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Abstract

Visual (self)localization enables Autonomous Ground Vehicles (AGVs) to assess their
position and orientation within an environment with up to centimeter level accuracy,
using only cost-effective camera sensors. Especially for high precision maneuvering
in GNSS-denied environments, using cameras for localization may be the best
suited option for budget- or weight constrained platforms. However, particularly in
outdoor environments, camera images are subject to various forms of appearance
change. This renders it challenging to reliably localize a vehicle against a map
previously built from sensor data recorded under different appearance conditions.
A powerful approach to deal with these appearance changes is to enhance the map
with visual data from several recordings, each collected under different appearance
conditions. The amount of data generated following this approach, however, scales
with the number of recordings collected over time, and thus unveils a need for
smart algorithms managing this data and ensuring efficient use of computation,
storage and network bandwidth resources. The contributions of this thesis are
centered around the research questions addressing this need for a resource-efficient
and reliable visual localization system for AGVs in outdoor environments.
In Part A, we propose an algorithm to dynamically select small amounts of

map data matching the current appearance condition, thereby lowering network
bandwidth consumption, and reducing computational demands on the vehicle
platforms. We show that exploiting co-observability statistics allows for performing
this appearance-based map data selection in a highly effective manner, without the
need to explicitly model or enumerate the different appearance conditions.
Part B is devoted to the development of a practical map management process

for a visual localization system targeted at long-term use. Our experiments have
revealed that multi-session maps converge to a relatively stable state after several
months of collecting recordings under varying appearance conditions. Furthermore,
through a tight integration of appearance-based map data selection with offline map
summerization, a completely scalable visual localization and mapping framework is
reached that can be used for indefinite periods of time.
In Part C, we present the visual localization system developed within the

UP-Drive project1 for autonomous cars in urban outdoor environments. Thereby,
a special focus has been placed on robustness against outdoor and long-term ap-
pearance change, and on a careful evaluation of the localization accuracy. We
demonstrate that reliable and accurate visual localization is feasible in structured
outdoor environments, even over long time spans, across vastly different seasonal,

1https://www.up-drive.eu
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Abstract

weather, and lighting conditions including at night-time, and with local point
features with binary descriptors on a CPU-only computer architecture.
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Zusammenfassung

Visuelle (Selbst-)Lokalisierung ermöglicht autonomen Landfahrzeugen ihre Position
und Orientierung in einer Umgebung mithilfe von kostengünstigen Kamerasensoren
zentimetergenau zu bestimmen. Speziell für hoch präzises Navigieren in Umgebun-
gen, in denen kein GNSS Signal verfügbar ist, können Kameras die bestmögliche
Sensorwahl sein für die Lokalisierung von Fahrzeugen, bei deren Ausstattung Kosten
oder Gewicht ein wichtiger Faktor sind. Gerade in Freilandumgebungen unterliegen
Kamerabilder jedoch verschiedenen Formen von Erscheinungsveränderungen. Dies
erschwert die Lokalisierung eines Fahrzeuges in einer Karte, die zuvor mithilfe von
Sensordaten, die unter anderen Erscheinungsbedingungen aufgezeichnet worden
sind, erstellt wurde. Eine bewährte Vorgehensweise, um diesen Erscheinungsverän-
derungen Herr zu werden, erweitert die Karte mit visuellen Daten von mehreren
Aufzeichnungen, die jeweils unter anderen Erscheinungsbedingungen aufgezeichnet
wurden. Die Menge an Daten, die dabei generiert wird, skaliert jedoch mit der
Anzahl Aufzeichnungen, die über die Zeit gesammelt und in die Karte integriert wer-
den. Aus diesem Grund sind intelligente Datenverarbeitungsalgorithmen gefragt, die
ökonomischen Ressourcenverzehr im Bezug auf Rechenleistung, Speicher, und Netz-
werklast sicherstellen. Die Beiträge dieser Arbeit behandeln diese Forschungsfrage
nach einem ressourceneffizienten und zuverlässigen visuellen Lokalisierungssystem
für autonome Landfahrzeuge in Freilandumgebungen.
Im Teil A präsentieren wir einen Algorithmus zur dynamischen Selektion von

kleinen Mengen an Kartendaten, die zu den aktuell vorherrschenden Erscheinungs-
bedingungen passen. Dies reduziert zum einen die Menge an Daten, die über ein
Netzwerk ausgetauscht werden muss, und senkt zum anderen die Anforderungen
an die Rechenleistung der Fahrzeuge. Wir zeigen, dass diese Aufgabe sehr effizient
mithilfe von Statistiken erreicht werden kann, die das gemeinsame Beobachten von
Landmarken abbilden. Im Speziellen ist keine explizite Codierung von Erscheinungs-
bedingungen erforderlich.

Teil B befasst sich mit der Entwicklung eines praktikablen Karten-Management-
prozesses für visuelle Lokalisierungssysteme, die für Langzeitgebrauch ausgelegt sind.
Unsere Experimente haben gezeigt, dass die multi-session Karten mit der stetigen
Integrierung von Aufzeichnungen bei unterschiedlichen Erscheinungsbedingungen
zu einem stabilen Zustand hin konvergieren. Der Zeitraum für diesen Konvergie-
rungsprozess liegt in der Grössenordnung von wenigen Monaten. Des Weiteren kann
durch eine enge Integration der erscheinungsabhängigen Kartendatenselektion mit
Techniken zur offline Kartenzusammenfassung ein komplett skalierbares visuelles
Lokalisierungssystem aufgebaut werden, das für beliebig lange Zeiträume einsetzbar
ist.
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Zusammenfassung

In Teil C präsentieren wir das visuelle Lokalisierungssystem, das während des
UP-Drive Projekts für autonome Autos in urbanen Umgebungen entwickelt wurde.
Dabei ist ein spezieller Fokus auf die Robustheit gegen Erscheinungsveränderungen
in Freilandumgebungen über längere Zeiträume, und auf eine gründliche Evaluie-
rung der Lokalisierungsgenauigkeit gelegt worden. Wir zeigen, dass zuverlässige
und präzise visuelle Lokalisierung möglich ist, in strukturierten Freilandumgebun-
gen, über lange Zeiträume, und trotz starker Erscheinungsveränderungen bedingt
durch den Jahreszeitenwechsel, in unterschiedlichen Wetter- und Lichtverhältnissen
inklusive Dunkelheit nachts, mit Punkt-Features mit binären Deskriptoren, und auf
einer Rechnerplattform ohne Grafikkarte.
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Preface

This is a cumulative doctoral thesis and as such consists of the most relevant
publications. The publications are grouped into three parts and attached at the
end.

In addition to the individual publications an overarching introduction is provided
in Chapter 1. We start with explaining the relevance of this thesis, followed by the
objectives and the approach taken to fulfill these. For each contributing publication
we explain how it embeds into the overall goals of this thesis and highlight the
relevance of the research work in Chapter 2. Furthermore, we show how each
paper is related to our other publications. We close this thesis by a summary
of the achievements and provide an outlook for future directions and research in
Chapter 3.
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Chapter1
Introduction

Knowledge of its own location within an environment constitutes one of the core
competences of any mobile autonomous robot. Only by knowing its current location
it becomes possible to infer where to go, and how to get there. Localization is thus
a prerequisite for any goal-oriented planning and navigation capabilities.

It serves, however, also a second purpose. In complex surroundings, information
gathered by sensors on-the-fly may not, in every situation, be sufficient for proper
and safe interaction with the environment. In these cases, accurate localization
allows exploiting prior information about the environment, thereby lowering the
dependence on the robot’s on-board sensory capabilities.
The establishment of satellite navigation systems (GNSS) approximately forty

years ago have in principle enabled localization in outdoor environments every-
where around the globe. However, a lack in accuracy and unpredictable failure
modes especially in urban environments render GNSS-based localization solutions
unsuited for tasks requiring reliable and highly accurate localization, such as, for
example, precise parking maneuvers of autonomous cars, or precise driving in
(semi-)structured environments such as roads without lane markings, on sidewalks,
or in open pedestrian areas in city centers. In addition to that, GNSS localization
may be extremely inaccurate near high-rise buildings or even entirely unavailable
in underground parking garages and tunnels.
As an alternative to GNSS-based localization, mobile robots may be equipped

with exteroceptive sensors that directly perceive the near distance environment
and allow to infer the robot’s pose by relating the current observations with
previously recorded data (i.e., the map). In the context of ground vehicles in
outdoor environments, cameras and LiDAR sensors have received most attention
for this role in the respective research communities in recent years. While LiDAR
sensors are able to precisely measure the local geometry and are largely unaffected
by appearance change, they are comparatively expensive. Cameras, on the other
hand, are cost-efficient, yet still offer very rich information about the environment,
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1 Introduction

both in regard to appearance, but through Structure-from-Motion also in regard to
geometry. They are thus an attractive choice of sensor for localizing autonomous
ground vehicles in outdoor environments. It is the aim of this thesis to investigate
the use of cameras to accurately localize ground vehicles in outdoor environments
and address specific challenges arising in this context.

1.1 Scope and Objectives

For a visual localization system to be useful in real-world applications, a series of
requirements need to be met. a) Accuracy: Firstly, the estimates of the vehicle’s
pose in its environment must be sufficiently accurate. For the applications targeted
in this thesis, we aim at estimating all six degrees of freedom of the vehicle’s pose
with centimeter level accuracy, such that safely steering an autonomous vehicle
on urban roads can be guaranteed. b) Reliability: Secondly, a visual localization
system needs to be able to reliably provide pose estimates. Short periods of
localization failure may be bridged by forward-propagating self-motion from wheel-
odometry. This, however, quickly accumulates drift, leading to inaccurate and
uncertain pose estimates already after a few meters. Therefore, a high localization
recall is pivotal. In outdoor environments, localization recall is mainly challenged
by changing appearance conditions, rendering it difficult to match visual cues
in the current camera images with map data recorded previously under different
conditions. c) Efficiency: Thirdly, pose estimates must be provided promptly
and frequently, using the limited computational, memory and network bandwidth
resources available on the mobile platform, the server-based map backend, and
the communication infrastructure in-between. This requires fast algorithms, and
compact data representations.
In addition to that, visual localization is closely related to mapping, with the

aforementioned requirements on accuracy, reliability, and efficiency imposing direct
implications on the map representation, and the process of building, extending,
and curating visual maps. Accurate localization is only possible if the respective
map data is mapped accurately. High localization recall, on the other hand, may
require the map to contain visual cues from multiple recordings of an environment
under differing appearance conditions. This might increase the size of the map,
rendering it difficult to optimize, transmit, store, and load it into memory. Real-time
localization further requires fast access to map data on the vehicles.
The development of a visual localization system that meets all of our criteria

mentioned above, that is thus both highly accurate, reliable, and efficient, exceeds
the scope of this thesis. However, a number of specific problems related to these
three goals have been investigated in depth, and are presented in the following
three parts. Part A is devoted to online selection of visual map data matching the
current appearance condition. This part thus addresses efficiency, reducing both
map transmission costs and computational resource demands on the vehicle. In
Part B, the challenge of building and managing maps over long time spans within
a completely scalable visual localization and mapping framework is addressed. A

4



1.2 Approach

W
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Cameras
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TWBt

Figure 1.1: One of the UP-Drive autonomous cars (left), and an illustration of the
sensor set-up used for visual localization in this thesis (right). A multi-camera rig,
consisting of four wide angle cameras with fisheye lenses, is used together with wheel-
odometry to provide accurate estimates of the 6DoF transformation between the vehicle
body frame (B), and the map frame of reference (W) for every time where a set of camera
images is captured (t).

main focus of this part is thus efficieny and reliability. In Part C, we present
VIZARD, the visual localization system developed in the UP-Drive project. With
this, we primarily address the need for accuracy and reliability.

1.2 Approach

The primary application targeted in this thesis are autonomous cars in urban
outdoor environments. The research and technology is, however, directly applicable
to arbitrary Autonomous Ground Vehicles (AGVs), both indoors and outdoors.
Furthermore, the full potential of some of the algorithms presented, such as the
online selection of map data based on the current appearance condition, or the
underlying multi-session mapping framework, can best be exploited in outdoor
environments, and in scenarios involving a fleet of vehicles sharing a map for
localization.

We additionally assume that the operating environment is known and may thus
be mapped a priori, and that the AGVs are equipped with one or multiple cameras,
and a sensor providing self-motion estimates, such as wheel-odometry. One of the
UP-Drive autonomous cars, together with an illustration of its sensor set-up as it
is used for the visual localization algorithms presented in this thesis, is depicted
in Figure 1.1. Furthermore, a visualization of the car localizing inside our map
consisting of 3D point-feature landmarks is shown in Figure 1.2.

5



1 Introduction

Figure 1.2: Illustration of the localization and mapping framework used in this thesis.
The multi-session map consists of sparse 3D points, dubbed landmarks, triangulated from
2D point features (e.g., FREAK[3]) tracked in successive camera images. Different colors
are used to represent the map session a landmark has been generated from. Feature
points extracted on the live camera images on the vehicle are matched against map
landmarks to form 2D-3D geometric constraints, from which the vehicle 6DoF pose
with respect to the map reference frame is inferred using Non-Linear Least-Squares
optimization. Inlier landmark observations are depicted as dark yellow lines between the
camera, and the respective 3D map landmark.

1.2.1 Part A: Online Landmark Selection
Appearance conditions in outdoor environments can be drastically different, due
to changes in weather, season, or illumination between day-time and night-time.
These conditions may be so diverse that is it not possible to use a single set
of visual landmarks for localization under all the possible different appearance
conditions. To illustrate this, it suffices to note that not only feature descriptors of
the same physical structure may be different under changing appearance conditions,
but also the location of interest points may be vastly different at day time as
opposed to at night. A map allowing for reliable visual localization under any
appearance condition in these environments thus requires incorporating landmarks
from multiple, different appearance conditions. We refer to such a map as a multi-
session map. However, localization at any given point in time does not require all
map landmarks, as only those representing the current appearance condition can
be matched with features observed in the current camera images. This offers a
potential to optimize for resource efficiency by selecting landmarks representing the
current appearance condition in an online fashion, prior to matching them with
features extracted from the current camera images. This on the one hand reduces
the computational demands on the vehicles, as only a small fraction of landmarks
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1.2 Approach
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Figure 1.3: Shared-map scenario motivating the proposed appearance-based landmark
selection. One large map containing landmarks recorded under different appearance
conditions is stored and maintained on a cloud-based map backend. Vehicles en route
under different appearance conditions retrieve selected landmarks matching their currently
encountered appearance condition (thick dashed arrow), use those landmarks for visual
localization (turquoise lines), and report back a set of recently observed landmark
identifiers (thin dashed arrow).

needs to be processed in every iteration of the localization algorithm. On the other
hand, it also allows for significantly reducing network bandwidth usage required
for transmitting map data from a cloud-based server to the vehicle. The latter is
of special interest in a scenario, where a fleet of vehicles uses a common map for
localization, as it is anticipated for autonomous cars in the near future. A schematic
illustration motivating the online landmark selection is depicted in Figure 1.3.

1.2.2 Part B: Efficient Map Management
In Part A, we assume a multi-session map with recordings covering all appearance
conditions to be available in advance. In practice, this is not the case. Instead,
the multi-session map needs to be built incrementally and curated over time, as
gradually, data recorded under different appearance conditions becomes available.
As some of the dynamics of appearance change, such as seasonal variations, occur on
a very slow time scale, it may require a substantial amount of time until the multi-
session map has reached sufficient appearance coverage. In addition to that, even
on a cloud-based server, the computational and storage budget is finite. Therefore,
conditions have to be defined for deciding which recordings of the environment
should be added to the map, and algorithms have to be employed that tackle an
indefinite growth of the map. In this part, we address these needs and investigate
research questions such as how long it may take for a multi-session map to reach
sufficient appearance coverage in outdoor environments, and what implications

7
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Camera Image
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Figure 1.4: Local iterative localization paradigm, dubbed “Map-Tracking”, used in
all three parts of this thesis. A rough estimate (T̂WBt ) of the vehicle’s position and
orientation is used to project 3D map landmarks into the camera images and form 2D-3D
matches using a local search window in the image space, and the descriptor distance
(left side, “Before Pose Optimization”). These 2D-3D matches are used in a state
estimation module to refine the vehicle pose estimate (T̄WBt ). In Part A and B, a simple
estimate of the vehicle pose using only the visual 2D-3D constraints is used. In contrast
to that, VIZARD in Part C fuses the visual 2D-3D constraints with wheel-odometry
measurements in a probabilistic manner, in order to achieve temporally smoother pose
estimates. The refined pose estimate is further used to distinguish between inlier and
outlier landmark observations, employing a Reprojection Threshold ρ[px] (right side,
“After Pose Refinement”).

the use of map summarization techniques may have on visual localization using
appearance-based landmark selection.

1.2.3 Part C: Reliable Visual Localization in UP-Drive
A substantial effort during this doctoral study has been devoted to developing a
highly reliable and accurate visual localization system, dubbed VIZARD, for the
autonomous cars in the UP-Drive project. To achieve this, we on the one hand
fuse wheel-odometry measurements with visual localization constraints using an
Information Filter, which corresponds to the dual formulation of the (Extended)
Kalman Filter. This allows for smooth and accurate pose estimates at all times.
We further employ a local localization algorithm, referred to as map-tracking, in
combination with multi-session maps. This enables highly reliable localization
across vastly different appearance conditions. A detailed illustration of the this
local localization algorithm can be found in Figure 1.4.

Apart from presenting the algorithmic components of VIZARD, we further focus
on an extensive evaluation of its long-term performance in outdoor environments.
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Chapter2
Contributions

In this chapter, the scientific contributions achieved during this doctoral study are
presented in relation to four first-author publications, which constitute the core of
this thesis. All of the presented work has been conducted in strong collaboration
with the co-authors and supervisors.

2.1 Part A: Online Landmark Selection

The following two papers address a specific aspect of the scalability challenge
subject to visual localization systems, namely that of adaptive selection of map
data on the vehicle side. This allows to save network bandwidth, and reduces the
on-board computational load on the vehicles. It is in contrast in particular to offline
map summarization[20, 24, 35, 65], which addresses an orthogonal aspect of the
scalability challenge by performing an offline selection of map data on the map
backend (server) side.

Paper I
Mathias Bürki, Igor Gilitschenski, Elena Stumm, Roland Siegwart and Juan Nieto,
“Appearance-Based Landmark Selection for Efficient Long-Term Vi-

sual Localization” ,
presented at IROS 2016 in Daejeon, South Korea

Context

Using a sparse map with binary visual feature descriptors, it is not feasible to cover
all appearance conditions encountered in outdoor environments using a single set
of landmarks. Instead, a significant fraction of the landmarks are specific to the
appearance condition encountered during the respective sortie through the mapped
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2 Contributions

environment. That is, these landmarks may only be re-detected and matched under
similar appearance conditions. It follows from this, that at any given point in
time, not all of the landmarks available in the map are useful for localization, as
only a subset of landmarks matches the appearance condition currently present.
Evaluating this subset of useful landmarks in an online manner given the currently
encountered appearance conditions allows for efficient use of network bandwidth
and computational resources.

Contribution

We propose a landmark selection scheme to select landmarks from a multi-session
map matching the current appearance condition. At its core, a ranking function
assigns a score to each landmark based on the co-observability relation with recently
observed landmarks. It is thus an unsupervised distinction between useful and
not useful landmarks under the current appearance condition, solely based on
the implicit appearance coherence encoded by the co-observability relation. In
particular, no explicit modeling of different appearance conditions is necessary. In
contrast to related work by Linegar et al.[45], and MacTavish et al.[52], our method
is able to evaluate the appearance coherence on the level of individual landmarks,
and is thus able to exploit multi-session maps containing landmarks observed from
more than one map session. In a thorough evaluation using two outdoor dataset
collections, covering day-time conditions over the course of a full year, and the
transition from day-time to night-time respectively, we demonstrate the potential
of appearance-based landmark selection to significantly reduce network bandwidth
usage while maintaining as high a localization performance as when using all map
landmarks instead. Furthermore, an analysis of jointly selected landmarks across
different datasets shows that our landmark selection algorithm uses different sets
of landmarks for different times of the year, or different times of day respectively.
This supports our hypothesis of needing more than a single set of landmarks to
cover the various appearance conditions in outdoor environments.

Interrelations

The work presented in Paper I introduces an efficient algorithm for selecting
landmarks based on the current appearance condition, but the conference format
prevents an in-depth analysis and evaluation of the proposed selection strategy.
Furthermore, the sensor setup available on the vehicle used for collecting the datasets
in Paper I does not allow for an assessment of the localization accuracy. These
aspects are addressed in Paper II, and the reader is kindly referred to Section 2.1.
In addition to that, the works presented in Paper I and Paper II assume an

a-priori available multi-session map covering all appearance conditions. Building
such a map in practice may be a time consuming and long lasting task, as for some
modes of outdoor appearance change, such as seasonal variations, it may take up to
one year until all necessary data can be collected. It is thus crucial to investigate
a chronological, incremental multi-session map building process. Furthermore, as
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2.1 Part A: Online Landmark Selection

described in Section 2.1, appearance-based landmark selection only addresses one
aspect of the visual localization scalability challenge. In that regard, it is of special
interest to evaluate the interaction of online apppearance-based landmark selection
with offline map summarization. These research questions are addressed in Paper III
in Part B, and the reader is kindly referred to Section 2.2.

Paper II
Mathias Bürki, Cesar Cadena, Igor Gilitschenski, Roland Siegwart and Juan Nieto,
“Appearance-Based Landmark Selection for Visual Localization” ,
published in the Journal of Field Robotics, 2019

Context

This paper builds upon and extends the work presented in Paper I. We aim at
selecting small amounts of landmarks from a multi-session map matching the current
appearance condition, in order to minimize map data exchange, and computational
resource demand on the vehicle platforms. For more details on the context, the
reader is kindly referred to Section 2.1.

Contributions

This papers investigates the characteristics of the appearance-based landmark
selection introduced in Paper I in more depth. In particular, the influence of
observation sessions, a technique introduced in Paper III to collect more statistical
evidence for the co-observability relation without increasing the size of the map, is
analyzed in detail. Furthermore, an additional landmark ranking function based
on appearance equivalence classes is derived and evaluated. This ranking function
is agnostic to the number of rich- and observation sessions present in the map,
or the number of landmarks associated with any of the map sessions, and thus
more ubiquitously usable in practice. We further relate and compare the proposed
appearance-based landmark ranking functions with ranking schemes commonly
used in the field of Information Retrieval. In addition to that, we make use of the
NCLT dataset collection, which offers ground-truth poses. This allows evaluating
and comparing the localization accuracy using different landmark ranking functions.
We further evaluate the computation times needed for the individual modules
in the localization pipeline. This has revealed a substantial potential to save
computational resources on the vehicle platform by employing appearance-based
landmark selection, since the latter allows to discard a large fraction of landmarks
mismatching the current appearance condition at an early stage in the localization
algorithm. As a result, the runtime of the localization algorithm on the vehicle can
be significantly reduced compared to when all the landmarks from all appearance
conditions have to be processed. Apart from saving computational resources on the
vehicles, this further leads to a decoupling of the online localization runtime from
the number of landmarks or sessions present in the multi-session map, and thus
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2 Contributions

improves the scalability of the localization and mapping system.

Interrelations

The work presented in this paper constitutes an extension, both theoretically and
experimentally, of Paper I. Several practical aspects, such as the combination of
online appearance-based landmark selection with offline map summarization, or
the chronological, incremental building of the respective multi-session maps, are
investigated in Paper III in Part B, presented in Section 2.2.

2.2 Part B: Efficient Map Management

Appearance-based landmark selection on the one hand only addressed one aspect
of the visual localization scalability challenge, and on the other hand assumes
an a-priori availability of a multi-session map covering all appearance conditions
of a given outdoor environment. In practical applications, however, algorithms
like appearance-based landmark selection, which optimize a specific part of the
localization pipeline, must be combined with other modules optimizing orthogonal
constraints to form a complete scalable localization framework. Furthermore,
managing multi-session maps over long time spans poses a challenge on itself, as
the map may need to be extended with data from new sessions as they become
available over time.

Paper III
Mathias Bürki, Marcin Dymczyk, Igor Gilitschenski, Cesar Cadena, Roland Sieg-
wart, and Juan Nieto,
“Map Management for Efficient Long-Term Visual Localization in Out-

door Environments” ,
presented at IV 2018, in Changshu, China

Context

The work in this paper is driven by research questions addressing the practicability
of a scalable visual localization system for real-world applications with a fleet of
Autonomous Ground Vehicles. A map ought to be shared among multiple vehicles
to capitalize on data collection synergies, and prevent data duplication. It may
contain multiple sessions to cover a wide range of appearance conditions, but it
must be built incrementally, and chronologically. The visual localization system
as a whole must be scalable and resource efficient. That is, the map may not
grow indefinitely over time, and network bandwidth needed for exchanging map
data, as well as computational resources, both on a map backend, but also on the
vehicle side, are limited and must be used economically. Furthremore, a simple
and effective procedure for updating and curating the map is needed in long-term
operations.

12



2.3 Part C: Reliable Visual Localization in UP-Drive

Contribution

We propose a decision criteria for adding a new dataset to a (multi-session) map
based on the translation error resulting from localizing the new dataset against the
existing map in an offline process. Indefinitely adding new session to the map may,
however, at some point exceed the boundaries of the computational resources on the
cloud-based map backend. We tackle this challenge by employing map summariza-
tion techniques, thereby enforcing an upper bound on the total number of landmarks
in the map. Furthermore, we propose the concept of observation sessions, which
allow to significantly increase the co-observability statistics between map landmarks
without increasing the size of the map. In our long-term evaluation, we show that
online appearance-based landmark selection, and offline map summarization, can
be successfully deployed in combination, leading to highly efficient online visual
localization in combination with a highly efficient multi-session mapping backend.

Interrelations

This paper addresses several practical aspects of developing and deploying a com-
pletely scalable visual localization and mapping framework. It is thus related
to Paper I and Paper II presented in Section 2.1 and Section 2.1, which present
and evaluate one of the key components of our scalable localization and mapping
framework, namely online appearance-based landmark selection. In addition to that,
the findings related to chronological, incremental map building and management
are applicable to the work presented in Paper IV in Part C 2.3, which also employs
multi-session maps to gain robustness against appearance change in long-term
operations.

2.3 Part C: Reliable Visual Localization in UP-Drive

This part presents our efforts within the UP-Drive project to develop a highly
reliable, robust, and accurate visual localization system for autonomous cars in
urban outdoor environments. In contrast to Part A, and B, where we have addressed
specific (sub-)modules of a localization system, we are in Part C interested in criteria
concerning a high performing localization system as a whole. Reliability in this
context means our localization system can be trusted to be functional regardless of
the current weather, lighting or seasonal conditions. It is further crucial for the
localization system to run for indefinite periods of time on the vehicles without
interruptions or interventions. To achieve this robustness, careful software design,
error handling, and memory management is necessary. In addition to that, the
control stack in the UP-Drive cars solely relies on our visual localization system for
actuating the steering wheel. A centimeter level localization accuracy at all times
is thus required, in order to keep the cars safely within the lane boundaries.
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2 Contributions

Paper IV

Mathias Bürki, Lukas Schaupp, Marcin Dymczyk, Renaud Dubé, Cesar Cadena,
Roland Siegwart, and Juan Nieto,
“VIZARD: Reliable Visual Localization for Autonomous Vehicles in

Urban Outdoor Environments” ,
presented at IV 2019 in Paris, France

Context

With VIZARD, we present a visual localization system for urban outdoor environ-
ments. A special focus is set on robustness against weather, lighting, and seasonal
appearance change, as they are common to urban outdoor environments. We are fur-
ther constrained to use a CPU-only computational platform on the UP-Drive cars,
limiting us to the use of binary feature descriptors, such as FREAK[3]. The devel-
opment of VIZARD has further been driven by high requirements on the metric
localization accuracy and the need for a real-time capable localization system.

Contribution

We outline the components of our proposed visual localization system in detail,
and describe our methodology of fusing wheel-odometry measurements with visual
constraints stemming from map-tracking, our local localization module. The main
contribution in this part, however, is a thorough parameter study and extensive
evaluation in several challenging urban outdoor environments over multiple years
and several hundreds of driving kilometers. We derive optimal parameters for our
map-tracking module, allowing to maximize localization recall while maintaining
high localization accuracy. Additionally, we compare the use of different binary
descriptors, and demonstrate the benefit in localization recall attainable by perform-
ing local localization, as opposed to global localization. This work shows that visual
localization using point features with binary descriptors is able to provide accurate
metric pose estimates with nearly 100% localization recall across different weather
and seasonal conditions, and even a night-time under artificial street lighting.

Interrelations

VIZARD addresses the probabilistic fusion of wheel-odometry and visual localization
constraints neglected in the proof-of-concept localization systems used in Part A
and B. This allows computing smoother vehicle poses, an important requirement
of control algorithms relying on the pose estimates from a localization system.
Furthermore, it is complementary to the work presented in Part A and B, as it
addresses more development and integration related aspects, whereas the the work
presented in Part A and B is more research oriented.
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2.4 List of Publications

2.4 List of Publications

In the context of the author’s doctoral studies the following publications were
achieved. They are presented in chronological order.

• Lionel Heng, MATHIAS BÜRKI, Gim Hee Lee, Paul Furgale, Roland Sieg-
wart, Marc Pollefeys, “Infrastructure-Based Calibration of a Multi-
Camera Rig” , ICRA, 2014

• Hugo Grimmett, MATHIAS BÜRKI, Lina Paz, Pedro Pinies, Paul Furgale,
Ingmar Posner, Paul Newman, “Integrating Metric and Semantic Maps
for Vision-Only Automated Parking” , ICRA, 2015

• Ulrich Schwesinger, MATHIAS BÜRKI, Julian Timpner, Stephan Rottmann,
Lars Wolf, Lina Maria Paz, Hugo Grimmett, Ingmar Posner, Paul Newman,
Christian Häne, Lionel Heng, Gim Hee Lee, Torsten Sattler, Marc Pollefeys,
Marco Allodi, Francesco Valenti, Keiji Mimura, Bernd Goebelsmann, Woj-
ciech Derendarz, Peter Mühlfellner, Stefan Wonneberger, Rene Waldmann,
Sebastian Grysczyk, Carsten Last, Stefan Brüning, Sven Horstmann, Marc
Bartholomäus, Clemens Brummer, Martin Stellmacher, Fabian Pucks, Mar-
cel Nicklas, Roland Siegwart, “Automated Valet Parking and Aharging
for e-Mobility” , IV, 2016

• Peter Mühlfellner, MATHIAS BÜRKI, Michael Bosse, Wojciech Deren-
darz, Roland Philippsen, and Paul Furgale, “Summary Maps for Lifelong
Visual Localization” , JFR, 2016

• MATHIAS BÜRKI, Igor Gilitschenski, Elena Stumm, Roland Siegwart and
Juan Nieto, “Appearance-Based Landmark Selection for Efficient
Long-Term Visual Localization” , IROS, 2016

• Miguel Valls, Hubertus Hendrikx, Victor Reijgwart, Fabio Meier, Inkyu Sa,
Renaud Dubé, Abel Gawel, MATHIAS BÜRKI, Roland Siegwart, “Design
of an Autonomous Racecar: Perception, State Estimation and Sys-
tem Integration” , ICRA, 2018

• MATHIAS BÜRKI, Marcin Dymczyk, Igor Gilitschenski, Cesar Cadena,
Roland Siegwart, and Juan Nieto, “Map Management for Efficient Long-
Term Visual Localization in Outdoor Environments” , IV, 2018

• Nikhil Bharadwaj Gosala, Andreas Bühler, Manish Prajapat, Claas Ehmke,
Mehak Gupta, Ramya Sivanesan, Abel Gawel, Mark Pfeiffer, MATHIAS
BÜRKI, Inkyu Sa, Renaud Dubé, Roland Siegwart, “Redundant Percep-
tion and State Estimation for Reliable Autonomous Racing” , ICRA,
2019
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• MATHIAS BÜRKI, Cesar Cadena, Igor Gilitschenski, Roland Siegwart and
Juan Nieto, “Appearance-Based Landmark Selection for Visual Lo-
calization” , JFR, 2019

• MATHIAS BÜRKI, Lukas Schaupp, Marcin Dymczyk, Renaud Dubé, Ce-
sar Cadena, Roland Siegwart, and Juan Nieto, “VIZARD: Reliable Visual
Localization for Autonomous Vehicles in Urban Outdoor Environ-
ments” , IV, 2019

• Lukas Schaupp, MATHIAS BÜRKI, Renaud Dubé, Roland Siegwart, Ce-
sar Cadena, “OREOS: Oriented Recognition of 3D Point Clouds in
Outdoor Scenarios” , under review for IROS, 2019

2.5 List of Supervised Students

Throughout the author’s doctoral studies, a substantial effort has been spent on
supervising a series of student projects.

Master’s Thesis
Master student, six months full time

• Dino Hüllmann, “Continuous-Time SLAM using Hermithian Splines”

• Lukas Fröhlich, “Improving Multi-Sensor Data Fusion for Localization of
Automated Vehicles”, awarded with the ETH Medal for an outstanding
Master’s Thesis, nominated for the Johann Puch Automotive Award

• David Vogt, “Outdoor Global Localization for an Autonomous Car”,

• Leonie Traffelet, “Hybrid Vision-LiDAR Localization for Autonomous Ground
Vehicles”,

• Lukas Schaupp, “Place Recognition with Data-Driven Descriptors using 3D
Point Clouds”,

• Gregory Bättig, “One Shot Learning for Traffic Sign Recognition”,

• Jannic Veith, “Visual Localization for an Autonomous Car in a 3D LiDAR
Map”

Semester Projects
Master student, three to four months part time

• Franz Thurnhofer, “Comparison of State-of-the-Art Methods for Localization
of Self-Driving Cars”,
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• Baldur Yngvason, “Let’s Drive! Mission Planning for a Self-Driving Car”,

• Victor Reijgwart, “System Integration for an Autonomous Racecar”,

• Miguel de la Iglesia, “State Estimation and Sensor Fusion for an Autonomous
Racing Car”,

• Manish Prajapat, “Sensor Fusion and Velocity Estimation for an Autonomous
Race Car”,

• Fynn von Kistowski, “Distillation of Keypoint Detection and Description
Networks for Mobile Applications”,

• Niclas Vödisch, “Cone Detection and Classification using Cameras and a
LiDAR”,

• Shashank Shing, “Perception and Fusion of Cone Measurements for an Au-
tonomous Racing Car”,

• Patrick Pfreundschuh, “Map-Tracking using LiDAR Sensors for Localization
of an Autonomous Car”

Computational Science and Engineering (CSE) Seminar
Master student, literature review, three to four months part time

• Shoshana Jokobovits, “RatSLAM: a Review”,

• Stefano D’Apolito, “Feature Detection and Extraction in 3D LiDAR Point-
Clouds”,

Probabilistic Learning for Robotics (PLR) Project
Master student, three to four months part time

• Niclas Vödisch, and Andreas Bühler, “Vision-LiDAR Inter-Modality Repre-
sentation Learning using Generative Adversarial Networks (GANs)”,

• Hao-Chih Lin and Juan Lin, “Vision-LiDAR Inter-Modality Representation
Learning using Superpoint”,

Bachelor’s Projects
Bachelor student, three to four months part time

• Tobias Grundmann, “Long-Term Evaluation of Keypoint Descriptor Stability
in Outdoor Environemnts”

• Mathieu Rohner, “Integration and Evaluation of a Binary Bag-of-Words for
Outdoor Loop Closure”,
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Study on Mechatronics
Bachelor student, literature review, three to four months part time

• Kornel Eggenschwiler, “State-of-the-Art in Visual Outdoor Loop Closure
Detection”

• Maurice Grunder, “State-of-the-Art in Large-Scale Bundle-Adjustment for
Visual SLAM”
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Chapter3
Conclusions and Outlook

During these doctoral studies, we have been able to push forward the state-of-the-art
in visual localization in outdoor environments. Thereby, experience and insights
have been gained, which are shared in this chapter.

As a primary conclusion, we can state that accurate and reliable visual localization
is feasible in challenging outdoor environments, despite the considerable change in
appearance conditions encountered in long-term operation. We have been able to
demonstrate this in particular in Part C, using classic Computer Vision tools such
as point features and local descriptors, and on a CPU-only computational platform.
As our experiments have shown, a high localization recall and thus a high reliability
can be attributed to a large extent to the use of a local localization algorithm, such
as map-tracking, as compared to global localization.
Nevertheless, and in spite of the efforts made in Part A and Part B towards

efficiency and economic resource use, scalability remains a major challenge. Even
when employing online appearance-based landmark selection, combined with offline
map summarization, the visual localization system as presented in this thesis
and used in UP-Drive may reach its limitations in areas considerably larger than
several square kilometers. The recent trend towards more abstract, and thus
more semantically meaningful visual features may help to significantly improve
the scalability of visual localization in the future. It remains, however, an open
challenge and future research focus to demonstrate that visual localization with
more abstract feature representations is able to achieve similarly accurate pose
estimation results as with classic point features.

It the remainder of this chapter, concluding remarks and possible future research
directions are discussed for a selection of subtopics of special interest for each of
the three parts of this thesis.
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3 Conclusions and Outlook

3.1 Part A: Online Landmark Selection

We have presented an algorithm for dynamically selecting landmarks from multi-
session maps matching the current appearance conditions. With this, map data
transmission costs can be lowered, and the requirements on the computational
platform on the vehicles is reduced, without significantly sacrificing localization
precision or recall.

How to encode map data from multiple appearance conditions in the map?

A limitation of many algorithms addressing online adaptive selection of map
data is a often strong and inherent dependence on the underlying map repre-
sentation. That is, the appearance-based landmark selection we have proposed
in Paper I and Paper II is targeted at a multi-session map representation,
where sparse 3D point landmarks are all expressed in the same frame of
reference. It is only transferable to a limited degree to other map representa-
tions. In recent years, various other paradigms have been followed in order to
represent visual maps used under different appearance conditions[16, 52, 71],
without a clearly visible trend towards a more generic or standardized map
data representation. Future efforts to harmonize map representation may
foster the development of online and offline map selection algorithms with a
broader, more generic applicability.

Evaluation of Appearance Condition As described in Paper II, the consistency with
the current appearance condition may need to be re-evaluated repeatedly
along a traversal through the mapped area (see “reset” in Section 5.7). A
naive strategy of re-evaluating after a fixed number of localization iterations
is employed for simplicity and proof-of-concept in Paper II. This may not
be an optimal strategy for real-world applications. Instead, more adaptive
algorithms should be investigated that may, for example, trigger “resets” only
when the trajectories of rich sessions deviate (e.g., in one rich session, the car
drives straight, in another, it took a right turn), or when there are temporal
discontinuities in the observed appearance conditions (e.g., when driving in
or out of a tunnel).

Explicit Encoding of Appearance Conditions The appearance-based landmark se-
lection proposed in Paper I and Paper II exploits an implicit encoding of
appearance condition solely based on the co-observability relation of landmarks
in the map. This may allow for optimal selection performance, as the ranking
of landmarks is determined in a data-driven manner. It further simplifies the
design and integration of the appearance-based landmark selection module
into a visual localization and mapping framework, as no explicit modeling of
appearance conditions is necessary. However, an explicit encoding, employing
a pre-defined enumeration and classification of appearance conditions (e.g.,
night-time, sunny, spring, etc.), may also exhibit certain advantages and may
thus be worth exploring in the future. For example, an explicit encoding may
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3.2 Part B: Efficient Map Management

alleviate the need for “resetting”. It may further allow for a more in-advance
selection of map data matching the current appearance condition, e.g., already
in the garage prior to a sortie of the vehicle, based on date, time of day, or
weather forecast.

3.2 Part B: Efficient Map Management

A thorough investigation of employing appearance-based landmark selection in
combination with offline map summarization has shown that it is possible to build
a completely scalable visual localization and mapping framework, and that the
respective multi-session maps can be incrementally built over the time span of
several months.

Map Post-Processing During these doctoral studies, building the multi-session
maps has often proven to be the by far most challenging task, as compared
to developing the localization algorithms. While for localization, a standard
algorithmic approach is applicable, the various mapping post-processing and
optimization steps have often revealed to require substantial manual inspec-
tion and verification, and have thus remained difficult to automate. Future
research ought to be dedicated towards automated detection of (geometri-
cal) inconsistencies among multiple map sessions in the map, followed by
automatic mitigation, through, e.g., additional outlier rejection steps.

Map Tiling Providing highly accurate visual localization for continuous areas sig-
nificantly larger than a few square kilometers may become challenging with
a single, monolithic multi-session map, even when employing efficient map
management strategies, such as appearance-based landmark selection and
offline map summarizing as they are described in Paper I, II, and III. While
either cloud-based map data streaming, as motivated in Part A and B, or
alternatively, standard disk caching mechanism if the map is stored on the
vehicle, may allow for efficiently performing online localization in virtually
arbitrarily spacious environments, managing and optimizing the maps on the
map backend may reach its limitations. Splitting up the map into separate,
or only loosely coupled, sub-maps on the backend may thus be inevitable if
the map coverage should exceed a certain spatial extent. Therefore, future
research ought to discuss the question of when to trigger a split, how large
a sub-(multi-session)-map should be, how to prevent open-loop trajectory
segments, and how to handle sup-map switching in online operation.

Data Integrity If a fleet of vehicles collaboratively contribute to extending and
improving a shared map, as described in Part B, data integrity and security
may become an important aspect. How can it be guaranteed that the mapping
data streamed to the cloud-based map backend can be trusted? How are
faulty sensors, or faulty sensor calibrations, detected and mitigated? How
can a malicious attempt to temper with the shared map be prevented? While
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3 Conclusions and Outlook

aspects like these may be ignored when focusing on developing the proof-of-
concept (S)LAM algorithms, they certainly are of importance when targeting
an industry grade product deployment, and many questions regarding reliable
detection of faulty data are still unsolved. A direct collaboration between
SLAM roboticists and IT network security experts may effectively address
these open questions in the future, and allow for safe and secure exchange of
map data among a fleet of vehicles.

Data Compression In the transmission direction from a cloud-based map backend
to the vehicle, compressing the map data further than what is proposed
in Paper I and Paper II may not be feasible, as the 3D position of all
landmarks used for localization is required in order to be able to infer the
metric pose of the vehicle. In the opposite direction, that is from the vehicle
to the map backend, there may be potential to further decrease the data
transmission, as not all recently observed landmarks may be necessary to
successfully infer the appearance condition using the co-observabilty relation.
More research into automatically extracting a smaller subset of observed
landmarks representative of the current appearance condition may thus allow
to further reduce network upload traffic without a decrease in localization
performance with appearance-based landmark selection.

3.3 Part C: Reliable Visual Localization in UP-Drive

We have shown that with a CPU-only computational platform, and by employing
point features and binary descriptors, highly reliable localization is feasible, even
across vastly different appearance conditions as they occur over long periods of
time in outdoor environments.

The Landmark Representation Point features with local descriptors have proven
to be a powerful couple for highly accurate metric visual localization. How-
ever, as we have seen in this thesis, as well as in many related work [12,
16, 24, 49, 52, 65], a large number of features have to be extracted, tracked,
matched and managed in order to cover an outdoor environment both spa-
tially and in appearance. This renders map management challenging and
requires extensive and for certain applications prohibitive computational and
storage resources, even if algorithms optimizing resource use are employed.
Furthermore, point features lack semantic meaning, and are thus not ideal for
coarse grained localization and navigation, or global localization in spatially
large environments. For these reasons, substantial efforts have been made
in recent years to use more abstract, semantically meaningful features for
visual localization[28, 68, 76, 89, 90]. While this has shown promising results
for coarse grained global localization, centimeter-level accurate and reliable
metric pose estimation with other features than points remains an open
challenge. Recent work by DeTone[23] exploiting advancements in machine
learning have, however, further pushed forward the quality of point features.
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3.3 Part C: Reliable Visual Localization in UP-Drive

This may remedy some of the weaknesses of classic handcrafted point features
as used in this thesis. In particular, it may require considerably fewer map
sessions to cover the same diversity of appearance conditions. It does, how-
ever, also require a high-end GPU to be available on the vehicles for online
localization. Further research into deriving more compact, but similarly well
performing Artificial Neural Network models could mitigate this problem and
make algorithms like Superpoint useable on CPU-only platforms in the future.

Local vs. Global Localization The high localization recall attained with VIZARD
in Paper IV has to be attributed to a large degree to the fact that the visual
localization algorithm only solves a local localization problem. This dras-
tically reduces the search space for feature correspondences, to an extent
that allows to be relatively permissive in regard to the allowed descriptor
distance of 2D-3D matches. Once the vehicle is localized for the first time,
local localization is well justified. Subsequent queries along a trajectory are
highly correlated in space, and even the incremental motion between the
capturing of two subsequent set of camera images is well observable with
wheel-odometry or an IMU sensor. Depending on the application and envi-
ronment, bootstrapping local localization may, however, impose a challenge.
Fortunately, in outdoor environments, which are most challenging for visual
global localization algorithms, there is often a GPS signal available. As
our experience in UP-Drive shows, for its application domain of autonomous
cars in urban outdoor environments, using a consumer grade GPS sensor to
bootstrap VIZARD has proven to be a reliable and robust solution. In con-
trast to that, state-of-the-art global localization algorithms, employing e.g. a
visual Bag-of-Words, may provide satisfactory performance for bootstrapping
local localization indoors, as there is considerably less variance in appearance
conditions.

Sensors During the work on the V-Charge1, UP-Drive2, and AMZ Driverless
Car Racing3 projects, experience has been gathered with visual localization
of AGVs using different kinds of sensor set-ups. It has repeatedly proven
valuable to use a multi-camera rig, covering an extensive field of view of,
ideally, 360 degrees. This increases the number of visible features, and the
robustness towards occlusion, dynamic objects, adverse sunlight, and sensor
failure. In addition to camera(s), the visual localization algorithms presented
in this thesis further rely on the availability of odometry measurements, in
order to forward propagate the state estimates, for temporal smoothing, and
for bridging short-time localization failures with dead-reckoning. For slow
dynamics, as encountered with autonomous cars in urban environments, the
presence of wheel-odometry has proven to be very valuable for this task.
It is built in per default in cars, of low cost, allows for an unambiguous

1https://cvg.ethz.ch/research/v-charge/
2https://www.up-drive.eu
3http://driverless.amzracing.ch/en/home
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3 Conclusions and Outlook

detection of dynamic objects in the scene, and provides - in contrast to an
IMU - fully observable self-motion even in the case of planar constant velocity
motion. Nevertheless, the use of an IMU in addition to wheel-odometry may
in practice still be worthwhile, as this may improve the estimation of roll and
pitch motion, allow for an assessment of the gravity direction, and provide
redundancy. In addition to that, in applications with more dynamic driving
motion, such as in the AMZ Driverless Racing Competition, or in more high
speed driving conditions, such as on high-ways, wheel-odometry may be much
more subject to slipping as compared to driving in urban environments. In
these situations, the presence of an IMU, or even only a gyroscope, may
significantly improve the odometric yaw rate estimation.

Global Shutter vs. Rolling Shutter Visual localization in outdoor environments
can be especially challenging under poor lighting conditions as they occur
for example at night-time. In these situations, a high dynamic range of the
camera chip is paramount, as this prevents motion blur. In that regard,
CMOS camera sensor chips usually offer a considerably higher dynamic range
than their CCD counterparts. However, the former are commonly subject to
rolling shutter artifacts, while the latter have a global shutter circuitry. In
our experiments presented in Paper IV, we have tested our visual localization
system both with a global shutter camera system on the NCLT datasets,
and with a rolling shutter camera system on the UP-Drive datasets. In the
driving dynamics present in the UP-Drive datasets, that is with driving speeds
of up to 35km/h, there has been no noticeable compromise in localization
performance that could be clearly attributed to the rolling shutter mechanism.
The difference in image quality under night-time conditions is, however, very
clearly pronounced. The NCLT night-time dataset from December 1st 2012
exhibits considerable motion blur, even under the comparatively slow motion of
the Segway platform driving at approximately 5km/h. In contrast to that, the
rolling shutter cameras in the UP-Drive datasets provide crisp and feature-rich
images even at night-time, thereby considerably facilitating localization under
artificial street lighting. For slow moving, and slow turning ground vehicles
such as autonomous cars in urban environments, the benefit of increased
dynamic range with CMOS rolling shutter cameras may thus outweigh the
potential loss in localization performance caused by rolling shutter motion
artifacts. It is, however, important to note that this observation may not be
applicable for higher driving speeds, as they are common on rural roads or
high-ways, since in these scenarios, motion distortion due to the rolling-shutter
may be more pronounced.
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PaperI
Appearance-Based Landmark Selection for
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Abstract
In this paper, we present an online landmark selection method for dis-
tributed long-term visual localization systems in bandwidth-constrained
environments. Sharing a common map for online localization provides a
fleet of autonomous vehicles with the possibility to maintain and access a
consistent map source, and therefore reduce redundancy while increasing
efficiency. However, connectivity over a mobile network imposes strict band-
width constraints and thus the need to minimize the amount of exchanged
data. The wide range of varying appearance conditions encountered during
long-term visual localization offers the potential to reduce data usage by
extracting only those visual cues which are relevant at the given time. Mo-
tivated by this, we propose an unsupervised method of adaptively selecting
landmarks according to how likely these landmarks are to be observable
under the prevailing appearance condition. The ranking function this selec-
tion is based upon exploits landmark co-observability statistics collected
in past traversals through the mapped area. Evaluation is performed over
different outdoor environments, large time-scales and varying appearance
conditions, including the extreme transition from day-time to night-time,
demonstrating that with our appearance-dependent selection method, we
can significantly reduce the amount of landmarks used for localization while
maintaining or even improving the localization performance.
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Figure 4.1: A schematic illustration of a distributed visual localization system using
online landmark selection. A vehicle continually receives selective visual landmarks for
localization from a cloud-based map server during operation, while transmitting back
its pose and information about recently observed landmarks. In the depicted situation,
landmarks L4 L5 and L9 have recently been observed, therefore their IDs, plus a rough
initial estimate of the vehicle’s current pose are transmitted to the map server. In
response, a subset of relevant landmarks, consisting of L3, L6 and L10 are transmitted
back to the vehicle and used for subsequent localization.

1 Introduction

A fundamental problem to be tackled to enable fully autonomous driving is the
cooperation and coordination among multiple vehicles, including sharing and ex-
changing information. This will be a key aspect for the success in coping with the
complexity, variability, and volatility of typical urban environments. Especially for
the task of localization and mapping, sharing and maintaining a common map offers
a high potential for reducing data redundancy and for providing timely up-to-date
maps. Vehicles will be required to exchange data among themselves, and/or with a
common cloud-based map-service. Since bandwidth on mobile data networks is a
scarce resource, it is pivotal to minimize the amount of information exchanged. This
is particularly important for visual localization and mapping, where appearance
variations generate the need to store many different representations for each location
[16], [65].
To approach this problem, we propose an online landmark selection method

which - without losing localization performance - is able to significantly reduce the
amount of data exchanged between the vehicle and its map source.
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The general principle of the method can be summarized as follows:

• The prevailing appearance condition of the environment is inferred from
landmarks observed in recent localization attempts during a traversal through
the mapped area.

• Using this information, all landmarks in a spatially local neighborhood (the
candidate landmarks) are ranked according to how likely they are to be
observed in subsequent localization attempts along the same traversal.

• A selected subset of top-ranked candidate landmarks is transferred back to
the vehicle and used for localization.

Localization can then be performed on the vehicle, based on the selection of suit-
able landmarks, which is computed on a remote map server and sent to the vehicle.
The data exchanged during each localization attempt consists of a rough initial
estimate of the vehicle’s current pose, references (e.g. IDs) to recently observed
landmarks, and a reduced set of selected landmarks. A schematic illustration of
this distributed localization paradigm can be found in figure 4.1.

The key for an effective landmark selection is the ranking process. In our approach,
this ranking is performed in an unsupervised manner, based on co-observability
statistics between a candidate landmark and a set of recently observed landmarks
collected in past traversals through the same area.

The main contribution of the proposed approach is the derivation of an online
landmark selection method based on co-observability statistics. The motivation
for this work is the need for a localization and mapping strategy, that can deal
with the bandwidth-constrained settings found in distributed systems operating in
changing environments. In particular, our approach provides the following features:

• Efficient and accurate localization using only an appearance-dependent subset
of landmarks inferred at runtime in an unsupervised manner.

• The size of the selected subset is adaptable to prevailing bandwidth restric-
tions.

• Computational demands on the vehicle are reduced by significantly cutting
down the amount of input data used for localization.

We evaluate our approach in two complementary scenarios. In the first scenario,
our landmark selection method is evaluated in a long-term experiment on an outdoor
parking-lot, covering day-time conditions observed over the time frame of one year.
In the second scenario, our method is evaluated in a small city environment, covering
extreme appearance changes from day-time to night-time over the time frame of
one day. The results validate our approach by showing that with our landmark
selection method, we significantly reduce the amount of data exchanged between
the vehicle and the map, while maintaining comparable or even better localization
performance than if all data is used.
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Note that despite us partly drawing the motivation for this work from a coopera-
tive multi-vehicle scenario, the algorithm is evaluated in a distributed single-vehicle
set-up. That is, a single vehicle localizes against a potentially remote cloud-based
map-server, attempting to minimize the bandwidth usage while maintaining the
localization performance. The method shown readily generalizes to and taps its
full potential in a multi-vehicle set-up.

The remainder of this paper is structured as follows: In section 2, our proposed
selection method is put into context with other related work. Section 3 and 4 derive
the underlying appearance-based landmark ranking function the selection method
is based upon, before an evaluation thereof is presented in section 5. To conclude,
we summarize our findings and discuss future work in section 6.

2 Related Work

Extensive efforts have been made in the past years to adapt visual localization
systems for long-term operation and resource-constrained environments. The
methods presented in [20], [35], [57] all involve an adaptive selection of either
landmarks or visual views in order to bound the growth of maps, while accounting
for an environment subject to appearance change. This selection may be based
on a short-term/long-term memory model [20], on clustering techniques [35], or
on random pruning in neighbourhoods of high data density [57]. Similarly, the
summary-mapping techniques proposed in [65] and [25] aim at maintaining as
compact and small a map representation as possible, while at the same time covering
a high degree of variance in appearance. All of these methods have in common,
that the selection is an offline process performed prior to and/or independent of
the robot’s next operation. In contrast to that, our proposed selection method
is an online process, selecting landmarks at runtime according to the prevailing
appearance conditions, without modifying the underlying map.

In [45], an online selection algorithm is presented that is, as in our case, adaptive
to appearance conditions. Rather than reasoning over relevant landmarks, different
visual “experiences" are prioritized for localization on resource constrained platforms.
In contrast to this setting based on “experiences", all landmarks that we select are
expressed in a common coordinate frame, which allows the poses of the vehicle to
also be estimated in a common frame, independent of what landmarks are selected
and hence what appearance condition the vehicle is exposed to. This enables a
seamless integration of our method with other modules of an autonomous vehicle,
such as planning, navigation, and control. Furthermore, by performing selection
at the level of individual landmarks, our approach is more closely linked to the
underlying environmental features. In this way, accounting for the fact that many
landmarks may be shared among similar appearance conditions while others may
be very distinct to certain conditions is implicitly handled by our framework.
Landmark selection has also been studied in connection with specific tasks like

path-planning and obstacle avoidance. The method presented by [62] selects those
landmark measurements from a map, which maximize the utility wrt. a predefined
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3 Problem Statement

task, such as collision-free navigation. In contrast, the method we present selects
landmarks based on the appearance condition the robot is exposed to during
operation.
Recently, landmark co-occurrence statistics have been increasingly exploited in

the context of place-recognition. In [19] co-occurrence information is used to infer
which types of features are often seen together, as this helps distinguishing places.
Furthermore, in [32], [33], and [85] places are described and identified by constella-
tions of visible landmarks or features grouped based on co-observability, therefore
incorporating pseudo-geometric information in their representation. Similarly, the
works of [44] and [61] rely on landmark co-occurence statistics for prioritizing rele-
vant landmarks or environments for improved place-recognition efficiency. The clear
correlation between the appearance of the environment and the co-observability
of landmarks demonstrated in these works has inspired the selection algorithm
presented in this paper. However, we propose to use the co-observability statistics
in order to achieve a different goal, namely to infer which landmarks are likely to
be observable in the near future during online operation, allowing to minimize data
exchange.
Along that line, the work presented in [14] is similar to ours, as they learn

co-observability relationships across different appearance conditions in order to
predict the current operating condition of the robot. The main difference is that
their co-observability prediction is performed on the level of camera images, whereas
we propose to exploit co-observability on the level of individual 3D landmarks,
contained in a sparse geometric visual map.

3 Problem Statement

We consider a scenario in which iterative visual localization systems, such as
the ones described in [65], [39] or [16], are used for periodic correction of pose
estimates obtained from odometry. The underlying map is assumed to be stored
as a pose-graph in a multi-session SLAM framework, as described in [17], which
contains information about landmarks (position estimates and feature descriptors
of respective observations). Additionally, bundle adjustment and loop-closure [50]
have been performed to merge identical landmarks observed in multiple mapping
sessions, register the maps to each other and refine the resulting joint map.
Each of the mapping sessions that is used for generating the multi-session map

may have been recorded at different times, with possibly very different appearance
conditions. Therefore, the observability of individual landmarks is highly variable
and not all are equally useful for localization under a specific appearance condition.
In a scenario as described in section 1, where the map is located on a cloud-based
server, a decision has to be made about which landmarks to use, and hence transmit
to the vehicle, for each localization attempt during online operation. In order to
support this decision, the vehicle provides the server with a rough initial pose
estimate and information on which landmarks have recently been observed along
the trajectory. Based upon this information, we propose a landmark selection

31



Paper I: Appearance-Based Landmark Selection for Efficient Long-Term Visual Localization

method aimed at only selecting those landmarks for transmission to the vehicle,
which are deemed likely observable, and thus useful for localization.

In particular, we are interested in the following landmark ranking function:

fT̂WBk
,Ok−1

(l) := P (l | T̂WBk
,Ok−1) (4.1)

It denotes the probability of observing landmark l at time tk, given an initial
estimate of the vehicle’s pose denoted by T̂WBk

, and a list of recently observed
landmarks before time tk denoted by Ok−1. In order to improve readability, we
use abbreviated symbols T̂ k and O for the remainder of this section.

4 Probabilistic Landmark Ranking

Using Bayes’ rule, expression 4.1 can be reformulated as

P (l | T̂ k,O) =
P (O | l, T̂ k) · P (l | T̂ k)

P (O | T̂ k)
(4.2)

Probability P (O | T̂ k) is a fixed constant and does not influence the ranking of
landmarks, whereas P (l | T̂ k) denotes the pose dependent probability of observing
landmark l at time tk. We model the latter with a uniform distribution over
all landmarks observed from within a given radius r around the estimate of the
vehicle’s pose T̂ k, and zero for other landmarks. In practice, this allows retrieving
an appearance-independent tight spatial subset of possibly observable candidate
landmarks, denoted by Ck, as described in [64], which are then ranked according to
P (O | l, T̂ k).

The term P (O | l, T̂ k) can be interpreted as the probability of having recently
observed the set of landmarks O, given an estimate of the vehicle’s current pose
T̂ k and that landmark l is observed at time tk. Since past landmark observations
are independent of the current vehicle’s pose, we can reformulate as follows:

P (O | l, T̂ k) = P (O | l) (4.3)

From a frequentist’s perspective, P (O | l) could be approximated by the number of
times, all landmarks in O and l have been observed together in the past, divided by
how often l was observed. For such a quantification to hold as a good approximation,
the amount of co-observation data must be very high and no "appearance-outliers"
(i.e. landmarks recently observed although they do not conform with the overall
prevailing appearance condition) may be present in O - two requirements unlikely
met in practical applications. We therefore propose to approximate P (O | l) by
explicitly accounting for limited statistical data and possible "appearance-outliers".

We assume the multi-session map has been generated from datasets representing
traversals through the mapped area under different appearance conditions, possibly
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augmented with additional co-observation statistics from further traversals through
the map. Thus, we interpret the set of all past traversals, denoted by Z, as an
enumeration over appearance conditions represented in the multi-session map.
With this, we can use the law of total probability in order to obtain the following
decomposition:

P (O | l) =
∑
z∈Z

P (O | z, l) · P (z | l) (4.4)

We model P (z | l) with a uniform distribution over all traversals z in which l was
observed, and zero for all other traversals. For a traversal observing l, the likelihood
P (O | z, l) becomes independent of l, and we can thus reformulate (4.4) as:

P (O | l) =
1

|Z′|
∑
z∈Z′

P (O | z) (4.5)

where Z′ denotes all traversals in Z where l was observed in. Due to the fact
that this appearance term P (O | l) is only evaluated for a spatially local subset
of landmarks C (retrieved evaluating P (l | T̂ k)) and the appearance condition is
assumed to be locally stable, both in a spatial and temporal manner, it suffices to
consider a landmark as observed in traversal z if it has been observed at least once
along the traversal, regardless of the place or time. Analogously, two landmarks
are considered co-observed in a traversal z, if both of them have been observed at
least once in z, at potentially different times and places.

Figure 4.2: The co-observability graph
represents which landmarks (vertices) have
been co-observed how often in the past
(edges). From knowing which landmarks
have recently been observed along the cur-
rent traversal (V, orange), our goal is to de-
cide how likely a candidate landmark (blue)
is to be observed at the current time-step.

For each of these past traversals in
Z′ either none, some or even all land-
marks in O were observed. To account
for potential "appearance-outliers", we
model the probability P (O | z), namely
the probability of observing O in traver-
sal z, to be equal to the fraction of
landmarks in O actually observed in
traversal z.
In conclusion, we can express our

ranking function as follows:

fT̂ k,O(l) =
1

|Z′|
∑
z∈Z′

|Oz | (4.6)

where |Oz | denotes the number of land-
marks of O that were observed in
traversal z. For simplicity, the con-
stant denominator |O| is omitted from
the sum as it does not influence the
ranking.
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An intuitive graphical interpretation of this ranking function is shown in Figure 4.2,
where landmarks are represented as vertices and the co-observation relation as
weighted edges connecting them. The landmarks colored in orange denote the
recent observations O, while the candidate landmark is colored in blue. The score
of candidate l according to the presented ranking function corresponds to the sum
of co-observation connections into O, normalized by the total number of traversals
observing l. It represents how tightly a candidate is connected to the set O in the
pair-wise co-observation graph. Hence, candidates with a strong connection into O
are favored over those with only a weak connection, relating to how likely the given
candidates are co-observed with O.

5 Evaluation

The proposed landmark selection method exploits varying appearance conditions
expressed in a single multi-session map of sparse landmarks. In order to be able to
build such multi-session maps, sufficient data must be collected during the mapping
phase, that is diverse enough to cover several different conditions, while exhibiting
also some overlap in appearance. To the best of our knowledge, no publicly available
datasets fulfill these criteria. We therefore evaluate our selection method in two
complementary experimental scenarios using our own datasets recorded for the
purpose of evaluating long-term visual localization and mapping.
In scenario A, a multi-session map of an open-space parking lot area is created,

with datasets spanning over one year, covering the entire range of weather conditions
and seasonal change. In scenario B, a city environment is mapped over the course of
six hours from day-time to night, covering the most extreme change in appearance
from daylight to night-time under artificial street lighting.

A total of 31 traversals of the parking lot environment (roughly 155m each) and
26 traversals of the city environment (roughly 455m each) were recorded, resulting
in an accumulated driving distance of about 16.5km. For each environment, half of
the recordings distributed over the respective time spans were used to build the
map and augment the co-observability data, while the other half (≈ 8km) were
used for the evaluation. Example images from each of the two environments can be
seen in figures 4.3 and 4.4.
The vehicle’s sensor setup consists of four wide-angle fish-eye cameras - one

in each cardinal direction - and wheel odometry sensors. The cameras run at a
frame-rate of 12.5Hz. All images were recorded in gray-scale and down-scaled to
640px x 480px.
During each traversal, localization is performed iteratively. For each image, a

rough initial pose estimate is calculated (based on the previous pose estimate
and integrated wheel odometry), a candidate set Ck is retrieved, from where a
top-ranked subset of landmarks is selected yielding Sk, landmark-keypoint matches
are formed, the initial pose estimate is refined using a non-linear least-squares
estimator, and a final match classification step distinguishes between inliers and
outliers. The landmarks associated with these inlier matches are considered the
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(a) 10/16/2013 (b) 12/06/2013 (c) 07/16/2014

Figure 4.3: Example images from the parking-lot environment, showing the varying
appearance conditions induced by changes in lighting, weather, as well as foliage.

(a) 15:15 (b) 17:08 (c) 18:05

Figure 4.4: Example images from the city environment, showing the changes in appear-
ance from day to night.

observed landmarks at a given time tk, as described in section 3, and are denoted
by Ok.

In O, we only keep observed landmarks from the previous localization (i.e. from
time tk−1), since in our experimental scenarios, no significant improvement was
observable when extending O over a longer time window.

5.1 Ranking Function and Selection Policies
We aim at demonstrating that with our selection method, we can significantly reduce
the number of landmarks used for localization while simultaneously maintaining a
similar localization performance. For this, we evaluate several performance metrics
for three different selection policies: i) using the ranking function derived in section
3 and 4, ii) random selection, and iii) simply selecting all landmarks. The latter
marks the baseline for our experiments, while random selection constitutes a lower
bound for the quality of our ranking-based selection.

We formally define the selection policy as follows:

Ω(C, f(), r,m) := Select n top-ranked landmarks

where n = min(r ∗ |C|,m), based on a selection ratio r and a maximum number of
landmarksm. Consequently, Ω(C, f(), 1.0,∞) corresponds to selecting all landmarks.
While parameter m directly relates to some fixed constraint on the available network
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bandwidth, the selection ratio r prevents the algorithm to select poorly ranked
landmarks in spatial locations of generally few visual cues (small |C|). For the
sake of notational brevity, we abbreviate Ω(C, f(), r,m) by Ω(f(), r,m) in the plots
shown. With frank() we refer to the ranking function derived in section 3 and 4,
while frand() denotes a random uniform ranking across C.

5.2 Metrics
The following metrics are evaluated and respective experimental results are presented
in the remaining subsections.
a) Ratio between the number of selected landmarks and the number of candidate
landmarks:

rselk :=
| Sk |
| Ck |

This metric directly relates to the amount of data transmission saved by perform-
ing landmark selection.
b) Ratio between the number of observed landmarks with and without a selection at
a given time tk:

robsk :=
|OΩ(frank(),r,m)
k |

|OΩ(f(),1.0,∞)
k |

The number of observed landmarks constitutes a good indicator of the resulting
pose estimate’s accuracy (see [65]) and the ratio robsk is directly related to how
well the selection predicts the current appearance condition. An ideal landmark
selection method would achieve a ratio close to 1.0, with a significantly reduced
number of selected landmarks.
c) RMS errors for translation and orientation wrt. wheel-odometry:
For each localization attempt, the transformation between the initial rough pose
estimate, based on the visual pose estimate from tk−1 and forward integrated
wheel-odometry, and the refined visual pose estimate from tk, can be computed,
and is denoted by TBest

k
Bodo

k
. Conceptually, this transformation corresponds to

the odometry drift correction. While wheel-odometry accumulates drift over time,
it is locally very smooth. Since this refined visual pose estimate is only based on
the positions of the matched landmarks, and in particular no odometry fusion is
performed, the magnitude of TBest

k
Bodo

k
is dominated by the uncertainty of the

visual estimate.
We compute separate RMS errors for both the translational and rotational

component of TBest
k

Bodo
k

. Note that this metric does not describe the absolute
localization accuracy. It only constitutes an indicator for the relative uncertainty of
the visual pose estimates allowing a comparison between the three cases of selecting
all landmarks, random selection, and ranking-based selection.
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Figure 4.5: Illustration of the relation between the average number of selected landmarks
and the average number of observed landmarks for datasets from the parking-lot scenario.
The lower bars (between 20-30%) correspond to the average percentage of selected
landmarks rsel, while the upper bars (between 75-100%) show the average percentage of
observed landmarks robs.
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Figure 4.6: RMS error in translation and rotation wrt. wheel odometry for the parking-
lot scenario. In green, the RMS error is shown for the case where all landmarks are used,
while black diamonds indicate results from random selection, and red crosses for the
proposed ranking-based selection method.

38



5 Evaluation

Figure 4.7: Illustration of the relation between the average ratio of selected rsel and
the average ratio of observed landmarks robs for the city environment datasets.

5.3 Parking-Lot Experiments

Figure 4.5 shows the relation between selected landmarks and observed landmarks for
the parking-lot experiment. For each dataset, three different sets of selection policy
parameters are evaluated, corresponding to more and less strict landmark selection.
While on average only 20-30% of the total landmarks are used for localization, the
ratio of observed landmarks with and without selection still remains between about
75-100%. For the dataset recorded on April 30th 2014, the average robs value even
lies slightly above 100%. This is due to the fact that by eliminating landmarks
inconsistent with the current appearance prior to the 2D-3D matching, the chance
of wrong keypoint-landmark associations is reduced, potentially yielding even more
observed landmarks in the case of ranking-based selection as compared to if all
landmarks are selected.

In addition, figure 4.6 shows the RMS error for translation and orientation for the
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three cases of using all landmarks, ranking-based selection, and random selection -
the latter two with r = 0.3 and m = 1800. From this plot, we see that the rotational
component is mainly unaffected by the landmark selection, while there is a slight
increase in the RMS error for the translational part. In effect, the decrease in the
number of observed landmarks results in a slightly less well constrained position
estimate, whereas the orientation remains well constrained even with fewer observed
landmarks. This is due to the fact, that, for a pure visual pose estimate, the
translational component strongly depends on the spatial distribution of observed
landmarks, especially on their distance from the vehicle, while the orientation does
not. However, the translational RMS error remains significantly lower than for
the case of random selection, indicating meaningful landmark selection with the
proposed ranking function.

5.4 City Environment Experiments
Figure 4.7 again shows the relationship between the ratio of selected and observed
landmarks, this time for the city environment. During daytime, an average ob-
servation ratio between 60% and 90% is achieved, depending on the strictness of
selection, while at night-time, 100% is reached almost independent of how many
landmarks were selected. In contrast to the year-long parking-lot scenario with
a high number of varying appearance conditions, in this scenario, we essentially
have two very distinct conditions, namely day-time, and night-time, with a far
greater total number of landmarks at day-time than at night-time. Therefore,
selecting even as much as 40% of the candidate landmarks at day-time may still
exclude valid day-time landmarks, simply because of the limited number of selected
landmarks. At night-time, the opposite is true, where even a very strict selection
of below 20% allows selecting all relevant landmarks under this condition. This
effect is also well visible in the RMS error plots in figure 4.8. At day-time, even
a random selection performs relatively well, since the day-time landmarks are in
vast majority. At night-time, however, our ranking function not only outperforms a
random selection, but even achieves slightly better results than when all landmarks
are selected. As already mentioned above, this is due to the reduced chance of
forming wrong keypoint-landmark associations, allowing to achieve a more robust
pose estimate.

5.5 Shared vs. Appearance-Specific Landmarks
In order to demonstrate that our selection method favors different landmarks under
different appearance conditions, we evaluate the pair-wise fraction of jointly selected
landmarks between two datasets.
The results are depicted in figure 4.9 for the two scenarios and a selection ratio

r = 0.25 and maximum number of landmarks m = 1800.
For the parking-lot scenario, a clear seasonal pattern can be observed, whereas

for the city environment, a shift from day-time to night–time landmarks is visible.
About 10% of the landmarks selected in any dataset are jointly selected in all
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Figure 4.8: RMS error in translation and rotation wrt. wheel odometry for the city en-
vironment scenario. Green corresponds to using all landmarks, while the black diamonds
indicate results from random selection, and red crosses from the proposed ranking-based
selection method.

41



Paper I: Appearance-Based Landmark Selection for Efficient Long-Term Visual Localization

Figure 4.9: Fraction of jointly selected landmarks between individual datasets.

datasets for the parking-lot scenario, whereas this fraction is as low as 2.5% for the
city-environment.

6 Conclusion

We have presented an appearance-based landmark selection method for visual
localization systems allowing to significantly reduce the data exchange during
online operation between a vehicle and a cloud-based map server. Using a simple
ranking function, we can distinguish between landmarks that are useful and not
useful for localization under the current appearance conditions, using co-observation
statistics from previous traversals through the mapped area. The selection method
is evaluated in two environments undergoing long-term seasonal and weather change
on the one side, and a full transition from day- to night-time on the other side,
in combination covering a large extent of possible appearance variations for a
visual localization system. The number of landmarks used for localization under
a specific appearance condition can be reduced to as little as 30% while still
achieving localization performance comparable to when all landmarks are used
instead. Importantly, in environments undergoing extreme changes in appearance
with a clear association of landmarks to the appearance (e.g. day-time and night-
time) a very precise selection is possible, even outperforming the case where all
available landmarks are used. However, the results of the day/night experiment
further show that defining an appearance-independent number of landmarks to select
at each time-step may not adequately account for the potentially very unbalanced
number of landmarks useful under a certain appearance condition. Therefore, in
future work, more complex selection policies adapting the number of landmarks to
select to the prevailing appearance condition ought to be investigated. In addition
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to that, more sophisticated appearance outlier detection could further improve
the results. Last but not least, extending our appearance-based ranking function
with further aspects, such as the spatial distribution and uncertainty of landmark
positions, and/or combining it with summary-map techniques such as the ones
presented in [65] or [25], could significantly boost the performance and yield better
localization accuracy with even fewer selected landmarks.
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Abstract
Visual localization in outdoor environments is subject to varying appearance
conditions rendering it difficult to match current camera images against
a previously recorded map. Although it is possible to extend the respec-
tive maps to allow precise localization across a wide range of differing
appearance conditions, these maps quickly grow in size and become im-
practical to handle on a mobile robotic platform. To address this problem,
we present a landmark selection algorithm that exploits appearance co-
observability for efficient visual localization in outdoor environments. Based
on the appearance condition inferred from recently observed landmarks, a
small fraction of landmarks useful under the current appearance condition
is selected and used for localization. This allows to greatly reduce the
bandwidth consumption between the mobile platform and a map backend
in a shared-map scenario, and significantly lowers the demands on the
computational resources on said mobile platform. We derive a landmark
ranking function that exhibits high performance under vastly changing
appearance conditions and is agnostic to the distribution of landmarks
across the different map sessions. Furthermore, we relate and compare our
proposed appearance-based landmark ranking function to popular rank-
ing schemes from Information Retrieval, and validate our results on the
challenging NCLT datasets, including an evaluation of the localization
accuracy using ground-truth poses. In addition to that, we investigate the
computational and bandwidth resource demands. Our results show that by
selecting 20%− 30% of landmarks using our proposed approach, a similar
localization performance as the baseline strategy using all landmarks is
achieved.
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1 Introduction

Visual localization systems are able to provide centimeter-accurate pose estimations
of mobile robots with a low-cost sensor setup. This renders visual localization
an attractive alternative to LiDAR-based localization which today still require
mechanically complex and thus expensive hardware. However, and in contrast
to aforementioned LiDAR localization, visual localization systems targeting long-
term usage suffer from variations in appearance conditions which render matching
between currently observed visual cues and landmarks stored in the map difficult.
A promising approach to address this problem has been proposed in the form
of multi-session maps [16, 65, 71] that incorporate visual cues from more than
one appearance condition. The resulting maps, however, quickly grow in size
and become impractical to handle on the mobile robotic platform. In order to
mitigate this problem, the map can be stored on a cloud-based backend and
made available to the robots in operation over a mobile data network. Apart
from relieving the mobile platforms from storing large maps, such a shared-map
scenario offers further advantages such as the reduction of redundant data, more
efficient map maintenance, and an increased potential for collaboration between
the robots. However, it also requires map data to be exchanged between the
map backend and the robots in operation over bandwidth constrained mobile data
networks. This renders it important to only exchange map data that can be used
for localization at the particular time and place of operation. For this purpose, it
may be sufficient to only transmit a fraction of map data available in the multi-
session map, since the latter must cover all possible appearance conditions, while
the robots in operation are exposed to only one condition at a certain time and
place. It is the aim of this work to exploit this potential and select landmarks for
localization based on the current appearance condition. This serves the following
two purposes: a) Keep data exchange between the map backend and the mobile
platform, and therewith the bandwidth consumption on a mobile network, as
low as possible, and b) lower the computational resource demands on the mobile
platform, increasing the real-time capability of visual localization. At the same
time, a localization performance as good as if all landmarks are used ought to
be maintained. Additionally, the appearance-based landmark selection enables
decoupling of the localization performance from map management. While the
multi-session map at the backend may be large, and resource intensive to maintain,
localization on the vehicles remains as efficient as if only one map session of the
current appearance condition was available.
In summary, we present a complete visual localization system yielding 6DoF

pose estimates at each time-step with the capability to perform efficient online
data-association through appearance-based landmark selection.
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Figure 5.1: Shared-map scenario motivating our work. One large map containing
landmarks from multiple rich- and observation sessions is stored and maintained on
a cloud-based map backend. Vehicles en route under different appearance conditions
retrieve selected landmarks matching their operation conditions (thick dashed arrow),
use those landmarks for visual localization (turquoise lines), and report back a set of
recently observed landmark identifiers (thin dashed arrow).

The main contributions of this paper are as follows:

• We derive, analyze and compare a ranking function for appearance-based
landmark selection based on appearance equivalence classes, which can be
shown to maximize the number of observed landmarks with respect to the
current appearance condition.

• We investigate in detail the impact of the incorporation of observation sessions,
a lightweight extension to the visual maps boosting the landmark selection
performance.

• In an extensive evaluation involving three collections of outdoor datasets, one
of them publicly available, we thoroughly investigate the performance of the
appearance-based landmark selection in real-world conditions, and compare
against related popular ranking schemes from Information Retrieval.

• An analysis of the computational performance demonstrates the real-time
capability of the appearance-based landmark selection and reveals its potential
to reduce the computational load on the vehicle platforms.

This paper builds upon our previous work on appearance-based landmark selection
presented in [8, 9] and extends it in several aspects: We derive several appearance-
based ranking functions, relate them to popular ranking schemes from Information
Retrieval, and evaluate the expected performance of our proposed solution on a
related state-of-the-art SLAM framework which keeps separate maps for different
appearance conditions. In addition to that, we present an extensive evaluation
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on the publicly available NCLT dataset collection, including an assessment of the
localization accuracy with respect to ground-truth. The evaluation on the NCLT
dataset collection further demonstrates the applicability of our proposed appearance-
based landmark selection on a second robotic platform in highly challenging long-
term outdoor conditions, and with a considerably different camera system than
the one on the vehicle used in the Parking-Lot and City Environment . A detailed
investigation of the computational performance further not only shows the real-time
capability of the localization pipeline, but also reveals lower computational resource
demands as a second benefit of our proposed appearance-based landmark selection
apart from reduced bandwidth consumption.

2 Related Work

Outdoor environments are subject to appearance change, such as change in illu-
mination, as well as change in weather and seasonal conditions. This has a severe
impact on long-term operations of outdoor visual localization systems, as in many
environments, change in appearance is much more pronounced than structural
change, and already with relatively small time offsets of only several hours between
mapping and localization it may become difficult to match currently observed visual
cues against a visual map. The approaches to overcome this can in general be distin-
guished into two categories: a) Initiatives to overcome the appearance dependency,
and b) attempts to collect and organize appearance-dependent visual features from
differing conditions. We first present an overview over relevant work associated
with category a), before investigating approach b) in detail in the remainder of this
section.
In [41] Lategahn et al. propose a local feature descriptor named DIRD which

exhibits illumination invariance superior to other popular local features such as
SURF[5] or BRIEF[13]. Nevertheless, the ability to cover appearance change is
ultimately still limited in situations with such strong differences in illumination that
let already the location of keypoints be different. In another approach to reduce the
appearance change in images, Maddern et al. make use of the sepctral properties of
color cameras in order to apply an illumination invariant gray-scale transformation
to images, effectively removing shadows and reducing the appearance varitation
due to sunlight [18, 54, 55, 69]. This on the one hand requires a photometrically
calibrated color camera, and on the other hand is only able to reduce the appearance
change due to sunlight. Any other source of appearance change, such as seasonal
change, or day-time vs. night-time, are not tackled. In [56], McManus et al.
propose to learn location-dependent detectors that retrieve large patches in images
deemed descriptive for the respective place. While this shows promising re-detection
performance across vastly different appearance conditions, it is not able to allow as
precise a metric localization compared to using local corner-based features.

As mentioned above, an alternative approach to tackle the challenge of appearance
change lies in the attempt to enrich a visual map with features from varying
conditions in order to extent its appearance coverage and allow localization across
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a wide range of differing conditions. In [35], Konolige and Bowman present a visual
mapping algorithm that is able to aggregate visual cues from different states of the
environment into so-called “Views“, which are managed over long time spans. Their
system, however, mainly targets structural changes in dynamic indoor environments.
In a similar vein, Milford and Prasser have extended RatSLAM[58] in [73] and

[60] to include “Local View Cells” and abstract “Experience Maps” which allow
associating previously visited places under varying appearance with the same
physical location on the one hand, and the creation and maintenance of a spatially
consistent map representations across different environmental states on the other
hand. However, the ability to yield a precise metric pose estimate of the robot
in a Euclidean coordinate system is limited. In constrast to that, Churchill et al.
propose a visual mapping framework called “Experience-Based Mapping” which
explicitly creates and maintains separate and detached visual maps for varying
outdoor environmental conditions [16]. While this allows precise metric localization
under essentially any appearance condition, the visual pose estimate can only be
expressed with respect to a Euclidean coordinate system that is unique to each
experience. Any interpretation in a common coordinate frame requires links between
experiences based on additional sensor modalities, such as (differential) GPS, which
may considerably deteriorate the accuracy of the resulting pose estimate. For
this reason, attempts have been made to represent visual features - or landmarks
respectively - from different appearance conditions in a single Euclidean coordinate
frame. Paton et al. present a visual mapping framework able to incorporate and
co-relate landmarks from different appearance conditions in outdoor environments
with respect to a manually taught reference path [71]. This enables a mobile robot
to autonomously repeat the reference route in vastly different appearance conditions.
The principle behind the multi-session mapping framework proposed by Mühlfellner
et at. in [64, 65] is similar. However, there is no notion of a privileged path, or
session respectively, in the map. Instead, the resulting map offers accurate metric
localization under any appearance condition represented by the map sessions with
respect to a single coordinate frame.
While incorporating landmarks from varying environmental states into a single

map can successfully enable visual localization in vastly different appearance condi-
tions, the resulting maps quickly grow in size and become impractical to maintain.
Therefore, considerable efforts have been made to optimize map representations such
that keeping redundant landmarks is avoided and only a minimal set of landmarks
that allow localization across different appearance conditions is maintained. In [21],
a long-term short-term memory model is proposed to dynamically distinguish useful
from outdated landmarks. Such a model of change is especially suited to environ-
ments that exhibit some fraction of features stable in appearance (e.g., corners on
the ceiling), but does not have the ability to represent multiple environment states
at the same time. In contrast to that, [31, 35] and [57] employ clustering of images,
or landmark respectively, in order to keep the number of visual cues bounded.
While Konolige and Bowman use a similarity measure between local feature clusters
to discard redundant “Views” [35], Hochdorfer et al. remove visual data on the
landmark level by assessing the usefulness of individual landmarks inside a local
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feature cluster based on position uncertainty [31]. Milford and Wyeth, on the other
hand, simply discard landmarks randomly to keep the data density within a cluster
bounded [57]. More recent and advanced approaches to bounding the map size
for metric visual localization systems are presented in [65], [24]. Mühlfellner et al.
compare a number of different algorithms to prune landmarks in a multi-session
map, demonstrating selection criteria involving the number of observed sessions,
and the total number of observations of a landmark to yield good metric localization
performance over long time spans while keeping the map size limited [65]. Along a
similar vein, Dymczyk et al. propose to solve an Integer Linear Problem with cost
terms favoring landmarks with a large number of observations on the one hand,
and guaranteeing a minimal number of landmarks observed from every keyframe
on the other hand [24].
In contrast to metric localization, efficient map representations and landmark

selection has also been studied in the context of place recognition. In [27] and [81],
only the SIFT[48] features contributing the most to the distinctiveness of places
are retained in the map. Similarly, in [44], [19], [85], [32] and [33], co-visibility of
features is used to efficiently and effectively solve the place recognition problem.

While all of these works describe successful approaches to mitigate the problem
of ever-growing visual maps, they only address offline map maintenance with the
goal of computing as small a map representation as possible while at the same
time maintaining the appearance coverage over different conditions. However, as
mentioned in Section 1, in long-term operations in outdoor environments, the
map must cover a far wider range of appearance conditions than what the robots
in operation require at a given point in time. This offers a potential to further
optimize data usage and minimize computational demands on the robot platforms
by distinguishing currently useful data based on the observed appearance conditions
in an online fashion. In this regard, Linegar et al. [45] have presented an algorithm
for the Experience-Based Mapping framework which adaptively selects the best
matching “Experience” in an online fashion. While their work addresses a similar
motivation as ours, there are substantial differences as a consequence of the different
underlying map representation and mapping framework. For instance, the different
appearance conditions are represented as individual maps, and therefore their
selection of useful map data occurs on the level of “Experiences”. In contrast to that,
and due to the fact that our landmarks in the map from the different appearance
conditions are all expressed with respect to a single coordinate frame, we are able
to select map data matching the current appearance conditions on the level of
individual landmarks. In addition to that, we may also select landmarks from
more than one session in the map at a time, allowing to benefit from potentially
overlapping appearance conditions. In a similar vein, MacTavish et al. propose
an online selection of useful map data for their Visual Teach & Repeat framework
[52]. Analogous to [45] and in contrast to our work, they perform the selection on
the level of “Experiences”, are, however, able to simultaneously use more than one
“Experience” for localization. Their work differs further to ours in the methodology
at the basis of the selection algorithm. While they compute and compare current
images to their map images employing a visual Bag-of-Words representation, we
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evaluate the current appearance conformity on the basis of co-observability of
recently observed landmarks. This relieves us from having to train and rely on a
vocabulary.

3 Background

In this section we briefly introduce the components of our localization and mapping
system. This overview supports and facilitates the understanding of subsequent
sections in this paper. We first describe the mapping process and the resulting map
structure, before presenting our visual localization module in detail.

3.1 Mapping
Mapping is performed in an offline process. We track FREAK[3] features1 from
one camera frame to the next, and triangulate the position of these landmarks
using wheel-odometry. With this, a map is generated with a graph of the vehicle’s
poses (position and orientation) at image acquisition times, as well as the landmark
positions in 3D space. If necessary, loops are closed using the matching-based
loop-closure algorithm [79]. Finally, both the poses of the vehicle and the positions
of the landmarks are jointly optimized in a Bundle-Adjustment routine.

Further mapping sessions are added by first localizing the new dataset in an offline
process against the pre-existing map. This generates both initial pose estimates for
the vehicle in the new dataset and associations between features from the camera
images of the new dataset and landmarks of the pre-existing map. In addition,
new landmarks are spawned from features of the new dataset that failed to find
a matching map landmark. Finally, the resulting multi-session map is optimized
again with Bundle Adjustment. Note that all information, i.e., both the landmark
positions and vehicle poses, of all map sessions, are expressed in the same metric
three-dimensional coordinate frame of reference, denoted by FFW .

3.2 Localization
The aim of the localization module is to estimate the vehicle’s 6DoF pose with
respect to the map coordinate frame of reference FFW , given one or more camera
images acquired at a specific point in time, and some rough prior knowledge about
the current vehicle’s location. We refer to this localization paradigm as local
iterative localization, in contrast to global localization or loop-closure where no a
priori knowledge of the vehicle’s pose is available.

Letmap := {V, L,E} denote the map containing a set of vertices V (robot’s poses),
a set of landmarks’ positions L, and a set of edges E capturing the observation
relation between vertices and landmarks. Let further FFB denote the vehicle body

1As we demonstrate in the Appendix in Section 6.2, our apperance-based landmark selection
algorithm is agnostic to the type of local feature descriptor used. However, in practice, not
every descriptor may be equivalently well suited for building multi-session maps, and the
choice of descriptor can further be restricted by computational constraints.

51



Paper II: Appearance-Based Landmark Selection for Long-Term Visual Localization

coordinate frame. Image acquisitions occur repeatedly along a traversal through
the mapped area at a given frequency. Instead of referring to the time of image
acquisition, we enumerate them with index k, and refer to the set of images recorded
at the kth acquisition with Ik. With this, we can formulate our local iterative
localization problem as follows:

T̄WBk
= localize(Ik, T̂WBk

,map) (5.1)

with T̄WBk
denoting the estimate of the vehicle’s pose expressed in the map co-

ordinate frame of reference. Analogously, T̂WBk
denotes the rough prior guess of

the same quantity. Using T̂WBk
, landmarks are retrieved from the map that have

been observed from near-by, and their respective 3D points are back-projected into
the camera image plane, where they are matched against the feature descriptors
extracted on the query images based on pixel and descriptor distance. The refined
pose estimate T̄WBk

is calculated from solving a non-linear least squares optimiza-
tion problem involving an image-plane projection error constraint with a robust
cost function for every keypoint-landmark match. Observations under a pre-defined
back-projection error are considered inliers of the localization iteration k, and the
respective landmarks form the set of observed landmarks Ok. The prior guess of
the pose for the subsequent localization at iteration k + 1 is readily obtained from
forward propagating the previous pose estimate with the use of wheel-odometry:

T̂WBk+1
:= T̄WBk

T odoBkBk+1
(5.2)

The main steps of the localization module are summarized in Algorithm!1 in
Section!4.
Note that the matching in image space between 2D features and 3D landmarks

requires an association of one feature descriptor for every landmark in the map.
For our experiments, we group all observations associated with the same 3D point
based on their association with the respective rich session (see Section 3.3). For
every group, we then evaluate the one observation with the smallest accumulated
descriptor distance to all other descriptors of the same group, and have the descriptor
of this observation, together with respective 3D point, form a landmark used for
selection and matching.

3.3 Rich- and Observation Sessions
In section 3.1, we have described how a map can be enriched with landmarks
from multiple sessions by localizing a dataset against the map in an offline process.
We refer to a dataset added to a map in this fashion as a rich session. Adding
a rich session to a map extends the appearance coverage of the map with the
conditions present in the respective dataset. At the same time, however, the size
of the map, and the complexity and runtime of the optimization with Bundle-
Adjustment is considerably increased.

In contrast to that, a dataset can also be added to the map without the addition
of new landmarks. For this, the dataset is localized against the map, and the
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Figure 5.2: Snapshot visualization of our landmark selection. The thick colored lines
depict the pose-graph of the map, while the candidate landmarks C are shown as black-,
and selected landmarks S as blue spheres. The turquoise lines indicate inlier observations
between the four cameras and some of the selected landmarks after the pose refinement
step.

vertex poses along the trajectory are added to the pose-graph of the map, analogous
to adding a rich session. Instead of tracking and triangulating new landmarks,
however, only the relation between keypoints from the new dataset and observed
pre-existing map landmarks is registered. This barely increases the size of the map
and does not have an impact on the complexity of Bundle-Adjustment. Although
this does not extend the appearance coverage either, it increases the landmark
co-observation statistics, which can be beneficial for the performance of appearance-
based landmark selection. A dataset added to the map in this fashion is referred to
as an observation session.

4 Appearance-Based Landmark Selection

In this section, the selection of landmarks for localization based on appearance is
described in detail. After formally presenting the problem at hand, we introduce a
landmark ranking function used to prioritize relevant landmarks for the selection
process. We conclude this section by relating our problem of appearance-based
landmark selection to popular ranking schemes from Information Retrieval.

4.1 Problem Formulation
The goal of appearance-based landmark selection is to decide which of the landmarks
in the map are likely to be seen under the present appearance condition. In a
generalized manner, this problem can be formulated as follows:

Sk = selectLandmarks(f, Ck, n,A), with Sk ⊆ Ck , (5.3)
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where Ck denotes the set of geometrically visible candidate landmarks, Sk denotes
the set of selected landmarks, f refers to the landmark ranking function, n to the
number landmarks to select, and the current appearance condition is expressed as
A. The ranking function f maps a landmark l to a score, i.e.

f : l→ [0, 1], ∀l ∈ Ck . (5.4)

Whereas a landmark is defined as a three-tuple:

l := (pl, dl, Zl), with Zl ⊆ Z, ∀l ∈ L

with pli denoting the 3D point expressed in the frame of reference FW , dl denoting
the descriptor associated with landmark l, and Zl denoting the set of map sessions
in which the landmark was observed. The set of all map sessions is denoted by Z.

The set of selected landmarks Sk is formed by applying the ranking function f to
every landmark l ∈ Ck, before selecting n top-ranked landmarks. In this work, we
choose n to be relative to the number of candidate landmarks available at iteration
k, formally expressed as follows:

Uk := {l ∈ Ck | f(l) > 0}
n := min(α|Ck|, |Uk|), with α ∈ [0, 1] . (5.5)

Pre-selecting the candidate landmarks based on the condition f(l) > 0 allows the
ranking function to exclude certain landmarks from being selected. This property
is used by the ranking function fMRS as described in Section 5.3.

In the following section, we elaborate in detail on how to find a tangible expression
for A and propose a formulation for a ranking function.

4.2 The Ranking Function
The ranking function ought to reflect the probability of successfully forming a match
between a map landmark and a feature extracted from the current set of images
under the current appearance condition A.

In order to motivate the formulation for our proposed appearance-based landmark
ranking function, we introduce it from a probabilistic perspective. We are thus
interested in evaluating the following quantity: P (l ∈ O | A). This denotes the
probability of observing landmark l under the current appearance condition A. By
ranking all candidate landmarks according to this probability, and selecting some
number of top-ranked landmarks, we achieve our goal of maximizing the number of
observed landmarks.

Ranking Landmarks Based on Appearance Equivalence Classes

Unfortunately, A is an abstract, intangible entity and not directly observable.
However, as every traversal through the environment is related to the particular
appearance condition present during that time, all available information regarding

54



4 Appearance-Based Landmark Selection

the probability of observing landmark l under some appearance condition A is
encoded in the map session observation relation of landmarks. That is, if li and lj
were observed in the same sessions, i.e. Zli = Zlj , it can be assumed that

P (li | A) = P (lj | A) . (5.6)

This allows approximation by substituting the current appearance condition A by
the respective set of map sessions a landmark has been observed in, i.e.

P (l ∈ O | A) ≈ P (l ∈ O | Zl) . (5.7)

This renders the conditioning on the appearance condition tangible, as the observing
map session relations of landmarks are well-defined and countable. Note that we
employ a common abuse of notation by interpreting the expression P (l ∈ O | Zl)
as the probability of observing landmark l, given it has been observed in the past
in the map sessions Zl. We can thus group all landmarks into distinct equivalence
classes, and model the observation likelihood with a simple Bernoulli distribution,
i.e.

P (l ∈ O | Zl) ∼ Ber(θ[l]), with [l] := {lj ∈ L | Zlj = Zl} (5.8)

It remains to estimate the appearance dependent parameters θ[l]. For this, we
employ the principle of local temporal stability of appearance conditions: Whenever
the mapped area is traversed, the appearance conditions are expected to change
along the route in the same manner as they have in previous traversals. Following
this principle, we thus expect to again observe the same landmarks together with
those that have already in the past been co-observed. This allows to compute
a Maximum Likelihood Estimate for θ[l] using recently selected and observed
landmarks from previous localization iterations. For this, we add subscript k to
refer to localization iteration k, as described in Section 3.2:

θ
[l]
k = P (lo ∈ Ok | lo ∈ [l]) =

P (lo ∈ Ok, lo ∈ [l])

P (lo ∈ [l])
≈
|O[l]
k−1|

|S[l]
k−1|

, with (5.9)

O[l]
k−1

:= {lo ∈ Ok−1 | lo ∈ [l]}, (5.10)

S
[l]
k−1

:= {ls ∈ Sk−1 | ls ∈ [l]} (5.11)

We can interpret this quantity as the estimated relevance of appearance equivalence
class [l], based on recently collected statistical samples. With a limited budget of
landmarks to select, prioritizing the selection according to this ranking function
maximizes the number of expected observed landmarks under the current appearance
condition. Note, however, that this statement of optimality only refers to the
selection of landmarks based on appearance. There are further non-appearance
related effects (e.g., geometry, occlusion, etc.) having an impact on whether a
landmark is observed or not.
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For our experiments, we use a temporal smoothing of θ[l] over the N = 50 most
recent iterations and define our ranking function accordingly:

fAEC(l) :=
1

N

N−1∑
w=0

θ
[l]
k−w (5.12)

4.3 Relation to Information Retrieval
In this section, we relate our proposed appearance-based landmark ranking approach
to common concepts in the field of Information Retrieval. With this, we aim
at providing further theoretical context and facilitating the understanding and
interpretation of the ranking function described in equation 5.12.

The principles of Information Retrieval are usually stated in a linguistic context,
where the overall goal is to retrieve a set of text documents most relevant to a
given search query consisting of a set of query words [77]. Analogous to appearance-
based landmark selection for visual localization, a ranking function is required,
which assigns a relevance score to each document in the collection, according to
how well the document matches the query words. It has thereby proven to be
most successful to take two distinct aspects of relevance into consideration when
assessing the relevance of a query word to a document. The term frequency aspect
reflects how well a given query term represents the given document, while the
inverse document frequency aspect attempts to reflect the overall discriminatory
power of a word with respect to the entire document collection. These two aspects
form two separate terms, whose product is assigned as the relevance weight of a
query word with respect to a document. The overall ranking score can readily be
computed either by summing over all relevance weights, or by representing the
relevance weights in vector form and employing cosine similarity [77]. The result is
the well-known tf-idf ranking scheme. Drawing the analogy with appearance-based
landmark selection, we can interpret recently observed landmarks as the query.
This allows expressing the appearance-based ranking function fAEC described in
equation 5.12 as follows:

tf(lo, l) :=

{
1 if [lo] = [l],

0 otherwise
, idf(l, Sk−1) :=

1

|S[l]
k−1|

(5.13)

fAEC(l) =
∑
lo

tf(lo, l)idf(lo, Sk−1) (5.14)

A unary term frequency only considers query landmark relevant if they belong
to the same appearance equivalence class. The inverse document frequency term
downweights contributions of landmarks if a large quantity of landmarks from the
same appearance equivalence class have recently been selected. We note, however,
that this interpretation of the idf term deviates from the text-book definition.
This is because in the context of appearance-based landmark selection, we are
rather interested in weighting the query words in relation to the set of recently
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selected landmarks, as opposed to the set of candidate landmarks. We further
note that there are countless variations in how to formulate tf and idf terms in
order to achieve optimal retrieval performance in a given application [2, 77]. In
Section 5.3, we introduce further sensible formulations that we compare against in
our experiments.

Algorithm 1 Iterative Local Localization. The retrieval of nearby vertices from
the pose-graph employs a distance δ and yaw angle discrepancy φ around the pose
guess T̂WBk

.

1: function Localize(Ik, T̂WBk
,map,Ok−1)

2: K ← extractFeatures(Ik)
3: Vk ← retrieveNearbyVertices(T̂WBk

, δ, φ,map)
4: Ck ← getLandmarksObservedFromVertices(Vk,map)
5: Sk ← selectLandmarks(Ck,Ok−1, f)
6: M ← match2D3D(K,Sk)

7: T̄WBk
,Ok ← estimatePose(M, T̂WBk

)
8: end function

An overview of the localization with appearance-based landmark selection in
pseudo-code can be seen in Algorithm 1.

5 Evaluation

In this section, we present the results of our evaluation, focusing on a) demonstrating
the effectiveness of selecting landmarks using the appearance-based ranking function
presented in Section 4.2 in multiple challenging long-term outdoor environments, b)
comparing our proposed ranking function with related popular ranking schemes, c)
reporting on the resulting localization precision and accuracy, and c) analyzing the
computational performance of the respective localization algorithm.
In order to facilitate the navigation within and reading of this section, we first

present a concise summary of the conducted experiments. Subsequently, the dataset
collections, respective sensor configurations, and evaluation metrics are introduced,
before the various experiments are presented in detail. A paragraph containing our
key findings concludes the evaluation section.

Please note that a direct comparison of our appearance-based landmark selection
performance with the most related works [45, 52] is inherently difficult, as the
underlying mapping framework and visual feature representations are fundamentally
different, and the selection of relevant data on the level of individual landmarks
constitutes a unique feature of our method. With the ranking function fMRS , as
introduced in Section 5.3, we aim at comparing our method with the performance
that is to be expected with an “Experience-Based” mapping framework, which
creates and maintains separate maps for each map-session. In addition to that,
comparisons of the localization performance with selecting landmarks randomly,
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and with the localization performance using all landmarks, serve as lower- and
upper-bounds for properly assessing the effectiveness of our proposed landmark
selection on the one hand, and the extent of saving mobile network bandwidth on
the other hand. We further assess and compare the selection performance with
various ranking schemes inspired by the tf-idf concept in Information Retrieval.

In order to keep the evaluation section as concise as possible, we prefer to present
metrics aggregated over all datasets of the respective dataset collection. However,
the interested reader is kindly invited to study the graphs showing the performance
on each dataset separately in the Appendix in Section 6.1.

5.1 Experiments Overview
Our experiments can be divided into four groups as follows.

Rich Sessions Only

We first investigate the effectiveness of the proposed appearance-based land-
mark selection and the resulting localization precision with maps containing only
rich sessions. This allows us to restrict the landmark selection to select from at
most one rich session at any localization iteration along the trajectory with the
ranking function fMRS , as described in Section 5.3. It corresponds to the localiza-
tion performance attainable with mapping frameworks that keep separate maps for
every session, such as the Experience-Based mapping framework by Churchill and
Newman [16]. In reverse, it shows the benefit in localization precision achievable in
a multi-session mapping framework as the one used for this work, which expresses
all landmarks from all sessions in a common reference coordinate frame and thus
allows selecting landmarks from more than one rich session at the same time. The
respective experiments can be found in Section 5.5, Figures 5.4 and 5.5.

Observation Sessions

With the presence of observation sessions, the selection performance of different
appearance-based landmark ranking functions exhibit more pronounced variance.
Therefore, the experiments in this section aim at analyzing these differences in
performance and relate them to the varying environmental conditions. Note that
since observation sessions span across multiple rich sessions, the ranking function
fMRS is no longer properly defined and is thus not included in these experiments.
The experiments can be found in Section 5.6, Figures 5.6, 5.7 and 5.8.

Localization Accuracy

The NCLT dataset collection provides ground-truth pose estimates. This allows us
to evaluate the localization accuracy along the trajectories of all NCLT datasets.
Apart from yielding an absolute estimate of the localization accuracy achieved
by the different selection policies and landmark ranking functions, we can further
investigate and validate the relation between the localization accuracy and other
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performance influencing metrics such as the distance from the map trajectories, or
the number of observed landmarks. The respective experiments can be found in
Section 5.7, and Table 5.5. Furthermore, two special phenomena are analyzed in
detail in two case studies in Figures 5.10 and 5.11.

Computational Performance Analysis

The potential to significantly reduce the computational requirements on the vehicle
side constitutes - apart from a reduction in mobile network bandwidth consumption
- a second strong incentive to employ the proposed appearance-based landmark
selection. In order to support this claim, we have measured and analyzed the
computational costs involved for the different components of our visual localiza-
tion pipeline, both with, and without appearance-based landmark selection. The
respective results are presented in Section 5.8 and Figure 5.12.

5.2 Dataset Collections
The selection of datasets for evaluating the performance of the proposed appearance-
based landmark selection has been driven by the following main criteria: a) The
dataset collection ought to cover a wide range of varying appearance conditions,
with still sufficient appearance overlap allowing to build a multi-session map. b)
The sensor set-up must include an odometry sensor, which we require for the
forward propagation of the pose states in our iterative localization pipeline. c)
Ideally, the dataset collection offers ground-truth poses, which enable an evaluation
of the localization accuracy. Many popular publicly available dataset collections
fail to meet these criteria. With the NCLT datasets, however, there exists a
dataset collections offering all features relevant for us. Furthermore, the appearance
conditions covered by the NCLT datasets are diverse and very challenging, with
changing weather conditions, often a setting sun, or strong shadows in the field of
view. They thus provide an ideal settings for putting the different appearance-based
landmark ranking functions through their paces.
We extend the evaluation with two self-collected datasets, named Parking-Lot

and City Environment. Similar to the NCLT datasets, the Parking-Lot datasets
cover long-term appearance change during day-time. The respective sensor set-
up and platform dynamics differ, however, which adds further variation to the
evaluation scenarios. In contrast to the NCLT and Parking-Lot datasets, the
City Environment datasets cover a very specific scenario of appearance-change,
namely that of the change from day-time to night time.

NCLT

In the The University of Michigan North Campus Long-Term Vision and LIDAR
datasets [15], a Ladybug 3 camera is used, together with wheel-odometry from the
Segway platform. All images are undistorted and down-scaled to dimensions of
808px x 616px in order to be comparable in resolution to the images recorded in
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the Parking-Lot and City Environment collection respectively. The 27 datasets
from the NCLT collection were recorded between January 2012 and April 2013
on the north campus of the Michigan University in Ann-Arbor. The route and
direction of traversal followed during the individual recordings, however, varies
considerably between the different datasets. For the purpose of this evaluation,
we have extracted an approximately 750m long segment of the routes that has
been traversed in all datasets, except the one recorded on January 10th 2013.
Furthermore, the dataset from December 1st 2012 has been excluded from the
evaluation since it comprises the only night-time recording. Due to a lack of any
recordings from transitioning conditions at dusk or dawn, it is not possible to
extend the appearance coverage of the map to an extent that would allow proper
localization at night-time. The traversing direction of all the remaining datasets is
the same, except for the recordings from February 4th 2012, November 4th 2012 and
February 23rd 2013 which traverse the mapped area in opposite direction. These
datasets can be successfully localized, even though the respective precision and
accuracy are worse compared to the other datasets.

Parking-Lot

The Parking-Lot datasets cover a circular traversals of a car on a open space parking
lot. A total of 28 datasets recorded between August 2013 and July 2014 cover a vast
variety of different weather and seasonal conditions during day-time. Among others,
they include low-standing sun, rain and wet snow, as well as scattered clouds and
clear skies.

City Environment

In order to cover the extreme change in appearance from day-time to night-time,
23 drivings in a City Environment have been recorded during the course of a day,
starting around noon, and ending around 6pm in the evening. While the weather
condition across these datasets remains static, illumination undergoes drastic change
from diffuse daylight to night-time with artificial street lighting.
The sensor set-up used in the Parking-Lot and City Environment datasets

consists of four fish-eye cameras mounted on a car (facing front, left, rear and right),
and wheel-odometry. Images are recorded at 12.5hz in gray-scale at a resolution of
640px x 400px.
An overview over the weather conditions, the usage of each dataset in the

corresponding multi-session maps, as well as example images for all three dataset
collections can be found in the Appendix in Table 5.6, 5.7, and 5.8. More sample
images of the Parking-Lot datasets can be found in [65], and in [15] for the NCLT
datasets.
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5.3 Ranking Functions
Before presenting the metrics and experimental results, we introduce additional
ranking functions used for comparison and as baselines in the evaluation.
We employ localization with the following pseudo ranking function and selec-

tion fraction α = 1.0 as a baseline to evaluate the performance of our proposed
appearance-based ranking functions:

f0(l) := 1 ∀l ∈ C, α = 1.0 (5.15)

This corresponds to using all landmarks in the candidate set C for localization,
and in general serves as an upper-bound for the performance of any other ranking
function with α < 1.0.

As a lower-bound for the performance of landmark selection, we further compare
against selecting landmarks randomly:

frandom(l) := v, v ∼ U [0, 1] (5.16)

In addition to that, we also compare the performance of the appearance-based
ranking functions introduced in Section 4.2 to the performance of the following
ranking function:

fMRS(li) :=

1, if p([li] | A) = max
[l]

(p([l] | A)

0, otherwise
(5.17)

This ranking function selects at most n = α|C| landmarks observed from the
rich session with currently the best conformity with the encountered appearance
condition. While switching the selection of landmarks from one rich session to
another is allowed along the traversal, selecting landmarks from more than one
rich session for a specific localization iteration is prohibited. It thus demonstrates
the localization performance attainable with separate maps from each rich session,
in contrast to having all landmarks and observer vertices expressed in one common
coordinate frame of reference.

We further include the following appearance-based ranking functions introduced
in [8] in our comparison:

fNCV (l) :=
1

|Zl|
∑
z∈Zl

|Ozk−1| (5.18)

with Ozk−1 := {l ∈ Ok−1 | z ∈ Zl} (5.19)

It corresponds to a normalized voting-based ranking. Every landmark observed in
the previous localization iteration casts a vote for each of its observing sessions. In
order to prevent landmarks observed from multiple map sessions to always dominate
over landmarks observed from fewer or only one map session, the accumulated votes
are normalized by the number of map observer sessions.

In addition to that, we compare our proposed appearance-based ranking functions
with different variations of the tf-idf ranking scheme used in Information Retrieval.

61



Paper II: Appearance-Based Landmark Selection for Long-Term Visual Localization

vl := [xi] ∈ R|Z| with xi =

{
1, if zi ∈ Zl
0, otherwise

vq :=
∑

l∈Ok−1

vl

fAV (l) := cosine(vl, vq) ∀l ∈ C

tf(l, z)

{
1, if z ∈ Zl
0, otherwise

idf() 1.0

The ranking function fAV uses a vector space representation for landmarks with a
binary tf term representing the observing map session relation. A cosine similarity
metric is employed as the ranking score.

w(l, lo) :=
∑
z∈Zlo

tf(z, l)idf(z, Sk−1)

fTfIdfA(l) :=
∑

lo∈Ok−1

w(l, lo)

tf(l, z)

{
1, if z ∈ Zl
0, otherwise

idf(z, C) log(
|C|
|Cz | ), with

Cz := {l ∈ C | z ∈ Zl}

Ranking function fTfIdfA follows an analogy with text document retrieval
where landmarks are interpreted as documents containing words in the form of
observing map sessions. The multi-set of query words is built from all observing
map sessions from the set of recently observed landmarks. Further, a standard
inverse document frequency term is employed, down-weighting the contribution
of map sessions frequently present in the observing map sessions of the candidate
landmarks.

r(z) :=
∑

l∈Ok−1

tf(l, z)idf(l, Z)

fTfIdfB(l) :=
∑
z∈Zl

r(z)

tf(l, z)

{
1 if z ∈ Zl
0, otherwise

idf(l, Z) log(
|Z|
|Zl|

)

In contrast to fTfIdfA, the ranking function fTfIdfB first attempts to rank map
sessions, instead of directly ranking landmarks. For this, roles are switched, and map
sessions are interpreted as documents, containing words in the form of landmarks
observed in the respective session. The set of recently observed landmarks Ok−1

forms the set of query words, upon which the map sessions are ranked, following a
standard tf-idf scheme. The ranking score for a candidate landmark is eventually
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formed as the sum of the respective observing session relevances.

w(l, z) := tf(l, z)idf(z, Sk−1)

r(z) :=
∑

l∈Ok−1

w(l, z)

fWRS(l) :=
∑
z∈Zl

r(z)

tf(l, z)

{
1 if z ∈ Zl
0, otherwise

idf(z, Sk−1) 1
|Sz

k−1
| with

Szk−1
:= {l ∈ Sk−1 | z ∈ Zl}

Ranking function fWRS is defined similar to fAEC , evaluates, however, the
relevances of individual map sessions r(z), instead of appearance equivalence classes.
Analogous to fTfIdfB , a sum over all observing session relevances is used as the
final ranking score of a candidate landmark.

5.4 Metrics
An informative measure for the quality of the ranking function is the comparison
between the number of observed landmarks using only some percentage of selected
landmarks, and the number of observed landmarks using all landmarks for local-
ization at a given iteration k. This ratio is denoted robsk and formally defined as
follows:

robsk :=
|Of,αk |

|Of0,α=1.0
k |

(5.20)

An ideal ranking function f achieves an observation ratio robsk close to 1.0 with a
selection fraction α as low as possible. This would indicate that only landmarks
currently observable receive a high score and are selected, whereas unobservable
landmarks receive a low score and are discarded.
The NCLT dataset collection provides ground-truth poses based on fused and

globally optimized pose estimates computed from the 3D LiDAR scans and the
differential GPS sensor measurements. We make use of this in order to evaluate
the accuracy of the localized poses within a local neighborhood of the map [7].
For every localization iteration along a traversal of a dataset, we compare the
transformation between the pose resulting from solving our visual localization
optimization problem, T̄WBk

, and the pose of the nearest vertex in the map,
TWnnV k

, with the transformation between the ground-truth pose for the current
image, TGBk

, and the ground-truth pose of the same nearest vertex in the map,
TGnnV k

. This results in the following formulation for the local error transformation:

T WnnV Bk
= T −1

WnnV k
T̄WBk

(5.21)

T GnnV Bk
= T −1

GnnV k
TGBk

(5.22)

TLEGTk
:= T W−1

nnV BkT
G
nnV Bk (5.23)
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W G

^

TWBk-1
~

Wheel-Odoometry Forward Propagation Map Session Pose-Graph

TWBk

TWBk
~

WTnnVkBk

TWnnVk

^TWBk+1
TGBk

TGnnVk

GTnnVkBk

Figure 5.3: The two coordinate systems FW and FG and all relevant transformations
used for the calculation of the local localization precision with respect to the wheel-
odometry, and the local localization accuracy with respect to the ground-truth solution.

All involved transformations are schematically depicted in Figure 5.3.
Apart from the inaccuracy of the visual localization, there are further sources of

errors affecting TLEGT , such as a) inherent inaccuracies of the ground-truth trans-
formations, b) time synchronization, c) sensor intrinsics and extrinsics calibration,
d) scale and space distortions between the two involved coordinate systems FW
and FG, and e) inconsistencies in the pose-graph of the visual map. The effect of
the distortion between the involved coordinate systems is almost entirely mitigated
by employing local errors as described above. In order to eliminate any errors due
to inconsistencies in the pose-graph of the visual map, we optimize the poses of
the NCLT maps with an additional prior constraint linked to the ground-truth
transformation closest in time. The inherent inaccuracies of the ground-truth
solution are expected to be considerably lower than the localization accuracies from
the visual localization system, as the former is computed from a globally optimized
SLAM solution using the 3D LiDAR scans and differential GPS, with all datasets
cross-registered, and a manual removal of wrong loop-closure constraints [15]. As a
consequence, we expect TLEGT to reflect primarily the (in-)accuracy of the visual
localization.
The local-error transformation TLEGTk

is further decomposed into the corre-
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sponding three dimensional translation and rotation vector, denoted by pLEGTk
,

and aLEGTk
respectively.

In the cases of the Parking-Lot and City Environment datasets, no ground-
truth solution is available. Since in each localization iteration, a visual-only pose
optimization problem is solved (see Section 3.2) we can still assess how well the
resulting pose estimate is constrained along a dataset by computing statistics on
the transformations between the pose estimates, and the respective pose guess of
the same iteration:

TLEOk
:= T̂ −1

WBk
T̄WBk

(5.24)

We refer to this as localization precision, as opposed to localization accuracy as
described in equation 5.23. In addition to the error induced by the visual localization
itself on the current and previous pose estimate, the local error transformation
TLEOk

also contains the local drift of the wheel-odometry in-between. However,
the latter is expected to be at least one magnitude smaller, leaving the magnitude
of TLEOk

to be dominated by the visual localization errors.

5.5 Rich Sessions Only
We first present the ratios of observed and selected landmarks, as well as the
precision results, for all three dataset collections, whereas the presented values are
aggregated over all datasets of the respective collection.
In Figure 5.4, the relation of observed vs. selected landmarks is shown for

selection fractions between 10% and 40%. Since there is a significant discrepancy
in the observation percentage during day-time as opposed to at night, we further
show the observation percentage in the City Environment aggregated over day-
time datasets, that is, up and including 17:30, and over the remaining night-time
datasets, separately. In addition to that, Figure 5.5 shows a comparison of the
localization precision.
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Figure 5.4: The average observation percentage robs in relation to the selection fraction
α for different choices of ranking functions, and for all three dataset collections against
maps containing only rich sessions. In the City Environment, datasets are further split
up into day-time datasets (up until 17:30), and night-time datasets.
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Figure 5.5: The aggregated localization translation precision for all three dataset
collection against the map containing only rich sessions. The following ranking functions
are shown: Localization using all landmarks, f0, α = 1.0, appearance-based landmark
selection with fAEC , fTfIdfA, fMRS , and random selection with frandom, all with a
selection fraction of α = 0.2.

Note that in this scenario with a map containing only rich sessions, it is straight-
forward to see that the ranking score with the appearance-based ranking functions
fAEC , fWRS , fAV , and fTfIdfB is identical. We therefore only show the results
for the ranking function fAEC .

In all three environments, ranking landmarks with to fAEC yields a consistently
high observation percentage, and localization precision close to the one achieved
using all landmarks. In contrast to that, ranking landmarks using fTfIdfA fails,
as it yields a consistently lower observation percentage than random selection, and
precision values considerably worse than the other ranking functions. The idf term
of fTfIdfA follows the text-book definition of inverse document frequency , thus
down-weighting the influence of map sessions if there are many candidate landmarks
observed in the respective session. As described in Section 4.3, this criteria does
not well reflect the appearance conformity of a landmark, and instead tends to
favor map sessions with only few landmarks.
We further note the performance limitations of fMRS . With low selection

fractions, the attained observation percentage is on the same level as other well-
performing ranking functions, such as fAEC , fAV , and fTfIdfB . However, the
restriction to only select from one rich session results in performance saturation
for larger selection fractions. The respective loss in precision is clearly visible
in case on the NCLT and Parking-Lot datasets at a selection fraction of 20%,
and demonstrates one of the benefits of having all landmarks, even from multiple
rich sessions, registered in one common coordinate frame of reference. Note that
this loss in precision is less pronounced on the City Environment datasets, as in
this case, there are only few different appearance conditions represented in the map,
with a clear best-matching rich session at any time.

It can further be observed that the overall observation percentage and localization
precision in the NCLT environment is lower as compared to the Parking-Lot , despite
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both environments reflecting long-term day-time conditions. This discrepancy
suggests that there is a larger difference in encountered appearances over the year
in relation to the number of rich sessions in the map in the NCLT scenario as
compared to the Parking-Lot scenario. Precision in the NCLT environment further
pays tribute to the fact that the trajectories in the NCLT datasets often do not
follow the exact same route and exhibit lateral offsets of up to 12m. This renders
the visual localization considerably more challenging as opposed to the Parking-Lot
scenario, where there is a quite precisely repeated driving pattern on the parking
lot.
In the City Environment, the comparatively low observation percentage is at-

tributed to the fact that there are fewer diverse appearance conditions covered,
resulting in a lower number of rich sessions present in the map. During day-time,
where there are considerably more landmarks than at dusk and night-time, even
a selection fraction of up to 40% may not be sufficient to select all landmarks
matching the current appearance condition. This effect is supported by the graph in
Figure 5.4 showing the observation percentage aggregated separately over day-time
and night-time datasets. All ranking functions, including random selection, exhibit
a significantly higher observation percentage at night as opposed to during day-
time. The increase at night is, however, most pronounced for the appearance-based
ranking functions fAEC , and fMRS .

5.6 Observation Sessions
Adding observation sessions to the map can further improve the performance of
the appearance-based landmark selection at a negligible additional map storage or
computational burden.
It can be seen in Figure 5.6 and Figure 5.7 that for low selection fractions,

the best observation percentage and localization precision is achieved using the
proposed fAEC ranking function. In addition to that, ranking functions fAV and
fTfIdfB also achieve favorable performance for low selection fractions, and even
achieve the best observation percentage on the NCLT and Parking-Lot datasets
for higher selection fractions. We attribute this phenomena to saturation effects
with higher selection fractions on the one hand, and to dataset specific artifacts,
such as the lock-in effect discussed in Section 5.7 on the other hand. Both may
undermine the theoretical optimality of fAEC under ideal conditions.

In addition to that, the ranking function fNCV exhibits the highest variance in
performance. As can be seen in Figure 5.6, and Figure 5.8, this ranking function
fails during day-time, yielding an observation percentage worse than that of random
selection. It further performs poorly in general for low selection fractions on the
other two dataset collections too. However, for high selection fractions, the opposite
is the case, and appearance-based landmark selection with fNCV achieves the best
performance on the NCLT and Parking-Lot datasets.
We further observe ranking functions fAV and fTfIdfB perform very similarly

in all three environments. This is remarkable, as the respective expressions of the
ranking functions are considerably different.

68



5 Evaluation

0.0 0.1 0.2 0.3 0.4 0.5
Selection Fraction α

0

20

40

60

80

100

r
o
b
s
A
v
g
.
O
b
se
r
v
a
t
io
n
P
e
r
c
e
n
t
a
g
e
[%
]

NCLT

f TfIdfA
f random
f AV
f NCV

fWRS
f AEC
f TfIdfB

0.0 0.1 0.2 0.3 0.4 0.5
Selection Fraction α

0

20

40

60

80

100

r
o
b
s
A
v
g
.
O
b
se
r
v
a
t
io
n
P
e
r
c
e
n
t
a
g
e
[%
]

Parking-Lot

f TfIdfA
f TfIdfB
f random
f NCV

fAV
fAEC
fWRS

0.0 0.1 0.2 0.3 0.4 0.5
Selection Fraction α

0

20

40

60

80

100

r
o
b
s
A
v
g
.
O
b
se
r
v
a
t
io
n
P
e
r
c
e
n
t
a
g
e
[%
]

City Environment

f TfIdfA
f AEC
fWRS
f random

fNCV
f TfIdfB
fAV

0.0 0.1 0.2 0.3 0.4 0.5
Selection Fraction α

0

20

40

60

80

100

r
o
b
s
A
v
g
.
O
b
se
r
v
a
t
io
n
P
e
r
c
e
n
t
a
g
e
[%
]

City Environment, Day/Night

f TfIdfA , day
fWRS , day
fWRS , night
f random , night
f AEC , night
f AV , day
f NCV , day

fNCV , night
f random , day
fAV , night
f TfIdfB , night
fAEC , day
f TfIdfB , day
f TfIdfA , night

Selection Fraction vs. Observation Percentage - with Observation Sessions

Figure 5.6: The average observation percentage robs in relation to the selection fraction
α for different choices of ranking functions, and for all three dataset collections against
maps containing observation sessions. In the City Environment, datasets are further
split up into day-time datasets (up until 17:30), and night-time datasets.
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Figure 5.7: The aggregated localization translation precision for all three dataset
collection against the map containing observation sessions. The following ranking
functions are shown: Localization using all landmarks, f0, α = 1.0, appearance-based
landmark selection with fAEC , fAV , fTfIdfB , fNCV , fTfIdfA, and random selection
with frandom, all with a selection fraction of α = 0.1.

Similar as with maps containing only rich sessions, the ranking function fWRS

outperforms random selection, but falls short of any of the before mentioned
appearance-based ranking functions. The presence of observation sessions further
is not able to improve the poor performance of fTfIdfA.

The benefit of ranking based on appearance equivalence classes is most pronounced
in the City Environment at dusk around 17:25, as can be seen in Figure 5.8.
Despite this being only one dataset, it is exemplary for a general phenomena:
The heavy bias in the number of landmarks towards day-time rich sessions lets
most other ranking functions preferably select landmarks from day-time. However,
night-time landmarks would, although fewer in absolute numbers, already yield
more inlier observations relative to the number of selected night-time landmarks.
Only the two ranking functions fAEC and fWRS are able to exploit this and
achieve almost 20% more landmark observations in this case. The ranking function
fWRS , however, suffers from sub-optimal performance during day-time, leaving the
ranking function based on appearance equivalence classes as the only one with high
observation percentage all the time.

Before elaborating on the localization accuracy evaluation in the subsequent sec-
tion, we summarize the key findings of the different ranking function’s performance.
On all three dataset collections, a significant boost in observation percentage by
the use of observation sessions is well visible. In addition to that, the ranking
function fAEC exhibits the best performance at low selection fractions, while the
performance of fNCV is most susceptible to the selection fraction, performing poorly
for low selection fractions, but even outperforming all other ranking functions by a
small margin at a selection fraction of 40%.
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Figure 5.8: The average observation percentage robs for different choices of ranking
functions and a selection fraction α = 0.1 , for all datasets of the City Environment
against the map containing observation sessions.

5.7 Localization Accuracy
In this section, we present the visual localization accuracy results of the NCLT
datasets using the ground-truth solution based on 3D LiDAR and differential GPS
as a reference.
The median errors in translation of TLEGT , denoted by pLEGT are listed in

Table 5.5 for localization using all landmarks, f0, as well as appearance-based
selection with the ranking functions fAEC , fNCV , fMRS , and random selection,
frandom; all with a selection fraction of 10%. Furthermore, the translation accuracy
using the ranking function fAEC is listed both when localizing against the map
containing only rich sessions, as well as when localizing against the map containing
both rich sessions and observation sessions. For the latter, the ranking function is
denoted by “fAEC os.”.
We first note that the median translation accuracy of the reference localization

using all landmarks exhibits a rather large span, ranging from 11cm up to 44cm.
This is on the one hand due to the varying trajectories of the respective datasets.
On the other hand, not every appearance condition encountered in the datasets used
for evaluation is equally well covered by the rich sessions in the map, resulting in
differing visual localization performance. The most important factor for deteriorated
localization performance, however, is the direction of traversal, resulting in the
datasets from November 4th 2012 and February 23rd 2013 to perform considerably
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Table 5.5: The translation localization accuracy for the NCLT datasets, using the
ground-truth poses as a reference. The columns show the translation median error
in meters for the following six ranking functions: Localization using all landmark
(f0, α = 1.0), appearance-based landmark selection with fAEC , fNCV , and fMRS , and
random selection with frandom. For appearance-based and random selection, a selection
fraction α = 0.1 is used. All ranking function localize against the map containing only
rich sessions, except for fAEC , os. which localizes against the map containing both
rich sessions and observation sessions.

Date Median pLEGT [m], α = 0.1

f0(α = 1.0) fAEC fAEC , os. fNCV fMRS frandom

8th January, 2012 0.155 0.2 0.181 0.2 0.206 0.247
15th January, 2012 0.215 0.317 0.35 0.363 0.329
2nd February, 2012 0.14 0.196 0.145 0.222 0.203 0.187
12th February, 2012 0.179 0.263 0.211 0.268 0.266 0.3
18th February, 2012 0.18 0.247 0.182 0.28 0.287 0.268
19th February, 2012 0.129 0.191 0.215 0.211 0.191
17th March, 2012 0.129 0.196 0.155 0.235 0.204 0.212
25th March, 2012 0.265 0.304 0.271 0.301 0.294 0.329
31st March, 2012 0.112 0.189 0.197 0.196 0.163
29th April, 2012 0.141 0.196 0.161 0.202 0.203 0.216
26th May, 2012 0.121 0.151 0.135 0.154 0.161 0.181
4th August, 2012 0.139 0.159 0.157 0.16 0.158 0.233

28th September, 2012 0.124 0.18 0.149 0.259 0.194 0.202
28th October, 2012 0.138 0.201 0.251 0.236 0.219
4th November, 2012 0.308 0.396 0.363 0.458 2.282 0.41
17th November, 2012 0.174 0.215 0.185 0.219 0.24 0.253
23rd February, 2013 0.445 0.485 0.544 0.524 0.477

5th April, 2013 0.168 0.225 0.188 0.218 0.237 0.253

worse than any other dataset.
We further observe that the accuracy using the appearance-based ranking function

fAEC on the map containing only rich sessions slightly outperforms selecting
landmarks based on fNCV , but both perform significantly better than using fMRS

for landmark selection. This again demonstrates the gain in performance due to
the ability to select landmarks from more than one rich session at a time.

In addition to that, there is a clearly pronounced boost in localization accuracy
when using the map with additional observation sessions for localization, with
landmark selection based on fAEC even achieving accuracy values close to those of
the reference localization using all landmarks for certain datasets.
It is noticeable, however, that random selection often achieves accuracy values

close to those of appearance-based selection, at least in the case of using the map
with no observation sessions. In this regard, we notice that the random selection of
landmarks occurs for every localization iteration along the trajectory. Despite only
selecting 10% at each iteration, even after short traversals of a few meters, almost
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Figure 5.9: The total percentage of unique landmarks selected over the coarse of the
entire trajectory of a dataset. This percentage directly conforms to the overall savings in
data transmissions between a map backend and a mobile robot in a shared-map scenario.
While appearance-based selection only uses a percentage of landmarks approximately
equivalent to the respective selection fraction in each iteration, random selection makes
use of almost all landmarks at least once along the trajectory.

all landmarks available in the vicinity of the respective map segment have been
selected at least once by frandom. This effect is well visible in Figure 5.9 which
displays the total number of selected landmarks for each of the different ranking
functions and selection policies. While all appearance-based ranking functions only
select a fraction of all landmarks across the entire dataset trajectory approximately
equal to the selection fraction at each iteration of 10%, random selection selects
up 85% of all landmarks in the map. For this reason, localization using random
selection may be considerably less precise, but its accuracy is not in the same extent
worse compared to both appearance-based landmark selection and localization using
all landmarks.
In addition to that, the challenging route selection of the NCLT datasets lead

to varying localization performance along a trajectory of a specific dataset. Even
though the influence of outliers in the localization performance on the overall
accuracy is limited by our choice of the median error, the magnitude of the latter
is often still heavily influenced by short segments of the trajectory with very
poor localization performance. In order to render these effects more tangible, we
investigate the localization accuracy in relation to the number of observed landmarks
and the distance to the nearest vertex in the map in detail for the two datasets of
January 8th and February 2nd 2012.
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Figure 5.10: Bird’s eye perspective onto the mapped segment of the NCLT scenario,
together with a temporal analysis of the number of observed landmarks, the translation
localization accuracy, and the distance to the nearest vertex in the map, referred to as
“Distance to Map”. On the left-hand side, the trajectories of the richsessions in the map
are drawn in light gray, while the localized poses of the dataset from January 8th 2012
is drawn in color indicating the number of observed landmarks along the route. Two
particular situations along the trajectory of this dataset are marked by capital letters
“A” and “B” and analyzed in detail in Section 5.7.
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The left-hand side of Figure 5.10 shows a birds-eye perspective of the mapped
segment used in the NCLT scenario. The trajectories of the rich sessions present in
the map are drawn in gray, whereas the trajectory of the dataset being localized from
January 8th 2012 is drawn in color indicating the number of landmark observations
along the trajectory. In contrast to that, the bottom half depicts the relation
between time - or iteration index respectively - on the one hand, and the number
of observed landmarks, the localization accuracy, and the distance to the nearest
vertex in the map on the other hand.

The trajectories from all rich sessions in the map follow up and down a long aisle
between iteration 300 and 900. While the trajectory from January 8th in general
follows the same pattern, the turning point at the back of the aisle occurs a few
meters farther into the aisle compared to the trajectories present in the map. This
situation is marked with the letter “A” in Figure 5.10. While the distance to the
nearest vertex in the map suddenly increases from approximately 30cm up to almost
3m, the number of observed landmarks drops to almost zero. At the same time, the
localization accuracy is greatly reduced, both in case of the reference localization
with f0, as well as and considerably more severely in the case of appearance-based
localization. In this regard, situation “A” also serves as a good example for the
strong correlation between the number of observed landmarks and the localization
precision and accuracy respectively.

In situation “B”, the number of observed landmarks is only slightly lower than in
the preceding trajectory segment. The distance to the map, however, is considerably
increased, since the trajectory of the dataset travels along the street instead of on
the parallel sidewalk as in all the rich sessions in the map. This again results in
a peak degradation of the localization accuracy and demonstrates the correlation
between the distance to the map, and the localization performance.

The dataset from February 2nd exhibits even slightly lower localization accuracy
with the map containing only rich sessions for appearance-based landmark selection
with fAEC compared to performing random selection with frandom. As can be
seen in Figure 5.11, the errors in localization are mainly attributed to two peaks,
again marked with a capital letter “A” and “B”.
In situation “A”, the trajectory from February 2nd directly crosses the street,

while all the datasets used for building the map take a right turn up and down
the aisle. This leads to a sudden increase in the distance to the nearest vertex in
the map, and as a result of that a simultaneous drop in the number of observed
landmarks and the respective localization accuracy.
In contrast to that, the peak drop in localization accuracy in situation “B”

originates from a lock-in effect inherent to the presented appearance-based landmark
selection. In order to understand the cause of this peak drop, we point out that
the relevance of the different appearance equivalence classes is evaluated based
on recently observed landmarks. The latter themselves are a subset of recently
selected landmarks. This does not constitute a problem as long as the availability of
landmarks from all rich sessions in the map along the trajectory is maintained, and
the appearance conditions encountered do not show any abrupt change that is not
also reflected in the respective rich- or observation sessions. In the NCLT scenario,
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Figure 5.11: Bird’s eye perspective onto the mapped segment of the NCLT scenario,
together with a temporal analysis of the number of observed landmarks, the translation
localization accuracy, and the distance to the nearest vertex in the map, referred to as
“Distance to Map”. On the left-hand side, the trajectories of the richsessions in the map
are drawn in light gray, while the localized poses of the dataset from February 2nd 2012
is drawn in color indicating the number of observed landmarks along the route. Two
particular situations along the trajectory of this dataset are marked by capital letters
“A” and “B” and analyzed in detail in Section 5.7.
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however, the trajectory segment between iteration 600 and 1100 is characterized by
the different datasets taking varying routes. Thus, the rich session with the best
appearance conformity may at once exhibit a large lateral offset, or not be available
at all temporarily, resulting in the number of observed landmarks to decrease and
the localization accuracy to drop. In order to recover from this lock-in situation,
the appearance-based landmark selection can be “reset”. For this, all candidate
landmark are used for localization of a single iteration, allowing to properly re-
evaluate the relevance of all available appearance equivalence classes. For the
presented experiments, such a “reset” is set to occur at every 100th iteration, and
its effect is clearly visible in situation “B”: After the “reset”, the number of inliers
swiftly increases from approximately 20 up to 100, and the respective localization
accuracy recovers. In practice, it is advisable to link the triggering of “resets” to a
metric reflecting the condition of poor localization performance in situations where
localization is expected to perform reasonably well (e.g., when the assumed location
is close to the mapped trajectories). Such a metric is, however, application and
use-case specific.
Apart from the exemplary situations mentioned and discussed in detail above

causing the localization accuracy to degrade, Figure 5.10 and 5.11 also indicate
that under normal circumstances, that is, with the localized trajectory and all
map sessions following the same route, a localization accuracy of around 10cm is
achieved, which is in accordance with the results found in [65].

5.8 Computational Performance Analysis
We conclude the evaluation section by analyzing the computational time spent on
the major blocks of our localization pipeline. All computations have been carried out
on a Lenovo W530 with an Intel i7 CPU, and without the use a GPU. In addition
to the incentive of lower data bandwidth usage, the computational performance
analysis reveals a second benefit of appearance-based landmark selection in the
form of reduced computational demands on the mobile platform side. Figure 5.12
shows the execution times of the following building blocks:

• Feature Tracking: The time to extract keypoints and compute FREAK
descriptors on all involved cameras.

• Landmark Retrieval: The time to retrieve all near-by pose-graph vertices,
and their observed landmarks.

• Landmark Ranking: The time to apply f on all candidate landmarks.

• Landmark Selection: The time to select n top-ranked candidate landmarks,
yielding Sk.

• Landmark Back-Projection: This step involves the look-up of the landmark de-
scriptor for each selected landmark, and the back-projection of the landmark’s
3D point into the camera image planes, using the pose guess T̂WBk

.
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Figure 5.12: The execution times of the individual building blocks of our localization
pipeline, including the modules specific to appearance-based landmark selection. While
the overall execution times vary in the different scenarios, in all cases localization with
appearance-based landmark selection is able to perform significantly faster compared to
localization without landmark selection. This is due to the fact that the time invested
into landmark ranking and sorting is more than compensated by the time saved in back-
projecting and matching of the landmarks in the subsequent modules of the localization
pipeline.

• 2D-3D Matching: The formation of associations between the FREAK features
in the current camera images, and the back-projected map landmarks.

• Pose Estimation: Refinement of the pose estimation employing a non-linear
least-squares optimization problem, yielding T̄WBk

.

Apart from the feature tracking, the overall execution times in the City Environ-
ment are by more than a factor 2 lower. This is due to the fact that there are only
4 rich sessions in the map, with only one from bright day-light. Thus, the resulting
number of candidate landmarks being retrieved in each iteration is considerably
lower as compared to the NCLT datasets.
We further note that the feature tracking, the landmark retrieval, and the pose

estimation step all have to be carried out both in case of localization with, as well
as without appearance-based landmark selection, and that their running time is
mostly independent of the number of selected landmarks. Nevertheless, these blocks
are included in Figure 5.12 in order to give a comprehensive overview over the
running time and real-time capability of the localization pipeline.

The computational differences between localization with and without appearance-
based landmark selection can be summarized as follows: In contrast to localization
without landmark selection, localization with landmark selection has to invest time
in ranking and sorting the candidate landmarks. In exchange, however, considerably
fewer landmarks have to be back-projected and matched against the features in the
image, reducing the runtime of these modules in relation to the respective selection

78



6 Conclusions

fraction. As can be seen in Figure 5.12, in both scenarios, even with a selection
fraction of 40%, the total runtime of appearance-based selection is considerably
lower than without landmark selection. The computational load on the mobile
platform side is even further reduced in a shared-map scenario as motivated in
Section 1, where ranking and sorting of candidate landmarks is carried out on the
backend side.

From the accumulated running times in the NCLT scenario, it can be deduced that
localization with appearance-based landmark selection is able to run at 10− 15Hz,
while localization without landmark selection may not be able to exceed 8Hz. Only
accounting for the modules running on the mobile platform in case of a shared-map
scenario, namely feature-tracking, landmark back-projection, matching and pose
estimation, the resulting difference in runtime performance is increased to 15−30Hz
with landmark selection, as opposed to only 10Hz without landmark selection.

6 Conclusions

In this section, we summarize our key findings and draw conclusions for the use of
appearance-based landmark selection in practice.
At first, we note that substantial differences in the camera set-up in the NCLT

datasets, such as the lack of fish-eye distortion, does not have a significant effect on
the performance of the appearance-based landmark selection. Similar as with the
City Environment and the Parking-Lot datasets, an appearance-based selection of
20% to 30% of the available landmarks allows achieving a localization performance
similar to using all landmarks.

Furthermore, we have analyzed in detail the performance of several appearance-
based landmark ranking function in combination with maps with, and without
observation sessions. Selecting landmarks using the proposed fAEC ranking func-
tion yields the best performance, especially for low selection fractions. However,
other formulations for the ranking functions, most notably fAV and fTfIdfB ,
achieve favorable performance too. This observation, together with the indepen-
dence with respect to the distribution of landmarks in map sessions, let fAEC be
the ranking function of choice in general.
With the lock-in effect observed on the dataset example depicted in Figure

5.11, we have analyzed and described a potential pitfall inherent to the use of
appearance-based landmark selection. In practice, an application and use-case
specific monitoring of the observed localization performance in relation to what
performance is to be expected is pivotal in order to swiftly detect a lock-in situation
and initiate a “reset” of the appearance-based landmark selection. Easily trackable
metrics, such as the number of observed landmarks, and the distance from the
nearest vertex in the map, may serve as potent indicators to distinguish lock-in
situation from poor localization due to too large divergence from the mapped
territory. This suggestion is supported by the strong correlations between the
aforementioned metrics and the localization performance, as shown in Figure 5.10
and 5.11.
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The localization accuracy achieved in the NCLT scenario is in general in ac-
cordance with the respective precision, although the magnitude of the former is
slightly higher. This is attributed to the fact that there are more sources of error
involved, such as the error of the ground-truth solution itself, and inaccuracies of
the intrinsic and extrinsic sensor calibrations. It is in this regard important to
note again that the pose estimated in each iteration is computed from solving a
non-linear least squares optimization problem only containing constraints between
the image keypoints and the matched 3D landmarks from the map. In particular,
there is no temporal smoothing or sensor fusion, which would prevent immediate
degradation of accuracy in many situations where temporarily only few landmark
are observed.
In a detailed computational performance analysis, we have shown that our

localization pipeline with appearance-based landmark selection is able to run in
real-time. Furthermore, the use of appearance-based landmark selection significantly
lowers the computational demand on the mobile platform, as only a fraction of
landmarks have to be processed in each localization iteration.
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Appendix
We present the observation percentage and localization precision separately for
each dataset of the three dataset collections in Section 6.1. This relates to Sec-
tion 5.5, and Section 5.6, where the same metrics are shown in aggregated form.
Furthermore, we compare the localization performance with different choices

of feature descriptors on the Parking-Lot datasets. The respective results can be
found in Section 6.2.

We conclude the appendix with a list of all datasets used in this evaluation, the
respective weather conditions, and some sample images in Section 6.3.

6.1 Individual Dataset Performance Analysis
In Figure 5.13, the observation percentage is shown with ranking function fAEC for
selection fractions of 10%− 40% with maps containing only rich sessions. It can be
observed that for certain datasets of the Parking-Lot collection, the average number
of observed landmarks with a 30% or 40% selection fraction can even exceed the
average number of observed landmarks when using all candidate landmarks. This
exhibits a saturation effect, resulting in occasionally achieving a higher number of
observed landmarks with only a subset of selected landmarks, as opposed to using
all candidate landmarks. While counter-intuitive at first, this is due to the fact that
including more candidate landmarks increases the chance of forming wrong 2D-3D
matches. After the subsequent pose estimation step, these wrong matches are then
classified as outliers, resulting in a potentially lower number of observed landmarks.

Furthermore, the different observation percentage characteristics during day-time
as opposed to at night are clearly visible in the City Environment . During the day,
a selection of 40% of the landmarks is not sufficient for an observation percentage of
more than 90%, while at night-time, even 20% of selected landmarks achieve almost
an observation percentage of 100%.

The localization precision using different ranking functions and with a selection
fraction of 20% are shown for each dataset of all three collections in Figure 5.14, 5.15,
and 5.16 respectively. The results reflect the patterns visible in Figure 5.13, and in
Section 5.5. The best performance is achieved using fAEC , fAV and fTfIdfB for
ranking landmarks, with precision values often close to that of using all landmarks
for localization instead. While the precision using fMRS can vary considerably
between different datasets, ranking functions fTfIdfA fails, resulting in occasionally
even worse precision than selecting landmarks randomly.
Enriching the maps with observation sessions results in a higher variance of

performance between different ranking functions, as can be seen in Figure 5.17
for the NCLT and Parking-Lot collection, and in Section 5.6 in Figure 5.8 for
the City Environment . The respective localization precision results are shown
in Figure 5.18, Figure 5.19, and Figure 5.20. Most notable is the failure of the
ranking function fNCV during day-time in the City Environment . As discussed
in Section 5.6, ranking function fAEC is the only one achieving consistently high
localization precision in the City Environment both during day-time, at dusk, as
well as at night-time.
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Figure 5.13: The average observation percentage robs for selection fractions be-
tween 10% and 40%, for every dataset of the NCLT (top), Parking-Lot (middle),
and City Environment dataset collection against maps containing only rich sessions.
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Figure 5.14: The localization precision for a selection fraction of 20%, for every dataset
of the NCLT collection against the map containing only rich sessions.
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Figure 5.15: The localization precision for a selection fraction of 20%, for every dataset
of the Parking-Lot collection against the map containing only rich sessions.

84



6 Conclusions

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

E
rr
or
in
T
ra
n
sl
at
io
n
[m
]

City Environment

12
:1
6

13
:5
5

14
:4
2

15
:2
0

15
:4
2

16
:0
0

16
:2
3

16
:4
6

16
:5
8

17
:0
8

17
:2
0

17
:2
5

17
:3
6

17
:5
1

17
:5
8

18
:0
5

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
or
in
R
ot
at
io
n
[d
eg
]

Error in Translation [m] and Rotation [deg] wrt. Wheel Odometry, TLEO, α =0.2

f0 fAEC fAV fTfIdfB fMRS fTfIdfA frandom

Figure 5.16: The localization precision for a selection fraction of 20%, for every dataset
of the City Environment collection against the map containing only rich sessions.
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Selected Landmarks vs. Observed Landmark, with Observation Sessions

NCLT

Parking-Lot

Datasets

20
12

-0
1-

08

20
12

-0
2-

02

20
12

-0
2-

12

20
12

-0
2-

18

20
12

-0
3-

17

20
12

-0
3-

25

20
12

-0
4-

29

20
12

-0
5-

26

20
12

-0
8-

04

20
12

-0
9-

28

20
12

-1
1-

04

20
12

-1
1-

17

20
13

-0
4-

05

0

10

20

30

40

50

60

70

80

90

100

r
o
b
s
-
A
v
g
.
P
e
r
c
e
n
t
a
g
e
o
f
O
b
se
r
v
e
d
L
a
n
d
m
a
r
k
s
[%
]

09
/1

8/
20

13

10
/2

3/
20

13

10
/3

1/
20

13

11
/0

8/
20

13

11
/1

2/
20

13

12
/0

3/
20

13

12
/0

6/
20

13

12
/1

2/
20

13

04
/2

5/
20

14

04
/3

0/
20

14

05
/1

4/
20

14

05
/2

1/
20

14

05
/2

8/
20

14

06
/1

1/
20

14

07
/0

2/
20

14

07
/1

6/
20

14

0

10

20

30

40

50

60

70

80

90

100

r
o
b
s
-
A
v
g
.
P
e
r
c
e
n
t
a
g
e
o
f
O
b
se
r
v
e
d
L
a
n
d
m
a
r
k
s
[%
]

fAEC ,α = 0.1
fWRS ,α = 0.1
f TfIdfB , α = 0.1

AVf , α = 0.1

fNCV, α = 0.1
f TfIdfA, α = 0.1

f random ,α = 0.1

Figure 5.17: The average observation percentage robs for a selection fraction of 10%,
for every dataset of the NCLT and Parking-Lot collection against the map with
observation sessions.
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NCLT

Error in Translation [m] and Rotation [deg] wrt. Wheel Odometry, TLEO, α =0.1
with Observation Sessions
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Figure 5.18: The localization precision for a selection fraction of 10%, for every dataset
of the NCLT collection against the map with observation sessions.
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Figure 5.19: The localization precision for a selection fraction of 10%, for every dataset
of the Parking-Lot collection against the map with observation sessions.
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Figure 5.20: The localization precision for a selection fraction of 10%, for every dataset
of the City Environment collection against the map with observation sessions.

89



Paper II: Appearance-Based Landmark Selection for Long-Term Visual Localization

6.2 Feature Descriptor Comparison
Our proposed appearance-based landmark ranking functions are per construction
independent of the local feature descriptor used for mapping and localization, as
they only take the co-observability patterns of landmarks into account. Nevertheless,
the feature descriptor is an integral part of the localization pipeline, and thus the
resulting performance of the localization with appearance-based landmark selection
may not be identical with every choice of local feature descriptor. We have therefore
evaluated the localization performance with popular choices of different local feature
descriptors on the Parking-Lot dataset collection. The results are shown in Figure
5.21, 5.22 and 5.23. As expected, the results are similar regardless of the choice of
descriptor.
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Figure 5.21: Observation percentage for different choices of feature descriptors, with a
selection fraction of 20% against the map with only rich sessions, aggregated over all
datasets of the Parking-Lot collection.
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Figure 5.22: Localization precision with different choices of feature descriptors, a
selection fraction of 20% against the map with only rich sessions, aggregated over all
datasets of the Parking-Lot collection.
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Figure 5.23: Localization precision with different choices of feature descriptors, a
selection fraction of 10% against the map with observation sessions, aggregated over
all datasets of the Parking-Lot collection.
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6.3 Sample Images

Table 5.6: List of the Parking-Lot datasets with their respective weather condition
and usage in the maps. The lower-case “r” and “o” indicate that the dataset has been
added to the map as a rich- and observation sessions respectively.

Date W. U. Example Images
20th August, 2013 � r

17th September, 2013 �
18th September, 2013 �
11th October, 2013 � o
16th October, 2013 � r
23rd October, 2013 �

31st October, 2013 �
7th November, 2013 � r
8th November, 2013 �
12th November, 2013 �
19th November, 2013 � o
3rd December, 2013 �

6th December, 2013 $
10th December, 2013 � r
12th December, 2013 �

14th January, 2014 � r
25th April, 2014 �

28th April, 2014 � o
30th April, 2014 �

5th May, 2014 � r
14th May, 2014 �

21st May, 2014 �

26th May, 2014 � o
28th May, 2014 �

11th June, 2014 �

30th June, 2014 � r
2nd July, 2014 �

16th July, 2014 �
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Table 5.7: List of the City Environment datasets with their respective weather
condition and usage in the maps. The lower-case “r” and “o” indicate that the dataset
has been added to the map as a rich- and observation sessions respectively.

Date W. U. Example Images
11:49 � r
12:16 �

13:55 �

14:31 � o
14:42 �

15:20 �

15:42 �

15:56 � o
16:00 �

16:23 �

16:46 �

16:58 �

17:03 � o
17:08 �

17:15 � r
17:20 �

17:25 �

17:30 � r
17:36 �

17:43 � r
17:51 �

17:58 � o
18:05 �
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Table 5.8: List of the NCLT datasets with their respective weather condition and
usage in the maps. The lower-case “r” and “o” indicate that the dataset has been added
to the map as a rich- and observation sessions respectively.

Date W. U. Example Images
8th January, 2012 �

15th January, 2012 � o
22nd January, 2012  r
2nd February, 2012 �

4th February, 2012 � r
5th February, 2012 � r
12th February, 2012 �

18th February, 2012 �

19th February, 2012 � o
17th March, 2012 �

25th March, 2012 �
31st March, 2012 � o
29th April, 2012 �

11th May, 2012 � r
26th May, 2012 �

16th June, 2012 � r
4th August, 2012 �

20th August, 2012 � r
28th September, 2014 �

28th October, 2014 � o
4th November, 2014 �

16th November, 2014 � r
17th November, 2014 �
23rd February, 2013  o

5th April, 2013 �
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PaperIII
Map Management for Efficient Long-Term

Visual Localization in Outdoor
Environments

Mathias Bürki, Marcin Dymczyk, Igor Gilitschenski, Cesar Cadena,
Roland Siegwart and Juan Nieto

Abstract
We present a complete map management process for a visual localization
system designed for multi-vehicle long-term operations in resource con-
strained outdoor environments. Outdoor visual localization generates large
amounts of data that need to be incorporated into a lifelong visual map in
order to allow localization at all times and under all appearance conditions.
Processing these large quantities of data is non-trivial, as it is subject to
limited computational and storage capabilities both on the vehicle and
on the mapping backend. We address this problem with a two-fold map
update paradigm capable of, either, adding new visual cues to the map,
or updating co-observation statistics. The former, in combination with
offline map summarization techniques, allows enhancing the appearance
coverage of the lifelong map while keeping the map size limited. On the
other hand, the latter is able to significantly boost the appearance-based
landmark selection for efficient online localization without incurring any
additional computational or storage burden. Our evaluation in challenging
outdoor conditions shows that our proposed map management process
allows building and maintaining maps for precise visual localization over
long time spans in a tractable and scalable fashion.

Published in:
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MapMap Update
Summarization

Appearance-Based Landmark Selection

Figure 6.1: The model scenario motivating this work. Multiple vehicles simultaneously
localize using a shared remote map, which is accessed over a mobile communication link.
Appearance-based landmark selection allows only querying landmarks from the map
which are in accordance with the current appearance condition, ensuring efficient usage
of the available bandwidth. Once a vehicle returns from a sortie, collected map data is
uploaded to the backend and incorporated into the map. Subsequent map summarization
on the backend ensures the map size never exceeds a fixed number of landmarks, and
thus guarantees limited storage requirements and a tractable map maintenance process
in long-term perspective.

1 Introduction

Visual localization systems for mobile robots constitute an attractive alternative
to laser-based systems, as the former can offer accurate localization performance
with a low-cost sensor setup. This is especially true for future autonomous cars,
where mass-production renders the sensor suite a sensitive matter of expense.
However, visual localization systems generate large amounts of data that need to
be processed both online on the vehicles as well as offline through map building
and map maintenance. The inherent sensitivity of visual systems with respect to
changing appearance conditions further exacerbates this problem in the context
of long-term autonomy, as multiple appearances of the mapped places need to be
stored and managed in order to be able to localize with satisfying accuracy across
all conditions.
In recent years, methods have been presented to address the scalability and

efficiency issues of individual components of a visual localization system ([8, 16,
24, 26, 65, 71]). However, little attention has been paid to how to combine the
different components to form a complete and tractable localization framework,
how the differently optimized methods interact, how visual maps are to be built
and managed over indefinite time spans, and most importantly: how the large
amount of data accumulated over time can be processed and incorporated in an
optimal way; everything with the purpose of allowing precise visual localization
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2 Related Work

in outdoor environments at all times. It is the aim of this paper to address
these questions. For this, we have built a scalable and efficient visual localization
system for multi-vehicle outdoor shared-map scenarios as depicted in Figure 6.1 and
anticipated for autonomous cars in the near future. It employs both appearance-
based landmark selection on the vehicle side, as well as offline map summarization
on the cloud-based mapping backend. We demonstrate how the visual maps can
be managed and improved over time as the vehicles are exposed to vastly different
appearance conditions. With the novel concept of an observation session, together
with a modified formulation of the ranking function for appearance-based landmark
selection, we propose a lightweight procedure to handle large quantities of frequently
collected sensor data with the aim of improving the landmark selection performance
without increasing the size of the map.

Our main contributions can be summarized as follows:

1. Demonstration of a complete map management procedure for an efficient
visual localization and mapping system designed for long-term outdoor use.

2. Introduction of observation sessions and proposal of a new formulation of
the ranking function for appearance-based landmark selection, allowing to
exploit frequently collected sensor data to significantly increase the landmark
selection performance without increasing the map size.

In an extensive evaluation in two real-world scenarios, covering weather and
seasonal changes at daylight over the course of one year, and the extreme illumination
change from day-time to night-time over the course of one day, we validate, first, the
practicability of the proposed map management procedure in challenging outdoor
conditions, and second, we show how additional co-observability statistics can
improve the appearance-based online localization, and where the limitations thereof
lie.
The rest of this paper is structured as follows: After an overview over related

literature, we present our map management procedure in detail in Section 3,
before presenting an extensive evaluation of the system’s performance in Section 4.
Summarizing remarks about our key findings conclude the paper in Section 5.

2 Related Work

Ever since the advent of SLAM systems, maintaining map representations for
enabling long-term operations has been a key focus, with a variety of different
approaches evolving over time. The methods described in [88], [21] and [20] aim
at maintaining a most up-to-date representation of the environment over longer
times. These approaches, however, reach their limits whenever a map is required
to represent multiple different representations at the same time, as is the case for
outdoor visual localization applications.
For this reason, substantial efforts have been made to permanently augment

visual maps with data from differing environment conditions. Churchill et al. [16]
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introduced the Experience-Based mapping framework, which on-demand adds new
“sub-maps” (referred to as “Experiences”) of the environment under newly observed
appearance conditions. In a similar vein, the Multi-Session mapping proposed by
Mühlfellner et al. [65] and the Multi-Experience Localization proposed by Paton
et al. [70] both allow adding multiple datasets of an environment, collected during
differing appearance conditions, to a common map representation. All of these
approaches in their basic form, however, suffer from increased and ultimately un-
bounded storage, memory and computational resource requirements. To address this
deficit, map summarization techniques have been developed, aiming at maintaining
as small a map representation as possible, while at the same time still providing
as good a localization performance across as far ranging appearance conditions
as possible. Early works in this field include identifying reliable, geometrically-
consistent features in the image retrieval context [87], and suppressing confusing
features from certain regions of the database images [34]. Follow-up approaches vary
from clustering [35] or random pruning [57] of visual “Views”, to selection at the
landmarks level based on various landmark ranking functions [24, 25, 47, 65, 72].

The selection must not necessarily be carried out on the backend side, but instead
may as well be performed already in an online fashion on the robot, prior to
uploading new map data [26, 30, 74]. In general, these contributions focus on
constructing a reliable set of landmarks for all possible environment states, reducing
the runtime of tracking and localization, and/or the uplink bandwidth requirements.

In contrast to that, online landmark selection algorithms further allow decreasing
the resource demands on the vehicle and on the communication downlink by having
the vehicle query the map only for a selective fraction of landmarks which are deemed
useful under the current operating conditions. Previous work by the authors [8]
and by Linegar et al. [45] have successfully demonstrated such algorithms in the
context of Autonomous Driving – a use-case especially prone to visual appearance
change and applicable to the shared-map scenario. In relation to that, the work
by Krajník [37], [36] aims at predicting the current state of the environment based
on previously observed and learned temporal patterns. While this approach is
promising for dynamic indoor applications, it is only partially applicable to outdoor
environments with often non-periodic changes.

We believe that an ultimately efficient visual localization system must do justice
to constrained resources along the whole pipeline, that is, on the mapping backend
side, as well as on the mobile platform and the communication link in-between.
None of the aforementioned works, however, address all of these constraints simulta-
neously, whereas in this paper, we present a map management procedure that allows
reaching an entirely scalable and efficient visual localization system for long-term
use. Furthermore, and in contrast to [45] and [71], our metric multi-session map
representation (see [65], [25]) keeps all map data (vertices, landmarks), even from
multiple appearance conditions, expressed in a single map reference frame. This not
only facilitates higher level tasks of autonomous operation, such as path planning
and control, but also allows implementing the online landmark-selection and the
offline map summarization on the level of individual landmarks.
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3 Methodology

In this section, we present the theoretical concepts of the three main components
of our localization and mapping system: (i) the map update, (ii) appearance-based
landmark selection with observation sessions, and offline map summarization.

3.1 Map Update
The methodology of our map management procedure is based on a map update
process as depicted in Figure 6.2. Sensor data, consisting of camera images and
wheel-odometry measurements, is collected during a sortie of a vehicle and processed
after the vehicle has returned to its home-base. The newly collected dataset is first
localized in an offline process against the map available at that time. In case the
performance of this localization is worse than a pre-defined threshold, the map is
considered to not cover the appearance condition encountered during this sortie
sufficiently well and new landmarks are tracked and triangulated from the dataset.
A dataset added to the map in this fashion is referred to as a rich session. A
subsequent map summarization step ensures the total number of landmarks to
remain below a fixed number, guaranteeing a bounded map size at all times. If, on
the other hand, localization has performed sufficiently well, the map is considered
to cover the encountered conditions and no new landmarks are added to the map.
In this case, however, the localization still reveals useful information about what
landmarks in the map have been observed during the sortie. This information
is added to the map in the form of an observation session. In contrast to the
rich session described above, adding an observation session conforms to merely
marking existing landmarks as observed in the respective sortie. However, both for
future online localization as well as future map summarization steps, this additional
statistical data is valuable, as it allows a better distinction between useful and
not useful landmarks. The resulting updated map is then used for localization of
subsequent sorties.

In order to benefit from the observation sessions during online localization with
appearance-based landmark selection, a modified formulation of the landmark
ranking function is required and described in the following subsection.

3.2 Appearance-Based Landmark Selection with Observation
Sessions

In our previous work presented in [8], a method to tackle the problem of only
querying useful map data during an outdoor operation has been introduced on the
basis of appearance-based landmark selection. Following an iterative localization
paradigm, such as the ones described in [65] and [39], a ranking function f(l) assigns
a score to each landmark of a candidate set Ck (pre-selected based on spatial
proximity), according to how likely l is observable under the current appearance
condition. Then, a small subset Sk of top-ranked landmarks are selected using a
selection policy Ω(f(), . . .), transmitted to the vehicle, and used for localization at
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Offline Localization
New 

Dataset

Add Rich Session Summarization

Add Observation 
Session

Localizes 
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Updated 
Map

Map No

Yes

Figure 6.2: Schematic illustration of the map update process on the backend. A newly
received dataset is first localized against the available map. In case the localization
performance is below a defined threshold, new landmarks are created from the dataset
and added to the map, followed by a summarization step, which reduces the total number
of landmarks in the map again to a fixed number. In the other case, the co-observation
statistics of all landmarks observed during the localization are updated, but no new
landmarks are added.

iteration k. The ranking function described in [8] adaptively weights the different
sessions present in the pre-built map based on the session-affiliation of recently
observed landmarks along the traversal. Although successfully reducing the amount
of landmarks used for localization, it relies on the map to be created a priori with
all sessions approximately uniformly distributed across the appearance space.
In a practical scenario, however, the map sessions may not be uniformly dis-

tributed, but they are rather added once a “new” appearance condition is en-
countered for the first time. In addition to that, whenever the vehicle traverses
through the mapped area under an appearance condition already well-covered in
the map, additional co-observability information can be gathered in the form of
observation sessions.

As our experiments presented later show (see Figure 6.6), the original ranking
function from [8], denoted by forig(), is not well suited to incorporate these ad-
ditional observation sessions. We thus propose a new formulation of the ranking
function that is agnostic to how the mapping sessions are distributed across the ap-
pearance space, and the number and distribution of additional observation sessions
present in the map.

Let A denote the current appearance condition. We are interested in evaluating
p(l | A), corresponding to the probability of observing landmark l under the current
appearance condition. Let further Z denote the set of all sessions present in the map,
both rich sessions and observation sessions, and L denote the set of all landmarks
in the map. With every landmark l ∈ L, we associate the set Zl, corresponding to
all sessions that have observed landmark l.
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We note that p(l | A) directly depends on Zl, that is, Zli = Zlj ⇒ p(li | A) =

p(lj | A). We can thus group landmarks into appearance equivalence classes,
according to:

[li] := {lj ∈ L | Zlj = Zli} (6.1)

with
p(lj | A) = p(li | A) ∀lj ∈ [li] (6.2)

Hence, evaluating p(l | A) amounts to evaluating p([l] | A), which can be in-
terpreted as the relevance of appearance equivalence class [l] under appearance
conditionA.
The abstract appearance condition A is not directly observable. However, it

can be approximated by the means of recently selected and observed landmarks as
follows:

p([li] | A) ≈


|O[i]|
|S[i]|

, if |S[i]| > 0

0, otherwise
(6.3)

where O[i] and S[i] denote the sets of recently observed and selected landmarks
of appearance equivalence class [li] respectively. Accordingly, we define our new
landmark ranking function as:

frank(l) := p([l] | A), ∀l ∈ L (6.4)

In Figure 6.3, a comparison of our modified ranking function with the originally
proposed formulation on the experimental set-up used in [8] is shown, ensuring that
our modified formulation does not reveal regressive performance under these condi-
tions. Further evaluation results demonstrating the merit of our new formulation
are presented in Section 4.2.

3.3 Offline Map-Summarization
Whenever a rich session is added to the map, the total number of landmarks
increases, and therewith also the size of the map. We therefore apply the map
summarization techniques proposed by Dymczyk et al. in [24] to keep the map size
bounded at all times.

They suggest to reduce the number of landmarks by solving the following integer-
based optimization problem:

minimize qTx + λ1T ζ, subject to (6.5)

∑N

i=1
xi = ndesired (6.6)

Ax + ζ ≥ b1 (6.7)

ζ ∈ {{0} ∪ Z+}M . (6.8)
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Figure 6.3: Direct comparison of our new appearance-based ranking function frank()
with the original ranking function proposed in [8] forig(), ensuring the former to per-
form at least as well on the same map and selection policy used for the experiments
in [8]. For each dataset of the City-Environment and the Parking-Lot scenario, the
observation percentage robs (blue, yellow bars) is shown for a selection ratio of 30% and
a maximum number of selected landmarks of m = 1800. In this setting (a priori built
map without observation sessions) both ranking functions perform equally well. The
benefit of our modified ranking function forig() is shown in further experiments with
observation sessions presented in section 4.2.
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Each landmark is assigned a corresponding binary switch variable xi ∈ {0, 1},
indicating whether the landmark should be kept or removed. The landmarks
are selected based on the cost vector q, estimated using the number of sessions
a landmark was observed in and the total number of observations. Additional
constraints ensure some desired total number of landmarks (ndesired) to remain in
the map, and a sufficient number of landmarks (b) visible from every vertex. Matrix
A encodes the vertex-landmark co-observability, while the slack variable ζ allows
to relax this constraint (at cost λ), ensuring a solution to the optimization problem
can be found in all cases.

4 Evaluation

Our evaluation is structured into two parts as follows: We first present our findings
related to the map management process and offline summarization, thereby looking
into how many rich sessions are added over time, and how the degree of map
summarization affects the localization performance. In the second part, we show the
performance of the online appearance-based landmark selection on the incrementally
improved maps over time, focusing on a comparison between our modified, more
generic ranking function proposed in Section 3.2, and the original ranking function
proposed in [8] under the influence of additional observation sessions.

The data for the evaluation has been collected in two complementary real-world
scenarios. The first one covers weather and seasonal change over the coarse of a full
year at day-time on an outdoor parking-lot, while the second one covers extreme
lighting change from full day-light to complete night-time in a city environment.
The sensor suite consists of four fish-eye cameras, one facing in each cardinal
direction, running at 12.5Hz, and wheel-odometry. The images are scaled down to
640× 400 pixels prior to processing. Example images can be found in[8] and in the
video contributions available online12. All computations have been performed on
a consumer-grade laptop with an Intel i7 CPU. Localization runs in real-time at
> 5Hz.

4.1 Map Update and Summarization
As a metric for assessing the quality of the generated maps over time, we employ
translation RMS errors between the rough pose estimate from forward-propagated
wheel-odometry and the refined pose after optimization. In accordance with the
results found in [8], we omit the presentation of RMS errors in orientation, as they
highly correlate with the translation errors and are of negligible magnitude in any
case (� 2◦). Note that the refined pose at each iteration is obtained from solving a
vision-only non-linear least-squares optimization problem. The resulting RMS error
thus approximates the standard deviation of the localization along the trajectory.

1https://youtu.be/TJMQCSHTIjU
2https://youtu.be/JL_5zMEQKYc
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In outdoor environments, the updated map must still be able to cover the range
of appearance conditions represented by the incorporated rich sessions, even after
summarization. The number of landmarks required to achieve this not only depends
on the sensor setup and the spatial extent of the map, but also on the variance
in appearance conditions encountered. The City-Environment scenario covers
extreme lighting changes from day-time to night-time, but the overall variance is
still considerably smaller than in the year-long day-time Parking-Lot scenario. To
guide our map update process described in Section 3.1 and Figure 6.2, we have
therefore chosen to perform map summarization with a maximum number of 75k
(75′000) and 150k landmarks in the City-Environment and the Parking-Lot scenario
respectively, and use a 10cm threshold on the translation RMS error on these maps
as a decision criterion to add the dataset at hand either as a rich session, or as an
observation session. The choice of the 10cm threshold is motivated by recent work
([8, 65]) suggesting this to be a reasonable and realistic upper bound for localization
precision with the given sensor suite.
The evolution of the localization performance resulting from this map update

regime is shown in Figure 6.5, where localization has been evaluated with the follow-
ing three combinations of selection policies and ranking functions: a) Ω(f0(), α = 1.0),
using all candidate landmarks for localization, b) Ω(frank(), α = 0.2), appearance-
based landmark selection with a selection ratio of 20%, and c) Ω(frand(), α = 0.2),
the corresponding random selection. As described in 3.2 and [8], the selection policy
Ω(f(), α = α) selects some fraction α of top-ranked landmarks from Ck which are
then used for localization at the given iteration k.

In order to thoroughly assess the influence of the offline map summarization on
the localization performance, we have further evaluated the latter against more
strictly summarized maps (with 50k for the City-Environment, and 100k landmarks
for the Parking-Lot environment respectively), as well as against indefinitely growing
unsummarized maps.

In the City-Environment scenario, appearance conditions appear stable through-
out the afternoon until the beginning of dusk shortly after 5pm. At 5:15pm,
5:30pm and 5:43pm, additional rich sessions are added, gradually expanding the
appearance coverage of the map until, finally, night-time localization is feasible at
6pm.
In contrast to that, in the Parking-Lot scenario, the appearance patterns are

much less clear. Already the initial map, built from the first dataset from August
20th, does not allow sufficient localization performance for the second dataset from
September 17th. In general, it seems to be necessary to have a rich session present
for every month of the year. Nevertheless, for the second half of the year, the map
clearly shows converging tendencies, with only occasional datasets just barely above
the 10cm precision threshold, and the spread between reference localization using
all landmarks, and the random selection decreasing.

Figure 6.4 further shows the number of landmarks associated with each rich session
at each stage of the incremental map building process, both for the summarized map
and the unsummarized map. The rich sessions added in the City-Environment
scenario in dusk naturally contain considerably fewer landmarks, which is also

108



4 Evaluation

08
/2

0/
13

09
/1

7/
13

10
/1

6/
13

11
/0

8/
13

12
/0

3/
13

12
/0

6/
13

04
/2

5/
14

05
/2

1/
14

06
/3

0/
14

Rich Sessions

0

50000

100000

150000

200000

250000

300000

350000

N
u
m

b
e
r

o
f
L
a
n
d
m

a
rk

s
[#

]

Parking-Lot

08/20

09/17

10/16

11/08

12/03

12/06

04/25

05/21

06/30

08/20

09/17

10/16

11/08

12/03

12/06

04/25

05/21

06/30

11
:48

17
:15

17
:30

17
:43

Rich Sessions

0

50000

100000

150000

200000

250000

City-Environment

11:48

17:15

17:30

17:43

11:48

17:15

17:30

17:43

Number of Landmarks and Rich Session Affiliation

150k Map          Unsum. Map 75k Map

Unsum. Map

  

Figure 6.4: The number of landmarks and their affiliation with the corresponding
rich session, both for the summarized and the unsummarized maps, is presented for the
two evaluation scenarios. On the x-axis, every dataset which is added as a rich session is
listed in chronological order, whereas the y-axis shows the absolute number of landmarks
the summarized and unsummarized maps contain at this stage. The colors indicate how
many landmarks belong to what rich session.

reflected in both the summarized and the unsummarized map. In contrast to that,
the rich sessions added in the Parking-Lot scenario all contain a similar number of
landmarks, and summarization reduces already present sessions more or less equally
as new sessions are added.

Ideally, the localization precision is preserved after map summarization. If this is
the case, the summarization only removes noisy landmarks from the map which are
not re-observable under any of the encountered appearance conditions. In the City-
Environment scenario, the performance difference related to map summarization is
best visible at night-time, where the unsummarized map shows significantly better
performance in case of the random selection. However, with the appearance-based
selection, almost the same precision is attainable as if all landmarks were used.
This shows that the summarization algorithm successfully removes redundant and
noisy landmarks while maintaining a good coverage over the different appearance
conditions. Similar results can be observed also for the Parking-Lot scenario. The
more rich sessions are added, and hence the fewer landmarks of an individual
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Figure 6.5: Translation RMS error for all the datasets of both scenarios, differently
summarized maps, and different ranking functions and selection policies. The datasets
marked in dark gray are added as rich sessions while all other datasets are added as
observation sessions instead. The blue circles correspond to the precision achieved when
using all landmarks for localization (Ω(f0(), α = 1.0)), whereas the red cubes correspond
to 20% random selection (Ω(frand(), α = 0.2), while the colored crosses represent the
appearance-based selection (Ω(frank(), α = 0.2)). These results are shown for four
different map configurations in each of the scenarios: The unsummarized map, two
degrees of summarization, and with respect to the final summarized map (“Regression”).
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rich session can be present in the summarized map, the larger the performance
gap between the differently summarized and the unsummarized map becomes. It
can further be observed that for the 100k map, the appearance-based localization
cannot keep up with the performance compared to the 150k map, indicating that
for this scenario and this time span, more than 100k landmarks are required in
order to maintain sufficient appearance space coverage.

Since in these experiments we deliberately choose to build the maps incrementally
and in chronological fashion, the performance evaluation of a certain dataset
only uses the map available at that point in time. To demonstrate that the
summarization algorithm in fact creates maps that maintain usability across all
previously encountered appearance conditions, we evaluate the performance of all
datasets in retrospect using the final map created after having processed the last
dataset in chronological order. The results of this “regression” test are shown in
Figure 6.5, with the corresponding map labelled with “Regression”. As can be seen,
all datasets achieve at least as high a precision as if the map available by that time
is used instead. Note, however, that for all datasets added as rich sessions this
“regression” test in principle corresponds to self-localization. Hence the artificially
high precision in these cases.

4.2 Appearance-Based Landmark Selection
The goal of the appearance-based landmark selection is to achieve a high online
localization performance with as few landmarks selected as possible. This can best
be evaluated by comparing respective selection ratios α with the corresponding
observation ratios robsk :

robsk :=
|OΩ(frank,α=α)
k |

|OΩ(f0,α=1.0)
k |

(6.9)

The selection ratio α denotes the fraction of candidate landmarks used for local-
ization at iteration k. In contrast to that, the observation ratio robsk compares the
number of observed landmarks, using a specified ranking function frank() and se-
lection ratio α, to the number of observed landmarks when all candidate landmarks
are used.

In [8], it has been shown that with a pre-built map and selection ratios between
20-40%, a localization performance comparable to using all landmarks can be
achieved. In contrast to that, in this paper, we aim at investigating how the relation
between selection ratio and localization performance evolves in a scenario where
datasets are chronologically processed and the map is built-up incrementally, with
both rich sessions and observation sessions.
Figure 6.6 shows the observation percentage for a selection ratio of 20% for the

three cases of using the ranking function originally proposed in [8], and using our new
ranking function introduced in Section 3.2 with and without observation sessions.
In early stages of the map building with only few rich sessions present in

the map, the benefit of using the observation sessions is most pronounced. As
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soon as more rich sessions become available though, the selection not using the
observation sessions performs more and more similarly. In case of the City-
Environment scenario, this is due to the fact that towards night-time even a
pure selection on the 5:30pm and 5:43pm rich sessions allows achieving virtually
100% observation percentage already. In contrast to that, the appearance condi-
tions in the Parking-Lot scenario are much more diverse and unrelated from one
dataset to the next one. After having some number of rich sessions present in
the map, additional co-observability information in potentially only weakly related
appearance conditions is only of minor or no help anymore.

5 Conclusions

We have presented a complete map management process for a visual localization
system tailored to long-term operations in resource constraint outdoor environments.
Offline map summarization guarantees maps of bounded size at all times, while online
localization with appearance-based landmark selection allows only transmitting
and processing the map data required and useful under the current appearance
condition. With the incorporation of landmark co-observation statistics in the form
of observation sessions in combination with a new formulation for the appearance-
based landmark ranking function frank(), we have proposed a lightweight mechanism
to improve the appearance-based landmark selection during online localization
at negligible storage or computational costs. An extensive evaluation in real-
world conditions has shown that these additional observation sessions have the
potential to significantly improve the landmark selection performance. However,
their usefulness degrades as more and more rich sessions are available in the map.
We have further evaluated the localization performance on the maps with different
degrees of summarization resulting from the proposed map management paradigm,
and shown that precise localization is possible over long time frames and across
vastly different appearance conditions while keeping the map size bounded.

112



5 Conclusions
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Figure 6.6: The observation percentage robs is shown for both scenarios, a selection
ratio of 20% and for the following three ranking functions and selection policies: a)
forig() with observation sessions, b) frank() with observation sessions, and c) frank()
without observation sessions. Especially in the early stages where the map still contains
only very few rich sessions, the observation sessions allow a significant boost of the
observation percentage.
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Abstract
Changes in appearance is one of the main sources of failure in visual localiza-
tion systems in outdoor environments. To address this challenge, we present
VIZARD, a visual localization system for urban outdoor environments. By
combining a local localization algorithm with the use of multi-session maps,
a high localization recall can be achieved across vastly different appearance
conditions. The fusion of the visual localization constraints with wheel-
odometry in a state estimation framework further guarantees smooth and
accurate pose estimates. In an extensive experimental evaluation on several
hundreds of driving kilometers in challenging urban outdoor environments,
we analyze the recall and accuracy of our localization system, investigate
its key parameters and boundary conditions, and compare different types
of feature descriptors. Our results show that VIZARD is able to achieve
nearly 100% recall with a localization accuracy below 0.5m under varying
outdoor appearance conditions, including at night-time.
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Figure 7.1: We aim at accurately localizing the UP-Drive vehicle depicted in the upper-
left corner in a map of visual features depicted on the right side. Features are extracted
from images of the surround-view camera system (lower-left corner) and matched against
3D landmarks in the map. Inlier matches, centered on the estimated 6DoF pose of the
vehicle in the map, are illustrated as dark yellow lines on the right side.

1 Introduction

Localization is a pivotal capability of any autonomous vehicle. By knowing their
precise location, vehicles are able to plan a path to a next goal location, navigate
safely in the environment, and eventually successfully complete their mission.
Especially for autonomous vehicles in urban environments, localization is challenging,
as GNSS based localization systems fail to provide reliable and precise enough
localization near buildings due to multi-path effects, or in tunnels or parking garages
due to a lack of visible satellites. Alternative exteroceptive sensor modalities are
therefore necessary to accomplish this task, of which LiDARs and cameras have
received most attention in recent years [12, 49]. While LiDARs have become more
suited for mass market adoption, we believe there are still significant advantages
with camera-based localization systems, despite the challenges related to long-term
appearance change in outdoor environments. Cameras remain considerably more
cost-effective than LiDAR sensors, allowing them to be deployed in multitudes and
in a flexible way on a large quantity of vehicles. Furthermore, they can be used
for sensing both appearance and geometric information of the environment, and
are often better suited for global localization and loop-closure detection, which are
necessary capabilities for bootstrapping any local localization algorithm, and to
maintain geometrically consistent maps in lifelong operation [12].
For these reasons, we have developed a visual localization system, dubbed
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2 Related Work

VIZARD, for the self-driving cars in the UP-Drive project1, with the following
main features:

1. We employ map-tracking, a local localization algorithm able to generate both
accurate 6DoF pose estimates and achieve high localization recall.

2. Multi-session mapping techniques enable us to successfully tackle the challenge
of long-term appearance change in outdoor environments, and even allow for
localizing in night-time conditions.

3. The use of binary descriptors and an efficient sensor fusion backend renders
real-time localization with CPU-only hardware set-ups feasible.

In a thorough evaluation of all crucial aspects of our localization system using two
long-term outdoor dataset collections, one of them publicly available, we carefully
analyze the most important parameters in our pipeline, compare the use of different
binary descriptors, investigate key performance metrics such as localization accuracy
and recall and relate to a state-of-the-art metric global localization algorithm. We
see the main added value of this paper in sharing with the community the insights
gained in this long-term study.

The contributions of this paper are thus as follows:

• We thoroughly study the critical parameters of our localization system, analyze
their boundary conditions, and share our gained insights.

• From a comparison of the localization performance using different binary
descriptors, we show which descriptors are best suited for map-tracking across
long-term appearance change.

• In an extensive evaluation on multiple long-term dataset collections, we
demonstrate state-of-the-art localization performance across vastly different
appearance conditions in outdoor environments, including at night time.

2 Related Work

Visual localization systems can be divided into two main categories. Global local-
ization systems are able to retrieve the location of a robot with no prior knowledge
of the robot’s pose. In contrast to that, local localization systems exploit a motion
model to compute a prior on the robot location, thereby reducing the search space
in the map.

1The UP-Drive project is a research endeavor funded by the European Commission, aiming
at advancing research and development towards fully autonomous cars in urban environment.
See www.up-drive.eu.
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Global Localization

Early visual global localization systems have been presented in the context of offline
geometric scene reconstruction from a large number of images collected from varying
viewpoints [1, 81]. These works led the foundation for many subsequent 6DoF
global localization algorithms, and have been improved in numerous follow-up
works [19, 44, 46, 50, 79]. More recently, deep learning techniques have given rise
to novel global localization algorithms with remarkable robustness against drastic
appearance change [23, 78]. They require, however, high-end GPUs in order to
achieve real-time operation.
In general, the aforementioned global localization algorithms are capable of

achieving reliable localization across significant appearance change in outdoor
environments. However, as shown in [80], they often fall short of providing high
recall with localization accuracies below 0.5m, and are thus not well suited for
our application, where we aim at permanently localizing our vehicle with sufficient
accuracy to prevent deviation from the road lane boundaries. Note that there has
also been a substantial amount of work on global localization in the realm of place
recognition, or image retrieval [4, 53, 59, 67, 86]. These approaches, however, only
provide a best matching image candidate in a map, instead of a 6DoF metric pose,
and are thus addressing a different problem than ours.

Local Localization

Local localization algorithms take prior information on the robot pose into account,
in order to reduce the localization search space and increase recall. This is well
motivated in practice, as subsequent localization attempts of a mobile robot are
far from independent, but in fact highly correlated in space, with the incremental
motion between images often observable, although with drift, from odometry sensors
such as wheel-odometry or IMUs. As a consequence, instead of regarding localization
as an independent module, it can be directly integrated into the state estimation
framework that optimizes the robot’s pose in its environment by fusing odometry
measurements and localization constraints. The ORB-SLAM [66] framework with
its localization mode offers a local localization system similar to ours. They lack,
however, the capability to integrate multiple sessions into a map, which greatly limits
the robustness towards appearance change in outdoor environments. Lategahn and
Schiller present a hierarchical visual localization system for outdoor environments
that combines a global with a local localization module [40]. They achieve robustness
against appearance change by employing DIRD descriptors [41]. Their experimental
evaluation, however, only spans across six weeks, and it thus remains unclear, how
well their system performs over long-term appearance change. Instead of employing
an illumination invariant descriptor, Paton et al. use color-constant images to gain
robustness against appearance change [69]. However, color-constancy primarily
removes shadows under sunlight, but does not tackle other variations in appearance,
such as seasonal change, or transitions from day to night-time.
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Multi-Session Mapping

A common technique to achieve robustness against arbitrary long-term appearance
change incorporates visual cues from multiple sorties through the environment in
the map. We refer to this as multi-session mapping. Schneider et al. have presented
a state estimation framework that fuses visual-inertial odometry with metric global
localization [6, 51, 82]. While their mapping framework allows merging several
sessions, they use a feature based global localization algorithm which prohibits
sufficient localization recall in outdoor environments. Paton et al. present a
visual localization system using multi-session mapping in [71]. Their application
is, however, restricted to a teach-and-repeat scenario. In contrast to that, we
employ loop-closure detection and bundle adjustment in order to get geometrically
consistent multi-session maps, which adds additional flexibility in route planning and
navigation. The “Experienced-Based Mapping” framework developed by Churchill
et al. maintains separate map instances for diverse appearance conditions [16]. This
allows visual localization in arbitrarily appearance conditions in an elegant and
efficient manner. However, the maintenance of separate maps for differing conditions
renders it impossible to share visual cues between sessions, which can increase recall.
Furthermore, an integration of the localization module into a complete navigation
stack is more challenging, as the visual pose estimates are expressed with respect
to separate, disconnected coordinate frames.

Similarly to our localization system, the works presented in [42, 63, 65, 83] use a
local localization algorithm with multi-session maps for localization. As opposed to
our work, Mühlfellner et al., refrain from fusing their visual pose estimates with
wheel-odometry, which limits the accuracy and smoothness of their pose estimation
framework, while Sons et al. do not report on localization accuracy and recall in
long-term experiments.

3 Methodology

The VIZARD system consists of the following main components, presented at the
beginning of this section. a) We employ a state estimation framework for fusing
wheel-odometry and visual localization constraints. b) Our map-tracking module
matches keypoints extracted from current camera images to landmarks from the
map. Furthermore, key information regarding our mapping pipeline is provided
at the end of this section, and a schematic overview of VIZARD can be found in
Figure 7.2.

3.1 State Estimator
At the core of our localization system we employ a state estimation framework in
information form, the dual representation of the (Extended) Kalman-Filter [11, 84].
Our state representation entails an estimate of the current transformation between
the vehicle body coordinate frame FB and the map reference frame FW for each
time-step t: xt :=

[
T tWB

]
. Note that TWB is an element of SE(3 ), and thus
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Figure 7.2: The map-tracking module extracts 2D features from current camera images,
and matches them with 3D map landmarks locally in image space using a pose prior
T̂ t. The state estimation module fuses the visual 2D-3D matches with the current
wheel-odometry measurement to obtain a current vehicle pose estimate T t

WB .

represents all six degrees of freedom. The corresponding rotations are represented
by unit quaternions. At every time-step t, a set of n simultaneously recorded camera
images, and a relative odometry transformation measurement T̄ odoBt−1Bt

are received.
A new state is created by forward-propagating the previous state estimate using the
odometry measurement: T̂ t := T tWB T̄

odo
Bt−1Bt

. It is used both in the map-tracking
module as a pose prior, and as an initial linearization point in the filter update.
After finding 2D-3D matches in the current set of images using map-tracking, the
states are updated by retrieving the MAP estimate of the following cost function:

c(T tWB , T
t−1
WB) :=‖ fprior(T t−1

WB) ‖2
P−1
t−1

+ ‖ fodo(T tWB , T
t−1
WB) ‖2Q

+
m∑
i=1

ϕ(floc(T
t
WB))

The prior pose and odometry factors, fodo and fprior respectively, follow a standard
quadratic loss expression, while the localization re-projection factors floc employ
a Huber robust cost function ϕ to account for possible wrong keypoint-landmark
associations. All factors follow a standard graph SLAM formulation, as described
in [12]. We retrieve the MAP estimate by iteratively minimizing the cost function c
using the Levenberg-Marquardt in the GTSAM framework [22].

3.2 Map-Tracking
At every timestep t, the forward-propagated pose T̂ t represents a rough estimate of
the vehicle’s location at time t in the map. With this, we can retrieve all landmarks
from the map that have been observed from within a given distance around T̂ t.
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and matches them with 3D map landmarks locally in image space using a pose prior
T̂ t. The state estimation module fuses the visual 2D-3D matches with the current
wheel-odometry measurement to obtain a current vehicle pose estimate T t

WB .

Using T̂ t and the extrinsics calibration between the vehicle body and the individual
camera frames, the landmark 3D points are projected into the current set of images,
and matched with extracted keypoints in the following way: A landmark and a
keypoint are only considered as a match candidate if their image space distance is
smaller than 40px. This avoids forming geometrically inconsistent matches. Further,
a keypoint is preferably matched with the candidate landmark whose FREAK [3]
descriptor is closest to the FREAK descriptor of the keypoint, using the Hamming
distance metric. A descriptor distance threshold δ[px] is employed to limit the
distance between the two descriptors, thus ensuring appearance consistency. The
resulting 2D-3D matches are fed back into the state estimator where they form
the visual localization constraints for the state update at time t. After optimizing
the vehicle pose T tWB , the geometric consistency of every localization constraint
is re-evaluated. For this, a reprojection threshold ρ[px] is used to distinguish
between inlier and outlier landmark observations. While the localization factors
of outlier observations are removed, the localization factors of inlier observations
are marginalized out together with the previous pose T t−1

WB . An illustration of the
map-tracking algorithm can be found in Figure 7.3.

3.3 Mapping
A base-map is built by tracking and triangulating local features along the trajectory
of the first-session dataset. The resulting 3D landmark points are added to the map
together with their median feature descriptors. Subsequently, more map sessions
are added by localizing further datasets against the available (multi-)session map
using map-tracking. Note that all landmarks in the resulting multi-session map
are expressed in one common frame of reference FW . Similar local localization
and mapping algorithms have been used in our previous work [8, 65], to which we
kindly refer the interested reader for more details.
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4 Evaluation

This section presents evaluation results on the following three key aspects. a) In
a parameter study, the optimal values for the most important parameters of
our localization system are identified. b) We further investigate the influence
of different binary descriptors on the localization performance. c) In long-term
experiments across vastly different appearance conditions in outdoor environments,
the localization accuracy and recall using map-tracking are evaluated, and compared
with the accuracy and recall resulting from using a global localization algorithm.

The subsequent section first describes the UP-Drive vehicle platform, including
the sensor set-up, computing infrastructure, and provides details on the online
operation. Additional sections are devoted to a brief description of the three dataset
collections, and the evaluation metrics used in our experiments.

4.1 The UP-Drive Platform

The UP-Drive vehicle is equipped with a surround-view camera system consisting
of four cameras with fish-eye distorted lenses. Images are recorded at 30Hz with
a resolution of 640 × 400 pixels in gray-scale. Furthermore, wheel tick encoders
and a low-end IMU provide odometry measurements, which are fused with the
visual localization constraints as described in Section 3.2. The vehicle and sample
images from the camera system are depicted in Figure 7.1. Localization is run in
real-time at 10Hz on a consumer-grade computer with an Intel i7 CPU and 16GB
of RAM. In particular, no GPU is required, neither for mapping, nor for localization.
Furthermore, for bootstrapping map-tracking, a position prior is generated with
a consumer-grade GPS sensor, while the orientation hypothesis is generated from
orientations of near-by map poses.

4.2 Dataset Collections

UP-Drive

The UP-Drive dataset collection consists of 32 drives on the Volkswagen factory
premises in Wolfsburg, Germany, recorded between December 2017 and December
2018. The total driving distance is approximately 300km. The scenery resembles
an urban environment, with busy streets, buses, zebra crossings, and pedestrians2.
This dataset collection not only covers seasonal appearance changes and a wide
range of different weather conditions, it also contains datasets recorded at dusk
and night-time. Five datasets, three from day-time, one at dusk, and one at night,
are used to build a multi-session map. The remaining 27 datasets are used for
evaluating the localization.

2 Sample images can found online at https://github.com/ethz-asl/up-drive_visual_dataset/wiki/
Sample-Images
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NCLT

The NCLT [15] dataset collection consists of 27 recordings collected with a Segway
platform on the Michigan University campus between January 2012 and April
2013. Analogous to the UP-Drive datasets, odometry poses based on wheel-tick
encoders and an IMU sensor are fused in the state estimation framework. A
Ladybug 3 camera system is used, collecting images at 5Hz which are undistorted
and down-scaled to a resolution of 808 × 616 pixels prior to being fed into our
framework. The visited routes vary considerably from dataset to dataset. However,
there is an approximately 750m long outdoor segment that is traversed, with some
minor deviations, in almost all datasets in either one or the opposite direction. We
therefore use this sub-segment of the campus for building a multi-session map using
seven of the datasets. The remainder of the datasets are used for evaluating the
localization. Similar to the UP-Drive datasets, the NCLT datasets cover seasonal
and weather changes over an annual cycle.

KITTI

We further use Sequence 00 of the KITTI [29] visual odometry benchmark dataset
in our evaluation. It is the only KITTI dataset with significant segments of the
trajectory revisited. We split the dataset in two parts, and use the first 170 seconds
for mapping, and the remainder for localization. As opposed to the UP-Drive and
the NCLT datasets, the appearance conditions in the KITTI drive thus remain
similar between mapping and localization.

4.3 Metrics
Localization Recall

We measure localization recall r[%] as the distance traveled while localized in relation
to the total distance traveled in the respective dataset. Localization at time t is
deemed successful if there are at least 10 inlier landmark observations after the
pose optimization.

Localization Accuracy

The 6DoF localization accuracy is evaluated for each successfully localized set of
images along the trajectory of a dataset by comparing the relative transformation
between the estimated pose T tWB and the nearest vertex in the map, with the
same quantity estimated by a reference solution [7]. For the NCLT datasets,
ground-truth poses are available, which we employ to evaluate both the translation
accuracy pe

xyz[m], and orientation accuracy θexyz[deg]. Note that the availability of
ground-truth poses is a unique feature of NCLT, and the primary reason why we
have decided to evaluate on the NCLT datasets, in addition to our self-collected
UP-Drive datasets.
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Figure 7.4: Localization recall rmt (red) and median translation accuracy p̄e
xyz (blue)

on the NCLT dataset from January 8th 2012, in relation to increasing values of the
descriptor distance threshold δ (left), and reprojection threshold ρ (right) respectively,
on a logarithmic scale. Even for very high values of δ and ρ, the vehicle remains accurately
localized.

For the UP-Drive and KITTI datasets, no ground-truth poses are available.
Both dataset collections provide, however, poses estimated by an RTK GPS sensor,
which we use for producing a rough estimate of the localization accuracy on these
datasets. Since the RTK GPS altitude estimates are unreliable, we only report on
planar pe

xy[m] and lateral translation errors pe
y[deg] on the UP-Drive and KITTI

datasets.

4.4 Map-Tracking Parameter Study
As described in Section 3.2, there are two main parameters guiding the formation of
2D-3D localization constraints in the map-tracking module, namely the descriptor
distance threshold δ[bits], and the reprojection threshold ρ[px]. While the descriptor
distance threshold ensures appearance consistency by setting an upper bound on the
descriptor distance for matching 2D keypoints with a 3D landmarks, the reprojection
threshold enforces geometric consistency by discarding localization constraints if
their respective reprojection error after the pose update is more than ρ pixels.

In Figure 7.4, the localization recall and median localization error are shown for
increasing values of δ, and ρ respectively, for the NCLT 2012-01-08 dataset. A
fixed value of δ = 100bits, and ρ = 3px is used unless the respective parameter is
varied as indicated on the x-axis. As expected, localization recall quickly rises with
increasing δ and ρ. Interestingly, the localization accuracy remains approximately
constant, even for high values of δ and ρ. This may appear counter-intuitive at
first. A descriptor distance threshold greater than 25% of the total descriptor
length clearly allows for many wrong matches to be formed, and eventually ought
to lead to false positive localizations. In order to understand why this scenario does
not occur, it is important to note that, as described in Section 3.2, the descriptor
distance threshold only serves to discard matches whose descriptor distance is above
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δ bits. If there are multiple match candidates for a given keypoint in the image, the
matching algorithm still attempts to pick the landmark with the lowest descriptor
distance. Therefore, as long as there are sufficiently many correct matches that can
be formed, our algorithm will find them, even with a very lean descriptor distance
threshold δ.

A similar effect exists for the reprojection threshold too. As long as the pose prior
is close to correct and there are sufficiently many valid 2D-3D matches, localization
will not deviate from the correct trajectory, even with a very high ρ threshold.

Hence, as long as the vehicle is correctly localized, and there are enough valid
localization matches possible, our localization system will remain correctly localized,

However, too high a value for δ and ρ may indeed derail the localization system
if the pose prior is sufficiently wrong. In the remainder of this section, we therefore
aim at finding the range of values for δ and ρ that guarantee no false-positive
localization, even if the pose prior is wrong. Knowing this range is important in
two ways. Firstly, it defines a safe operating space for choosing δ and ρ where
a positive localization feedback, such as a certain number of inlier landmark
observations, can be trusted. Secondly, it reveals a maximum degree of pose prior
disturbance that can be tolerated when bootstrapping the map-tracking algorithm
with any kind of auxiliary global localization input such as consumer grade GPS,
or a place-recognition module. In order to evaluate these properties, we have
conducted a parameter sweep experiment, varying both values for δ and ρ, as
well as increasing the disturbance of the prior pose in yaw-angle, longitudinal,
and lateral dimension separately. The resulting range of safe operating conditions
is shown in Figure 7.5. The colors indicate the maximum disturbance, before
either bootstrapping map-tracking is no longer possible, or, marked with an ‘X’,
bootstrapping resulted in false-positive localization instead. It can be seen that
for all three modes for disturbance, there is a safe range for both δ, and ρ, that
guarantee convergence to correct localizations, even for considerably inaccurate
prior poses with up to 10 degrees in yaw angle, and 3m meters in longitudinal and
lateral direction. Furthermore, taking the results from both Figure 7.4, and 7.5,
we find with δ = 100bits, and ρ = 3.0px, a safe choice of parameters yielding
maximum recall and sufficient robustness for bootstrapping map-tracking with a
consumer-grade GPS sensor.

4.5 Binary Descriptor Comparison
In addition to the descriptor distance threshold and the reprojection threshold,
the type of descriptor is another pivotal design choice, as it influences not only
the localization recall, but also the size of the map. We restrict ourselves to the
use of binary descriptors, as they can be matched very efficiently on a CPU-only
platform, and compare the localization performance for three popular choices of
binary local feature descriptors, namely FREAK [3], BRISK [43], and ORB [75].
Krajnik et al. have evaluated the influence of various local feature descriptors for
visual teach-and-repeat in [38]. They have, however, employed a global matching
algorithm to find correspondences between two images recorded at the same location.
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Figure 7.5: Sensitivity of the map-tracking pose prior in relation to increasing values for
the descriptor distance threshold δ, and reprojection threshold ρ. The colors represent
the maximum admissible degree of disturbance in yaw angle (top), longitudinal (middle),
and lateral direction (bottom) leading to convergence of the localization to the true
pose. The parameter combinations marked with ‘X’ denote unsafe operating regions,
where high prior pose disturbances lead to false-positive localizations. In the remaining
operating regions, localization fails if the prior pose disturbance is larger than the degree
represented by the respective color. All three modes of disturbances reveal a safe region
for the choice of δ and ρ allowing for guaranteed convergence towards the correct pose,
while tolerant to significant disturbance in the prior pose.
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Figure 7.6: Average number of observed landmarks (top), localization recall (middle),
and translation accuracy on the NCLT datasets (left), and UP-Drive datasets (right).
For the NCLT datasets, the translation localization accuracy is evaluated using the
ground-truth poses, while for the UP-Drive datasets, the planar translation errors with
respect to the RTK GPS poses are shown. The datasets are grouped into categories
according to appearance conditions (cloudy or rainy, sunny, and night-time) and traversal
direction (indicated by the two opposing arrows). The localization performance using
map-tracking (MT) is compared with global localization (GL). On the NCLT datasets,
the map-tracking performance is further compared with different choices of binary
descriptors.
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In contrast to that, our map-tracking algorithm employs a pose prior and performs
a local search in the image space. This variation in methodology leads to differing
results as compared to [38]. While the evaluation by Krajnik et al. suggests
superior performance of BRISK as compared to FREAK and ORB, our experiments
reveal worse performance of map-tracking with BRISK than with FREAK or ORB.
This emphasizes the strong influence of the specific feature matching algorithm
with respect to the localization performance using different types of features. In
Table 7.1, the localization recall, the average number of observed landmarks, and the
localization accuracy, are presented for different choices of descriptors, aggregated
over all day-time NCLT datasets. Note that the descriptor distance threshold δ
is set at 100bits for the two 64 byte long descriptors FREAK and BRISK, and
at 50bit for the 32 byte long ORB descriptors, thereby allowing the same relative
fraction of bits to be different when forming localization matches in all three cases.
The performance using FREAK and ORB is nearly identical. This is remarkable,
as the descriptor size of the latter is only half of that of FREAK. With BRISK, on
the other hand, the average number of observed landmarks and the localization
recall is significantly worse. However, the impact on the localization accuracy is
marginal, as only the pose estimates of successful localizations are considered.

A more detailed evaluation of the descriptor comparison can be found in Figure 7.6,
which shows the aforementioned metrics evaluated separately for groups of datasets
formed according to the four categories exhibiting differing localization performance.
The category Cloudy includes four, and the category Sunny 12, datasets labeled as
(partially) cloudy, and sunny respectively, according to [15]. The category Opposite
contains the two day-time datasets 2012-11-04, and 2013-02-23 traversing the map
in the opposite direction, while the Night category represents the only night-time
dataset from December 1st 2012. The loss in recall with BRISK is primarily
attributed to the two datasets traversing the map in opposite direction, where
the recall with BRISK is approximately 20% lower than with FREAK or ORB.
Contrary to that, the average number of observed landmarks remains roughly the
same with BRISK across all three day-time categories, while FREAK and ORB
observe significantly more landmarks when traversing the map in the predominant
direction, both under cloudy skies, and in sunny conditions.
Based on these experiences, we suggest to use ORB as a binary descriptor for

map-tracking, or FREAK in case there are no restrictions with respect to the map
size.

4.6 Localization Accuracy and Recall
In order to fully rely on our visual localization system to control the car in
the UP-Drive project, a high localization recall with an accuracy below 0.5m
is paramount, as only short driving segments with no localization may be bridged
with wheel-odometry before the car may deviate from its designated lane. We
compare the localization recall and accuracy of our localization system using map-
tracking with the metric global localization algorithm based on the work presented
in [51] and available in the maplab framework [82]. We refer to the results using
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FREAK ORB BRISK
rmt[%] 96.89 +/- 6.62 96.76 +/- 6.61 89.75 +/- 12.0

obs�[#] 92.97 +/- 49.94 94.28 +/- 51.38 56.28 +/- 33.12
p̄e

xyz[m] 0.14 [0.32] 0.14 [0.32] 0.14 [0.3]

Table 7.1: Descriptor comparison on the NCLT datasets, showing the average recall
with map-tracking rmt[%], the average number of observed landmarks obs�[#], with standard
deviations denoted by “+/-”, and the median translation localization accuracy p̄e

xyz[m], with
the 90 percentile denoted in square brackets.

rmt[%] rgl[%] p̄e
xyz / p̄e

xy, p̄e
y [m] θ̄exyz [◦]

NCLT 96.89 +/-6.62 7.49 +/-8.59 0.14 [0.32] 1.23 [1.8]

UP-Drive 99.23 +/-1.75 8.94 +/-12.62 0.26 [0.88] 0.12 [0.58] 0.21 [0.33]
KITTI 96.05 94.24 0.43 [0.8] 0.31 [0.62] 0.26 [0.59]

Table 7.2: The aggregated localization performance on the NCLT , UP-Drive , and
KITTI dataset(s), showing average localization recall with map-tracking rmt, and with
global localization rgl, and the median translation (p̄e

xyz) and orientation (θ̄exyz) accuracy.
For UP-Drive and KITTI, planar p̄e

xy and lateral p̄e
y errors are shown instead of full

3DoF translation errors. Standard deviations are denoted by “+/-”, and the 90 percentile
is shown in square brackets.

this algorithm with GL in the respective figures and tables. Both algorithms, that
is map-tracking and global localization, operate on the same multi-session maps,
using the same landmarks. Note, however, that the global localization algorithm
is fundamentally different to the map-tracking module presented in this paper, as
in contrast to the former, the latter is able to exploit a pose prior. By including
this comparison, we aim at highlighting the gain in localization recall attainable by
using a local localization algorithm, as opposed to relying only a global localization
algorithm. Map-tracking does, however, require some global localization module for
bootstrapping, or re-localizations. As described in Section 4.1, a consumer grade
GPS sensor serves this role on the UP-Drive vehicles.
The localization recall with map-tracking rmt[%], and with global localization

rgl[%], and the localization accuracy are shown in Table 7.2, aggregated over all
datasets of the three collections. Note that the NCLT night-time dataset from
December 1st is excluded in the table. While map-tracking attains close to 100%
recall on all three dataset collections, global localization fails for extended periods
on the NCLT and UP-Drive datasets which both exhibit pronounced appearance
change. On the KITTI drive, however, the appearance condition only undergo
minor change, and global localization achieves with 94% a similarly high recall
as map-tracking. This illustrates the challenge in finding enough correct feature
matches with a global localization algorithm in multi-session maps that cover
outdoor environments with various different appearance conditions. Solely relying
on a global localization algorithm in these environments may thus not be sufficient
to guarantee reliable localization in real-world applications. As our results show,
exploiting a pose prior can help to significantly increase the reliability of the
localization.
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We further note that the planar median localization accuracy in UP-Drive and
KITTI are below 0.5m. Note that due to the different kind of reference sensors,
these numbers are not directly comparable with the localization accuracy attained
on the NCLT datasets, with the latter exhibiting a median translational accuracy
of 11cm. Furthermore, the KITTI vehicle is equipped with only a forward facing
camera, while the UP-Drive vehicle has a surround view camera rig. This results
in less strictly constraint position estimates on the KITTI dataset, which translate
into significantly lower planar and lateral localization accuracy. For the driving
performance, the lateral errors are most important. On the UP-Drive datasets, the
median lateral error is below 15cm, which is sufficient for a smooth steering of the
car.
The median orientation errors are less effected by the difference in the camera

rigs, and are well below 0.5 degrees for both the UP-Drive and KITTI datasets.
In contrast to that, the orientation errors on the NCLT datasets are higher due to
more vivid roll and pitch motions of the Segway platform, as compared to the car
platforms in case of UP-Drive and KITTI.
A more detailed analysis of the localization recall and planar accuracy on the

NCLT and UP-Drive datasets is shown in Figure 7.6, with datasets grouped
into categories as described in Section 4.5. There are 10 drives of the UP-Drive
dataset collection in the Cloudy, 15 in the Sunny, and two in the Night category
respectively. Recordings in rainy conditions are categorized as Cloudy, since there
is little difference in performance on rainy datasets as opposed to in dry cloudy
conditions. Map-tracking reaches virtually 100% recall with a median localization
accuracy of around 10cm for all the NCLT day-time datasets that traverse the
map in the primary direction. The same high recall is also achieved for all day-time
UP-Drive datasets, with a planar median localization accuracy with respect to
RTK GPS of approximately 20cm. The additional challenge for visual localization
in sunny conditions is, however, reflected in a lower average number of observed
landmarks in case of map-tracking, and in a significantly worse recall using global
localization. Recall using map-tracking remains, however, unaffected.

In contrast to that, map-tracking performs significantly worse on the two NCLT
datasets that traverse the map in the opposite direction, with considerably lower
recall, and slightly lower localization accuracy. This is understandable, given that
there is only one map session in opposite direction, whereas there are six traversing
the map in the primary direction. However, this also reveals the limitations of
matching landmarks projected into the cameras field-of-views under considerable
viewpoint change. Here it is important to note the asymmetry of the Ladybug
camera rig when traversing in the opposite direction, as the surround view is covered
by an odd number of five cameras.
Furthermore, the only NCLT night-time dataset from December 1st 2012 fails

to localize along most parts of the trajectory. Not only is this the only available
recording under night-time conditions, but the Segway also traverses the map in the
opposite direction, further exacerbating localization. A lack of more recordings from
dusk or night-time renders it impossible to augment the multi-session map with
the appearance conditions at night-time, and thus the conditions in this dataset lie
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Figure 7.7: On the left, a sample image of a trajectory segment that fails to localize at
night. A lack of structure and street lighting renders it unfeasible to match a sufficient
number of map landmarks. A few meters later, street lighting is present (right side), and
localization is picked up again.

outside the appearance coverage of the map. In contrast to the NCLT datasets,
the UP-Drive datasets contain multiple recordings under both dusk and night-time
conditions, allowing to extend the appearance coverage of the multi-session map
with these conditions. Therefore, localization at night is successful in this case, even
though the respective average recall is slightly less than 100% for the UP-Drive
night-time datasets. This minor drop in recall is mainly attributed to the night-time
recording from December 11th, which only attains a recall of 92%. Sample images of
the route segment where localization fails on this dataset are depicted in Figure 7.7.
In this part of the route, the car is driving up North on a ramp crossing numerous
rail tracks. With a lack of both street lamps and near-by building structures, there
are hardly any stable visual cues in this section, and our localization system fails to
match sufficiently many landmarks from the map. Only later along the ramp, once
artificial lighting on the railing to the left and right of the road boundary is present,
localization is picked up again. This example demonstrates the current limitations
of visual localization in night-time conditions. Even with high-performance CMOS
cameras providing remarkably bright images at night, a certain amount of artificial
street lighting and human made structure in the vicinity is required.

5 Conclusions

This paper presented a reliable visual localization system for urban outdoor envi-
ronments. An extensive evaluation on several hundreds of kilometers of real-world
driving conditions over the course of more than a year has demonstrated that our
localization system is able to meet the requirement of high localization recall at
high accuracy. Thereby, the appearance conditions encountered in our experiments
not only cover various challenging weather conditions, wet road surfaces, sun reflec-
tions, and seasonal changes, but also night-time conditions. A comparison with a
state-of-the-art global metric localization algorithm has revealed a large increase
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in recall attainable by instead employing a local localization algorithm, such as
the map-tracking algorithm described in this paper. Additionally, a comparison
of binary feature descriptors suggests superior performance of map-tracking when
using FREAK or ORB, as compared to using BRISK. In a thorough parameter
study, we have further investigated the boundary conditions of our map-tracking
module and validated a safe range for selecting the most critical parameters in
order to guarantees reliable localization.
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