwelling behavior
of buses that is a function of several network parameters: constant dwell
time ζ at every stop placed at distance p and demand-depending dwell
time ζ ′ as a function of the demand Λ, the headway H, the structure of the
bus network α, and the diameter of the regional network D.

1
vcom

=
1

ϑb (k)
+

ζ

p
+

0.5 (1 + eT) ζ ′Λ p H/D2

3α− α2 (4.74)

Clearly, Eqn. 4.74 illustrates the running behavior, which has already
been quantified in Section 4.4.3.1, and the stopping behavior with the sec-
ond and third term of the right-hand side. As in this paper we are working
with vehicle density kb instead of headway H, we need require the analyt-
ical link between both variables in order to use the stopping behavior of
Eqn. 4.74 for our delay formulations. For this, we divide Eqn. 3 (fleet size)
by Eqn. 1 (bus network length) of Daganzo (2010), which gives the bus
density as formulated by Eqn. 4.75.

kb =

2

(
3α− α2)

H

(
1

ϑb (k)
+

ζ

p

)
+ (1 + eT) ζ ′Λ p/D2

1 + α2 (4.75)
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If the dwelling dynamics as a function of demand are omitted, i.e. ζ ′ = 0,
then the third term of Eqn. 4.74 as well as the second term in the numerator
of Eqn. 4.75 can be neglected. Further, if the perspective is only on an urban
corridor, then one can assume α = 1 and eT = 0.

Formulation of additional delays

With the discussed delay models, we can now formulate the additional
running and stopping delays. The formulation of the additional running
delays Γr is straightforward as it is only the difference in pace between the
interacting case and the case where the interaction is not considered. Recall
that we define ϑm (km) as the unimodal speed-density FD and ϑm (km, km′)
as the multiclass speed-density FD. Then, we can formulate all required Γr
functions as provided in Eqns. 4.76 to 4.81.

Γv→c
r (kc, kv) =

1
ϑc (kc, kv)

− 1
ϑc (kc)

(4.76)

Γc→v
r (kc, kv) =

1
ϑv (kc, kv)

− 1
ϑv (kv)

(4.77)

Γc→b
r (kb, kc) =

1
ϑb (kb, kc)

− 1
ϑb (kb)

(4.78)

Γb→c
r (kb, kc) =

1
ϑc (kb, kc)

− 1
ϑc (kc)

(4.79)

Γv→b
r (kb, kv) =

1
ϑb (kb, kv)

− 1
ϑb (kb)

(4.80)

Γb→v
r (kb, kv) =

1
ϑv (kb, kv)

− 1
ϑv (kv)

(4.81)

Secondly, we formulate the additional stopping delays. For the addi-
tional stopping delays caused by bicycles and cars and buses, we use the
duration until vehicles stopped beyond bicyclists at intersections can pass
the intersection gτ and scale the delay per intersection spacing and the like-
lihood of encountering a red phase at a signal. Recall that the τ equals the
number of intervals and g the interval length. Then the additional delays
for cars and buses are given by Eqns. 4.82 and 4.83, respectively.

Γv→c
s (kc, kv) = gτ

R
C

1
l

(4.82)



102 modeling congestion in cities

Γv→b
s (kb, kv) = gτ

R
C

1
l

(4.83)

Regarding the stopping delays caused by buses, we use the dwelling
component of Eqn. 4.74. Accordingly, the additional stopping delay Γb→c

s
is defined as given by Eqn. 4.84 and the additional stopping delay Γb→v

s is
given by Eqn. 4.85.

Γb→c
s (kb, kc) =

ζ

p
+

0.5 (1 + eT) ζ ′Λ p H/D2

3α− α2 (4.84)

Γb→v
s (kb, kv) =

ζ

p
+

0.5 (1 + eT) ζ ′Λ p H/D2

3α− α2 (4.85)

accounting for heterogeneity of delays

In reality, the interaction delays are not spatially and temporally homoge-
neous as previously assumed: In an urban network with d lanes, buses and
bicycles usually only use a single lane, the curbside lane. Further, buses
have a given headway and thus their bottleneck nature is only activated
when a bus is present. Thus, we need to scale interaction delays by the
probability of interaction to obtain the expected value of interaction delays.
Importantly, the required scalars are case specific and need to be defined
for each interaction situation separately. For the tri-modal case of bicycles,
buses and cars, we consider ρl to capture the spatial probability (or hetero-
geneity) induced by the number of lanes and ρb the temporal probability
(or heterogeneity) of bus interactions. Accordingly, both are scalars to the
respective delays.

First, for the spatial heterogeneity of interaction delays, we assume that
d − 1 lanes of the network are dedicated for cars while only one lane is
mixed. Consequently, the interaction effects will fully affect the mixed lane,
while the other lanes are less affected. However, due to spillover effects,
the d − 1 lanes are not completely unaffected. Thus, we assume that the
network-wide probability of interaction is a convex function, decreasing
with the number of lanes. We propose Eqn. 4.86 as a possible functional
representation of this behavior by using the square root. However, future
research is required to validate this assumption. For the case of bicycle-bus
interactions, where both use the curbside lane, we consider here only the
mixed lane, i.e. ρl = 1.



4.4 modeling multimodal interactions at the network level 103

ρl =
1√
d

(4.86)

Second, we define the temporal probability of interaction, ρb, on a link
where vehicles of mode m are affected by stopping buses. We assume a
distance p between bus stops in the network and define p̂ = p−1 as the
number of bus stops per kilometer, the headway of buses is H that is a
function of bus density kb, ∆Td is the total bus dwell time, calculated using
the commercial bus speed equation by Daganzo (2010), and α is the design
of the bus network as proposed by Daganzo (2010), for which 0 < α ≤ 1
holds. At its lower bound it describes a hub-and-spoke network, while at
its upper bound it describes a perfect grid network. Values in-between in-
dicate hybrid structures. Here, we consider that the temporal probability
of encountering a stopping bus at a bus stop follows the binomial distribu-
tion as given in Eqn. 4.87 as there is a chance of encountering a bus at one
of p stops per kilometer, at two of p stops or at every p stops. Note that
the first expression in parentheses in Eqn. 4.87 is the binomial coefficient.
The probability of encountering a bus at a bus stop is given by ∆Td/H.
The minimum number of bus stops a car will encounter per kilometer in
a network is given by bα/ p̂c. Importantly, this is a strict simplification of
multimodal urban traffic as it as assumes independence of interactions.

ρb (kb) =
bα/ p̂c

∑
j=1

(
bα/ p̂c

j

)(
∆Td

H (kb)

)j (
1− ∆Td

H (kb)

)bα/ p̂c−j
(4.87)

calibration

The presented multimodal interaction model for the tri-modal MFD re-
quires a calibration of all parameters. These need either to be measured,
estimated or approximated. Section B.2 summarizes the calibration routine.
In Figure 4.22 we then show the resulting car MFDs where we illustrate the
bi-modal interaction effects with buses (see panels (a) and (b)) and with
bicycles (see panels (c) and (d)). Note that each presented pair of figures is
based on the parameters given in Table B.2 and thus only the view point
differs. In all four figures we clearly find the intuitive and expected effect
that more interactions decrease the performance of car travel.
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a b

c d

Figure 4.22: Car MFDs with interaction effects. (a) and (b) show the bus inter-
action effects on car flow; (c) and (d) show the bicycle interaction
effects on car flow.
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4.5 summary

This chapter contributes fourfold to the existing literature. It not only pro-
vides the first extensive comparative empirical evidence on the existence
of the MFD and show that its shape is indeed a function of network topol-
ogy, but also proposes three different approaches to model the network
effects of local interactions between modes (cars, buses and bicycles) in the
MFD: An empirical data driven approach (see Section 4.4.1), a geometric
approach (see Section 4.4.2) and Bose-Einstein condensate based approach
(see Section 4.4.3).

The proposed approaches are all formulated from a vehicle perspective,
but they can be used to investigate the effects on passengers’ choices, the
so called 3D-passenger-MFD (3D-pMFD). Thus, with known preferences
of travelers, choices and their distribution across modes, one can investi-
gate the passenger throughput of entire urban networks and subsequently
optimize it. Aside using the MFD for network assignment modeling (see
Chapter 5), this passenger perspective is very useful for policy making as
we show in two applications build around the 3D-MFD in Chapters 6 and
7.
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5
3 D - M F D N E T W O R K A S S I G N M E N T P R O B L E M

The journey times on all the routes actually used are
equal, and less than those which would be experienced
by a single vehicle on any unused route.

— Wardrop (1952)

In transport modeling and planning, the well-known four-step model is
the workhorse underlying most likely most analyses (Ortúzar and Willum-
sen, 2011). In detail, the four steps are the trip generation at the origin, trip
distribution to the destinations, mode choice and then the network assign-
ment. The network assignment is a mathematical procedure that allocates
a given origin-destination demand to a specific transportation system, e.g.
the road network or transit network (Patriksson, 1994). Consequently, the
traffic assignment takes as an input an origin-destination matrix and com-
putes the vehicle or passenger flows as well as speeds in the network as
the output.

In this chapter, we formulate a static stochastic user equilibrium based
on the MFD and formulate the problem with regional paths as a mixed
complementarity problem. We organize this Chapter as follows. First we
review the basic ideas of the traffic assignment in Section 5.1. Second, we
introduce to the idea of a network of regions in Section 5.2. Third, in Sec-
tion 5.3 we formulate the 3D-MFD network assignment problem. Last, in
Section 5.4 we discuss further model extensions and the calibration proce-
dure in Section 5.5.

5.1 background

Historically, many transport planners were first focusing on heuristic or ad
hoc algorithms for the network assignment, but as Patriksson (1994) for-
mulates “a lack of a rigorous scientific approach to problem formulations” by the
transport planners prevented that they became aware of the development
of algorithms by the mathematicians’ community with lead finally to a
decade of “lost opportunities” (Boyce, 1984). However, this gap is closed now
and transport network problems have become part of wider and general-
ized network problems (Nagurney, 1993; Dafermos and Sparrow, 1969).
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Without loosing generality, there are three pairs of adjectives that are
widely recognized as key features of traffic assignment problems. First, as-
signments are considered to be either dynamic or static. Dynamic traffic
assignments analyze the evolution of flows over time, while static traffic
assignments consider only one time instant. The second pair distinguishes
whether assignments are either deterministic (full information ) or stochas-
tic (incomplete information, or heterogeneity). In the deterministic case,
the route choice rationale is entirely a function of fully known travel time,
while in the stochastic case, stochastic effects account for incomplete infor-
mation on path costs or heterogeneity of preferences. In other words, in
the deterministic assignment, the actual path costs are considered, while
in the stochastic assignment the perceived path costs (Daganzo and Sheffi,
1977; Fisk, 1980). The third pair relates to the quote by Wardrop (1952) at
the beginning of this chapter: traffic distributes in the network according
to rules, where Wardrop’s (1952) rules became standard. He distinguishes
between the user equilibrium (UE) in which every driver is minimizing her
or his journey time, while the system optimum (SO) is the choice of routes
in which total travel time is minimized. In transport networks, usually one
assumes the UE, where the SO offers comparability to assess the efficiency
of policies. There is further a fourth pair of relevance, but usually less
prominent. The assignment problem can be formulated as a link-based or
route based problem (Patriksson, 1994).

Starting from mathematical problem formulations in the 1950s (e.g. Pra-
ger, 1954; Beckmann et al., 1956), today, Wardrop’s standard formulation
of the optimization problem from the introductory quote can be formu-
lated as a variational inequality and as complementary problem (Dafer-
mos, 1980; Pang and Harker, 1990; Ferris et al., 1999), see Appendix D for
an overview. In the mathematical formulation, two issues, especially in
the urban context must be discussed. First, assignment problems usually
consider capacity constraints of the system, e.g. a certain link can only ac-
commodate a maximum flow or a transit vehicle only a maximum number
of riders. Here, the problem arises as summarized by Bliemer et al. (2014)
that “although adding the capacity constraints seems natural, it is not consistent
with the link travel time functions [...] such that ‘tricks’ with Lagrange multipliers
are needed”. Second, link-based volume-delay functions have an unrealistic
asymptotic behavior near capacity (Patriksson, 1994) leading to unrealistic
travel times (Boyce et al., 1981) and computation issues (Daganzo, 1977).

Model-wise, the MFD is similar to a volume-delay function, but in this
particular case, it contains in its own formulation already a capacity con-



5.2 regional model 109

straint and thus has less asymptotic issues. As the MFD has only been
recently formulated, mathematical formulations of the MFD traffic assign-
ments problem are not well established and still subject to research. So far,
the literature shows only dynamic MFD traffic assignments (e.g. Leclercq
and Geroliminis, 2013; Yildirimoglu and Geroliminis, 2014; Aghamoham-
madi and Laval, 2018), which is intuitive as this follows a general trend in
research (Bliemer et al., 2014) and uses the full potential the MFD offers.
Here, we have seen two general approaches (Mariotte et al., 2017): The ac-
cumulation based approach (Daganzo, 2007) as well as the trip-based ap-
proach (Arnott, 2013; Daganzo and Lehe, 2015; Lamotte and Geroliminis,
2018), which differ most notably in the rule of how the speed information
propagates through the network over time. However, the much simpler
static assignment seems to have been ignored, although its simplicity of-
fers for many other disciplines already a very powerful tool in strategic
transport planning.

5.2 regional model

For the 3D-MFD network assignment problem, we transform the urban
road network into a network of regions. The primary motivation here is
that the MFD, defined for a regional network and not single streets, is usu-
ally only well-defined in homogeneously loaded in smaller partitions of
the road networks (see Section 4.2.1). Consequently, reasonable regional
networks must be chosen, e.g. with network partitioning (e.g. Ji and Gero-
liminis, 2012; Saeedmanesh and Geroliminis, 2016, 2017). Figure 5.1 illus-
trates this idea. Figure 5.1a shows how the urban road network is parti-
tioned into several regional networks, where we can define in each region,
or as Daganzo (2007) puts it “neighborhoods”, a 3D-MFD. Then, we abstract
this perspective into a network of regions as shown in Figure 5.1b where
each region is connected to other zones with interchanging flows of vehi-
cles as well as flows within each zone.

In this chapter and the two following ones, we follow the notion of re-
gional paths as shown in Figure 5.2. Demand is aggregated into macro-
nodes, where travelers originate at i and arrive at j. In each region k, there
can be no node at all, a single node or several nodes, but for simplicity,
we consider here that each region has only a single node. Travelers choose
from i to j their transportation mode m (bus or car) along a regional path
r through (several) regions as illustrated in Figure 5.2. In this model, the
regional paths are not explicitly mapped to roads as only the macroscopic
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a b

Figure 5.1: Illustration of the regional network idea. The background map of (a)
is provided by OpenStreetMap.

trip distance dijmr is important to obtain travel times Tijmr (Aghamoham-
madi and Laval, 2018). Here, we define that θijkmr maps regional paths to
regions. If its value is zero, the regional path is not traversing through re-
gion k, if its value is non-zero, it gives the fraction of the regional path’s
length dijmr that is located within k.

The benefit of using regional paths, i.e. a route-based assignment, is that
we do not to define a separate node model, as all interactions between
vehicles vehicles that lead to delays are already accounted for in the MFD
formulation. Contrary, in a route-based assignment, we have to enumerate
all regional paths, but given the macroscopic nature of the model, arguably,
the number of route alternatives each traveler considers are limited.

5.3 mathematical problem formulation

All parameters and variables introduced in this Chapter are summarized
in Table C.4 and Table C.5. We adopt a multimodal traffic assignment, for-
mulated as a stochastic user equilibrium (SUE) following Wardrop’s first
principle of the user equilibrium based on perceived travel cost. We as-
sume that agents choose mode m and route r with the lowest perceived
costs, Čijmr. Thus, a particular route and mode between origin i and desti-
nation j is only chosen if its perceived path costs Čijmr along that route are
equal to the minimum path costs, i.e. Mij ≡ minmr Čijmr. In other words,
Nijmr > 0 only if its path costs are equal to the minimum cost Mij. If costs
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Figure 5.2: Illustration of regional paths.

exceed Mij, the route is not used, i.e. Nijmr = 0. This feature is captured in
the complementary condition of Eqn. 5.1.

Čijmr −Mij ≥ 0 ⊥ Nijmr ≥ 0 (5.1)

The perceived paths costs are defined according to Eqn. 5.2, where Cijmr
are the actual path costs as defined by Eqn. 5.3 and µR is the associated
scale parameter. Note that Eqn. 5.2 is adopted from (Chen, 1999) and de-
scribes a simultaneous route and mode choice multinomial logit model.

Čijmr = Cijmr +
1

µR log
(

Nijmr
)

(5.2)

The path costs Cijmr are the generalized cost of travel and combine
as given by Eqn. 5.3 the in-vehicle travel time Tijmr for both modes and
shadow prices resulting from the capacity constraints, i.e. for parking ρP,
car ownership ρC, bus passenger capacity ρB, and season ticket ownership
ρT . The associated constraints are introduced in Section 5.3.1. Note that
the monetary costs for using a particular mode and mobility tools are sep-
arately considered in the mobility tool ownership constraints in Section
5.3.2. Further, the path costs contain for buses a general waiting time de-
fined as half the headway Hi in departure zone i. Preferences of agents
and other factors that influence the choice as well are captured in ϕij that
requires calibration from data.
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Cij,car,r = Tij,car,r + ρC
i + ρP

j

Cij,bus,r = Tij,bus,r +
Hi
2

+ ρB
i + ρT

i + ϕij

(5.3)

Travel times Tijmr are calculated with Eqn. 5.4 that is the sum of travel
times within each region along each route r. Here, Vkm is the journey speed
of mode m in sub-region k, θijkmrdijmr equals the trip distance in region k.
For buses, the travel time contains the in-vehicle time including dwelling
behavior.

Tijmr = ∑
k

θijkmr
dijmr

Vkm
(5.4)

We derive the journey speeds from the 3D-MFD (Geroliminis et al., 2014;
Loder et al., 2019). The 3D-MFD links the current accumulation of cars,
Ak,car, and buses, Ak,bus, to the average speed of mode m in region k as for-
mulated by Eqn. 5.5. The shape of the 3D-MFD results from the features
and topology of the road and bus networks. Consequently, when chang-
ing the network design variables of the 3D-MFD-NDP, the 3D-MFD will
change and thus affect the speeds in the network.

Vkm = 3D-MFDkm (Ak,car, Ak,bus) (5.5)

In our traffic assignment model, we cannot use Edie’s (1963) definition
to calculate the accumulation or density of vehicles as there is no distinct
time interval. Therefore, we calculate each modes’ vehicle accumulation
differently. For the accumulation of cars, Ak,car, we assume a vehicle occu-
pancy of one passenger and obtain the accumulation by Eqn. 5.6, where
θijk,car,r is the fraction of trip length of that particular route going through
region k.

Ak,car = ∑
ijr

θijk,car,r Nij,car,r (5.6)

We derive the accumulation of buses, Ak,bus, from the structure and de-
sign of the bus network (adopted from Daganzo (2010)) as given by Eqn.
5.7. Here, αk is an exogenous parameter describing the design of the bus
network in each region for which 0 < αk ≤ 1 holds. Close to its lower
bound, αk describes a hub-and-spoke network, while at its upper bound
it describes a grid network. Values in between are hybrid networks where



5.3 mathematical problem formulation 113

one can see αk as the fraction of network exhibiting a grid network. As in
many cities bus lines are partially overlapping, we introduce zk that quan-
tifies how many bus lanes are overlapping on the bus infrastructure Bk. In
case no bus lines are overlapping, zk = 1, if two bus lines are overlapping
on the entire network, then zk = 2 and so on. Last, Vc,bus is the design
commercial speed of buses in the network.

Ak,bus = zk
2Bk
Hk

3α− α2

1 + α2 /Vc,bus (5.7)

Lastly, Eqn. 5.8 then provides the conservation of passenger flows for
each origin and destination pair. Mij is the associated complementary vari-
able. Importantly, as we are formulating the 3D-MFD-NDP based on re-
gional paths, there is no requirement to explicitly model the in- and out-
flows at each node as in a link based assignment.

nij −∑
mr

Nijmr = 0 ⊥ Mij ≥ 0 (5.8)

5.3.1 Physical system (capacity) constraints

The static traffic assignment model has a set of four inequalities that de-
scribe the physical constraints of the system and which have associated
shadow price variables that factor into the path costs. The first constraint
describes the parking supply in each zone as given by Eqn. 5.9. Here, Pj
is the parking supply in zone j, an exogenous parameter. Consequently,
the total arrival car passenger flow cannot exceed the parking supply. If
the parking demand exceeds the parking supply, then a non-zero shadow
price, ρP

j , will ensure that the number of arriving cars is restricted to the
parking supply.

Pj −∑
ir

Nij,car,r ≥ 0 ⊥ ρP
j ≥ 0 (5.9)

The second and third inequality captures the model’s property that all
departing trips of a zone of a certain mode must not exceed the availability
of mobility tools in that zone. In other words, the number of car trips start-
ing in i cannot be greater than the number of available cars in i as given
by Eqn. 5.10. Similarly, the number of outbound bus passenger trips can-
not exceed the number of public transport season-tickets, or in brief abos1,

1 Abbreviation of the German word Abonnement.
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in that zone as formulated in Eqn. 5.11. In these equations, Qijt describe
the shares of mobility tool ownership, where the elements of set t are hav-
ing only a car, an abo or having both. The calculation of Qijt is discussed
along with Eqn. 5.15. When the inequality becomes binding, the respective
shadow prices ρC

i and ρT
i become non-zero.

∑
j

(
Qij,car + Qij,both

)
nij −∑

jr
Nij,car,r ≥ 0 ⊥ ρC

i ≥ 0 (5.10)

∑
j

(
Qij,abo + Qij,both

)
nij −∑

jr
Nij,bus,r ≥ 0 ⊥ ρT

i ≥ 0 (5.11)

The fourth inequality describes that the passenger capacity of the bus
system is limited to a total passenger accumulation of Zk as formulated in
Eqn. 5.12. The total bus passenger flows have to be always less or equal
to that capacity. When supply equals demand, public transport users ex-
perience additional waiting time ρB

k in their departing zone as all arriving
buses are full.

Zk −∑
ijr

θijk,bus,r Nij,bus,r ≥ 0 ⊥ ρB
k ≥ 0 (5.12)

The total bus passenger capacity in a region Zk results from the accumu-
lation of buses in each region according to Eqn. 5.13. Note that overline
variables denote observed calibration values.

Zk = Zk
Ak,bus

Ak,bus
(5.13)

5.3.2 Mobility tool ownership constraints

The shares of mobility tool ownership Qijt change with the prices of the
chosen portfolio t, πtotal

ijt , in a two stage logit-based choice. In this choice en-
vironment, individuals have three mobility tool portfolio options to choose
from: only a car, only an abo (recall that this is a public transport season-
ticket), or both. This simplifies the complexity of choices for mobility tools
typically available to individuals, as shown, for example, in Switzerland
(Becker et al., 2017c; Loder and Axhausen, 2018). Note that for readability
we omit the set indices ij for Q and π in the following two equations.

We define the utility functions for the logit model as given in Eqn. 5.14.
The alternative specific constant (ASC) is related to the calibrated market
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share Qijt. Utility changes with changes relative to the calibration prices
with scale parameter µM that captures the price elasticity of mobility tool
ownership. Eqn. 5.15 then presents the two-stage logit-based model to ob-
tain the shares of mobility tool ownership. The first stage determines the
shares of having both or not both mobility tools (car and abo), while the
second stage determines the shares between car and abo owners along
those not having both mobility tools. Note that the formulation of a logit
model ensures that the shares always add up to one.

uboth = log
(
Qboth

)
+
(

πtotal
both/πtotal

both − 1
)

/µM

unot both = log
(
1−Qboth

)
ucar = log

(
Qcar

)
+
(

πtotal
car /πtotal

car − 1
)

/µM

uabo = log
(
Qabo

)
+
(

πtotal
abo /πtotal

abo − 1
)

/µM

(5.14)

Qboth =
exp (uboth)

exp (uboth) + exp (unot both)

Qcar = (1−Qboth)
exp (ucar)

exp (uabo) + exp (ucar)

Qabo = (1−Qboth)
exp (uabo)

exp (uabo) + exp (ucar)

(5.15)

The average price πtotal
ijt or total cost of ownership for mobility tool port-

folio t between i and j is calculated with Eqn. 5.16. Here, Fijtm gives the
fraction of using mode m with mobility tool set t (defined below in Eqn.
5.17) and the last term in parentheses gives simply the average trip dis-
tance. Recall that the fix costs or price per mode m with mobility tool
portfolio t is πfix

t , while the variable and distance-depending prices for
mode m and mobility tool portfolio t is πvar

tm . For simplicity in this analy-
sis, we do not distinguish between different price or cost components and
subsume all taxes, fares etc. under the term costs. Further, for cars we do
not account for the variable operating costs (as we do not study agents’
income), but only the fixed costs, e.g. car registration and fees for parking
at the destination.

πtotal
ijt = πfix

t + ∑
m

πvar
tm Fijtm

(
∑

r

dijmr

|R|

)
(5.16)
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The fraction Fijtm using mode m with mobility tool set t is defined ac-
cording to Eqn. 5.17. Itm is an indicator function that equals one if t =
abo & m = bus or t = car & m = car, and equals zero otherwise.
In other words, when owning only either an abo or a car, only the respec-
tive mode can be used, i.e. Fijtm ≡ 1, and the other mode cannot be used,
i.e. Fijtm ≡ 0. Only when having both mobility tools, Fijtm can be different
from zero or one as shown in Eqn. 5.17. Then, Fijtm is simply the number
of mode m agents over all agents for each origin-destination pair having
both mobility tools.

Fijtm =


∑r Nijmr − nij ∑t′ It′mQijt′

Qijt nij
, if t = both

Itm, otherwise

(5.17)

5.4 future model extensions

The introduced 3D-MFD network assignment is static, while the MFD itself
is suitable for modeling the dynamics of macroscopic congestion (Mariotte
et al., 2017) and first approaches to the dynamic assignment have already
been proposed for multi-regional models (Laval et al., 2018; Yildirimoglu
and Geroliminis, 2014). However, the literature just started to explore how
to model dynamic regional models with stochasticity in the path lengths
due to detours and the resulting distribution of speeds (e.g. Batista and
Leclercq, 2018a,b).

In this regard, we have assumed that the number of regional paths or
routes r is a priori known and their length determined as well as that all
alternatives are available in the choice model. However, as in other models
of this kind, the generation of suitable regional paths based on available
shortest paths - and their variability - is something to be considered in
further model expansions.

Certainly, the modeling framework with the constraints of mobility tool
ownership and including the prices in this choice is a different approach to
existing models where usually the full paths costs are used. Alternatively,
the mobility tool ownership model can be ignored if all prices are included
in the actual path costs Cijmr, but then the effects of having both mobility
tools available cannot be reflected anymore.

Last, in larger metropolises, typically larger elevated and underground
networks such as motorways and subways exist that operate segregated
from other transport modes. As these modes consequently do not physi-
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cally interact with cars and buses, they do not require a representation in
the 3D-MFD. However, the 3D-MFD network assignment can be extended
to accommodate trips that partially use elevated or underground networks.
The key idea is to define alternative routes, where a fraction of dijmr is not
assigned to a zone with a 3D-MFD, but the flow of passengers is assigned
in a conventional procedure to the elevated or underground networks,
where the delays are returned and added to the travel times. For public
transport services, transfer and walking times have to be included as well.

5.5 model calibration

The present model requires calibration in order to represent an observed
equilibrium. For this, we require the following reference information.

1. Origin and destination matrix, nij.

2. Network topology for bus and road networks.

3. Speeds Vkm and accumulations Akm, as well as regional public trans-
port capacity Zk.

4. Mode shares between i and j.

5. Mobility tool ownership levels, Qijt, and price levels, πtotal
ijt .

6. behavioral choice parameters µR and µM.

In the following, we discuss each of these calibration steps. At first, the
reference number of agents between i and j, nij is important in the node
balance as formulated in 5.8. There are various ways of obtaining theses
matrices from a variety of data sources with methods well documented
in literature (e.g. Willumsen, 1978; Friedrich et al., 2010). Therefore, we
consider here that nij is given and can be aggregated to the regional node
model as introduced in Section 5.2.

Second, the 3D-MFDs - as mathematically formulated in Section 4.4.2
- need to be estimated based on the topology of road and bus networks
as well as the operational features. Here, the present zoning as used in
the regional model together with the spatial information from, e.g., Open-
StreetMap, can be used to calculate all required parameters from Table B.4.
For the operational features, time-table information as well as measure-
ments from traffic signals need either to be measured or obtained from
private communication, e.g. with the city’s traffic engineers.
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Third, for the benchmark equilibrium we require observed vehicle accu-
mulation of both modes as well as speeds to obtain the travel times during
the morning peak. The MFD analyst needs to investigate at which time in-
stant - on average - the network is loaded most so that the average network
loading and travel time from that time period is used for the calibration.
For cars, the space mean speed at peak hour can be obtained from float-
ing car data. We propose to estimate in each region the space mean speed
along several shortest paths and then take the weighted mean thereof. For
public transport, this data can be readily provided by the agency as they
usually record trajectories or past arrival and departure times of all vehi-
cles (see Loder et al. (2017) for further details). The regional public trans-
port capacity Zk can be calibrated in the benchmark equilibrium by either
multiplying the number of vehicles in each region by an approximation
of the passenger capacity of each vehicle. A robustness check in the cali-
brated model is then to check whether the final passenger flows are below
or equal to the calibrated passenger numbers. If the gap between both fig-
ures is too wide, the analyst should then calibrate the model to a capacity
that is tighter to the observed flows than to an estimated total passenger
capacity. Importantly, one can expect that the road network is not fully
utilized, e.g. at intersections etc, and consequently we need to scale the
network length to the observed speeds and flows in the MFD to account
for the inefficiency in the use of infrastructure.

Fourth, each origin and destination pair has in addition to observed
travel times a variety of unobserved factors that influence mode choice.
These factors are summarized in ϕij as introduced in Eqn. 5.3. Here, we
propose to use observed mode shares for each origin and destination pair
or in the accumulation in each region to calibrate the cost functions with
a non-linear program by finding the optimal ϕij values that result in the
observed outcomes using the idea by van Nieuwkoop (2014).

Fifth, as we propose to model changes in mobility tool ownership around
the benchmark as a function of prices as formulated in Eqn. 5.15, we need
to identify Qijt. This can be done with using data from a travel behav-
ior survey, either for origin and destination pairs or if that is not possible
only for the trip originating zone. If that kind of data is not accessible, the
shares of car ownership from a census could be used to approximate the
shares. We also need to calibrate the benchmark price levels as defined in
Eqn. 5.16 with fixed and variable components. Both components should be
provided on a daily basis as all monetary flows here are referenced on a
per day basis.
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Last, we need to calibrate the behavioral parameters or choice elastici-
ties, namely the price elasticity of mobility tool ownership µM as well the
scale parameter for the combined route and mode choice model µR. While
the price elasticity µM can be typically obtained from stated preference ex-
periments or similar panel surveys for single elements of costs, e.g. fuel or
fares (e.g. Goodwin, 1992; Litman, 2012). As we consider the full costs Pijt

we have to define a composite elasticity. Regarding the scale parameter µR,
additional information regarding the perception of route costs is required,
e.g. from experiments or surveys. If this is not available, we propose to fix
the value to unity or any other reasonable number.

5.6 summary

This chapter introduced a static traffic assignment problem for a multi-
region 3D-MFD model with a stochastic user equilibrium and explicit mo-
bility tool ownership model in mixed complementarity problem formula-
tion. The simplicity of the model formulation allows fast computation and
thus integration in applications as the following two chapters will show.
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6
O P T I M A L I N F R A S T R U C T U R E I N C I T I E S

In theory, the most recent computer models can
predict almost anything on a multimodal
transportation network in minute detail, but not in
practice.

— Daganzo (2007)

For cities to provide optimal mobility, infrastructure investment and pric-
ing choices are difficult. This is not only because of high costs or strong
public opposition, but also but also because population and income growth
as well as changes in preferences will inevitable change the expected de-
mand patterns and desired outcomes. Although it might be intuitive to ar-
gue that we most likely have too many cars in our cities, and we know that
we can reduce with collective efforts our car dependence (Newman and
Kenworthy, 1991; Buehler et al., 2016), it is unclear by how much we need
to change. Consequently, urban and transport planners not only require
guidance to understand how their infrastructure investments and pricing
policies affect travel behavior, but also to derive optimal investment and
pricing strategies to “enhance social wellbeing - the social side of life that is all
too often ignored” (Fisk, 2000) or increase productivity of cities.

The geometric approach to estimate the 3D-MFD from Section 4.4.2 and
the 3D-MFD network assignment presented in Chapter 5 provide an op-
portunity to investigate the question of which infrastructure and pricing
decisions improve mobility (or productivity) at urban scale. Such macro-
scopic perspectives help to understand global mechanisms that explain
why cities exist (Bettencourt, 2013), but they do not provide information
on where to exactly build a road or place a bus stop. Thus, to analyze
the question of optimal infrastructure and prices for a city we formulate
in this chapter the 3D-MFD network design problem (3D-MFD-NDP) as a
mathematical problem with equilibrium constraints.

We organize this chapter as follows. In Section 6.1, we first review the
ideas of road network and bus network design problem, respectively. Sec-
ond, in Section 6.2 we then provide the mathematical formulation of the
3D-MFD-NDP. Third, in Section 6.3 we apply the 3D-MFD-NDP to the city
of Zürich to illustrate the mechanisms of the model.
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6.1 background

The 3D-MFD-NDP originates - as emphasized by its name - from the MFD
and its multimodal extension to the 3D-MFD, but also from the classic
(continuous) network design problem and the bus network design prob-
lem. The question of optimal network design for a city, i.e. given distribu-
tion of demand, is a key question in urban and transport planning. Conse-
quently, it has been intensively studied. Thus, for in-depth reviews on the
network design problems we refer to Boyce (1984), Magnanti and Wong
(1984), Friesz (1985), Migdalas (1995), Yang and Bell (1998), Guihaire and
Hao (2008), Kepaptsoglou and Karlaftis (2009) and Farahani et al. (2013).
In this section, we then concentrate on the main ideas and definitions of
the road network design problem in Section 6.1.1 and the transit network
design problem in Section 6.1.2.

6.1.1 Road networks

The common network design problem (NDP) has the objective of finding
the optimal network configuration for a given (elastic) demand, where the
objective function is typically related to maximize social welfare or mini-
mize total travel time (Yang and Bell, 1998). In literature, three different
groups for the NDP have been established: the discrete-NDP, e.g. adding
single links to the network, the continuous-NDP, e.g. capacity improve-
ments to existing infrastructure (e.g. Adbulaal and LeBlanc, 1979; Marcotte,
1986), then obviously, also a mixed NDP, combining discrete and continu-
ous ideas, can be applied as well.

In non-heuristic approaches, the NDP typically encompasses a bi-level
optimization problem. At the lower level, given demand is assigned to
the network, which physical characteristics are subject to the upper level
investment and management decisions that satisfy the objective of the net-
work design problem. Consequently, there are two sets of constraints to
the system. The first set of constraints limits the solution space to all (phys-
ically) feasible solutions of the system. The second set of constraints is the
lower level as only solutions that satisfy these constraints can be consid-
ered for the upper level optimization (Yang and Bell, 1998).
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6.1.2 Transit networks

For the optimal design of transit networks, Ceder and Wilson (1986) pro-
pose three levels: (i) strategic planning in terms of network design, (i) tac-
tical planning, e.g. frequency setting, and (ii) operational planning, e.g. ve-
hicle scheduling. The question of optimal transit networks started with
heuristic methods (e.g. Patz, 1925; Sonntag, 1977). Later, mathematical
problems were defined to identify optimal network and frequency config-
urations (e.g. Salzborn, 1972; Schéele, 1980). The recent literature reviews
by Guihaire and Hao (2008) and Ibarra-Rojas et al. (2015) provide a com-
prehensive overview on all three mentioned levels of the transit network
design problems. A common strategy to improve bus services is the pro-
vision of dedicated bus lanes such as cars and buses encounter less con-
flicts. Consequently, the identification of optimal allocation of dedicated
bus lanes is a further relevant dimension to improve mobility (e.g. Hadas
and Ceder, 2018; Yu et al., 2015; Zhang et al., 2018; Dantsuji et al., 2017;
Zheng et al., 2017).

Recently, the 3D-MFD also has already been used for discussing the
optimal design of transit networks, the space distribution among both
modes and the placement of dedicated bus lanes (e.g. Amirgholy et al.,
2017; Zheng et al., 2017; Zheng and Geroliminis, 2013; Zhang et al., 2018;
Dantsuji et al., 2017). However, neither of the 3D-MFD approaches obtained
the shape of the 3D-MFD directly, i.e. endogenously, from road and bus
network topology, but obtained its shape exogenously from running simu-
lations.

6.2 the 3d-mfd network design problem

In this 3D-MFD-NDP, we are looking for a network configuration and mo-
bility pricing strategy that minimizes total system cost, subject to the con-
straints that the existing demand is assigned to the network, that mone-
tary expenditures for infrastructure equal revenue, and that the system’s
physical constraints are satisfied. Consequently, we formulate the 3D-MFD
network design problem as a mathematical program with equilibrium con-
straints (MPEC) (Luo et al., 1996), because the upper level objective is to
minimize total travel time costs and subsidy in the network and the lower
level objective is a multimodal user equilibrium traffic assignment (see Ap-
pendix D.3 for details). The design (free) variables of the 3D-MFD-NDP
are (i) network length L, (ii) share of dedicated bus lanes ηb, (iii) the bus
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service frequency or headway H, (iv) the fixed price of mobility tools πfix,
i.e for the car or public transport season-ticket, (v) the variable costs per
unit distance πvar, (vi) and the system’s (public) transport subsidy S.

The mathematical formulation of the 3D-MFD-NDP uses Eqns. 5.5 - 5.8
from Chapter 5 for the traffic assignment, but requires the definition of
the upper level objective function (Section 6.2.1) and of further economic
constraints (Section 6.2.2). With these functions, the mathematical problem
is formulated in Section 6.2.3.

6.2.1 Objective function

The upper level objective y of the 3D-MFD-NDP is defined in Eqn. 6.1.
Here, the first part is the total travel time of all passengers. The second
part of the objective function equals to the total system subsidy S that is
used to fund the city’s mobility assets: road infrastructure and buses. To
value both parts with the same units, we transform travel time to monetary
terms using the city’s value of time VOT.

y = VOT ∑
ijmr

NijmrTijmr + S (6.1)

The costs for mode use will be accounted for in the income balance in
Section 6.2.2. They are not accounted for in Eqn. 6.1 for two main reasons.
First, they have to be paid by agents anyway to cover the infrastructure
expenses and thus only the subsidy matters. Second, this model does not
include a mechanism for the agents to generate income to reflect their
trade-offs in time and money.

6.2.2 Economic constraints

The constraints introduced in this section restrict solutions to the 3D-MFD-
NDP where the revenue from mobility (ownership πfix

t and use πvar
tm ) and

the subsidy S equals the operational costs O for the city’s mobility assets.
This operational costs O for the city’s mobility assets, i.e. the costs for the
provision of roads and bus operations, are calculated with Eqn. 6.2. Here,
croad

k and cbus
k are the unit prices for the provision of infrastructure and

buses, respectively. Consequently, the totals then depend on the size of the
network Lk and number of buses Ak,bus.
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O = ∑
k

cbus
k Ak,bus + croad

k Lk (6.2)

Then, the income balance of costs, revenue and subsidy is mathemati-
cally expressed in Eqn. 6.3, where Qijt corresponds to the shares of mobility
tool ownership for that particular origin-destination pair (see derivation in
Section 5.3.2). Here, we assume that the total revenue counts towards the
available budget for infrastructure spending, although in reality this is too
simplistic as public funding and budgets are usually more complex (see
our discussion in the calibration of the model in Section 6.3.1).

∑
ijt

πfix
t nijQijt + ∑

ijmr
πvar

tm Nijmrdijmr + S = O (6.3)

The costs for buses cbus
k and roads croad

k can be subject to (dis-) economies
of scale. Therefore, we account for this by the formulations for both costs
in Eqn. 6.4 and 6.5, respectively. The cost functions are calibrated to market
values that are indicated by an overline to the cost function’s elasticity ε.
In case ε = 0, the costs are constant, while for ε > 0 diseconomies of scale,
and for ε < 0 economies of scale result.

croad
k (Lk) = croad

k exp
(

εroad log
(

Lk/Lk
))

(6.4)

cbus
k (Abus,k) = cbus

k exp
(

εbus log
(

Abus,k/Abus,k
))

(6.5)

6.2.3 Mathematical problem formulation

The objective function y in Eqn. 6.1, the traffic assignment defined in Eqns.
5.5 - 5.8 and the economic constraints defined in Eqns. 6.2-6.5 allow to
formulate the 3D-MFD-NDP as formulated in Eqn. 6.6: The 3D-MFD-NDP
is looking for the solution of the network design and pricing variables
that reduces the total system costs (travel time and subsidy), subject to the
constraints that the existing demand is assigned to the network, that the
physical capacity constraints are satisfied and that monetary expenditures
equal revenue.
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minimize y

subject to (5.1) - (5.8) solving MCP

and (5.9) - (5.13) solving capacity constraints

and (5.15) - (5.17) solving ownership constraints

and (6.2) - (6.5) solving economic constraints

(6.6)

The model formulation in Eqn. 6.6 provides an opportunity to under-
stand the interaction of multimodal vehicle physics and behavioral re-
sponse.

6.3 application to greater zürich

6.3.1 Calibration

The 3D-MFD-NDP requires calibration to an observed point, not only be-
cause of Qijt, πtotal

ijt , and ϕij, but also because to provide meaningful start-
ing values and to determine a meaningful solution space.

In this paper, we calibrate the 3D-MFD-NDP to the morning commute
in the greater region of Zürich, Switzerland. Figure 6.1 shows the extent of
the case study area. We partition the network into two regions: Zones 1-12

denote the city where the commuters live and work and zones 101-111 are
zones where commuters live and have to commute into the city, i.e. zones
1-12 to work. We investigate pricing effects for all commuters, i.e. living
in all zones, but investigate investment effects only to the infrastructure
in the city, i.e. zones 1-12. In this model, zones 1-12 each exhibit a 3D-
MFD as formulated by Loder et al. (2019) to obtain the speeds as given
in Eqn. 5.5. The speeds for zones 101-111 are considered to be fixed, i.e.
independent of demand. The zones 101-111 are added to the model to
capture the influence of suburban commuting into the city.

For the origin and destination matrix nij we use the commuting matrix
of a synthetic Swiss population for the agent-based simulation MATSim
(Bösch et al., 2016). We re-scale the total arrivals in each of the twelve in-
ner zones of MATSim’s commuter matrix to correspond to the work place
totals used by the national transport model (NPVM).

We obtained spatial information on the regional paths for both modes
from the Google directions API: For each origin and destination pair, we
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Figure 6.1: Zonal system for the case study.
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requested the shortest route including alternative routes without using the
motorway and calculated θijkmr thereof. We calibrated the 3D-MFD speed
functions based on OpenStreetMap data and measurements based on the
data used by Loder et al. (2017). From the 2015 Swiss travel survey we ob-
tained the mode shares of outbound trips of each region (Swiss Federal
Statistical Office and Swiss Federal Office for Spatial Development, 2017).
With all this information, we solved for each origin and destination pair
a nonlinear programming problem minimizing the squared difference be-
tween the observed mode share and resulting mode choice from Eqn. 5.8
to calculate ϕij of the path costs.

For Zürich, we consider the following mobility tool portfolio and pricing
situation: When having a car, commuters face fix costs as well as variable
costs per unit distance. When having a bus season-ticket (or as defined
here “abo”), commuters face only fix costs, but no variable costs. In other
words, it is not possible to purchase single ride or distance-dependent bus
tickets. This situation reflects the situation in Switzerland where most pub-
lic transport commuters own a season-ticket. When having both mobility
tools, commuters have to pay the costs of both single mobility tools. We
obtain from the 2015 Swiss travel survey the shares of mobility tool own-
ership Qijt based on all commuters living in the case study zones. Note
that we assign all commuters without a car or abo (season-ticket) to the
abo category. For most origin-destination pairs, this share was less than
ten percent of the total origin-destination demand.

In Table 6.1, we summarize the economic and behavioral parameters
used for the model and its benchmark. Note that in solving the 3D-MFD-
NDP MPEC, we will solve it once with economies of scale of investment
in roads and buses as well as assuming no economies of scale. We further
comment in Table 6.1 on where or how the values are obtained.

In Table 6.2 we summarize the benchmark model’s most relevant perfor-
mance indicators. For the situation in Zürich as shown in Figure 6.1 it is
important to explain how the mobility tool revenue relates to the public
budget. We define for inbound commuters that they only pay a fraction of
their mobility tool expenses to the city’s transport budget. The fraction is
determined by the fraction of their trip length in the city. We further define
that 60 % of the ticket revenue goes to the budget, while we consider the
remaining part is going to the railway operators (not considered in this
analysis) and to the cantonal transport agency. Similarly, we assume for
the car that only 25 % of the revenue is directed to the city’s budget, while
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Parameter or observed value Unit Value

cbus (CHF/day bus) 3100
1

croad (CHF/day km) 1900
2

εbus (-) {0;−0.2}7

εroad (-) {0; 0.2}
πfix

abo (CHF/day) 3
3

πvar
abo (CHF/km) 0

4

πfix
car (CHF/day) 5

5

πvar
car (CHF/km) 0.16

µR (-) 10

µM (-) -0.59

VOT (CHF/h) 25
8

1 Zürich’s VBZ has annual expenditures of 600 million CHF for their operation of 470 vehicles in 2016.
2 Swiss average of annual expenditures of cities https://opendata.swiss/de/dataset/
statistik-der-schweizer-stadte-strassenrechnung

3 Costs for annual ZVV pass (season-ticket) for three zones approx CHF 1200, divided by 365 working days.
4 Set to zero as we focus on the option of season-tickets.
5 Assuming fix annual taxes, fees etc. of CHF 800, and annual parking costs of CHF 1.200, in total CHF 2.000,

divided by 365 working days.
6 For urban traffic, assuming 8 litre per 100km, a fuel price of CHF 1.30 per litre.
7 Bösch et al. (2017) reported average discounts of 20 % for fleet operators.
8 Estimated by Schmid (2019).
9 Average fuel price elasticity estimated by Erath and Axhausen (2010).

Table 6.1: Price and cost information for the calibrated 3D-MFD-NDP.

https://opendata.swiss/de/dataset/statistik-der-schweizer-stadte-strassenrechnung
https://opendata.swiss/de/dataset/statistik-der-schweizer-stadte-strassenrechnung
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Observed value Unit Value

∑ L (km) 1400
1

∑ Abus (bus) 1040
2

H (h) 0.125

S (CHF/day) 48’000
3

Share of car trips (-) 0.33
4

Qcar (-) 0.18

Qboth (-) 0.35

Qabo (-) 0.47

1 Includes the city’s and the canton’s road network, the infrastructure of public transport and
the space on the high capacity roads. The calibration of the 3D-MFD to observed speeds, L is
overestimated by around 200 km.

2 This vehicle number is twice as much as the bus operator owns, but this results from the prob-
lem that we cut bus routes at the zones from Figure 6.1 and consequently count vehicles several
times.

3 Calculated as the difference between infrastructure costs and revenue from mobility tools.
4 Calculated based on travel kilometers.

Table 6.2: Transport network calibration values for the 3D-MFD-NDP.

the remaining revenue goes to private companies (e.g. petrol stations) and
other tax purposes (e.g. the CO2 tax).

Lastly, we have to calibrate or define meaningful upper and lower bounds
for all design variables. Arguably, the model is calibrated to the current
situation and solutions far off this situation, e.g. building twice as many
roads, are physically not feasible. Therefore, we allow only for changes in
the length of the road network of ±10 % of its length. We further limit the
length of dedicated bus infrastructure to 90 % of the actual network length
of buses because some interactions with cars, e.g. at intersections are un-
avoidable. For the prices, we set the following upper values πfix

abo = 20
(CHF / day), πfix

car = 50 (CHF / day), and πvar
car = 0.1 (CHF / km). We

further bound the number of bus services with a headway between 1 and
12 minutes.
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6.3.2 Results

In this section, we solve the MPEC for the 3D-MFD-NDP to illustrate feasi-
bility of the model. We investigate the optimal system configuration and its
costs compared to the calibration point, introduced in the previous section.

In this scenario analysis, we set all design variables, i.e. network length,
dedicated bus lanes, bus frequency, fixed costs for car and bus season-
ticket (the abo option), variable car costs as well as the subsidy) as free
variables. In Figure 6.2a we show the relative changes of the design vari-
ables compared to the calibration point and in Figure 6.2b several global
indicators of the total system performance. In general, we find that having
constant prices and economies of scale leads to a similar response pattern
with only small differences between both cases. However, the existence of
scale economies lead to a larger reduction in travel time.

In Figure 6.2a we find that costs for the car increase sharply, so are the
costs for the season-tickets. These increases compensate for the subsidy
reduction to its lower bound, but also to shift demand from cars to the bus
system as seen in the changed shares of mobility tool ownership as seen
in Figure 6.2b. The substantial increase for the variable car costs can also
been seen as congestion pricing. For the bus system, the optimal solution
suggests to increase the share of dedicated bus lanes as well as the bus
frequency. In presence of scale economies, both effects are strengthened.
Notably, the total network length experiences almost no changes, but as the
share of dedicated bus lanes is increasing, less space for cars is available.
The subsidy is in both scenarios driven to its lower bound because this
variable can be reduced without consequence of any other budget at the
expense of higher prices for mobility tools. However, note that in reality the
subsidy is paid by the overall public budget with results from tax revenue
paid by agents, but this loop is omitted in the 3D-MFD-NDP.

The consequences of the optimal solution are savings in travel time of
almost 20 % in presence of scale economies, a more than 70 % reduction
in car kilometers travelled, and increased costs for the mobility assets
(road infrastructure and the operations of buses) and user costs. With scale
economies present, the cost increase is intuitively smaller.

Lastly, to illustrate the system changes on the shape of the 3D-MFD we
plot the calibrated and resulting 3D-MFD for zone 1 (see Figure 6.1) in
Figure 6.3. It can be clearly seen that the reduction of 15 % in road infras-
tructure decreased the total capacity of the zone’s road network. Further,
we find that separating both modes in the 3D-MFD-NDP solution reduces
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the impact of production losses due to cross-modal interactions, especially
in the congested branch.

6.4 summary

The 3D-MFD-NDP provides cities a macroscopic tool to study how they
can improve the performance of their multimodal transportation system
by changing prices and infrastructure. Although macroscopic, this model
generates fast intuitive insights into which strategies for improving mobil-
ity should be formulated. Further, the 3D-MFD-NDP is a starting point for
identifying the solution space for microscopic road or bus network design
problems. The results from the application to Greater Zürich emphasize
that a substantial improvement in the overall system performance can only
be achieved by adapting car costs, not necessarily public transport costs.

This model can be improved at various instances. For example, the model
currently assumes that road infrastructure and public transport vehicles
can easily be substituted, which is not the case in cities. Consequently,
revising the the model with a suitable elasticity of substitution can im-
prove the model’s ability to obtain policy relevant implications. Further,
the model does not address the question of optimal bus network design.
Here, Daganzo’s 2010 model would be a starting point to include this ques-
tion in the presented 3D-MFD-NDP framework.
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Figure 6.2: Solution to the 3D-MFD-NDP with all design variables as free vari-
ables. (a) shows the changes of the design variables relative to the
calibration point. (b) shows the changes of the system response rela-
tive to the calibration point.
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As impressive as the role of cities in generating new
innovations may be, the primary informational role of
cities may not be in creating cutting edge technologies,
but rather in creating learning opportunities for
everyday people.

— Glaeser (1999)

The last step of this thesis is then to analyze how infrastructure invest-
ments and pricing strategies affect behavioral choices in a wider-economic
context. In this context, it is important to consider that the movement
of people to activities is not evenly distributed across space, but concen-
trated to urban centers. Such concentrations result from agglomeration
(see Section 2.2.1) and dispersion forces and their understanding has impli-
cations for urban policy making and economic development as appropri-
ate land-use policies provide opportunities to increase inhabitants’ welfare
(Ahlfeldt et al., 2015; Allen and Arkolakis, 2019).

Recalling on the system perspective in Figure 1.1a, cities may wish not
only to improve mobility for everyone, but also to improve the agglom-
eration process to realize productivity gains. However, appropriate policy
making requires an understanding of the interaction of the physics of mul-
timodal congestion and the agglomeration forces because all larger cities
rely not only on cars to transport people.

Not only has agglomeration been well understood and studied (e.g., Du-
ranton and Puga, 2004; Rosenthal and Strange, 2001, 2004; Ciccone, 2002;
Melo et al., 2009, 2017; Redding and Sturm, 2008; Ahlfeldt et al., 2015), but
also the interaction between congestion and agglomeration (e.g., Solow,
1972; Anas and Kim, 1996; Wheaton, 1998; Tabuchi, 1998; Anas and Xu,
1999; Wheaton, 2004; Arnott, 2007; Brinkman, 2016; Zhang and Kockelman,
2016; Graham, 2007b). However, as Chatman and Noland (2011) summa-
rized “There is little discussion of public transport.” So far, accounting for
physical multimodal interactions in congestion or the operational features
of public transport in economic models has been a rather complex and
difficult task, as it usually requires extensive amounts of data and sepa-
rate microscopic simulations. However, advances in research on the multi-

135
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modal macroscopic fundamental diagram (MFD) by Daganzo (2007), Da-
ganzo and Geroliminis (2008), Geroliminis and Daganzo (2008), Gerolimi-
nis et al. (2014) and in Chapter 4 of this thesis provide the first opportunity
to account for physical multimodal interactions simultaneously within eco-
nomic models without iterative model linking or simplistic assumptions.
The MFD is an empirical framework that treats urban road networks as a
system or a factory that produces trips, and where the system’s internal
function explicitly accounts for network topology and traffic operations,
e.g., signals and buses.

This chapter provides a quantitative urban spatial equilibrium model
with simple urban structure that incorporates agglomeration following Ven-
ables (2007) and the multimodal MFD framework to describe endogenously
multimodal congestion and the effects of transport policies on congestion
and productivity. In this model of a closed economy without external trade
and urban growth, commuters choose where to live and work, their port-
folio of mobility tools (car and/or bus season ticket) and their preferred
mode of transport (car or bus). We use a measure of accessibility to eco-
nomic mass based on Hansen (1959) as the link between changes in the
transportation system and productivity. The model simultaneously solves
for an economic and traffic equilibrium following exogenous changes in
the prices for mobility tools or the stock of public infrastructure. Here,
we illustrate the model’s applicability for the greater Zürich metropolitan
area, where we investigate the effects of changes to the attractiveness of
the public transport system by varying ticket and car costs. We find that
improvements to economic output and wages in Zürich are realized by in-
creasing the costs for cars and not by changing public transport pricing,
while improvements also result from bus frequency improvements and
more dedicated bus lanes.

This chapter is organized as follows. Section 7.1 introduces the economic
equilibrium model and Section 7.2.2 the illustrates the applicability of the
model for the greater Zürich metropolitan area.

7.1 the model

The integrated model combines a spatially disaggregated economic equi-
librium model of housing and labour markets with a transport equilibrium
model of an urban network that includes mode (car and public transport
for season ticket holders) and route choice.1 In this integrated model we

1 An early iteration of this type of model is found in Schreiber et al. (2016).



7.1 the model 137

divide the city into several zones which can be thought of as neighbour-
hoods, whereby we use the terms “zones” and “nodes” interchangeably.
The model is calibrated to reflect reference morning and evening commute
times, as we want to investigate the effects of agglomeration on wages and
productivity. All travellers in the network move from their home location
to their work location. We denote the home location by subscript i and
the work location by subscript j. All zones that a representative traveller
must pass through from i to j are denoted by subscript k. Further, as real
cities usually have a substantial number of inbound commuters from the
hinterland, we account for this by adding zones around the city without
economic activity, i.e., without workplaces, which are strictly residential
areas with a fixed population.

The economic model is composed of profit-maximizing, zone-specific ag-
gregate production sectors all producing a homogeneous good, and utility-
maximizing representative agents, denominated by where they live and
work. This component of the model follows the Walrasian-Arrow-Debreu
paradigm and is expressed in Harberger units. Representative agents (RAij)
living in zone i provide labour to productive activities in zone j. Agents
must choose where to live and work based on wages, housing prices and
commuting times. Agents also choose their mobility tool portfolio t based
on exogenous price levels. They further choose commuting modes and
routes based on travel times that are endogenously computed in the trans-
port equilibrium model. Following traditional urban economic models, a
representative absentee landlord LL owns the capital and housing stocks in
all zones and accrues rental payments from production sectors and house-
holds (Fujita and Thisse, 2013). The methodology used for representing
agglomeration effects due to concentration in the workforce follows Ven-
ables (2007) with a gravity-based accessibility index. Empirical evidence
for this link’s validity was provided by Axhausen et al. (2015).

The problem is formulated as a single mixed complementarity problem
(MCP) implemented in the MPSGE (Mathematical Programming System
for General Equilibrium) framework in GAMS (General Algebraic Mod-
eling System). We first introduce the key ideas of MCP in the next sub-
section and subsequently discuss the economic sub-model, the transport
sub-model and the sorting conditions.

In Table 7.1 we list all sets used in the notation of variables and pa-
rameters. Table C.4 lists all model variables, and Table C.5 lists all model
parameters. Benchmark or reference values are represented by an overline.



138 agglomeration and the 3d-mfd

Index Description

i,j,k Zone identifier

m Mode identifier with values b for bus and c for car

r Route identifier

t Mobility tool portfolio: just car, c; just season ticket, s; all tools, a

Table 7.1: Model sets

7.1.1 Economic sub-model

In this integrated model we consider a macroscopic perspective of a city
with several separate zones for people to live and work. The model re-
quires standard general equilibrium assumptions (firms maximize their
profits and households maximize their utility) while accounting for ag-
glomeration effects on wages and productivity.

The economic sub-model assumes perfect competition and is character-
ized through three types of conditions: (i) activities (households and firms
must make zero profits); (ii) supply must be greater than or equal to de-
mand; and (iii) incomes must balance with expenditures. In the following,
we introduce each set of equations in that order.

7.1.1.1 Zero-profit condition

We denote ΠY
j as the unit profit function for production in zone j (Yj) and

ΠU
ij as the unit profit function for the utility of living in i and working

in j (Uij)2. Using Shepard’s Lemma, input coefficients are calculated by
differentiating the associated unit profit function with respect to input and
output prices. Activity levels are the complementarity variables associated
with zero-profit conditions. If costs exceed revenues, then the level of the
activity must be zero.

In the production sector, a macro-output good is produced in each zone
j according to Eq. (7.1). Unit revenue is characterized by the homogeneous
price P that is set to the numeraire3. The unit cost function assumes Cobb-
Douglas technologies, combining labour in zone j (with the wage rate Wj),
capital (at the rental rate Rj) and a specific factor (with the price PSFj)

2 Note that Π without superscript is used in Chapter 4 to denote total travel production.
3 Note that P is also used for parking capacity in Chapter 5, which interpretation is not used

in this Chapter.
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to account for differences in production technologies and processes across
the zones.

We calculate the benchmark level of zone-specific factors as the differ-
ence between each zone’s gross product and the value added from labour
and capital expenditures. The exponents in the cost function in Eq. (7.1)
denote the value shares for each production factor in a particular zone j.

−ΠY
j = −P +

(Wj

W j

)θl
j
(Rj

Rj

)θk
j
( PSFj

PSFj

)θs
j
≥ 0 ⊥ Yj ≥ 0 (7.1)

In the household sector, the utility Uij for the representative agent RAij
living in zone i and working in zone j is composed of demand for leisure
(with the price PLSij), the macro good at price P and demand for housing
in zone i at price PHi. We define utilities as given by Eq. (7.2) with a nested
constant elasticity of substitution (CES) form. At the top level, demand
splits between leisure and other goods combined in the composite good
CG using Cobb-Douglas preferences.

−ΠU
ij = −PUij +

(PLSij

PLS

)θls

CG1−θls

i ≥ 0 ⊥ Uij ≥ 0 (7.2)

In the nested layer, CGi combines the demand for the macro good and
housing as given by Eq. (7.3). Preferences for the composite good follow
an exogenously set elasticity of substitution, σc. The aggregate price of a
unit of utility is represented as PUij.

CGi =

(
θcP1−σc

+ (1− θc)

(
PHi

PH

)1−σc)1/1−σc

(7.3)

We assume in the benchmark that reference prices do not vary across
agents choosing different residence and work zones, implying identical
preferences. We capture idiosyncratic preferences by solving the model for
reference prices consistent with observed sorting behaviours.

7.1.1.2 Market-clearing conditions

Market-clearing conditions are needed for each endogenous price in the
model. First, the market-clearing condition for the homogeneous macro
good is given by Eq. (7.4). As the good is not zone-specific, the total supply
is the sum of all zones’ supply. The total demand for the macro good is the
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sum of the demand by the absentee landlord LL, who demands only the
macro good, and the demand by each representative agent RAij.

∑
j

∂ΠY
j

∂P
≥ LL

P
+ ∑

ij

∂ΠU
ij

∂P
⊥ P ≥ 0 (7.4)

Second, the market-clearing condition for the labour market as given by
Eq. (7.5) includes the representation of agglomeration effects with the pro-
ductivity index Xj. Thus, we scale the labour force in j by the productivity
index that represents productivity gains from increased worker density in
a particular location. The effective wage therefore changes for the repre-
sentative agent to Wj Xj.

∑
i

NLWijXj ≥
∂ΠY

j

∂Wj
⊥ Wj ≥ 0 (7.5)

Third, we assume that the capital stock in j, K j, is fixed to a zone. Then
the market-clearing condition for capital becomes Eq. (7.6).

K j ≥
∂ΠY

j

∂Rj
⊥ Rj ≥ 0 (7.6)

Fourth, similar to the case of capital, we further assume that specific
factors SFj are also immobile across zones and thus fixed. Then the market-
clearing condition for the specific factor becomes Eq. (7.7):

SFj ≥
∂ΠY

j

∂PSFj
⊥ PSFj ≥ 0 (7.7)

Fifth, again similar to the cases of capital and the specific factors, we as-
sume a fixed housing stock in each zone Hi. With this, the market-clearing
condition for the housing market becomes Eq. (7.8):

Hi ≥∑
j

∂ΠU
ij

∂PHi
⊥ PHi ≥ 0 (7.8)

Sixth, the market-clearing conditions require a definition of leisure. We
define total leisure NLSij as given by Eq. (7.9). The total supply of leisure
NLSij depends on the sorting of representative agents Nijmr. We assume
that all agents have a total of 3 hours in the morning and in the evening
that can either be used for leisure or for commuting, with travel time Tijmr
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between i and j. Consequently, agents with longer commutes have less
time for leisure (i.e., a lower NLSij).

NLSij = 2 ∑
mr

Nijmr
(
3− Tijmr

)
(7.9)

The market-clearing condition for leisure is then given by Eq. (7.10),
where we implicitly assume that the value of leisure is not the same as
the wage rate:

NLSij ≥
∂ΠU

ij

∂PLSij
⊥ PLSij ≥ 0 (7.10)

Last, the market-clearing condition for utility is given by Eq. (7.11):

∂ΠU
ij

∂PUij
≥

RAij

PUij
⊥ PUij ≥ 0 (7.11)

7.1.1.3 Income balance

For representative agents RAij, income consists of the wage income net of
productivity gains and the value of their time. The expenditures of rep-
resentative agents for mobility tools are the total flow of agents along m
and r multiplied by the average price between origin and destination for a
single traveller obtained with price Πtotal

ijt for mobility tool portfolio t and
its share of ownership Qijt. The income balance for representative agents
thus becomes Eq. (7.12).

RAij = Wj NLWij Xj + PLSij NLSij −
(

∑
mr

Nijmr

)(
∑

t
Πtotal

ijt Qijt

)
(7.12)

We define Qijt and Πtotal
ijt in Eq. (5.15) and Eq. (5.16) respectively. This

analysis does not differentiate between different price or cost components
and subsume all taxes, fares etc. under the term costs.

Second, the absentee landlord, LL, is assumed to own all the capital,
housing and specific factor stocks. Thus, the income balance becomes as
given by Eq. (7.13). We assume that the revenue from mobility tools and
mode use feeds into an external budget.

LL = ∑
j

(
RjK j + PSFjSFj

)
+ ∑

i
PHi Hi (7.13)
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7.1.2 Transportation sub-model

The transportation sub-model follows the 3D-MFD network assignment
as introduced in Chapter 5. Here, the analyst can decide whether to in-
clude the mobility tool ownership model or simply fix ownership levels
at the benchmark values Qijt. The ownership model can also be replaced
by adding the prices and fare costs to the actual path costs Cijmr, but in
this case, the model would not capture anymore the possibility that some
commuters have a choice between car and public transport, while some
have not.

7.1.3 Agglomeration effects

Agglomeration benefits are allowed to accrue from concentrating the work-
force. Productivity in zone j increases if nearby areas employ more people.
Put differently, productivity is a decreasing function of distance between
zones due to a decrease in the ability to engage in knowledge spillovers,
labour market pooling, etc. We capture the agglomeration effects follow-
ing Venables (2007) by using an agglomeration index Xj for each node
j, which increases as the employment density and accessibility to other
workplaces ACCj around zone j increase. Though we assume perfect com-
petition in production, Xj represents external economies of scale.

We define the agglomeration index Xj as given by Eq. (7.14). In the
benchmark equilibrium, Xj equals unity. The reference level of employ-
ment density in zone j is denoted by ACCj. The parameters µA and β
quantify the impact of accessibility to employment (i.e., economic mass)
on productivity. Figuratively speaking, µA determines the slope of the re-
lationship while β simply scales changes in economic mass to productivity.

Xj = 1 + β

(
ACCµA

j − ACCµA

j

)
(7.14)

We define the employment density and accessibility to workplaces around
j as ACCj according to Eq. (7.15).

ACCj = ∑
i

LDi
Mij

(7.15)

Eq. (7.15) provides a measure of economic mass in zone j with effective
labour demand LDj that combines the productivity gains represented by
Xj multiplied by the total labour force at j, which is given by Eq. (7.16).
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LDj = ∑
i

NijXj (7.16)

7.1.4 Sorting

The representative agents sort across residential and work locations follow-
ing a two-step, logit-based assignment. In our two-step logit formulation
we first have to compute a utility index for living at node i as given by Eq.
(7.17). The constraint requires that if the utility from living in i and work-
ing in j, denoted as Uij, changes relative to its benchmark uij, then ULi
can fluctuate to enforce that probability’s sum to one. Here θu

ij describes
the share of all residents living in zone i and working in j. For example, if
the utility levels across all people living in i but working elsewhere in the
city increase, then the utility index also increases. However, if the utility
increases for some work locations but decreases for others, the relative dif-
ference determines how the utility index changes. Further, µL reflects an
elasticity of housing location choice.

∑
j

θu
ijexp

(
1

µL

( Uij

uijUL
i
− 1
))

= 1 (7.17)

The initial number of commuters choosing to live in i follows from Eq.
(7.18). Changes in utility as a result of system changes scale the benchmark
number of people living in a particular zone NLi.

NLi = NLi

(
exp

(
(UL

i − 1)/µL)
∑j θli

j exp
(
(UL

j − 1)/µL
)) (7.18)

The number of travellers living at i and working at j, denoted as NLWij,
follows from Eq. (7.19). Here θu

ijNLi represents the total number of resi-
dents of i working in zone j. Changes in the utility from living in i and
working in j and in the living utility index ULi scale the benchmark total
following a working locational choice elasticity µW .

NLWij = NLi θu
ij

 exp
(

1
µW

( Uij

uijUL
i
− 1
))

∑j′ θ
u
ij′exp

(
1

µW

( Uij′

uij′U
L
i
− 1
))
 (7.19)
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7.2 application to greater zürich

We now apply the integrated model to the Greater Zürich. Again we want
to understand the mechanisms of the model by studying the effects on the
economic sorting and economic output resulting from pricing and invest-
ment schemes. In particular, we study the influence of (i) public transport
service frequency, (ii) dedicated public transport infrastructure, (iii) season
ticket pricing, and (iv) variable car costs. We discuss the calibration of the
integrated model in Section 7.2.1 before presenting the results in Section
7.2.2.

7.2.1 Calibration

The zoning and traffic assignment calibration is identical to the calibration
of the 3D-MFD-NDP from Chapter 6. Information on the calibration of the
economic sub-model is provided in Appendix C. The endogenous variable
NLWij in this Chapter correspond to the exogenous variable nij in Chapter
5. The benchmark value of NLi is consequently calculated by the sum over
all destinations j of nij of the benchmark origin-destination matrix.

Table 7.2 summarizes the relevant behavioral parameters of the model.
Given a yearly moving rate of around 10 % (van Nieuwkoop, 2014), we as-
sume a rather inelastic choice of the residential location and consequently
set µW = 0.3. We consider that the labor market is slightly more elastic that
the choice of the residential location and thus set µW = 0.5. For the value of
the price elasticity of mobility tool ownership, µM, we consult as guidance
the long-term fuel price elasticity, which has been reported to be in the
interval [−0.5;−0.1] (Erath and Axhausen, 2010). As we expect in the city
a higher willingness to substitute mobility tools, we set µM = −0.5. We set
the scale parameter of the combined mode and route choice to µR = 10 to
maintain deterministic aspects in route and mode choice. Last, regarding
the impact of economic mass on productivity, we follow the conservative
values by Venables (2007) for µA and β. In our analysis, this results in an
agglomeration elasticity of around 0.1, which is chosen to align with a 7/6
scaling relationship as reported by Bettencourt et al. (2007).

7.2.2 Results

We use the calibrated integrated model to study the effects of changes to
the public transport system on urban productivity. We first simulate how
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Symbol Description Value

µL Elasticity of residential location choice 0.3

µW Elasticity of workplace choice 0.5

µM Mobility tool ownership price elasticity -0.5

µR Scale parameter for mode and route choice 10

µA Impact of economic mass on productivity 0.2

β Scaling of economic mass’ impact on output 0.2

Table 7.2: Behavioural parameters

frequency changes to public transport (measured as headway) affect out-
put (section 7.2.2.1). Second, we quantify the effects on agglomeration of
reallocating dedicated space to or away from buses (section 7.2.2.2). Finally,
we study how the agglomeration process is influenced by season ticket
pricing (section 7.2.2.3) and by variable car costs (section 7.2.2.4). To test
the sensitivity of the model with respect to the impact of agglomeration
and to see whether agglomeration is important to consider, we simulate
the models with the agglomeration impact parameter β ∈ {0; 0.2; 0.4}.

Recall that changes in mobility tool ownership Qijt only result from ex-
ogenous price changes, as discussed in sections 7.2.2.3 and 7.2.2.4. How-
ever, they do not result from or respond to changes in network topology,
as discussed in sections 7.2.2.1 and 7.2.2.2.

7.2.2.1 Public transport service frequency

Our first scenario describes the outcomes of changing headway, or the
time between arriving public transport vehicles. We model this shock by
altering hi on all zones i which imposes additional (or lessened) time costs
for public transport. The prices of the mobility tools remain unchanged
and therefore, given our construction of the model, the shares of mobility
tool ownership Qijt also remain unchanged. However, because a certain
share of the population has access to both mobility tools, changing the
headway influences their mode choices.

In Figure 7.1 we summarize the macroscopic effects observed from vary-
ing the headway from its benchmark value 0.125h in the interval from 0.03

to 0.15. Figures 7.1a-b show the changes for city totals, and Figure 7.1c
shows the changes for the entire city averages. Figures 7.1d-f provide the
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Figure 7.1: Transportation system and economic market responses to changes in
public transport service frequency. In panels a and d to f, the solid
line corresponds to β = 0.2, while the short dashed line corresponds
to β = 0 and the long dashed line corresponds to β = 0.4.

results for zones (Kreise) 1,2, and 4. Figures 7.1a and 7.1d-f also provide the
results for different impact levels of agglomeration as a sensitivity analysis,
with a short dashed line corresponding to β = 0, a solid line corresponding
to β = 0.2 and a long dashed line corresponding to β = 0.4. The figures in
the following subsections are identically structured.

In Figure 7.1a we see that decreasing the headway increases total output
and leisure and raises the effective wage for β > 0. In the case of β = 0, the
effective wage changes only marginally due to changes in the labour mar-
kets. Better access by bus results in more commuters choosing workplaces
in the central city zones, as wages there are higher. Increasing the supply
of workers decreases wages, consequently resulting in a decrease of out-
put (see Eq. (7.5)).4 Contrary to intuition, we find in Figure 7.1b that the
modal split increases with decreasing headway, but this behaviour can be

4 Given our parameterization, increasing headway beyond 0.15h leads to a breakdown of the
transportation system, as the existing infrastructure is not able to accommodate all potential
passengers.
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explained by differentiating the total vehicle kilometres by zone. City resi-
dents drive to work less with a decrease in headway, leaving more space on
the streets which is then filled by inbound commuters who had previously
used public transport. Because the inbound commuters’ trip distances are
longer, the modal split increases. Figure 7.1c shows that improving the bus
system’s headway improves the journey speeds of both modes, despite the
effects observed in Figure 7.1b. Comparing spatial effects at the zonal level
in Figures 7.1d-f shows that increasing bus frequencies shifts employment
from Kreis 1 to the other Kreise. Increased accessibility to other zones in-
creases the productivity of the workforce and results in higher wage levels.
Housing prices increase across zones given higher incomes and demands.

7.2.2.2 Dedicated public transport infrastructure

Our second simulation scenario proxies for changes to dedicated public
transport infrastructure by altering the number of bus lanes available to
commuters. Because we do not vary the mobility tool prices there will be
no change in Qijt. However, as in section 7.2.2.1, mode choice and location
choice effects can still be observed for the portion of the population with
access to both modes.

In Figure 7.2 we summarize the macroscopic effects observed when in-
creasing or decreasing the length of bus infrastructure by -50 to 50 % com-
pared to the benchmark. We see in Figures 7.2a-c that more dedicated bus
lanes increase economic output and leisure in the system and raise the ef-
fective wages in the case of β > 0, while changes in the total wages again
remain small in the case of β = 0. Increasing the number of bus lanes
increases bus speeds throughout the system, leading to more time spent
for leisure and increased productivity through improved ease of access.
These gains are obtained by shifting demand towards bus transportation,
that is, by improving the journey speeds of both modes. In Figures 7.2d-f
we report represenative spatial impacts. Reducing the number of bus lanes
reduces access to the city centre and reduces the attractiveness of working
there. Because the elasticity of residential location choice (µL) is relatively
smaller than work choice elasticity, price impacts are more pronounced for
housing than for wages. However, the direction of impacts at the zonal
level is heterogeneous. For instance, employment increases with decreas-
ing bus lanes in the first and fourth zones, but decreases in zone 2. In the
former case, more people are willing to supply labour to these zones given
longer commute times, which results in lower wages. Wage changes are
particularly pronounced with larger levels of β. While employment does
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Figure 7.2: Transportation system and economic market responses to changes
in the shares of dedicated public transport infrastructure. In panels
a and d to f, the solid line corresponds to β = 0.2, while the short
dashed line corresponds to β = 0 and the long dashed line corre-
sponds to β = 0.4.

increase, our measure of accessibility decreases in the formulation of the
productivity index Xj given increases in the perceived cost of travel be-
tween nodes. In contrast to Kreis 1, Kreis 4 shows increases in housing
rent as a result of fewer bus lanes, indicating that more people are inter-
ested in moving there given the close proximity to zones with high wages.
The converse is reported for Kreis 2 (a largely residential zone stretching
down the coast of the lake), given lessened demand for living further away
from high-wage zones.

7.2.2.3 Public transport season ticket pricing

In addition to changes in infrastructure, changes in transportation pricing
can influence commuting behaviour and economic sorting. In our third
scenario, we vary the season ticket price from 0-10 CHF/day (around its
benchmark value of 5 CHF/day). The exogenous price change leads to
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Figure 7.3: Shares of mobility tool ownership as a function of season ticket costs

changes in the shares of mobility tool ownership Qijt, as shown in Figure
7.3. Lower season ticket prices cause the share of car-only commuters to
decrease and shares of season ticket holders and ownership of both mobil-
ity tools increase. Price changes lead to an uptake or drop in the ownership
of a second mobility tool.

In Figure 7.4 we summarize the results of this scenario, showing network-
wide effects in Figures 7.4a-c and spatial effects for Kreise 1, 2 and 4 in
Figures 7.4d-f. Decreasing or increasing the ticket price did not impact eco-
nomic output at all, except for changing the agents’ income, or the trans-
portation system’s performance. This is explained by Figure 7.3, which
shows that many car drivers choose to hold a season ticket as a second mo-
bility tool but do not drop their car. Subsequently, this system change does
not force them to change their travel behaviour when making route and
mode choices. Conversely, when the season ticket price is increased, eco-
nomic and transport performance decrease as seen in Figure 7.4a-c, leading
to an increase in car use (see Figure 7.4b) that consequently decreases both
modes’ speeds, as shown in Figure 7.4c. Figures 7.4d-f show that increas-
ing ticket costs tends to lead to reductions in employment, housing rent,
wages and productivity externalities. Notably, this is modelled as a closed
economy, and for reasons similar to the case of reduced bus lanes, employ-
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Figure 7.4: Transportation system and economic market responses to changes
in the price of public transport season tickets. In panels a and d
to f, the solid line corresponds to β = 0.2, while the short dashed
line corresponds to β = 0 and the long dashed line corresponds to
β = 0.4.

ment increases in Kreis 1 when ticket prices rise. We allow individuals to
choose housing and employment within the defined spatial boundaries,
which leads to increases in commuting distances. Kreis 1 has the largest
share of employed people in Zürich in our reference equilibrium and is
able to accommodate addition workers post policy change. The results
also indicate a “tipping point” regarding housing rent given rising season
ticket costs: Demand for housing in Kreis 1 rises until the cost of a daily
ticket surpasses roughly 7.5 CHF/day, at which point individuals would
rather have longer commutes than pay higher rent.

7.2.2.4 Variable car costs

As an alternative price mechanism, the fourth simulation analyses how
commuters respond when the variable car cost (e.g., the price of fuel)
is changed from almost zero to 2.50 CHF/km (our reference cost is 0.5
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Figure 7.5: Shares of mobility tool ownership as a function of variable car costs.

CHF/km). Changes in the price of private vehicle use lead to changes in
shares of mobility tool ownership, as shown in Figure 7.5. In contrast to
the season ticket case, discussed in section 7.2.2.3, increasing the variable
private car costs substantially decreases the total share of commuters who
choose to own a car (either as a single mode of transport or along with sea-
son ticket ownership) and substantially increases the total share of those
who own a season ticket.

Economic responses are shown in Figure 7.6. In Figure 7.6a we find that
economic output and the effective wage rate increase in conjunction with
variable car costs, with little variation in the interval between 0-1 CHF/km,
and stronger growth thereafter. Figures 7.6b-c particulary illustrate the ef-
fects on the transportation system when variable car costs increase. When
variable car costs increase beyond 1 CHF / km, inbound commuters drive
less, as shown in Figure 7.6b, but their space in the network is filled by
commuters living in the city, whose increase in costs is less than that of
inbound commuters. Since trip distances are shorter for city commuters,
the share of car trips decreases. Nevertheless, the journey speeds of both
modes improve as shown in Figure 7.6c. As before, Figures 7.6d-f describe
representative regional impacts. Time saved given increases in car and bus
speeds reduces the cost of commuting. Kreis 1 and Kreis 4 experience per-
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Figure 7.6: Transportation system and economic market responses to changes
the variable car costs. In panels a and d to f, the solid line corre-
sponds to β = 0.2, while the short dashed line corresponds to β = 0
and the long dashed line corresponds to β = 0.4.

cent increases in their overall level of employment along with wage in-
creases given an increasing productivity externality. Notably, employment
declines in Kreis 2, but the productivity index increases, implying that the
decrease in the perceived cost of commuting is smaller than the decrease
in labour demand. Even in the absence of the agglomeration externality
here, wages increase, indicating a reduction in the supply of workers to
this zone, which is magnified when accounting for the productivity index.

7.3 summary

This chapter presented an integrated computational equilibrium model
that links multimodal congestion to agglomeration externalities, where the
transport sub-model is based on the 3D-MFD traffic assignment introduced
in Chapter 5. The link between congestion and agglomeration has been
widely studied, but not based on the 3D-MFD. The model is applied to
the Greater area of Zürich and to analyze how changes in bus frequencies,
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dedicated bus lanes, season ticket price as well as variable car costs affect
economic productivity and commuters’ salary, leisure and total income.

The model highlights three key issues and conflicts of urban transporta-
tion policy making. First, improvements to economic output and individ-
ual income can only be realized by increasing car costs, not by public trans-
port pricing. Although this does not surprise, given existing knowledge
(e.g. Parry, 2009; Anas and Lindsey, 2011; de Palma and Lindsey, 2011), the
simulation results in Figure 7.4 and 7.6 should clearly convince decision
makers. Second, this model gives advice whether a bus network expansion
suffices or an expensive subway is necessary to improve economic output
and individual income, also when having a growing city in mind. For ex-
ample, as shown in Figure 7.1a, improving the headway below 4 minutes
decreases economic output, as faster modes are required to improve the ac-
cess the economic mass. Third, the simulations results clearly emphasize
the issue of induced demand (Goodwin, 1996; Cervero and Hansen, 2002;
Mogridge, 1997, 1990), e.g., as seen in Figure 7.1b: Once a policy measure
made road space available by a modal shift, the space is immediately oc-
cupied again, if no other measures, e.g., road space removals, are taken.
Consequently, the integrated model provides a simple system perspective
to analyze and understand this mechanism in macroscopic contexts.
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8
D I S C U S S I O N

Ich höre ja, der rechte Ring besitzt die Wunderkraft
beliebt zu machen; vor Gott und Menschen
angenehm.[..] Nun; wen lieben zwei von Euch am
meisten?–Macht, sagt an! Ihr schweigt? Die Ringe
wirken nur zurück? und nicht nach außen? Jeder liebt
sich selber nur am meisten?–Oh, so seid ihr alle drei
betrogene Betrüger!

— Lessing (1779)

Analyzing the complex interactions of human beings and mechanical
elements of urban transportation systems in an abstract system as shown in
Figure 1.1a means to sacrifice many details. Contrary, focusing only on the
basic properties of these interactions allows to understand the mechanisms
that push and pull humans in their decisions. This is necessary to uncover
insights that would have been completely covered by complexity otherwise.
As a consequence, I need to discuss first in this chapter the limitations of
my thesis in Section 8.1 and then, second, its implications in Section 8.2.

8.1 limitations

Throughout this theses, I reduced the complexity of cities to a simplified
model. Not surprisingly then, the presented modeling approaches and re-
sults have limitations, which I address in the following.

First, the MFD and the proposed 3D-MFDs implicitly assume ordered
traffic streams and structured behavior of road users. This is certainly not
the case in many cities around the world. In particular, jaywalking and
other traffic violations are hard to account for, but can have substantial ef-
fects on the network performance. Thus, whatever the proposed optimiza-
tion problems will result for in terms of pricing and investment strategies,
one has to challenge the results with respect to “is the MFD truly describing
what is going on in the network”.

Second, so far, this thesis only focused on congestion as the negative
externality but there are two others that are of utmost concern in the 21

st

century: climate change and health. One could argue that less congestion
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is leading to less pollution and consequently fewer health issues, but first
there is neither a line of causality nor does this take the propulsion tech-
nology into account. Therefore, all implications and suggestions for policy
implementations derived from the model should be further enhanced with
our knowledge on health and climate change aspects.

Third, accessibility is a key element of transport planning with links to
many other fields, e.g. economics (Vickerman et al., 1999; Geurs et al., 2012),
where Geurs and van Wee (2004) point out to the many dimensions of ac-
cessibility. However, in this thesis, I followed an aggregated travel time
perspective, which in turn ignores the microscopic and personal accessibil-
ity perspective (e.g. Le Vine et al., 2013; Sarlas and Axhausen, 2019) that
may become relevant as in many cities people do not only move between
home and workplaces but also to many other locations. Thus, implement-
ing the 3D-MFD network assignment inside an agent-based simulation,
e.g., MATSim (Horni et al., 2016), could increase the understanding of in-
vestment and pricing schemes. This idea also extends to coupling the 3D-
MFD network assignment model to dedicated and microscopic road and
bus network design problems in a sequential optimization. This not only
allows to speed up problem solving, but also to monitor along the way the
urban-scale effects.

Fourth, transport is always influenced by and is influencing politics.
Here, I always consider that people respond with an expected and ratio-
nal behavior, just based on their commute. This is of course simplifying as
in reality people commence many more trips, inertia may dominate and
people also might oppose certain pricing and investment schemes. These
aspects might be very challenging to implement in macroscopic models,
however, one has to bear in mind that there is more to consider for the
economic activity than just the journey to work.

Last, the applications of the 3D-MFD network assignment do not con-
sider Downs’s (1962) fundamental law of congestion. A reason for this is
that the current formulation of the applications model only a single ride,
which completely ignores that people might be willing to travel more fre-
quently when accessibility improves (see the discussion by Metz (2008)
and Weis and Axhausen (2009)). Another reason is that I consider only
a fixed population (closed city), but one can expect that more productive
cities will attract more inhabitants. Another missing element is that mobil-
ity tool ownership choices are only based on price (or generalized cost),
but this does not includes the findings from Chapter 3, where the land-
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use effects of quality of public transport and spatial typology affect travel
behavior as well.

8.2 implications

The contributions of this thesis have several important implications for the
academic literature (see Section 8.2.1), transport policy (see Section 8.2.2),
vehicle automation (see Section 8.2.3) as well as developing countries (see
Section 8.2.4).

8.2.1 Academic literature

This thesis has at least three implications for the academic literature. First,
with the formulation of the geometric and Bose-Einstein condensate ap-
proach to the MFD, I offer researchers new frameworks to model a variety
of interactions between cars and other transportation modes in a closed
form. This allows new procedures to be developed in the future, e.g. for
the bus network design problem, modeling of multi-layer transportation
networks and other existing features in urban transportation networks.

Second, it seems that the academic literature skipped static traffic as-
signment models for the MFD right away and stepped immediately into
the (more complex) dynamic models. I propose a static model that is not
only easy to formulate, but can also be implemented with small effort into
existing professional traffic assignment software tools. As this kind of soft-
ware is widely used around the world for planning, further extending the
proposed static assignment procedures may boost the overall acceptance
of the MFD.

Third, for the economics community, the proposed 3D-MFD framework
provides a throughout simple, but physically consistent approach to model
multimodal traffic and congestion. As in many instances, economists re-
frain from using a full traffic assignment step due to its complexity, the
presented 3D-MFD network assignment provides a simple tool.

8.2.2 Transport policy

The results of this thesis certainly emphasize that there is currently too
much space and too many resources allocated to cars in our cities and
that one can improve the entire system by using public transport. This is
of course not surprising as it has been in the public debate ever since cars
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congested streets and has been brought to academia in the 1960s by Smeed
(1961, 1968). However, the introduced models in Chapters 6 and 7 follow a
long-term planning perspective and allow rather intuitively fast and easy
computation of policy relevant question of how many cars are too many.

However, the proposed 3D-MFD, the traffic assignment and optimiza-
tion models allow to obtain insights into how close or how distant cities are
to the optimum, given their infrastructure and demand. As high-quality
public transport operations is expensive so is the provision of road infras-
tructure, my models allow to quantify which level of provision is optimal.
Nevertheless, the complexity - which is also present in the number of vari-
ables in the models - emphasizes that there is no general remedy for success.
This means that every city has to analyze the effects of pricing and invest-
ment schemes for itself.

Nevertheless, the contributions of this thesis show that using an objective
such as collective travel time, accessibility (and its impact on productivity)
or total passenger throughput can easily be analyzed with the 3D-MFD.
Consequently, these measures should be considered in the decision mak-
ing, and not necessarily only travel time savings as already discussed by
(Metz, 2008).

8.2.3 Vehicle automation

During the time this thesis was drafted, vehicle automation was considered
a soon-to-arrive disruptive technology that is expected to result in radical
changes to our transport system (Fagnant and Kockelman, 2015; Bösch,
2018). In light of the substantial changes to the cost-structure caused by
automation (Bösch et al., 2017), the following question arises: how are the
contributions of this linked to this innovation

In particular, the expected cost changes correspond to the production
cost. As the two multimodal congestion mechanisms in Sections 4.4.2 and
4.4.3 are flexible to accommodate the expected technology changes, one
can investigate the behavioral and system responses with 3D-MFD-NDP
from Chapter 6 and the integrated equilibrium model from Chapter 7.
Consequently, this thesis can advise policy makers in finding appropriate
investment and pricing schemes.

Second, the emergence of new technologies and business models also
changes the way one thinks about cars. For example, a shared autonomous
vehicles does not end its vehicle trip, but only the passenger trip as well as
trip length will become a random variable (e.g. demand level etc. will in-
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fluence the route choice of the agency), which in turns makes the modeling
more difficult. However, the Bose-Einstein based approach to the 3D-MFD
is not restricted to the discussed interactions between cars, buses and bicy-
cles, but can be expanded to model such new services as well.

8.2.4 Developing regions

We can argue that in our developed world, we already poured that much
concrete that our (wrong) investment decisions are manifested. Conse-
quently, we lost many degrees of freedom to implement large scale changes
to the system. However, many cities around the world still have plenty of
concrete to pour, dollars to spend and - hopefully - are aware of our mis-
takes of the past.

In particular, the optimization problem following Venables (2007) based
on the 3D-MFD allows developing cities to analyze under which scenar-
ios they can ignite the full power of agglomeration economies. This can
help them to switch from a self-sufficient city to a trading city (Venables,
2017a,b). The 3D-MFD-NDP then will tell planners at a macroscopic scale
consequently the optimal strategy between car and public transport choices.

Further, the presented optimization models also allow to see which long-
term effects the construction of subways can have not only on the travel
time savings, but also in terms of economic output (Loo and Cheng, 2010;
Roth et al., 2012). As these projects are usually rather expensive, I provide a
simple and fast-to-solve framework to see whether it makes sense to build
a subway at all. Then, with a sequential optimization approach, the second
layer of the optimization can use the output of the macroscopic optimiza-
tion as starting values for in-depth network design problem algorithms for
each of the considered modes.
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9
C O N C L U S I O N S

Ich wundere mich oft darüber, wie derselbe Mensch,
der sich mehr liebt als alle anderen, dennoch mehr
Gewicht auf das Urteil anderer über ihn, als auf das
eigene legen kann.

— Antonius (1949)

It is easy to ask “how many cars are too many for a city”, but it is not easy
to answer that question. Not only is there no such thing like a universal
way to improve traffic, but also are the many physical and political con-
straints in our cities an incomprehensible complex system. In concluding
this thesis, the contributions provide opportunities not only to identify the
optimal parameters X∗ from Figure 1.1b, but also to approach the question
of “how many cars are too many”. Nevertheless, one should never ignore the
underlying assumptions and the externalities and aspects not considered
in this thesis.

In this last chapter, I first summarize the most essential parts of my thesis
in Section 9.1, make an outlook to future research in Section 9.2 and make
concluding remarks in Section 9.3.

9.1 summary

The key contributions of this thesis are fourfold. First, I propose a multi-
modal accessibility indicator to analyze travel behavior. Second, I present
substantial empirical evidence for the existence and physical properties of
the MFD that implies that urban road networks can be simplified into a sys-
tem as shown in Figure 1.1a. Third, I present three multimodal congestion
mechanisms for the MFD that capture the interactions between cars and
buses. This allows us to model passenger choices and vehicle interactions
at the same time in a single system perspective. Fourth, I formulate a sim-
ple traffic assignment based on the 3D-MFD and illustrate its applicability
in two macroscopic optimization problems to identify optimal investment
and pricing schemes.

Throughout this thesis, I used the long-existing concept of accessibility
in the Hansen (1959) formulation as well as taking part in the renaissance
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of macroscopic traffic modeling with the macroscopic fundamental dia-
gram (MFD). This amalgamation of macroscopic perspectives allowed me
to derive two city-scale policy advisory tools: the 3D-MFD network design
problem and the integration of the 3D-MFD network assignment in Ven-
ables’s 2007 agglomeration effects model. In the formulation presented,
these two models allow urban and transport planners to study the pric-
ing effects of fixed and variable car and public transport prices, including
the effects of season tickets, as well as the investment effects in roads and
buses, allocation of dedicated bus lanes, frequency setting of buses as well
macroscopic traffic signal strategies.

All presented approaches follow a macroscopic thinking that is a reduc-
tion of complexity of urban systems to their basic principles. This per-
spective allows not only to focus on the overarching effects and strategies,
important for first steps in long-term urban-scale policy making, but also
a much simpler communication and reasoning about results and implica-
tions. Nevertheless, these macroscopic models do not replace cost-benefit
appraisals that capture a wider range of local effects as well. However, they
provide reasonable limits to the solution space and, consequently, help to
identify the most relevant scenarios for the public and political debate.

9.2 outlook

This thesis provides many possibilities for future research that develop the
presented models and ideas further. In particular,

• can the static traffic assignment be replaced with dynamic assign-
ments, either with the accumulation or trip-based model (Mariotte
et al., 2017).

• the 3D-MFD considers only two vehicle classes, but many urban
networks have more classes (cars, taxis, bicycles, buses, trams etc.),
meaning that future research should include these many layers of
urban road networks in the extensions of the 3D-MFD.

• I have only compared critical points of networks, but future research
also needs to compare the shapes of MFDs and the determinants of
congestion progression. These insights may allow to derive a global
law of congestion in cities.

• the bus network design is so far captured macroscopically by α, but
future research can use the 3D-MFD-NDP in a sequential optimiza-
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tion problem to tap on conventional network design problems (see
Section 6.1).

• last, the presented approaches also provide means to study the op-
timal city size in terms of agglomeration and congestion externali-
ties (e.g. Zhang and Kockelman, 2016), and to study when and how
cities should invest (not any further) in subway networks (Derrible
and Kennedy, 2010, 2011, 2009).

9.3 concluding remarks

In essence, this thesis followed the idea by Bettencourt (2013) to reduce
cities’ complexity to a few basic principles. These basic principles govern
the decisions of its inhabitants, but the consequences of such decisions de-
termine the city’s success. As individual mobility patterns are difficult to
change unless economically incentivized, either in monetary or time costs,
urban and transport policy making has to plan and manage the transporta-
tion system such that mobility, accessibility and/or productivity is opti-
mized or at least improved in the long-term. The presented methodolog-
ical advances provide policy makers macroscopic tools to study pricing
and investment effects that guide policy making towards to - hopefully -
decisions to improve mobility for everyone.

In closing, most cities in the Western hemisphere made many of their
transport decisions permanent with heaps of concrete, such that invest-
ments to change behavior nowadays become costly, and consequently the
solution space for improving mobility and the success of a city is limited.
Contrary, as pointed out in Section 8.2.4 for the developing world, where
cities are still growing and plenty of investment decisions are still years
ahead, mindful and balanced choices can be a substantial contributor to the
economic success of a city. Consequently, the results of this thesis should
provide decision makers around the world a handful of ideas to derive
strategies and conclusions for their own city.
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A
E M P I R I C A L T R A F F I C D ATA

This appendix summarizes the collection of empirical traffic data and its
processing in relationship with the estimation of MFDs (Geroliminis and
Daganzo, 2008; Leclercq et al., 2014). We discuss two primary sources: sta-
tionary sensors, e.g. inductive loop detectors (ILD) or ultrasonic detectors,
and trajectory data, e.g. from automated vehicle location devices (AVL).
See Section 4.2.2 for an overview of MFD estimation for each of the two
data sources.

This appendix is organized as follows. Section A.1 introduces to the fun-
damentals of the data collection for each of the two mentioned data sources
as well as its MFD related data processing. Then, in Section A.3 we describe
how we calibrate MFD to accurately describe speeds and densities.

a.1 observing traffic

Arguably, ILDs are the most common sensor type in cities for stationary
traffic observations and thus we concentrate in Section A.1.1 on their op-
erational features. Generally, the obtained measurements are Eulerian ob-
servations - thus we refer to Section 4.2.2.2 for more details on the idea of
these measurements. Contrary, AVL data that we discuss in Section A.1.2
are Lagrangian observations - thus we refer to Section 4.2.2.3 for more
details on the idea of these measurements.

a.1.1 Observations from inductive loop detectors

ILDs are mounted into the surface of road networks as illustrated in Figure
A.1 on the northern most lane. This section is primarily adopted from Bliemer
(2001). Usually, they cover a single lane and are made out of coiled wires,
creating an inductance, which detects vehicles passing over it. Here, we
consider the two geometric features: The length of the detector in driving
direction ll and the distance of the sensor to the downstream stop line ls. To
provide more accurate speed measurements, two sensors can be mounted
consecutively in driving direction as illustrated in the southernmost lane.
Then, also the gap between sensors lg needs to be considered.
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𝑙𝑙 𝑙𝑠
𝑙𝑔

Detector

Figure A.1: Scheme of loop detector operations, adopted from Bliemer (2001).
Car by Pablo Rozenberg from the Noun Project.

ILDs measure traffic at regular intervals, where n is the interval number
of the observation period. The duration of the interval is given by the start
time at tn−1 and end time at tn. In interval n, a set of vehicles J (n) passed
over the detector and has been detected by changes in the magnetic field.
Each vehicle j ∈ J (n) activates the detector for duration τj. For convenience,
we write consider the notation n and tn to be equal. Then, the control
device computes the detector flow rate qi (tn) of detector i at time tn by
Eqn. A.1. It is simply the cardinality of set J (tn), i.e. the number of detected
vehicles, divided by the duration of the interval.

qi (tn) =
1

tn − tn−1
∑

j∈J(tn)

I
(
τj > 0

)
(A.1)

The second measure single ILDs provide is the detector occupancy oi (tn).
Occupancy is an approximation of traffic density as both can be considered
to be proportional and positively related (Bickel et al., 2007). In the above
mentioned setting, detector occupancy oi (tn) as calculated as given by Eqn.
A.2 as the total time vehicles of set J (tn) spent on detector i divided by the
interval length.

oi (tn) =
∑j∈Jtn

I
(
τj > 0

)
tn − tn−1

(A.2)
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Figure A.2: Raw data of a single loop detector in Zürich. (a) shows the time-
series of flow over the course of a single day, (b) shows the scatter
plot of the same day of flow versus detector occupancy, that is an
approximation of vehicle density.

The usual report of a detector is similar to the output presented below.
With a time-stamp denoting the beginning or end of the observation inter-
val tn, the detector number, the flow rate and the occupancy. Some system
may perform a plausibility check on the measured values and report an
error if implausible.

timestamp detector flow occ error

702810000000 1337 34 0.31 0

702810300000 1337 49 0.42 0

702810900000 1337 412 0.9 1

702811200000 1337 42 0.37 0

In Figure A.2 we show for a single selected detector the time-series of
flow and occupancy (in Figure A.2a) and the scatter plot of flow versus
occupancy (in Figure A.2b). In the time-series figure we can clearly see the
loading and unloading of the network during the morning and evening
and peak, while we see in the scatter plot that the observations create the
silhouette of a fundamental diagram of a road.

Following the fundamental equation of traffic (as given in Eqn. 4.10),
the speed follows from flow divided by density. Thus, for a single ILD, its
speed can be approximated by Eqn. A.3 where si is a detector specific con-
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version scalar. In case double loops are installed as given in the southern-
most lane of Figure A.1, the speed can be readily measured as the distance
between loops and the time gap between two loops is known.

vi (tn) =
qi (tn)

oi (tn) si
(A.3)

For this, Bickel et al. (2007) state that a reasonable estimate of si is the
effective vehicle length which is equal to the length of the vehicle plus the
size of the detector. As vehicle lengths usually differ, they can be consid-
ered a random variable with a common mean which should be used as si.
Importantly, ILDs provide an estimate of the time-mean speed as shown
in Figure 4.4 on a link, but not the space-mean speed for which we aim
for in the MFD analysis. However, if the single time-mean speed measure-
ments ϑj are available, we can obtain the space-mean speed vspace

i using
the harmonic mean as given by Eqn. A.4. Unfortunately, single speed mea-
surements are rarely reported and stored by detectors, but only aggregated
values.

vspace
i =

1

∑j∈J(tn)
1
ϑj

(A.4)

a.1.2 Observations from automated vehicle location devices

The AVL devices are typically used by public transport agencies to track
their vehicles to provide passenger information. As we further use this
data source in our analysis only for public transport vehicles, we discuss
AVL data from the public transport perspective.

The AVL for public transport vehicles usually record time-stamps at the
public transport stops which locations are known as well as the approxi-
mate driving distance. The recorded data set usually is structured as listed
below.
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busid seq stopid arrival departure

4 1 1482 657985020000 657985045000

4 2 0832 657985143000 657985181000

4 3 0420 657985250000 657985265000

4 4 2013 657985402000 657985429000

4 5 3988 657985542000 657985560000

For each bus during one driving sequence, the actual arrival and de-
parture times are recorded along the location identifier of the stop. Along
with the distance between stop information, we can calculate the space-
mean speed of buses in the network including the dwelling behavior by
using Eqn. 4.11.

In case of public transport vehicles, the data sets contain the measure-
ments of all vehicles so that the full production information is available.
However, this kind of data set can also be available from car, e.g. from
taxis, where instead of the stopid the coordinates are recorded at regular
time intervals. Then, the shortest path distance between two observation
points must be calculated to obtain the driven distance in order to calculate
the space-mean speed. Further, as usually not all cars would be equipped
with AVLs, this data source must be fusioned with detector data to obtain
full flow and density information (Ambühl and Menendez, 2016).

a.2 data processing

In this thesis, all empirical MFDs are estimated from stationary traffic sen-
sors. The available raw data was processed in two data bases: The first
data base stores the actual measurements of the detectors as provided in
the listing in Section A.1.1. The second data base contains the static infor-
mation of the location of the detectors in a geospatial vector data format
(including attributes such as road name, functional road class, distance to
traffic signal, length of the monitored lane). Both data sets are linked with
a unique detector identifier. The geospatial vector data base allows us to
select detectors not only by certain attributes, e.g. only main road level de-
tectors, but also by defining regions of interest with an arbitrarily shaped
polygon. Furthermore, it allows us to consider only one detector per lane
in case there are several detectors located within a lane. The attribute func-
tional road class of each detector is obtained by mapping the detector to
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the nearest OpenStreetMap link and acquiring the functional road class
attribute of that link.

Despite the fact that many cities already operate an error detection sys-
tem, there are still many issues and caveats in measuring traffic with sta-
tionary sensors (Bickel et al., 2007). Thus, we further scrutinize the raw data
to remove measurements containing errors (e.g. flow but no occupancy, or
constant values) and outliers, and we reduce the noise with a moving aver-
age technique. Further, as most cities do not have a unbiased loop detector
distribution (Leclercq et al., 2014), we finally estimate the MFDs with a
correction method (Ambühl et al., 2017).

a.3 mfd calibration

As mentioned in Section A.1.1, we require information of si in order to
measure traffic density or speed instead of an approximation with occu-
pancy. However, such information is mostly unavailable and rather unreli-
able. Therefore, we obtain a conversion scalar from the following two-step
calibration procedure.

In the first step, we make single detectors’ occupancy measurements ro-
bust against variations in detector length within a city. We translate occu-
pancy into an approximation of vehicle density depending on the location
of the detector. To do so, we assume that the free-flow speed decreases
linearly towards the downstream signal. Here, we find that MFDs do not
change substantially with changes in the parameter of this first calibration
step, but they do when this step is omitted.

In the second step, we calibrate the estimated MFD by matching the aver-
age speed from the fastest observed hour in the MFD to the average speed
queried from the Google Directions API for that same hour. In particular,
we query 1000 random origin-destination pairs and request the travel time
and distance. Note that the trips linking those origins and destinations
need to be at least 1km long. From this data set we consider only trips
that are entirely in the region and are not longer than 6 km. As we are
interested in urban roads only, we exclude freeways in our API request.

For the calibration, we then investigate the distributions of both speed
distributions with the mean, the 85

th, and the 95
th percentile. The calibra-

tion scalar s is then obtained by dividing the mean of the Google speed
by the mean of the MFD speed. Then, the MFD occupancy is converted
to density using that scalar. As a sensitivity analysis of the results and as
a weight for comparative analyses, we further define a lower value of the
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calibration scalar slow by dividing the 85
th percentile of the Google speed

by the 95
th percentile of the MFD speed, and an upper value of the calibra-

tion scalar shigh by dividing the 95
th percentile of the Google speed by the

85
th percentile of the MFD speed.
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D ATA S E T O V E RV I E W

This Appendix summarizes the information for the traffic data sets used
throughout this thesis. In detail, we present in Section B.1 the list of data
sets for which bus and car data was available to us. In Section B.2, the mea-
surement of bicycle interactions in Amsterdam and London is presented.
Section B.3 presents further data tables for the MFD models.

b.1 3d-mfd data

b.1.1 London

Transport for London (TfL) organizes mobility throughout the city for al-
most all modes of transport except swimming and flying. In particular,
they care about cars, buses, the underground, cycling, pedestrians, cable
cars and river boats.

TfL provides detailed records for car and bus system operations. For
car transport, TfL located on almost all major streets in London SCOOT
(Split Cycle Offset Optimisation Technique) detectors, i.e. ILDs. By system
design, these detectors are mostly located far upstream of an intersection,
in other words right at the beginning of a link, but due to London’s rather
historic road networks these links can be considered comparatively short.
Figure B.1 shows the area of the city for which we received detector data.
The region covers an area that extends way beyond the congestion charging
area that we highlighted. We use this region in the empirical MFD analysis
in Chapter 4.

TfL operates the famous red double-decker buses on many bus routes,
in total, there are more than 8000 buses in the city. Each bus is equipped
with an AVL, here named iBus system. This system records data as listed
in Section A.1.2 and is used to measure the performance of the system
and in particular to inform passengers about the next departures. Im the
available data set we use all regular bus lines and exclude in particular the
river boats from the measurements. We also add to Figure B.1 the bus lines
in the city for which we have data available.
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0 1 2 3 4 km

Figure B.1: Zoning for 3D-MFD analysis in London. The background map is
provided by OpenStreetMap.

In total, we have three weeks of data available of both systems: one week
from May 2015, one week from September 2015 and one week from May
2016.

b.1.2 Zürich

The traffic management system of Zürich operates an extensive detector
system with more than 4500 detectors at 384 intersections for the control
of public transport, cars or both (Stadt Zürich, 2015). Their purpose is to
give priority to public transport, support traffic signal control, and identify
congestion. For traffic measurements, the city operates more than 1000

ILDs (see Appendix A for details).
The geometry of ILDs does not vary much (around 90 % of the loops

have a length of 1.5 m and 10 % have a length of 3.5 m). The aggregation
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period is three minutes. The city determined that the errors of the detectors
were lower than 5 % (Stadt Zürich, 2017). Figure B.2 shows the city of
Zürich with the location of the detectors as well as the regions where we
analyze MFDs. Importantly, in both highlighted regions, the number of
available routes is very limited and car drivers can rarely change their
route to adapt to a traffic situation. Thus, we do not expect to observe
large differences in the loading and unloading of the network and thus
a more or less heterogeneously congested network (Gayah and Daganzo,
2011).

The public transport operator in Zürich, Verkehrsbetriebe Zürich (VBZ),
have a similar system as TfL’s iBus system (Stadt Zürich, 2016). Thus, the
available AVL data is the same format as presented in Section A.1.2.

The data used for the analysis in this thesis spans a one week period
in October 2015. Here, we focus on two regions within Zürich, each with
an area of approximately 2 km2. Figure B.2 shows both regions shaded in
gray. We denote the zone in the west as Wiedikon and the zone in the
east as City center. The zones are selected for a couple of reasons. First,
the regions differ in their share of dedicated lanes for public transport; in
the City center almost 75 % of the lane-km used by public transport are
dedicated, whereas in Wiedikon this number is 60 %. Second, we have cho-
sen small areas in order not to violate the homogeneity assumption of the
MFD. The size of the zones is about one-fourth of the one analyzed in
Yokohama by Geroliminis and Daganzo (2008), and half as large or even
magnitudes smaller than the regions which resulted from static and dy-
namic partitioning in Shenzhen (Ji et al., 2014). Third, our selected regions
have a homogeneous topology and similar hierarchy in the road network,
e.g. no presence of freeways. Thus, we avoid further partitioning of the
network.

b.1.3 Simulation

The simulated abstract network was developed using a VISSIM microsim-
ulation platform, as a 10× 10 grid, with 180 links and the average block
length of 150 m. Each signalized intersection was modeled with a cycle
length of 60 sec, and 27 sec of green (plus 3 sec of lost time) for all con-
flicting signal phases. The tested traffic scenario has public transport lines
covering 20% of the network length, where buses operate in a mixed-lane
fashion, i.e. no dedicated lanes are allocated to public transport vehicles.
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Wiedikon
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Figure B.2: Zones of analysis of the empirical 3D-MFD. The zone on the east
is City center and the zone in the west is Wiedikon. The background
map is provided by OpenStreetMap.
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As we want to investigate the full shape of the 3D-MFD with this data set,
we did simulation runs with a variety of headways.

b.2 measuring bicycle interactions

The calibration of the tri-modal MFD as introduced in Section 4.4.3 to a spe-
cific context requires data. While speed measurements of buses and cars
are widely available to calibrate the unimodal MFDs for cars and buses as
well as the continuous multiclass FD (e.g., Loder et al., 2017, 2019), no data
set exists that allows to calibrate the bicycle interaction models. Therefore,
we collected suitable video data in Amsterdam (NL) and London (UK).
Figure B.3 shows the experimental sites.

For the calibration of the (bi-modal) discrete fundamental diagram, we
measured travel times along Sarphatistraat in Amsterdam (see Figure B.3a)
and Stamford Street in London (see Figure B.3c). We had to rely on two dif-
ferent experimental sites because the Amsterdam site did not have enough
cars to identify an interaction effect of bicycles on cars, while the London
site did not have enough bicycles to identify an interaction effect of cars
on bicycles. As we calibrate with the data the proposed delay models and
do not do MFD curve fitting, having separate data sources does not lead
to issues of combining both data sources. The Sarphatistraat is designed
such that cyclists have priority but cars can ride along. Travel time data
for cars and bicycles was collected in the westbound direction between
Alexanderplein and Weesperplein as shown in B.3b. To account for vehicle
entries and exits between both intersections, we use only the flows and
travel times between locations II and III as shown in Figure B.3b. Data
has been collected in the morning peak between 8-9am on the 5th of June,
2018. While the total flows at each location were recorded, travel times
were only obtained for some vehicles. Along Stamford Street in London,
bicycles, buses and cars share the same lane. Flow and travel time data
was collected in both directions in the first week of June 2019. Again, we
account for vehicle entries and exits. At the marked locations 1 to 5 in Lon-
don in Figure B.3c, we measured as the additional delays to cars and buses
the duration until bicycles cleared the space in front of cars and buses so
that they can pass the intersection. Figures B.3d-e show the bicycle stop
boxes at the five locations for measuring the additional delays.

The results of our measurements and the implications on delays are
shown in Figures B.1-B.5. In particular, Figure B.1 shows the results for
Sarphatistraat, i.e., the effects of car presence on bicycle flows. Figure B.1a
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Figure B.3: Experimental sites for the measurements of bicycle interactions.
(a) Travel time corridor along Sarphatistraat in Amsterdam. Back-
ground map courtesy of https://www.openstreetmap.org/ (b) Loca-
tions between which travel times of cars and bicycles were recorded.
There are several locations to account for in and outflow from site
streets. The measurements used for the calibration are between loca-
tions II and III. (c) Measurement locations for the calibration of the
bicycle interaction models along Stamford Street in London. Back-
ground map courtesy of https://osmaps.ordnancesurvey.co.uk/.
(d) Situation plan for bicycle stopping box number 1 of this analysis
for bicycle platoon dispersion. (e) Situation plan for bicycle stopping
boxes 2-5 of this analysis for bicycle platoon dispersion.

https://www.openstreetmap.org/
https://osmaps.ordnancesurvey.co.uk/
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shows the corridor’s cumulative inflows and outflows of bicycles. The links
between both curves mark those bicycles for which travel times have been
recorded. Arguably, travel times are almost uniformly collected during
the observation period. Figure B.1b shows the intuitive unimodal speed-
density relationships for cars and bicycles. The negative marginal effect of
density can be clearly seen for both modes. With the available data, we
want to see from which car density threshold onwards bicycle speeds are
significantly reduced or the pace is significantly increased. We do so by es-
timating bicycle pace as a function of bicycle density and a binary variable
for the car density threshold. We increase the latter incrementally until
its effect becomes statically significant. We find that up from kc = 0.01
(cars/m), cyclists’ pace increases by around 12 % as shown in Figure B.1c,
i.e., δ = 0.88.

For the Stamford Street, we show the measurements and delay effects in
Figure B.4. In total, we recorded car and bicycle travel times during three
different time slots to cover multiple different traffic conditions. Figures
B.4a-f show the recorded travel times with grey trajectories being cars and
red trajectories being bicycles. The different traffic conditions and the ef-
fect of the traffic signal in the eastbound direction can be clearly seen as
well as cars overtaking bicycles in free flow and vice versa in congestion. In
Figure B.4g we show each direction’s car pace as a function of car density
where we find congestion in the eastbound direction, but not in the west-
bound direction. We then estimate the bicycle interaction effects for two
different cases. First, we calculated the average additional delay caused by
overtaking 1,2 or 3 bicycles along the corridor. Overtaking means here that
the trajectories of a car and bicycle cross. Figure B.4h shows the intuitive
results as with more overtaken bicycles, cars experience more interaction
delays. Second, we calculate for each car the bicycle density in front of the
vehicle during its trip along the corridor and compute the average addi-
tional interaction delay as a function of bicycle density as shown in Figure
B.4i. Again, we find the intuitive relationship that a higher bicycle density
increases the additional interaction delay for cars. We find that the addi-
tional delay in free flow leads to vred = 4 m/s for both modes.

The bicycle platoon dispersion measurements at all five sites are shown
in Figure B.5. We find the expected relationship that more bicycles in stop-
ping boxes require more time to empty the space for cars. In our data, we
find an average additional interaction delay of 0.534 seconds (with stan-
dard error 0.022) per bicycle for cars. We tested for an influence of the
experimental site in Figure B.5’s relationship and found statistically signif-
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Figure B.4: Bi-modal measurements from Stamford Street in London. (a-f) show
the raw trajectory data for cars (grey lines) and bicycles (red lines)
for different time slots and two directions. Horizontal lines corre-
spond to vehicles stopping or parking. (g) presents the car pace as a
function of vehicle density for both corridor directions. (h) displays
the average additional interaction delay for cars by the number of
bicycles overtaken. The number of overtaken bicycles is determined
by the number of bicycle trajectories cut by each car. We estimate
the additional delay as the effect of previous (ordinal) variable on
car pace (controlling for car density, observation day and time and
corridor direction) with a linear model. (i) shows the average addi-
tional interaction delay for cars as a function of bicycle density. The
bicycle density is calculated with Edie’s 1963 for each vehicle and
then binned to 0, 5, 10 and 15 bicycles per kilometer. We estimate
the additional delay similar as for (h).
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Figure B.5: Effects of bicycle platoon dispersion at intersections on car flow. The
experimental sites refer to the locations defined in Figure B.3.

icant effect sizes of around one second. We expect that this small effect
does not alter the implications of the revealed relationship.

With the existing and collected data, we then calibrate the tri-modal
MFD. Unfortunately, with the limited data we were not able to estimate
interaction effects along the full range of vehicle densities. However, we
expect that the observed variation in the data corresponds to the observa-
tions in most cities around the world. We summarize all parameter values
in Table B.2. The upper part of the table lists the parameters that define the
general network configuration, the center part of the table summarizes the
bus network characteristics, and the lower part gives the parameter values
of the interaction situations. The parameters in the upper two parts reflect
data used by Loder et al. (2017), Ambühl et al. (2018a) and Loder et al.
(2019) and corresponds to typical values for European cities such as Lon-
don or Zürich. In the lower part, we find the parameters for the continuous
multiclass FD and the platoon dispersion model by minimizing with non-
linear least squares the squared difference between the observed and fitted
dependent variable. All remaining parameters are identified previously di-
rectly from the empirical data. Last, we expect that additional stopping
delays caused by cars follow a linear function of the additional running
delays caused by cars with a slope of 0.25.
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Parameters Symbol Unit Global Mode

Car Bus Bicycle

Network configuration

Intersection spacing l (m) 250

Network diameter D (m) 5000

Intersection length c (m) 50

Number of lanes d (-) 1

Cycle length C (s) 60

Green time G (s) 20

Free flow speed v f (m/s) 7.6 6.2 4

Capacity Q (veh/s) 0.149 0.06 1.6

Jam density κ (veh/m) 0.15 0.05 0.6

Backward wave speed w (m/s) 1.6 1.6 2

Initial smoothing λ0 (-) 0.038 0.02 0.02

Density scaling factor h (-) 1 1 1

Bus network configuration

Bus stop spacing p (m) 333

Bus network design α (-) 0.8

Average number of transfers eT (-) 0

Fixed dwell time ζ (s) 30

Dwell time per passenger ζ ′ (s/pax) 1

Interaction situations

Avg. bicycle travel time Ta (s) 17.5

SD bicycle travel time σ (s) 15.9

Platoon clearing factor ψ (-) 0.98

Bicycle clearing limit b (bicycles) 50.16

Bicycle spacing threshold 1 k′v (veh/m) 0.01

Bicycle spacing threshold 2 k′′v (veh/m) 0.15

Vehicle spacing threshold k′ (veh/m) 0.01 0.003

Reduced speed vred (m/s) 4

Speed reduction factor δ (-) 0.88

Inv. speed-density FD parameter µ1 (m) 2 × 10−3

Inv. speed-density FD parameter µ2 (m2/s) 8 × 10−2

Inv. speed-density FD parameter µ3 (1/s) 2 × 10−4

Speed coupling parameter νb (-) 1.5 × 10−5

Passenger car unit intercept ϕ0 (-) 2

Passenger car unit slope ϕ′ (s/m) 3.32 × 10−2

Mixing parameter ψ0 (s) 9 × 10−2

Table B.2: List of parameters for the multi-modal interaction MFD.
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b.3 tables

Table B.3 lists all cities with the number of days and number of analyzed
regions (i.e. number of critical points) included in Section 4.3. Table B.4
lists all parameters used for the estimation of the geometric approach for
the estimation of the 3D-MFD in Section 4.4.2.
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No City Country Population [1000] Detectors Days Regions

1 Augsburg Germany 277 777 20 1

2 Basel Switzerland 167 83 7 1

3 Bern Switzerland 129 769 7 1

4 Birmingham United Kingdom 1097 114 6 1

5 Bolton United Kingdom 128 202 22 1

6 Bordeaux France 754 591 7 4

7 Bremen Germany 549 583 14 2

8 Cagliari Italy 154 133 50 1

9 Constance Germany 81 129 7 1

10 Darmstadt Germany 150 393 5 1

11 Duisburg Germany 487 590 14 1

12 Essen Germany 570 38 36 1

13 Frankfurt Germany 701 112 1 1

14 Graz Austria 270 300 10 1

15 Groningen Netherlands 198 55 6 1

16 Hamburg Germany 1746 419 105 1

17 Innsbruck Austria 125 49 30 1

18 Kassel Germany 194 601 4 3

19 London United Kingdom 8478 5804 22 16

20 Los Angeles USA 3970 4072 14 3

21 Luzern Switzerland 81 159 361 1

22 Madrid Spain 3142 2123 20 10

23 Manchester United Kingdom 517 221 22 1

24 Marseille France 1054 178 32 2

25 Melbourne Australia 4820 1649 15 3

26 Munich Germany 1408 548 1 2

27 Paris France 3236 513 366 4

28 Rotterdam Netherlands 618 227 6 1

29 Santander Spain 176 378 3 2

30 Speyer Germany 50 199 14 1

31 Strasbourg France 228 220 25 1

32 Stuttgart Germany 604 298 8 1

33 Taipei Taiwan 2674 445 14 6

34 Tokyo Japan 9273 2111 30 9

35 Torino Italy 902 787 21 3

36 Toronto Canada 2809 298 61 2

37 Toulouse France 747 910 7 4

38 Utrecht Netherlands 328 1072 4 1

39 Vilnius Lithuania 540 581 1 2

40 Wolfsburg Germany 122 405 14 1

41 Zürich Switzerland 385 1225 7 7

Table B.3: List of cities in the critical point model
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C
E C O N O M I C D ATA

For demand side analysis as well as the calibration of the traffic assign-
ment and equilibrium model we require also economic data that we will
discuss in this Appendix. In Section C.1 we introduce the household travel
survey that we use for the demand side analysis as well as calculation of
benchmark variables for the equilibrium model. In Section C.2 we describe
the available origin and destination matrix and in Section C.3 we summa-
rize the sources and data processing of the economic activity data. Last,
we list additional tables for the economic equilibrium model of Chapter 7

in Section C.4.

c.1 household data

The household data originates from the Swiss travel survey carried out ev-
ery five years, called the Mikrozensus. This thesis uses data from 2010 and
2015 (Swiss Federal Statistical Office and Swiss Federal Office for Spatial
Development, 2012, 2017). In each of the two surveys, around 60.000 inhab-
itants or around 1,% of the Swiss population is surveyed on their economic
status, mobility tool ownership as well as travel behavior.

For the demand side analysis in Chapter 3, we extract from the 2010

survey the following information of individuals: gender, age (grouped by
age categories), employment status, university degree and monthly gross
household income1. Aside the introduced accessibility variable in Section
3.2, we use two further spatial control variables: First, a spatial typology
definition by Swiss Federal Office of Spatial Development et al. (2011) that
differentiates between urban, agglomeration and non-urban environment
and, second, the quality of public transport, the latter two at the house-
hold location. For each location, the quality of public transport based on
distance to the next station, frequency at this station and available lines
on a five-level scale as proposed by Swiss Federal Office of Spatial De-

1 We recode the stated gross monthly household income classes into a continuous scale by
assigning the midpoint value of each class to the household. As 24 % of all households did
not report on their income, we impute the income with an ordered logit model. For each
household that did not report income, we assign the sum of the product of probability of
belonging to a class with the midpoint income class value. Results available on request.
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velopment (2011). The scale ranks from E (worst) to A (best). Table C.1
summarizes all variables used for the demand side model.

For the calibration of the economic equilibrium model, we require bench-
mark shares for the modal shares across origin and destination pairs as
well as benchmark shares of the mobility tool ownership levels. Table C.2
summarizes the benchmark values for each zone in the analysis regarding
mobility tool ownership and mode choice. People living within the Zürich
city limits (Kreise 1-12) largely have a season ticket and rarely rely on just
a car for travel. This contrasts with individuals commuting from outside
areas.

c.2 origin-destination data

We require information on where commuters live and work (nij), the ob-
served mode shares as well as the mobility tool portfolio choices of com-
muters. A commuter matrix for Switzerland was previously made to gen-
erate a synthetic population for MATSim (a Multi-Agent Transportation
Simulation) (Bösch et al., 2016). The essential information used in that com-
muter matrix had been collected by the Swiss government for the years
2010-2012 via a nation-wide census called a Strukturerhebung. The spatial
resolution of the MATSim commuter matrix is higher than that of our ap-
plied zoning in Figure 6.1. We mapped the origins and destinations of that
matrix to the zones used for this work and aggregated the data to line up
with other data used in this analysis. Because the totals of the commuter
matrix do not equal the workplace totals used in the Swiss national trans-
port model for the city of Zürich, we scaled the commuting matrix flows
in nij to match aggregate official employment statistics.

c.3 economic activity data

The economic data used in the model was largely obtained from the city’s
statistical offices. Table C.3 lists descriptive statistics and their sources. We
match all data from a comparable time period to provide consistency, lim-
iting any outside exogenous variation. We proxy for regional output levels
(Y j) by using a combination of regional gross product data, which was dis-
aggregated based on employment levels in each Kreis, and Kreis-level em-
ployment and commercial property rental data. The number of employed
workers was collected from a national employment and workplace survey
in 2008. Wages were obtained from a nation-wide transportation survey
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Categorical variables

Share

Person is male 45.53 %

Age categories

> 70 16.96 %

61-70 17.39 %

51-60 17.59 %

41-50 19.09 %

31-40 15.11 %

< 31 13.86 %

Employed 62.26 %

University degree 16.32 %

Quality of public transport at household location

Level A: very good 12.60 %

Level B: good 16.11 %

Level C: moderate 20.85 %

Level D: low 26.70 %

Level E: very low 23.76 %

Spatial typology at household location

City 32.50 %

Agglomeration 48.45 %

Countryside 19.05 %

Continuous variables

Mean SD Min Max

General accessibility

1.53 1.56 -10.09 5.14

Better accessibility by public transport

-0.01 0.61 -1.76 2.26

Better job accessibility

0.03 0.12 -0.40 0.42

Log of gross monthly household income in CHF

8.75 0.56 7.31 9.90

Table C.1: Sample summary statistics. The upper part lists categorical variables
and the lower part continuous variables.
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conducted in 2015 by the Swiss Federal Statistical Office and Swiss Federal
Office for Spatial Development (2017). To calculate relevant wage levels, all
full-time employed respondents working in Zürich were selected. As only
household income was reported in the survey, the reported household in-
come is divided by the square root of household members older than 18

years. Hourly wages are calculated by dividing monthly income by 160

working hours.2 The value of the regional capital stock is composed of the
value of commercial floor space and a specific factor. The specific factor
is the unobservable component of the regional gross product, or rather,
the difference between gross product levels and observed labour costs and
commercial rent. In other words, we distinguish between the observable
capital stock component labelled as capital generally, and the unobserv-
able component labelled as a specific factor. The capital rental rate, i.e., the
rent for commercial floor space, is available from a private company survey.
Regional housing stock levels and prices are characterized by residential
floor space and average rent. The average rent is a weighted average over
all rented flats featuring 1 to 5 rooms.

The economic data present a relatively intuitive reference point. Many
people work in Kreis 1, which features high wages and a limited housing
stock, and live further from the city centre, primarily north or along the
coast of the lake. Notably, there is limited variation in the housing rental
prices which is consistent with the high cost of living in Zürich.

c.4 tables

2 Note that given our characterization of the labour market in Zürich, the average Kreis-level
labour value share of production is 0.8.
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Mobility tool portfolio1 Mode2

Zone Car Season ticket Both Car Bus

1 0.041 0.679 0.279 0.058 0.942

2 0.034 0.556 0.410 0.125 0.875

3 0.032 0.570 0.398 0.110 0.890

4 0.038 0.605 0.358 0.077 0.923

5 0.013 0.516 0.471 0.073 0.927

6 0.034 0.526 0.440 0.138 0.862

7 0.047 0.518 0.435 0.145 0.855

8 0.012 0.395 0.593 0.157 0.843

9 0.034 0.574 0.392 0.090 0.910

10 0.036 0.545 0.418 0.090 0.910

11 0.043 0.531 0.425 0.146 0.854

12 0.054 0.525 0.421 0.183 0.817

101 0.235 0.508 0.257 0.322 0.678

102 0.380 0.332 0.288 0.569 0.431

103 0.258 0.450 0.291 0.352 0.648

104 0.281 0.502 0.218 0.394 0.606

105 0.238 0.325 0.437 0.410 0.590

106 0.262 0.475 0.263 0.398 0.602

107 0.655 0.100 0.244 0.827 0.173

108 0.317 0.369 0.315 0.468 0.532

109 0.219 0.510 0.271 0.296 0.704

110 0.231 0.425 0.344 0.351 0.649

111 0.130 0.521 0.350 0.222 0.778

1 Calculated as the share of all people employed in each zone based on the 2015 Swiss transportation
survey (Swiss Federal Statistical Office and Swiss Federal Office for Spatial Development, 2017), irre-
spective of their actual mode choices. Those without any mobility tool were assigned to the group of
season ticket holders.

2 Calculated as the share of all outbound commuting trips from each zone according to the 2015 Swiss
transportation survey.

Table C.2: Benchmark shares of mobility tool ownership and mode choice.
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Variable type Symbol Description

Economic Yi Production at node i

Uij Utility realized living at i and working at j

P Macro output price

Wi Wage rate in zone i

Ri Rental rate for capital in zone i

PSFj Price of specific factor in zone i

PHi Housing price in zone i

PLSij Shadow value of leisure for living in i and working in j

PUij Unit price of utility for living in i and working in j

LL Absentee landlord

RAij Representative agent living at i and working in j

LDj Labour demand at node j

Xj Productivity index at node j

NXij Effective level of labour net of productivity gains

NLSij Total leisure travelling from i to j

ACCj Accessibility index at node j

Transport Tijmr Total travel times from commuting from i to j

Cijmr Total path cost from i to j

Čijmr Total perceived path cost from i to j

Vkm Speed of mode m in zone k

Akm Accumulation of vehicles of mode m in zone k

Mij Minimum perceived path costs between i and j

ρ Shadow price (mobility tools, parking, bus capacity)

Qijt Shares of mobility tool ownership between i and j

Sorting ULi Utility from living at node i

NLi Number of people living in i

NLWij Number of people living in i and working in j

Nijmr NLWij using mode m and route r

Table C.4: Economic model variables
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Parameter type Symbol Description

Economic θl
i Value share of labour in zone i

θk
i Value share of capital in zone i

θs
i Value share of the specific factor in zone i

θls Value share of leisure

θc Value share of consumption

θu
ij Proportion of total residents at i working in j

θli
i Proportion of total residents living at i

σc Elasticity of substitution in demand for the composite good

Ki Reference level of capital stock in zone i

SFi Reference level of specific factor stock in zone i

Hi Reference level of housing stock in zone i

uij Reference utility level for living in i and working in j

β Productivity parameter measuring changes in productivity

µA Parameter measuring impact of worker mass on productivity

θu
ij Proportion of total residents at i working in j

θli
i Proportion of total residents living at i

µL Elasticity of housing location choice

µW Elasticity of work location choice

µA Impact of economic mass on productivity.

β Scaling of impact of economic mass on output.

Transport Lk Infrastructure length

network Bk Length of bus network

ϕk Share of dedicated bus lanes

Hk Headway of buses

zk Bus line overlapping factor

αk Bus network design

ϕij Amenity factor of mode m using route r

dijmr Macro route distance

θd
ijkmr Share of route distance in zone k

µR Scale parameter of route and mode choice

µM Price elasticity of mobility tool ownership

Zk Public transport capacity in k

πtotal
ijt Total cost of mobility tool ownership for portfolio t between i and j

πfix
t Fixed cost of mobility tool for mode m

πvar
tm Variable cost of mobility tool for mode m

nij Benchmark origin-destination matrix

Table C.5: Economic model parameters
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Kreis Lk Share of dedicated bus
lanes

αk zk

(lane-km) (-) (-) (-)

1 93.3 0.14 0.605 5.12

2 177.2 0.10 0.459 4.21

3 143.8 0.14 0.569 4.00

4 91.9 0.08 0.780 5.49

5 69.4 0.12 0.734 3.49

6 141.9 0.11 0.954 3.39

7 77.8 0.18 0.733 3.03

8 89.36 0.11 0.752 2.67

9 145.9 0.16 0.675 3.64

10 123.4 0.14 0.635 5.23

11 165.1 0.13 0.584 4.82

12 116.7 0.09 0.743 2.54

Table C.7: 3D-MFD calibration parameters.
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M AT H E M AT I C A L F O R M U L AT I O N S

d.1 maximum likelihood estimation

The discrete choice model presented in Chapter 3 requires the estimation
of the model parameters, usually denoted as β’s. Thus, we need to find an
estimator that is, first, efficient1, and second that it has the asymptotic prop-
erty of consistency2. A widely used and very general estimator is maximum
likelihood, which “stated simply, a maximum likelihood estimator is the value
of the parameters for which the observed sample is most likely to have occurred”
(Ben-Akiva and Lerman, 1985).

Consider now the follow notation. Assuming that all observations in the
sample of size N are independently and randomly drawn from the popu-
lation. Further, let xi be a vector of observed and non-stochastic variables
of the i-th observation, # is the parameter vector, yi is the observed choice
of individual i, but assumed to be a random variable and f is a function
mapping yi, xi and # to a probability value. Then, the likelihood of the
sample is defined as given by Eqn. D.1.

L =
N

∏
i=1

f (yi|xi,#) (D.1)

However, for convenience, the logarithm of L is used, which does not
change the values of the parameter estimates as the logarithmic function
is strictly monotonically increasing. Then, the problem to estimate the op-
timal set of parameters #̂ is given by Eqn. D.2.

max
#̂

logL = max
#̂

N

∑
i=1

log f
(
yi|xi,#̂

)
(D.2)

In case a solution to Eqn. D.2 exists, it must satisfy the usual first order

conditions
∂ logL

∂#̂
= 0 and the second order condition that at the maxi-

mum the Hessian matrix ∇2 logL must be negative semi-definite at #̂.

1 The estimator is unbiased and no other unbiased estimator has smaller variance
2 The estimator is consistent as when the sample size increases the distribution converges or

even collapses to the true parameters.
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In the case of f can be formulated in a closed way, the problem in Eqn.
D.2 can be solved with a conventional optimizer that is using, for example,
the Newton-Raphson algorithm. When f cannot be formulated in a closed
form, which is the case when f is the multivariate cumulative normal dis-
tribution function, one has to rely on simulation methods (Train, 2009)
or approximation methods, namely the maximum approximate composite
marginal likelihood (MACML) (Bhat and Sidharthan, 2011; Bhat, 2011) or
advanced matrix decomposition methods (Bhat, 2018).

d.2 mathematical formulation of optimization problems

In this thesis, I refer several times to optimization problems, as well as
equilibrium problems and mixed complementarity problems. In this sec-
tion, I refine these problems mathematically. I have taken this section in
large parts in revised form from Bliemer (2001). Section D.2.1 generally
formulates an optimization problem, then we discuss this formulation as a
variational inequality problems in Section D.2.2 and then as (mixed) com-
plementarity problem in Section D.2.3.

d.2.1 Optimization problems

First, we define that x ∈ Rn is a vector of decision variables with n ele-
ments. Further, X ⊆ Rn is a nonempty, closed and convex set; and g : X→
Rn is a continuous function. With this definitions, a problem for finding a
minimum is formulated as given in Eqn. D.3. Here, the problem is to find
that x ∈ X that minimizes g.

x = arg min
x∈X

g (x) (D.3)

Contrary, a problem for finding a maximum is similarly defined as given
by Eqn. D.4. Here, then the the problem is to find that x ∈ X that maximizes
g.

x = arg max
x∈X

g (x) (D.4)

d.2.2 Variational inequality problems

A Variational inequality problem is defined as follows. Again x ∈ Rn is
a vector of decision variables and, again, X ⊆ Rn is a nonempty, closed
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Figure D.1: Comparing solutions to the variational inequality problem and
the optimization problem. The illustration is a revised version
of Bliemer (2001).

and convex set. Now, we define that f : X → Rn is a vector of continuous
functions. Then, the variational inequality problem is defined as by Eqn.
D.5. Here, the problem is to find that x such that the inequality holds.

f (x)T (x− x) ≥ 0, ∀x ∈ X. (D.5)

Following Nagurney’s 1993 proof, the solution x to Eqn. D.5 is also a
solution to the optimization problem from Eqn. D.3 only if the following
two conditions hold: First, ∇xf (x) is symmetric for all x ∈ X and, second,
a pseudoconvex function h (x) exists that satisfies ∇xh (x) = f (x).

We can graphically illustrate this condition for the solution of both prob-
lems in Figure D.1. In this example, we have a one-dimensional problem,
i.e. n = 1. Further, we set f (x) = g′ (x). In Figure D.1a we see plot g (x)
over X. We see that the solution x is clearly a solution to the optimization
problem from Eqn. D.3 and to the variational inequality problem from
Eqn. D.5 because g′ (x) = 0. Figure D.1b then emphasizes that x is also
a solution of both problems when it is at the boundary of X. However,
Figure D.1c shows two points, x1 and x2, which are both solutions to the
variational inequality problem, but x1 is not a solution to the optimization
problem because g (x) is not pseudoconvex on X.

d.2.3 Complementarity problems

The mixed complementarity problem (MCP) used in Chapters 5, 6 and
7 are closely related to variational inequality problems formulated in the
previous section. The key difference between a variational inequality and
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a complementarity problem is that the latter is only defined on the non-
negative orthant Rn

+. For such a complementarity problem, we again set
x ∈ Rn

+ as the vector of decision variables. Let then h (x) : Rn
+ → Rn be

a vector of continuous functions. The complementarity problem is then to
find a vector x ∈ Rn

+ such that

h (x)T x = 0 (D.6)

h (x)T ≥ 0 (D.7)

In Eqn. D.6 we clearly see the key feature of a complementarity problem:
either the constraint or the associated variable has to be zero. This makes
the complementarity a feature rather than a requirement of the model.
Here, we use Rutherford’s 1995 notion of the ⊥ symbol to indicate the
complementarity between the constraint and associated variable as given
by Eqn. D.8.

h (x̄)T ≥ 0 ⊥ x̄ ≥ 0 (D.8)

Then, mixed complementarity problem (MCP) can also have equations
with free associated variables, i.e. no associated constraints. The associ-
ated variables are then not constraint to the non-negative orthant. In other
words, we a MCP is defined as given by Eqn. D.9.

hi (x̄) = 0 and li < xi < ui

or hi (x̄) ≥ 0 and xi = li
or hi (x̄) ≤ 0 and xi = ui

(D.9)

Here, l and u are lower and upper bounds of the associated variables,
which can be infinite given the mixed nature of the problem. We then
define a box B ≡ [l, u] = {x ∈ Rn : li ≤ xi ≤ ui} with l ∈< {R ∪ −∞}
and u ∈< {R ∪ ∞}. Intuitively, for both bounds, −∞ ≤ li < ui ≤ ∞ must
always hold. Lastly, this formulation allows to formulate a MCP rather
compact with MCP (h, B).

d.3 mathematical problem with equilibrium constraints

The mathematical problem with equilibrium constraints is a mathemati-
cal program with an optimization problem in its constraints (Bracken and
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McGill, 1973). In particular, a mathematical problem with equilibrium con-
straints (MPEC) is a constrained nonlinear programming problem where
the primary (first level) objective to be minimized or maximized and the
some or all constraints of the problem are formulated of the solution of a
second level problem that describe an equilibrium (Luo et al., 1996). Thus, it
is crucial element of the MPEC to define equilibrium constraints. Here, the
constraints can result from an optimization problem, variational inequal-
ities, the min operator, or a complementarity problem (Robinson, 1980;
Pang and Harker, 1990).

In Chapter 6, we are able to derive the second level constraints as a
mixed complementarity problem (MCP) as introduced in Section D.2.3.
Here, we follow Dirkse and Ferris (1998). The MPEC as given by Eqn. D.10

is defined with a set of design variables x ∈ X ⊆ Rn and a set of state
variables y ∈ Y ⊆ Rm. Variables from both sets of variables may enter the
objective function θ : Rm+n → R that is to be optimized. Then, the problem
has two different kind of constraints. The first constraints require the feasi-
bility of variables x and y, determined by functions h, g and box X. These
constraints can either be an inequality or an equation. Then the second set
gives the equilibrium constraints with box X and function F : Rm+n → Rm

or, in other words, that it solves the MCP defined by F and Y.

minimize θ (x, y)
subject to h (x) ∈ H

x ∈ X

g (x, y) ∈ G

and y solves MCP (F (x, ·) , Y)

(D.10)
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