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A B S T R A C T

Rare-earth nickelates are a series of functional materials that crystal-
lize in the perovskite structure with the chemical formula RNiO3, and
are in particular known for their rich phase diagram. All nickelates
with rare-earth ion, R, from Pr to Lu exhibit a metal-insulator transi-
tion (MIT) accompanied by a structural transition. Furthermore, all
compounds of the series (except LaNiO3) display antiferromagnetic
ordering at low-temperatures. Notably, both the MIT and the mag-
netic ordering temperature depend on the size of the R site ion.

The MIT found in the nickelate series is driven by strong elec-
tronic correlations, and is inherently coupled to a so called ”breath-
ing mode” structural distortion, which together results in a charge-
ordered insulating state. This strong coupling of structural and elec-
tronic degrees of freedom in nickelates allows for a systematic tuning
from itinerant to localized behavior, e.g. by changing the rare-earth
cation, by applying strain, pressure, or electromagnetic fields, making
the compounds very interesting for technical applications. However,
until today the emerging phase diagram is only partially understood.
Especially, the nature and exact mechanism of the coupled electronic-
structural transition is still debated and is the central topic of this
thesis. Considering the fact that the compounds are difficult to syn-
thesize, and that experimental data is therefore sparse, it is particu-
larly valuable to gain insights into the materials properties by means
of first-principles calculations. However, the theoretical description of
such materials, in which electronic, magnetic, and structural degrees
of freedom couple, is extremely challenging.

In this thesis I utilize state of the art first-principles methods to ob-
tain a parameter-free description of electronic and structural proper-
ties across the rare-earth nickelate series. To do so, I combine density
functional theory (DFT) with more sophisticated methods, such as dy-
namical mean field theory (DMFT), to describe the correlated electron
system and its coupling to structural degrees of freedom completely
ab inito. This allows to describe the different phases of the series on
a quantitative level, and to shine light on the underlying mechanism
of the coupled structural-electronic MIT. Thereby, I aim to push the
boundaries of the applied methodology, making its application to ma-
terials that also exhibit complex coupling of structural and electronic
degrees of freedom more feasible.

In the first part of this thesis I present a comprehensive DFT+U
study across the whole nickelate series, where I extract structural pa-
rameters within the magnetic phase found at low temperatures. This
will lay a foundation for the application of the more sophisticated
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DMFT method. Moreover, I obtain a qualitative correct description of
structural trends within DFT+U. However, the study will also reveal
deficiencies of the method, demonstrating the need of more sophis-
ticated approaches to capture the correlated electron physics more
accurately.

Next, I examine the coupled transition by combining DFT and
DMFT. Here, I determine structural parameters on a quantitative level
across the series for the correlated insulating state. Furthermore, the
analysis of the breathing mode distortion energetics reveals a first-
order character of the coupled MIT, in agreement with experimental
data. The transition is driven by an electronic instability related to the
charge-ordering phenomena. In a further study, I construct a model
Hamiltonian, reducing the complex problem, only keeping the key in-
gredients to investigate the mechanism and control parameters of the
coupled MIT of the nickelate series. This study reveals that the the
bandwidth, which in turn is controlled by the octahedral rotations,
critically influences how close the system is to the electronic instabil-
ity, and hence determine trends across the series. Thus, these results
lead to a comprehensive understanding of the paramagnetic part of
the rare-earth nickelates phase diagram.

In the last part of this thesis I perform combined DFT and DMFT
calculations for the magnetically ordered state, to elucidate the transi-
tion from the insulating paramagnetic to insulating antiferromagnetic
phase. First, I demonstrate that these demanding calculations capture
the magnetically ordered state correctly. Then, the obtained results
are compared with the results obtained from the magnetic DFT+U
calculations. Thereby, I point out current limitations of the method
that need to be addressed to understand the coupling to the magnet-
ically ordered state in nickelates in greater depth. This is a missing
link to obtain a full understanding of the phase diagram. Further-
more, I give an outlook for future directions of research both in the
field of rare earth nickelates, and using the combined DFT+DMFT
approach for realistic materials modeling.
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Z U S A M M E N FA S S U N G

Nickelate sind eine Serie von funktionellen Materialien, die in der
Perowskitstruktur mit der chemischen Formel RNiO3 kristallisieren
und insbesondere für ihr aussergewöhnliches Phasendiagramm
bekannt sind. R kann ein beliebiges Ion der seltenen Erden sein.
Alle Nickelate mit R Ion zwischen Pr und Lu zeigen einen Metall-
Isolator-Übergang, der mit einem strukturellen Übergang einhergeht.
Darüber hinaus ordnen alle Verbindungen der Nickelat-Serie (außer
LaNiO3) antiferromagnetisch bei niedrigen Temperaturen. Be-
merkenswerterweise, hängt sowohl die Metall-Isolator, als auch die
magnetische Übergangstemperatur, von der Grösse des R Ions ab.

Dieser Metall-Isolator-Übergang wird durch starke Elektronenkor-
relationseffekte getrieben und ist mit einer strukturellen Verzerrung
des Gitters gekoppelt, der sogenannten Breathing Mode, was zu
einem ladungsgeordneten isolierendem Zustand führt. Diese
besondere Kopplung von strukturellen und elektronischen Frei-
heitsgraden in Nickelaten ermöglicht ein systematisches Variation
von metallischem zu isolierendem Zustand, z.B. durch Änderung
des Seltene Erden-Ions, durch Gitter-Dehnungen, Anwenden von
Druck oder elektromagnetischen Feldern. Dies macht die Nick-
elate für technische Anwendungen sehr interessant. Allerdings
ist das daraus resultierende Phasendiagramm nur teilweise ver-
standen. Insbesondere der genaue Mechanismus des gekoppelten
elektronisch-strukturellen Übergangs wird diskutiert und ist das
zentrale Thema dieser Arbeit. Aufgrund der Tatsache, dass die
Herstellung von Nickelaten schwierig ist, und daher nur wenige
experimentelle Daten vorliegen, können Simulationen wertvolle
Erkenntnisse über deren Eigenschaften liefern. Allerdings ist die
theoretische Beschreibung von Materialien, in denen elektronische,
magnetische und strukturelle Freiheitsgrade gekoppelt sind, äusserst
schwierig.

In dieser Arbeit verwende ich modernste ab inito Simulationsmeth-
oden, um eine theoretische Beschreibung der elektronischen und
strukturellen Eigenschaften der Nickelate zu ermöglichen. Um das
korrelierte Elektronensystem und die Kopplung zur Struktur zu
beschreiben, kombiniere ich die Dichtefunktionaltheorie (DFT) mit
der dynamischen Molekularfeldtheorie (DMFT). Dies ermöglicht, die
verschiedenen Phasen der Nickelate auf einem quantitativen Level
zu beschreiben, und den Mechanismus des gekoppelten Übergangs
zu untersuchen. Des Weiteren, erweitert dies die Möglichkeiten der
DFT+DMFT Methode, Materialien mit einer komplexen Kopplung
von strukturellen und elektronischen Freiheitsgraden zu beschreiben.
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Im ersten Teil dieser Arbeit präsentiere ich eine DFT+U Studie für
die gesamte Nickelat-Serie. Dabei bestimme ich strukturelle Param-
eter innerhalb der magnetischen Phase bei niedrigen Temperaturen.
Diese Resultate werden dann als Ausgangspunkt für die Anwendung
der DMFT Methode benutzt. Die DFT+U Studie liefert dabei auch
eine qualitativ korrekte Beschreibung der strukturellen Trends in der
Serie. Ausserdem werden Unzulänglichkeiten der DFT deutlich, so
dass klar wird, dass weiterführende Methoden zur Beschreibung des
korrelierten Elektronensystems notwendig sind.

Als nächstes untersuche ich den gekoppelten Übergang durch die
Kombination von DFT und DMFT. Dabei gelingt es, quantitative
strukturelle Parameter für die gesamte Serie im isolierendem param-
agnetischem Zustand zu berechnen. Ausserdem zeigt eine Analyse
der Energetik der strukturellen Breathing Mode, dass es sich eindeutig
um einen Phasenübergang erster Ordnung handelt, was wiederum
in Übereinstimmung mit experimentellen Daten ist. Weiterhin
zeigt sich, dass der Übergang durch eine elektronische Instabilität
getrieben wird. Um dies besser zu verstehen, konstruiere ich ein
Modell, dass das komplexe Problem auf die wichtigsten Parameter
zur Beschreibung des Übergangs reduziert. Bei der Untersuchung
dieses Modells zeige ich, dass die Bandbreite, die wiederum durch
die Rotationen der Sauerstoffoktaeder bestimmt wird, entscheidend
beeinflusst, wie nah das System an dieser elektronischen Instabilität
ist, und somit die Trends der Serie bestimmt. Die hier gewon-
nen Erkenntnisse ermöglichen ein umfassendes Verständnis des
paramagnetischen Teils des Phasendiagramms der Nickelate.

Im letzten Teil dieser Arbeit verwende ich DFT+DMFT Berechnun-
gen, um den magnetischem Zustand der Nickelate zu beschreiben
und den Übergang von dem isolierendem paramagnetischem, zum
isolierendem antiferromagnetischem Zustand besser zu verstehen.
Als Erstes zeige ich, dass DFT+DMFT den magnetisch geordneten
Zustand korrekt erfasst. Anschliessend werden die Ergebnisse mit
den magnetischen DFT+U Resultaten verglichen. Hierbei wird
deutlich, dass für aussagekräftige Ergebnisse weitere Rechnungen
notwendig sind, die dann das Verständnis der Kopplung zum
Magnetismus in den Nickelaten verbessern würden. Dies wiederum
würde ein umfassendes Verständnis des kompletten Phasendia-
gramms ermöglichen. Am Ende der Arbeit gebe ich auch einen
Ausblick auf zukünftige Entwicklungen auf dem Gebiet der Nicke-
late und für die Verwendung der kombinierten DFT+DMFT Methode
zur Beschreibung von funktionellen Materialien.
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There are only two days in the year that nothing can be done. One is called
yesterday and the other is called tomorrow. Today is the right day to love,
believe, do, and mostly live.

— Dalai Lama XIV
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1
I N T R O D U C T I O N

Many of the advances in technology of the recent decades in areas
such as more efficient semiconductors, better data storage, supercon-
ductors, construction materials, more durable and lighter composite
materials, to name but a few, have been made possible by fundamen-
tal materials research. It is this very part of research that deals with
finding completely new materials, developing approaches to design
these materials, and to understand the underlying principles how
they function. Although usually far away from a ready-to-deploy
industry product, one can argue that the deep understanding of ma-
terials is the key to keeping progress alive, by paving the way for
the next step of research or engineering, namely the realization and
implementation of these insights into real products.

Complex transition metal oxides (TMO) are one of the pillars of
modern materials research. These materials are often found in an
ABO3 perovskite structure, where B can be any of the transition
metals. This family of materials exhibits a variety of phenomena
that are of high interest for future technological applications [1–3],
such as, e.g., multiferroicity [4], non-Fermi liquid behavior [5],
high-temperature superconductivity [6], or metal insulator tran-
sitions (MIT’s) [7]. Moreover, the progress in synthesis of these
materials, especially thin film growth and heterostructuring, which
allows to fine-tune their properties, boosted the research interest in
this class of materials enormously [8, 9].

Perovskite transitional metal oxides are characterized by different
competing phases, which change the material properties significantly
and thus rich phase diagrams emerge. A prominent example are
the family of cuprates that show different phases under chemical
doping e.g. a metallic, a pseudogap phase, a superconducting state,
and an antiferromagnetic (AFM) insulating phase [6]. Another exam-
ple are the family of manganites, which show also under doping a
rich variety of different magnetic orderings [10]. Moreover, various
heterostructure compounds, build of TMOs, show phase transitions
upon strain, or thickness dependent transitions [11].

Materials for which it is easy to control the above mentioned effects,
for example tuning a MIT by applying external fields, are promising
candidates to store or process data in information technology [11, 12].
Thereby, it is desirable to achieve fast switching times between metal
and insulator, or other phases, which means that the material needs
to be very close to the transition. Thus, multiple phases compete
with each other on a very small energy scale. Then, modeling and
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2 introduction

simulating these materials becomes a challenge, because the different
interactions and mechanisms at play have the same magnitude, and
need to be considered on the same footing. Such materials are nowa-
days called quantum materials, because their macroscopic properties
are determined by quantum effects on a very small energy scale, and
thus their properties are defined by the electronic structure close to
the Fermi level [13]. If the electron interaction in the states close to
the Fermi level is additionally strong, it often has a tremendous effect
on the properties of the material. Such systems, where the electronic
interaction is highly entangled with other properties of the system,
are called strongly correlated electron systems [7].

The quantitative description of these correlation effects, due to elec-
tron many body physics is incredibly difficult. However, the theoreti-
cal approaches to capture these effects in ab initio electronic structure
calculations made tremendous progress in recent years. Especially,
the advances in combining density functional theory (DFT) with more
advanced methods like dynamical mean field theory (DMFT) were sig-
nificant, and now allow for treating electronic correlations in realis-
tic material calculations on a very sophisticated level [14, 15]. How-
ever, these calculations are computationally very demanding, and one
needs to carefully examine which degrees of freedom one can neglect
to make calculations more feasible. Usually, the coupling of the elec-
tronic correlations to other effects, e.g. lattice (phonons) or magnetic
ordering is neglected to make calculations more practicable.

The DFT+DMFT method has become the method of choice, to cal-
culate spectroscopic properties of correlated systems from first princi-
ples over the past years. However, the prediction of structural proper-
ties has only been achieved very recently [16, 17]. First results show,
that DFT+DMFT can indeed be used to predict structural properties
of strongly correlated compounds, achieving better agreement with
experiment compared to DFT [18]. Still, calculating the structural
energetics within DFT+DMFT is computationally very demanding.

Rare-earth nickelates are a family of compounds that are a very
prominent example for quantum materials exhibiting strong elec-
tronic correlations. They are located at the border between itinerant
and localized electron behavior, and exhibit a MIT inherently coupled
to a structural transition [19–21]. The MIT displays the characteristics
of a Mott transition [22, 23]. Moreover, rare-earth nickelates display
a distinct magnetic transition at lower temperatures, which is also
coupled to electronic and structural properties. This interplay is
sketched in Fig. 1. Thus, it becomes apparent that one has to model
all three, structural, electron correlation, and magnetic effects on the
same footing to render a coherent picture of the physics found in
these compounds.

Since the synthesis of rare-earth nickelates is quite complicated, ex-
perimental data, especially temperature dependent structural data, is



1.1 goal and structure of this thesis 3

Figure 1: Schematic diagram of the interplay of the crystal structure, the
magnetic order, and strong electronic correlations found in rare-
earth nickelates.

quite sparse. Therefore, theoretical insights are highly valuable to
better understand the coupling of structural and electronic degrees
of freedom.

Pioneering work of Park et al. [24] showed that the DFT+DMFT
method correctly describes the paramagnetic insulating state driven
by electronic correlations in these compounds. Furthermore, the au-
thors of Ref. [24] demonstrated that structural parameters can be ob-
tained in agreement with experiment. On the other hand, early DFT
calculations were also able to capture certain structural and magnetic
aspects qualitatively correctly [24–26]. This was achieved, by intro-
ducing magnetic order in the calculations and accounting with an ad-
ditional +U term for static correlation effects. Although, these were
important pieces of a puzzle, it was left unclear how a comprehensive
coherent picture for the whole series can be drawn from these results.
Especially, the nature of the coupled transition itself was not revealed,
and no mechanisms were identified driving the trends across the se-
ries. Moreover, the connection of the MIT to the magnetic ordering
has not been investigated.

1.1 goal and structure of this thesis

In this work I explore the possibilities of modeling the compounds of
the rare-earth nickelates series by means of first principles methods.
Thereby, I elucidate the interplay of the crystal structure, magnetic or-
dering, and strong electronic correlations found in these compounds,



4 introduction

giving rise to complex ordering phenomena. Special focus lies on
the understanding of the combined electronic-structural transition,
what key parameters drive trends across the series, and the complex
magnetic ordering found in these compounds. To do so, I utilize
DFT in combination with more advanced methods, e.g. DFT+U and
DFT+DMFT, to capture the strong electronic correlations.

To achieve this, it is first necessary to understand in detail what re-
sults can be obtained from DFT alone. This includes mainly structural
properties, and determining their trends across the series. Then, I uti-
lize the DFT+U method, to investigate the influence of static correla-
tion effects. Here, the goal is to systematically try different interaction
parameter strengths and different magnetic orderings, to find out if
and how correct structural trends can be obtained across the whole
series. This ideally should also allow to draw a coherent picture of
previous DFT+U results acquired for certain compounds of the series.
Finally, the aim is to understand what properties and trends can be
obtained correctly from the DFT+U method, and for which the more
advanced description within DFT+DMFT is necessary.

This leads to the next part of this work utilizing the DFT+DMFT
method. First, I derive a suitable low-energy model from DFT, which
is capable to describe the paramagnetic insulating phase found in ex-
periment. The goal is then to calculate structural parameters, and
gain insights into the coupled electronic-structural transition by per-
forming systematic calculations across the series. Thereby, trends
across the series are obtained and analyzed, which are compared with
experiments and DFT calculations. This further establishes the usage
of the DFT+DMFT method to describe both electronic and structural
degrees of freedom.

Finally, I try to gain insights into the magnetically ordered phase us-
ing DFT+DMFT to better understand its coupling to the MIT, which
also allows for a direct comparison with DFT+U results. Further-
more, this pushes the boundaries of the DFT+DMFT method to allow
the treatment of lattice, magnetic, and electronic degrees of freedom
on the same footing, and thereby get a better fundamental under-
standing of the complex phase-diagram of rare-earth nickelates.

Besides, I will investigate certain technical aspects of the
DFT+DMFT method that can have potential influence on re-
sults. Namely, the charge self-consistency between DFT and DMFT,
the choice of interaction parameters in low-energy models, and also
the crucial double counting (DC) correction between DFT and DMFT.
This is of importance for future studies investigating other correlated
materials where structural and electronic properties are coupled [18].

The thesis is structured as follows. In chapter 2, I give an introduc-
tion to rare-earth nickelates, thereby also introducing some general
aspects of TMOs. Chapter 3 is dedicated to the theoretical framework
used in this work. It covers all basics necessary to understand the
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methods applied in this work. Furthermore, I pay specific attention
to parts of the theory that are of special importance in the context of
this work, such as the interface between DFT and DMFT, Coulomb
interaction in low-energy Hamiltonians, and calculation of total en-
ergies in DFT+DMFT. Afterwards, the results obtained during my
research are presented.

The results are presented in the form of my published research ar-
ticles. For each of the published articles I first give an introduction,
and motivation in the context of this thesis. Including a discussion
of relevant literature. Furthermore, I provide additional information
and results that have not been included in the corresponding articles,
either necessary to understand it, or providing further insights. This
is followed by a brief summary of the research article, and a conclu-
sion in the context of this thesis. Finally, the article itself is included.

In chapter 4 I present a comprehensive DFT study on the interplay
of magnetism and structural degrees of freedom across the nickelate
series. Next, in chapter 5 I utilize DFT+DMFT to analyze the en-
ergetics of the breathing mode distortion in the paramagnetic state
across the series, comparing also with results obtained in DFT. This
is followed by a model study in chapter 6 analyzing the MIT itself,
which has been carried out with Oleg E. Peil and Antoine Georges.
Here, the mechanisms and control parameters of this coupled tran-
sition are identified. In chapter 7, I analyze the influence of charge
self-consistency in DFT+DMFT, and thereby also of the DC correction,
in charge ordered and orbitally polarized systems. Finally, I examine
in chapter 8 the possibilities of the DFT+DMFT method to model the
magnetic ordering of rare-earth nickelates. This is still ongoing work,
without a published research article, and I present my preliminary
results.

Chapter 9 concludes the work, and gives also an outlook for future
directions of the applied method and nickelate research.





2
R A R E E A RT H N I C K E L AT E S

In this chapter I give a general introduction to the family of rare-earth
nickelates. This includes general aspects of perovskite structures, as
well as a review of results obtained by experiment. Moreover, I intro-
duce basic theoretical concepts of d orbital physics typically found in
perovskite structures, and discuss in this context also its relevance for
nickelates.

2.1 the perovskite structure

Perovskites have the chemical composition ABX3, where the cations
A, B, and X can be a occupied by a variety of different atomic
species. The ideal perovskite structure is cubic with space group
Pm3̄m, where the B cation sits in the center of the unit cell, the A
site occupies the corner, and the X ions build an octahedra around
the B site ion. See Fig. 2a for an example. The most often studied
perovskite compounds are TMOs, where the B site is occupied by any
3d, 4d, or 5d transition metal. Furthermore, the X site is occupied by
oxygen, and the A site is usually occupied by a rare-earth metal or
an alkaline earth cation for a correct stoichiometry of the compound.

The stability of TMOs depends critically on the size difference of
the A and B site cations. If A and B have the ideal size ratio, the
ionic packing works perfectly, the A site cation fits perfectly in the
empty spots in between the oxygen octahedra surrounding the B site
cation, and a perfectly cubic lattice structure forms. The so-called
Goldschmidt tolerance factor quantifies the size ratio as:

t =
rA + rO√
2(rB + rO)

, (1)

where rA is the ionic radius of the A site cation, rB is the radius
of the B site cation, and rO of the oxygen. If the ratio is close to
one, a cubic lattice structure forms. If A is too big, or B too small,
t > 1, either a different hexagonal crystal structure or a tetragonally
distorted perovskite structure forms. If A is too small or B too large,
t < 0.9, a orthorhombically or rhombohedrally distorted structure
forms.

The change from the cubic structure to one of the above mentioned
lower symmetries is caused by rotations of the oxygen octahedra to
optimize the ionic packing. As an example the perfect cubic structure
of SrVO3 is shown in Fig. 2a, and in contrast in Fig. 2b the orthorhom-
bic structure of GdFeO3 is displayed, which has a tolerance factor of
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8 rare earth nickelates

a b

Figure 2: Examples of perovskite structures. TheA site cations are displayed
in purple, oxygen atoms in red, and the B site cations located in
the center of the oxygen octahedra in gray. a Cubic perovskite
structure of SrVO3. b Orthorhombic structure of GdFeO3. The
rotations of the oxygen octahedra, and the displacements of the
Gd ions to best accommodate the space in between the oxygen
octahedra can be seen.

t = 0.81. One can clearly see the rotations of the oxygen octahedra,
and additionally the position adjustments of the A site cations, to fit
best into the structure.

2.2 structural aspects of nickelates

The family of rare-earth nickelates compounds, RNiO3, crystallizes
in the perovskite structure. Here, R can be any rare-earth metal ion
from La to Lu, and the resulting structures have a tolerance factor
ranging from LaNiO3 with t = 0.94 to LuNiO3 with t = 0.85 [19].
Consequently, all compounds have lower than cubic symmetry, and
crystallize in the orthorhombic space-group Pbnm at high temper-
atures, except LaNiO3, which is found to be in the rhombohedral
space-group R3̄c. It is therefore convenient to characterize the series
by their tolerance factor, or by the resulting octahedral rotation angle
Ni-O-Ni.

The phase diagram of the rare-earth nickelates series is depicted
in Fig. 3 as a function of temperature and Ni-O-Ni rotation angle,
with data extracted from various experiments. It can be seen, that de-
pending on the choice of the R cation, the compounds show a MIT at
varying temperatures. The MIT gradually decreases in temperature
from Lu to La, where LaNiO3 exhibits no MIT at all, and for LuNiO3
the MIT occurs at ∼ 600 K. This allows to study in a almost contin-
uous fashion the crossover between itinerant and localized behavior,
by changing the chemical composition. The MIT is rather unique, as
it goes hand in hand with a structural transition lowering the space
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Figure 3: Phase diagram of the rare-earth nickelates. Transition tempera-
tures are shown as function of the average Ni-O-Ni bond angle.
Three different phases can be distinguished: i) paramagnetic metal
with Pbnm symmetry (red), ii) paramagnetic insulator with P21/n
symmetry (green), and iii) AFM insulator with P21/n symmetry
(blue). Based on experimental data taken from Refs. [20, 27–32].

group symmetry from Pbnm to P21/n. Moreover, for the compounds
with R=Lu to Sm the MIT occurs in the paramagnetic regime of the
phase diagram. This combined structural and metal-insulator transi-
tion is of high interest, because of the strong coupling between elec-
tronic and lattice degrees of freedom. Furthermore, nickelates have
a variety of potential applications, because the MIT can be tuned by
pressure, strain, electromagnetic fields, and doping. [19–21, 34–36]

It can be seen from the phase-diagram in Fig. 3 that all nickelates
compounds, except LaNiO3, order antiferromagnetically at low tem-
peratures. For compounds with R larger than Sm, the MIT tempera-
ture (TMIT) and magnetic transition temperature (TN) coincide. Thus,
for compounds with R from Lu to Sm the AFM transition occurs at
lower temperatures than the MIT. Initially, for LaNiO3 no insulating
or AFM phase has been found. However, recently AFM order has
been reported in this compound [37], and is still under discussion
[38]. It is therefore reasonable to assume, that LaNiO3 is very close
to the magnetic transition, which would also potentially make it in-
sulating. It is quite interesting to note, that TN as function of R is
increasing, whereas TMIT is decreasing. Moreover, it was pointed out
in Ref. [25], that the magnetic transition breaks in principle the sym-
metry of the lattice even further making the nickelates potentially
multi-ferroic [25]. However, in experiment no such lowering of sym-
metry has been observed yet.

Due to challenges in synthesis, experimental data on the bulk
materials is relatively sparse, and especially large amount of powder
samples are not easy to produce. Therefore, high precision neutron
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a b

Figure 4: a Experimentally observed P21/n crystal structure of LuNiO3 at
60 K below the MIT [29]. LB octahedra around the Ni sites are
shaded in gray, SB octahedra are shaded in blue, light blue spheres
represent Lu, and red spheres represent O. The volumes of the
bond-disproportionated NiO6 octahedra differ by ∼12%. The crys-
tal structure is visualized using VESTA [33]. b illustration of the
breathing mode distortion (R+1 mode) in an idealized cubic struc-
ture.

experiments are hard to perform, and accurate data is not available
for all systems. Although the first bulk nickelate sample has been
synthesized and characterized in 1971 [39], the structural symmetry
lowering from Pbnm to P21/n during the MIT was first observed
almost 30 years later [30]. During the transition the formerly
symmetry-equivalent NiO6 octahedra in the Pbnm phase become
non equivalent within P21/n. One half of the NiO6 octahedra
expand their volume, while the other half reduces their volume
by changing the Ni-O bond lengths accordingly. Eventually, a
three-dimensional checkerboard-like arrangement of alternating long
bond (LB) and short bond (SB) octahedra emerges in the insulating
phase [28, 29], which is referred to as breathing mode distortion.
The P21/n structure of LuNiO3 below the MIT is depicted in Fig. 4a
[29]. The difference in volume between LB and SB octahedra for this
structure is roughly ∼ 12 %. To visualize the breathing mode distor-
tion more clearly, Fig. 4b shows, in a schematic fashion, the arising
checkerboard pattern of LB and SB octahedra without octahedral
rotations.

The nature and exact mechanism of the coupled electronic-
structural transition is still debated and is the central topic of
this thesis. Considering the fact that the compounds are hard to
synthesize, and therefore experimental data is sparse, it becomes
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Figure 5: Splitting of d orbital levels, due to the octahedral crystal field split-
ting induced by the octahedral coordination. The degeneracy of
the d orbital manifold is lifted and the three t2g levels are split by
∆CF from the two eg states.

evident that theoretical insights into the materials properties are
highly valuable.

2.3 d orbital physics

To understand the properties of rare-earth nickelates it is crucial to
understand their low-energy physics. In general, perovskite transi-
tion metal oxides show rich physics that arise due to the d electron
valence states of the B site cations located at the Fermi level. Fur-
thermore, these d states hybridize with the oxygen p states, with the
hybridization strength depending on the orbital overlap of p and d
states and their energy difference. This hybridization is tunable by
external parameters depending on the distance between B site and
oxygen. Furthermore, these intrinsic properties depend crucially on
the rotation angles of the oxygen octahedra, since both p and d or-
bitals are highly directional. It is the complex interplay of both of
these effects that determines the properties of TMOs, and thus gives
rise to the rich physics found in TMOs. In the following, I introduce
the basic mechanisms of this d orbital physics, important to under-
stand the physics found in rare-earth nickelates.

The six oxygen atoms surrounding the B site cation in perovskites
produce an octahedral crystal field, which lifts the degeneracy of the
five d orbitals of the B site cation. For a perfectly cubic symmetric
compound the d levels are split into three degenerate t2g and two
degenerate eg states. For compounds with an orthorhombic space
group, e.g. nickelates, the t2g states are lowered in energy compared
to the eg states. Fig. 5 illustrates this phenomenon by showing a
schematic level diagram. The degeneracy of the t2g and eg orbitals
can further be lifted by distorting the oxygen octahedra.

In TMOs the bandwidth of the states close to the Fermi level, and
thus the kinetic energy, is often small due to very confined electronic
orbitals. Since, these states are determining the material properties,
other effects on a similar energy scale, e.g. charge, orbital, and mag-
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Figure 6: Top: transition from half filled d shell metal to Mott insulator. The
d states are separated from the p states by the charge transfer en-
ergy ∆CT. The local Coulomb interaction U overcomes the band-
width W, hindering the electrons to move, and splits the d states
into a lower Hubbard band (LH) and an unoccupied upper Hub-
bard band (UH). Bottom: transition from half filled d shell metal
to charge transfer (CT) insulator, where U > ∆CT > W and the LH
bands are pushed below the p bands. The gap is openend between
p and UH states.

netic ordering, can have a huge influence on the material properties.
This becomes even more evident in situations, where multiple elec-
tronic states (bands) are degenerate, and these levels are not com-
pletely filled. If there exists now a mechanism that breaks the sym-
metry, and lowers the energy of some of these degenerate states, the
system could potentially lower its energy by not occupying the states
higher in energy. Furthermore, if the gain in energy is comparable
with the kinetic energy, the system exhibits an instability for this
mechanism, which lifts the degeneracy. One of the most prominent
examples, especially in d4, d7, or d9 systems, is the Jahn-Teller effect
elongating the octahedra in one direction by lifting the eg degeneracy.
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Such a lifting of degeneracy often goes hand in hand with a MIT.
In many cases this MIT cannot be understood in an effective, non-
interacting, single particle picture, but is a so-called Mott transition
[7]. The Mott transition occurs in localized electron states, when the
local Coulomb interaction U overcomes the band-width W, hence the
kinetic energy of the electrons. This prevents the electrons to hop
from one atomic site to another, due to the high Coulomb energy U,
which they would have to overcome. The transition is characterized
by the occurrence of new electronic states, the so-called upper and
lower Hubbard bands, above and below the Fermi level. Note, that
the transition does not involve any long range magnetic order, and
does not have to necessarily require a symmetry lowering distortion.

Therefore, the strong electron interaction in TMOs with very con-
fined d electrons, can drive the system from itinerant to localized
behavior. This effect is particularly pronounced if the valence states
are half-filled, as for every hopping process the Coulomb interaction
U has to be paid. If U is larger thanW, the system undergoes the MIT.
This is depicted in the top of Fig. 6. For a traditional Mott transition
the oxygen p states are rather low in energy compared to the d states
of the B site cation.

Another scenario would emerge if U is larger than the difference
in energy between p and d states. This energy splitting is called
charge-transfer (CT) energy ∆CT, and according to Zaanen et al. [40]
the Mott transition results in a different state of the systems. Here,
the hybridization between d and p orbitals is very strong, and one
cannot describe the transition in atomic d states solely. The gap opens
between the hybridized oxygen p states (the ligand states) and the
upper Hubbard band of the transition metal d state. Thus, in this
case it is the CT energy that determines the size of the gap. This
transition is depicted in the bottom of Fig. 6. One can classify these
different systems by ∆CT and U. If U < ∆CT the system is a classic
Mott-Hubbard insulator, whereas for U > ∆CT the system is a CT
insulator. Typical systems that belong to the Mott-Hubbard insulator
class, are titanates, vanadates and some ruthenates, and examples for
CT insulators are MnO, cuprates, or NiO.

Interestingly, rare-earth nickelates behave differently than the
above mentioned systems. Although, according to the scheme of
Zaanen et al. [40] nickelates should be metallic since they have a
very small U, and a small ∆CT compared to W, in experiment a
paramagnetic MIT is observed. They can neither be characterized
as normal Mott-Hubbard insulator, nor like a CT insulator. The Ni
cations are in a d7 configuration, where all t2g states are completely
filled. One electron occupies the degenerate eg states, which are
well separated from the t2g states. Even though, this configuration
should in principle be susceptible to a Jahn-Teller distortion that lifts
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Ni3+ (m = 1 µB)

transition

+

Ni4+ (m = 0 µB)
Ni2+ (m = 2 µB)

Figure 7: Charge disproportionation as alternative to Jahn-Teller Distortion
as suggested by Mazin et al. [22]. Before the transition, in the
high-temperature metallic phase, all Ni cations are in a Ni3+ con-
figuration. During the transition one Ni cation gives away an elec-
tron going to a Ni4+ configuration, and hence becoming insulat-
ing. The nearest neighbor Ni cation takes this electron becoming
Ni2+. This half filled eg state then undergoes a Mott-Hubbard
insulator transition.

the degeneracy, as for example in the manganites [41], no signs of
such a distortion are observed in experiment [21].

2.4 charge disproportionated insulator

Mazin et al. [22] proposed that instead of lifting the degeneracy of
the eg states on each Ni site by the JT effect, the system undergoes
a transition into a charge ordered state. Thereby, it gets rid of the
degeneracy by moving one electron from one Ni site to a nearest
neighbor. This transition is depicted in Fig. 7 and is described as:

2Ni3+ → Ni4+ + Ni2+ . (2)

Now, on one Ni site the eg states are completely empty, leaving a gap
to the completely filled t2g states at lower energy, and on the other
Ni site the eg orbitals are half-filled. The half-filled Ni site can now
undergo a Mott-Hubbard transition, resulting in a paramagnetic insu-
lating state. This transition has been characterized as a site-selective
Mott insulator [23].

This mechanism is favorable, because of the strong hybridization
of Ni eg and oxygen p states. Therefore, the Coulomb interaction in
the Ni eg orbitals is highly screened in rare-earth nickelates. Such
a reduction is especially strong in systems with a small or negative
∆CT. On the other hand, the Hund’s rule coupling JH is hardly sen-
sitive to screening, and is therefore large compared to the screened
U. JH favors configurations that maximize the spin, thus making it
energetically favorable to occupy a single Ni site with both electrons,
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and thus a larger local moment. If JH is sufficiently large compared
to U the system can overcome the additional cost of U, which needs
to be paid if both electrons occupy the same Ni site, and the charge
ordered state is favored. The charge disproportionation goes hand in
hand with the SB / LB Ni-O octahedra arrangement, with the NiLB

site having more electrons.
So far, I described the transition with atomic-like orbitals. However,

recent calculations and experiments showed that the transition does
not necessarily goes along with a strong charge disproportionation
[23, 42–45]. Because, of the strong hybridization between p and d

states, hence small ∆CT, a purely atomic point of view of the transi-
tion might in some cases be misleading. Therefore, one can describe
the transition also in a ligand picture, where the configuration is de-
scribed including the oxygen p ligands. In this picture the lowest
excitation of an electron is for example dn → dn+1L, leaving a hole
in the oxygen p states, denoted by L. The transition can be then de-
scribed as [46]:

(d8L)i + (d8L)j → (d8L2)SB + (d8)LB . (3)

Contrary, one can also make use of Wannier functions built from the
low-energy states around the Fermi level (see also section 3.3 for more
details). These orbitals involve both, d and p states, and one can
thus understand these as effective orbitals containing also partially
the ligand states. This has the advantage that occupation changes
are easy to understand, because they correspond directly to band
occupations. However, both approaches are equally valid as shown in
Ref. [44], as long as one keeps in mind in which picture one interprets
the physics.

Consistent with both pictures a strong modulation of the magnetic
moments in the antiferromagnetically ordered phase is found in ex-
periment [31, 47]. In the ligand hole picture the ligand holes screen
the magnetic moment of the NiSB site, whereas the NiLB site have a
spin configuration of S = 1 [22]. Interestingly, the AFM transition is
of second order for all compounds TNeel 6= TMIT, but also first order
for the compounds TNeel = TMIT [48].

The exact nature of the transition is still debated in literature. Ex-
periments show that all members of the series exhibit a hysteresis
across the paramagnetic MIT transition, which is almost completely
smeared out by temperature effects for some of the compounds [19].
Such hysteresis indicates a first order phase transition. However,
whether both structural and electronic transition work cooperatively,
or if the electronic or the structural transition are triggering the transi-
tion, is still subject of research. This was only addressed in the recent
two to three years [49–51].

The understanding of this coupled transition is one of the main
aspects of this thesis. Before my PhD research, different theoretical
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Figure 8: Sketch of a possible magnetic ordering of rare-earth nickelates cor-
responding to the (1/4 1/4 1/4)pc wavevector. The ordering is char-
acterized by an ↑↑↓↓ ordering in all directions of the lattice, where
large NiLB site (gray spheres) magnetic moments (black arrows)
and small NiSB site (blue spheres) magnetic moments (blue arrows)
alternate. The structure is also characterized by ferro-magnetically
coupled planes along the (111)pc direction.

and computational approaches have highlighted different aspects of
the coupled structural-electronic transition in the nickelates, thereby
focusing either on structural or electronic aspects [23, 24, 43, 52], but
lacking a complete picture of all aspects.

The physics observed in rare-earth nickelates can also be found in
other highly covalent TMO compounds, with B site cations like Cu3+,
Ni3+, or Fe4+. They exhibit also a small or even negative ∆CT, and
depending on the band-width W and Coulomb interaction U show
similar behavior. For example, NaCuO2, LiNiO2, and CaFeO3, are
also found to be insulating at low temperatures [19, 46, 53].

2.5 magnetic order

As described above all nickelates compounds, except LaNiO3, or-
der antiferromagnetically at low temperatures. The existence of the
ordering was probed and confirmed by neutron and resonant soft
x-ray diffraction measurements. The order is characterized by the
wavevector of k = (1/4 1/4 1/4)pc in pseudocubic notation, or by
k = (1/2 0 1/2)or in orthorhombic notation [54–56]. Therefore, the
AFM pattern has a periodicity of four Ni sites in all lattice directions.
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However, besides the ordering wavevector it is still debated whether
the ordering is collinear or not, and also how large the SB Ni site
moments are. It is evident, that the moments are different in size,
but some neutron data even suggests that the SB Ni moments vanish
completely, whereas X-ray experiments on thin-films suggest a non-
vanishing SB moment with a non-collinear ordering [31, 47, 57]. The
progress in experiment is hindered for the bulk phase by the lack
of sufficient samples. More experimental data is available for thin
films. However, since this work deals with the investigation of the
bulk phase diagram, I do not specifically introduce the rich topic of
rare-earth nickelate thin-films. An overview over recent progress can
be found in the review article of Catalano et al. [19].

A magnetic ordering compatible with the found wave vector k =

(1/4 1/4 1/4)pc is shown in Fig. 8. Here, a collinear ordering with
↑↑↓↓ ordering in all directions of the lattice is shown, where the large
LB and small SB Ni moments alternate. This ordering forms ferro-
magnetically coupled planes perpendicular to the (111)pc direction.
The rare-earth moments (not displayed in the figure) order at very
low temperatures below ∼10 K, and Ref. [31] suggests the same peri-
odicity of Ni and Dy moments in DyNiO3. Contrary, in Ref. [47] a
different magnetic periodicity of the rare earth moments relative to
the Ni moments is reported in HoNiO3. However, due to the low
ordering temperature compared to TN, the ordering of the rare-earth
magnetic moments is most probably not critical to the mechanism of
the MIT.

Already from the phase diagram in Fig. 3 it can be seen, that the
interplay of the AFM ordering and the MIT is quite complex. For
example, TN increases for increasing R cation size, whereas TMIT gets
lower in temperature. Furthermore, for NdNiO3 and PrNiO3 both
transition coincide. Ruppen et al. [58] and Girardot et al. [59] inves-
tigated the magnetic transition of SmNiO3 and NdNiO3, and found
clear differences between the magnetic transition in compounds with
TN = TMIT and TN 6= TMIT. They suggest a structural and electronic
change at TN for SmNiO3, which means there exists clearly a coupling
of structural and electronic degrees of freedom to the magnetic order-
ing. Furthermore, the magnetic ordering itself lowers the symmetry
of the compound making it potentially multi-ferroic [25].

From theoretical calculations, the complex AFM order can be ob-
tained as well, and it is one of the topics in this thesis to better under-
stand the interplay of the magnetic ordering with the other degrees
of freedom. Of course, various other studies exist that shine light on
these properties as well, which is highlighted and discussed at the
appropriate point in this work.
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Figure 9: Subsequent symmetry lowering of the cubic perovskite structure
due to lattice distortions. Starting from cubic undistorted Pm3m
the symmetry gets first lowered to Pbnm, which is the nickelate
high temperature metallic structure. During the MIT the symme-
try gets further lowered to P21/n in the low temperature regime
of nickelates. The important non-negligible distortion amplitudes
are highlighted in red.

2.6 distortion mode decomposition

As it can be seen from the phase diagram in Fig. 3, the degree of
octahedral rotations in the nickelate series changes quite drastically
from R=La to Lu, due to the changes in the rare-earth ion radii. More-
over, experimental data from different compounds hints to the fact
that the amplitude of the breathing mode changes as well when the
rare-earth ion is changed [29, 31, 60, 61]. Hence, it becomes evident
that the transition temperature and breathing mode strength depend
critically on the other structural aspects, e.g., the lattice distortions
deviating from the high-symmetry cubic structure. Therefore, it ap-
pears necessary to describe the lattice distortions in a quantified and
well-defined manner, which ideally should also be intuitive.

A very systematic way of describing structural distortions is pre-
sented in the paper of Perez-Mato et al. [62], where the structural
distortions found in a low-symmetry structure are decomposed in a
basis of symmetry-adapted distortion modes. Thereby, the distorted
atom positions ~r disti are described by the undistorted positions ~r 0i
in the corresponding high symmetry reference structure plus all dis-
tortions described by normalized displacement vectors ~dim with a
certain amplitude Am:

~r disti = ~r 0i +
∑
m

Am ~dim . (4)

In this way it is possible to describe all tilts of the octahedra and
other changes of atomic positions by distortion mode amplitudes. For
nickelates this was first done in detail in the work of Balachandran
& Rondinelli [63] for the experimental structures with the following
rare earth ions: Lu, Ho, Y, Er, Nd, Pr and Dy.

For the high temperature Pbnm structure, there are the following
5 possible distortion modes:

• R+4 : out-of-phase rotation of oxygen octahedra

• R+5 : bending/buckling mode of oxygen octahedra
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Figure 10: Depiction of the three most important distortion modes found in
nickelate compounds. NiO6 octahedra are shown in gray. The
R+4 Pbnm mode that corresponds to an out-of-phase rotation of
NiO6 octahedra around the orthorhombic b axis, the M+

3 Pbnm

mode that corresponds to an in-phase rotation of NiO6 octahe-
dra around the c axis, and the R+1 P21/n mode that corresponds
exactly to the bond-disproportionation of NiO6 octahedra in the
low temperature phase of the nickelates.

• X+
5 : in-phase tilting of Ni-O-Ni bond

• M+
2 : Jahn-Teller type

• M+
3 : in-phase rotation of oxygen octahedra

and for the low symmetry P21/n phase there are 3 additional modes:

• R+1 : breathing mode of oxygen octahedra

• R+3 : Jahn-Teller type

• M+
5 : out-of-phase tilting of Ni-O-Ni bond

The symmetry label is given by the change and symmetry of the
atomic positions, where this notation is taken from [63]. In this ref-
erence one can find additionally a depiction (fig. 5 in [63]) of the
distortion modes for the nickelate structures. Note, that the exact la-
beling depends on the choice of the origin of the unit cell. The process
of subsequent symmetry lowering is schematically displayed in Fig. 9.
While all of the above mentioned modes can in principle be present
in the Pbnm respectively P21/n structures, according to the available
experimental data (and confirmed by my calculations), only the fol-
lowing modes have non-negligible amplitudes R+4 , X+

5 , M+
3 , and R+1 .

Fig. 10 depicts the R+4 , M+
3 , and R+1 distortion modes.
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With this description of the distortion modes it is possibility to de-
scribe and compare the nickelate structures by means of symmetry
adapted distortion mode amplitudes. Hereby, one can clearly sepa-
rate the different distortions in a more intuitive form than comparing
Wyckoff positions. The actual computation of these distortion mode
amplitudes in this work is done with the software ISODISTORT [64]
from Campbell et al. [64].

This concludes the review of rare-earth nickelates within the con-
text of this thesis. Of course this only highlights specific aspects, nec-
essary to understand the broader picture of this research. For further
reading, and a more profound overview of nickelate research I like
to refer the reader to the recent review of Catalano et al. [19], or the
Ph.D. thesis of Scherwitzl [65].



3
D E S C R I P T I O N O F C O R R E L AT E D M AT E R I A L S F R O M
F I R S T P R I N C I P L E S

The goal of this work is a parameter-free description of rare-earth
nickelates, by means of first-principles calculations. This means, that
the only input for the calculation is a first guess for the unit-cell and
atomic positions of the system. The calculation scheme should allow
to investigate the coupling of structural, magnetic, and electronic de-
grees of freedom, to understand the phase-diagram of the nickelates
series.

To achieve this, the Schrodinger equation of the quantum system
of a solid:

H |Ψ〉 = E |Ψ〉 (5)

needs to be solved. In the non-relativistic limit, the Hamiltonian H

for this many body system has the general form:

H =

M∑
j=1

− h2

2Mj
∇2Rj +

N∑
i=1

− h2

2me
∇2ri

+
1

2

M∑
i 6=j

e2ZiZj

4πε0|Ri − Rj|
−

N∑
i=1

M∑
j=1

e2Zj

4πε0|ri − Rj|

+
1

2

N∑
i 6=j

e2

4πε0|ri − rj|
,

(6)

where M are nuclei at positions Rj with masses Mj and charges Zje,
plusN electrons at positions ri with massesme. In this case the many
body wave function |Ψ〉 depends on the position and spin configura-
tions of all N+M particles in the system

|Ψ〉 = |Ψ({R,σ}, {r,σ})〉 . (7)

It is clear that such a problem cannot be solved directly, because the
many-particle problem and its wave function depend on the position
and spin configuration of all particles in the solid, a number exceed-
ing all computational limits. Therefore, the eigenvalue problem can
only be solved under certain approximations. This chapter introduces
the methods and tools for solving the Hamiltonian using suitable ap-
proaches.

The first simplification is the so-called ”adiabatic” or ”Born-
Oppenheimer approximation”. Since the mass of the nuclei is several
orders higher than that of the electrons and therefore their movement

21
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is much slower, one can factorize these two parts within the wave
function. Therefore, one only considers the electronic system, and
the nuclear degrees of freedom enter only has an potential V(r)
produced by the nuclei. The Hamiltonian for the electrons thus
reads:

H =

N∑
i=1

[
− h2

2me
+ V(ri)

]
+
1

2

N∑
i 6=j

e2

4πε0|ri − rj|
. (8)

However, the Hilbert space still growths exponentially with the num-
ber of electrons, and a general solution is not yet within reach.

In 1964, Hohenberg & Kohn [66] proposed a theorem that has
proven to be of tremendous importance to make the solution of the
above Hamiltonian feasible. They showed that all ground-state prop-
erties of the interacting electron gas are uniquely determined by the
ground-state electron density ρ(r) alone, without the need to calcu-
late the many body wave function. In contrast to the wave function,
the electron density depends only on three spatial coordinates, and is
therefore easier to handle.

This theory proposed by Hohenberg & Kohn [66] and Kohn &
Sham [67] known as density functional theory, has been further devel-
oped to solve the electron problem of a solid. The method was very
successful in recent decades describing many material properties that
were not accessible before. Nowadays, it is the method of choice for
describing solid state material properties from first principles calcu-
lations. Truly speaking, there is no other alternative for solids. Quan-
tum chemistry methods and model Hamiltonians are both powerful
methods, but they are either limited to finite size systems, or, not fully
ab-inito.

3.1 density functional theory

The idea of Hohenberg & Kohn [66] was to use the electron density
as the main quantity to describe the quantum mechanic system:

ρ(r1) = N ·
∫

dr2 · · ·
∫

drN |Ψ(r1, . . . , rN)|2 , (9)

which depends only on 3 spatial variables. Importantly, it was shown
in Ref. [66] that the full many particle ground state is a unique func-
tional of the ground state electron density ρ0(r). Additionally, Hohen-
berg & Kohn [66] proved that a well constructed energy functional of
ρ(r) will be minimal if, and only if, the electron density ρ(r) is the
ground state electron density ρ0(r):

E[ρ] > E[ρ0] . (10)

By minimizing the energy as a functional of the electron density ρ(r)
one obtains the ground state density. Then, in principle, all ground
state properties can be determined from the density.
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In Ref. [67] these two so-called Hohenberg-Kohn theorems are ap-
plied to solve a general many body problem, by mapping the inter-
acting problem onto an effective one-particle model:

[
−

 h2

2m
∆+ Veff(r)

]
Ψi(r) = εiΨi(r) . (11)

This effective model is constructed in a way that it has the same
ground state electron density as the original interacting problem. The
effective, Kohn-Sham (KS), potential reads

Veff(r) = Vext(r) + e2
∫
dr′

ρ(r′)
|r − r′|︸ ︷︷ ︸

VH

+ Vxc[ρ] . (12)

The effective potential consists of the external potential of the nu-
clei, the classical Coulomb interaction (Hartree interaction), and the
exchange-correlation potential Vxc[ρ], which includes all many body
effects that go beyond classical Hartree interaction. As both VH and
Vxc depend on the electron density of all electrons, they act as a static
mean field in which each of the electrons move.

The corresponding KS energy functional reads:

EKS[ρ] = Ts[ρ] +

∫
ρ(r)V(r) +

1

2
e2

∫ ∫
dr′dr

ρ(r)ρ(r′)
|r − r′|

+ Exc[ρ] .

(13)

Here, Ts[ρ] represents the kinetic energy functional of the non inter-
acting KS system in Eq. 11. The exchange correlation functional as
the general form:

Exc[ρ] = (T [ρ] − Ts[ρ]) + Ex[ρ] + Ec[ρ] , (14)

where the fist term is the kinetic energy difference between the inter-
acting and non-interacting problem, Ex is the exchange energy, and
Ec the correlation energy. At the moment the exchange-correlation
functional is just a construct, which should map the real system ex-
actly, and its form is not known.

After solving Eq. 11, the effective one-particle wave functions of the
system are obtained and the electron density can be obtained as

ρ(r) =
occ∑
i

|Ψi(r)|2 . (15)

This set of equations allows to solve in an iterative fashion the origi-
nal interacting problem, by starting with an initial guess for ρ(0)(r),
which can be taken as the sum of the densities of the individual atoms
comprising the system. To calculate then the ground state density of
the system one follows this self-consistent scheme:

ρ(0)(r) Eq. 12−−−−→ V
(0)
eff(r)→ solve KS equation 11→ Ψ

(0)
i (r)

→ ρ(1)(r)→ check if self-consistent no−−→ V
(1)
eff(r)→ . . .
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To minimize the energy in Eq. 13 a suitable minimization (or mix-
ing) procedure is applied for EKS[ρ] each time a new ρ is determined
before a new Veff is constructed.

Besides the ground state density, this method also yields as a solu-
tion the ground state energy, and the eigenvalues and eigenstates of
the KS system. Therefore, also forces to relax the atomic positions can
be calculated. Moreover, the scheme can be easily extended to sys-
tems involving spin-polarization [68], by making the potential, and
electron density, spin-dependent. Hence, allowing the calculation of
magnetic properties.

Even though the ground state density is exactly the one of the real
system, one should always keep in mind that the calculated eigenval-
ues, and hence possible excitation energies or other related observ-
ables, belong to the auxiliary KS system, and have no true physi-
cal meaning per se. However, the density of states (DOS) and band
structure of the KS system have been proven to be astonishingly rep-
resentative for the real system, and hence from now on I use these
calculated properties as first approximation for the real system.

Importantly, no approximations were made so far, which means, if
the exact exchange correlation functional would be known, the inter-
acting many body problem would be solved exactly.

3.1.1 Exchange correlation functionals

Unfortunately, the exact form of the exchange correlation functional
is not known, and therefore approximations have to be devised.

The by far most successful and most universal exchange correlation
functional is the ”Local Density Approximation” (LDA) functional
[67], which is constructed from the homogeneous electron density
limit. Here, one describes Exc as an integral over r with an integrand
that depends only on the local value of ρ(r). The exchange correlation
energy under the integral is taken from a homogeneous electron gas
εxc with the electron density ρ:

Exc ≈ ELDAxc [ρ(r)] :=

∫
d3r εxc[ρ(r)]ρ(r) . (16)

εxc can be obtained with great accuracy from quantum Monte
Carlo (QMC) calculations [69], and can be easily extended to describe
spin-polarized systems. The approximation can be motivated by the
fact, that for example in simple metallic systems the electron density
should be very homogeneous, and hence close to a uniform electron
gas. The LDA proved to be very successful in practical applications,
also for systems with strongly varying electron densities, due to
very robust and consistent error cancellation, which makes it a very
reliable approximation for various systems [70, 71].

Another important Exc functional in the scope of this work is the
generalized gradient approximation (GGA) proposed by Perdew et al.
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[72]. This family of functionals considers also the gradient of the
electron density:

EGGAxc [ρ↑, ρ↓] :=
∫
d3r fxc[ρ(ρ↑, ρ↓,∇ρ↑,∇ρ↓)]ρ(r) . (17)

If properly constructed, fulfilling exact condition and limits of the
Exc of the system, GGA produces generally very good results. One
of the most used flavors of the GGA is the PBE functional introduced
by Perdew et al. [73]. However, in contrast to LDA, which often un-
derestimates bond lengths, GGA tends to overestimate them.

In recent decades, many more exchange correlation functionals
have been developed. A overview over the available functionals is
given in the book of Martin [74] in chapter 8.

3.1.2 Projector augmented wave method

To practically solve the KS equations, Eq. 12, for any system, one has
to chose a suitable basis set in which the wave function of the effective
Hamiltonian is represented.

In periodic systems, Bloch’s theorem holds [75]. Therefore, any so-
lution of the KS equation Ψ(r) can be characterized by a wave-vector
k within the first Brillouin zone, and can be represented naturally in
a plane wave basis:

Ψkν(r) =
∑

G

cν,k+G exp(i(k + G) · r) . (18)

Here, G is a Bravais vector of the reciprocal lattice, and k a vector in
the first Brillouin zone.

Numerically, one is bound to a finite set of plane waves. The num-
ber of plane waves is determined by a energy cut-off Ecut for the
kinetic energy:

 h2|k + Gcut|
2

2m
< Ecut . (19)

Using plane waves has the advantage that the solution behaves very
systematic with respect to the energy cut-off. In some cases a large
number of plane waves is needed for convergence, but the eigenval-
ues and eigenstates will converge smoothly with an increasing cut-off
energy.

These advantages of plane-waves are also their biggest drawback.
Since they are localized in k space they are completely delocalized
in real space, and hence, a large number of plane waves is needed
to describe the rapidly varying wave function close to the core of the
nuclei. To overcome this problem, a possible solution is to replace
the wave function close to the core by a smoothly varying function,
such as the projector augmented wave (PAW) method developed by
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Blöchl [76]. This formalism is implemented in the DFT code “Vienna
Ab initio Simulation Package”(VASP) [77–79] used for my research.

The key idea of the PAW formalism is to replace the true all-
electron wave function |Ψ〉 by a pseudo wave function |Ψ̃〉. To get
from |Ψ̃〉 to the real |Ψ〉 one has to replace (augment) it inside the core
regions. Inside the core regions a so-called ”partial wave expansion”
is used; an expansion in a well localized real space basis set, and the
interstitial region away from the core is described by plane waves.
The original |Ψ〉 is then connected to |Ψ̃〉 by a linear transformation T̂ :

|Ψ〉 = T̂ |Ψ̃〉 =
(
1+

∑
µ

t̂µ

)
|Ψ̃〉 . (20)

T̂ is required to be unity in the interstitial region, away from the
nuclei, where the normal plane wave basis can be used. Thus, the
transformation consists of multiple contributions t̂µ that vanish out-
side of spheres around each nucleus at position Rµ. In each sphere
µ an expansion in partial waves |φα〉 is performed. Furthermore, for
each |φα〉 a smooth pseudo partial wave |φ̃α〉 is constructed, which
matches |φα〉 at the boundary R:

|φα〉 = (1+ t̂µ) |φ̃α〉 (21)

⇔t̂µ |φ̃α〉 = |φα〉− |φ̃α〉 . (22)

Here, the index α is a multi-index for the atomic position R, the
angular momentum l,m and n labeling the radial quantum number.
For |φα〉 on can use for example solutions of the Schrodinger equa-
tion for the atom at hand, and for |φ̃α〉 eigenfunctions of the radial
Schrodinger equation using a smooth pseudo potential can be used
[76]. Note, that |φα〉 needs to form in principle a complete basis set
inside the spheres to make the transformation T̂ exact. The PAW de-
composition is visualized in Fig. 11 for the Cl2 molecule.

To find now a closed expression for |Ψ〉, one has to find a represen-
tation of |Ψ̃〉 in the basis of |φ̃〉 inside the sphere. Therefore, we define
projector functions 〈p̃α|:

|Ψ̃〉 =
∑
α

|φ̃α〉 〈p̃α|Ψ̃〉 , 〈p̃α|φ̃β〉 = δαβ . (23)

The projector functions are the dual basis to the partial waves. Insert-
ing now everything in equation Eq. 20 gives the final expression for
the all electron wave function:

|Ψ〉 = |Ψ̃〉+
∑
µ

t̂µ |Ψ̃〉 = |Ψ̃〉+
∑
µ

∑
α

t̂µ |φ̃α〉 〈p̃α|Ψ̃〉

⇒ |Ψ〉 = |Ψ̃〉+
∑
i

(
|φα〉− |φ̃α〉

)
〈p̃α|Ψ̃〉 .

(24)

Importantly, the transformation is in principle exact, but the basis
expansion in α is in practice truncated. Therefore, the power of
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a

b

Figure 11: a Bonding p− σ orbital of the chlorine Cl2 molecule. The Cl ions
are located in the deep wells. b Wave function corresponding to
the orbital in a, and its decomposition into auxiliary wave func-
tion and partial waves. Top-left: True wave function Ψ (black),
and the auxiliary wave function Ψ̃ (blue). One can see how Ψ̃

is perfectly smooth at the Cl ion positions. Top-right: auxiliary
wave function Ψ̃ (blue) and its partial wave expansion in pseudo
partial waves φ̃α (green). Bottom-left: comparison of the true
partial wave φi (red) and the pseudo partial wave φ̃α (green).
Bottom-right: Ψ (black) and its partial wave expansion in φα
(red). Taken from Ref. [80].

the method depends crucially on the given basis functions, which
are defined for each atomic species and have to be chosen carefully.
Moreover, not all electrons of the atom are treated explicitly. Usually,
only the important valence electrons have partial wave definitions,
whereas other electrons are approximated in the core, with an new ef-
fective pseudo potential. This approximation is called frozen core ap-
proximation, with a significant gain in computational efficiency [79].

The calculation of observables is possible in this formalism even
without the explicit back transformation from |Ψ̃〉 to |Ψ〉. The expec-
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tation value of an operator Â can be calculated from |Ψ̃〉, 〈p̃α|Ψ̃〉, and
the partial waves:

〈Â〉 := 〈Ψ| Â |Ψ〉
= 〈Ψ̃| Â |Ψ̃〉+

∑
α,β

ραβ
(
〈φβ| Â |φα〉− 〈φ̃β| Â |φ̃α〉

)
, (25)

where one defines the one-center density matrix ραβ as follows:

ραβ :=
∑
νk

fνk 〈Ψ̃νk|p̃α〉 〈p̃β|Ψ̃νk〉 . (26)

Here, I reintroduced the band index ν and the k point index. fkν is
equal to one for occupied and zero for unoccupied electron orbitals.
Importantly, for a complete set of projectors, this one-center density
matrix is exactly identical to the charge density inside of the aug-
mentation spheres. This shows that the PAW formalism provides a
straightforward way to calculate local properties, e.g. charges per
atom per orbital, or magnetic moments per atom per orbital, with-
out evaluating the full wave function. This is due to the fact, that
the main contribution to these quantities stems from the wave func-
tion part inside the spheres R, and thus can be evaluated from the
one-center density matrix ραβ.

I would also like to mention, that the PAW method is very closely
related to the formalism of ultra-soft pseudo potentials [81], which is
also based on the idea of replacing the effective potential close to the
nuclei with a pseudo potential, generating a smooth wave function.
This method allows to use a plane-wave basis for the whole space,
since the effective pseudo potential does not produce rapidly oscillat-
ing wave functions. Formally this method is very similar to the PAW
formalism due to non-local pseudo potentials involving projectors,
and has been development before the PAW formalism.

This rounds up the description for the basic functionality of the
DFT code VASP used for my work. DFT has been proven to be a very
powerful tool for performing electronic structure calculations. How-
ever, it has some deficiencies that occur especially when describing
systems with localized electronic states that exhibit strong electron
interactions. These problems can be for example related to the map-
ping to an effective one particle problem in DFT, which means that no
physical state can be described, which is not representable by a single
Slater determinant. An example for such a state is a Mott insulating
state. This means, that even if one has access to the exact exchange-
correlation functional, that accounts for all electron interaction cor-
rectly, the one-particle KS spectrum cannot describe such a many
body state. There are developments to circumvent these problems
by modeling super cells, or averaging over different electronic config-
urations, e.g. averaging multiple Slater determinants [82]. However,
those methods will not be further discussed. Moreover, one should
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keep in mind the fact that DFT is a ground state formalism performed
at 0 K, and in principle not designed to describe excited states.

3.2 dft++ methods for correlated materials

Problems in DFT occur often for systems where the interactions be-
tween electrons in rather localized d or f valence states are impor-
tant, especially for systems with partially filled orbitals. Here, the
properties of the system are dominated by these interactions, as de-
scribed in chapter 1. Different methods were proposed to incorporate
strong electron interactions of such localized valence electrons manu-
ally into the KS equations. In general, it would be ideal to find a way
to keep the benefits of DFT, and to patch the deficiencies due to the
local interaction effects. Therefore, this section is devoted to so-called
DFT++ methods [83], which extend DFT to incorporate the strong
local Coulomb interactions found in partially filled d or f orbitals.

The general idea of these methods is to identify a correlated sub-
set of orbitals that lacks a proper description in DFT, when using
the commonly available local or semi-local Exc functionals. Then, an
improved description of the Coulomb interaction for these correlated
states is added, and finally the interaction in these orbitals that al-
ready has been accounted for in DFT is subtracted:

ĤDFT+ = ĤKS + ĤU − ĤDC . (27)

Here, ĤKS is the full KS Hamiltonian, ĤU is the added Coulomb in-
teraction in the correlated orbitals, and ĤDC is the so-called double
counting, to subtract the Coulomb interaction already accounted for
in DFT.

The rest of the chapter is dedicated to explain how to perform
such DFT++ calculations. First, Wannier functions are introduced
as a tool to construct suitable basis sets for the correlated subspace.
Then, I introduce ĤU, in its various flavors and emphasize the ques-
tion of choosing an appropriate basis in which the Hamiltonian is
represented. Moreover, I outline the constrained random phase ap-
proximation (cRPA) method to calculate the screened Coulomb inter-
action from DFT, which can then be used in DFT++ methods. Finally,
I present two actual implementations of the DFT++ formalism: the
DFT+U method [84, 85], and the DFT+DMFT method [86], which are
both used during my research.

3.3 wannier functions

To apply a local Coulomb interaction in a chosen subset of bands, C,
it is necessary to write ĤU in a well localized basis set. Unfortunately,
the Bloch states of a solid are very delocalized in real space. Therefore,
it is not practical to select the KS states (bands) close to the Fermi
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dz2 dx2−y2

Figure 12: Constructed MLWFs for the two eg orbitals of LuNiO3, from the
bands close to the Fermi level, without including the oxygen p
bands. Therefore, clear oxygen p tails can be observed, which
stem from the strong hybridization with Ni d states.

level and apply U. Here, I introduce Wannier functions, which are
the Fourier transforms of Bloch states, that can serve as suitable basis
states for ĤU.

3.3.1 Maximally localized Wannier functions

In general, Wannier functions can be obtained directly by a Fourier
transformation of the KS states |Ψkν〉 of the correlated subset of bands
C:

|wR,m〉 =
V

(2π)3

∫
BZ

dk e−ikR
∑
ν∈C

U
(k)
mν |Ψkν〉 . (28)

Here, V is the real space unit cell volume, and U
(k)
mν is a unitary

matrix, which in the case of a single Bloch function corresponds to the
arbitrary phase factor of the Bloch wave function. If multiple Bloch
states are involved this matrix is not necessarily diagonal, but there
is the possibility to mix the Bloch states at each k-point. Therefore, it
is clear that the resulting Wannier functions are not uniquely defined,
and to obtain uniquely defined Wannier functions one has to fix the
unitary matrix U(k)

mν by additional constraints.
The idea of maximally localized Wannier functions (MLWF) [87, 88]

is to determine U(k)
mν in a certain way, that maximizes the localiza-

tion of the resulting Wannier functions in real space. Therefore, one
obtains U(k)

mν by minimizing the following functional:

J[U
(k)
mν] :=

∑
m

(〈r2〉m − 〈r〉2m) with 〈o〉m =

∫
dr o |wm(r)|2 .

(29)

This procedure is implemented in the Wannier90 code [89], which
is interfaced with many DFT codes including VASP. Importantly, if no
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overlap between the bands in the chosen energy window with other
bands exists, the band structure is exactly represented. From this
procedure one obtains the real space Wannier functions |wα〉, which
has an example are depicted for LuNIO3 in Fig. 12. Moreover, one
obtains the hopping amplitudes between these Wannier orbitals:

tαβ = 〈wα| Ĥkin
C |wβ〉 , (30)

where Ĥkin
C is tight-binding like description of HKS in the chosen en-

ergy window. Note, that the resulting Wannier functions will be more
localized for larger energy windows, hence if using more bands C
during the construction of the Wannier functions.

3.3.2 Projections onto localized orbitals

There is an alternative framework to MLWFs to construct localized
Wannier functions, the projection onto localized orbitals (PLOs) [90,
91].

The idea of the PLO formalism is to project the Bloch states |Ψkν〉
onto a set of localized orbitals |χα〉, where α = {R, l,m,σ}. One can
define a projection matrix as

P̃αν(k) ≡ 〈χα|Ψνk〉 , (31)

which projects the Bloch states within a energy window W onto local-
ized orbitals:

|χ̃α(k)〉 =
∑
ν∈C

P̃†αν(k) |Ψνk〉 . (32)

Often, the number of localized orbitals to project on is smaller than
the number of bands within the energy window W. This means, that
P̂αν(k) can be a non-square matrix. As the projection is usually per-
formed for a subset of bands W, the |χ̃α(k)〉 do not form an orthonor-
mal basis set. Orthonormalizing them gives:

|wα(k)〉 =
∑
β

O
−1/2
αβ |χ̃β(k)〉 , (33)

where I introduced the overlap matrices:

Oαβ =
∑
νk

P̂αν(k)P̂
†
βν(k) . (34)

The Fourier transformation of |wα(k)〉 will give a localized Wannier
function. Therefore, the PLO formalism provides a well defined basis
of localized orbitals by connecting the Wannier functions to the Bloch
bands by the projection operator:

P̂αν(k) = 〈wα(k)|Ψνk〉 . (35)
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Note, that this is a projection scheme and the projection matrices
are in general not unitary. Therefore, due to the orthonormalization∑
ν P̂αν(k)P̂

†
νβ(k) = 1 holds, but not

∑
ν P̂
†
αν(k)P̂βν(k) 6= 1. Only if

the projection matrices are quadratic they perform a unitary transfor-
mation, see for a proof Ref. [92] p.101-104.

The projection operator can be used for down-folding any KS prop-
erty. For example, one can extract the kinetic Hamiltonian for the
correlated subspace as

Ĥkin
C =

∑
ν∈C

P̂αν(k)ĤKSP̂
†
βν(k) . (36)

I would like to emphasize the importance of the chosen energy win-
dow W for the construction, as it critically determines how localized
the resulting Wannier functions are. In general a larger energy win-
dow will produce more localized Wannier functions, which then also
can have projection weight on other bands.

With this I presented two different approaches to extract a set of
localized orbitals, defining a basis for the correlated target subspace
C.

3.4 coulomb interaction tensor

For all DFT++ methods one needs to add the Coulomb interaction in
the localized basis set for the correlated subspace, which were intro-
duced in the previous section. However, it is important to understand
how crystal symmetries and different basis sets affect the form of the
Coulomb interaction tensor. Therefore, this section is devoted to a
derivation of the Coulomb interaction tensor, based on Ref. [93].

A first assumption is that the Coulomb interaction, which is added
for the correlated states, is purely local. This assumption is based
one the fact that other electrons will screen the Coulomb interaction,
often leading to an exponential decay of the Coulomb interaction with
the distance r between two electrons. This is further elucidated in
section 3.5. Moreover, one assumes that all long-range interactions
and mean-field exchange correlations are well captured already in
DFT.

The local Coulomb interaction on each atomic site R can be written
in second quantization as

ĤU =
1

2

∑
σσ ′

∑
mm ′m ′′m ′′′

Umm ′m ′′m ′′′ c
†
mσc

†
m ′σ ′cm ′′′σ ′cm ′′σ .

(37)
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Here, c†mσ and cmσ are creation and annihilation operators for the
localized Wannier states |wα〉 = |wR,l,m,σ〉, and Umm ′m ′′m ′′′ is the
Coulomb interaction tensor:

Umm ′m ′′m ′′′ = 〈mm ′|U |m ′′m ′′′〉

=

∫
dr1

∫
dr2 w∗m(r1)w∗m ′(r2)

1

|r1 − r2|
wm ′′′(r2)wm ′′(r1) .

(38)

Next, I reduce the complexity of the Coulomb tensor by consider-
ing crystal symmetries that are typical for perovskites.

3.4.1 Slater integral parameterization

This parameterization makes use of the specific form of atomic or-
bitals, and is therefore applicable if the basis functions wα(r) are
atomic orbitals with spherical symmetry. Strictly speaking this is only
valid for isolated ions, but often d-orbitals in a solid are very close to
spherical symmetry [91].

Slater [94] showed that the full Coulomb interaction tensor
Umm ′m ′′m ′′′ in Eq. 38, represented in the spherical harmonic basis:

φnlm(r) = Rnl(r)Ylm(θ,φ) , (39)

can be decomposed into an angular part described by the Racah-
Wigner numbers α, and a radial part, which is then expressed in
terms of Slater integrals Fk:

Umm ′m ′′m ′′′ =

2l∑
k=0

αk(mm
′m ′′m ′′′)Fk . (40)

For the d-shell one can show that only three Slater integrals F0, F2,
and F4 are needed to construct the full Coulomb interaction tensor
due to the spherical symmetry of the isolated ion [95].

The most important Coulomb integrals are the matrix elements that
differ only in up to two different indices m. These are the direct and
the exchange integrals:

Uσσ̄mm ′ =

2l∑
k=0

αk(m,m ′,m,m ′)Fk (41)

Jmm ′ =

2l∑
k=0

αk(m,m ′,m ′,m)Fk . (42)

Often one only considers these contributions, as they can be ex-
pressed by density-density terms only [93]. Moreover, one averages
the interaction over all orbitals to obtain:

Uavg =
1

(2l+ 1)2

∑
mm ′

Uσσ̄mm ′ = F0 (43)

Uavg − Javg =
1

2l(2l+ 1)

∑
m 6=m ′

Jmm ′ . (44)
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For a d-shell of an isolated ion one can show that

Javg =
F2 + F4

14
(45)

holds. Typically, one fixes the ratio F4/F2 and hence, Uavg and Javg
are the only input parameters needed for the construction of the
Coulomb interaction tensor. The ratio F4/F2 is obtained empirically
and for transition metals it is reported to be F4/F2 ≈ 0.625. The ratio
usually varies only slightly between different atoms [96–98].

3.4.2 Hubbard-Kanamori parameterization

In systems with cubic symmetry with an octhedral crystal field split-
ting, the d orbital manifold is split into t2g and eg states. By choos-
ing now real spherical harmonics (cubic harmonics) as a basis for
Umm ′m ′′m ′′′ the Coulomb interaction tensor becomes block diagonal,
hence we can exactly rewrite the interaction tensor for the t2g or eg
subspace [99, 100]. Moreover, Umm ′m ′′m ′′′ is nonzero only if at maxi-
mum two different orbital indices occur in each summand of Eq. 37.

There are four different Coulomb matrix elements that one is left
with after applying this restriction:

Ummmm = 〈mm|U |mm〉
Umm ′mm ′ = 〈mm ′|U |mm ′〉
Umm ′m ′m = 〈mm ′|U |m ′m〉
Ummm ′m ′ = 〈mm|U |m ′m ′〉 .

(46)

Therefore, it follows for the full Coulomb interaction operator in
Eq. 37 with use of the density operator n̂mσ = c†mσcmσ:

ĤU =
1

2

∑
σσ ′

∑
m

Ummmm n̂mσn̂mσ ′

+
1

2

∑
σσ ′

∑
m 6=m ′

Umm ′mm ′ n̂mσn̂m ′σ ′

+
1

2

∑
σσ ′

∑
m 6=m ′

Umm ′m ′m c†mσc
†
m ′σ ′cmσ ′cm ′σ

+
1

2

∑
σσ ′

∑
m 6=m ′

Ummm ′m ′ c
†
mσc

†
mσ ′cm ′σ ′cm ′σ .

(47)
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Introducing now σ̄ as the opposite spin of σ, and with some rear-
rangement one obtains:

ĤU =
1

2

∑
σ

∑
m

Ummmm n̂mσn̂mσ̄

+
1

2

∑
σ

∑
m 6=m ′

Umm ′mm ′ n̂mσn̂m ′σ̄

+
1

2

∑
σ

∑
m 6=m ′

(Umm ′mm ′ −Umm ′m ′m)n̂mσn̂m ′σ

+
1

2

∑
σ

∑
m 6=m ′

Umm ′m ′m c†mσc
†
m ′σ̄cmσ̄cm ′σ

+
1

2

∑
σ

∑
m 6=m ′

Ummm ′m ′ c
†
mσc

†
mσ̄cm ′σ̄cm ′σ .

(48)

The two-index matrices can be re-labeled:

Uσσ̄mm ′ ≡ Umm ′mm ′
Jmm ′ ≡ Umm ′m ′m
Uσσmm ′ ≡ Umm ′mm ′ − Jmm ′

(49)

and are commonly referred as U matrix, exchange matrix J, and U ′

matrix. For the Kanamori parameterization of the interaction of a t2g
or eg subset it is assumed that the differences in different orbitals
within the two-index matrices are small. Therefore, we can introduce
averaged parameters for the two-index matrices:

U ≡ 1

N

∑
m

Ummmm

U ′ ≡ 1

N(N− 1)

∑
m 6=m ′

Umm ′mm ′

J ≡ 1

N(N− 1)

∑
m 6=m ′

Umm ′m ′m

JC ≡
1

N(N− 1)

∑
m 6=m ′

Ummm ′m ′ ,

(50)

which are the so-called Hubbard-Kanamori parameters. With this
one obtains the Kanamori parameterization with four parameters:

ĤU =
1

2

∑
σ

∑
m

U n̂mσn̂mσ̄

+
1

2

∑
σ

∑
m 6=m ′

[
U ′ n̂mσn̂m ′σ̄ + (U ′ − J)n̂mσn̂m ′σ

]

+
1

2

∑
σ

∑
m 6=m ′

[
J c†mσc

†
m ′σ̄cmσ̄cm ′σ + JC c

†
mσc

†
mσ̄cm ′σ̄cm ′σ

]
.

(51)
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In perfect cubic symmetry one can verify that U ′ = U− 2J and J =

JC holds [99], which is true for the t2g or eg subset. The resulting
interaction operator has the following form:

Ĥkan
U =

1

2

∑
σ

∑
m

U n̂mσn̂mσ̄

+
1

2

∑
σ

∑
m 6=m ′

[(U− 2J) n̂mσn̂m ′σ̄ + (U− 3J)n̂mσn̂m ′σ]

+
1

2

∑
σ

∑
m 6=m ′

J( c†mσc
†
m ′σ̄cmσ̄cm ′σ︸ ︷︷ ︸
spin−flip

+ c†mσc
†
mσ̄cm ′σ̄cm ′σ︸ ︷︷ ︸

pair−hopping

) .

(52)

Importantly, this form of the interaction is rotationally invariant,
which means that within the subset of orbitals, arbitrary unitary
transformations can be applied to the Hamiltonian without the need
to transform the Kanamori parameters.

If the system has cubic symmetry there is a one to one correspon-
dence for the t2g or the eg subset between the Slater interaction
matrix and the Kanamori interaction matrix [93]. However, the
Kanamori parameterization is not generally valid for the full d shell,
only if the system has spherical symmetry U ′ = U− 2J holds. Then,
a direct relation to the Slater integrals is given also for the full d shell
[101]. Note, that in many real materials these symmetries are not
completely satisfied, as for example in rare-earth nickelates, and one
makes a further simplification by assuming that the interaction still
fulfills the symmetry conditions and deviations are small.

3.5 constrained random phase approximation

Now, that the form of the Coulomb interaction for the correlated sub-
space of d electrons, or the t2g or eg subset, in real solids is properly
defined the question of how to choose appropriate values for the in-
teraction parameters remains. One can, in principle, calculate the
Coulomb interaction in single atoms directly, but the interaction of d
electrons in ions typically has a strength of about ∼20 eV. However,
this value is a magnitude larger than the kinetic energy of any elec-
tron in a solid, thus there would be no metallic systems in nature.

In solids the effective Coulomb interaction is reduced by screening
effects, due to the presence of other electrons in the systems. Consider
an extra electron in the system as perturbing potential for the other
electrons. They will avoid the area directly around this extra electron,
effectively creating screening holes that are positively charged, which
screen the ”bare” Coulomb potential acting on other electrons. Of
course, one does not need to specifically add an extra electron; this
holds for any electron in the system. Hence, the effective interaction
between any two electrons in a solid is screened by all other electrons.
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One should also note, that this picture also holds for excited electron-
hole pairs making the screening dynamic i.e. frequency dependent.

To calculate the screened Coulomb interaction, I utilize in this the-
sis the constrained Random Phase Approximation (cRPA) [102], as
implemented in VASP [103]. This method allows to calculate the dy-
namic screening from a KS band structure completely ab initio. The
following brief introduction to cRPA follows Ref. [104].

Consider applying a time-dependent perturbation δφ to a system
of electrons, that induces a change in the electron density, which in
turn changes the Hartree potential VH of the system. Therefore, the
total potential change under the influence of the perturbation is given
as:

δW = δφ+ δVH . (53)

Thus, the induced Hartree potential screens the applied perturbation
resulting in a screened potential δW, where the ratio between pertur-
bation and resulting screened potential is defined as the inverse of
the dielectric function:

ε−1(1, 2) =
δW(1)

δφ(2)
. (54)

Here, I used short-hand notations for space time coordinates 1 =

(r1,σ1, t1).
The bare Coulomb interaction V between two particles can also

be interpreted as perturbation to the system as a Coulomb potential
V arising at 1 due to another electron at position 2, resulting in a
screened Coulomb potential W:

W(1, 2) =
∫
d4ε−1(1, 4)V(4, 2) (55)

or in matrix notation:

W = ε−1V . (56)

A central quantity in the cRPA method it the polarization function
P, which expresses the polarization of the system due to the pertur-
bation. The polarization function is within the cRPA method approx-
imated in RPA, by neglecting all beyond Hartree contributions. The
polarization in RPA can be directly calculated from DFT [102]:

P(r, r ′,ω) =

occ∑
νk

unocc∑
ν ′k ′

[
Ψ
†
νk(r)Ψν ′k ′(r)Ψ

†
ν ′k ′(r

′)Ψνk(r ′)
ω− εν ′k ′ + ενk + iδ

−
Ψνk(r)Ψ

†
ν ′k ′(r)Ψν ′k ′(r

′)Ψ†νk(r
′)

ω+ εν ′k ′ − ενk − iδ

]
,

(57)

where Ψνk and ενk mark KS eigenstates and eigenvalues. Moreover,
it can be shown that the dielectric function can be calculated from the
polarization P as [102]:

ε = 1− VP . (58)



38 description of correlated materials from first principles

Figure 13: Band structure of LuNiO3, with constructed Wannier functions
for the Ni eg bands (red). The decomposition in the polarization
channels Peg within the correlated subspace, and the polarization
channels Pr outside, from, and to the eg subspace are schemati-
cally depicted as blue and grey arrows.

To calculate now the effective screened Coulomb interaction U in
a correlated subspace, I consider the example depicted in Fig. 13 of
LuNiO3. The effective screened Coulomb interaction is calculated by
first splitting the polarization of the system in two parts:

P = Peg + Pr . (59)

Namely, the polarization restricted only to the eg-eg transitions Peg ,
e.g. the eg screening channels, and Pr, which takes into account all
other transitions. Now one can deduce the partially screened interac-
tion Wr from Pr as:

Wr = ε
−1
r V = [1− V Pr]

−1V , (60)

which includes all screening effects except the one from the eg-eg
channels. Indeed, Wr can be interpreted as the screened Coulomb
interaction tensor Umm ′m ′′m ′′′ for the eg orbitals, because adding the
polarization Peg to Pr, one would recover the fully screened interac-
tion [102]. Hence, it follows:

U = [1− V Pr]
−1V . (61)

The name constrained stems from the fact, that we constrained the
screening to all transitions except the ones inside the correlated sub-
space. Note, that due to the energy dependency of the polarization,
the Coulomb interaction is naturally frequency dependent. However,
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in this work I use the static limit Umm ′m ′′m ′′′(ω → 0), which is a
widely used approximation [91, 96, 105]. However, the effect of dy-
namic screening should not be underestimated as shown for example
in the work of Ref.[103, 105].

In principle Umm ′m ′′m ′′′ can be calculated in any basis and can
then directly used as input for ĤU. Therefore, Umm ′m ′′m ′′′ is usually
calculated directly in the correlated subspace Wannier basis |wα(r)〉.
However, often one still parameterizes the interaction matrix from the
obtained Wr, either in the Slater parameterization, or the Kanamori
parameterization, depending on the chosen subspace. This is done,
because these parameters are often required as input for DFT++ meth-
ods. Furthermore, I would also like to mention that cRPA is not
the only method to calculate interaction parameters ab initio. The
constrained LDA method [106] provides another formalism based on
DFT to calculate the Coulomb interaction. Moreover, Ref. [107] shows
that under certain conditions cRPA does not give correct results, and
hence the obtained values should be considered as a guideline.

3.6 dft+U

Next, I present the actual implementations of the DFT++ methods
used in this thesis.

In the DFT+U formalism one modifies directly the effective poten-
tial of the KS Hamiltonian by adding an orbital dependent potential
in the spirit of Eq. 27. This additional potential has the form of a
Coulomb interaction for the atomic orbitals, which are not treated on
a satisfactory level in plain DFT. This has the clear advantage, that all
normal DFT observables are accessible, and the calculation of atomic
forces etc. is possible. A good overview about DFT+U is given in the
review article of Himmetoglu et al. [108].

Anisimov et al. [84] were the first who added a Hubbard type local
interaction of the general form

ĤRU =
U

2

∑
mσ,m ′σ ′
mσ 6=m ′σ ′

nσmn
σ ′
m ′ (62)

to certain orbitals in the KS formalism, where nm is the DFT occu-
pation of an orbital m of an specific atomic species at site R. The
occupations are calculated in the PAW formalism from the one-center
density matrix (Eq. 26). More precisely, in VASP the Coulomb inter-
action is applied to well localized PAW projectors with a certain l

character. Therefore, the obtained occupations are very close to the
formal charges of the cations, which would correspond to Wannier
functions calculated for a large energy window.
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In fact, the interaction term that I use in this work is of the form as
introduced by Liechtenstein et al. [109]:

ĤRU =
1

2

∑
{m}σ

[ Umm ′′m ′m ′′′ n
σ
mm ′n

σ̄
m ′′m ′′′

+ (Umm ′′m ′m ′′′ −Umm ′′m ′′′m ′) n
σ
mm ′n

σ
m ′′m ′′′ ] .

(63)

which accounts for spin-dependent interactions (index σ), effective
on-site Coulomb-interactions, and exchange-interactions. Impor-
tantly, this form is rotationally invariant allowing to make use of
the Slater paramaterization of interaction parameters for d electrons
as introduced in section 3.4. Therefore, the Coulomb interaction
parameter is defined as Uavg = F0, and the exchange-interaction
parameter as Javg = F2+F4

14

As already mentioned the GGA or LDA approximation already ac-
counts for some of the interactions of these electrons in orbital i of
the chosen atom. Therefore, one would incorporate ”too much” in-
teraction for those electrons. This problem is called DC and therefore,
by adding the term EDC, one tries to subtract the interaction energy
that is ”too much”. The spin-dependent full energy functional in this
formalism reads

EDFT+U[ρσ] = EDFT [ρσ] +
∑
α

EU[nα] − E
DC[nα] . (64)

The specific form of the DC correction is discussed in section 3.7.6,
because for the DFT+DMFT method the same DC correction schemes
are used.

The DFT+U method results in a tendency to avoid fractional oc-
cupations in the correlated orbitals and tends to empty orbitals less
than half filled, and fills orbitals more than half filled. The differ-
ence in potential energy for empty and full states is approximately
equal to Uavg. Together with a spin-dependent treatment of the sys-
tem, this allows to open a gap between up and down spin channels,
within the orbital in question. Moreover, this cures the tendency to
over-delocalize electrons in normal exchange-correlation functionals.
However, there is an inherent problem arising due to the DC term.
Since, the exchange-correlation functional and ĤU are formulated
on a different, formally incompatible, footing, the correct double-
counting is not known. From the exchange-correlation functional it
cannot be extracted how much contribution to the Coulomb interac-
tion stems from a certain local orbital and what parts come from other
contributions, because it depends on the average particle density in a
non-linear way.

Even though, one can in principle calculate Uavg for the local or-
bitals using the cRPA method, the question what a suitable value
of Uavg is, often still remains. This is due to several reasons. As
described, the DC is ill-defined. Moreover, the cRPA method is an
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approximative scheme [107], and moreover most current implemen-
tation do not allow to input a full Coulomb interaction tensor directly
obtained from cRPA. Therefore, Uavg is usually treated as param-
eter, and fitted to experimental results until satisfactory results are
achieved. However, I demonstrate in this thesis that the cRPA method
is a powerful tool to obtain a first guess for the Coulomb interaction
strength.

Throughout this thesis I extensively use the DFT+U method to
study structural properties and magnetic order in rare-earth nicke-
lates. However, the DFT+U method is still a static mean field method,
and thus does not account for dynamic fluctuations, that are neces-
sary to model a Mott insulating state. Hence, to get access to the
site-selective Mott insulating state in the paramagnetic regime found
in rare-earth nickelates, one needs to go beyond static mean field the-
ory, and access the true many body state of the system.

3.7 dft+dmft framework

A completely different approach to tackle the problem of correlated
electron systems is developed in the context of the Dynamical Mean
Field Theory (DMFT). This method was developed to solve the so-
called Hubbard Hamiltonian proposed by Hubbard [110], which is a
very important model showing a rich phase diagram describing many
different physical phases, e.g. Fermi-liquids, bad metals, Mott insula-
tors, superconductivity, and Kondo physics, to name a few examples.

The Hamiltonian is described for a simple one band case by elec-
trons on a lattice, that can hop from from site to site with a certain
amplitude t, which will interact with each other by a Coulomb inter-
action U if they meet at the same lattice site:

HHubbard = −
∑
ijσ

tijc
†
iσcjσ︸ ︷︷ ︸

Ĥkin

+U
∑
ij

n̂i,↑n̂j,↓︸ ︷︷ ︸
ĤU

. (65)

Here, the indices i and j mark the lattice sites, c†iσ is an operator cre-
ating, and ciσ an operator destroying an electron with spin σ on site
i. U is a local Coulomb interaction, and n̂i is the density operator
for site i. The model is depicted in Fig. 14. The Hubbard Hamilto-
nian can be straightforwardly extended to multi-orbital systems by
introducing the multi indices α = {R, l,m,σ}, where R marks now an
atomic site, rather than its position.

Although, the Hubbard Hamiltonian is a model Hamiltonian, it can
be utilized in the context of realistic materials modeling, and com-
bined with DFT to allow for a description of the correlated electron
physics in d-orbitals. In general, the idea follows the same Ansatz
as for DFT+U: one identifies the correlated subspace, constructs lo-
calized Wannier functions, extracts the hopping amplitudes tαβ, and
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Figure 14: Visualization of the Hubbard Hamiltonian on a two dimensional
lattice. Electrons hop with an amplitude t from site to site, and
whenever two electrons meet on the same lattice site, they interact
with the interaction energy U with each other. Adapted from
Ref. [111] with permission from the author.

uses them as input for the Hubbard Hamiltonian in Eq. 65 extended
to multi-orbitals. This maps the correlated subspace from the KS
Hamiltonian to the kinetic part of the Hubbard Hamiltonian. By
adding the local Coulomb interaction one has an appropriate descrip-
tion of the interaction within the low energy subspace.

The Hubbard Hamiltonian appears to be very simplistic, but it is
not solvable, except for a few special cases, without approximations.
Next, I present DMFT as an approximation to solve the Hubbard
Hamiltonian in a beyond static mean field fashion, to describe prop-
erly electronic correlations. Afterwards, I show that DFT and DMFT,
can be combined in a formal way. Here, I follow the review article of
Ref. [15], and the lecture notes of Ref. [112] to give first a brief intro-
duction to DMFT, and then a more detailed overview how DFT and
DMFT are deployed together.

3.7.1 Green’s function formalism

At this point it convenient to introduce the concept of Green’s func-
tions. A Green’s function can be best described as a propagator for a
particle or multiple particles (here I only consider electrons) in a sys-
tem, possibly disturbing the system (interactions). Sometimes they
are also described as correlation functions. Within this work I am
only interested in one-particle Green’s functions, which allow to store
very efficiently information about the interacting many body system.
A formal introduction to the formalism of Green’s functions can be
found in Refs. [93, 113].
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The formal definition of the Green’s function is given by:

iGαβ(t, t ′) = 〈T [cα(t)c†β(t ′)]〉 , (66)

where cα(t) are Heisenberg operators with the multi-index α, and
the time dependence t:

cα(t) = e
iĤtcαe

−iĤt . (67)

T represents the time ordering operator. Hence, the Green’s function
describes the probability, that an electron created at t ′ in state β prop-
agates to t in state α. In general the Green’s function is a function
of two distinct times t and t ′. If the Hamiltonian Ĥ is explicitly time
independent, than Gαβ(t, t ′) depends only on the time difference:

Gαβ(t, t ′) = Gαβ(t− t ′, 0) . (68)

In the context of this work I am interested in a special type of one-
particle Green’s functions, the so-called Matsubara Green’s functions
at finite temperatures. The propagator is then defined by the imagi-
nary times iτ, 0 < τ < β, where

β =
1

kBT
(69)

is the inverse temperature, and the Green’s function is anti-periodic in
τ. For time-independent Hamiltonians, the Matsubara Green’s func-
tion is defined as:

Gαβ(τ) = −〈T [cα(τ)c†β(0)]〉 . (70)

and can be Fourier transformed to obtain:

Gαβ(iωn) =

∫β
0

dτeiωnτGαβ(τ) , (71)

where ωn are the fermionic Matsubara frequencies ωn = π
β(2n+ 1).

In the case of the Hubbard Hamiltonian, the Matsubara lattice
Green’s function is given by:

Gαβ(iωn, k) =
1

iωn − Ĥkin
αβ(k) + µ+ Σαβ(iωn, k)

. (72)

Here, µ is the chemical potential, and Σαβ(iωn, k) is the so-called
self-energy. The self-energy is defined as the difference between
the inverse of the full interacting Green’s function G and the non-
interacting Green’s function G0:

Σαβ(iωn, k) =
[
G−1
0 (iωn, k)

]
αβ

−
[
G−1(iωn, k)

]
αβ

. (73)
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This equation is known as Dyson’s equation. The non-interacting
Green’s function G0 is defined as:

[G0(iωn, k)]αβ =
1

iωn − Ĥkin
αβ(k) + µ

. (74)

Importantly, the one-particle Green’s function holds relevant infor-
mation about the many body state of the system, and one can calcu-
late the expectation value of any single particle operator Âαβ from
Gαβ(τ):

〈Âαβ〉 = lim
τ→0−

∑
αβ

AαβGβα(τ) (75)

or Fourier transformed:

〈Âαβ〉 =
1

β

∑
αβn

AαβGβα(iωn) , (76)

where I dropped the k index for simplicity. Therefore, one can for ex-
ample extract the ground state expectation value of the density matrix
of the system by evaluating:

ρ̂αβ = 〈Ψ0| c†β(t)cα(t) |Ψ0〉 (77)

= − lim
t→0+

〈Ψ0| T [cα(0)c†β(t)] |Ψ0〉 (78)

= −iGαβ(0, 0+) . (79)

One can see that the density matrix is obtained from the Green’s
function at equal time. This is why the Green’s function is sometimes
called time dependent extension of ρ̂. This result can be translated to
Matsubara Green’s functions as well to calculate the thermal equilib-
rium value of ρ̂:

ρ̂αβ =
1

β

∑
n

Gαβ(iωn) . (80)

Moreover, the Green’s function is directly connected to the spectral
function of the system:

Aαβ(ω) = −
1

π
ImGαβ(ω, k) , (81)

which can be directly related to experimentally measured photo emis-
sion spectra. Note, that here Gαβ(ω, k) is the retarded real frequency
Green’s function, which is obtained by analytic continuation, i.e. tak-
ing iω→ ω+ iδ from the Matsubara Green’s function.

An important representation of the Matsubara Green’s function in
the context of this thesis is the Legendre representation [114]. Here,
G(τ) is expanded in terms of Legendre polynomials Pl(x) defined on
the interval [−1, 1]:

G(τ) =
∑
l>0

√
2l+ 1

β
Pl[x(τ)]Gl , (82)
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where x(τ) = 2τ/β− 1 and Gl are the Legendre coefficients. It can
be shown, that the coefficients Gl decay faster than 1/lx for any x,
and hence, the Legendre representation allows for a very compact
representation of the Matsubara Green’s function.

The formalism of Green’s functions is a powerful tool to express
the solution of the Hubbard Hamiltonian (or in any other physical
system) in a compact, but yet general form at finite temperatures
with arbitrary Coulomb interaction, where the non-trivial part of the
solution is stored in the self-energy Σ.

3.7.2 Dynamical mean field theory

To make the solution of the Hubbard Hamiltonian feasible, Metzner
& Vollhardt [115] found that at infinite coordination numbers of the
lattice, z → ∞, i.e., an infinite number of nearest neighbors per site,
the self-energy of the Hubbard Hamiltonian in Eq. 65 becomes k in-
dependent:

lim
z→∞Σαβ(iωn, k)→ Σαβ(iωn) . (83)

Importantly, already for a three dimensional cubic lattice, with coor-
dination number z = 6, and only a local interaction, approximating
the self-energy k-independent is almost indistinguishable from the
full solution [116]

This locality of the self-energy is the starting point of the devel-
opment of the DMFT method, where an auxiliary impurity prob-
lem is introduced with the same local interaction as the lattice prob-
lem (Hubbard Hamiltonian). This impurity is connected to a non-
interacting bath, where the connection between bath and impurity
is described by a local non-interacting Green’s function G0αβ(iωn).
Due to the similarity to other mean field theories G0 is often called
Weiss field. The mapping from lattice to impurity model is depicted
in Fig. 15.

Next, one approximates the lattice self-energy by the impurity self-
energy, and one requests that the Green’s function of the impurity is
identical to the local Green’s function of the lattice Problem:

G
imp
αβ

!
= Gloc

αβ (84)

This gives the self-consistency condition for DMFT in the form of a
Dyson equation:

G0αβ(iωn)
−1 = Gloc

αβ(iωn)
−1 + Σ

imp
αβ (iωn) . (85)

This mapping was first introduced by Georges & Kotliar [117], by
showing that DMFT maps the Hubbard model exactly to an Ander-
son impurity model (AIM):

ĤAIM = Ĥloc + Ĥbath + Ĥhyb . (86)
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G0

S Seff

Bath

Figure 15: lattice problem S and associated auxiliary impurity problem Seff
that is numerically exactly solvable.

Here, Ĥloc contains all local parts, i.e. the impurity energy levels
and the local Coulomb interaction ĤU. The bath is defined via non-
interacting bath states bγ as:

Ĥbath =
∑
γ

ε̃γb
†
γbγ , (87)

where ε̃γ are the bath energy levels. The hybridization part describes
the coupling between impurity and bath as:

Ĥhyb =
∑
γα

Vγα(c
†
αbγ + b

†
γcα) . (88)

Importantly, Georges & Kotliar [117] showed that the Weiss Field
G0αβ(iωn) is directly connected to the hybridization function of the
Anderson impurity model:

∆αβ(iωn) =
∑
γ

V∗γαVγβ
iωn − ε̃γ

, (89)

as follows:

G0αβ(iωn) =
[
iωn − µ−∆αβ(iωn)

]−1 . (90)

This is an important step in the practical solution of the Hubbard
Hamiltonian, since to solve the Anderson impurity problem various
approaches have been developed decades before DMFT even was for-
mulated, allowing to calculate the partition function of the AIM [116]:

Z = Tr
[
e−βĤ

AIM
]

(91)

and hence, the calculation of the impurity Green’s function:

G
imp
αβ (τ) =

1

Z
Tr
[
e−(β−τ)ĤAIM

cαe
−τĤAIM

c
†
β

]
. (92)

The approaches to solve this impurity problem are discussed in the
next section 3.7.3.

The resulting DMFT self-consistency cycle to calculate the lattice
Green’s function of the Hubbard Hamiltonian in Eq. 65 is:
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1. start with an arbitrary impurity self-energy Σimp
αβ (iωn)

2. construct a lattice Green’s function Gαβ(iωn, k) (Eq. 72) by set-
ting:

Σαβ(iωn, k) ≡ Σimp
αβ (iωn) (93)

3. extract its local part by k summation:

Gloc
αβ(iωn) =

∑
k

Gαβ(iωn, k) (94)

4. Apply the DMFT self-consistency condition Eq. 84, by identi-
fying the local Green’s function with the impurity Green’s, to
define the dynamic Weiss field:

G0αβ(iωn)
−1 = Gloc

αβ(iωn)
−1 + Σ

imp
αβ (iωn) (95)

5. solve the impurity problem, to obtain the impurity Green’s func-
tion Gimp

αβ (iωn)

6. construct a new impurity self-energy:

Σ
imp
αβ (iωn) = G0αβ(iωn)

−1 −G
imp
αβ (iωn)

−1 (96)

7. start again with point 2, until self-consistency is reached

The computational heavy part in DMFT is solving the impurity prob-
lem, and obtaining the partition function Z.

3.7.3 Impurity solvers

To solve the impurity problem many different schemes exist, and an
overview can be found in the review article of Ref. [118]. Here, I
would like to focus on Quantum Monte Carlo (QMC) methods to ob-
tain the partition function of the system. More specifically, on the
continuous-time QMC (CT-QMC) methods, which allow for a numeri-
cally exact solution of the Anderson impurity problem [119, 120]. The
basic idea of CT-QMC is to split the Hamiltonian ĤAIM into an exactly
solvable part Ĥ1, and a part Ĥ2, which is harder to solve. Then, one
defines the time dependent operators of the system in the interaction
picture as:

O(τ) = eτH1Oe−τH1 . (97)

If divided into two parts, the solution to the AIM is found in a per-
turbative way using a power expansion in Ĥ2:

Z = Tr
[
e−βĤ1Te−

∫β
0 dτĤ2(τ)

]

=

∞∑
n=0

∫β
0

dτ1 · · ·
∫β
τn−1

dτnTr
[
e−βĤ1H2(τn) · · ·H2(τ1)

]
.

(98)
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There are two common flavors of this expansion. The first one
chooses for H2 the Ĥloc part, containing the local Coulomb inter-
action ĤU. This expansion is the so-called interaction expansion
(CT-INT) [119]. In this work I use the other common expansion,
called hybridization expansion (CT-HYB) [120], which became
widely used. Here, the expansion is performed in the hybridiza-
tion Ĥ2 = Ĥhyb, and Ĥ1 contains all other terms of the AIM
ĤL+B = Ĥloc + Ĥbath:

Z = Tr e−βĤ
AIM

= Tr

[
e−βĤ

L+B
Tτ exp

(∫β
0

dτ Hhyb(τ)

)]

=

∞∑
n=0

∫β
0

dτ1 · · ·
∫β
τn−1

dτnTr
(
e−βĤ

L+B
Hhyb(τn) · · ·Hhyb(τ1)

)
.

(99)

Now one uses the fact, that ĤL+B does not mixes impurity and
bath degrees of freedom and hence, Ĥloc can be separated from Ĥbath.
The non-interacting bath partition function Zbath can be calculated
analytically, and it can be shown that the rest of the Hamiltonian can
be recast in the determinant of the hybridization function ∆αβ(iωn).
This gives for the full partition function Z [118]:

Z = Zbath
∞∑
n=0

∫β
0

dτ1 · · ·
∫β
τn−1

dτn

∫β
0

dτ ′1 · · ·
∫β
τ ′n−1

dτ ′n×∑
i1···in

∑
i ′1···i ′n

Tr
[
e−βĤ

loc
Tτ cin(τn)c

†
i ′n
(τ ′n) · · · ci1(τ1)c†i ′1(τ

′
1)
]
×

det∆αβ(τ) ,
(100)

where the operators ci are impurity states.
Instead of summing all possible contributions to the partition func-

tion, Z is evaluated by importance sampling. Here, certain configura-
tions are proposed to be added to the sum and integral of Z, which
consist of creation and annihilation operators. This results than in a
Markov chain Monte Carlo process with detailed balance, in which
new configurations are proposed and accepted or rejected, depending
on their acceptance probability, and the corresponding terms are then
added to the partition function. While doing this, the Green’s func-
tion can also be directly measured by adding two additional creation
/ annihilation operators [118].

Like all QMC methods dealing with fermionic systems also the
CT-HYB method suffers from the so-called sign problem, which oc-
curs depending on the chosen basis and the complexity of Ĥloc [121].
The problem is, that in fermionic systems exchanging two fermions
causes a sign change in the term added to the partition function.
Hence, it cannot be ensured that each contribution to Z is positive,
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Figure 16: High frequency behavior of the self-energy Σ(iωn) calculated
from the impurity Matsubara Green’s function, comparing dif-
ferent schemes to obtain smooth high-frequency tails. Top: Raw
output from the CT-HYB QMC solver, with very noisy data for
n > 50. Middle: Σ(iωn) with the moments of the Green’s func-
tion fitted by a least-square fit. Bottom: Σ(iωn) obtained by a
impurity Green’s function sampled directly in Legendre coeffi-
cients

and eventually different contributions can cancel each other out in
the summation. Then, the sampling of Z becomes ineffective, which
reduces the accuracy of QMC. Furthermore, this problem grows ex-
ponentially with the size of the configuration space of Ĥloc, and the
inverse temperature β of the simulation [118]. However, by choosing
an appropriate basis for Ĥloc one can make the problem less severe.
Popular choices are the crystal field basis, hence diagonalizing the
impurity energy levels, or the basis that diagonalizes the impurity
occupations.

To solve the impurity problem I utilize the TRIQS/cthyb

solver [122] in this thesis.

3.7.4 Taking care of the high frequency tail

As discussed in the previous section, the CT-HYB QMC solver mea-
sures the impurity Green’s function by a stochastic process. The self-
energy is then obtained by the Dyson equation, Eq. 96, by inverting
Gimp and G0, and subtracting them from each other. Problematically,
the error in Σimp due to the statistical noise of Gimp amplifies itself
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Figure 17: Logarithmic plot of the absolute values of the Legendre coeffi-
cients Gl for SrVO3 (one of the three degenerate t2g orbitals), to
demonstrate the exponential decay of Gl. For l > 34 QMC noise
becomes visible and Gl should be truncated at this value. Even
(blue) and odd (red) l are plotted separately.

by this inversion. It is found that especially for high-frequencies ωn,
called the tail, the error becomes very large, because here G0 and Gimp

have similar values [123]. This is critical, since the calculation of any
observable from the Green’s function involves the summation over
all Matsubara frequencies (see eq. 76). Especially the calculation of
the interaction energy depends on both G and Σ (see section 3.7.5).
Taking care of this high frequency behavior of the Green’s function is
essential to perform accurate DFT+DMFT calculations. In this section
I present two different approaches to minimize the statistical noise in
measuring Gimp.

The high frequency tail can be described by the moments ci of the
high frequency expansion of the Green’s function:

G(iωn) =
c1
iωn

+
c2

(iωn)2
+

c2
(iωn)3

+ . . . . (101)

The most straightforward way to minimize the statistical noise, is to
perform a least-square fit of the moments of G(iωn) in a window
of Matsubara frequencies where the error is still small. Thus, the
coefficients ci can be determined, and a physical high-frequency tail
is obtained. An example is shown in Fig. 16. Here, the real part of the
impurity self energy ReΣ(iωn) is shown, where the top panel shows
the obtained Σ calculated directly from the raw G(iωn) as measured
by the QMC solver. In the middle pane a tail fit is performed and a
smooth tail is obtained with asymptotic behavior.

Another way to filter the QMC noise is to directly measure the im-
purity Green’s function in the Legendre representation (see eq. 82) in
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Figure 18: Comparison of the DMFT interaction energy obtained from the
raw sampled Matsubara Green’s function, the tail fitted Green’s
function, and the Green’s function sampled directly in Legendre
coefficients.

DMFT as described in detail in Ref. [114]. Here, one uses the fact that
the Legendre coefficients decay very fast as described in section 3.7.1.
Of course, the QMC measurement of Gl carries in principle the same
noise as the measurement of G(iωn), and higher l will show more
statistical noise, as they directly correlate with the higher Matsubara
frequencies [114]. However, in Ref. [114] it is shown that the physical
properties of the system are carried by the low order coefficients, and
a basis truncation will act as an effective QMC noise filter. The result
is demonstrated in the bottom panel of Fig. 16, showing as well a
smooth high-frequency behavior, without performing a tail fit.

The choice, when the basis is truncated has to be handled with care,
since the actual decay of Gl can vary, for example at different tem-
peratures, or in insulating and metallic phases. Therefore, one has
to identify the highest Gl that is essentially free of statistical noise.
Theoretically Gl decays exponentially fast and the truncation can be
performed when the exponential decay stops [114]. This is demon-
strated in Fig. 17. Here, Gl is shown the computed for SrVO3 in the
insulating phase. To demonstrate the exponential decay, Gl is plotted
on a logarithmic scale, for even and odd l. The exponential decay
is visible up to l ∼ 34. Above, the statistical noise becomes visible
and the basis can be truncated, which amounts to setting all Gl with
l > lmax to zero.

Furthermore, the importance of a accurate treatment of the high-
frequency tail is demonstrated in Fig. 18. Here, the interaction en-
ergy as function of the DMFT iteration is shown. The calculation of
the interaction energy is defined later in Eq. 120. The energy is cal-
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culated from three differently obtained Green’s functions. First, with
the raw G(τ) (blue). Second, with a least-square tail fit performed in
Gimp(iωn) (orange), and third, by sampling directly Legendre coeffi-
cients of Gimp (green). Importantly, the tail fit and Legendre sampling
result in similar energy values, which are quite constant throughout
the DMFT iterations. Contrary, the interaction energy calculated from
the raw G(τ) shows a large offset of ∼ 4 eV, and very large oscillations
between the iterations. This large shift is due to the fact, that the in-
teraction energy is critically determined by the high-frequency value
of Re Σ(iωn), which is the so-called Hartree shift of the self-energy.

For all calculations presented in this thesis, I utilized the direct
measurement of Gl in the TRIQS/cthyb solver [122], as this resulted
in very fast convergence and accurate observables, without adjusting
fit parameters.

3.7.5 DFT+DMFT functional

The spectral density functional theory, which formally connects DFT
and DMFT, allows to tackle the correlated electron problem for realis-
tic materials starting from DFT [124]. The spectral density functional
theory defines a functional of the free energy, which under approxi-
mations leads to the DMFT self-consistency equations, and to a con-
sistent connection between DFT and DMFT via the charge density
ρ(r). Here, I give a brief summary based on the review article [14]
and the lecture notes [112].

In spectral density functional theory, one chooses variables to per-
form a Legendre transformation of the partition function Z, or the
free energy, of the system, to obtain a functional solely in terms of a
chosen variable. The general Baym-Kadanoff functional Γ is such a
functional, which uses the one-particle Green’s function as variable,
and gives at the stationary point the free energy of the system. It has
the following form [125]:

Γ [G] = Tr ln G− Tr
[
(G−1
0 −G−1)G)

]
+Φ[G] , (102)

and is decomposed into the single particle kinetic part, a correction
to the kinetic energy due to the interaction, and the correlated i.e.
interaction part of the functional, Φ[G], the so-called Luttinger-Ward
part. Here, G is the full Green’s function of the whole system without
explicit matrix notation, and G0 is the corresponding non-interactig
Green’s function. Extremizing Φ[G] with respect to G defines the
interaction part of the electron self-energy [124]:

Σ =
δΦ

δG
(103)

In generalΦ[G] is not known, but provides a starting point to develop
approximations.
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For the DFT+DMFT approximation the Luttinger-Ward part of the
functional is approximated by the interacting part of the DFT func-
tional in Eq. 13, and the DMFT functional of the correlated subspace
[124]:

Φ[G] ≈ EH[ρ(r)] + EXC[ρ(r)] +ΦDMFT[Gloc
αβ] −Φ

DC[nαβ] .
(104)

Here, ΦDC is the double-counting correction to correct for the corre-
lation effects already accounted in DFT, which is determined by the
local occupation nαβ. Crucially, there exists no diagrammatic repre-
sentation of ΦDC, because EXC[ρ(r)] includes already energy contribu-
tions from all orbitals in some form, and the contributions from the
correlated subspace cannot be separated easily. Note, that the full
Green’s function of the system is connected with the charge-density
by:

ρ(r) =
1

β

∑
n

G(r, iωn) . (105)

The full DFT+DMFT functional is now given by:

ΓDFT+DMFT[G]

= Tr ln [G] − Tr
[
(G−1
0 −G−1)G)

]
+ EH[ρ] + EXC[ρ]

+ΦDMFT[Gloc
αβ] −Φ

DC[nαβ] .

(106)

The free energy is obtained by extremizing the functional with respect
to G, obtaining the conditions for stationarity:

δΓDFT+DMFT

δG
= 0 , (107)

which gives the Dyson equation of the system:

G−1
0 −G−1 = VH + VXC +

δΦDMFT

δG
−
δΦDC

δG
. (108)

Since ΦDMFT only depends on Gloc, because in DMFT G is approx-
imated with its local counterpart, one obtains for the derivative of
ΦDMFT:

δΦDMFT

δG
=
δΦDMFT

δGloc
αβ

= ΣDMFT
αβ . (109)

Here, the DMFT self-energy is defined for the full lattice system.
The self-energy is then given by the impurity self-energy, because at
DMFT self-consistency the lattice self-energy can be identified with
the impurity self-energy. Accordingly, the derivative of ΦDC gives:

δΦDC

δG
= ΣDC . (110)
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The down- and up-folding from the correlated subspace to the KS
basis, to connect the full system Green’s function, G, with the impu-
rity self-energy Σimp, is done via the projection operators defined in
Eq. 35. The full lattice self-energy for the DMFT part, including the
DC, can then be defined as:

ΣDMFT(k, iωn) =
∑
αβ

P̂†αν(k)
(
Σ
imp
αβ (iωn) − Σ

DC
αβ

)
P̂βν ′(k) .

(111)

For bands outside of the projection window C, the self-energy is set
to zero, so that ΣDMFT is defined for all bands ν. Therefore, we can
now rearrange Eq. 108:

G−1
0 −G−1 = VH + VXC + ΣDMFT(r, iωn) . (112)

Here, the self-energy as been Fourier transformed. Moreover, one
should note that the system can contain multiple correlated atomic
sites, that each give a separate impurity problem, coupled through
the DMFT self-consistency loop. Hence, Σimp

αβ (iωn), and ΣDC being
block diagonal in R.

Now, from Eq. 112, the full Green’s function of the system can be
defined as:

G(r, iωn) =
[
iωn + µ+

1

2m
∆− VKS(r) − ΣDMFT(r, iωn)

]−1
.

(113)

Since ρ is obtained from G(r, iωn), this equation shows that
ρ and ΣDMFT are indeed coupled, and stationarity of ΓDFT+DMFT

is only reached if both charge-density, and Green’s function are
self-consistently calculated. A DFT+DMFT calculation performed in
this way is called charge self-consistent (CSC). This is done in two
self-consistency loops. One inner loop for DMFT, converging G for
a given ρ respectively Ψνk, resulting in a new charge density, and
one outer loop to convergence ρ each time a new charge density is
obtained from DMFT. To obtain stationarity one also needs to satisfy
δP̂/δG = 0, since the up- and down-folding depends on P̂. In practice
this can cause problems, because the projectors change as the DFT
wave functions change whenever a new ρ is calculated [126].
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Inserting both Eq. 112 and Eq. 113 into the DFT+DMFT functional
Eq. 106, gives the free energy functional of the system at the station-
ary G and ρ:

ΓDFT+DMFT[ρ,Gimp]

= − Tr ln

[
iωn + µ+

1

2m
∆− VKS(r) − Σ(r, iωn)

]

−

∫
dr [VKS(r) − Vext(r)] ρ(r) − Tr

[
ΣDMFT(r, iωn) G(r, iωn)

]

+ EH[ρ(r)] + EXC[ρ(r)] +ΦDMFT[Gimp] −ΦDC[n
imp
αβ ] ,

(114)

This shows that approximating the Luttinger-Ward part of the Baym-
Kadanoff functional with both the DFT and the DMFT approxima-
tions, motivates a combined DFT+DMFT scheme, which, if all sta-
tionarity conditions are fulfilled, gives the equilibrium free-energy of
the system.

The KS Green’s function of the system is given as:

GKS(k, iωn) =
1

iωn + µ− εKS
k

, (115)

which allows to rewrite the free energy of the system in Eq. 114:

ΓDFT+DMFT[ρ,Gimp] = ΓDFT[ρ]

+ Tr lnG−1
KS (k, iωn) + Tr lnG(r, iωn)

− Tr
[
ΣDMFT(r, iωn) G(r, iωn)

]

+ΦDMFT[Gimp] −ΦDC[n
imp
αβ ] .

(116)

Here, ΓDFT[ρ] is the free energy of the DFT system, which at T → 0 K
is EDFT[ρ]. The functional ΦDMFT is not known, but one can construct
the free energy functional for the DMFT impurity problem [126]:

Γimp[G
imp] = Tr ln G

imp
αβ (iωn) − Tr

[
Σ

imp
αβ (iωn)G

imp
αβ (iωn)

]

+ΦDMFT[Gimp] ,
(117)

and use the fact that the impurity problem has the same Luttinger-
Ward part as ΓDFT+DMFT. Therefore, inserting Eq. 117 into Eq. 116

gives:

ΓDFT+DMFT[ρ,Gimp] = ΓDFT[ρ]

+ Tr lnG−1
KS (k, iωn) + Tr lnG(r, iωn)

+ Γimp[G
imp] − Tr ln G

imp
αβ (iωn)

−ΦDC[n
imp
αβ ] .

(118)
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This form of the free energy can be computed, with an expression of
the free energy of the impurity [126]. Moreover, one approximates
the DC term with one of the DC schemes presented in section 3.7.6.
However, calculating these expressions including all entropy terms is
rather tedious and has only been achieved very recently [126].

In the context of this work I am interested in calculating the energet-
ics of structural distortions, hence the calculation of the DFT+DMFT
energy is necessary. To do so, I use the total energy, which corre-
sponds to the T → 0 K limit of the free energy. This is obtained by
replacing the DFT and impurity free energy by the corresponding to-
tal energy expressions, and by separating energy from entropy terms
[124]:

EDFT+DMFT = EDFT[ρ] −
1

Nk

∑
λ,~k

w~k ε
KS
λ,~k

fλ~k + Tr〈HKSG(k, iωn)〉

+ E
imp
int[G

imp
αβ (iωn)] − EDC[n

imp
αβ ] .

(119)

Here, εKS
λ,~k

are the KS energies in the correlated subspace, hence the
kinetic energy part of the KS system for C. The third term then adds
the kinetic energy of the correlated system. The interaction part of
DMFT, Eimp

int, is calculated using the Galitskii-Migdal formula [127]:

E
imp
int = 〈HU〉 =

1

2

∑
αβn

[
Σ

imp
αβ (iωn)G

imp
βα (iωn)

]
. (120)

In principle, one would assume that for the calculation of the ex-
pectation value of a two particle operator, such as ĤU, one needs
to evaluate a two particle Green’s function. However, as shown in
Ref. [127], for the expectation value of Hint a single particle Green’s
function is sufficient. Note, that this form is only exact for 0 K. There-
fore, whenever the impurity energy is calculated in the context of this
work I approximate the energy by the Galitskii-Migdal formula. The
corresponding derivation for the ground state can be found in the
Appendix A.

It should be mentioned that this form of the interaction energy is
only correct if the functional in Eq. 114 is fully stationary and the cal-
culation is performed at T = 0 K. Besides the temperature effects, this
is problematic, since the double-counting term is not known exactly,
which is necessary to fulfill the stationary conditions. Therefore, the
calculated energies are only approximative, and dependent on the
chosen double-counting correction scheme.

3.7.6 double-counting correction

The problem of double-counting inherent in DFT+DMFT, and also
in DFT+U (section 3.6), is a ill-defined problem. There exist sev-
eral expressions for EDC, where the two most prominent ones are the
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around mean-field (AMF) approximation [84], and the fully localized
limit (FLL) [128, 129]. In AMF one assumes that DFT corresponds to
a mean-field solution of the many body problem, in which the occu-
pation matrix of the local orbitals in the correlated subspace in DFT
are orbital independent, and one uses the orbital averaged occupation
matrix of the local orbitals as DC correction. However, the method led
to unsatisfactory results in many cases. Often the assumption made is
not correct, as it can be observed that the crystal field splittings, and
hence orbital dependent occupations, are usually quite well captured
in DFT.

This led to the formulation of the FLL method, which takes the
converse approach coming from the atomic limit. This results in an
energy correction of the following form:

EFLL
DC [nR] =

Uavg

2
nR(nR − 1) −

∑
σ

Javg

2
nσR(n

σ
R − 1) , (121)

where nR is the total occupation of the correlated orbitals of the
atomic site R, nσR the corresponding occupation of one of the spin
channels. The corresponding double-counting potential is then:

ΣDC[nR] =
δEFLL

DC
δnR

= Uavg

(
nR −

1

2

)
− Javg

(
nσR −

1

2

)
. (122)

A similar approach, which is closely related to the FLL approxi-
mation was derived by Ref. [15, 130], which I will label ”ANI”. It is
specifically formulated for systems with cubic symmetry containing
octahedral crystal field splittings, and is thus suitable for t2g or eg
correlated subspaces. The energy correction has the form:

EANI
DC [nR] =

1

2
Ūni(ni − 1) , (123)

where Ū is the averaged Coulomb interaction:

Ū =
U+ (M− 1)(U− 2J) + (M− 1)(U− 3J)

2M− 1
. (124)

Here, M is the number of orbitals, and U and J correspond to the
interaction parameters of the Hubbard-Kanamori interaction Hamil-
tonian in Eq. 52. Hence, this DC scheme is directly tailored for the
use with the Hubbard-Kanamori interaction [15]. The resulting DC
potential reads:

ΣDC[nR] = Ū(nR −
1

2
) . (125)

It is quite obvious that the FLL scheme and the ANI scheme are quite
similar, where in the latter the exchange part J is condensed into
the averaged interaction parameter Ū. In fact, it can be shown that
for M = 5 and half-filling both schemes give the same DC potential
[131].
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An interesting question arises when it comes to the evaluation of
the occupations nR in any of the DC schemes. These occupations
for the DC potential can either be directly calculated from the Wan-
nier functions constructed from DFT, or from the impurity Green’s
function Gimp calculated by the QMC solver within DMFT. It can be
misleading to assume that these quantities are always the same. In-
deed, when the system is in a charge-ordered phase, such as found,
e.g., in heterostructures or nickelates with multiple impurities, it of-
ten occurs that the occupations of the different atomic sites are quite
different in DMFT compared to the DFT result. Then, this results in
differences in the DC potential shift between the sites, compared to
the DC potential calculated with the DFT Wannier function occupa-
tions. One should note, that in a charge self-consistent DFT+DMFT
calculation the DFT obtained occupations lose their physical mean-
ing, since the DFT calculation is non-self-consistent. This question is
further elucidated in chapter 7.

3.7.7 DFT+DMFT in practice

Finally, I would like to condense the theory of the last sections to
sketch the working scheme for doing DFT+DMFT calculations. This
scheme is well known by now, and several different implementations
exist [132–134].

First, a normal self-consistent DFT calculation is performed for
the chosen crystal structure. From the band structure or the orbital-
resolved DOS, the correlated subspace C can be identified. As an
example, one can use as a correlated subspace the eg orbitals, which
are the frontier orbitals found around the Fermi level of all nickelate
compounds. Of course one could also identify all d-orbitals as corre-
lated subspace, or even all oxygen p- and d-orbitals.

Next, Wannier functions are constructed for these KS eigenstates,
as described in section 3.3. In principle, either of the two described
schemes, MLWFs or PLOS, can be applied. I mostly utilize the pro-
jection onto localized orbitals, which has been very recently imple-
mented in the VASP code [135]. In a first step, the projection of the KS
eigenstates onto localized orbitals |χ̃α(k)〉 is performed within VASP.
This is done for all d-states in the chosen energy window of C, as
described in Eq. 31. In the PAW framework, the resulting projection
operator, can be expressed as [90, 136]:

P̂αν(k) =
∑
i

〈χα|φα,n〉 〈p̃α,n|Ψ̃ν,k〉 , (126)

where φα,n is an all-electron partial wave, as introduced in Eq. 22,
with n labeling the radial quantum number explicitly, i.e. the PAW
channel. p̃α,n is a PAW projector, and Ψ̃ν,k is the pseudo-KS state.

One is left with the choice of the localized state χα, which defines
the basis of the correlated subspace. In the PAW formalism the partial
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waves are solutions to the radial Schrodinger equation for an atom
and thus, can in principle be used as convenient choice for the local-
ized states, i.e. |χα〉 ≡ |φα,n〉. Still, one needs to choose an appro-
priate augmentation channel n. To achieve an optimal projection, I
apply the scheme introduced in Ref. [135], choosing a linear combina-
tion of the augmentation channels, to maximize the overlap between
the projector and the KS state in a chosen energy window, which
matches that of the correlated subspace. Then, the projectors need to
be orthonormalized in the chosen energy window according to Eq. 33,
which is done within the TRIQS/DFTTools software package [137,
138].

I would like to emphasize the importance of the chosen energy
window W for the construction. If only the bands are chosen close
to the Fermi level, which have dominant d or f character, the pos-
sible hybridization to oxygen p orbitals shows itself as tails, extend-
ing the Wannier functions to the oxygen atoms. As an example the
constructed eg orbitals for LuNiO3 are shown in Fig. 12. On the
other hand, if one would include the oxygen p bands in the construc-
tion, and hence increasing the energy window, the resulting MLWFs
would be drastically more localized, appearing to be more atomic
like.

With the obtained projector functions P̂αν(k) it is now possible to
extract the local Green’s function from the full lattice Green’s function
(Eq. 113):

Gloc
αβ(iωn) =

∑
k

P̂αν(k)G(k, iωn)P̂
†
ν ′β(k)

=
∑

k

[
P̂αν(k)

(
iωn + µ− ĤKS(k) − ΣDMFT(k, iωn)

)
P̂
†
ν ′β(k)

]−1

=
∑

k

[
iωn + µ− P̂αν(k)ĤKS(k)P̂

†
ν ′β(k) − Σ

imp
αβ (iωn) + Σ

DC
αβ

]−1

=
∑

k

[
iωn + µ− εCαβ(k) − Σ

imp
αβ (iωn) + Σ

DC
αβ

]−1
.

(127)

Here, εCαβ(k) is diagonal containing the KS eigenvalues in the corre-
lated subspace. Importantly, εCαβ(k) contains the local orbital energy
levels εαβ, e.g. the crystal field splittings, which are k-independent.
Therefore, by performing the k summation, the crystal field splittings
enter DMFT directly:

εαβ =
1

Nk

∑
k

εCαβ(k) (128)

Note that in the first iteration Σimpαβ (iωn) is set to zero. Now, one can
construct the Weiss field G0αβ(iωn) from Gloc

αβ(iωn), which serves as
part of the input for the DMFT impurity solver. The handling of the
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Figure 19: Full DFT+DMFT scheme for practical calculations. Starting from
a DFT calculation (left) one identifies a correlated subspace, for
which Wannier functions are constructed (right). From here, hop-
ping parameters tαβ are extracted, e.g. the band dispersion
εCαβ(k). By adding ĤU one obtains a Hubbard like Hamiltonian,
which is solved self-consistently in the DMFT approximation (bot-
tom). From the resulting impurity Green’s function a new DFT
charge density is constructed. The correction ∆ρ is handed back
to DFT. From here, the cycle repeats itself by obtaining new KS
eigenstates.

Green’s function objects is done within the TRIQS software library
[138].

Next, a Hubbard like interaction Û is defined for the local Hamilto-
nian for each impurity problem. As already mentioned, the choice
of C influences the form of the Wannier orbitals, and hence also
how to construct a suitable interaction matrix Û, see section 3.4. The
Coulomb interaction tensor can be calculated using the cRPA method
as presented in section 3.5, or treated as a parameter, using either
the Slater, or the Hubbard-Kanamori parameterization. The resulting
impurity problem is then solved with the TRIQS/cthyb solver [122].
The DMFT cycle is iterated until self-consistency is reached. Here,
the difference in orbital occupations from the impurity Green’s func-
tion between two consecutive DMFT iterations can be used to check
whether self-consistency is reached. However, there exist no clear
metric in the community how self-consistency is quantified, and it
should always be communicated how convergence is defined.
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From the resulting Gimp(iωn) an updated charge density for DFT
is constructed:

ρ(r) =
∑

k

∑
ν6∈C

fνk 〈r|Ψν,k〉 〈Ψν,k|r〉

+
∑

k

∑
νν ′∈C

〈r|Ψν,k〉 ρνν ′(k) 〈Ψν ′,k|r〉 ,
(129)

where ρνν ′(k) is the up-folded impurity occupation. Per definition,
the change in the charge density due to ρνν ′(k) summed over k must
be zero, to ensure charge neutrality. The updated charge density is
now handed back to the DFT code (VASP), which in turn calculates
new KS eigenstates, and the circle is closed by calculating new pro-
jectors. Note that in practice the DFT calculation is performed in
a non self-consistent mode during the DFT+DMFT iterations. This
means, that the charge density is only updated from the DMFT out-
put. Once, the charge density does not change anymore convergence
between DFT and DMFT is reached.

This calculational scheme allows to perform fully charge self-
consistent DFT+DMFT calculations completely ab initio. The full
scheme is sketched in Fig. 19. It should be noted, that one can
also do a so-called one-shot (OS) calculation, by not updating the
charge density. This reduces the computational effort, and can be
justified for systems where the charge density is only insignificantly
influenced by the DMFT result. A detailed comparison between CSC
and OS calculations is performed in chapter 7.

From a technical point of view, TRIQS is a software library, which
means, that the actual program that controls the DFT code, performs
the DMFT self-consistency loop, handles the up- and down-folding,
and extracts physical observables, needs to be written.

The development of a DFT+DMFT software, that can also used by
other members of the community, was also part of my PhD thesis. I
worked closely together with the developers of the VASP / TRIQS
interface, namely Oleg E. Peil, Matle Schüler, and Gernot Kraberger.
The resulting code, which I used for the DFT+DMFT calculations,
was developed mainly by myself and partially by Sophie Beck, and is
openly available on github [139].

This concludes the description of the methodological background.
In what follows, I use the DFT++ methods presented here, to investi-
gate the rare-earth nickelates series.





4
E S TA B L I S H I N G T R E N D S O F T H E S E R I E S B Y U S I N G
D F T +U

In this chapter I present the work of the first part of my research, in
which I used DFT+U to establish structural trends across the nickelate
series. Moreover, I examined the influence of the choice of interaction
parameters, and different magnetic orderings on structural properties.
These calculations are important to establish a well-defined starting
point for the following DFT+DMFT calculations. As described in
chapter 1, I motivate the work by discussing already appeared lit-
erature, which is then followed by a summary of the project. This
includes also further results obtained, which are not in the published
research article.

The work was published as ”Interplay between breathing mode distor-
tion and magnetic order in rare-earth nickelates RNiO3 within DFT+U” in
Physical Review B, see Ref. [140]. Copyright (2017) by the Ameri-
can Physical Society. I performed all calculations, and wrote the first
draft, which has been then discussed, and corrected together with my
supervisor C. Ederer.

4.1 motivation

Motivated by the work of Balachandran & Rondinelli [63], I first ana-
lyzed present experimental data of nickelate compounds in terms of
their distortion mode amplitudes as described in section 2.6. From
this analysis it becomes evident, that the structural data from exper-
iment for the metallic high-temperature Pbnm phase of nickelates is
quite consistent and complete. Only experimental data for R = Gd,
and Sm is still missing. However, for the low-temperature P21/n
phase, the existing structural data, especially for the most relevant
breathing mode distortion amplitude, does not result in clear trends
across the series (see Fig. 9 of the presented paper [140]). Problemat-
ically, the experiments for the different compounds are performed at
different temperatures, partially in the paramagnetic, and partially in
the anti-ferromagnetic phase. Furthermore, temperature-dependent
structural parameters are rarely available. This makes it difficult to
recognize systematic trends across the series. Especially, data for R =

Dy [31], and Ho [28, 29] is puzzling, with breathing mode distortions
considerably larger than for the other compounds. Hence, it becomes
apparent that structural data from ab initio calculations are highly
valuable to better understand the properties of the nickelate series.

63
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ab initio studies employing DFT and its extensions to obtain struc-
tural parameters of the rare-earth nickelates are all relatively recent
[23, 24, 26, 34, 44, 49]. Before I started my research only the works
of Ref. [23, 26, 34] had been published. In Ref. [26] a DFT+U study
on NdNiO3 is performed, analyzing the effect of Uavg on the breath-
ing mode distortion. They find, that without +U, and magnetic order,
the high-temperature Pbnm structure of NdNiO3 is well captured.
When +U calculations are performed and magnetic ordering is in-
duced, a finite breathing mode amplitude is stabilized in relaxations,
capturing the low-temperature structure of NdNiO3. Moreover, they
show that the breathing mode distortion amplitude is quite sensitive
to Uavg, with increasing size for larger Uavg. At large values Uavg the
breathing mode distortion eventually destabilizes.

In Ref. [34] the influence of strain on bulk LuNiO3 is investigated.
In the study of Ref [23] also LuNiO3 is investigated with DFT+U
using Uavg = 5 eV and ferromagnetic order. Here, the electronic
structure is mainly investigated, comparing also to a possible occur-
ring Jahn-Teller distortion in DFT+U. From these findings it becomes
clear, that even though a description of the low-temperature phase
with DFT+U is possible, this was only shown for certain members of
the series and the possible influence of different magnetic orderings
is not yet clear. Also a detailed comparison with experiment across
the series has not been done.

These results were taken as starting point for my first research
project. Here, I am addressing the question of how well structural pa-
rameters are described across the nickelate series within DFT+U, both
for the high-temperature and the low-temperature phase. Further-
more, I investigated how the magnetic order couples to the breathing
mode distortion. Moreover, I analyzed critically the influence of the
interaction parameters in DFT+U. These calculations allow to better
understand the capabilities and limitations of DFT+U do describe the
complex phases in nickelates. This will in turn show for which prop-
erties more advanced, beyond static mean field methods, are needed.

4.2 project summary

We first performed calculations for the experimental structure of
LuNiO3 in the low-temperature P21/n phase [29]. Here, we analyze
the stability of different magnetic orderings as function of Uavg and
Javg. We show for the first time, that the AFM ordering observed in
experiment is only energetically favored in for small values of Uavg

(see Fig. 6 of Ref. [140]). The ferromagnetic ordering, which is not
observed in experiment, is favored for all other chosen interaction
parameter settings. Moreover, we energetically compare various
AFM orderings, and it is shown that the experimentally compatible
ordering, T -AFM, is favored for a wide parameter range compared
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to other AFM orderings. Therefore, we conclude that the magnetic
order is correctly captured by DFT calculations, if a rather small
value of Uavg 6 2 eV is used.

Next, the response upon changes to the breathing mode amplitude
R+1 is investigated (see Fig. 7 of Ref. [140]). Starting from the ex-
perimental structure of LuNiO3 [29] in the low-temperature phase,
the R+1 amplitude is varied manually to obtain the energetics of the
breathing mode distortion. Here, we observe that even though the
ferromagnetic ordering is lower in energy, the response E(R+1 ) is con-
siderably increased in the AFM calculations. Moreover, we find that
the NiLB and NiSB magnetic moments differ considerably more in the
AFM calculations. The minimum of E(R+1 ) is found to be in best
agreement with the experimental value of the R+1 amplitude with the
ferromagnetic ordering by using Uavg = 5 eV. When performing AFM
calculations, Uavg = 2 eV gives best agreement to the experimental
R+1 amplitude, where for Uavg = 5 eV the AFM calculation overesti-
mates the R+1 amplitude. Therefore, we find that the breathing mode
amplitude is strongly influenced by the choice of magnetic order, and
with respect to experiment the small Uavg = 2 eV value is preferable.

Next, non-magnetic relaxations are performed to address the
question how well non-magnetic DFT calculations can reproduce
the structural trends found in experiment for the high-temperature
Pbnm phase. Therefore, structural relaxations for the compounds
with R =Lu, Er, Ho, Y, Dy, Gd, Sm, Nd, Pr, and La are performed (see
Fig. 8 of Ref. [140]). We find very good agreement with experimental
data for all distortion mode amplitudes. As expected, the degree of
octahedral rotation decreases continuously across the series from Lu
to La.

Next, we perform the same calculations with magnetic ordering
and +U correction to describe the breathing mode distortion trends
across the series (see Fig. 9 of Ref. [140]). Here, we find that the R+1
amplitude decreases across the series. However, the size of the ampli-
tude is crucially influenced by the choice of Uavg and the magnetic or-
dering. The AFM ordering gives overall larger R+1 amplitudes. From
the results, an overall good description of structural properties for
all compounds of the series can be found using a small Uavg = 2 eV,
and Javg = 1 eV. In principle, one could also apply different values of
Uavg across the series, but at this point we limited the calculations to
a single value for all compounds.

Finally, the size of the R+1 amplitude as function Uavg is analyzed
for R = Lu, and Pr, comparing the two end members of the series
that exhibit a stable breathing mode distortion at low-temperatures
(see Fig. 10 of Ref. [140]). From the results it can be observed that
in LuNiO3 the R+1 mode is more sensitive to Uavg, with overall
larger values. Furthermore, we find that for very large Uavg values
the breathing mode distortion becomes unstable, and the system
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becomes again metallic, relaxing to Pbnm symmetry, which was also
found in Ref. [26]. We observe, that for large Uavg > 7 eV values, the
eg states are pushed lower in energy than the oxygen p states. At
this point the breathing mode distortion is destabilized.

We also find that the energy difference between the ferromagnetic
and antiferromagnetic state is larger in PrNiO3 compared to LuNiO3.
Therefore, the AFM ordering is more stable for larger R site cations.
Interestingly, the AFM ordering, including a small but yet finite
breathing mode distortion, can be stabilized also for U = 0 eV.

4.3 conclusion

The results presented in this work draw a clear picture of the predic-
tive capabilities of the DFT+U approach. We find, that non-magnetic
DFT calculations allow very good structural predictions for the high-
temperature Pbnm phase of the whole nickelate series. This allows to
use these structures as starting point for further DFT+DMFT studies.
Moreover, we show that for a small Uavg = 2 eV, and Javg = 1 eV the
breathing mode distortion can be qualitatively correctly described.
For LuNiO3 even on a quantitative level, but the decrease of the
breathing mode distortion is smaller compared to experimental data.
A similar trend is obtained using the ferromagnetic ordering using
a larger Uavg value. However, with respect to the correct magnetic
order, we suggest the use of a smaller Uavg = 2 eV value, which is in
contrast to what was suggested in Ref. [26]. Additionally, the deficien-
cies in the present experimental data are revealed, where especially
temperature dependent structural data is missing.

We also demonstrate that the stability of the ferromagnetic state
seems to be overestimated in DFT+U, especially for the smaller rare-
earth ions, and for larger Uavg values. Moreover, the different mag-
netic orderings result in quite different structural parameters, and the
influence of Uavg, and Javg differs in the different magnetic orderings.
This is also important in view of results of Ref. [24], where it is found
for Uavg = 5 eV and ferromagnetic order, that DFT+U overestimates
the breathing mode distortion. We show that other interaction param-
eters used with the correct magnetic order provide more satisfactory
results.

In the work of Ref. [44] and [49], which appeared at a similar time,
some of these questions are also addressed. Here, DFT+U calcula-
tions have been performed for several compounds of the series, po-
tentially explaining trends of structural parameters across the series,
and mechanisms of the transition itself. However, none of these stud-
ies contains a complete, systematic study of structural parameters
across the whole series. That said, these works are highly valuable to
explain certain aspects of the physics found in nickelates. In Ref. [44]
also trends across the series are calculated with DFT+U in agreement
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with my findings. Here, the authors focus on a single value of interac-
tion parameters. In Ref. [49] the mechanism of the coupled transition
itself is investigated by using DFT+U. Thereby, also structural trends
are obtained, which agree well with my results.

4.4 peer reviewed work
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We present a systematic density functional theory (DFT) plus Hubbard U study of structural trends and the
stability of different magnetically ordered states across the rare-earth nickelate series, RNiO3, with R from Lu
to La. In particular, we investigate how the magnetic order, the change of the rare-earth ion, and the Hubbard
interaction U are affecting the bond-length disproportionation between the nickel sites. Our results show that
structural parameters can be obtained that are in very good agreement with present experimental data and that
DFT+U is in principle able to capture the most important structural trends across the nickelate series. However, the
amplitude of the bond-length disproportionation depends very strongly on the specific value used for the Hubbard
U parameter and also on the type of magnetic order imposed in the calculation. Regarding the relative stability of
different magnetic orderings, a realistic antiferromagnetic order, consistent with the experimental observations,
is favored for small U values and becomes more and more favorable compared to the ferromagnetic state towards
the end of the series (i.e., towards R = Pr). Nevertheless, it seems that the stability of the ferromagnetic state is
generally overestimated within the DFT+U calculations. Our work provides a profound starting point for more
detailed experimental investigations and also for future studies using more advanced computational techniques
such as, e.g., DFT combined with dynamical mean-field theory.

DOI: 10.1103/PhysRevB.96.165130

I. INTRODUCTION

Materials that are located at the crossover between itin-
erant and localized electronic behavior often exhibit rich
phase diagrams, including different forms of electronic order
(charge, orbital, magnetic) and metal-insulator transitions
[1,2]. Moreover, exotic properties such as non-Fermi liquid be-
havior [3], high-temperature superconductivity [4], or colossal
magnetoresistance [5] can typically be found in this regime,
and in many cases a strong coupling between electronic and
lattice degrees of freedom, such as, e.g., the Jahn-Teller effect
[5,6], can be observed.

An interesting example to study the crossover between
localized and itinerant electronic behavior is found in the series
of perovskite-structure rare-earth nickelates, RNiO3, where R
can be any rare-earth ion ranging from Lu to La [7,8]. All mem-
bers of this series (except LaNiO3) exhibit a metal-insulator
transition (MIT) as a function of temperature, which is accom-
panied by a structural distortion that lowers the space group
symmetry of the crystal structure from orthorhombic Pbnm

in the high temperature metallic phase to monoclinic P 21/n

in the low temperature insulating phase [9–12]. In addition, all
systems (except LaNiO3) order antiferromagnetically at low
temperatures [7,13]. The corresponding phase diagram (based
on experimental data taken from Refs. [7,10–12,14–16])
is depicted in Fig. 1, where the temperature dependence of the
phase boundaries is shown as a function of the average 〈Ni-O-
Ni〉 bond angle. It can be seen that the transition temperature
for the MIT, TMIT, decreases monotonously with increasing
〈Ni-O-Ni〉 bond angle, whereas the antiferromagnetic (AFM)
transition temperature, TN, increases up to R = Sm but then
becomes identical to TMIT. Thus, for R from Lu to Sm, the

*Corresponding author: alexander.hampel@mat.ethz.ch
†Corresponding author: claude.ederer@mat.ethz.ch

AFM transition occurs at lower temperatures than the MIT,
whereas for R = Nd and Pr, TN coincides with TMIT. In
contrast, LaNiO3 is a paramagnetic metal at all temperatures
and exhibits a slightly different, rhombohedrally-distorted
perovskite structure with R3̄c symmetry [17].

The rare-earth nickelates allow us to study the transition
from itinerant paramagnetic behavior to a localized AFM state
in a quasicontinuous fashion using simple stoichiometric bulk
systems, i.e., without the need to introduce dopants or substitu-
tional atoms. Moreover, the nickelates are also highly tunable
by pressure, strain, electromagnetic fields, or doping, and
are potentially multiferroic (see, e.g., Refs. [8,19,20]). Con-
sequently, the perovskite rare-earth nickelates have received
considerable attention during recent decades [7,8,21,22].

The strong coupling between electronic and structural
degrees of freedom in the rare-earth nickelates is apparent
from the observation that the MIT is accompanied by a
structural transition from Pbnm to P 21/n. Hereby, formerly
symmetry-equivalent NiO6 octahedra become inequivalent.
One half of the NiO6 octahedra expand their volumes while
the other half reduce their volumes by changing the Ni-O
bond lengths accordingly. This results in a three-dimensional
checkerboardlike arrangement of alternating long bond (LB)
and short bond (SB) octahedra [11,12]. The P 21/n structure
of LuNiO3 below the MIT [12] is depicted in Fig. 2. The
checkerboardlike arrangement of LB and SB octahedra around
the Ni cations within a [001]-type plane (in pseudocubic
notation) is also schematically shown in Fig. 3.

The exact mechanism that drives this unusual MIT is still
under debate. In the simplest picture, the nominal Ni3+ cations
are split into Ni2+ and Ni4+, corresponding to LB and SB
octahedra, respectively. Such charge disproportionation has
been suggested as alternative to a Jahn-Teller distortion for
cases where the Hund’s coupling J overcomes the on-site
Coulomb repulsion U [24]. This can occur in systems such

2469-9950/2017/96(16)/165130(12) 165130-1 ©2017 American Physical Society
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FIG. 1. Phase diagram of the rare-earth nickelates. Transition
temperatures are shown as a function of the average 〈Ni-O-Ni〉 bond
angle. Three different phases can be distinguished: (i) paramagnetic
metal with Pbnm symmetry (red), (ii) paramagnetic insulator with
P 21/n symmetry (green), and (iii) antiferromagnetic (AFM) insulator
with P 21/n symmetry (blue) [18].

as the nickelates, with a small or negative charge transfer
energy and strong hybridization between Ni eg orbitals and
O p states, resulting in strong screening of the local Coulomb
repulsion and thus a rather small effective U [25]. Indeed,
no Jahn-Teller distortion has been observed in the nickelates
[26], even though the nominal t6

2ge
1
g electron configuration of

the Ni3+ cations should in principle be susceptible to this type
of distortion. However, it has also been questioned whether a
picture of charge disproportionation on the Ni sites is really
adequate [27,28]. Instead, it was shown that a description in
terms of ligand holes, delocalized over the O octahedra, can
account for the observed bond disproportionation without the
need for charge transfer between the Ni sites [27,28].

Very recently, Varignon et al. suggested that both pictures
could be consolidated through the use of Wannier functions
centered at the Ni sites, and thus representing the formal
valence states of the Ni cations, but also with significant orbital
weight on the surrounding O ligands [29]. Indeed, the minimal
low energy description employed by Subedi et al. is based
on such Ni-centered eg Wannier functions that are spatially
more extended than simple atomic orbitals [25]. We note that
all proposed mechanisms have in common that they result
in a strong modulation of the magnetic moment on the two
inequivalent Ni sites, in the limiting case with a spin S = 1 on
the LB site and S = 0 on the SB site.

Apart from the exact mechanism underlying the MIT, the
magnetic order observed in the nickelates is also not yet fully
resolved and poses numerous open questions. All systems from
R = Lu to Pr exhibit the same antiferromagnetic wave vector
k = [ 1

4 , 1
4 , 1

4 ] · π
ac

relative to the underlying simple cubic per-
ovskite structure (with approximate cubic lattice constant ac)
[13,17,30]. Furthermore, it is known from experiment that
the magnetic moments vary between the LB and SB Ni
sites [15,31]. However, the exact magnetic structure is not
yet established, due to the lack of sufficiently large single
crystals. There are several possible arrangements that cannot
be distinguished within the experimental resolution. As a

FIG. 2. Experimentally observed P 21/n crystal structure of
LuNiO3 at 60 K below the MIT [12]. LB octahedra around the Ni
sites are shaded in purple, SB octahedra are shaded in green, black
spheres represent Lu, and red spheres represent O. The volumes of the
bond-disproportionated NiO6 octahedra differ by ∼12%. The crystal
structure is visualized using VESTA [23].

result, it is still under debate whether the magnetic order
is collinear or not. Moreover, below ∼10 K, the magnetic
moments of the rare-earth ions also order. However, while
Ref. [31] reports a different magnetic periodicity of the rare
earth moments relative to the Ni moments in HoNiO3, Ref. [15]
suggests the same periodicity of Ni and Dy moments in
DyNiO3.

In order to gain further insights into the underlying mech-
anisms, and also to enable quantitative predictions about the
physical properties of rare-earth nickelates, a first principles-
based computational approach is very desirable. However,
an accurate quantitative description of the complex interplay
between the various factors that are believed to control the
MIT in these materials, i.e., structural properties, electronic
correlation effects, and hybridization between the Ni 3d states
and the surrounding O ligands, is rather challenging.

Several previous studies have reported that both structural
as well as electronic and magnetic properties of rare-earth
nickelates can, at least to a certain extent, be described
within the “plus Hubbard U” extension of density functional
theory (DFT) [19,27,29,32,33]. Specifically, the correct bond-
disproportionated crystal structure as well as the complex
AFM order, compatible with experimental observations, can be
obtained from such calculations. On the other hand, the small
energy differences between the different possible magnetic
structures are very difficult to resolve [32], and in most
cases the ferromagnetic (FM) configuration appears to be
energetically more favorable [27,33]. Moreover, it has recently
been stated that DFT+U overestimates the tendency for bond
disproportionation and that the more sophisticated DFT plus
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SB Ni octahedra

LB Ni octahedra

FIG. 3. Schematic depiction of a [001]-type layer of bond-
disproportionated NiO6 octahedra. Additionally, one of the experi-
mentally suggested magnetic orderings (T -AFM) [7,13] is shown.
The magnetic order is represented by short and long arrows that
represent small respectively large magnetic moments of the two
symmetry-inequivalent Ni cations.

dynamical mean-field theory (DMFT) (see, e.g., Ref. [34]) is
required for a more accurate description [35].

However, all of these previous studies were either focused
on only one (or few) specific member(s) of the series or have
used specific values for the Hubbard interaction parameter U ,
ranging from U = 2 eV to U = 8 eV. It is therefore difficult to
draw general conclusions regarding the predictive capabilities
of the DFT+U approach for the whole series of rare-earth
nickelates. In a very recent study, Varignon et al. have
shown that for a small value of U = 2 eV the complex AFM
configurations become energetically more favorable than FM
order and that simultaneously good structural parameters are
obtained for a large part of the series [29]. However, Ref. [29]
has excluded the members of the series with the smallest rare
earth cations (R = Lu to Ho), and the U dependence of the
structural, electronic, and magnetic properties, as well as the
effect of magnetic order on the bond disproportionation, has
not been discussed.

Here, we present a systematic study of the whole nickelate
series with rare-earth ions Lu, Er, Ho, Y, Dy, Gd, Sm, Nd,
Pr, and La, using the DFT+U formalism. In particular we
address the interplay between the strength of the Hubbard U ,
different magnetic orders, the size of the rare-earth cation R,
and the resulting structural parameters. Our results thus fill
an important gap and further clarify the capabilities of the
DFT+U approach for quantitative predictions of the physical
properties of rare-earth nickelates. Our work can also serve
as a starting point for further studies using more advanced
electronic structure methods such as, e.g., DFT+DMFT.

Our findings show that the amplitude of the bond-
disproportionation distortion is strongly influenced by the
size of U and also by the specific magnetic order but that
in principle good agreement with available experimental data
can be obtained for U ≈ 2 eV. Moreover, the trends across
the series agree well with experiment. Furthermore, our

calculations show that a magnetic order with the experi-
mentally observed wave vector is energetically favored for
relatively small U values (also around U ≈ 2 eV) and that
the energy gain relative to ferromagnetic order increases from
Lu to Pr, consistent with the observed trend of the magnetic
ordering temperature.

The remainder of this paper is organized as follows. First,
in Sec. II, we introduce the symmetry-based decomposition of
distortion modes and discuss its application to the experimental
structure of LuNiO3 [12]. In Sec. III we then briefly describe
our computational setup and list all relevant parameters used in
the DFT+U calculations. The presentation of our main results
is divided into two parts. We start in Sec. IV by discussing
calculations for LuNiO3 based on the experimental structure
taken from Ref. [12]. Hereby, we investigate the stability of
different magnetic phases for different interaction parameters
U and J without relaxing the structural degrees of freedom.
We then start to incorporate structural effects by varying the
amplitude of the breathing mode distortion while keeping all
other structural parameters fixed to the experimental values.
Finally, our results of the full structural relaxations across the
nickelate series are presented in Sec. V, and in Sec. VI we
summarize our main results and discuss their implications.

II. DESCRIPTION OF STRUCTURAL DISTORTIONS
USING SYMMETRY-BASED MODE DECOMPOSITION

For a systematic and quantitative discussion of the various
structural distortions that are present in the Pbnm and
P 21/n crystal structures of the rare-earth nickelates, we
use a symmetry-based mode decomposition as described by
Perez-Mato et al. [36]. Thereby, the atomic positions within
a distorted crystal structure (low-symmetry structure), �r dist

i ,
are written in terms of the positions in a corresponding
nondistorted reference structure (high-symmetry structure),
�r 0
i , plus a certain number of independent distortions described

by orthonormal displacement vectors, �dim, and corresponding
amplitudes, Am:

�r dist
i = �r 0

i +
∑

m

Am
�dim . (1)

The amplitudes Am can thus be viewed as distinct order
parameters for the different structural distortions present in the
low symmetry structure. This allows us to clearly identify the
most relevant structural degrees of freedom, and, in particular
for the case of the rare-earth nickelates, to systematically
distinguish between the various octahedral tilt distortions and
the breathing mode related to the MIT.

The mode displacement vectors �dim are constructed such
that each mode m has a well-defined symmetry, i.e., it
corresponds to a specific irreducible representation (irrep) of
the high symmetry space group. Here, we use the ideal cubic
perovskite structure as high symmetry reference structure.
Thus, all distortion modes are labeled according to the irreps of
space group Pm3m. Note that an irrep can involve distortion
vectors with multiple degrees of freedom, e.g., corresponding
to displacement patterns of different inequivalent atoms. All
distortion modes corresponding to the same irrep can then
be grouped together to define a total mode amplitude of that
symmetry.
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FIG. 4. Depiction of the three most important distortion modes
found in nickelate compounds. NiO6 octahedra are shown in gray.
The R+

4 Pbnm mode that corresponds to an out-of-phase rotation of
NiO6 octahedra around the orthorhombic b axis, the M+

3 Pbnm mode
that corresponds to an in-phase rotation of NiO6 octahedra around the
c axis, and the R+

1 P 21/n mode that corresponds exactly to the bond
disproportionation of NiO6 octahedra in the low temperature phase
of the nickelates.

Balachandran and Rondinelli have presented such a
symmetry-based mode decomposition for the low temperature
P 21/n structure of various nickelates, based on available
experimental data [37]. Eight different irreps of the high
symmetry Pm3̄m space group can occur within P 21/n. Five of
them, corresponding to symmetry labels R+

4 , M+
3 , X+

5 , R+
5 , and

M+
2 , are already allowed within the high-temperature Pbnm

structure. The first two of these, R+
4 and M+

3 , correspond
to out-of-phase and in-phase tilts of the oxygen octahedra,
and, as shown by Balachandran and Rondinelli [37], only
the distortions corresponding to R+

4 , M+
3 , and X+

5 have
consistently non-negligible mode amplitudes throughout the
nickelate series. In contrast, the amplitude of the M+

2 mode,
which corresponds to a staggered Jahn-Teller distortion of the
oxygen octahedra that is found, e.g., in many manganites, is
negligibly small.

The low-temperature P 21/n structure allows for three
additional irreps, labeled R+

1 , R+
3 , and M+

5 . Here, only the
R+

1 mode, which describes the breathing mode distortion
with alternating LB and SB octahedra, has a non-negligible
amplitude [38]. The three most relevant distortion modes found
in the rare-earth nickelates, i.e., the octahedral tilt modes R+

4
and M+

3 (Pbnm symmetry), as well as the R+
1 breathing mode

(within P 21/n) are visualized in Fig. 4.
In Table I, we list the distortion mode amplitudes for

LuNiO3 at the three different temperatures measured in
Refs. [11,12]. We use ISODISTORT [39] for the calculation
of the distortion mode amplitudes. All mode amplitudes are
given in Å and are normalized to the cubic high-symmetry
parent structure (not to the 20 atom Pbnm unit cell). Note
that the data at room temperature is identical (except for the
different normalization) to the corresponding data in the paper
of Balachandran and Rondinelli [37]. Table I also contains

A-type AFM E-type AFM T -type AFM

FIG. 5. Schematic depiction of the three different antiferromag-
netic orderings that are investigated in this paper. White spheres
correspond to spin-up and black spheres to spin-down moments on
Ni sites. The special ordering along the [111] pseudocubic crystal
axis is labeled T -AFM[32]. For the sake of simplicity we dropped all
rare-earth atoms and oxygen atoms.

data from our structural relaxations which will be discussed in
Sec. V.

If one compares the experimental data from Ref. [12]
obtained approximately 60 K above and below the MIT (first
and second row of Table I), one can see that the largest
Pbnm mode amplitude, i.e., R+

4 , does almost not change
during the MIT. The R+

4 amplitude is 0.811 Å within the
high temperature Pbnm phase and 0.821 Å within the low-
temperature P 21/n phase. This value corresponds to maximal
displacements of individual oxygen atoms by 0.58 Å. Similar
behavior can be observed for the other two main modes, M+

3
and X+

5 . Finally, the bond-disproportionation mode in the
low-temperature phase, R+

1 , exhibits an amplitude of 0.077 Å,
which corresponds to a displacement of each oxygen atom by
0.044 Å.

III. COMPUTATIONAL METHOD

DFT calculations are performed using the projector aug-
mented wave (PAW) method [40] implemented in the “Vienna
ab initio simulation package” (VASP) [41–43]. We use
the generalized gradient approximation (GGA) in the form
proposed by Perdew, Burke, and Ernzerhof (PBE) [44] as
exchange correlation functional. For an improved treatment of
the strong local electron-electron interaction between the Ni 3d

electrons, we add an effective on-site Coulomb interaction U

and Hund’s rule exchange interaction J in the form discussed
by Liechtenstein et al. [45]. The values for U and J are varied
throughout this paper as described in Secs. IV and V.

For Ni, the 3p semicore states are included as valence
electrons in the PAW potential. For the rare-earth atoms, we
use PAW potentials corresponding to a 3+ valence state with f

electrons frozen into the core and, depending on the rare-earth
cation, the corresponding 5p and 5s states are also included
as valence electrons. Thus, we neglect the ordering of the
rare-earth f magnetic moments, which only occurs at very
low temperatures [15,31]. The kinetic energy cutoff for the
plane-wave basis is set to 550 eV.

We consider four different types of magnetic order: FM
and three different types of AFM order, which are depicted
in Fig. 5. The rather common A-type AFM order (A-AFM)
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corresponds to an alternating (↑↓) alignment of Ni magnetic
moments along the Cartesian z direction and parallel alignment
perpendicular to z. The E-type AFM order (E-AFM) corre-
sponds to an ↑↑↓↓ alignment along both x and y directions
and alternating moments, i.e., ↑↓↑↓, along the z direction. The
T -type AFM order, which corresponds to the experimentally
observed AFM wave vector, k = [ 1

4 , 1
4 , 1

4 ] · π
ac

, exhibits an
↑↑↓↓ pattern along all three Cartesian directions. As shown
by Giovannetti et al. [32] using DFT+U calculations, this
T -type AFM order is energetically nearly indistinguishable
from the other two magnetic order patterns (one collinear
and one noncollinear) that are compatible with the experi-
mental neutron data. In the following, we therefore use the
(relatively simple) T -AFM structure as representative for the
experimentally observed magnetic order. Both T -AFM and
bond disproportionation are also illustrated in Fig. 3 within a
[001]-type layer.

For the examination of the different magnetic order patterns,
different unit cell sizes are used. For the FM and A-AFM
order, we use a 20 atom unit cell consisting of

√
2 × √

2 × 2
(pseudo)cubic perovskite units. This cell also corresponds to
the primitive crystallographic unit cells for both the Pbnm

and P 21/n structures. For the E-AFM magnetic structure,
this unit cell is doubled along the a direction (40 atoms), and
for the special T -AFM order the cell is doubled once more,
this time along the c direction (80 atoms). A k-point mesh
with 10 × 10 × 8 grid points along the three reciprocal lattice
directions is used for the 20 atom Pbnm and P 21/n unit cells
to perform Brillouin zone integrations. For the 40 atom E-
AFM cell we use an appropriately reduced 5 × 10 × 8 k-point
grid and for the 80 atom T -AFM cell a 5 × 10 × 4 grid. For
accurate structural relaxations, the forces acting on all atoms
are minimized until all force components are smaller than 10−4

eV/Å. Local magnetic moments are obtained by integrating
the spin density within the PAW spheres (LORBIT = 11).

IV. CALCULATIONS FOR LuNiO3 BASED ON THE
EXPERIMENTALLY OBSERVED STRUCTURE

We start by performing calculations for LuNiO3 in the
experimentally determined P 21/n structure at T = 533 K [12]
and analyze the influence of the Hubbard and Hund’s rule
interaction parameters, U and J , on the relative stability of
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FIG. 6. Effect of U (top) and J (bottom) on the energy differences
between different magnetically ordered states, calculated for LuNiO3

using the experimentally observed P 21/n structure. For each U and
J , the energies of three different AFM states are given relative to
the FM state, normalized to a unit cell containing four Ni sites. The
T -AFM order (magenta squares) is energetically favored only for
rather small U values. Increasing J (bottom) also favors the FM
state.

different magnetic configurations. We consider the FM case as
well as three different AFM configurations (A-AFM, E-AFM,
and T -AFM, see Sec. III for more details). Figure 6 shows
the calculated total energies of the three AFM configurations
relative to the FM state. All energies are normalized to
a 20 atom unit cell. A negative value indicates that the
corresponding AFM state is lower in energy, whereas a positive
value indicates that the FM state is lower in energy.

TABLE I. Mode decomposition of several structures obtained for LuNiO3. The top three lines are based on available experimental data
corresponding to different temperatures: T = 643 K (Pbnm) [12], T = 533 K (P 21/n) [12], and T = 295 K (P 21/n) [11]. The bottom five
lines correspond to results of our structural relaxations for different magnetic orders (NM: nonmagnetic, FM: ferromagnetic, T -AFM: T -type
antiferromagnetic) and using different values for the parameters U and J .

Pbnm modes additional P 21/n modes

R+
4 R+

5 X+
5 M+

2 M+
3 R+

1 R+
3 M+

5

expt. 643 K (Pbnm) 0.811 0.117 0.449 0.018 0.626
expt. 533 K (P 21/n) 0.821 0.124 0.452 0.025 0.617 0.077 0.001 0.013
expt. 295 K (P 21/n) 0.826 0.124 0.454 0.031 0.616 0.077 0.002 0.007
NM U = 0, J = 0 eV 0.845 0.129 0.487 0.023 0.625
FM U = 5, J = 1 eV 0.875 0.126 0.476 0.027 0.623 0.094 0.006 0.023
T -AFM U = 0, J = 0 eV 0.861 0.130 0.480 0.026 0.622 0.037 0.001 0.002
T -AFM U = 2, J = 1 eV 0.870 0.129 0.480 0.034 0.625 0.081 0.008 0.019
T -AFM U = 5, J = 1 eV 0.879 0.124 0.475 0.037 0.623 0.124 0.009 0.029
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FIG. 7. Total energy (top) and Ni magnetic moments (bottom) as a function of the R+
1 mode amplitude for different magnetic states and U

values (left: U = 2 eV, right: U = 5 eV) and J = 1 eV. All other structural parameters (apart from the R+
1 mode) are fixed to the experimental

P 21/n structure, and the R+
1 mode amplitude in the experimental structure is marked by the vertical dashed lines. In the bottom panels, the

upper (lower) curves correspond to the NiLB (NiSB) site.

The top panel of Fig. 6 depicts the case with J = 0. It can
be seen that for small values of U , the T -AFM and E-AFM
states have very similar energies, and for U < 2 eV, both are
lower in energy than the FM state. For values U > 2 eV the
FM state is most favorable, while the simple A-AFM state is
higher in energy over the whole range of U values. We also
note that for U = 0 we were not able to stabilize the T -AFM
state within our calculations.

The bottom panel of Fig. 6 shows the effect of varying the
Hund’s coupling parameter J for fixed U = 5 eV. Consistent
with the results shown in the top panel, at this U value the
FM state is favored for J = 0. If J is increased, the FM state
becomes even more favorable compared to all three AFM
orderings. The same trend can be observed for other values of
U (not shown). Increasing J lowers the energy of the FM state
relative to the various AFM orderings.

It appears that the T -AFM state, i.e., the state that
is compatible with the experimental observations, is only
favorable for small values of U and J . Furthermore, within this
range of U and J , the energy difference between T -AFM and
the closely related E-AFM state is rather small. On increasing
both U and J , the FM states becomes lower in energy than all
considered AFM orderings.

We note that nonmagnetic DFT calculations with U = 0
for LuNiO3 in both the low temperature P 21/n and the high
temperature Pbnm structures (taken from Ref. [12]) result in
a metallic system. By adding the local Coulomb interaction
U we are able to stabilize the T -AFM order, which then
results in an insulating ground state. FM order also results
in an insulating ground state for U > 0 eV. Thus, magnetic
order and a small value of U (around 1 eV or larger) is needed
to obtain an insulating ground state in the experimental low
temperature structure.

To investigate how sensitive the energy differences between
different magnetic states depend on small variations in the
crystal structure, in particular the R+

1 breathing mode, we
now use the mode decomposition of the experimental P 21/n

structure and tune the amplitude of the R+
1 mode while

keeping all other structural degrees of freedom fixed to their
experimental values. The result is shown in Fig. 7, which shows
the total energy (top) and the magnetic moments on the Ni sites
(bottom) as a function of the R+

1 mode amplitude for different
magnetic orderings and two different U values (U = 2 eV on
the left and U = 5 eV on the right) together with J = 1 eV.
In each case, the energy exhibits a minimum at a finite value
of the R+

1 amplitude, which indicates the value predicted by
DFT+U for a given magnetic order (with all other structural
parameters fixed to experimental values). The black vertical
dashed line indicates the R+

1 amplitude in the experimental
structure, R+

1 = 0.077 Å. Note that the experimental structure
was determined in the paramagnetic insulating phase.

One observes that the energy of the FM state (green
triangles) is always lower than that of the AFM states (magenta
squares and blue circles). However, the energy difference
between FM and AFM order is smaller for U = 2 eV than for
U = 5 eV, consistent with the results shown in Fig. 6 (note that
the top panel in Fig. 6 corresponds to J = 0, whereas Fig. 7
is obtained using J = 1 eV, and that increasing J favors the
FM state). Furthermore, it is apparent that the AFM states
couple much stronger to the R+

1 breathing mode than the FM
state, with a much deeper energy minimum relative to zero
mode amplitude and a position of the energy minimum at
significantly larger R+

1 amplitude.
The predicted mode amplitude for T -AFM and U = 2 eV

(R+
1 = 0.076 Å) agrees very well with the experimental value,

whereas the FM state results in an amplitude (R+
1 = 0.050 Å)
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that is much smaller than what is observed experimentally.
Increasing U increases the predicted mode amplitudes for both
FM and AFM order, and for U = 5 eV the amplitude obtained
for FM order (R+

1 = 0.082 Å) is close to the experimental
value, whereas both AFM states exhibit significantly larger
amplitudes (R+

1 ≈ 0.11 Å). There is only a small difference
between the two different AFM orderings, and in particular the
positions of the energy minima are very similar. For U = 2 eV,
T -AFM is slightly lower in energy than A-AFM, whereas for
U = 5 eV, A-AFM is lower.

The bottom panels of Fig. 7 show the local magnetic
moments of the Ni cations for the different magnetic orderings
as a function of the R+

1 amplitude. For U = 5 eV, all moments
have the same value of ∼1.1 μB at zero R+

1 amplitude. In
contrast, for U = 2 eV, the SB and LB moments differ already
for R+

1 = 0 in the two AFM cases, while they are both equal
to ∼0.9 μB in the FM case. It thus appears that for U = 2 eV,
the magnetic moments are much more susceptible to the small
symmetry breaking resulting from the presence (albeit with
very small amplitude) of the two other P 21/n modes, i.e., R+

3
and M+

5 . We note that if these additional modes as well as the
small monoclinic tilt of the unit cell are also removed, i.e., if the
underlying crystal structure has exact Pbnm symmetry, then
the difference between the LB and SB moments also vanishes
in the case of A-AFM order. However, this is not the case for
the T -AFM ordering, since T -AFM order by itself breaks the
Pbnm symmetry, leading to two symmetry-inequivalent Ni
sites.

With increasing R+
1 amplitude, the moments of the SB sites

decrease and the moments of the LB sites increase. Thereby,
the size of the NiLB moments is rather independent of the
magnetic order and seems to converge to a value of around
1.4 μB (1.6 μB) for U = 2 eV (U = 5 eV). In contrast, the
decrease of the NiSB moments depends more strongly on the
magnetic order. For T -AFM order, the NiSB moments vanish
completely for R+

1 amplitudes larger than R+
1 = 0.04 Å (R+

1 =
0.06 Å) for U = 2 eV (U = 5 eV). This means that, for both
U values, the NiSB moments in the T -AFM state are zero at the
experimental R+

1 amplitude. For the A-AFM and FM cases,
the SB moments seem to only asymptotically converge to zero,
with the residual moment in the FM case about twice as large
as in the A-AFM case. These results are consistent with earlier
studies that also found nonvanishing magnetic moments on the
SB sites for LuNiO3 with FM order [27] and vanishing NiSB

moments for NdNiO3 with T -AFM order (for not too large
U ) [33].

We note that the behavior of the SB moments for larger
R+

1 amplitudes is consistent with a picture where the NiSB

moment is simply induced by the effective field created by the
magnetic moments on the neighboring NiLB sites. In the FM
case, each SB site is surrounded by six LB nearest neighbors
with parallel alignment of their magnetic moments. In the
A-AFM case, only four of the six neighboring LB moments
are parallel to each other, and thus the effective field at the
SB site is reduced. For the T -AFM case, exactly half of
the neighboring LB moments are aligned parallel to each
other, while the other half is aligned antiparallel, leading to
a cancellation of the effective field on the SB site. We also
performed some calculations where we initiated the magnetic
moments according to G-type AFM order. In this case, all

LB moments are parallel to each other and thus the effective
field at the SB site is the same as for FM order. As a result,
the calculations converge to the FM solution even if the SB
moments are initiated antiparallel to the LB moments.

It appears that DFT+U is able to correctly describe the
bond-disproportionated state in LuNiO3, resulting in R+

1
amplitudes that are consistent with the experimentally obtained
structure. However, the precise value of the R+

1 amplitude
depends strongly on the type of magnetic order that is imposed
in the calculation and also on the value used for the Hubbard
interaction parameter U . The complex T -AFM state, which
is consistent with the available experimental data and is also
stable within the calculations, is lower in energy than the FM
and A-AFM states for small values of U (and J ). However, the
calculations seem to favor the FM solution for U values larger
than U = 2 eV. Furthermore, the R+

1 breathing mode results
in a strong energy lowering of the AFM states and also leads
to a strong disproportionation between the magnetic moments
on the two different Ni sites (for all magnetic orderings). For
T -AFM, the local magnetic moments on the NiSB sites vanish
completely at the experimental R+

1 amplitude.
We note that while different magnetic structures assumed

in the refinements of the available experimental data generally
lead to different values for the local magnetic moments, most
studies indeed report a significant difference between NiLB

and NiSB moments (see, e.g., Refs. [15,31]). Furthermore, our
T -AFM calculations show that the NiSB moments can be zero,
in spite of the fact that the integrated charges inside the PAW
spheres differ only very little between the two different Ni
sites (consistent with previous DFT-based studies). Thus, the
SB moments can vanish completely even though the integrated
charges do not correspond to a naive picture of full charge dis-
proportionation within atomic spheres. The results presented in
this section are also in good agreement with a recent DFT+U

study by Varignon et al. [29] focusing on the members of
the nickelate series with large R cations, which suggests that
a value of U = 2 eV gives the best overall agreement with
experimental observations, both regarding magnetic order and
the magnitude of the bond disproportionation.

V. STRUCTURAL RELAXATIONS FOR THE
WHOLE NICKELATE SERIES

Next, we perform full structural relaxations within the
low-temperature P 21/n symmetry across the whole series of
nickelates with R from Lu to La. We again compare different
values of U and J and different magnetic orderings. However,
we will focus mainly on the FM and T -AFM cases, since other
AFM orderings give results similar to T -AFM. In addition, we
also perform nonmagnetic (NM) structural relaxations with
U = 0. Note that in this case the R+

1 breathing mode is not
stable and the system relaxes back to the higher symmetry
Pbnm structure, even if we initialize the system with a finite
R+

1 amplitude and P 21/n symmetry. To allow for a systematic
comparison across the whole series, we also relax LaNiO3

within both Pbnm and P 21/n symmetries (i.e., similar to
all other compounds), even though LaNiO3 is experimentally
found to exhibit a slightly different structure with R3̄c space
group symmetry [17].
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FIG. 8. R+
4 mode amplitudes obtained from full structural relax-

ations across the nickelate series. The T -AFM (magenta squares) and
the FM calculations (green circles) are performed using U = 5 eV
and J = 1 eV and compared to nonmagnetic (NM) calculations (blue
triangles) within Pbnm symmetry and using U = 0. The larger
symbols not connected by lines indicate various experimental results:
Lu-Y from Ref. [12] (brown crosses obtained at 60 K below TMIT,
red crosses with circle at 60 K above TMIT), Dy (blue diamond) from
Ref. [15], Nd (orange asterisk) from Ref. [46], Pr (purple star) from
Ref. [47], and La (black three-pointed star) from Ref. [17].

Generally, our calculated lattice parameters agree very well
with available experimental data across the whole series, with
maximal deviations of the unit cell volume of a few percent or
less. For example, for LuNiO3 the NM calculation results in a
unit cell volume that deviates by −1.5% from the experimental
high temperature structure [12], whereas the volume obtained
in the FM calculation with U = 5 eV and J = 1 eV differs by
only +0.2% from that of the experimental P 21/n structure at
∼60 K below TMIT [12].

In Table I we list the amplitudes of all distortion modes
obtained for LuNiO3 in different settings. It can be seen that the
R+

1 mode is the only mode which depends very strongly on U ,
J , and the type of magnetic order. All other relevant mode am-
plitudes agree well with the experimental data, except maybe
for a slight overestimation of the R+

4 mode (and perhaps also
X+

5 ), in particular for the FM/AFM cases and increasing U .
As discussed in Sec. II, the R+

4 mode is the most prominent
distortion mode in the nickelate series and describes the
out-of-phase octahedral tilts around the in-plane a direction
(Glazer tilt a−a−c0, see Fig. 4). The evolution of the R+

4
amplitude across the nickelate series, calculated for different
settings and compared to experimental data, is depicted in
Fig. 8. Experimental data for R = Lu, Er, Ho, and Y is taken
from the two papers by Alonso et al. [10,12], for R = Dy
from Muñoz et al. [15], for R = Nd from García-Muñoz et al.
[46], and for R = Pr from Medarde et al. [47]. Note, that the
structural data is generally measured at different temperatures
and that Alonso et al. [10,12] have obtained data both above
and below the MIT transition, i.e., both within the metallic high
temperature Pbnm phase and the insulating low temperature
P 21/n phase. However, we note that in all these cases, there

is only a rather small difference in the R+
4 amplitude between

the two phases (see also Table I for the case with R = Lu).
The amplitude of the R+

4 mode is monotonously decreasing
across the series from Lu to La, consistent with the increasing
radius of the R cation. Furthermore, the R+

4 amplitude is
slightly smaller for the NM calculation with U = 0, compared
to both FM and T -AFM calculations with U = 5 eV and
J = 1 eV, while there is only a negligible difference between
FM and T -AFM. Overall, there is rather good agreement,
both qualitatively and quantitatively, between the calculated
and experimentally measured mode amplitudes. The best
agreement is obtained for the NM case with U = 0, whereas
the magnetic relaxations with U = 5 eV lead to a slight
overestimation of the octahedral tilt distortion compared to
the experimental data.

Next, we discuss the R+
1 breathing mode amplitude. We

first note that, in contrast to the calculations for the fixed
experimental structure presented in the previous section, the
T -AFM magnetic order is stable within the fully relaxed
structure even in the case with U = 0 eV. Moreover, in contrast
to the FM and A-AFM (and NM) cases, in the T -AFM case all
compounds from R = Lu to La develop a finite R+

1 amplitude
already for U = 0. Although the resulting amplitudes are about
two to three times smaller than the experimentally observed R+

1
amplitudes, this nevertheless indicates that T -AFM strongly
supports the R+

1 mode. For larger U values, a finite R+
1

amplitude emerges from the relaxations for all considered
magnetic orderings.

In the following, we compare results for two different values
of U , a smaller value of U = 2 eV and a larger value of
U = 5 eV, in both cases with J = 1 eV. The corresponding
R+

1 mode amplitudes for FM and T -AFM cases are shown
in Fig. 9 (top: U = 2 eV; bottom: U = 5 eV) together with
available experimental data. Furthermore, to assess whether
the slight overestimation of the R+

4 octahedral tilt mode
in the magnetically ordered +U calculations (cf. Fig. 8)
affect the calculated R+

1 amplitude, we also consider a third
case. Here, we use the Pbnm structure obtained for the NM
case (with U = 0) and then relax only the R+

1 amplitude
using FM order and U = 5 eV (while keeping all other mode
amplitudes fixed). In the following, this relaxation is referred
to as “R+

1 only.” The corresponding data is also shown
in Fig. 9.

It can be seen that there are significant differences in the
calculated R+

1 mode amplitudes for the various cases, similar
to what has been found in the previous section for LuNiO3.
The calculated R+

1 mode amplitudes are consistently larger for
T -AFM (magenta) compared to the FM case (green), and the
larger U value results in overall larger R+

1 amplitude across the
whole series. Furthermore, in all cases we obtain a decrease
of the R+

1 amplitude across the series from R = Lu towards
R = La. This decrease is most pronounced for the FM case
with U = 5 eV. The “R+

1 -only” relaxations (blue) result in
reduced R+

1 amplitudes compared to the full FM relaxations
at U = 5 eV. As suggested above, this can be attributed to the
reduced octahedral tilt distortion (R+

4 mode) in the underlying
NM structures.

Rather good agreement with the experimental data is
obtained in the T-AFM case using U = 2 eV, in particular
for the compounds at the beginning of the series. However,
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(Å
)

fo
r

U
=

2
eV

T -AFM

FM

R+
1 -only FM

Lu Er Ho Y Dy Gd Sm Nd Pr La
0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
+ 1

a
m

p
li
tu

d
e

(Å
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FIG. 9. R+
1 mode amplitude for the relaxed structures with U =

2 eV (top) and U = 5 eV (bottom), in both cases using J = 1 eV.
The relaxed mode amplitudes are given for the FM (green circles)
and T -AFM (magenta squares) cases, as well as for the “R+

1 -only”
relaxation with FM order (blue triangles). The large disconnected
symbols (same in both panels) indicate different experimental values:
brown crosses for Lu-Y from Ref. [12] at 60 K below TMIT, red plus
symbols for Lu-Y from Ref. [11] at T = 290 K, blue diamond for
Dy from Ref. [15], orange asterisk for Nd from Ref. [46], and purple
star for Pr from Ref. [47].

the decrease towards R = Pr appears weaker than for the
experimental data. For FM order and U = 5 eV, the agreement
is also good, including the decrease of the R+

1 towards the end
of the series. Note that a slightly smaller U value would also
slightly reduce the R+

1 amplitude and probably further improve
the comparison of the FM case with the experimental data.

Another fact that becomes apparent from Fig. 9 is the
rather large scattering of the experimental results for different
members of the series, or even for the same compound
measured at different temperatures (see, e.g., the data for
R = Ho or Dy in Fig. 9). This can be attributed to difficulties
in sample preparation, which is only possible under high
pressure, leading to very small sample sizes and thus low
experimental resolution [7,8]. Nevertheless, it seems that the
decrease in R+

1 amplitude for R = Nd and in particular R = Pr
compared to the compounds at the beginning of the series can
indeed be inferred from the experimental data.
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FIG. 10. Top: R+
1 amplitudes calculated for LuNiO3 (cyan plus

symbols and blue crosses) and PrNiO3 (brown triangles and magenta
squares) as a function of U (with J = 0), in both cases with FM
(crosses and triangles) as well as T -AFM ordering (plus symbols
and squares). Bottom: energy difference between T -AFM and FM
states for PrNiO3 (magenta triangles) and LuNiO3 (blue circles) for
different U values (and J = 0).

We now have a closer look at the U dependence of the R+
1

amplitude across the series. For this, we focus on the two “end
members” of the nickelate series, LuNiO3 and PrNiO3, and
perform full structural relaxations for various U values and
both FM and T -AFM magnetic orders. Here, we use J = 0,
so that the limiting case with U = 0 can be continuously
incorporated. The results are depicted in the top panel of
Fig. 10. We note that while the R+

1 amplitude is very sensitive
to the choice of U , the influence of J is much weaker, and
therefore we present only results for varying U .

In agreement with the results shown in Fig. 9, the T -AFM
state leads to an overall larger R+

1 amplitude compared to the
FM state. Furthermore, the R+

1 amplitude is consistently larger
for LuNiO3 than for PrNiO3 (with the same magnetic order).
In all cases, the R+

1 amplitude is monotonously increasing with
U up to about 3–4 eV. For larger U , the R+

1 amplitude starts
to decrease and can even vanish completely at large U . The
value of U where the turnaround from increasing to decreasing
R+

1 amplitude occurs, depends both on the R cation and the
magnetic order. It is lowest for Pr and FM order and highest for
Lu and T -AFM order (in fact, in this latter case the turnaround
does not occur up to U = 8 eV).

The collapse of the breathing mode at large U has also
been observed in earlier DFT calculations for NdNiO3 by
Prosandeev et al. [33]. It can be related to a qualitative change
in the electronic structure beyond a certain U value. This
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FIG. 11. Projected densities of states of fully relaxed LuNiO3

with FM order for different U values (and fixed J = 0 eV). Only the
Ni d (separated in t2g and eg orbital character) and O p projections are
shown (summed over all Ni and O sites within the unit cell). Minority
spin states are depicted with negative sign and the Fermi level defines
zero energy. One can see that with increasing U the occupied Ni d

states, i.e., t2g (blue) and majority spin eg (red), are shifted down
in energy relative to the oxygen p states (green). For U = 7 eV the
occupied Ni d states are lower in energy than the oxygen p states and
the system becomes metallic.

is illustrated in Fig. 11, which shows projected densities of
states (DOS) for relaxed LuNiO3 with FM order for U = 0,
U = 4 eV, and U = 7 eV (in all cases with J = 0). Here, the
element-resolved DOS are summed over all atoms of a given
type, i.e., the Ni DOS contains the contributions from both LB
and SB sites.

For U = 0, the Ni d states (red and blue) are situated just
above the oxygen p states (green). The system is slightly
metallic and no breathing mode appears in the relaxed
structure. With increasing U , the occupied Ni d states are
pushed down in energy relative to the oxygen p states,
and a gap opens between the top of the valence band with
predominant O p character and the conduction bands with
strong Ni d character. This is indicative of a charge transfer
insulator with strong hybridization between the ligand p and
transition metal d states. This is also the regime that supports
the breathing mode in the relaxed structure. The site splitting
between the two nickel sites can be observed as two distinct
peaks (at energies of approximately 1.5 eV and 3 eV) in the
unoccupied minority spin Ni eg DOS for U = 4 eV (middle
panel of Fig. 10).

However, for U = 7 eV, the occupied Ni d states are pushed
completely below the oxygen p states, i.e., the system has
entered a negative charge transfer regime. This leads to reduced
hybridization between O p and Ni d states, and the unoccupied
part of the majority spin states has now essentially pure O
p character, i.e., it now clearly corresponds to two ligand

holes. Interestingly, this regime does not support the breathing
mode distortion, as seen from the top panel of Fig. 10. Thus,
it appears that the bond disproportionation in the nickelates
depends strongly on the degree of hybridization between the
Ni d and O p states and requires a mixed character of the
nominal Ni eg bands. On the other hand, if the “ligand hole”
character of the unoccupied states becomes too dominant, the
bond disproportionation becomes unfavorable. This is very
much in line with the interpretation of “charge order” in
terms of hybridized Ni-centered eg-like Wannier functions,
as discussed by Varignon et al. [29].

Finally, in the bottom panel of Fig. 10, we compare the
relative stability of the FM and T -AFM states for the two
“end-members” LuNiO3 and PrNiO3 in the fully relaxed
structures as a function of U (and using J = 0). Here, a
negative (positive) value indicates that the T -AFM (FM)
state is energetically favored. One can see that, while for
LuNiO3 the FM state is more favorable than T -AFM over
essentially the whole range of U (with a nearly vanishing
energy difference for U = 0), for the case of PrNiO3 the energy
difference ET -AFM − EFM exhibits a nonmonotonous behavior
with a minimum at around U = 1 eV. Most strikingly, the
T -AFM state is favored in PrNiO3 for U values up to
U ≈ 3 eV. Thus, in the small U regime (below 3–4 eV) the
T -AFM state becomes more favorable for increasing size of the
R cation, i.e., when going from Lu to Pr. This is consistent with
the experimentally observed trend for the magnetic ordering
temperature. We point out that, even though here we show only
data for the two end members of the series, we have verified
that the corresponding trends evolve continuously throughout
the series.

The results for the energy difference between T -AFM and
FM for LuNiO3 are similar to the ones presented in Fig. 6
for the experimental structure, although in the experimental
structure the T -AFM state is lower in energy than FM for U <

2 eV. This is due to the small structural differences between the
experimental and relaxed structures, which slightly shift the
energetics of the different magnetic orderings. Additionally,
we note that in our calculations the T -AFM ordering is found
to be stable in LaNiO3 within Pbnm symmetry. This is in
agreement with a very recent theoretical work by Subedi [48],
where it is also shown that the stability of the T -AFM ordering
disappears if the correct R3̄c symmetry is considered. This
shows that also LaNiO3 is very close to a transition between
the breathing mode phase with AFM ordering and the metallic
R3̄c phase. Together with the differences found for LuNiO3 in
the experimental and relaxed structures, it also demonstrates
that the energy differences between different magnetic states
are rather sensitive to small changes in the underlying crystal
structure, indicating a subtle interplay between magnetism and
structure in the rare-earth nickelates.

VI. SUMMARY

We have presented a systematic DFT+U study for the
whole series of perovskite structure rare-earth nickelates. Our
goal was to assess if and to what extent the structural and
magnetic properties of these compounds can be described
within the DFT+U approach. In order to distinguish different
structural distortions, we have used a symmetry-based mode
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decomposition. Based on this decomposition, the transition
from the metallic Pbnm structure at high temperatures to
the insulating P 21/n structure at lower temperatures can
mainly be related to a single octahedral “breathing mode”
corresponding to irrep R+

1 of the cubic reference structure.
We find that essentially all structural parameters apart

from this R+
1 mode amplitude are rather well described

already within nonmagnetic DFT calculations with U = 0.
In particular, this is the case for the important R+

4 mode
describing the degree of out-of-phase octahedral rotations
around the orthorhombic a axis, which decreases strongly
from R = Lu towards R = La. However, in order to obtain
a nonzero R+

1 mode amplitude in agreement with the
experimentally observed P 21/n low temperature structures,
both magnetic order and a nonzero value of U are required
within the calculations. Thereby, the obtained amplitudes of
the breathing mode strongly depend on the value of U and also
on the magnetic order imposed in the calculation. For not too
large U , the R+

1 amplitude increases with increasing U and
it is significantly larger for the more realistic T -AFM order
than for the FM case. For the case with T -AFM order, very
good overall agreement with the experimentally determined
structures across the whole series is achieved for U = 2 eV
and J = 1 eV. Similar good agreement can also be achieved
for FM order using a larger U value of around 5 eV. However,
if U is further increased, and once the occupied Ni d states
are pushed energetically below the O 2p manifold, the R+

1
mode vanishes again and the system becomes metallic.

Both our calculations as well as the available experimental
data indicate a decrease of the R+

1 amplitude across the
series from R = Lu towards R = Pr. This decrease seems to
be somewhat weaker in our computational results compared
to experiment. Here, we note that, in order to simplify the
analysis, we have always compared results obtained with the
same values for U and J across the whole series. However,
the use of a constant U value for the whole nickelate series
might not be fully appropriate. Considering the strong effect
of U on the R+

1 amplitude, even a small decrease of U from
R = Lu towards R = Pr would result in a noticeably stronger
decrease of the R+

1 amplitude across the series. Since the
octahedral rotations (R+

4 and M+
3 modes) decrease towards

R = Pr, and thus the hybridization between the Ni d and O p

states increases, potentially leading to enhanced screening, the
correct U value for R = Pr could indeed be slightly smaller
compared to R = Lu. Therefore, in order to clarify how large
(or small) these effects really are, first principles calculations
of U across the series would be of great interest.

On the other hand, it should also be noted that the available
experimental data is quite sparse. In particular, data for the
compounds in the middle of the series, i.e., for R = Gd and
Sm, is currently not available. Furthermore, an unexpectedly
large breathing mode amplitude has been reported for HoNiO3

at 60 K below the MIT [12] and for DyNiO3 at 2 K [15]

(see Fig. 9), and systematic measurements of the temperature
dependence of the R+

1 amplitude are also lacking. In particular,
considering the strong influence of the magnetic state on
the R+

1 amplitude obtained in the calculation, it would be
of interest whether there is a noticeable change in the R+

1
amplitude (or some other structural parameters) when the
nickelate compounds (with R from Lu to Sm) undergo
the transition to the AFM phase. Indeed, some anomalies
of the phonon frequencies at the magnetic transition temper-
ature have already been observed in SmNiO3 thin films using
Raman scattering [49].

While the overall trends and orders of magnitude seem
to be well captured within the DFT+U calculations, some
deficiencies also become apparent. For example, the imposed
T -AFM ordering, which is compatible with the experimental
data, is only energetically favored (compared to the FM state)
for a relatively small range of U values. For the case of LuNiO3

it is even hardly favored at all (only for U = 0 in the fully
relaxed structure). Nevertheless, in the small U regime, the T -
AFM state becomes more and more energetically favored with
increasing radius of the rare-earth cation (see bottom panel of
Fig. 10), consistent with the experimentally observed trend of
the magnetic ordering temperature. Our calculations also show
that the T -AFM order generally couples much stronger to the
breathing mode distortion than the FM order.

Overall, we find that the best agreement with experimental
observations across the whole series, regarding both structure
and magnetic order, is achieved if a relatively small value of
U ≈ 2 eV is used in the calculations. This is consistent with
the work of Varignon et al. [29] and in contrast to what has been
suggested by Prosandeev et al. [33]. However, one should note
that even for U = 2 eV, the stability of the FM state seems to
be overestimated, in particular for the small rare-earth cations
such as Lu.

To conclude, our results give a clear picture of the predictive
capabilities of the DFT+U approach in the rare-earth nickelate
series and also provide a solid starting point for the use of more
advanced computational methods, such as, e.g., DFT+DMFT.
Furthermore, they can also be used as reference for future
experimental investigations regarding the temperature depen-
dence of the structural parameters and trends across the series.
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5
D E S C R I B I N G T H E C O U P L E D T R A N S I T I O N W I T H I N
D F T + D M F T

In this chapter I utilize the DFT+DMFT method to describe the para-
magnetic insulating state found in rare-earth nickelates. The goal is
to obtain a quantitative correct description of the breathing mode dis-
tortion amplitude in the paramagnetic state. This is also motivated
by my previous findings, that in DFT+U the R+1 amplitude depends
heavily on the magnetic order. Furthermore, a better understanding
of the MIT can be obtained, by analyzing the energetics of the breath-
ing mode distortion in DFT+DMFT.

I demonstrate, that the coupling to an electronic instability is cru-
cial to stabilize the breathing mode distortion. Furthermore, I ob-
tain quantitative correct structural parameters by performing CSC
DFT+DMFT total energy calculations across the series, which are then
also compared to the magnetic DFT+U results. In order to see how
U and J vary across the series and to obtain a magnitude, I use the
cRPA method to calculate the interaction parameters across the series.
The cRPA calculations reveal an important change in the screened
Coulomb repulsion strength across the series, requiring to adapt the
Coulomb interaction parameters for the different compounds of the
series.

The following work was published as ”Energetics of the coupled elec-
tronic–structural transition in the rare-earth nickelates” in npj Quantum
Materials, see Ref. [50]. I performed and analyzed all DFT and DMFT
calculations. To perform the cRPA calculations I visited the group of
C. Franchini in Vienna. The cRPA calculations where done by myself,
with the help of P. Liu. The initial manuscript was written by me,
corrected by my supervisor C. Ederer, and discussed at several stages
with C. Franchini and P. Liu.

5.1 motivation

In the previous chapter I demonstrated that DFT+U correctly cap-
tures structural trends for the breathing mode amplitude across
the nickelate series in the AFM phase. Moreover, I showed that
all internal structural parameters not specifically related to the
low-temperature phase are well captured in non-magnetic DFT
calculations. Together with experimental data, which shows that
during the MIT all structural parameters not related to the breathing
mode distortion undergo only very small changes [29], the Pbnm-
relaxed structures from non-magnetic DFT calculations represent
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Figure 20: a DFT band structure for the relaxed Pbnm high-temperature
phase of LuNiO3. The relaxation and the band calculation is
performed non-magnetic without any U correction. b DFT band
structure for the relaxed P21/n low-temperature structure. Here,
the relaxation is performed with ferromagnetic ordering and
Uavg = 5 eV and Javg = 1 eV, resulting in a finite stable R+1
amplitude. The band calculation shown here is performed non-
magnetic without +U. A gap opens at 0.5 eV above the Fermi
level εf due to the NiLB / NiSB splitting, induced by the breath-
ing mode distortion. Importantly, both results are clearly metallic,
showing that the magnetic ordering is needed to open a gap at
εf.

a good starting point for further studies analyzing the breathing
mode distortion. The decomposition in distortion modes allows to
explicitly add the breathing mode distortion on top of these relaxed
structures to find the stable equilibrium breathing mode amplitude.

Within non-magnetic DFT calculations, all nickelate compounds
are be metallic, even for the P21/n structures with breathing mode
distortion. This is due to the fact, that the Ni eg states are quarter-
filled, which means in a band picture that bands cross the Fermi level.
This is illustrated in Fig. 20. Here, the band structures from non-
magnetic DFT calculations are shown for both, the high-temperature
Pbnm structure, and the low-temperature P21/n structure with
breathing mode distortion. The breathing mode distortion induces a
splitting between the NiLB and NiSB sites, which opens a gap at 0.5
eV above the Fermi level. The lower NiLB site is still half-filled and
bands cross the Fermi level. Hence, it becomes clear that a further
mechanism is required to obtained an insulating state. In DFT+U
calculations this is achieved by introducing long-range magnetic
ordering. This lifts the spin degeneracy of the band crossing the
Fermi level, and allows to open a gap at the Fermi level. The fact
that magnetic order is needed in DFT+U to obtain an insulating state,
makes it hard to distinguish between mechanisms responsible for the
magnetic insulating state and the paramagnetic insulating state in
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rare-earth nickelates. It becomes clear, that to directly investigate the
coupled structural-electronic transition in the paramagnetic regime,
DFT is not sufficient.

5.2 previous work : charge disproportionated insula-
tor in dmft

In the work of Ref. [23], it was demonstrated for the first time that
the insulating paramagnetic state of rare-earth nickelates can be de-
scribed by DFT+DMFT calculations. The strong electronic correla-
tions result in a site selective Mott transition. Furthermore, it was
shown in a following work by the same authors, that E(R+1 ) obtained
by DFT+DMFT calculations has a global minimum corresponding to
a finite stable breathing mode distortion for LuNiO3 [24]. Moreover,
it was demonstrated, that for LaNiO3 no such minimum exists in
agreement with experiment. Therefore, it was concluded in Ref. [24]
that DFT+DMFT is indeed able to correctly describe the electronic
and structural properties of rare-earth nickelates across the series.

In Ref. [24], structures were interpolated between the high-
temperature Pbnm structure relaxed by non-magnetic DFT cal-
culations, and the low-temperature P21/n structure relaxed by
ferromagnetic DFT+U calculations using Uavg = 5 eV. Then for these
interpolated structures total energy calculations in DFT+DMFT were
performed to find the equilibrium breathing mode distortion. I
would like to note, that there exists a longer, more detailed paper by
the same authors [52] providing more results. However, the way in
Ref. [24] the structural optimization is performed can be problematic.
The interpolation between the two structures induces multiple
changes in structural parameters at once. In the previous chapter
4, I found that for example octahedral rotations are changing when
calculations are performed with and without +U correction, whereas
in experiment no such change is observed at TMIT [29]. Moreover,
the calculations presented in Ref. [24] seem to be influenced by the
choice of U. Furthermore, it was stated that DFT+U overestimates
the size of the breathing mode distortion amplitude compared to
DFT+DMFT. However, as shown in chapter 4, the resulting breathing
mode distortion amplitude is heavily influenced by the choice of the
interaction parameters, and the magnetic order.

In Ref. [43] it was demonstrated that a minimal correlated subspace,
built only from the Ni eg states found at the Fermi level, is sufficient
to capture the physics necessary to describe the paramagnetic insulat-
ing phase in rare-earth nickelates. I call such sub-space construction
frontier orbital model. Subedi et al. [43] showed, that for a certain inter-
action parameter regime they find an insulating paramagnetic state
by performing OS DFT+DMFT calculations. The insulating state is
characterized by a strong charge disproportionation between the NiLB
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and LB site. Hence, the insulating state is called charge disproportion-
ated insulator (CDI), and is identified with the paramagnetic insulat-
ing state of the nickelates. In this state, the occupation of the Wannier
functions of the different Ni sites changes drastically.

Wannier orbitals constructed for the frontier orbital model will be
considerably more extended in space with oxygen p tails, than if built
from all Ni d and oxygen-p states, as done in Ref. [24]. Here, the oc-
cupation of the Wannier orbitals is closer to the formal charge state
of Ni, d7, with one electron in the eg orbitals per Ni site. In Ref. [43]
it is assumed, that the Coulomb interaction U is highly screened in
these orbitals, to values smaller than 2 eV. However, the frontier or-
bital model also results in a larger charge disproportionation effect
compared to a full d and p model. As demonstrated in Ref. [44],
both approaches to describe the system are valid, leading to the same
physics, but require different interpretation of the resulting occupa-
tions.

In Ref. [43], it is shown that in agreement with Ref. [22] the breath-
ing mode distortion induces a local potential shift ∆s between the eg
orbitals on the NiLB and the NiSB site. Importantly, they find that
the CDI state also occurs for the Pbnm structure without breathing
mode distortion, hence ∆s = 0, for large Hund’s coupling strengths.
Thereby, they discuss that a strong Hund’s coupling favors the CDI
state, which will occur in the Hubbard-Kanamori Hamiltonian for
U− 3J 6 ∆s.

The calculations in Ref. [43] were performed by constructing ML-
WFs with wannier90 [87, 88] for the experimental high- and low-
temperature LuNiO3 structures. They were performed without DC
correction and without CSC. They were a proof of concept, that a fron-
tier orbital model is able to capture all necessary physics to describe
rare-earth nickelates.

Here, I follow the ideas of Subedi et al. [43] to construct the corre-
lated subspace only from the Ni eg orbitals to perform DFT+DMFT
calculations. Thereby, I go beyond this work by performing CSC cal-
culations, with PLO formalism, and DC correction, for multiple mem-
bers of the nickelate series by using the DFT relaxed Pbnm structures.
Then, I utilize the distortion mode decomposition, rather than relying
on the DFT+U relaxed structures, to obtain structural parameters by
performing DFT+DMFT total energy calculations. Thereby, I over-
come also the shortcomings of Ref. [24] and [52] relying on the in-
terpolation of structures. Furthermore, I investigate the influence of
the interaction parameters in detail, to be able to compare on a more
quantitative level with previous DFT+U results.
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Figure 21: a Spectral function of the Ni eg orbitals (summed) of LuNiO3
in the metallic high-temperature phase without breathing mode
distortion. b Spectral functions for the low-temperature insulat-
ing paramagnetic phase with experimental breathing mode dis-
tortion R+1 = 0.075 Å. The LB Ni eg orbitals have considerably
higher occupancy (blue), than the SB Ni eg orbitals (orange). A
clear gap of ∼ 0.5 eV can be observed at the Fermi level. Both
spectral functions are obtained for U = 2.04 eV and J = 0.47 eV
performing a full CSC DFT+DMFT calculation.

5.3 project summary

To compare with Ref. [43], We calculate in a first step interaction pa-
rameter phase diagrams for LuNiO3 structures with, and without
breathing mode distortion by performing OS DFT+DMFT calcula-
tions without DC correction. Thereby, we reproduce the results found
in Ref. [43] that for U− 3J 6 0 the CDI state emerges. Here, we use
the Hubbard-Kanamori parameterization introduced in section 3.4.2.
To characterize CDI state we calculate the spectral functions A(ω)

for the insulating state of the P21/n structure, and the metallic state
in the Pbnm structure. We performed the analytical continuation of
the impurity Green’s function to the real frequency axis, by using the
maximum entropy method [141], utilizing the triqs/maxent software
[142].

The results are shown in Fig. 21. For the Pbnm structure, Fig. 21 a,
the spectral function of all Ni eg states is depicted showing a metallic
state. A small splitting between the eg states can be observed, similar
to what is found with non-magnetic DFT calculations. In Fig. 21 b the
spectral function for the low-temperature P21/n structure is shown.
The Ni LB and SB site are shown separately. The LB site has a larger
occupation, whereas the SB site is almost empty. Moreover, a clear
gap of 0.5 eV can be observed at the Fermi level. This is in agreement
with Ref. [43].

We also performed calculations including a DC correction to check
its influence in OS DFT+DMFT calculations. Here, we find that the
DC correction can influence substantially the on-site potential shift ∆s
between NiLB and NiSB site, depending on the choice of how the DC
correction is calculated. The effect of the DC will be further discussed



86 describing the coupled transition within dft+dmft

in chapter 7. In the following we use the DMFT impurity occupations
for the DC correction.

In Fig. 1 of Ref [50] the U, J phase diagram for LuNiO3 with
R+1 = 0.0 Å preforming now CSC calculations is presented. Here,
we find three distinctive phases in agreement with Ref. [43]. A metal-
lic phase, a Mott insulating phase for large U values, and the CDI
phase for larger J values. The Mott insulating phase is characterized
by the Ni site occupation nLB ≈ nSB ≈ 1.0. In contrast, the CDI state
is characterized by nLB > 1.5 and nSB 6 0.5. Therefore, we find also
in CSC calculations the spontaneous symmetry breaking into the CDI
state due to an electronic instability. However, we find a strong shift
in the strength of the Hund’s coupling required for the CDI state
to emerge. The required J is considerably smaller compared to OS
DFT+DMFT calculations. Such a reduction has also been found in
the work of Ref. [143] by including an inter-site Coulomb interaction
in OS DFT+DMFT calculations. Hence, we suggest that CSC calcula-
tions include this effect, because the DFT charge density is updated
in CSC calculations, accounting for the charge redistribution in the
CDI state, and thus, at least on a Hartree level, are covered within
DFT.

Next, we investigate how the electronic instability couples to the
structural R+1 breathing mode distortion. We add the R+1 breathing
mode distortion on top of the DFT relaxed Pbnm structures from DFT
to check systematically the influence of the breathing mode distortion.
We observe a strong coupling to the R+1 amplitude, both in LuNiO3
and PrNiO3 in the corresponding U, J phase diagrams. The main
effect is a strong reduction of the value of J required to stabilize the
CDI state. Moreover, we find a small reduction of the value of U

required to stabilize the CDI state for larger R+1 amplitudes, where
this effect is more pronounced in LuNiO3. This is shown in Fig. 2 of
Ref. [50].

Next, we calculate the screened Coulomb interaction parameters,
U and J, across the whole nickelate series. This is performed in a
collaboration with C. Franchini and P. Liu from the University of Vi-
enna by using the cRPA implementation in VASP [103]. We find a
strong screening effect reducing the effective U values below 2 eV
for nickelates, in agreement with previous work [143]. This is also
consistent with the values required to obtain a stable CDI state. Fur-
thermore, we find a reduction in U by 25% across the nickelate series
from R =Lu to La (see Fig. 3 in Ref. [50]). This strongly suggests
that the use of a single interaction parameter setting for the different
members of the series is not appropriate. Furthermore, we show that
this reduction is mainly due to stronger screening effects for larger R
site cations, hence smaller octahedral rotations. Next, we compared
the calculated U and J values for LuNiO3 and PrNiO3 with the U, J
phase-diagrams. Here, we find that for LuNiO3 the obtained values
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Figure 22: Example how the total energy can be determined to high accuracy
by sampling converged DMFT iterations. The plot shows the total
DFT+DMFT energy per iteration. After convergence is reached
at iteration 25 the total energy values are sampled. Convergence
was reached after the standard error of the impurity occupations
in the past 10 DMFT iterations was smaller than 1.5× 10−3. The
averaged mean value is shown by a black line. The standard
deviation is shown to quantify the possible error.

of U and J give a stable CDI state for a broad range of R+1 amplitudes.
For PrNiO3 on the other hand the values obtained by cRPA for J are
too small, and even a large R+1 amplitude does not produce a CDI
state.

So far we limited the discussion to the stability of the electronic
CDI state. In a next step, we addressed the stability of the structural
R+1 distortion. To do so, we calculate the energy as function of the
R+1 amplitude in DFT+DMFT, E(R+1 ), to obtain the energetics of the
breathing mode distortion. By performing such calculations system-
atically across the series, trends can be revealed.

The calculation of the total energy in DFT+DMFT is computation-
ally demanding. Since DMFT is an iterative scheme, and furthermore
each iteration involves solving the impurity problem by QMC, one
has to deal with inaccuracies stemming from the iterative scheme it-
self and the QMC noise. To limit the QMC noise, we measure Gimp

directly in the Legendre basis. Moreover, we sample the total en-
ergy over a minimum of additional 60 DMFT iterations after the CSC
DFT+DMFT loop is in principle already converged. Typically, conver-
gence is reached in my calculations, when the standard error of the
Ni site occupation of the last 10 DFT+DMFT loops is smaller than
1.5× 10−3. In this way an accuracy in the total energy of < 2meV
per Ni site can be achieved. The extraction of the total energy is
illustrated in Fig. 22. Here, the total energy as function of DMFT
iterations is shown, and the calculated mean value, as well as the
standard deviation.
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For LuNiO3, using the cRPA U, J values, we find a minimum in
E(R+1 ) close to the experimental R+1 amplitude. By increasing U, J

slightly by 10% we find best agreement with experiment. By reduc-
ing U and J we demonstrate that the R+1 distortion is destabilized (see
Fig. 4 in Ref. [50]). However, the electronic CDI state is still stable for
R+1 > 0.06 Å, which demonstrates that the stability of the breathing
mode distortion does not always goes hand in hand with the stability
of the CDI state. Furthermore, we observe a kink in E(R+1 ) when the
MIT takes place. We find that this reshaping of E(R+1 ) is critical for
obtaining a stable breathing mode distortion, because it produces ad-
ditional energy minima in E(R+1 ) (see Fig. 4 in Ref. [50]). The resulting
E(R+1 ) shows typical characteristics of a first-order transition.

In the next step, we examine the energetics across the series by
performing E(R+1 ) calculations for R =Lu, Sm, and Pr for the U and
J values obtained by cRPA increased by 10%. For SmNiO3 we find
a R+1 amplitude reduced by ≈ 20%, and for PrNiO3 no R+1 distor-
tion is obtained (see Fig. 5 bottom in Ref. [50]). This appears to be
reasonable, as PrNiO3 has only a stable breathing mode distortion
within the AFM ordered phase [61]. Recently, it was also found for
NdNiO3 that the magnetic order is crucial to stabilize the breathing
mode distortion [144]. This confirms our results, because NdNiO3
also exhibits a finite R+1 amplitude only in the magnetically ordered
state [60].

Finally, we analyze the influence of the octahedral rotations, by sys-
tematically reducing them in LuNiO3 (see Fig. 5 top in Ref. [50]). De-
creasing the rotations results in smaller equilibrium R+1 amplitudes,
and shallower minima in energy. Eventually, for 70% of the original
octahedral rotations amplitudes, the energy minimum at non-zero
R+1 amplitudes is lost. This rotation amplitude is comparable to the
one of PrNiO3, which has no finite R+1 amplitude in the paramag-
netic regime, thus demonstrating that the octahedral rotations play a
crucial role in determining trends across the series.

5.4 conclusion

In this chapter I demonstrated that DFT+DMFT can be utilized to
describe the paramagnetic ground state, and the coupled structural
and electronic phase transition, of rare-earth nickelates completely ab
initio on a quantitative level. Performing these calculations allowed
to elucidate the nature of the coupled electronic-structural transition.
We reveal that the MIT, which is related to an electronic instability,
leads to a significant restructuring of the energy landscape. This
creates an energy minimum at finite R+1 amplitudes. Therefore, we
concluded that the coupled electronic-structural transition is of first
order, in agreement with experiment [19].
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Moreover, I showed that the trends across the series are critically
determined by the octahedral rotations, which in turn determines
the strength of the electronic instability responsible for triggering the
CDI state. It is found that the appearance of the electronic CDI state
does not necessarily result in stable structural breathing mode distor-
tion. Thus, demonstrating that it is inevitable to treat both electronic
and structural degrees of freedom on the same footing, in order to
arrive at a fully coherent picture. Furthermore, the screening of the
Coulomb interaction is influenced by the octahedral rotation strength,
or equivalently the R site cation, supporting the trends across the se-
ries by disfavoring the CDI for larger R site cations. The obtained
structural parameters are in very good agreement with experiment,
where we find a reduction of the R+1 amplitude from R =Lu to Sm
of ≈ 20%. This reduction is much more pronounced compared to
DFT+U calculations with ≈ 8%, and is in better agreement with ex-
perimental data. This discrepancy shows that a better understanding
of the differences of the paramagnetic and magnetic phase is needed.
The inclusion of magnetic order in DFT+DMFT will be further dis-
cussed in chapter 8.

In the work of Ref. [49], the MIT and the trends across the nicke-
late series are investigated as well. The authors of Ref. [49] construct a
Landau model with parameters obtained by DFT+U calculations. The
calculations are performed in the magnetically ordered phase and the
resulting Landau model contains only structural degrees of freedom.
In their work, the octahedral rotations are also identified as critical
driving force for trends across the series, in agreement with our work.
Moreover, they propose that the octahedral rotations trigger the sta-
bilization of the breathing mode distortion. This is to some extent in
agreement with our work, showing that the octahedral rotations criti-
cally influence the R+1 stability. However, from the constructed model
the phase transition can only be classified as second order, hence not
in agreement with experiment.

Finally, I would like to note that these results also demonstrate that
the use of minimal correlated sub-space, the frontier orbital model,
can indeed be used to obtain quantitatively correct results. Com-
pared to a correlated subspace constructed for all Ni d and oxygen
p orbitals, a frontier orbital model has a crucial advantage in compu-
tational effort, especially when calculating total energies. Moreover,
the DC problem can be less severe, since one does not need to adjust
the d− p energy splitting by the DC potential [131].

5.5 peer reviewed work
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Energetics of the coupled electronic–structural transition in the
rare-earth nickelates
Alexander Hampel1, Peitao Liu2, Cesare Franchini 2,3 and Claude Ederer1

Rare-earth nickelates exhibit a metal–insulator transition accompanied by a structural distortion that breaks the symmetry between
formerly equivalent Ni sites. The quantitative theoretical description of this coupled electronic–structural instability is extremely
challenging. Here, we address this issue by simultaneously taking into account both structural and electronic degrees of freedom
using a charge self-consistent combination of density functional theory and dynamical mean-field theory, together with screened
interaction parameters obtained from the constrained random phase approximation. Our total energy calculations show that the
coupling to an electronic instability toward a charge disproportionated insulating state is crucial to stabilize the structural distortion,
leading to a clear first order character of the coupled transition. The decreasing octahedral rotations across the series suppress this
electronic instability and simultaneously increase the screening of the effective Coulomb interaction, thus weakening the
correlation effects responsible for the metal–insulator transition. Our approach allows to obtain accurate values for the structural
distortion and thus facilitates a comprehensive understanding, both qualitatively and quantitatively, of the complex interplay
between structural properties and electronic correlation effects across the nickelate series.
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INTRODUCTION
Complex transition metal oxides exhibit a variety of phenomena,
such as, e.g., multiferroicity,1 non-Fermi liquid behavior,2 high-
temperature superconductivity,3 or metal–insulator transitions
(MIT),4 which are not only very intriguing, but are also of high
interest for future technological applications.5–7 However, the
quantitative predictive description of these materials and their
properties represents a major challenge for modern computa-
tional materials science, due to the importance of electronic
correlation effects as well as due to the intimate coupling between
electronic, magnetic, and structural degrees of freedom.4,8

An example, which has received considerable attention
recently, is the family of rare-earth nickelates, RNiO3, with R=
La–Lu and Y, which exhibit a rich phase diagram that is highly
tunable by strain, doping, and electromagnetic fields.9–14 All
members of the nickelate series (except LaNiO3) exhibit a MIT as a
function of temperature, which is accompanied by a structural
distortion that lowers the space group symmetry from orthor-
hombic Pbnm, where all Ni sites are symmetry-equivalent, to
monoclinic P21/n, with two inequivalent types of Ni sites.15–18 The
structural distortion results in a three-dimensional checkerboard-
like arrangement of long bond (LB) and short bond (SB) oxygen
octahedra surrounding the two inequivalent Ni sites (see Fig. 2a),
and corresponds to a zone-boundary breathing mode of the
octahedral network with symmetry label Rþ1 .

19 In addition, all
systems exhibit antiferromagnetic (AFM) order at low tempera-
tures.9,20,21 For R from Lu to Sm, the AFM transition occurs at lower
temperatures than the MIT, whereas for R= Nd and Pr, the
magnetic transition coincides with the MIT. AFM order in LaNiO3

was only reported recently21 and is still under discussion.22 Due to
challenges in synthesis, experimental data on the bulk materials is

relatively sparse, and quantitative predictive calculations are
therefore highly valuable to gain a better understanding of the
underlying mechanisms.
Different theoretical and computational approaches have high-

lighted different aspects of the coupled structural–electronic
transition in the nickelates, thereby focusing either on structural or
electronic aspects.23–30 Density functional theory plus Hubbard U
(DFT+ U) calculations have recently emphasized the coupling
between the breathing mode and other structural distortions such
as octahedral rotations, as well as the effect of magnetic order.28–
30 However, these calculations cannot properly describe the
transition from the paramagnetic metal to the paramagnetic
insulator observed in all nickelates with R cations smaller than Nd,
and thus cannot correctly capture the important electronic
instability. Using DFT plus dynamical mean-field theory (DFT+
DMFT),31 the MIT has been classified as site-selective Mott
transition,23 where an electronic instability drives the system
toward a charge- (or bond-) disproportionated insulator.26

However, the capability of DFT+ DMFT to address structural
properties is currently not well established, even though promis-
ing results have been achieved in previous work,24,25,27 employing
either simplified interpolation procedures between different
structures, fixing lattice parameters to experimental data, or using
ad hoc values for the interaction parameters.
Here, we combine a systematic analysis of the structural

energetics, with an accurate DFT+ DMFT-based description of
the electronic structure, using screened interaction parameters
obtained within the constrained random phase approximation
(cRPA).32 Our analysis thus incorporates both structural and
electronic effects, and leads to a transparent and physically sound
picture of the MIT in the nickelates, which also allows to obtain
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accurate structural parameters across the whole series. We find
that the electronic instability is crucial to stabilize the breathing
mode distortion by essentially “renormalizing” the corresponding
total energy surface, resulting in a coupled structural–electronic
first order transition. Trends across the series are driven by the
degree of octahedral rotations,28 which control both the strength
of the electronic instability as well as the magnitude of the
screened interaction parameters.

RESULTS
Relaxation of Pbnm structures and definition of correlated
subspace
All systems are fully relaxed within the high-temperature Pbnm
space group using nonspinpolarized DFT calculations. We then
use symmetry-based mode decomposition33 to analyze the
relaxed Pbnm structures and quantify the amplitudes of the
various distortion modes. The mode decomposition allows for a
clear conceptional distinction between different structural degrees
of freedom, which enables us to obtain those structural degrees of
freedom for which correlation effects are not crucial from standard
DFT calculations, while the important breathing mode distortion is
then obtained from DFT+ DMFT total energy calculations. For
further details on the DFT results and our distortion mode analysis
we refer to our previous work.30

Next, we construct a suitable low-energy electronic subspace,
for which the electron–electron interaction is treated within DMFT.
Here, we follow the ideas of ref. 26, and construct Wannier
functions only for a minimal set of bands with predominant Ni-eg
character around the Fermi level, which in all cases (except
LaNiO3) is well separated from other bands at lower and higher
energies. The Wannier functions are then used as localized basis
orbitals to construct the effective impurity problems for our fully
charge self-consistent (CSC) DFT+ DMFT calculations,34 where the
LB and SB Ni sites are treated as two separate impurity problems
(even for zero Rþ1 amplitude) coupled through the DFT+ DMFT
self-consistency loop, and the system is constrained to remain
paramagnetic. More details on the construction of the Wannier
functions and the technical aspects of our CSC DFT+ DMFT
calculations can be found in the “Methods” section.

(U, J) Phase diagrams
We first establish the main overall effect of the interaction
parameters U and J on the electronic properties of LuNiO3 within
the high-symmetry Pbnm structure, i.e., Rþ1 ¼ 0:0Å. The resulting
phase diagram is presented in Fig. 1. Analogously to ref. 26, we can
identify three distinct phases: First, a standard Mott-insulating
phase for large U values, with vanishing spectral weight around
the Fermi level, A(ω= 0)= 0, and equal occupation of all Ni sites.
Second, another insulating phase for moderate U values of around
2–3.5 eV and relatively large J \0:4 eVð Þ, which is characterized by
a strong difference in total occupation of the Wannier functions
centered on LB and SB Ni sites, respectively (nLB ≥ 1.5 and nSB ≤
0.5). We denote this phase as charge disproportionated insulating
(CDI) phase.35 Third, a metallic phase for small U values in between
the two insulating regions, with equal occupation on all Ni sites,
nSB ≈ nLB ≈ 1.0, and nonvanishing spectral weight at the Fermi
level, A(ω= 0) > 0.
The CDI phase has been identified as the insulating low-

temperature phase of nickelates in ref. 26, where it has also been
shown that the strong charge disproportionation is linked to the
MIT (in ref. 26 this phase has been termed “bond disproportio-
nated insulating”). We note that the Wannier basis within our low-
energy subspace, while being centered on the Ni sites with strong
eg character, also exhibits strong tails on the O ligands, and thus
the corresponding charge is distributed over the central Ni atom
and the surrounding O atoms. The strong charge

disproportionation found within our chosen basis set is thus fully
consistent with the observation that the integrated charge around
the two different Ni atoms differs only marginally.23 Alternatively,
within a negative charge transfer picture, the MIT can also be
described, using a more atomic-like basis, as
ðd8LÞiðd8LÞj ! ðd8L2ÞSBðd8ÞLB, where L denotes a ligand hole (c.f.
refs. 23,29,36,37).
One should also note that the CDI phase appears even though

all Ni sites are structurally equivalent (Rþ1 ¼ 0 in Fig. 1), which
indicates an electronic instability toward spontaneous charge
disproportionation. This has already been found in ref. 26, and
indicates that a purely lattice-based description is incomplete.
Moreover, within our CSC DFT+ DMFT calculations, the CDI phase
appears at significantly lower J and a more confined U range
compared to the non-CSC calculations of ref. 26. A similar
reduction of J values necessary to stabilize the CDI phase has
also been achieved in the non-CSC DFT+ DMFT calculations of
ref. 38, through the introduction of an (effective) inter-site Hartree
interaction. This suggests that the latter can indeed mimic the
main effect of a CSC calculation, where the charge density, and
thus the local occupations, are updated and the Hartree energy is
recalculated in each CSC step.
Next, we investigate how the electronic instability correspond-

ing to the CDI phase couples to the structural Rþ1 breathing mode
distortion. For this, we vary only the Rþ1 amplitude, while keeping
all other structural parameters fixed to the fully relaxed (within
nonmagnetic DFT) Pbnm structures, and calculate (U, J) phase
diagrams for different values of the Rþ1 amplitude. We do this for
both LuNiO3 and PrNiO3, i.e., for the two compounds with the
smallest and largest rare earth cations within the series that
exhibit the MIT. The (U, J) range of the CDI phase for a given Rþ1
amplitude is then extracted by interpolating the convex hull of the
phase boundary (similar to the red line in Fig. 1). The results are
summarized in Fig. 2b.
In both cases, R= Lu and R= Pr, the Rþ1 amplitude couples

strongly to the CDI state, and increases the corresponding area
within the (U, J) phase diagam. In particular, the minimal J
required to stabilize the CDI phase is significantly lowered.
Furthermore, also for R= Pr, there is a spontaneous instability
toward the formation of a CDI state, but the corresponding (U, J)
range is noticeably smaller than for R= Lu. In addition, the
minimal U required to stabilize the CDI phase for a given Rþ1

Fig. 1 Phase diagram as a function of interaction parameters U and
J for the relaxed Pbnm structure of LuNiO3, i.e., R

þ
1 ¼ 0:0Å. Each

calculation is represented by a marker. Three different phases can be
identified, indicated by different symbols: metallic (gray circles),
Mott-insulator (blue squares), and charge-disproportionated insu-
lator (CDI, magenta triangles). The boundary of the CDI phase is
fitted by the red line
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amplitude is slighty higher for R= Pr than for R= Lu. We note
that, since the R ions do not contribute noticeably to any
electronic states close to the Fermi level, the differences between
the two materials are mainly due to the different underlying Pbnm
structures, specifically the weaker octahedral tilts in PrNiO3

compared to LuNiO3. This increases the electronic bandwidth,
which opposes the tendency toward charge disproportionation.

Calculation of interaction parameters
So far we have varied U and J in order to obtain the general
structure of the phase diagram. Next, we calculate U and J
corresponding to our correlated subspace for all systems across
the series to see where in these phase diagrams the real materials
are located. We use cRPA32 to extract the partially screened
interaction parameters (U, J) within the Hubbard–Kanamori
parameterization, by separating off the screening channels related
to electronic transitions within the correlated eg subspace from all
other transitions (see also Methods section).
The results of these cRPA calculations are shown in Fig. 3 as a

function of the R cation and the corresponding Rþ4 amplitude, i.e.,
the main octahedral tilt mode in the Pbnm structure. The effective
interaction parameters U corresponding to our eg correlated
subspace are strongly screened compared to the bare interaction
parameters V. For LuNiO3, we obtain V= 13.91 eV and U= 1.85 eV,
while J= 0.42 eV with a corresponding bare value of 0.65 eV. This
is in good agreement with ref. 38, which obtained U= 1.83 eV and
J= 0.37 eV using the experimental P21/n structure. Furthermore,
both U and J decrease monotonically across the series (for
decreasing Rþ4 amplitude), leading to an additional reduction of U
by 25% in LaNiO3 compared to LuNiO3. This decrease is also
observed in the ratio U/V, indicating that it is due to an even
stronger screening for R= La compared to R= Lu.
Our calculated (U, J) parameters for R= Lu and R= Pr are also

marked in the corresponding phase diagrams in Fig. 2. It is
apparent, that for R= Lu the calculated cRPA values are well
within the stability region of the CDI phase, even for a relatively
small Rþ1 amplitude of 0.02 Å. In contrast, for R= Pr, the values are
outside the CDI phase even for Rþ1 amplitudes larger than the one
experimentally observed. Thus, at their respective experimental
breathing mode amplitudes, our calculations predict a paramag-
netic CDI state for LuNiO3 but not for PrNiO3.

Lattice energetics
Up to now, we have been addressing the stability of the CDI phase
for a given (fixed) Rþ1 amplitude. Now, we will address the stability
of the Rþ1 mode itself and calculate its amplitude across the series

using total energy calculations within CSC DFT+ DMFT. The
symmetry-based mode decomposition allows us to systematically
vary only the Rþ1 mode, while keeping all other structural
parameters fixed to the values obtained from the nonmagnetic
DFT calculations. Thus, in contrast to interpolation procedures as
in refs. 25,27, our approach excludes any additional energy
contributions related to simultaneous changes in other structural
distortions, in particular the octahedral tilt modes.
Figure 4 shows the total energy and the spectral weight around

the Fermi level, Aðω ¼ 0Þ, as a function of the Rþ1 amplitude for
LuNiO3, calculated using different values for (U, J). First, we focus
on the results obtained using our cRPA calculated values (J=
0.42 eV, U= 1.85 eV, orange crosses). It can be seen, that the
energy indeed exhibits a minimum for an Rþ1 amplitude very close
to the experimental value. Furthermore, as seen from Aðω ¼ 0Þ,
the system undergoes a MIT for increasing Rþ1 amplitude and is
clearly insulating in the region around the energy minimum. Thus,
our CSC DFT+ DMFT calculations together with the calculated

Fig. 2 a Illustration of the Rþ1 breathing mode distortion. b Extension of the CDI phase within the (U, J) phase diagram for varying Rþ1
breathing mode amplitude for LuNiO3 (left) and PrNiO3 (right). Each Rþ1 amplitude is represented by a different brightness level, according to
the color scale on the right, starting from Rþ1 ¼ 0:0Å (darkest) to Rþ1 ¼ 0:075Å (brightest). The levels corresponding to the experimental Rþ1
amplitudes for R= Lu18 and R= Pr,66 respectively, are highlighted by diagonal stripes. The obtained cRPA values for U and J are marked by
orange crosses and compared to the values from ref. 38 for LuNiO3 (red diagonal cross)

Fig. 3 Screened onsite Hubbard–Kanamori interaction parameters U
(top) and J (bottom) for the eg orbitals within our low-energy
subspace across the nickelate series as a function of the octahedral
tilt amplitude Rþ4 . Additionally, the ratio between U and the
corresponding bare (unscreened) interaction parameter V is shown
(middle)
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cRPA interaction parameters correctly predict the CDI ground
state for LuNiO3, and furthermore result in a breathing mode
amplitude that is in excellent agreement with experimental data.
To see how subtle changes in (U, J) influence the energetics of

the system, we also perform calculations using the cRPA values
obtained in ref. 38 (J= 0.37 eV, U= 1.83 eV, red diagonal crosses).
In this case, we obtain a more shallow energy minimum at a
slightly reduced amplitude of Rþ1 ¼ 0:06 Å. This reduction is
mainly caused by the slightly smaller J. Moving the values of (U, J)
even closer to the boundary of the stability region of the CDI
phase for the experimental Rþ1 amplitude, cf. Figure 2 (e.g., J=
0.2 eV, U= 1.8 eV, cyan triangles) results in a loss of the energy
minimum for finite Rþ1 amplitude. Nevertheless, a kink in the total
energy is clearly visible at the Rþ1 amplitude for which the system
becomes insulating, indicating the strong coupling between the
structural distortion and the MIT. A similar kink can also be
recognized (for rather small Rþ1 amplitude) in the total energy
obtained for J= 0.37 eV and U= 1.83 eV, resulting in an additional
local energy minimum at Rþ1 ¼ 0, a typical hallmark of a first order
structural transition. In addition, we also perform calculations
where (U, J) are increased by 10% compared to our cRPA values (J
= 0.47 eV, U= 2.04 eV, red circles), which leads to a deeper energy
minimum and an Rþ1 amplitude in near perfect agreement with
experiment.
Next, we investigate the influence of the octahedral rotations

on the energetics of the Rþ1 mode, where we perform a series of
calculations for LuNiO3 with artificially decreased octahedral
rotations (see Methods section), fixed (U, J), and fixed volume.
As can be seen from the data shown in the top panel of Fig. 5,
decreasing the amplitude of the octahedral rotations to 70%,
which corresponds roughly to the amplitudes found for PrNiO3,
leads to a vanishing of the minimum at nonzero Rþ1 amplitude.
This confirms that the reduction of the octahedral rotation
amplitudes plays a crucial role in the energetics of the breathing
mode distortion and in determining the trend across the nickelate
series.

Finally, we examine how the energetics of the Rþ1 mode varies
across the series, by comparing the two end members LuNiO3 and
PrNiO3, as well as SmNiO3, which is the compound with the largest
R cation in the series that still exhibits a paramagnetic CDI state. In
each case we use (U, J) values that are increased by 10% relative to
the corresponding cRPA values. The use of such slightly increased
interaction parameters is motivated by the observation that the U
values obtained from the static limit of the (frequency-dependent)
screened cRPA interaction are often too small to reproduce
experimental data for various materials.31,39–41 The results are
depicted in Fig. 5.
As discussed above, for LuNiO3 (blue circles), we obtain an

energy minimum exactly at the experimentally observed ampli-
tude. For SmNiO3 (purple triangles), we obtain a much more
shallow minimum at Rþ1 ¼ 0:06 Å, which corresponds to a
reduction by ≈20% compared to LuNiO3. Unfortunately, structural
refinements for SmNiO3 are only available within the Pbnm space
group, and thus no information on the Rþ1 amplitude exists.42

However, the reduction of the Rþ1 amplitude from R= Lu to R=
Sm is much more pronounced compared to previous DFT+ U
calculations with AFM order,30 where the reduction is only about
8%.
For PrNiO3 (green squares), no stable Rþ1 amplitude is obtained

within our paramagnetic DFT+ DMFT calculations, but a kink
marking the MIT is still visible at Rþ1 ¼ 0:06 Å. This is also in
agreement with the experimental observation that no paramag-
netic CDI phase occurs in PrNiO3.

9 Furthermore, it was recently
demonstrated using DFT+ DMFT calculations that for NdNiO3 the
CDI state becomes only favorable in the antiferromagnetically
ordered state.27 Our results indicate that this also holds for PrNiO3,
while in SmNiO3 a stable Rþ1 amplitude can be found even in the
paramagnetic case. Thus, the phase boundaries across the series
are correctly described within the DFT+ DMFT approach. We
further note that, considering the (U, J) phase diagrams for PrNiO3

in Fig. 2, a U of up to 2.5 or even 3 eV would be required to put
PrNiO3 well within the CDI phase region at its experimental Rþ1
amplitude, which appears necessary to obtain a stable Rþ1

Fig. 4 Top: Total energy, EDFT+DMFT, as a function of the Rþ1
breathing mode amplitude for LuNiO3 using different values
for the interaction parameters U and J. The experimental amplitude
(Rþ1 ¼ 0:075Å18) is marked by the gray vertical line. Bottom:
corresponding spectral weight at the Fermi level, indicating the
MIT as a function of Rþ1 amplitude

Fig. 5 Top: Total energy as a function of the Rþ1 breathing mode
amplitude for LuNiO3 with octahedral rotation amplitudes reduced
to 90, 80, and 70% (for U= 2.04 eV and J= 0.47 eV). Bottom:
corresponding data for various materials across the nickelate series.
Here, (U, J) values are increased by 10% compared to the results of
the cRPA calculations (U= 2.04 eV/J= 0.47 eV for LuNiO3, U=
1.82 eV/J= 0.44 eV for SmNiO3, and U= 1.70 eV/J= 0.43 eV for
PrNiO3)
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amplitude. However, such a large U seems highly unrealistic
considering the calculated cRPA values.

DISCUSSION
In summary, the successful application of CSC DFT+ DMFT and
symmetry-based mode analysis, without ad hoc assumptions
regarding the strength of the Hubbard interaction or fixing
structural parameters to experimental data, allows to elucidate the
nature of the coupled electronic–structural transition across the
nickelate series. Our analysis reveals that the MIT, which is related
to an electronic instability towards spontaneous charge dispro-
portionation, leads to a significant restructuring of the energy
landscape, indicated by a kink in the calculated total energy. This
creates a minimum at a finite Rþ1 amplitude (for appropriate U and
J), and suggests a first order character of the coupled structural
and electronic transition in the PM case, in agreement with
experimental observations11 for both SmNiO3

43 and YNiO3.
15 We

note that, since a certain critical value of Rþ1 is necessary to induce
the MIT (see, e.g., Fig. 4), a second order structural transition would
imply the existence of an intermediate structurally distorted
metallic phase, inconsistent with experimental observations.
The strength of the electronic instability towards spontaneous

charge disproportionation and thus the stability range of the CDI
phase, is strongly affected by the amplitude of the octahedral
rotations, varying across the series. This is in agreement with
ref. 28, but in addition we show that to arrive at a fully coherent
picture, with correct phase boundaries, it is crucial to treat both
electronic and structural degrees of freedom on equal footing. For
example, even though a CDI state can be obtained for PrNiO3 for
fixed Rþ1 amplitude >0.06 Å, our calculations show that this is
indeed energetically unstable. In addition, the octahedral rotations
also influence the screening of the effective interaction para-
meters, disfavoring the CDI state for larger R cations. As a result,
magnetic order appears to be crucial to stabilize the breathing
mode distortion for both R= Nd and Pr.
Moreover, our calculations not only lead to a coherent picture of

the MIT, but also allow to obtain accurate structural parameters
across the nickelate series. Furthermore, this is achieved using
only a minimal correlated subspace. We note that the use of such
a reduced correlated subspace can be advantageous, since it not
only allows to reduce the computational effort (due to less
degrees of freedom), but also because the double-counting
problem is typically less severe if the O-p dominated bands are not
included in the energy window of the correlated subspace.44,45 In
the present case, the resulting more extended Wannier functions,
which also incorporate the hybridization with the surrounding
ligands, also provide a rather intuitive picture of the underlying
charge disproportionation.
Finally, our study represents the successful application of a

combination of several state-of-the-art methods that allows to
tackle other open issues related to the entanglement of structural
and electronic properties in correlated materials, such as
Jahn–Teller and Peierls instabilities, charge density wave, or
polarons.

METHODS
DFT calculations
All DFT calculations are performed using the projector augmented wave
(PAW) method46 implemented in the “Vienna Ab initio Simulation
Package” (VASP)47–49 and the exchange correlation functional according
to Perdew, Burke, and Ernzerhof.50 For Ni, the 3p semicore states are
included as valence electrons in the PAW potential. For the rare-earth
atoms, we use PAW potentials corresponding to a 3+ valence state with f-
electrons frozen into the core and, depending on the rare-earth cation, the
corresponding 5p and 5s states are also included as valence electrons. A k-
point mesh with 10 × 10 × 8 grid points along the three reciprocal lattice

directions is used and a plane wave energy cut-off of 550 eV is chosen for
the 20 atom Pbnm unit cell. All structures are fully relaxed, both internal
parameters and lattice parameters, until the forces acting on all atoms are
smaller than 10−4 eV/Å. As in ref. 30, we perform calculations for LaNiO3

within the Pbnm and P21/n space groups, to allow for a more consistent
comparison with the rest of the series, even though LaNiO3 is
experimentally found in a different space group (R3̄c). See also the
discussion in ref. 22.

Distortion mode analysis
For the symmetry-based mode decomposition33 we use the software
ISODISTORT.51 Thereby, the atomic positions within a distorted low-
symmetry crystal structure,~rdisti , are written in terms of the positions in a
corresponding non-distorted high-symmetry reference structure,~r0i , plus a
certain number of independent distortion modes, described by orthonor-
mal displacement vectors, ~dim , and corresponding amplitudes, Am:

~rdisti ¼~r0i þ
X

m

Am~dim: (1)

The distortion modes of main interest here are the out-of-phase and in-
phase tilts of the oxygen octahedra, Rþ4 and Mþ

3 , for characterization of the
high-temperature Pbnm structure, and the Rþ1 breathing mode distortion
within the low-temperature P21/n structure. A more detailed description
for nickelates can be found, e.g., in refs. 19,30. For the calculations with
reduced octahedral rotation amplitudes shown in Fig. 5, both Rþ4 and Mþ

3
modes, as well as the Xþ

5 mode intimately coupled to these two modes,
have been reduced by a common factor.

DMFT calculations
The Wannier functions for our CSC DFT+ DMFT calculations are
constructed via projections on local Ni eg orbitals as described in
ref. 52,53, using the TRIQS/DFTTools software package.54,55 The effective
impurity problems within the DMFT loop are solved with the TRIQS/cthyb
continuous-time hybridization-expansion solver,56 including all off-
diagonal spin-flip and pair-hopping terms of the interacting
Hubbard–Kanamori Hamiltonian.57 The LB and SB Ni sites are treated as
two separate impurity problems (even for zero Rþ1 amplitude), where the
number of electrons per two Ni sites is fixed to 2, but the occupation of
each individual Ni site can vary during the calculation (while the solution is
constrained to remain paramagnetic).
The fully localized limit58 is used to correct for the double-counting (DC)

in the parametrization given in ref. 59:

Σimp
dc;α ¼ U nα � 1

2

� �
; (2)

where nα is the occupation of Ni site α, obtained in the DMFT loop, and the
averaged Coulomb interaction is defined as U ¼ ð3U � 5JÞ=3. Note, that in
our Wannier basis the occupations change quite drastically from the
original DFT occupations and the choice of the DC flavor can therefore
influence the outcome. However, with respect to the lattice energetics we
found no difference in the physics of the system when changing the DC
scheme or using fixed DFT occupation numbers for the calculation of the
DC correction. If the DFT occupations are used instead of the DMFT
occupations, larger interaction parameters are required to obtain the same
predicted Rþ1 amplitude. However, we note that the DFT occupations have
no clear physical meaning within CSC DFT+ DMFT.
The spectral weight around the Fermi level, Aðω ¼ 0Þ, is obtained from

the imaginary time Green’s function60:

Aðω ¼ 0Þ ¼ � β

π
Gimp

β

2

� �
: (3)

For T= 0 (β→∞), A is identical to the spectral function at ω= 0. For
finite temperatures, it represents a weighted average around ω= 0 with a
width of ~kBT

60.
The total energy is calculated as described in ref. 31:

EDFTþDMFT ¼ EDFT½ρ�
� 1

Nk

P

λ;~k

εKS
λ;~k

fλ~k þ hHKSiDMFT

þhHintiDMFT � Eimp
DC :

(4)

The first term is the DFT total energy, the second term subtracts the
band energy of the Ni-eg dominated bands (index λ), the third term
evaluates the kinetic energy within the correlated subspace via the lattice
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Green’s function, the fourth term adds the interaction energy, where we
use the Galitskii–Migdal formula,61,62 and the last term subtracts the DC
energy. To ensure good accuracy of the total energy, we represent both
Gimp and Σimp in the Legendre basis63 and obtain thus smooth high-
frequency tails and consistent Hartree shifts. Moreover, we sample the
total energy over a minimum of additional 60 converged DMFT iterations
after the CSC DFT+ DMFT loop is converged. Convergence is reached
when the standard error of the Ni site occupation of the last 10 DFT+
DMFT loops is smaller than 1.5 × 10−3. That way we achieve an accuracy in
the total energy of <5meV. All DMFT calculation are performed for β=
40 eV−1, which corresponds to a temperature of 290 K.

cRPA calculations
We use the cRPA method as implemented in the VASP code64 to extract
interaction parameters for our correlated subspace. These calculations are
done for the relaxed Pbnm structures.30 We follow the ideas given in the
paper of ref. 26 and construct maximally localized Wannier functions
(MLWFs) for the Ni-eg dominated bands around the Fermi level using the
wannier90 package.65 Since the corresponding bands are isolated from
other bands at higher and lower energies, no disentanglement procedure
is needed, except for LaNiO3, for which we ensured that the resulting
Wannier functions are well converged and have a very similar spread as for
all other compounds of the series.
We divide the total polarization, P, into a contribution involving only

transitions within the effective “eg” correlated subspace and the rest,
P ¼ Peg þ Pr . The constrained polarization, Pr, and the static limit of the
screened interaction matrix, Wr(ω= 0)= V[1−VPr(ω= 0)]−1, where V is the
bare interaction, are then calculated using a 5 × 5 × 3 k-point mesh, a plane
wave energy cut-off of Ecut= 600 eV, and 576 bands. Effective values for
the Hubbard–Kanamori interaction parameters (U, J) are extracted from
Wr(ω= 0) as described in ref. 57. Our procedure is analogous to the
calculation of effective interaction parameters for LuNiO3 in ref. 38.
It should be noted that the MLWFs used for the cRPA calculations are

not completely identical to the projected Wannier functions used as basis
for the correlated subspace within our DMFT calculations. However, test
calculations for the case of LuNiO3 showed only minor differences between
the hopping parameters corresponding to the MLWFs and the ones
corresponding to the Wannier functions generated by the projection
scheme implemented in VASP. Furthermore, we did not find a noticeable
difference between the screened (U, J) values calculated for the MLWFs
and the ones calculated for the initial guesses for these Wannier functions,
i.e., before the spread minimization, which are also defined from
orthogonalized projections on atomic-like orbitals. We thus conclude that
the two sets of Wannier functions are indeed very similar, and that the
cRPA values of (U, J) obtained for the MLWFs are also representative for the
Wannier basis used in our DMFT calculations.
Additionally, we point out that, in contrast to what was found in ref. 38,

we observe only negligible differences in the interaction parameters
obtained for the relaxed Pbnm structure and the ones obtained for the
experimental low-temperature P21/n structure for LuNiO3 (1.827 eV and
1.876 eV compared to 1.849 eV within Pbnm). In particular, the difference of
the interaction parameters on the two inequivalent Ni sites in the P21/n
structure (±0.03 eV) are very small compared to the changes stemming
from different degrees of octahedral rotations (i.e., different R cations),
justifying the use of constant interaction parameters for different Rþ1
amplitudes. Furthermore, the differences in the intra-orbital U matrix
elements between the dz2 and the dx2�y2 orbitals are negligible small,
~0.01 eV, in our calculations. Therefore, all the values of the interaction
parameters are averaged over both eg orbitals.
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6
M E C H A N I S M A N D C O N T R O L PA R A M E T E R S O F
T H E C O U P L E D T R A N S I T I O N

In this chapter I build a simplified model Hamiltonian, which eluci-
dates the mechanism of the coupled electronic-structural MIT found
in rare-earth nickelates. The work presented in this chapter is a collab-
oration with Oleg E. Peil, and Antoine Georges. Oleg E. Peil had the
idea of the model description, which we discussed on from an early
stage. Moreover, I supported the project by performing DFT+DMFT
calculations of nickelate compounds to verify the model.

The following work was published as ”Mechanism and Control Pa-
rameters of the Coupled Structural and Metal-Insulator Transition in Nick-
elates” in Physical Review B, see Ref. [51]. Copyright (2019) by the
American Physical Society. The calculations for the model Hamilto-
nian were performed by Oleg E. Peil, as well as the construction of
the Landau Theory. I performed the DFT+DMFT calculations, as well
as the extraction of the parameters g and K from DFT.

6.1 motivation

In the last chapter I showed that an electronic instability is responsi-
ble for triggering the CDI state and furthermore, allows for a stable
breathing mode distortion amplitude. Moreover, I demonstrated that
by changing the octahedral rotation amplitude the tendency to the
electronic instability is controlled. Eventually, leading to a loss of a
stable finite breathing mode amplitude for PrNiO3. In this chapter I
use this empirical findings to build a simplified model Hamiltonian,
which elucidates the exact electronic mechanism triggering the CDI
state. Furthermore I identify the control parameters driving the tran-
sition, allowing to understand how certain structural changes, e.g.
octahedral rotations, strain, or the breathing mode distortion affect
the system. Moreover, this model Hamiltonian allows to determine
the equilibrium R+1 amplitude without calculating the total energy.
Finally, this leads to the formulation of a Landau theory, describing
the paramagnetic coupled transition.

Since the joint publication [51] is presented in a rather compact for-
mat, I first give a more detailed introduction in the proposed model
Hamiltonian. This is followed by a more detailed description on the
realistic DFT+DMFT calculations which I performed. Moreover, I
show how the parameters of the model can be extracted from DFT.

97



98 mechanism and control parameters of the coupled transition

6.2 model description of rare-earth nickelates

We proposed a model Hamiltonian describing the nickelate series,
only keeping the key low-energy degrees of freedom to produce the
main features of the coupled electronic-structural transition. It con-
sists of three parts, a purely electronic part, describing the hopping
of electrons and the local Coulomb interaction, a lattice part describ-
ing the stiffness with respect to the breathing mode distortion, and
importantly the electron-lattice coupling. The resulting Hamiltonian
has the following form:

Ĥ = Ĥband + Ĥint + Ĥlatt[Q] + Ĥe-l[Q] . (130)

Here, I label the breathing mode distortion amplitude as Q instead
of R+1 to be in line with the notation used in the corresponding paper
Ref. [51].

We assume that the hoppings and the Coulomb interaction do not
depend on Q. For the kinetic part, the band part, we construct a
simplified tight-binding model with hopping amplitudes, t and t ′,
limited to nearest and next-nearest neighbor sites:

Ĥband = −
∑

i,j,m,m ′,σ

tmm
′

ij c
†
imσcjmσ . (131)

m corresponds to the two eg orbitals, i, j indicate sites within a three
dimensional cubic lattice, and σ is a spin index. The interaction term
Ĥint is the Hubbard-Kanamori Hamiltonian, Eq. 52. The lattice re-
sponse Ĥlatt is described as:

Ĥlatt[Q] =
K

2
Q2 , (132)

with K being the stiffness of the breathing mode distortion. The cou-
pling between the breathing mode and the electronic degrees of free-
dom Ĥe-l is described as:

Ĥe-l[Q] =
1

2

∑
mσ

∆sm[Q]

[∑
i∈SB

n̂imσ −
∑
i∈LB

n̂imσ

]

︸ ︷︷ ︸
δn̂m

. (133)

Here, we introduced ∆sm[Q], an on-site potential modulation due to
the breathing mode distortion.
∆sm[Q] can be obtained from DFT, and we find that it is linear in Q.

This is shown for R =Lu, Sm, and Pr in Fig. 6 of Ref. [51]. Therefore,
we expand ∆sm in Q and approximate it to be linear, introducing the
electron-lattice coupling parameter gm:

∆sm[Q] ≈ gm Q . (134)
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Moreover, we neglect the orbital dependency m, because we observe
in our DFT+DMFT calculations, that in the regime of U − 3J 6 ∆s

orbital polarization is greatly suppressed. Hence, Ĥe-l has the form:

Ĥe-l[Q] =
1

2
g δn̂ , (135)

and the full model Hamiltonian becomes:

Ĥ = Ĥband[W] + Ĥint[U, J] −
1

2
g δn̂ Q+

K

2
Q2 . (136)

The band part depends on the bandwidth W, or the correspond-
ing hopping amplitudes t, which have a one to one correspondence
with the octahedral rotation strength (see Fig. 5 in Ref. [51]). The
Coulomb interaction term depends on the interaction parameters U,
and J. The last two terms, describing the electron-lattice coupling,
and the breathing mode stiffness, are determined by the parameters
g, and K.

Minimizing the total energy E = 〈H〉 with respect to Q, and using
the Hellman-Feynman theorem gives:

2K

g
Q̄ = ν[Q̄] , (137)

where ν[Q] = 〈n̂LB − n̂SB〉Q is the average charge disproportionation
for a given amplitude Q, and Q̄ marks the equilibrium amplitude.
This is the central equation allowing to determine the stable equi-
librium breathing mode distortion by calculating ν[Q] curves, for a
given set of parameters g and K, and finding intersection points of
2K
g Q and ν[Q].

The stability of the solution is determined by a renormalized stiff-
ness:

κ = K−
g2

2
(
∂ν

∂∆s
) . (138)

Therefore, for κ < 0 the breathing mode amplitude is unstable. At
Q = 0, assuming no spontaneous charge disproportionation, we de-
fine the electronic susceptibility of the charge disproportionation with
respect to the breathing mode distortion as:

χe ≡ (
∂ν

∂∆s
)Q=0 . (139)

Hence, the stability of the high-temperature Pbnm phase is controlled
by the electronic response χe.

If the model captures the physics in rare-earth nickelates correctly,
this allows to extract the stable equilibrium breathing mode am-
plitude also for realistic DFT+DMFT calculations. One can extract
the parameters g, and K from DFT, and by calculating ν[Q] with
DFT+DMFT, the stable breathing mode amplitude can be found from
the intersection points. This has the advantage that one does not
need to calculate total energies.
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6.3 dft+dmft calculations with inter-site coulomb in-
teraction

In Ref. [51], we perform OS DFT+DMFT calculations for the real
material. The Wannier functions for the DMFT calculations are con-
structed via projections on local Ni eg orbitals as described in chap-
ter in 5. In order to mimic the effect of CSC, I included explicitly an
inter-site interaction term in the Hamiltonian. Here, we follow the ap-
proach of Ref. [143] by including the inter-site interaction in Hartree
approximation. Thus, the complete lattice Hamiltonian that serves as
input for DMFT has the following form:

Ĥ = ĤCkin + Ĥint[U, J] + ĤV . (140)

where Ĥkin is obtained by DFT for various breathing mode distor-
tion amplitudes Q, and ĤV is the inter-site interaction. The inter-site
interaction has the general form:

ĤV =
1

2

∑
i 6=j

Vijn̂in̂j , (141)

which is determined on a mean-field level as a Hartree potential shift
in the DMFT self-energy. The shift depends on the relative occupation
of the NiLB and NiSB sites, and can be thus defined as [143]:

ΣVi = zeffV(nj −ni)/2 . (142)

Here, j designates the opposite sublattice relative to i, i.e. if i = SB
then j = LB and vice versa. ni is the eg DMFT impurity occupancy of
the corresponding site. zeff denotes the effective lattice connectivity,
which is obtained by summing all Ni site contribution to the inter-site
interaction with the Madelung method. We set zeff ≈ 1.747 according
to the value found in Ref. [143].

Since parts of both Ĥint and ĤV are already taken into account on
the DFT level, a DC correction must be included for both terms. For
the calculations done here, I incorporate those contributions in the
local self-energy Σ for each site i

Σi(iωn) = Σ
imp
i − Σ

imp
DC,i + Σ

V
i − ΣVDC,i . (143)

The DC correction in Σi due to Ĥint is evaluated in the ANI param-
eterization for the eg subspace as described in Eq. 123 with the DFT
Wannier orbital occupations from DFT. Furthermore, the DC correc-
tion due to ĤV is calculated as [143]:

ΣVDC,i = zeffV(n
DFT
j −nDFT

i )/2 , (144)

where nDFTi is the occupancy of the Wannier function in DFT. The
energy correction due to the DC for the impurity part is thus:

E
imp
DC,i =

Ū

2
nDFT
i (nDFT

i − 1) , (145)
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Figure 23: DFT total energies as functions of the breathing mode distortion
amplitude Q for R =Lu, Sm, and Pr.

where Ū is the average Coulomb interaction (eq. 124). The energy
contribution for the inter-site double-counting is per two Ni sites:

EVDC =
1

2

[
ΣVDC,LBnLB + ΣVDC,SBnSB

]
. (146)

To better understand the effect of the DC correction on the energy
one can rewrite the energy contributions of the DC terms using the
fact that the sum over the two impurity occupations is constant (nLB +

nSB = 2):

nLB = 1+
ν

2

nSB = 1−
ν

2
.

(147)

Inserting this into the DC terms (145) and (146), the full DC contribu-
tion to the energy for 2 Ni sites reduces to

EDC = E
imp
DC,LB + E

imp
DC,SB + EVDC

=
ν2DFT
4

(Ū− zeffV) .
(148)

We then performed OS DFT+DMFT calculations for different mem-
bers of the rare-earth nickelates with various breathing mode distor-
tion amplitudes Q. In general, we find good qualitative agreement to
the CSC DFT+DMFT calculations performed in Ref. [50].

6.4 determination of g and K from dft

To verify the model Hamiltonian, we extract the parameters g and K
from DFT, to construct 2K/g ·Q, which can be then compared with
the ν[Q] curves from the DFT+DMFT calculations. The thereby found
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stable equilibrium amplitudes can be compared with experiment and
previous total energy results of DFT+DMFT [50].

We assume now that our DFT calculations represent the model in
Eq. 136, if one sets the interaction parameters to zero in the model
Hamiltonian, and subtracts interacting part already accounted for in
DFT by subtracting the DC correction. Then, we perform calculations
for R =Lu, Sm, and Pr for the Pbnm-relaxed nickelate structures as
function of Q with DFT, from which the parameters g and K can be
determined. To do so, we add on top of the relaxed Pbnm structures
from DFT the R+1 breathing mode distortion. From these calculations,
we obtain first the total energy, EDFT, which is depicted in Fig. 23.
Moreover, we can calculate νDFT ≡ 〈δn〉DFT as function of Q by con-
structing Wannier functions for the eg orbitals.

Next, we define λ as the charge-lattice response in DFT:

νDFT = λQ , (149)

which we calculate in Fig. 6 of Ref. [51]. From Fig. 23 it is observed
that EDFT appears to a good approximation quadratic in Q. Hence,
we can perform a quadratic fitting to the DFT energy. Here, one
needs to consider that DFT already accounts for certain interactions.
Subtracting them via the DC correction Eq. 148 gives:

EDFT − EDC =
c

2
Q2 . (150)

Next, one needs to connect the DFT parameters λ and c to the
model parameters g and K. To do so, I can express the DFT energy
(subtracting the DC correction) as expectation value of the model
Hamiltonian with zero interaction strength

EDFT − EDC = 〈Hband〉−
1

2
g νDFT Q+

K

2
Q2 , (151)

where the expectation value of Hband depends implicitly on Q. To
extract K, one takes the derivative with respect to Q:

∂(EDFT − EDC)

∂Q
=

〈
∂H

∂Q

〉
= −

1

2
gνDFT +KQ = cQ (152)

and obtains K as:

K = c+
1

2
gλ . (153)

Finally, g needs to be extracted, which relates the energy level split-
ting between SB and LB sites ∆s to Q:

∆s = gQ (154)

From the construction of the model Hamiltonian it is evident that
∆s is the bare, without any interactions, level splitting between the
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LB and SB site. Interaction effects are handled separately in Ĥint.
Therefore, one defines the DFT splitting as follows:

∆sDFT = ∆s +∆sDC +∆sDCV , (155)

where ∆sDC is given by Σimp
DC,SB −Σ

imp
DC,LB, and ∆sDCV is given by ΣVDC,SB −

ΣVDC,LB. Using this, Eq. 155 can be now rewritten to extract the bare
level splitting:

∆s = g Q = ∆sDFT − (zeffV − Ū)νDFT , (156)

which allows to determine g from DFT.

6.5 project summary

First, we perform DMFT calculations for the model Hamiltonian ob-
taining ν[Q] curves for various W,g, and K values. By finding in-
tersection points with 2K/g ·Q we investigated solutions of Eq. 137.
Thereby, we find a strong non-linear dependence of ν on Q, which
is the key in determining the nature of the transition. We show that
depending on g,K, and χe, there can be one, two, or three intersection
points of ν[Q] with 2K/g ·Q. By analyzing the stability criterion of
the solutions we find coexistence of different Q̄ values. This demon-
strates that the nature of the coupled electronic-structural transition
is of first order. Moreover, we find that the non-linear response occurs
exactly while the system undergoes the MIT, similar to the findings
of our work in Ref. [50], where the total energy curve shows a kink
at the MIT. Additionally, we find a hysteresis for increasing and de-
creasing ν[Q] curves, due to the electronic transition itself.

From our model calculations we infer that the transition is con-
trolled by the parameters g, K, and χe. We then extract these val-
ues from DFT and find that the ratio 2K/g is fairly constant across
the nickelate series. Furthermore, we show that the renormalized
stiffness κ, controlling the sensitivity to charge disproportionation at
small Q, is dominated by the variation of χe across the series. χe
extracted from DFT varies by almost a factor of two from R =Lu to
Pr. Hence, we conclude that the transition is sensitively controlled
by χe, which in turn is controlled by the bandwidth, respectively the
octahedral rotations.

Next, we perform OS DFT+DMFT calculations for specific mem-
bers of the series. Here, we find the same non-linear behavior of
ν[Q] as in the model calculation. Moreover, we find a stable equilib-
rium breathing mode distortion, in quantitative agreement with ex-
periment and CSC DFT+DMFT total energy calculations for LuNiO3
and SmNiO3. This verifies that the model incorporates the main in-
gredients determining the physics of the rare-earth nickelates series.
For PrNiO3 we find a stable breathing mode as well, in contrast to my
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previous work [50]. However, PrNiO3 seems to be very close to the
transition, and here we used the same values U and J across the series.
Using reduced U and J values for PrNiO3, as obtained in our cRPA
calculations, could lead to a destabilization of the breathing mode
distortion, and thus agreement with the total energy calculation.

Finally, we rationalize these findings in a Landau theory involving
the order parameters ν, and an additional parameter φ associated
with the MIT. Both order parameters are then coupled as φν2, which
is the simplest coupling allowed by symmetry. From this Landau the-
ory the non-linear behavior of ν[Q] is reproduced, showing the same
features as the Model Hamiltonian. Furthermore, it is found that the
coupling between electronic degrees and the structure φν2 amplifies
the charge disproportionation, critically determining the stability of
a finite breathing mode amplitude.

6.6 conclusion

In this chapter, we constructed a model Hamiltonian, which describes
the coupled electronic-structural transition of rare-earth nickelates.
We find a non-linear response of the charge disproportionation with
respect to the breathing mode distortion, ν[Q], which leads to a cou-
pled first-order transition within the model Hamiltonian in agree-
ment with experiment. This shows, that only a explicit treatment
of electronic and structural degrees of freedom on the same footing
allows to correctly describe the coupled transition. Furthermore, we
show that the trends across the nickelate series are driven by the sus-
ceptibility towards charge disproportionation, χe, which is sensitively
controlled by the bandwidth.

We find that the constructed model agrees well with DFT+DMFT
calculations performed for the nickelate series. This allows to extract
the stable equilibrium breathing mode amplitude without calculat-
ing the total energy within DFT+DMFT. This is a severe advantage
for practical calculations, since the calculation of total energies is nu-
merically more demanding.

In the work of Mercy et al. [49] the mechanism of the MIT has
also been investigated, showing that the octahedral rotations are sen-
sitively connected to the MIT in agreement with the findings pre-
sented in this chapter. However, the model proposed by the authors
of Ref. [49] contains only structural degrees of freedom and hence, the
nature of the transition cannot be determined. Moreover, it is ques-
tionable how the performed magnetic DFT+U calculations relate to
the paramagnetic insulating state in nickelates. Therefore, our work
goes beyond the considerations of Ref. [49], by constructing a model
that explicitly incorporates both, electronic, and structural degrees
of freedom. In contrast, our work excludes a pure lattice effect of
the transition by showing that it is the strong non-linear shape of
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the electronic response which is critical in finding stable equilibrium
breathing modes. All calculations are performed for the paramag-
netic state, and render therefore for the first time a complete picture
the paramagnetic coupled transition.

The idea of finding the stable equilibrium breathing mode distor-
tion by intersection with ν[Q], can in principle also applied to other
systems, thus allowing to determine structural trends or parameters
without the need of performing total energy calculations. In a future
step, one could incorporate the magnetic ordering into the model
Hamiltonian, by allowing for magnetic ordering in the DMFT solu-
tion of the model, to investigate the differences of the paramagnetic
and AFM insulating states. Moreover, the temperature dependence
of the transition could also be analyzed.

6.7 peer reviewed work
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Rare-earth nickelates exhibit a remarkable metal-insulator transition accompanied by a symmetry-lowering
structural distortion. Using model considerations and first-principles calculations, we present a theory of this
phase transition which reveals the key role of the coupling between electronic and lattice instabilities. We show
that the transition is driven by the proximity to an instability towards electronic disproportionation which couples
to a specific structural distortion mode, cooperatively driving the system into the insulating state. This allows us
to identify two key control parameters of the transition: the susceptibility to electronic disproportionation and the
stiffness of the lattice mode. We show that our findings can be rationalized in terms of a Landau theory involving
two coupled order parameters, with general implications for transition-metal oxides.
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I. INTRODUCTION

The coupling of electrons to lattice degrees of freedom pro-
vides a key opportunity to control the properties of strongly
correlated materials as in, e.g., epitaxial heterostructures [1].
Such a coupling often leads to concomitant electronic and
structural transitions, which have been observed in V2O3 [2],
manganates [3], Ca2RuO4 [4,5], etc. Rare-earth nickelates
(RNiO3) [6–8] represent an ideal playground in this respect
because their metal-insulator transition (MIT), tightly associ-
ated with a lattice mode, is easily tunable [9,10].

The MIT in RNiO3 is accompanied by a bond dispro-
portionation (BD), i.e., a coherent contraction of the NiO6

octahedra on one sublattice [short-bond (SB) octahedra] and
an expansion of the octahedra on the other sublattice [long-
bond (LB) octahedra], also referred to as the “breathing
mode” (BM) [7,11]. The resulting “bond-disproportionated
insulator” (BDI) is also characterized by an electronic dis-
proportionation (ED), whereby the local configuration of SB
octahedra is close to d8L2 and that of LB octahedra is close
to d8 [12–15], or, in terms of “frontier” eg orbitals, to e0

g and
e2

g, respectively [16–19]. The electron localization on the LB
sublattice is the result of a “site-selective Mott transition”
[20], occurring irrespective of the (ground-state) magnetic
ordering for all systems with R cations smaller than Nd, and
lowering the energy of the insulating phase below that of the
metallic phase [14,21–23]. Therefore, magnetic order seems
to play only a secondary role for the smaller R cations from
Lu to Sm, enhancing an already existing tendency towards the
MIT [24–26].

The mechanism of the interplay between electronic and
lattice degrees of freedom is not yet understood. This question

is of key importance to identify the driving force responsible
for the BD and for the first-order transition [27] into the
paramagnetic insulating state. This transition was previously
described either as a pure charge-order transition [28] or as
a result of only the coupling between lattice modes [29].
Recently, the authors of Ref. [30] proposed that the transition
corresponds to the gradual softening of the BM, associated
with the opening of a Peierls gap at the Fermi level, where
they used density functional theory (DFT) calculations includ-
ing the +U correction. This theory describes the transition
as second order, contradicting the results of the differential
scanning calorimetry which provide clear evidence of the
first-order transition [27]. The theory also contradicts Raman-
spectroscopy studies revealing no hint of the BM softening
[31]. Furthermore, the obtained band structure is not com-
patible with observed optical spectra of nickelates [32,33].
In addition, it cannot describe the MIT into the paramagnetic
state since DFT + U requires a magnetically ordered state to
produce an insulating gap [34,35]. Crucially, in the absence of
magnetic ordering, the Peierls gap does not open at the Fermi
level [17,33] and cannot thus be responsible for the insulating
nature of the paramagnetic phase.

Here, we present a theory describing specifically the in-
terplay between the electronic and structural aspects of the
paramagnetic MIT found for R = Lu to Sm. We show that the
paramagnetic MIT is driven by the proximity to a spontaneous
ED, which leads to a strongly nonlinear electronic response
with respect to variations of the BM amplitude, resulting
in a first-order phase transition. Furthermore, we show that
this nonlinear behavior and the first-order nature is key for
a correct description of the paramagnetic MIT and obtaining
a finite, stable-equilibrium BM amplitude. Moreover, our
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theory also identifies the BM stiffness and the electronic
susceptibility at q = ( 1

2 , 1
2 , 1

2 ) as key parameters controlling
the transition. Experimentally, these parameters can be tuned
by the choice of the R cation [6] or by epitaxial strain in
thin films and heterostructures [9,10,36]. We validate our the-
ory by performing combined DFT and dynamical mean-field
theory (DMFT) [37,38] calculations, allowing us to explore
the trends across the rare-earth series. We also rationalize the
overall physical picture in terms of a Landau theory involving
two coupled order parameters: the ED and an order parameter
associated with the metallicity of the system.

The paper is organized as follows. First, in Sec. II we
introduce the model description and analyze its behavior by
identifying control parameters of the coupled transition. Next,
in Sec. II we verify these findings with our realistic DFT +
DMFT calculations. Finally, in Sec. IV, we present a Landau
theory rationalizing our findings further, and in Sec. V, we
summarize our main results.

II. MODEL DESCRIPTION

We start by constructing a simplified model which repro-
duces the main features of the MIT in RNiO3. The model
retains only the key low-energy degrees of freedom: the
interacting electrons in the two frontier eg orbitals and the
BM amplitude Q. The purely electronic part of the Hamil-
tonian, Hband + Hint, consists of a simplified tight-binding
(TB) model, Hband = −∑

i, j,m,m′,σ tmm′
i j d†

imσ d jmσ , and a local
interaction term Hint. Here, i, j indicate sites within a simple
cubic lattice, m = 1, 2 correspond to the dx2−y2 and dz2 orbitals
on each site, and hopping matrices tmm′

i j are obtained using
the Slater-Koster construction with two hopping amplitudes, t
and t ′, limited to nearest-neighbor and next-nearest-neighbor
sites, respectively [39]. The interaction term Hint involves two
coupling constants, a repulsive interaction U and an intra-
atomic (Hund’s) exchange J , and takes the standard two-
orbital Hubbard-Kanamori form [40]. The purely lattice part
is described by an elastic term: Hlatt = K

2 Q2, with K being the
stiffness of the BM. Finally, importantly, the coupling of the
BM amplitude to the electrons is captured by the term

He−l = 1

2

∑
mσ

�s
m[Q]

[∑
i∈SB

n̂imσ −
∑
i∈LB

n̂imσ

]
, (1)

where n̂imσ = d†
imσ dimσ is the electron occupation operator

and �s
m[Q] is a (Peierls-like) modulation of the on-site po-

tential seen by orbital m due to the BM structural distortion
parametrized by Q. It couples to the operator measuring the
ED between the LB and SB octahedra. The total Hamiltonian
thus reads

H = Hband + Hint + He−l + Hlatt. (2)

At this stage, we define the amplitude Q as the dispropor-
tionation in octahedral bond lengths, b = b0 + Q/2 for LB
and b = b0 − Q/2 for SB octahedra. The modulation of the
on-site potential �s

m[Q] is given by the difference between the
on-site energies of the SB and LB sites:

�s
m[Q] = εm[b0 − Q/2] − εm[b0 + Q/2]

≈ (dεm/db)b0 Q ≡ gmQ, (3)

where we have expanded in Q and introduced the electron-
lattice coupling parameter gm. Here, we assumed that �s

m[Q]
is linear in Q, which we checked by our DFT calcula-
tions for various representatives of the series (see Fig. 6 in
Appendix A).

As emphasized in Refs. [17,18], an appropriate low-energy
description of the negative-charge-transfer character of RNiO3

and of their tendency to form a BDI state is obtained with U −
3J � �s. In this regime, the orbital polarization is strongly
suppressed, implying that the on-site energies are, to a good
approximation, orbital independent: εz2 ≈ εx2−y2 . We thus as-
sume that the eg states are degenerate and omit the index m in
one-electron quantities (i.e., gm = g, �s

m = �s) [41].
Minimizing the total energy,

E = 〈H〉 ≡ Eel[ν] − gQν

2
+ KQ2

2
, (4)

with respect to Q (using the Hellman-Feynman theorem)
yields

2K

g
Q̄ = ν[Q̄], (5)

where ν[Q] = 〈n̂LB − n̂SB〉Q is the average ED for a given
amplitude Q, while Q̄ denotes the equilibrium value of
the amplitude corresponding to local energy minima (so-
lutions corresponding to energy maxima are discarded).
Equation (5) is the central equation of this paper: It enables
one to determine the equilibrium BM amplitude from the
knowledge of the electronic response encoded in ν[Q] for a
given lattice stiffness K and electron-lattice coupling g. The
stability of the solutions of this equation is determined by the
renormalized stiffness

κ ≡ ∂2E

∂Q2
= K − g2

2

∂ν

∂�s
. (6)

Assuming no spontaneous ED (ν[Q = 0] = 0), we obtain
κ = K − χeg2/2, where χe ≡ (∂ν/∂�s)Q=0 is the electronic
susceptibility associated with a “charge” modulation at a wave
vector q = ( 1

2 , 1
2 , 1

2 ) (see Appendix A 3 for more informa-
tion). Hence, the (linear) stability of the high-symmetry phase
is controlled by the electronic response χe which must be
compared to 2K/g2.

We investigate the solutions to Eq. (5) by performing
DMFT calculations to obtain ν[Q] for various values of the
bandwidth W (see Appendix A 4 for details). The results are
shown in Fig. 1. The calculations were performed first for
increasing values and then for decreasing values of Q, which
resulted in a hysteresis. The most important feature of this plot
is the strongly nonlinear dependence of ν on Q. Solutions of
Eq. (5) are obtained by intersecting ν[Q] with the straight line
(2K/g)Q.

This nonlinear shape of the ν[Q] curves plays an important
role in determining the nature of the transition. For a given
value of K/g and depending on W , there are either one, two, or
three intersection points (disregarding symmetry-equivalent

solutions for Q < 0). Consider K/g = 5.3 Å
−1

. If W is large
(W � 2.07 eV in Fig. 1), the straight line intersects the ED
curve only at Q = 0, rendering it the only solution to Eq. (5).
As W is decreased, it reaches a value below which there are
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A
(ω

=
0)

a.
u
.

FIG. 1. Electronic disproportionation ν of the TB model as a
function of bond disproportionation Q for various values of the
bandwidth W (in eV). Open and solid symbols correspond to insu-
lating and metallic branches, respectively. The dashed lines represent
(2K/g)Q for two values of K/g, with the intersection points giving
the solutions to Eq. (5). Inset: Spectral weight as a function of Q.

three intersection points (W = 1.95 eV). The middle intersec-
tion point corresponds to an unstable solution (κ < 0). The
two remaining stable solutions, Q = 0 and Q = Q̄[K,W ] >

0, mark the coexistence of two different phases. At even
smaller values of W (W � 1.8) the solution at Q = 0 gets
destabilized because κ[Q = 0] < 0. We are then left with only
one solution, Q = Q̄[K,W ] > 0, telling us that only the BD
phase is stable here. The behavior of the solutions of Eq. (5)
as a function of W tells us that the BD transition is first
order. Importantly, this is not directly related to the hysteretic
behavior of ν[Q]. Even if there were no such hysteresis, the
particular nonlinear dependence of ν[Q] would imply that
the BD transition is first order. The inset of Fig. 1 displays
the spectral weight at the Fermi level as a function of Q. We
see that the system undergoes a transition from metallic to
insulating behavior as Q is increased and that the transition
regime corresponds to the strongly nonlinear regime of ν[Q].
Hence, it is the MIT which is responsible for the strong
nonlinearity of ν[Q].

We can now discuss the control parameters of the com-
bined BD/MIT, where Eq. (5) shows that the transition be-
havior depends on parameters g, K , and χe. We extract these
parameters from our DFT calculations (see Appendix A 2 for
details), and the obtained values for g, K , their ratios, χe, and
the eg bandwidth W are shown in Table I. To get a better
feel for these numbers, one can estimate the maximum pos-
sible equilibrium BM amplitude by setting ν = 2 in Eq. (1),
which yields Q̄max = 2(g/2K ) ≈ 0.095 Å, a value that sets
the correct scale of distortions observed in experiment (e.g.,
Q̄ = 0.075 Å for LuNiO3). This provides a strong argument
in favor of the presented mechanism of the electron-lattice
coupling as the dominant one in determining the structural
transition.

The electron-lattice coupling g is found to vary by about
12% along the rare-earth series. Moreover, the stiffness K

TABLE I. Values for g, K , 2K/g, 2K/g2, the eg bandwidth W ,
and the dx2−y2 component of the electronic susceptibility χ1,1 for the
three investigated compounds R = Lu, Sm, and Pr, extracted from
DFT calculations.

g K 2K/g 2K/g2 W χ1,1

R (eV/Å) (eV/Å
2
) (1/Å) (1/eV) (eV) (1/eV)

Lu 3.75 39.29 20.96 5.59 2.32 0.69
Sm 4.02 41.45 20.61 5.13 2.51 0.50
Pr 4.24 44.47 20.98 4.95 2.68 0.39

also varies by a similar amount and in the same direction
(increasing from Lu to Sm). As a result, the ratio 2K/g,
which enters the equation of state, is fairly constant along the
series. The renormalized stiffness controlling the sensitivity to
disproportionation at small Q is proportional to 2K/g2 − χe,
with χe being the electronic susceptibility. From Table I it can
be seen that the first term varies by about 10% along the series,
but the electronic susceptibility varies by almost a factor of 2
from Pr to Lu. As a result, for the bulk materials, the transition
is sensitively controlled by the electronic susceptibility (i.e.,
by the bandwidth and rotation and tilt angles [28]) and not by
the stiffness K or electron-lattice coupling g. In heterostruc-
tures and under strain, the BM stiffness K varies, while g
remains unaffected [36]. K is thus likely to be an important
control parameter in those cases. This may shed light on the
results of Ref. [42] and motivates the variation of K/g in our
model calculations.

The effects of the two control parameters K and χe (tuned
via K/g and W , respectively) are summarized in Fig. 2. The
dashed curves indicate the boundaries (spinodals) of the BDI
and metallic phases, with a narrow coexistence region in
between. Solid lines show stable nonzero solutions Q̄[K,W ].
For fixed K , the bandwidth W (equivalently, χe) determines
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FIG. 2. Phase diagram of the TB model as a function of band-
width W and BD Q. Circles are critical points for the metallic and
insulating phases; dashed curves are spinodal lines obtained as fits
to α(W − Wc )

3
2 (see Sec. IV on the Landau theory). The solid lines

with triangles and stars display the stable equilibrium values of Q for
two values of K/g. Vertical dashed lines designate lower and upper
critical values of W for the structural transition.
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component, and χ2,2 is the dz2 component. Bottom: spectral weight
at the Fermi level as a function of Q.

whether the paramagnetic ground state is a BDI phase.
Moreover, the variation of K controls smoothly the position
of the phase boundaries.

III. REALISTIC DFT + DMFT CALCULATIONS

We now perform ab initio DFT + DMFT calculations to
confirm the physics found in the model calculations and
assess materials trends quantitatively. The impurity model
is constructed by projecting onto a low-energy eg sub-
space following the scheme described in Refs. [17,18] (see
Appendix A 4 for details).

Figure 3 shows the calculated ν(Q) for R = Lu, Sm, and
Pr (top panel). The overall nonlinear behavior of ν(Q) is
very similar to that in the model calculations (Fig. 1), with
the nonlinearity clearly related to the MIT (Fig. 3, bottom
panel), also indicating a first-order character of the BD/MIT.
This confirms that the model indeed incorporates the essential
underlying physics. Furthermore, we obtain a strong decrease
in the amplitude of the nonlinearity in ν(Q) from R = Lu
towards R = Pr, consistent with the bandwidth variation in
the model.

For the realistic calculations, we checked the change in
bandwidth W for different R cations obtained by DFT. The
corresponding values of W for R = Lu, Sm, and Pr are shown
in Table I (see also Fig. 5 in Appendix A). One can see that
the bandwidth decreases by ∼13% from R = Pr to R = Lu. On
the other hand, the dx2−y2 component of the electronic suscep-
tibility displayed in Fig. 3 (top, inset) increases steadily and
almost doubles its value from Pr to Lu as the Ni-O-Ni bond

angle is reduced. Together, this shows that the increased octa-
hedral rotations for R = Lu compared to R = Pr have a much
stronger impact on the electronic susceptibility χe than on the
bandwidth W . This effect can be understood by realizing that
the bandwidth is mainly determined by the nearest-neighbor
hopping parameter t , while the susceptibility is also crucially
dependent on the next-nearest-neighbor hopping parameter t ′
(more precisely, on the ratio t ′/t), affecting the shape of the
Fermi surface [28,39]. The bandwidth provides thus only an
indirect measure of the changes in the true control parameter
χe determining the proximity to the instability.

Finally, the values obtained for K and g from DFT (see
Table I) lead to stable equilibrium BM amplitudes Q̄ for all
investigated compounds. This is shown in Fig. 3, where Q̄
is obtained from the crossing points of (2K/g)Q (gray line)
with the ν[Q] curves. The value obtained for Q̄ for LuNiO3 of
0.073 Å is in very good agreement with available experimen-
tal data (Qexp = 0.075 Å [27]). PrNiO3 seems to be very close
to the transition, as its Q̄ value is very close to the MIT, and the
stable BM would eventually be lost if a reduced U were used
for PrNiO3, as suggested by our constrained random-phase
approximation calculations [22]. Moreover, previous studies
find that the magnetic order appears to be crucial in stabiliz-
ing the BD phase in PrNiO3 and NdNiO3 [7,22,24,25]. The
stability and influence of the magnetic order goes beyond the
scope of our work and requires further investigation. However,
the overall trend of an increase in Q and in the stability of
the BM through the series for smaller R cations is consistent
with experiments and in line with earlier studies [19,22,35].
Moreover, these results clearly show the capabilities of the
method to correctly capture the coupled paramagnetic MIT
and the resulting stability of the BM distortion compared to a
DFT + U description.

IV. LANDAU THEORY

We finally show that the main qualitative features of the
MIT found above can be rationalized in terms of a Landau
theory, which involves two coupled scalar order parameters:
the ED ν and an additional order parameter, φ, which dis-
tinguishes between metallic (conventionally associated with
φ > 0) and insulating behavior (φ < 0). The reason why this
second-order parameter is required is clear from the results
above: a nonzero value of ν can correspond either to a
metallic phase (at small values of the on-site modulation �s

or, equivalently, of Q) or to an insulating one. In other words,
a metallic monoclinic phase with a nonzero value of the BM
amplitude Q is, in principle, possible, in agreement with re-
cent experimental findings [43]. Such an order parameter has
been introduced to describe the Mott transition in the DMFT
framework, in analogy with the liquid-gas transition [44,45].
Note that the present Landau theory aims at describing the
MIT between the two paramagnetic phases, while the earlier
Landau descriptions [24,39] aimed at the magnetic transition
(see also Ref. [5] in relation to ruthenates.)

Assuming the simplest coupling allowed by symmetry,
φν2, the paramagnetic transitions can be described by the
following energy functional:

F [ν, φ] = Fν + Fφ + λφν2, (7)
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with

Fν = 1
2 bν2 + 1

4 cν4 − �sν + 1
2κ�2

s ,
(8)

Fφ = 1
2 aφ2 + 1

4 uφ4 − hφ,

where u, c > 0 and the coupling parameter λ > 0 is of order
1. The coupling to the lattice is represented by the linear
term �sν, with �s serving as a symmetry-breaking field
(alternatively, the BM can be introduced with Q = g�s). In
the absence of ED, the system is a metal, so that we must
assume a and h are positive. Here, b is a key control parameter
related to χe, and it depends critically on external parameters
such as the bandwidth, b = b0(W − Wc).

Without loss of generality we can set u = c = a = 1.
Minimizing F [ν, φ] yields the following coupled equations of
state:

bν + ν3 + 2λφν = �s, (9)

φ + φ3 = h − λν2. (10)

The numerical solution of these equations is displayed in
Fig. 4 for various b. For b > 0, starting from a value φ =
φ0 > 0, typical for the metallic phase at ν = 0, and increasing
�s lead to a strongly nonlinear dependence of ν on �s, with
φ continuously decreasing (because of the −λν2 term) and
gradually reaching negative values (inset of Fig. 4). At a
critical value of b, the ν[�s] curves acquire a vertical tangent,
and beyond this value, an S shape with an unstable branch
is found, typical of a first-order transition, with two vertical
tangents delimiting the two spinodal values of �s: �−

s and
�+

s . When b is further decreased, a spontaneous instability is
found, with a jump of ν to a finite value for an infinitesimal
�s. This general behavior is in excellent qualitative agreement
with Fig. 1.

A more detailed analysis of the above equation can be
carried out by considering two limits: small and large values

of �s. The small-�s limit can be described in terms of
the linear susceptibility at ν = 0, χe = (b + 2λφ0)−1, asso-
ciated with the electronic disproportionation. Keeping terms
up to O(�2

s ), we can get the nonlinear susceptibility (see
Appendix B for details),

dν

d�s
= [

χ−1
e − Sχ2

e �2
s

]−1
, (11)

where S > 0 is a constant enhancement factor proportional
to λ2. The equation emphasizes the role of the φν2 cou-
pling in amplifying the electronic disproportionation, driving
it to the transition at �s = �+

s ≡ (b + 2λφ0)
3
2 /

√
S ∼ (W −

W +)
3
2 . At this point dν/d�s diverges, marking the spinodal

of the metallic phase.
Analogously, the analysis of the large-�s limit reveals

that also for the spinodal of the insulating phase we get
�−

s ∼ (W − W −)
3
2 (details are given in Appendix B). The

similar behaviors of the metallic and insulating spinodals are
confirmed by the DMFT results for the TB model displayed
in Fig. 1, where one can see that the two boundaries are fairly
parallel.

V. CONCLUSIONS

We have presented a theory of the combined structural
and electronic metal-insulator transition in bulk RNiO3. The
driving force of this transition is the proximity to the elec-
tronic disproportionation instability, which is cooperatively
reinforced by the coupling to the lattice breathing mode. The
transition is thus controlled both by the electronic charge
susceptibility and by the stiffness of this mode. The key
nonlinearities associated with this cooperative effect can be
rationalized in terms of a Landau theory. Our work provides
a pathway to understanding the MIT in other geometries,
such as ultrathin films and heterostructures, and is likely to
have general applicability to other materials with a strong
interplay between electronic correlations and lattice degrees
of freedom.
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2.3

2.4

2.5

2.6

2.7

e g
b
an

d
w

id
th

(e
V

)

Lu Er Dy Gd Sm Pr
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APPENDIX A: CALCULATION DETAILS

1. DFT calculations

DFT calculations were performed using the projector
augmented wave (PAW) method [46] implemented in the
Vienna Ab initio Simulation Package (VASP) [47–49] and the
exchange correlation functional according to Perdew, Burke,
and Ernzerhof [50]. For Ni, the 3p semicore states were
included as valence electrons in the PAW potential. For the
rare-earth atoms, we used PAW potentials corresponding to a
3+ valence state with f electrons frozen into the core, and
depending on the rare-earth cation, the corresponding 5p and
5s states were also included as valence electrons. A k-point
mesh with 10 × 10 × 8 grid points along the three reciprocal
lattice directions was used, and a plane wave energy cutoff
of 550 eV was chosen for the 20-atom Pbnm unit cell. The
structures were fully relaxed, both internal parameters and
lattice parameters, until the forces acting on all atoms were
smaller than 10−4 eV/Å. Generally, our calculated lattice
parameters agree very well with available experimental data
across the whole series, with maximal deviations of the unit
cell volume of a few percent or less. For example, for LuNiO3

the nonmagnetic calculation results in a unit cell volume that
deviates by −1.5% from the experimental high-temperature
structure [27]. As can be seen from Ref. [35], all rotation
and tilt angles are also in very good agreement with the
experimental structure.

To check the influence of the different control parameters
across the nickelate series, we extracted the bandwidth W of
the eg states from our DFT calculations for the relaxed Pbnm
structures, which is depicted in Fig. 5. Here, W is plotted as
function of the octahedral rotation distortion amplitude R+

4 ,
which is related to the Ni-O-Ni super-exchange angle [35].

2. Electron-lattice coupling

We use slightly different definitions of the BM amplitude
Q in the model and in the realistic calculations. In the model,
Q is defined as the difference in bond lengths (oxygen-atom
displacement is ∼Q/2), while in DFT + DMFT calculations,
the BM amplitude corresponds to a particular distortion mode

FIG. 6. �s[Q] for R = Lu (red), Sm (blue), and Pr (green) as
extracted from DFT. A clear linear dependency of �s[Q] from Q can
be observed for all three R cations.

(R+
1 ) of a symmetry-based mode decomposition [35,51,52].

Since the amplitude of this mode is proportional to the
displacement of oxygen atoms, its value is almost a factor
of 2 smaller than the model value of Q. More specifically,
an amplitude of Q = 0.1 Å would result in a displacement
of 0.058 Å of each oxygen atom. The decomposition in
distortion modes allows us to clearly separate the effect of
the BM from other distortions and hence allows for a better
comparison with the model. As experiments show [27,53],
structural parameters besides the breathing mode distortion
almost do not change during the MIT, and therefore, the use
of our relaxed Pbnm structures is well justified.

In the model calculations, Q = �s/g is controlled by vary-
ing the modulation parameter �s. The length scale is set by
setting g = 1.7 eV/Å, which is close to gDFT/2, with gDFT

being the value obtained in our DFT calculations for bulk
RNiO3 (see below). Model parameter K can be chosen rather
arbitrarily, and we vary it in a range of values that results in
equilibrium values of Q of the same order of magnitude as
the experimentally observed values (and the ones resulting
from DFT + DMFT calculations). Note that because of the
difference in the definition of Q the model values of K would
correspond to roughly four times larger values of the realistic
BM stiffness.

In our realistic calculations, parameters g and K are de-
termined from systematic DFT calculations for varying BM
amplitude, where the modulation field �s is extracted from
the difference of the corresponding on-site terms of the
Hamiltonian projected onto eg states via Wannier construc-
tion as described in Refs. [54,55]. To this end, we use the
TRIQS/DFTTOOLS software package [56,57]. The resulting val-
ues of �s turn out to be linear in Q in the relevant range of BM
amplitudes, as seen in Fig. 6, where we show several examples
of such calculations. In the context of DFT + DMFT calcu-
lations, the value of �s is corrected for the double-counting
(DC) contributions as described in Ref. [18].

The obtained values of the parameters allow for an estimate
of the relative strength of the electron-lattice coupling by
considering a polaron binding energy g2/(2K ), which is Ep ≈
184 meV for our obtained values g and K from DFT. The
corresponding dimensionless coupling parameter is then equal
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to λ = Ep/W ≈ 0.08 
 1 for LuNiO3 (it is even smaller for
other compounds in the series), which tells us that electrons
are coupled relatively weakly to the BM in nickelates. This
emphasizes the key role that the electronic instability plays in
effectively enhancing the coupling and destabilizing the BM.

3. Electronic susceptibility

Here, we show that the formula for the susceptibility given
in the text is related to the usual definition of the charge
susceptibility at a specific q point. If we consider an inho-
mogeneous perturbation potential of the form H ′ = ∑

i n̂iεi

(again, assuming orbital degeneracy and omitting the orbital
and spin indices), then the q-dependent charge susceptibility
is defined as

χ (q) = −∂n(q)

∂ε(q)

∣∣∣
ε→0

, (A1)

with

n(q) = 1

N

∑
i

〈n̂〉ie
iqRi , ε(q) = 1

N

∑
i

εie
iqRi ,

where Ri = m1
i a1 + m2

i a2 + m3
i a3 are the Bravais-lattice vec-

tors, aα are the translation vectors of the pseudocubic unit cell,
and mα

i ∈ Z (α = 1, 2, 3).
Considering a modulated field εi equal to �s/2 on SB sites

and to −�s/2 on LB sites, we have for a specific point qR =
2π
a ( 1

2 , 1
2 , 1

2 ) in a pseudocubic structure

n(qR) = 1

N

∑
i

〈n̂〉ie
iπ (m1

i +m2
i +m3

i )

= 1

N

(∑
i∈LB

〈n̂〉i −
∑
i∈SB

〈n̂〉i

)
= 1

2
ν

ε(qR) = 1

N

∑
i

εie
iπ (m1

i +m2
i +m3

i )

= 1

N

(∑
i∈LB

εi −
∑
i∈SB

εi

)
= −1

2
�s,

where we have associated LB and SB sites with the sites for
which the values of mi = ∑

α mα
i are even and odd, respec-

tively.
Then, we get

χ (qR) = ∂ν

∂�s

∣∣∣
ε→0

, (A2)

which is the definition of χe used in the main text.

4. DMFT calculations

DMFT calculations for the TB model Hamiltonian are
performed in the paramagnetic state. The bandwidth is given
by W = 6.1t , and the ratio, t ′/t = 0.13, is fixed for all cal-
culations. The interaction parameters are set to U = 1.8 eV,
J = 0.9 eV, similar to what has been used for a realistic
low-energy description of RNiO3 [17,18]. The temperature
is set to T = 1/100 eV � 120 K. The DMFT calculations
are performed using hybridization-expansion continuous-time
quantum Monte Carlo [58], as implemented in the TRIQS

package [57,59], with the rotationally invariant Kanamori-
type interaction term.

Within the realistic DFT + DMFT framework, we solve
the electronic problem defined by the lattice Hamiltonian,
Ĥ = Ĥkin + Ĥint + ĤV , utilizing the above-mentioned solver.
Here, the first term in Ĥ corresponds to the full eg bands
extracted from DFT, including all off-diagonal hoppings and
on-site terms; the second term is the local interaction Hamilto-
nian, where we use the rotationally invariant Kanamori form,
and the last term describes the intersite Coulomb interaction
V , as introduced in Ref. [18], which we include on a mean-
field level as a Hartree shift in the local self-energy.

We perform one-shot DFT + DMFT calculations, but ac-
cording to our test calculations (see also Ref. [22]), the
incorporation of intersite interactions on a Hartree level within
a one-shot DFT + DMFT scheme gives results that are very
similar to fully charge self-consistent DFT + DMFT calcula-
tions using only the local interaction term.

To correct for the DC error, we employ the scheme de-
scribed in Ref. [60], where we additionally perform a DC cor-
rection for the intersite interaction as described in Ref. [18].
For better comparability, we use the same interaction param-
eters, U = 1.8 eV, J = 0.4 eV, and V = 0.6 eV, for all com-
pounds throughout the series. These values are close to the
results of recent calculations using the constrained random-
phase approximation [18,22]. All calculations are done for the
paramagnetic phase, and the temperature was set to T = 1/40
eV � 290 K.

APPENDIX B: LANDAU THEORY

Here, we elaborate on the derivation of the critical-point
scaling mentioned in the main text. We start with the equations
of state given by Eqs. (9) and (10) in the main text and
consider separately metallic and insulating regimes.

Stability of the metallic phase. For the metallic regime, we
perform derivation by expanding in the limit of small �s. At
ν = 0, we set φ = φ0 > 0 to make sure the system is metallic
in the absence of BD.

The symmetry of the problem dictates that ν is an odd
function and φ is an even function of �s. To first order in
�s we get

ν0 ≈χe�s, (B1)

χe = 1

b + 2λφ0
, b > −2λφ0. (B2)

This result is not very interesting because it implies a
linear behavior of ν and a constant value of φ0 as a function
of �s, with �s having thus no effect on the metal-insulator
order parameter. This excludes any transition induced by bond
disproportionation, leaving only a simple externally driven
transition when b = 2λφ0.

To get the next leading order, let φ = φ0 + φ1, which gives

(φ0 + φ1)3 + (φ0 + φ1) = h − λν2
0 ,

3φ2
0φ1 + φ1 ≈ −λχ2

e �2
s ,

where terms of order o(�2
s ) are dropped.

We obtain the following solution:

φ1 = − λ

M
χ2

e �2
s , M = 1 + 3φ2

e . (B3)
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Importantly, we see that φ1 < 0, and φ hence decreases
quadratically with �s (see the inset of Fig. 4). Moreover, the
rate of the reduction is determined by the charge susceptibility
χe and also by the strength (“conductivity”) φ0 of the metallic
phase.

To estimate the dependence of the nonlinear susceptibility
on �s we take the derivatives of the equations of state, Eqs. (9)
and (10), with respect to �s. Denoting χ (�s) = ∂ν/∂�s and,
again, keeping only terms up to O(�2

s ), we have

3φ2 ∂φ

∂�s
+ ∂φ

∂�s
= − 2λνχ,

∂φ

∂�s
≈ −2

λ

M
νχ, (B4)

from which we have

3ν2χ + (b + 2λφ)χ + 2λν
∂φ

∂�s
= 1,

(
3ν2

0 + χ−1
e − 6

λ2

M
ν2

0

)
χ = 1, (B5)

χ−1
e − 3

(
2
λ2

M
− 1

)
χ2

e �2
s = χ−1,

where we have used Eqs. (B1), (B2), (B3), and (B4). The
resulting equation is precisely our Eq. (11) in the main text,
with S = 3(2λ2/M − 1).

The function χ (�s) is equal to χe at �s = 0, increases with
�s faster than χe�s, and diverges when �s = �+

s , with

�+
s = χ

− 3
2

e√
S

. (B6)

The important observation here is that

�+
s ∼ (b + 2λφ0)

3
2 ∼ (W − W +)

3
2 , (B7)

which is exactly the scaling employed in fitting the spinodal
of the metallic phase in Fig. 2.

Stability of the insulating phase. The insulating phase
can be analyzed in a similar fashion but starting from the

asymptotic large-�s solution:

ν ≈ �
1
3
s − (b + 2λφ)

1

3�
1
3
s

,

ν2 ≈ �
2
3
s − 2

3
(b + 2λφ) + (b + 2λφ)2

9�
2
3
s

.

By substituting this back into Eq. (10), we get

φ3 + φ = h − λ�
2
3
s + λ

2

3
(b + 2λφ),

φ3 + φ

(
1 − 4

3
λ2

)
= h + λ

2

3
b − λ�

2
3
s ,

φ3 − Pφ = h + λ
2

3
b − λ�

2
3
s ,

where we have neglected the terms containing inverse powers
of �s and introduced P = 4λ2/3 − 1.

The insulating phase becomes unconditionally unstable
when the right-hand side of the equation reaches the local
maximum of the left-hand side. The location of the maximum
φm is easily found from the left-hand side,

φm = −
√

P

3
.

This results in the following condition for the stability valid
in the large �s limit:

h + λ
2

3
b − λ�

2
3
s = 2

3

(
P

3

) 3
2

,

from which we get the critical value of �s,

�−
s =

[
2

3
b + h

λ
− 2

3λ

(
P

3

)] 3
2

. (B8)

Thus, in both the metallic and insulating cases, the scaling
of the critical �s is

�∗
s ∼(b − b∗)

3
2 ∼ (W − W ∗)

3
2 , (B9)

with �∗
s = �+

s ,�−
s for the metallic and insulating spinodals,

respectively. These scalings have been used to fit both bound-
aries in Fig. 2.
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7
I N F L U E N C E O F C H A R G E S E L F - C O N S I S T E N C Y
A N D D O U B L E - C O U N T I N G I N D F T + D M F T

In chapter 5.2 I found that when performing DFT+DMFT calculations
for the rare-earth nickelates, technical questions arise related to the
effect of CSC and the DC correction. I found that performing CSC
calculations reduced the required Hund’s coupling strength to obtain
a stable CDI state significantly. Moreover, I found that the DC correc-
tion influences the on-site potential shift between the NiLB and NiSB

site, thus being also critical for the stability of the CDI phase. In the
following chapter I elucidate the effect of CSC and also the connected
DC correction effects, in the DFT+DMFT method.

The following work will be soon available as a preprint as ”Charge
self-consistency and double-counting in DFT+DMFT calculations for com-
plex transition metal oxides” on arXiv, see Ref. [145]. All calculations
for CaVO3 have been performed by S. Beck, whereas all calculations
for LuNiO3 have been performed by myself. The manuscript was
written together, and discussed and corrected by my supervisor C.
Ederer.

7.1 motivation

Although, from a theoretical point of view (see section 3.7.5) full CSC
calculations are necessary to fulfill the stationary conditions of the
DFT+DMFT method, in practice OS calculations are often performed
to reduce computational effort. These calculations often lead to rea-
sonable results, close to the results of corresponding CSC calculations
[146–148]. Also, for rare-earth nickelates, OS calculations led to qual-
itative correct physics [24, 43]. This raises the question, how rele-
vant the CSC outer loop of DFT+DMFT is. Especially, if in general
qualitative correct results can be obtained by performing OS calcula-
tions. Moreover, it is important to understand, when also quantita-
tive results are obtained by OS DFT+DMFT calculations, and when
a CSC treatment is necessary. For example, in Ref. [149] and [135]
it is shown for SrVO3 that the effect of orbital polarization under
strain is reduced in CSC calculations compared to OS calculations.
This suggests, that especially in systems where some kind of charge
redistribution is occurring, the charge self-consistency can have an
important effect on quantitative results.

In general, the DC correction depends on the chosen correlated
subspace. During my work, I only investigate so-called frontier or-
bital models. In such models, the correlated subspace is built using
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only the bands close to the Fermi level, that have dominant eg or t2g
character (depending on the chosen compound). In this correlated
subspace, the p-d energy splitting is determined completely on the
DFT level and is not adjusted in DMFT by a DC correction. There-
fore, the question of the d-p splitting in the context of DC, will not
be addressed here. However, as shown in section 5.2, in the case
of systems with multiple effective impurity problems, charge can be
transferred between the impurities during the DMFT loop. This will
change the local occupancy, and hence change the DC potential on
each site. Therefore, the DC correction is not trivial in such systems,
and can significantly influence the result of a DFT+DMFT calculation.

Most previous studies were focusing on the effect of CSC and DC
in p-d models [52, 91, 131, 146–148]. However, the computational de-
mands of frontier orbital models are significantly reduced compared
to a p-d model, and therefore the application of such models is quite
appealing. Especially, in cases with large systems including multiple
effective impurity problems. However, there are currently very few
studies available that provide a systematic quantitative comparison
between CSC and OS calculations in frontier orbital models.

In this chapter, I discuss in more detail how CSC can influence
quantitative results of DFT+DMFT calculations performed for frontier
orbital models. This includes a discussion of the effects on spectral, as
well as structural properties, where the latter is of special importance
in the context of rare-earth nickelates. I discuss also the potential
influence of the DC correction on DFT+DMFT calculations, and show
that this question is in some cases entangled with the question of
CSC.

In the following I present a collaborative research project, carried
out together with Sophie Beck. We investigated the effect of CSC
and the DC correction in two chosen prototypical systems. I inves-
tigated LuNiO3 exhibiting charge ordering, whereas S. Beck inves-
tigated CaVO3, a system showing strong orbital polarization under
strain [150]. For both systems, we constructed the low-energy sub-
space from the frontier orbitals found at the Fermi level. For CaVO3
this corresponds to three V t2g orbitals, and for LuNiO3 to the Ni eg
orbitals. The resulting systems were investigated within DFT+DMFT,
by applying a Hubbard-Kanamori interaction.

7.2 project summary

In the first part of the project we investigate the effect of CSC on the
orbital polarization in CaVO3 with, and without epitaxial strain. To
do so, we calculate the orbital-resolved occupation of the impurity
and A(ω = 0) of the t2g orbitals as function of U (see Fig. 1 in
Ref. [145]). As U increases, the system undergoes a MIT at a criti-
cal value UMIT, while the orbital polarization increases [151]. In our
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calculations, the unstrained CaVO3 system shows a moderate orbital
polarization in the insulating phase, which is only weakly influenced
by CSC. Under 4% epitaxial strain, the orbital polarization is strongly
increased, emptying two of the three t2g orbitals completely, in agree-
ment with previous studies performing OS calculations [150]. Here,
we find that CSC calculations reduce the orbital polarization signifi-
cantly, by 30%, increasing UMIT from 4.7 eV to 4.9 eV. The effect can
be also observed in the calculated spectral functions in Fig. 2 of the
presented paper [145].

In the second part of the project, we investigate LuNiO3. First,
we perform calculations for the structure exhibiting the experimental
breathing mode distortion [29]. Here, we investigate, for a constant
value of U = 1.85 eV, the influence of J on ν = 〈nLB〉 − 〈nSB〉. As
shown in the previous chapters, J critically determines the occurrence
of the CDI state, and hence the size of ν. In our calculations, we find
that performing CSC calculations reduces ν by approximately 10%
compared to OS calculations, and therefore the tendency to undergo
the transition to the CDI state is slightly decreased (see Fig. 3 in
Ref. [145]).

Furthermore, we investigate the influence of the DC correction in
the calculations for LuNiO3 with experimental breathing mode distor-
tion amplitude. Here, we compare two different scenarios. In the first
scenario, we determine the site occupations entering the DC potential
by the DMFT impurity occupations, whereas in the other scenario
they are determined by the DFT Wannier orbital occupations. Note,
that in the first scenario the DC potential is updated each DMFT it-
eration. In our calculations, we find that using the DMFT impurity
occupations greatly increases the tendency to the CDI state compared
to using the DFT Wannier orbital occupations, no matter if OS or CSC
calculations are performed. This results in a CDI state for J > 0.2 eV
(see Fig. 3 in Ref. [145]). On the other hand, the calculations with
DC occupations determined from the DFT Wannier orbitals undergo
the MIT only at a larger value of J > 1.0 eV. Thereby, we demonstrate
that for LuNiO3 OS calculations and CSC calculations give qualita-
tively similar results if the DMFT impurity occupations are used for
determining the DC correction.

It should be noted, that when performing CSC calculations the DFT
Wannier orbital occupations have no physical meaning, because they
do not correspond to the charge density used to evaluate the Kohn-
Sham potential. Only the DMFT impurity occupations have a physi-
cal meaning in CSC calculations. Moreover, we obtain similar results
if the DMFT impurity occupations are used, and hence we suggest
that the use of DMFT impurity occupations also in OS calculations is
conceptually more meaningful.

By analyzing the obtained results for LuNiO3, we show that the
on-site potential difference ∆s = ∆sDFT − ∆sDC is greatly increased
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due to the DC when the DMFT impurity occupations are used. This
effectively reduces the required J value to obtain a stable CDI state,
showing that the DC correction critically influences the obtained re-
sults.

Next, we perform an analysis of the influence of CSC and the DC
correction on the breathing mode energetics (see Fig. 5 in Ref. [145]).
We show that the OS calculations display a stronger response to the
breathing mode distortion, which results in deeper energy minima.
Moreover, we identify cases where this leads to a stable equilibrium
breathing mode distortion in OS calculations, whereas no such sta-
ble distortion is found in corresponding CSC calculations. Thus, we
conclude that for quantitative correct results, especially for total en-
ergy calculations, CSC calculations need to be performed in systems
exhibiting strong charge redistribution when performing DMFT cal-
culations.

7.3 conclusion

In this chapter I presented a study on the effect of CSC and DC in
frontier orbital DFT+DMFT calculations. In a joint research project
with S. Beck, it is demonstrated that in systems with strong orbital
polarization or charge ordering, CSC can have an important quantita-
tive effect on the results. We find, that in such systems the CSC loop
between DFT and DMFT reduces the effect of charge redistribution
compared to OS calculations.

In frontier orbital models where the DC correction is not trivial
with multiple effective impurity problems, it is shown that OS
DFT+DMFT calculations give qualitative correct results compared
with CSC DFT+DMFT calculations if the DMFT impurity occupations
are used to determine the DC potential. In the case of rare-earth
nickelates, or any other system possibly exhibiting charge transfer
between impurities in DMFT this shows, that the DC correction can
have a significant influence on obtained results, especially when
evaluating total energies. However, we suggest that for qualitative in-
sights on electronic or spectral properties, OS calculations are mostly
sufficient, in agreement with previous results [24, 43, 146–149].

7.4 preprint
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We investigate the effect of charge self-consistency (CSC) in density functional theory plus dy-
namical mean-field theory (DFT+DMFT) calculations compared to simpler “one-shot” calculations
for two instructive example materials. For the correlated metal CaVO3, where epitaxial strain can
induce a transition towards an orbitally polarized insulating state, we find that the computationally
more costly CSC scheme has only a moderate, quantitative effect, reducing the orbital polarization
compared to the one-shot case, and only slightly shifting the critical interaction strength for the
metal-insulator transition under strain. In the rare-earth nickelate LuNiO3, however, the CSC can
strongly affect the charge redistribution between inequivalent Ni sites. Thereby, the main effect is
related to the double-counting correction, which tends to enhance the charge disproportionation,
whereas the feedback loop between DFT and DMFT then partially reverts this by favoring a more
homogeneous charge distribution. The latter effect is analogous to reducing the orbital polarization
in strained CaVO3. The effect of CSC in LuNiO3 can be mimicked to some extent by using DMFT
occupations to evaluate the double-counting correction in the one-shot calculations.

I. INTRODUCTION

During recent years, the combination of density func-
tional theory (DFT) and dynamical mean-field theory
(DMFT) has become a widespread tool to calculate prop-
erties of so-called “correlated materials”, i.e., materials
where the strong Coulomb repulsion between electrons in
partially filled d or f shells leads to effects that cannot
easily be treated within effective non-interacting electron
theories1. The basic idea in combining DFT and DMFT
is the assumption that for the relevant materials the elec-
tronic degrees of freedom can be separated into a “weakly
interacting” part, for which a standard DFT treatment is
adequate, and a “correlated subspace”, which requires a
more elaborate treatment of the electron-electron inter-
action. The latter leads, in general, to a redistribution
of electrons within the correlated subspace compared to
the DFT result. This change should then enter, in a self-
consistent way, the effective potential felt by the weakly
interacting electrons, which is achieved by iterating be-
tween DFT and DMFT steps. However, such a charge
self-consistent (CSC) DFT+DMFT calculation leads to
a higher computational cost compared to simpler “one-
shot” (OS) calculations, where the charge rearrangement
within the correlated subspace is neglected in the DFT
calculation.

While CSC DFT+DMFT calculations have become
more common recently, the DFT+DMFT method also
continues to be applied to larger and more complex
systems, such as, e.g., oxide heterostructures,2–5 de-
fective systems,6–8 or large molecules9,10. Thus, while
DFT+DMFT develops towards a standard ab initio-
based computational method for materials science11,12,
it becomes essential to be able to reduce the required
computational effort whenever possible by using more
approximate variants of the method, e.g., by neglecting
charge self-consistency. Thus, a detailed understanding

of the effect of charge self-consistency is desirable, in or-
der to better judge in which cases a CSC calculation is
crucial or, more importantly, under what circumstances
a one-shot calculation is sufficient. Unfortunately, there
are currently very few studies available that provide a
systematic quantitative comparison between CSC and
one-shot calculations. It can be assumed that charge self-
consistency is particularly relevant for systems where cor-
relation effects lead to a redistribution of electrons, e.g.,
for systems with charge-, and/or orbital-ordering. For
example, existing studies of epitaxially strained SrVO3

demonstrate a reduced orbital polarization in CSC cal-
culations compared to OS13,14.

Most previous work addressing the influence of charge
self-consistency in DFT+DMFT calculations in transi-
tion metal (TM) oxides typically employed a so-called
“p-d”-model to define the correlated subspace,15–20 i.e.,
using a basis of rather localized, atomic-like orbitals con-
structed from a broad energy window that includes the
TM d as well as all oxygen p bands. This appears con-
ceptually appealing, since a wider energy window corre-
sponds to a larger, and thus more complete, basis set, and
since the use of rather localized orbitals provides better
justification for the DMFT assumption of a purely lo-
cal self-energy and Coulomb interaction19. On the other
hand, this also increases the computational load com-
pared to using a “minimal” correlated subspace corre-
sponding to a narrow energy window. In transition metal
oxides, the latter typically includes only either t2g or eg
bands.

A crucial point arising in such DFT+DMFT calcu-
lations using a p-d-type orbital subspace, is that the
physically very important charge transfer energy, ∆p-d,
which describes the energy difference between oxygen p
and transition metal d states, effectively becomes con-
trolled by the double-counting correction15,20. The latter
is required to account for the electron-electron interaction
within the correlated subspace that is already included
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on the DFT level, and is notoriously ill-defined21. Differ-
ent expressions to account for the double counting (DC)
have been suggested20,22, but in some cases the double-
counting needs to be adjusted manually, in order to ob-
tain satisfactory results15,16. For such p-d-type calcula-
tions, it was shown that the CSC calculations produce
essentially the same spectral properties as OS calcula-
tions, if one tunes the DC correction to yield the same
d-state occupancy15. It is, however, not clear a priori,
that more complex observables like the energy need to
agree within both approaches.

In this work we focus on DFT+DMFT calculations
that employ a minimal correlated subspace correspond-
ing to only a small number of near-Fermi-surface bands,
which are expressed in a localized basis through a suit-
able transformation in terms of Wannier functions23.
This scheme requires a comparatively small computa-
tional cost, by including only the minimal number of
orbitals needed to describe the dominant low-energy
physics within DMFT. Furthermore, it often allows for an
intuitive interpretation of Wannier occupations in terms
of formal charge states, since the corresponding Wan-
nier functions include the hybridization with the oxygen
p states as “tails” located on the oxygen sites. The pres-
ence of these hybridization tails can also be viewed as in-
clusion of an “effective” p-d inter-site interaction24, which
is typically neglected in the p-d-model for simplicity. Fi-
nally, the use of a minimal correlated subspace avoids the
problem that the DC correction critically affects the im-
portant charge transfer energy. However, as we show in
the following, the DC correction can still have a strong
effect for systems with multiple inequivalent correlated
sites.

We focus on two specific cases, the strain-induced
metal-insulator transition in CaVO3, and the more com-
plex case of LuNiO3, which is representative for the
whole series of rare earth nickelates that exhibit a metal-
insulator transition involving charge disproportionation
between the Ni sites. The charge disproportionation is
also strongly coupled to a structural distortion. While for
the case of CaVO3 all TM sites are symmetry-equivalent,
and thus the DC correction does not influence the results,
this no longer holds for the rare earth nickelates, where
the DC correction crucially affects the charge dispropor-
tionation between inequivalent Ni sites. The two cases
will be discussed in Sec. III. However, first we will in-
troduce the theoretical framework for our DFT+DMFT
calculations (Sec. II).

II. THEORETICAL FRAMEWORK AND
COMPUTATIONAL DETAILS

A. DFT calculations

The structural relaxations for CaVO3 within the 20
atom unit cell in Pbnm space group symmetry are per-
formed using the Quantum ESPRESSO package25.

We employ scalar-relativistic ultrasoft pseudopotentials,
with the 3s and 3p semicore states included in the va-
lence for both V and Ca, together with the exchange-
correlation functional according to Perdew, Burke, and
Ernzerhof26. Cell parameters and internal coordinates
are relaxed until all force components are smaller than
0.1 mRy/a0 (a0: Bohr radius) and all components of the
stress tensor are smaller than 0.1 kbar. The plane-wave
energy cutoff is set to 70 Ry for the wavefunctions and
840 Ry for the charge density. A 6×6×4 Monkhorst-Pack
k-point grid is used to sample the Brillouin zone, and the
Methfessel-Paxton scheme with a smearing parameter of
0.02 Ry is used to broaden electron occupations. For the
calculation of epitaxially strained CaVO3, the in-plane
lattice parameters are increased by 4% and kept fixed,
while the c-component of the cell and all atomic posi-
tions are relaxed.

All DFT calculations for LuNiO3 as well as the DFT
parts of all our CSC DFT+DMFT calculations are
performed using the projector augmented wave (PAW)
method27, implemented in the “Vienna Ab initio Simu-
lation Package”(VASP)28–30, and also using the exchange
correlation functional according to Perdew, Burke, and
Ernzerhof26. For Ni, we use the PAW potential where
the 3p semi-core states are included as valence electrons,
while for Lu, we use the PAW potential corresponding to
a 3+ valence state with f -electrons frozen into the core.
For the CaVO3 calculations with VASP, we use the PAW
potentials where the s and p semi-core states are included
as valence electrons for both Ca and V. Furthermore, a
k-point mesh with 9 × 9 × 7 grid points along the three
reciprocal lattice directions is used and a plane wave en-
ergy cut-off of 550 eV is chosen for LuNiO3 and 600 eV
for CaVO3. The structure of LuNiO3 is fully relaxed
within Pbnm symmetry, both internal parameters and
lattice parameters, until the forces acting on all atoms
are smaller than 10−4 eV/Å.

B. DFT+DMFT calculations

a. Construction of the correlated subspace In the
DFT+DMFT method, the Kohn-Sham (KS) Hamilto-
nian within the chosen energy window is mapped onto
a basis of localized states, spanning the correlated sub-
space C, then a local Coulomb interaction is added, and
the resulting Hubbard-like lattice Hamiltonian is solved
via the DMFT approximation. Without feedback to the
DFT part, this corresponds to a OS calculation. To per-
form CSC calculations, one computes a correction to the
charge density, ∆ρ = ρDMFT−ρDFT, which is then passed
back to the DFT code (here VASP) to calculate new
KS wave-functions and hence, update the correlated sub-
space. In a fully CSC calculation, this is repeated until
∆ρ does not change compared to the previous iteration.

For the DMFT calculation, the electronic degrees of
freedom within the chosen energy window are described



3

via the interacting lattice Green’s function:

Ĝ(k, iωn) =
[
(iωn + µ)1− ĤKS(k)− Σ̂(k, iωn)

]−1
(1)

where µ is the chemical potential and ĤKS(k) is the
Kohn-Sham (KS) Hamiltonian. The lattice self-energy

Σ̂(k, iωn) is obtained by solving the effective DMFT im-
purity problem (see next sub-section).

The lattice Green’s function in Eq. (1) is expressed in
the Kohn-Sham (Bloch) basis. To achieve the up/down-
folding between the quantities defined within the corre-
lated subspace and the Green’s function in the KS basis,

ĜCLL′(iωn) =
∑

k,νν′

P̂Lν(k) Ĝνν′(k, iωn) P̂ †Lν(k) , (2)

projector functions P̂Lν(k) are introduced. The projector
functions are defined as projections of the KS eigenstates
|Ψνk〉 onto localized orbitals |χL〉, P̂Lν(k) ≡ 〈χL|Ψνk〉.
Here, L serves as compound index for all local quantum
numbers (site, orbital, and spin-character).

Here, we use the recent implementation of projec-
tion to localized orbitals (PLOs)31 in VASP14, in com-
bination with the TRIQS/DFTTools software pack-
age32,33. To construct an optimal projector function, we
apply the scheme introduced in Ref. 14, choosing a lin-
ear combination of the PAW partial wave augmentation
channels that maximizes the overlap between the pro-
jector and the KS state inside a chosen energy window,
which matches that of the correlated subspace C. In this
work, we use projections on all five localized d states in
VASP, while the subsequent orthonormalization within
the TRIQS/DFTTools converter includes only the t2g-
or eg-like orbitals within the energy window of the cor-
related subspace C.

The strong octahedral rotations present within Pbnm
symmetry lead to large off-diagonal crystal-field terms
in the KS Hamiltonian, and the non-interacting Green’s
function for the effective impurity problem is no longer
diagonal. Since this can induce severe numerical prob-
lems when solving the impurity problem, we perform a
local unitary transformation of each impurity Green’s
function after the down- respectively before the up-
folding, which diagonalizes the initial non-interacting lo-
cal Hamiltonian on each site transforming the system
into the crystal field basis. The DFT+DMFT code used
for the calculations in this paper is publicly available on
github34.

For CaVO3 we also perform OS DFT+DMFT calcu-
lations based on the electronic structure obtained with
Quantum ESPRESSO. In this case the construction
of the low-energy tight-binding Hamiltonian, used as in-
put for the OS DMFT calculation, is performed using
the Wannier90 code35 and the wannier90 converter in-
cluded in TRIQS/DFTTools.

b. Solving the impurity problem For both CaVO3

(t2g subspace) and LuNiO3 (eg subspace) the effective im-

purity problem within the DMFT cycle is solved with the
TRIQS/cthyb continuous-time quantum Monte Carlo
(QMC) hybridization-expansion solver36. For each im-
purity we add a local Coulomb interaction in the form of
the Hubbard-Kanamori Hamiltonian37,

Hint = U
∑

m

n̂m↑n̂m↓ + (U − 2J)
∑

m 6=m′

n̂m↑n̂m′↓

+ (U − 3J)
∑

m<m′,σ

n̂mσn̂m′σ

+ J
∑

m 6=m′

c†m↑c
†
m↓ cm′↓cm′↑ − J

∑

m6=m′

c†m↑cm↓ c
†
m′↓cm′↑ ,

(3)

including all spin-flip and pair-hopping terms. Here, the
operator c†mσ creates an electron in the atom-centered
Wannier orbitals of type m and spin σ. The interaction
parameters are given by the local intra-orbital Coulomb
repulsion U , and the Hund’s coupling J . To reduce the
QMC noise in the high-frequency regime of the impurity
self-energy Σimp and Gimp, we represent both quantities
in the Legendre basis38 and sample the Legendre coeffi-
cients Gl directly within the TRIQS/cthyb solver.

c. Double counting correction To correct the
electron-electron interaction within the correlated sub-
space already accounted for within VASP, we use the
fully-localized limit DC correction scheme39. Specifi-
cally, we use the parameterization given in Ref. 1 for the
DC potential,

Σimp
dc,α = Ū(nα −

1

2
) , (4)

where nα is the occupation of impurity site α, and the
averaged Coulomb interaction Ū is defined as1

Ū =
U + (M − 1)(U − 2J) + (M − 1)(U − 3J)

2M − 1
. (5)

This potential shift is added to the impurity self-
energy, and its form is directly tailored to the Hubbard-
Kanamori interaction Hamiltonian in Eq. (3) for a t2g-
or eg-model resulting from an octahedral crystal-field en-
vironment of M interacting orbitals (M = 3 for CaVO3

and M = 2 for LuNiO3).

In this work, we draw particular attention on how the
occupations nα used for the DC correction are evalu-
ated, i.e., whether they correspond to: a) the occupa-
tions of the Wannier functions as obtained from DFT, or
b) the occpations corresponding to the impurity Green’s
function Gimp calculated by the QMC solver within the
DMFT step. It can be misleading to assume that these
quantities are the same, even within a CSC calculation.
Indeed, when the system is in a charge-ordered phase,
such as, e.g., in heterostructures or nickelates, or in
any other case with several inequivalent impurity prob-
lems, different impurities can exchange charge within the
DMFT loop, potentially leading to drastic changes of the
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breathing mode tensile epitaxial

NiLBNiSB

distortionstrain

FIG. 1. Exemplary Pbnm crystal structure, as well as the main distortion modes relevant for the discussion of CaVO3 and
LuNiO3, respectively, i.e., tetragonal strain (left) and octahedral breathing mode distortion (right). The d-orbital energy levels
that result from these distortions and the occupations for each compound are also depicted. Note that for simplicity we omitted
octahedral rotations in the simplified lattice structures and the corresponding d-level crystal-field splittings.

local occupations compared to the ones calculated within
the DFT step. In principle, only the occupations eval-
uated for the impurity problem within DMFT that are
used to define the charge density correction, have physi-
cal meaning within a CSC DFT+DMFT calculation. By
contrast, the occupations obtained in the DFT part do
not correspond to the charge density that is used to eval-
uate the Kohn-Sham potential. However, in the case of a
OS DFT+DMFT calculation, the question of whether to
use DFT or DMFT occupations for the DC correction is
ambiguous. An informal (and perhaps unrepresentative)
community survey conducted by us, has shown that both
variants are currently used in different studies. Here, we
show that in certain systems the question of how to ex-
tract nα can have a strong influence on the results, and
that one should be aware of this issue when evaluating
the DC correction.

d. Calculation of observables From the imaginary-
time Green’s function, we calculate the spectral weight
around the Fermi level, Ā(ω = 0) = −βπTr ĜCLL′ (β/2),

which indicates whether the system is metallic (Ā(0) > 0)
or insulating (Ā(0) ≈ 0)40. For T = 0 (β → ∞), Ā is
identical to the spectral function at ω = 0. For finite
temperatures, it represents a weighted average around
ω = 0 with a width of ∼ kBT

40.The full real-frequency
spectral function A(ω) is obtained via analytic continu-
ation using the maximum entropy method41.

The on-site density matrix can be obtained di-
rectly from the local Matsubara Green’s function as
nLL′ = 1

β

∑
ωn
ĜCLL′(iωn). This quantity is also used to

calculate the orbital polarization, i.e., the difference in
orbital occupancies, after diagonalization of the on-site
density matrix nLL′42.

To extract the total energy of the system we use the
following formula23:

EDFT+DMFT = EDFT[ρ]

− 1

Nk

∑

ν∈C,k
εKS
ν,k fνk + 〈HKS〉DMFT

+ 〈Hint〉DMFT − Eimp
DC ,

(6)

where εKS
ν,k are the KS eigenvalues with correspond-

ing weights fνk within the correlated subspace C, and
〈·〉DMFT denotes quantities evaluated from the DMFT so-
lution. The interaction energy 〈Hint〉DMFT is calculated
using the Galitskii-Migdal formula43,44, and the last term
in Eq. (6) subtracts the DC energy. To ensure high ac-
curacy, we sample the total energy over a minimum of
additional 60 converged DMFT iterations after the CSC
DFT+DMFT loop is already converged. Convergence is
reached when the standard error of the site occupation
during the last 10 DFT+DMFT loops is smaller than
1.5×10−3. This way, we achieve an accuracy in the total
energy of < 5 meV. All DMFT calculations are performed
for β = 40 eV−1, which corresponds to a temperature of
290 K.

III. MATERIALS & RESULTS

To analyze the effect of CSC within DFT+DMFT, we
study two representative examples of TM oxides with
different levels of complexity. First, we consider the case
of unstrained and strained CaVO3. While in the for-
mer case this material is a correlated metal45,46, it has
recently been demonstrated that tensile epitaxial strain
leads to a transition towards the Mott insulating state
within OS DFT+DMFT calculations47. An important
aspect in this transition is the strain-induced crystal-field
splitting between the partially filled t2g orbitals, leading
to a strong orbital polarization, and thus a local charge
redistribution, which can potentially affect the result
of a CSC compared to a OS DFT+DMFT calculation.
However, in CaVO3, all correlated sites are symmetry-
equivalent and thus the DC correction is irrelevant when
using a minimal “t2g-only” correlated subspace.

Second, we consider the rare earth nickelate LuNiO3,
which exhibits a complex interplay between a specific
structural distortion and an associated charge ordering
leading to a metal-insulator transition48. Here, two
symmetry-inequivalent types of Ni sites appear in the
distorted insulating state, which allows also to analyze
the effect of the site-dependent DC correction within a
CSC DFT+DMFT calculation.
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FIG. 2. Results obtained using OS and CSC DFT+DMFT
employing the PLO basis in VASP, compared to OS calcula-
tions with Wannier functions and Quantum Espresso (QE),
for bulk (left) and strained (right) CaVO3. Top panels:
Orbitally-resolved occupations as a function of the interac-
tion parameter U . Bottom panels: averaged spectral weight
at the Fermi level, Ā(0).

Both materials, CaVO3 and LuNiO3, exhibit a dis-
torted perovskite structure with Pbnm space group (in
the case of LuNiO3 this corresponds to the high symme-
try metallic phase). The corresponding unit cell contains
four TM atoms surrounded by edge-connected oxygen oc-
tahedra, that are tilted and rotated around the Cartesian
axes, corresponding to the so-called GdFeO3-type distor-
tion (a−a−c+ tilt system in Glazer notation), as depicted
in Fig. 1. The d-levels of the TM ions are split into eg
and t2g manifolds by the octahedral crystal field, and
the remaining degeneracies can be further lifted by ad-
ditional distortions of the oxygen octahdra (also shown
schematically in Fig. 1).

A. CaVO3 - orbital polarization

As stated above, bulk CaVO3 is a moderately cor-
related metal with weak orbital polarization that can
undergo a transition to the Mott-insulating state under
tensile epitaxial strain or in ultra-thin films47,49,50. As
has been pointed out in Ref. 51, the orbital polarization
resulting from the orthorhombic distortion of the per-
ovskite structure is an important factor in the MIT. Sev-
eral examples suggest that by an appropriate tuning of
the bandwidth and the crystal-field splitting via, for ex-
ample, strain or dimensional confinement, the resulting
charge redistribution enhances the orbital polarization,
eventually leading to a MIT47,49,52. For example, as de-
picted in Fig. 1, tensile epitaxial strain will lift the degen-
eracy of the t2g-states, lowering the energy of one orbital
compared to the other two. Since the orbital polarization
in CaVO3 can be seen as a measure for the likelihood of
the Mott insulating state, it is clear that describing this
quantity accurately is essential for the success of the cho-
sen method.

As described in Sec. II, we perform DFT+DMFT cal-
culations for the bulk structure of CaVO3 using three
different schemes, i.e., OS calculations using either max-
imally localized Wannier functions (magenta line in
Fig. 2) or PLOs (blue lines in Fig. 2) to represent the
correlated subspace, as well as CSC calculations using
PLOs (green lines in Fig. 2). From this we obtain the or-
bital occupations and spectral weight at the Fermi level,
shown in Fig. 2, as a function of the Coulomb interaction
parameter U . In all cases, the spectral weight is finite for
small values of U , where the system is metallic, and then
becomes zero in the insulating phase for large U , with a
rather sharp transition at UMIT. For the unstrained bulk
system, all three approaches give identical results for the
spectral weight as function of U , with a critical value
of UMIT=5.5 eV. Thus, at U ≈ 5 eV, which is typically
considered as realistic value for 3d1 transition metal ox-
ides46, we find a finite weight corresponding to metallic
behaviour, in agreement with experimental observations.
This shows that the obtained results do not depend on
details of the implementation, such as small differences
in the basis used to represent the correlated sub-space.

From the occupations shown in Fig. 2 (top left), it
can be seen that the orbital polarization is weak in the
metallic regime, but is significantly enhanced above Umit,
where the occcupation of one orbital is decreased com-
pared to the other two orbitals. This is in line with the
bulk crystal-field splitting, where one orbital is energet-
ically higher than the other two, with only a small dif-
ference between the latter47. Here, the two different OS
calculations agree extremely well, while the orbital polar-
ization is slightly reduced in the CSC calculation, how-
ever with no apparent effect on the predicted Umit.

Under 4% tensile strain (right panels in Fig. 2), the
MIT is shifted to lower U values, below the realistic value
of U ≈ 5 eV. Here, both the Wannier- and projector-
type OS calculations agree within the accuracy of the
method, and give exactly the same critical value of the
critical interaction parameter of UMIT = 4.7 eV. The CSC
calculation, however, places the MIT at a slightly higher
value of U = 4.9 eV.

An even stronger difference between OS and CSC cal-
culations can be seen in the orbital polarization, which is
generally strongly enhanced compared to the unstrained
case, due to a large strain-induced crystal-field split-
ting47,52 (see Fig. 1). Within the OS calculations, both
PLO and Wannier-based, we find that in the insulating
regime two orbitals become completely empty, while the
third one is essentially fully occupied by a single elec-
tron, i.e., the system exhibits full orbital polarization. In
the CSC calculation this orbital polarization is signifi-
cantly reduced, with a maximal occupation of ∼ 0.7 in
the preferential orbital. The crystal-field-induced orbital
polarization, enhanced by electronic interaction effects,
has previously been suggested to be an important fac-
tor supporting the insulating phase46, since the result-
ing effective half-filling of only one orbital promotes the
MIT as opposed to fractional occupation of three degen-
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FIG. 3. Orbitally-resolved spectral functions for CaVO3 un-
der 4 % tensile epitaxial strain, obtained from OS (left) and
CSC (right) DFT+DMFT calculations.

erate levels. This is consistent with our results, since the
lower orbital polarization in the CSC calculation corre-
lates with a higher Umit compared to the OS case. To il-
lustrate the difference between OS and CSC calculations
in the strained case, we plot the spectral function A(ω)
at U = 5.0 eV for both cases in Fig. 3. Here, the three
different line-styles correspond to the three different t2g-
like orbitals. As discussed previously, in the OS calcula-
tion one of the orbitals is essentially completely occupied,
while the remaining two are empty. In contrast to this,
the CSC calculation shows a correlation-induced charge
redistribution from the occupied orbital to the previously
empty orbitals. Furthermore, comparing the gap sizes of
both cases, it is clearly visible that in the CSC case the
gap is reduced compared to OS, similar to what has been
reported in earlier studies on SrVO3

13.
Overall, we conclude that charge self-consistency only

plays a minor role for systems with weak or vanishing
orbital polarization, while for systems with largely dif-
ferent orbital occupations, the OS calculation can lead
to an overestimation of the orbital polarization, which in
turn can affect the tendency of the system to undergo
a MIT. While the effect on Umit is not too strong in
the present case, the corresponding differences in spec-
tral properties can be more pronounced. Nevertheless,
it appears that for the present case, OS calculations can
at least give reliable qualitative information about the
overall system behavior, such as, e.g., the effect of tensile
epitaxial strain on Umit, favoring the insulating state.

Furthermore, we note that in our calculations using
frontier orbitals, we find very good agreement between
the PLO and Wannier-based method, both in the spec-
tral properties and for the orbital occupations. This is
in contrast to previous studies, reporting that projector-
based methods require a larger U in p-d models due to
larger hybridization effects16.

B. LuNiO3 — charge-ordering and structural
energetics

The second case that we analyze is the rare earth
nickelate LuNiO3. This material belongs to the family
of rare-earth nickelates, RNiO3, where R can be any

rare-earth ion ranging from Lu to Pr, including Y. All
members of the series exhibit a MIT, which is accom-
panied by a structural transition, lowering the space
group symmetry from Pbnm to P21/n. The correspond-
ing structural distortion results in a three dimensional
checkerboard-like arrangement of long bond (LB) and
short bond (SB) NiO6 octahedra, referred to as breath-
ing mode distortion53, and schematically shown on the
right side of Fig. 1. Recent theoretical work indicates
that this transition is related to an electronic instability
towards spontaneous charge disproportionation on the Ni
sites, which couples to the breathing mode, leading to a
first-order coupled structural-electronic transition into a
charge-disproportionated insulator (CDI)54,55. Further-
more, the choice of the R site cation determines the de-
gree of octahedral rotations in the corresponding high
symmetry Pbnm structure, and thus the bandwidth. The
latter then controls how close the system is to the elec-
tronic instability, driving trends across the series54–58.

Here, we use the case of LuNiO3 to analyze if, and how,
the charge disproportionation, as a specific example for
charge-ordering phenomena in general, is affected by the
inclusion of charge self-consistency in DFT+DMFT. Ear-
lier studies by Park et al. 59 also investigated the effect
of CSC and DC for LuNiO3 using a p-d-type subspace.
They found only a small effect due to CSC on total energy
calculations, but had to adjust the DC correction to ob-
tain a stable finite equilibrium breathing mode distortion.
Here, we use a minimal correlated subspace of two “fron-
tier” eg-like orbitals per Ni site for our DFT+DMFT
calculations. As shown in Ref. 60, the electronic instabil-
ity towards charge disproportionation and the resulting
site-selective Mott transition61 is well described within
DFT+DMFT using such a minimal subspace.

To isolate the effect of the structural breathing
mode distortion on the electronic charge dispropor-
tionation and the total energy of the system, we em-
ploy a symmetry-based mode decomposition62, as out-
lined in Refs. 55, 58, and 63, and using the software
ISODISTORT64. This allows to add the breathing mode
distortion, with symmetry label R+

1 , on top of the relaxed
Pbnm structure, and systematically vary its amplitude
without changing any other parameter of the unit cell.

a. Results for fixed structure First, we calculate the
properties of LuNiO3 for a fixed structure, using the ex-
perimentally observed breathing mode amplitude, R+

1 =
0.075 Å65, and for varying Hund’s coupling J . As shown
in Ref. 60, the charge disproportionation and the result-
ing MIT depend sensitively on J , which thus allows us
to critically examine the influence of CSC on the most
crucial system properties. We use a fixed U value of
1.85 eV, which corresponds to the value calculated for
LuNiO3 using the constrained random phase approxima-
tion (cRPA)55,66. The results are depicted in Fig. 4,
where in the top panel the charge disproportionation,
ν ≡ 〈nLB〉 − 〈nSB〉, i.e. the difference of the eg occupa-
tion between the LB and SB Ni sites, is shown as function
of J . The bottom panel shows the corresponding value
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FIG. 4. Results of different DFT+DMFT calculations for
LuNiO3 using the experimental R+

1 amplitude, U = 1.85 eV,
and varying J . CSC and OS calculations are labeled ac-
cordingly. For calculations labeled nDFT

α (nDMFT
α ) the DFT

(DMFT) occupations have been used to evaluate the DC cor-
rcetion. The dashed vertical line marks the cRPA value of
J55. Top: charge disproportionation ν; bottom: correspond-
ing spectral weight at the Fermi level.

for Ā(0), indicating whether the system is metallic or
insulating. The dashed vertical line corresponds to the
J value obtained within cRPA55,66. Different data-sets
in Fig. 4 correspond to DFT+DMFT calculations with
different treatments of the DC correction, both OS and
CSC, which we discuss in the following.

We first focus on the data-set labeled “CSC nDMFT
α ”

(shown in red), which corresponds to the CSC calcula-
tion where the occupations entering the DC correction
are calculated from the impurity occupations, and are up-
dated in each DMFT iteration. This can be considered
as the correct way to perform such CSC DFT+DMFT
calculations, since the converged nDMFT

α correspond to
the corrected charge density from which the KS poten-
tial is constructed within the DFT step. In this case, the
transition to the CDI occurs at J = 0.2 eV, indicated
by clear jumps in ν and Ā(0). Note that the jump in ν
leads to a drastic change in the DC potential difference
between the Ni sites. For not too large J (see also below),
the DC correction tends to increase the charge dispropor-
tionation by further lowering the eg states on the more
occupied LB site compared to the less occupied SB site.
For further increasing J , ν stays almost constant until
J ≈ 0.8 eV, where ν decreases again. Finally, at around
J = 1.2 eV, the system becomes metallic again. This can
be explained by the fact that for increasing J , the DC
potential, proportional to Ū = U − 5

3J , decreases, and

eventually changes sign for J = 1.11 eV where Ū = 0.
Thus, above J = 1.11 eV the DC correction opposes the

charge disproportionaton by lowering the eg levels of the
SB sites relative to the LB sites.

Comparing the CSC calculation with the OS calcula-
tion where also nDMFT

α has been used to evaluate the DC
correction (shown in green), it can be observed that in
the OS calculation the system is already in the CDI state
even for J = 0.2 eV. In addition, a small shift to larger
ν can be observed compared to the CSC case. Thus,
the tendency towards the CDI state is slightly stronger
than in the CSC calculation. In contrast, the OS calcu-
lation using nDFT

α (shown in orange) leads to a signifi-
cantly reduced ν, which increases slowly with increasing
J . Moreover, for small J < 0.5 eV, clear metallic behav-
ior is observed, while from J = 0.5 to 1.0 eV, the sys-
tem undergoes the MIT, where eventually at J = 1.0 eV
the system is completely in the CDI state with ν > 1.0.
The occupations obtained in the initial DFT step are
nDFT
LB ≈ 1.15 and nDFT

SB ≈ 0.85.

For comparison, we also perform a CSC calculation
where the DFT ocupations are used for the DC correc-
tion (shown in purple). However, one should note, that
these calculations are somewhat artificial, since the DFT
Wannier orbital occupations loose their physical mean-
ing in a CSC calculation, and are used here just to allow
for a more systematic comparison between OS and CSC
calculations. One can see that overall the results of these
calculations show similar behavior than the correspond-
ing OS calculation using nDFT

α , albeit with a small further
reduction of ν.

The fixed structure calculations for LuNiO3, show that
performing CSC calculations leads to a small reduction
of ν compared to OS calculations, if in both calculations
the DMFT impurity occupations are used to determine
the DC potential. Moreover, we find that the DC has
a very strong effect, so that a OS calculation with DFT
occupations significantly underestimates the tendency to-
wards charge disproportionation compared to the “cor-
rect” CSC calculation.

To compare our calculations with Ref. 60 we also per-
formed OS calculations without a DC correction (shown
in blue). These calculations exhibit overall smaller ν val-
ues, clearly showing that the DC correction supports the
CDI state (for positive Ū). Furthermore, at J = 1.1 eV,
where Ū ≈ 0, the DC vanishes and all OS calculations
give the same result, while in the CSC calculations a shift
to slightly smaller ν can be observed.

The complex behavior found in our calculations can
be explained, as first proposed by Mazin et al. 67 , by the
fact that the Hund’s coupling J is the critical ingredi-
ent of the CDI state. They showed in an atomic picture
that when U − 3J becomes small and is overcome by the
energy difference between the Ni sites, ∆s, which results
from the breathing mode distortion and the charge dis-
proportionation, the CDI state is favored. This regime
is accessible in systems with small or negative charge-
transfer gap, which results in a strong screening of the
Coulomb interaction in the effective d bands, whereas the
Hund’s coupling is less sensitive to screening67. A strong
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screening of U has been confirmed in recent cRPA stud-
ies of nickelates24,55. Moreover, in Ref. 68 it is shown,
that such a CDI regime for small or negative U − 3J is
also accessible in a general three orbital Hubbard model,
and is thus not limited to nickelate systems.

Subedi et al. 60 found that the CDI state emerges in
the frontier eg model for nickelates when the following
inequality is satisfied (derived from the the atomic limit):

U − 3J . ∆s . (7)

Here, ∆s is the “bare” site splitting between the SB and
LB Ni sites and is given as:

∆s = ∆DFT
s −∆DC

s , (8)

where the first term, ∆DFT
s , denotes the corresponding

splitting obtained within DFT from the on-site energies
of the Wannier functions, and is found to be ≈ 0.25 eV
for R+

1 = 0.075 Å. The second term, ∆DC
s , arises from

the difference in the DC potential between the NiSB and
NiLB sites:

∆DC
s = Σdc,SB − Σdc,LB . (9)

The behavior of U − 3J −∆s is depicted in Fig. 5 for the
different flavors of DC, and for OS and CSC calculations
at fixed U = 1.85 eV and ∆DFT

s = 0.25 eV. The param-
eter regime which corresponds to the CDI in the atomic
limit is highlighted in magenta.

For the OS calculation without DC, ∆DC
s = 0 eV, (blue

circles) U − 3J −∆s becomes negative for J = 0.53 eV,
which fits nicely with the enhancement of ν and the on-
set of the MIT for J > 0.55 eV in Fig. 4. Then, for the
calculations with DC from DFT occupations (OS: orange
squares and CSC: purple crosses) the crossing happens at
a slightly smaller J values, in perfect agreement with the
ν(J) curves in Fig. 4, where ν is slightly increased com-

pared to the calculations without DC corrections. The
strong tendency to form the CDI state in the calcula-
tions with nDMFT

α can be explained as well. It can be
seen that for CSC calculations (red crosses), the CDI
regime is entered already at J = 0.2 eV, and for OS cal-
culations (green stars) even for smaller J . Importantly,
it can be seen that in this case the DC potential jumps
at the MIT, strongly favoring the CDI state. Of course
the atomic limit consideration neglects the importance of
bandwidth, but nevertheless gives a qualitative explana-
tion of the underlying physics.

Therefore, we conclude that CSC has a small, but cer-
tainly not negligible influence on the DFT+DMFT cal-
culations for LuNiO3, reducing ν by approx. 10%. How-
ever, this only holds if DMFT occupations are used in the
OS calculation to evaluate the DC correction. If DFT
occupations are used in the OS calculation, then the ten-
dency towards the CDI state is significantly weakened,
indicated by the much smaller ν, which is clearly related
to the smaller ∆DC

s . However, compared to a hypothet-
ical CSC calculation also using nDFT

α for the DC correc-
tion, ν is again slightly enhanced in the OS calculation.
Thus, one can clearly distinguish between the effect of
the DC correction, and the effect of the charge density
correction in the CSC calculation. The latter tends to
reduce the charge disproportionation, independently of
the chosen DC scheme, and analogous to reducing the
orbital polarization in the case of CaVO3 discussed in
Sec. III A. Moreover, we observe that the flavor of the
DC correction in the OS calculation crucially determines
the stability of the CDI state.

Finally, our results also indicate that the OS calcu-
lations using DMFT occupations for the DC correction
already provide a good approximation for the CSC calcu-
lation, even though they slightly overestimate the SB/LB
splitting and thus the tendency towards the CDI state.

b. Influence on energetics Another important as-
pect is the influence of charge self-consistency in total
energy calculations for different R+

1 amplitudes. As the
R+

1 amplitude, and thus ν, changes, the DC potential
and energy correction changes accordingly. In addition,
within the CSC calculation, the Hartree energy and other
DFT energy contributions are evaluated from the cor-
rected, self-consistent charge density. To analyze the re-
sulting effects, we again use U = 1.85 eV and two differ-
ent values for J , 0.42 eV (the cRPA value) and 1.1 eV
(where Ū ≈ 0 and thus the DC correction vanishes). For
both cases, we compare OS with CSC calculations with
different treatments of the DC correction, as introduced
above. The results are shown in Fig. 6, where the top
panels show the total energy as function of the R+

1 am-
plitude, and the bottom panels show the corresponding
Ā(0).

For the smaller value, J = 0.42 eV, both the OS (green)
and CSC (red) result in an energy minimum at a finite
R+

1 amplitude close to the experimental value (indicated
by the vertical line). However, the OS calculation ex-
hibits a much stronger response on the R+

1 amplitude,
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FIG. 6. Comparison of energetics from DFT+DMFT for
LuNiO3 as function of the R+

1 amplitude. Calculations with-
out CSC are labeled OS, both in combination with DC oc-
cupations obtained from DFT (nDFT

α ) or with occupations
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show results for small J = 0.42 eV and the right panels for
large J = 1.1 eV, where the upper panel shows the energy as
function of the R+

1 amplitude and the panels at the bottom
the corresponding spectral weight at the Fermi level.

and hence shows a significantly deeper energy minimum.
In contrast, the “artificial” CSC calculation using nDFT

α

for the DC correction (purple), exhibits no energy mini-
mum for R+

1 > 0. Furthermore, the “correct” CSC cal-
culation using nDMFT

α undergoes a MIT to the CDI be-
tween R+

1 = 0 and R+
1 = 0.03 Å, while the corresponding

OS calculation is already insulating without structural
distortion and the CSC calculation with nDFT

α remains
metallic for any calculated R+

1 amplitude.

For J = 1.1 eV, both CSC calculations, done either
with DFT (purple) or DMFT occupations (red), agree
very well (due to Ū ≈ 0 in the DC) and do not result in a
stable finite breathing mode amplitude, even though both
undergo a MIT at around R+

1 = 0.03 Å and exhibit a
large charge disproportionation ν in the insulating state.
In contrast, the OS calculation (orange), shows a stronger
response, and predicts a breathing mode amplitude of
R+

1 = 0.06 Å. Note that here we used nDFT
α for the DC

correction, but the same result would be obtained using
nDMFT
α , due to Ū ≈ 0. These results show that, even

though the effect of charge self-consistency on ν for fixed
crystal structure seems to be relatively minor, the effect
on the energetics can be quite drastic, such that one can
obtain a finite breathing mode distortion within a OS
calculation, while the CSC calculation does not exhibit
an energy minimum for R+

1 > 0.

IV. SUMMARY

We have studied the effect of charge self-consistency
and the role of the DC in two representative examples of
transition metal oxides, using only a minimal correlated
subspace corresponding to few “frontier” bands around
the Fermi level. Our goal is to better understand in which
cases charge self-consistency is really required in order to
obtain accurate results, and in which cases a computa-
tionally much cheaper OS calculation might be sufficient.

For CaVO3, we find that the strong orbital polariza-
tion in the insulating phase under tensile strain is sig-
nificantly overestimated by about 30 % in OS compared
to CSC calculations, in agreement with similar calcula-
tions for SrVO3 in Ref. 13 and 14. This has a small
but noticeable effect on UMIT, the critical U for the
MIT, which is slightly underestimated in the OS calcu-
lations. In contrast, for the unstrained system, where
the orbital polarization is much smaller, the difference
between CSC and OS calculations is nearly negligible,
even though also in this case the orbital polarization is
slightly overestimated in OS calculations. Furthermore,
we also compared OS calculations using projector-based
and Wannier-based schemes for constructing the corre-
lated subspace, and found very good agreement between
the two methods.

While for CaVO3 all TM sites are symmetry-
equivalent, and thus the site-dependent but orbitally-
independent DC correction does not affect the results, for
the second example investigated in this work, LuNiO3,
the DC correction becomes rather important. Here, we
find that if DMFT occupations are used to evaluate the
DC correction in the OS calculation, one can obtain re-
sults that are in rather good agreement with the CSC cal-
culation, even though the charge disproportionation ν is
overestimated by ∼ 10 %. Thus, similar to reducing the
orbital polarization for strained CaVO3, including charge
self-consistency leads to a somewhat more homogeneous
charge distribution compared to a OS calculation. Nev-
ertheless, it appears that in order to obtain qualitative
insights or general trends, OS calculations can be a rea-
sonable approximation, even in charge ordered systems,
if the DMFT occupations are used for the DC. However,
our analysis of the energetics of the breathing mode dis-
tortion shows that for certain observables, such as the
total energy and resulting structural distortions, charge
self-consistency can be crucial. For example in the case
of LuNiO3, OS calculations overestimate the response on
the R+

1 mode, in the most extreme case leading to a sta-
ble finite breathing mode amplitude, which is absent in
the CSC calculation. In this case it is is inevitable to
perform a full CSC calculation to obtain reliable results.

In summary, the effect of charge self-consistency is
mainly to reduce a potential site or orbital polarization
by favoring a more “homogeneous” distribution of elec-
trons over all sites and/or orbitals. For the cases studied
in this work, this results in a weak to moderate charge
redistribution, which can be quantitatively relevant, de-
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pending on the specific application. In particular for total
energy calculations, which depend on a subtle balance
between different contributions, charge self-consistency
can be crucial to obtain quantitatively and even qual-
itatively correct results. Nevertheless, it appears that
cheaper OS calculations are often sufficient to gain in-
sight into the system properties on a qualitative level,
even though the, in principle ambiguous, choice of DFT
or DMFT occupations to evaluate the DC correction in
the OS calculations can become crucial. In the present
examples, the use of DMFT occupations provided bet-
ter agreement with the full CSC calculation, but in other
cases this approach might also severely overestimate the
electron transfer between inequivalent sites.

We hope that our detailed analysis of two specifi-

cally selected cases, provides useful insights for future
DFT+DMFT studies of related material systems, thus
allowing the treatment of larger and more complex ma-
terials systems by avoiding the higher computational cost
of a CSC calculation when possible.
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8
D E S C R I B I N G T H E M A G N E T I C P H A S E W I T H I N
D F T + D M F T

In this chapter I investigate the possibilities to model the magnetically
ordered phase of rare-earth nickelates using the DFT+DMFT method.
In particular, I address the question of whether the complex AFM or-
dering found in nickelates can in principle be captured by a frontier
orbital model, containing only the Ni eg states. Moreover, I investi-
gate the influence of temperature, variation of the R site cation, and
of the breathing mode distortion amplitude.

In chapter 5 and 6, I presented a detailed study about structural
parameters obtained in the paramagnetic phase, and the related MIT,
of rare-earth nickelates by using DFT+DMFT. Consistent with exper-
iments, the breathing mode distortion in PrNiO3 could not be stabi-
lized within the paramagnetic phase. Note, that for the compounds
with R=Lu to Sm, TN 6= TMIT, whereas for R=Nd, and Pr both transi-
tion occur at the same temperatures, TN = TMIT [19]. Furthermore, I
analyzed the structural parameters in the magnetically ordered state,
by performing a detailed DFT+U study in chapter 4. I also compared
the structural trends obtained from the two different studies, demon-
strating that DFT+DMFT gives a stronger reduction of the R+1 ampli-
tude across the series in the paramagnetic insulating state. However,
to compare the results of DFT+U and DFT+DMFT quantitatively, it
is necessary to perform DFT+DMFT calculations for the magnetically
ordered state.

In principle DFT should correctly describe the magnetically or-
dered ground state at T ≈ 0 correctly, and hence DFT should be suf-
ficient to describe magnetically ordered phases at low-temperatures.
However, at temperatures above zero, correlation effects can in prin-
ciple play an important role. Conceptually, performing magnetic
DMFT calculations is straightforward, by removing the symmetry
of the spin up and down channels in the self-energy and Green’s
function. Yet, there exist only very few studies using DFT+DMFT
to investigate magnetic properties. For example, in iron-based com-
pounds it was shown that electron correlations play an important role
in the correct description of the magnetically ordered state [148, 152–
154]. An investigation of how structural parameters are influenced by
correlation effects in the magnetically ordered phase has only been
performed in Ref. [16, 144, 154] for iron based compounds.

From a technical point of view, it becomes apparent from these
studies that the magnetic transition temperature obtained from
DFT+DMFT calculations can deviate drastically from experiment.

131
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Moreover, the transition temperature depends on the chosen interac-
tion parameters and the chosen correlated subspace. Note, that the
temperature in the QMC solver of DMFT is just an electronic temper-
ature, not including any thermal fluctuations of the lattice. Moreover,
the conceptual question of whether one should use spin-polarized
DFT calculations in favor of non-magnetic DFT calculations during
the CSC cycle is still under debate (compare [152] with [144]).

Performing DFT+DMFT calculations for the magnetically ordered
state in nickelates will test the capabilities of the method to capture
the complete phase diagram, by stabilizing a finite R+1 amplitude
also for compounds with TN = TMIT. Moreover, this allows to elu-
cidate whether electron correlation effects, responsible for the insulat-
ing behavior above TN, influence the magnetically ordered state. As
described in section 2.5, Raman scattering experiments for SmNiO3
found that at the magnetic transition temperature, TN, the structural
properties of the system change [59]. Hence, it becomes evident, that
a full description within DFT+DMFT is desirable to also understand
the paramagnetic insulating to antiferromagnetic insulating transi-
tion.

In a recent study of Haule & Pascut [144], it was demonstrated
for NdNiO3, that the correct magnetic order can indeed be obtained
from DFT+DMFT calculations. Haule & Pascut [144] find that for
NdNiO3, the breathing mode distortion stabilizes only if magnetic or-
der is allowed, in agreement with experiment. Moreover, they obtain
structural parameters in good agreement with experiment Ref. [60].
However, this is demonstrated only for a single compound, where
TN = TMIT. The question whether structural parameters change at
TN from the paramagnetic insulating to magnetically insulating state
remains for compounds with TN 6= TMIT.

8.1 T -afm order in the ni eg only model

I start by performing magnetic OS DFT+DMFT calculations for
PrNiO3. Here, technical questions related to CSC do not arise, and
I perform these calculations using the DFT Wannier orbital occu-
pancies for the DC correction. The underlying DFT calculations are
performed without considering spin-polarization. The low-energy
subspace is built for the Ni eg states only, using the PLO formalism.
Hence, a large J value is required to obtain the CDI electronic state
(see section 5.3). I use a value of U = 1.8 eV and J = 0.9 eV as
parameters for the Hubbard-Kanamori Hamiltonian.

The calculations are performed in the same 80 atom unit cell as the
DFT+U calculations in chapter 4, allowing for the k = (1/4 1/4 1/4)pc

AFM ordering found in experiment [61]. I first fix the structure by
using the Pbnm-relaxed GGA structure from Ref. [140], and adding
the R+1 breathing mode distortion with an amplitude of 0.04 Å. This
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Figure 24: Results of the magnetic OS DFT+DMFT calculations for PrNiO3
with R+1 = 0.04 Å. U = 1.8 eV and J = 0.9 eV are used as inter-
action parameters. Top: magnetization of the different Ni sites
as function of temperature. The NiLB1 site (blue), the NiLB2 site
(orange), and the NiSB site are shown. At T ≈ 220 K the NiLB
moments order antiferromagnetically. Middle: charge dispropor-
tionation, ν, as function of temperature for the AFM (blue), and
paramagnetic (red) calculations. Bottom: corresponding spectral
weights at the Fermi level, Ā(ω = 0).

corresponds to the value found in experiment [61]. The resulting unit
cell contains 16 Ni sites, i.e. 16 impurity problems. When considering
the experimentally observed AFM order, one ends up with 2 inequiv-
alent NiLB and 2 inequivalent NiSB sites. The 2 NiLB, and the 2 NiSB

sites order antiferromagnetically with respect to each other. There-
fore, one has to solve 4 effective impurity problems. However, the
impurity problem of one of the NiLB sites can be solved by copying
the resulting self-energy of the other NiLB site and exchanging up and
down spin channel.

The results, obtained for various temperatures, are shown in Fig. 24.
At T ≈ 290 K (β = 40 eV−1), at which all previous DFT+DMFT cal-
culations have been performed, no magnetic order is found and the
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Figure 25: Spectral functions for PrNiO3 with R+1 = 0.04 Å at β = 80 eV−1

(T ≈ 145 K), U = 1.8 eV, and J = 0.9 eV. The NiLB site (blue) and
NiSB site (red) are shown, separated in spin up (positive) and spin
down (negative) channels respectively.

system is in a paramagnetic metallic state. While the temperature is
lowered, the system undergoes a magnetic transition at T ≈ 220 K
to an AFM ordered state. I performed also calculations without us-
ing the symmetry between ”up” and ”down” between Ni sites, and
without initializing magnetic moments, obtaining the same magnetic
order. This AFM order is identical to the one found in DFT+U cal-
culations in chapter 4. Hence, the NiSB moment is found to be zero.
The magnetic moments as function of temperature are shown in the
top panel of Fig. 24.

Furthermore, a jump is observed in the charge disproportionation
between the Ni sites ν = 〈nLB〉− 〈nSB〉 at TN from 0.4 to 0.6 (middle
panel of Fig. 24), going along with a reduction in Ā(ω = 0) (bottom
panel). I performed also calculations constrained to the paramagnetic
solution, denoted by red dashed lines, which show no jump in ν nor
Ā(ω = 0), but a small decrease of ν in temperature. This jump in
ν indicates a positive coupling mechanism between AFM order and
charge disproportionation, which allows the system to undergo a MIT
at TN.

To confirm the insulating character of the magnetic state, I perform
an analytical continuation of the the impurity Green’s functions to
the real frequency axis at β = 80 eV−1 (T ≈ 145 K), utilizing the triqs/-
maxent software [142]. The resulting spectral functions are depicted
in Fig. 25 for the NiLB (blue) and NiSB (red) site. Positive values
correspond to ”spin up” and negative values to ”spin down” contri-
butions. A very small gap is visible at the Fermi level, and the NiLB

site shows strong spin splitting with almost vanishing spin down oc-
cupation. The NiSB site spectral function shows no formation of a
magnetic moment.
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Figure 26: Results of magnetic CSC DFT+DMFT calculations for R=Lu, Sm,
and Pr. All calculations are performed with R+1 = 0.06 Å, at
β = 100 eV−1 (T ≈ 116 K), using U = 1.8 eV, and DMFT im-
purity occupations for the determination of the DC correction.
Top: NiLB magnetization as function of J. Bottom: corresponding
charge disproportionation ν.

These results demonstrate, that DFT+DMFT is able to capture the
complex AFM ordering found in rare-earth nickelates in agreement
with Ref. [144]. Moreover, the system undergoes a MIT at TN as the
charge disproportionation increases. The resulting gap is very small,
which is further discussed in section 8.3. Since I always obtained
the same AFM ordering, I will from now on only show the magnetic
moments of one NiLB site.

8.2 magnetic csc dft+dmft : influence of J

After demonstrating that the magnetic order is obtained within my
DFT+DMFT setup, I check whether the same can be obtained in CSC
calculations, which then allows also to address interplay with struc-
tural properties. Ideally, I find a consistent setting of interaction pa-
rameters that can be used for all phases across the series, e.g. the
obtained cRPA values in chapter 5. Then, this should allow to find
a finite equilibrium R+1 amplitude for compounds with R=Nd, and
Pr in the AFM ordered state. Here, the CSC steps are performed by
averaging the up and down spin-channels of the obtained charge den-
sity correction from DMFT, and performing non spin-polarized DFT
calculations with the spin-averaged charge density.
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Figure 27: CSC DFT+DMFT calculations as function of the R+1 amplitude for
PrNiO3, performed at β = 150 eV−1 (T ≈ 77 K), using U = 1.8 eV
and J = 0.8 eV. The AFM result (blue), and the paramagnetic (or-
ange) result are shown. top: charge disproportionation as func-
tion of the R+1 amplitude, demonstrating a stronger non-linear
response in the magnetically ordered phase. Note, the system
is only antiferromagnetically ordered for 0.03 Å6 R+1 6 0.075 Å.
bottom: corresponding DFT+DMFT total energy per Ni site.

First tests for PrNiO3 using the experimental R+1 amplitude did not
display any magnetic ordering down to T ≈ 58 K, when using the
cRPA obtained interaction parameters, and the same computational
setup as described in chapter 5. Also for different R+1 amplitudes no
AFM order could be stabilized. Eventually, the system should order
magnetically at low temperatures. However, such low temperatures
where not accessible due to the computational limitations of the QMC
method. For further studies, it may be advisable to use another im-
purity solver that is better at handling low temperatures.

To check the reason for this drastic reduction of TN, I decided to
perform a J scan at fixed U = 1.8 eV for R=Lu, Sm, and Pr. For all
three compounds, I use a R+1 amplitude of 0.06 Å, and a fixed tem-
perature of T ≈ 116 K. The results are shown in Fig. 26. It can be ob-
served that for LuNiO3 and SmNiO3 only for large values J > 1.0 eV
magnetic order is obtained. Also for PrNiO3, the magnetic order is
only obtained for J > 0.8 eV. This shows, that for stabilizing the AFM
order in PrNiO3 using CSC calculations, a considerably larger value
of J is needed, than the obtained cRPA value of J = 0.39 eV. Moreover,



8.3 influence of temperature and breathing mode distortion 137

I found that the calculations are very hard to converge compared to
the OS calculations.

In the bottom panel of Fig. 26, the charge disproportionation, ν, as
function of J for the three compounds is shown. One can observe,
that the magnetic ordering is only stabilized if ν is not too large.
Comparing the results of PrNiO3 with the other two compounds, the
value of J = 1, 0 eV, which gives a AFM result, produces roughly the
same value of ν as J = 1.1 eV in SmNiO3, and J = 1.2 eV in LuNiO3
resulting in an AFM ordered state. This could be a hint that ν is
an important indicator determining whether the system can undergo
the magnetic transition. In Addition, such large Hund’s coupling also
favors the formation of local moments.

Next, I perform CSC DFT+DMFT calculations as function of the
R+1 amplitude for PrNiO3 using U = 1.8 eV and J = 0.8 eV. This is
of course not in accordance with the values used in chapter 5, but
the aim was to see whether a stable finite equilibrium R+1 amplitude
can be obtained at all. Here, I choose a temperature corresponding to
β = 150 eV−1 (T ≈ 77 K), which is well below TN obtained from the
OS calculations. The result is depicted in Fig. 27 for the AFM state as
well as the paramagnetic constrained calculations. From the charge
disproportionation, ν, shown in the top panel, it becomes evident
that the AFM state couples stronger to the R+1 amplitude than the
PM state, which manifests in the stronger non-linear enhancement of
ν around R+1 = 0.05 Å. As discussed in chapter 6, this non-linearity
is essential to obtain a stable equilibrium R+1 amplitude. From the
corresponding total energies in the bottom panel it can be also seen,
that the AFM state is always lower in energy than the paramagnetic
state. However, there is no global, or even local minima, observed in
E(R+1 ) for finite R+1 amplitudes.

These results are a bit puzzling. To some extent they seem to be
in agreement with experiment, giving larger ν values when AFM
ordered, and the AFM state being lower in energy than the paramag-
netic state. However, the large J value required in CSC calculations is
not in agreement with my previous results, and moreover no stable
finite equilibrium R+1 amplitude is obtained. Therefore, I limit myself
in the following to OS calculations, in order to first get a better under-
standing of the overall behavior of the system. The OS calculations
are considerably faster, and easier to converge. Hence, the following
results should be seen more like an investigation of a model system.

8.3 influence of temperature and breathing mode dis-
tortion

To better understand the behavior the system better I perform OS cal-
culations similar to the ones presented in Fig. 24 for SmNiO3 and
PrNiO3 at various R+1 amplitudes and temperatures. Results are
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R+
1 = 0.08 Å
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Ā
(ω

=
0)

Figure 28: Results of the magnetic OS DFT+DMFT calculations for SmNiO3
with various R+1 amplitudes. U = 1.8 eV and J = 0.9 eV are used
as interaction parameters. Top: magnetization of the NiLB site as
function of temperature. Middle: charge disproportionation ν as
function of temperature for the AFM (solid lines), and paramag-
netic (dashed lines) calculations. Bottom: corresponding spectral
weights at the Fermi level, Ā(ω = 0).

shown in Fig. 28 for SmNiO3 and in Fig. 30 for PrNiO3. I perform
AFM calculations, which are presented by solid lines, and paramag-
netic calculations, presented by dashed lines.

First, I discuss the results of SmNiO3. From Ā(ω = 0) as func-
tion of temperature (bottom panel of Fig. 28) it can be observed, that
for R+1 = 0.04 Å the system undergoes a MIT at TN ≈ 300 K, simi-
lar to results obtained for PrNiO3 in Fig. 24. For very small ampli-
tudes R+1 6 0.03 Å no magnetic order is observed down to ∼ 58 K,
showing clearly a positive coupling mechanism between the breath-
ing mode distortion and the magnetic order. For larger R+1 ampli-
tudes, > 0.06 Å, the system is at higher temperatures in the param-
agnetic CDI state, indicated by ν > 1.0 in the middle panel of Fig. 28.
For these large R+1 amplitudes the magnetic ordering appears at very
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Figure 29: Spectral functions for SmNiO3 with R+1 = 0.06 Å, and interaction
parameters U = 1.8 eV and J = 0.9 eV. The NiLB site (blue) and
NiSB site (red) are shown. a Paramagnetic calculation at β =

40 eV−1 (T ≈ 290 K) b Paramagnetic calculation at β = 150 eV−1

(T ≈ 77 K), where a strong peak appears at ω = 0 eV. c AFM
calculation at β = 150 eV−1 (T ≈ 77 K) with a clear gap at ω =

0 eV, separated in spin-up (positive) and spin-down (negative)
channels, and showing also a very sharp peak at ω = 0 eV.

low temperatures below 100 K, which could explain why I previ-
ously did not obtained any AFM ordered state for SmNiO3. Note,
that R+1 = 0.06 Å corresponds to the equilibrium breathing mode
amplitude value found in chapter 5 in the paramagnetic CDI state.
Furthermore, for the larger R+1 amplitudes, ν decreases as function
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Ā
(ω

=
0)

Figure 30: Results of the magnetic OS DFT+DMFT calculations for PrNiO3
with various R+1 amplitudes. R+1 0.04 Å corresponds to the ex-
perimental value [61]. U = 1.8 eV and J = 0.9 eV are used as
interaction parameters. Top: magnetization of the NiLB site as
function of temperature. Middle: charge disproportionation ν as
function of temperature for the AFM (solid lines), and paramag-
netic (dashed lines) calculations. Bottom: corresponding spectral
weights at the Fermi level, Ā(ω = 0).

of temperature within the AFM phase. Therefore, it seems that the
coupling to the R+1 mode is only positive if the system is not yet in
a paramagnetic CDI state. Then, the system undergoes a MIT at TN,
and ν increases. If the R+1 amplitude becomes larger than > 0.06 Å,
TN is considerably lowered.

For R+1 > 0.06 Å the AFM order appears to be stable again at high
temperatures between 200 K and 450 K. This behavior seems not phys-
ically reasonable and it is not clear, if this indicates a problem of the
model, or maybe the AFM order can be stabilized in these calcula-
tions, but is energetically not favored compared to the paramagnetic
state. Hence, the occurrence would be a local minima in energy. This
needs to be further investigated. However, I note that the calculations
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Figure 31: Comparison of results for PrNiO3 (R+1 = 0.06 Å) with SmNiO3
(R+1 = 0.04 Å). U = 1.8 eV and J = 0.9 eV are used as interaction
parameters. Top: magnetization of the NiLB site as function of
temperature. Middle: charge disproportionation ν as function of
temperature for the AFM (solid lines), and paramagnetic (dashed
lines) calculations. Bottom: corresponding spectral weights at the
Fermi level, Ā(ω = 0).

with this magnetic ordering at higher temperatures are harder to con-
verge, which could be an indication that the solution is not stable.

It can also observed that Ā(ω = 0) increases drastically below 100 K
for all calculations in an insulating state, also the paramagnetic ones.
To further analyze this behavior I calculate spectral functions at dif-
ferent temperatures for R+1 = 0.06 Å, which are presented in Fig. 29.
In the top panel A(ω) of the NiLB (blue) and NiSB (red) are shown for
β = 40 eV−1 (T ≈ 290 K) in the paramagnetic state. A very small gap
is visible at ω = 0 eV, and the NiLB site has a higher occupancy than
the NiSB site. In the middle and bottom panel, A(ω) for the AFM and
paramagnetic state at β = 150 eV−1 (T ≈ 77 K) are shown. The param-
agnetic spectral functions show only marginal differences compared
to the one at higher temperature, but at ω = 0 eV a very sharp peak
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appears for β = 150 eV−1, in agreement with the higher Ā(ω = 0)

in Fig. 28. Interestingly, the AFM spectral functions shows a gap of
∼ 0.25 eV, also with a sharp peak appearing at ω = 0 eV, which ex-
plains the high value of Ā(ω = 0). Such a sharp peak appears to be
unphysical, and could be a numerical artefact. However, let me note
that those calculations are very well converged with respect to QMC
cycles, and also the Legendre cut-off is chosen and checked carefully.
A comparison with a calculation using tail-fitting instead of Legendre
sampling still needs to be done to exclude numerical problems.

For PrNiO3, I also perform analogous calculations at varying R+1
amplitudes. The results are shown in Fig. 30, and display similar
behavior as for SmNiO3. Also here, a cooperative coupling between
magnetic order and R+1 mode can be observed up to R+1 = 0.09 Å,
resulting in a drastically lower TN for larger R+1 amplitudes. The spu-
rious occurrence of AFM order at higher temperatures can be found
as well for R+1 > 0.075 Å. The results for R+1 = 0.04 Å (blue) are
identical to the ones shown in Fig. 24.

In contrast to SmNiO3, the coupling of the charge disproportiona-
tion, ν, to the R+1 mode is not as pronounced as in PrNiO3. This is
due to the reduced octahedral rotations as explained in chapter 5 and
6. Meaning, that using the same R+1 amplitude in PrNiO3 leads to a
smaller value of ν compared to SmNiO3. I find that if a R+1 ampli-
tude is chosen that leads to the same ν in both systems, it will lead
to a very similar temperature behavior regarding the magnetization,
ν, and Ā(ω = 0). This is demonstrated in Fig. 31. Here, calculations
for PrNiO3, with R+1 = 0.06 Å, are compared with calculations for
SmNiO3, with R+1 = 0.04 Å. Both systems exhibit a comparable value
of ν at high temperatures. It can be observed that both system be-
have very similar when the temperature is lowered with respect to ν,
magnetic order, and Ā(ω = 0).

8.4 conclusion

So far, no complete coherent picture can be drawn from the results
obtained here. However, I demonstrated that DFT+DMFT, using only
the Ni eg states for the construction of the correlated subspace, is
in principle able to describe the AFM ordering found in experiment.
Here, the same magnetic order can be stabilized as found in DFT+U
calculations. Moreover, PrNiO3 becomes insulating while undergo-
ing the magnetic transition for suitably chosen values of U, J, and
R+1 . These results are in agreement with experiment [61]. In the
context of this thesis, these are important findings, demonstrating
that DFT+DMFT can potentially be used to describe the full phase
diagram of rare-earth nickelates. Interestingly, it is found that the
charge-disproportionation, ν, decreases as function of temperature in
the paramagnetic state for all performed calculations.
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However, performing CSC calculations using the same interaction
parameters as used in chapter 5 to describe the paramagnetic phase,
did not result in any magnetic ordering down to T ≈ 58 K. Only for
large values of J, magnetic order was obtained, and even if such large
value of J is used to perform DFT+DMFT total energy calculations,
no stable finite equilibrium R+1 amplitude is obtained.

The results obtained from the less demanding OS calculations show,
that the charge disproportionation ν seems to critically determine the
stability of the magnetic phase. By comparing results for SmNiO3
and PrNiO3 it is found that similar values of ν yield similar behavior.
For ν > 1.0 a CDI state is obtained at high temperatures, which seems
to suppress the magnetic order down to very low temperatures. Only
for moderate values of 0.4 < ν < 1.0, TN is found to be above 100 K,
going along with an increase of ν at TN and a decrease of Ā(ω = 0).
If ν is smaller than 6 0.4 no magnetic order occurs. Importantly, this
is observed for both OS and CSC calculations, indicating that it is
not the CSC treatment disfavoring the magnetic order. However, it is
not yet clear, if the magnetic ordering can also be found for smaller
values of J, or if a large value of J is essential. This could be resolved
by performing DFT+DMFT calculations with another impurity solver,
which allows calculations at lower temperatures.

The large values of ν obtained in the Ni eg only model could be
problematic, since they result in almost empty NiSB sites. If one as-
sumes that a certain amount of electrons is needed on all sites to
mediate the magnetic coupling, a too large charge disproportiona-
tion could destabilize the magnetic ordering. Even though, I found a
positive coupling between magnetic order and the R1+ mode in some
cases, this could explain why the AFM order suddenly disappears for
large R+1 amplitudes. However, it is not clear if this is a problem of
the chosen minimal correlated subspace, or whether it represents the
actual physics of the system.

In general, the strong temperature dependence of TN makes a sys-
tematic parameter variation difficult. It is not clear, if this strong
temperature dependence is an artefact of using only the Ni eg states.
The study of Haule & Pascut [144] was performed by constructing a
low-energy subspace for a large energy window containing all Ni d
and all oxygen p states. Therefore, a comparison with DFT+DMFT
calculations using all Ni d states as well as all oxygen p states would
give important insights.

Before any further conclusion can be drawn, also in the context of
the whole phase diagram, more calculations are necessary. Mainly,
the reappearing of magnetic order at higher temperatures for certain
R+1 amplitudes is spurious, as well as the sharp peak in A(ω) at the
Fermi level below 100 K. Moreover, the need of different interaction
parameters for the paramagnetic and AFM phase should be further
investigated.





9
S U M M A RY & O U T L O O K

In this thesis, I demonstrated that DFT++ methods can be used to
gain insights into the complex phase-diagram of the rare-earth nick-
elates series completely ab initio. These compounds exhibit a rich
phase diagram, in which electronic correlations, magnetic ordering,
and structural properties are coupled. Previous theoretical studies
demonstrated that capturing all of these effects is extremely challeng-
ing [22, 23, 26]. In order to obtain a complete and coherent picture of
the phase diagram, it is necessary to model structural and electronic
degrees of freedom on equal footing. Moreover, experimental data
on bulk samples is sparse due to a challenging synthesis, making
theoretical insights extremely valuable [19–21].

The first goal of this thesis, presented in chapter 1, was to test
the possibilities of the DFT method to obtain structural parameters
for the nickelate series. Thus, I performed a detailed DFT+U study
across the whole series, which is described in chapter 4. The results
obtained from plain DFT calculations correctly captured all structural
properties that seem to be decoupled from the strong electronic cor-
relations. Moreover, I found that DFT+U yields an appropriate de-
scription of the magnetically ordered phase of the series. However,
this study also revealed the deficiencies of the effective single-particle
picture in DFT to model the insulating paramagnetic state of nicke-
lates driven by electronic correlations, and the necessity to use more
advanced methods.

By utilizing the more sophisticated DFT+DMFT method, with in-
teraction parameters obtained by cRPA, I then successfully described
structural parameters across the series for the paramagnetic insulat-
ing state on a quantitative level, another goal formulated in chapter 1.
This demonstrated the predictive power of DFT+DMFT to obtain not
only spectral, but also structural parameters correctly. Additionally, a
detailed analysis of the breathing mode distortion energetics within
DFT+DMFT revealed the first-order nature of the coupled MIT. These
findings were then transferred and generalized to a model Hamilto-
nian, which allowed to identify the mechanism of the MIT, and the
control parameters that drive the trends across the series. These re-
sults allow to understand the underlying physics of the nickelates
phase diagram to a large extent, and are therefore highly valuable to
the community. Moreover, the applied methodology can be used to
investigate other materials in which structural and electronic degrees
of freedom are coupled. Thereby, I achieved another goal, which was
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to make the theoretical investigation of systems with coupled struc-
tural and electronic degrees of freedom more feasible.

In addition, I conducted a detailed analysis of the DFT+DMFT ap-
proach to illustrate the impact of CSC and the DC correction to bet-
ter understand unclear technical aspects and current limitations of
the approach. Such technical analysis and its documentation, i.e. to
identify the limitations and to understand which technical aspects
need to be improved, is of special importance for future work pre-
dicting materials properties on a quantitative level. In this respect,
the ”GW+DMFT” method is an interesting development, eliminating
the DC problem [155]. Moreover, the explicit treatment of non-local
correlation and interaction effects could play an important role in im-
proving existing ab initio approaches [156, 157].

A last missing piece is the understanding of the AFM order in rare-
earth nickelates. Although the magnetic order obtained in DFT+U
agrees well with experimental data, the origin of the complex order
is not understood up to now. Performing DFT+DMFT calculations
in the magnetically ordered phase, seems to be a promising route to
shine light on these aspects [144]. I showed that the strong electronic
correlations that are responsible for the insulating nature in the para-
magnetic regime, seem to play a crucial role in understanding also
the AFM phase transition. However, results presented in this thesis
do not yet allow, for a conclusive understanding across the series.
Moreover, it remains an open question whether the frontier orbital
model is sufficient for a full quantitative description of the magnetic
order. Here, more research is necessary.

The understanding of correlated materials using ab initio methods
remains an extremely challenging and complex problem, in particular
if multiple degrees of freedom couple. However, progress in recent
years has made the use of methods such as DFT+DMFT more and
more practical for calculating structural properties in realistic corre-
lated systems [18]. This development will enable the prediction of
structural properties on an unprecedented level completely ab inito,
leading also to better, more fundamental, understanding of how struc-
tural and electronic degrees of freedom couple, which in turn will
allow to design better performing functional materials. Thus, the re-
search presented in this thesis is an important advance showing that
modern ab initio methods correctly describe materials with coupled
degrees of freedom, pushing the boundaries of DFT++ methods, and
improving their predictive power.



A
C A L C U L AT I O N O F T H E I M P U R I T Y E N E R G Y

In this appendix I will give a detailed derivation of the interaction
energy formula Eq. 120. The goal is to find a closed expression of the
following expectation value:

〈Hint
αβγδ〉 =

1

2

∑
αβγδ

Vαβγδ 〈Ψ0| c†αc†βcδcγ |Ψ0〉 , (157)

where |Ψ0〉 is the ground state of the system. The derivation is based
on Ref. [127] and Ref. [113]. I will start with the equation of motion
for the Green’s functions:

i
∂

∂t
Gαβ(t, t ′) =

∂

∂t
〈Ψ0| T [cα(t)c†β(t ′)] |Ψ0〉 . (158)

For this derivation it is necessary to write the time ordered product
in the following form:

T [cα(t)c
†
β(t
′)] = θ(t− t ′)cα(t)c

†
β(t
′) − θ(t ′ − t)c†β(t

′)cα(t) .
(159)

where,

θ(t) =

1 for t > 0

0 for t < 0 .
(160)

Therefore I get by using the product rule and

∂

∂t
θ(t− t ′) = δ(t− t ′) , (161)

for the equation of motion:

i
∂

∂t
Gαβ(t, t ′) = 〈Ψ0|θ(t− t ′)

∂cα(t)

∂t
c
†
β(t
′) − θ(t ′ − t)c†β(t

′)
∂cα(t)

∂t

+ δ(t− t ′)
(
cα(t)c

†
β(t) + c

†
β(t)cα(t)

)
|Ψ0〉 .

(162)

The second line contains the anti-commutator, and the first line is the
time ordered product of derivations of annihilation operators:

i
∂

∂t
Gαβ(t, t ′) = 〈Ψ0| T [

∂cα(t)

∂t
c
†
β(t
′)] |Ψ0〉+ δ(t− t ′)δαβ . (163)

Using now the Heisenberg equation of motion gives:

i
∂cα(t)

∂t
= eiĤt[cα, Ĥ]e−iĤt , (164)
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and one finds:

i
∂

∂t
Gαβ(t, t ′) = −i 〈Ψ0| T [eiĤt[cα, Ĥ]e−iĤtc†β(t

′)] |Ψ0〉

+ δ(t− t ′)δαβ .
(165)

Note, that the time evolution is determined by the full Hamiltonian of
the system. Here, I will use a generic Hubbard Hamiltonian, consist-
ing of a one-particle kinetic term and the above Coulomb interaction.

As one can see it boils down to the calculation of the anti-
commutator [cα, Ĥ]. Fortunately, the time dependence is outside of
the commutator and I can now split the commutator according to:

[cα, Ĥ] = [cα, Ĥkin]︸ ︷︷ ︸
(1)

+ [cα, Ĥint]︸ ︷︷ ︸
(2)

(166)

Starting with anti-commutator (1), I will change the indices of Ĥ to
not mix with the original indices:

[cα, Ĥkin] =
∑
α ′β ′

tα ′β ′ [cα, c†α ′cβ ′ ] . (167)

Now, I switch to the momentum basis, where the kinetic hamiltonian
is diagonal:

[cα, Ĥkin] =
∑
α ′
tα ′α ′ [cα, c†α ′cα ′ ] . (168)

Next, I use the identity:

[A,BC] = [A,B]C−B[C,A] (169)

to obtain:

[cα, Ĥkin] =
∑
α ′
tα ′α ′


[cα, c†α ′ ]︸ ︷︷ ︸

δαα ′

cα ′ − c
†
α ′ [cα ′ , cα]︸ ︷︷ ︸

0




=
∑
α ′
tα ′α ′δαα ′cα ′

= εαcα .

(170)

Therefore, I have for the full anti-commutator:

[cα, Ĥ] = εαcα + [cα, Ĥint]︸ ︷︷ ︸
(2)

. (171)

Note, I chose a basis of α and β where Ĥkin is diagonal.
For anti-commutator (2) I get:

[cα, Ĥint] =
1

2

∑
ββ ′γγ ′

Vββ ′,γγ ′ [cα, c†βc
†
γcγ ′cβ ′ ] (172)
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For the anti-commutator of the creation and annihilation operators I
get:

[ cα︸︷︷︸
A

, c†βc
†
γ︸ ︷︷ ︸

B

cγ ′cβ ′︸ ︷︷ ︸
C

] = [cα, c†βc
†
γ]cγ ′cβ ′ − c

†
βc
†
γ [cγ ′cβ ′ , cα]︸ ︷︷ ︸

0

= [ cα︸︷︷︸
A

, c†β︸︷︷︸
B

c†γ︸︷︷︸
C

]cγ ′cβ ′

= [cα, c†β]︸ ︷︷ ︸
δαβ

c†γcγ ′cβ ′ − c
†
β [c†γ, cα]︸ ︷︷ ︸

δαγ

cγ ′cβ ′

= δαβc
†
γcγ ′cβ ′ − δαγc

†
βcγ ′cβ ′ ,

(173)

which can now inserted back, to obtain:

[cα, Ĥint] =
1

2

∑
ββ ′γγ ′

Vββ ′,γγ ′
(
δαβc

†
γcγ ′cβ ′ − δαγc

†
βcγ ′cβ ′

)

=
1

2

∑
β ′γγ ′

Vαβ ′,γγ ′ c
†
γcγ ′cβ ′ −

1

2

∑
ββ ′γ ′

Vββ ′,αγ ′ c
†
βcγ ′cβ ′ .

(174)

In the last term I change β→ γ, β ′ → γ ′ and γ ′ → β ′:

[cα, Ĥint] =
1

2

∑
β ′γγ ′

Vαβ ′,γγ ′ c
†
γcγ ′cβ ′ −

1

2

∑
γγ ′β ′

Vγγ ′,αβ ′ c
†
γcβ ′cγ ′ .

(175)

Now, I use Vαα ′,ββ ′ = Vββ ′,αα ′ , and exchange cβ ′cγ ′ by picking up
a minus sign:

[cα, Ĥint] =
1

2

∑
β ′γγ ′

Vαβ ′,γγ ′ c
†
γcγ ′cβ ′ +

1

2

∑
γγ ′β ′

Vαβ ′,γγ ′ c
†
γcγ ′cβ ′ ,

(176)

which finally gives:

[cα, Ĥint] =
∑
β ′γγ ′

Vαβ ′,γγ ′ c
†
γcγ ′cβ ′ . (177)

Putting all together I get for the whole anti-commutator:

[cα, Ĥ] = εαcα +
∑
γγ ′β ′

Vαβ ′,γγ ′ c
†
γcγ ′cβ ′ . (178)

Putting everything back into the equation of motion in Eq. 165:

i
∂

∂t
Gαβ(t, t ′)

= −i 〈Ψ0| T [eiĤt

εαcα +

∑
γγ ′β ′

Vαβ ′,γγ ′ c
†
γcγ ′cβ ′


 e−iĤtc†β(t ′)] |Ψ0〉

+ δ(t− t ′)δ ′αβ.
(179)
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Now lets introduce the time evolution operators carefully:

i
∂

∂t
Gαβ(t, t ′)

= −i 〈Ψ0| T [ ( εαe
iĤtcαe

−iĤt

+
∑
γγ ′β ′

Vαβ ′,γγ ′ e
iĤtc†γcγ ′cβ ′e

−iĤt ) c
†
β(t
′)] |Ψ0〉

+ δ(t− t ′)δαβ
= −i 〈Ψ0| T [ ( εαcα(t)

+
∑
γγ ′β ′

Vαβ ′,γγ ′ e
iĤtc†γe

−iĤteiĤtcγ ′e
−iĤteiĤtcβ ′e

−iĤt ) c
†
β(t
′)] |Ψ0〉

+ δ(t− t ′)δαβ

= −i 〈Ψ0| T [


εαcα(t) +

∑
γγ ′β ′

Vαβ ′,γγ ′ c
†
γ(t)cγ ′(t)cβ ′(t)


 c†β(t ′)] |Ψ0〉

+ δ(t− t ′)δαβ .
(180)

Introducing a limes on both sites:

lim
t ′→t+

i
∂

∂t
Gαβ(t, t ′)

= −i lim
t ′→t+

〈Ψ0| T [


εαcα(t) +

∑
γγ ′β ′

Vαβ ′,γγ ′ c
†
γ(t)cγ ′(t)cβ ′(t)


 c†β(t ′)] |Ψ0〉

+ lim
t ′→t+

δ(t− t ′)δαβ .

(181)

Derivative and limes exchange and I obtain:

i
∂

∂t
Gαβ(t, t+)

= −i 〈Ψ0| εαc†β(t+)cα(t)
− i

∑
γγ ′β ′

Vαβ ′,γγ ′ c
†
β(t

+)c†γ(t)cγ ′(t)cβ ′(t) |Ψ0〉+ δαβ .

(182)

After rearranging one obtains:

i
∂

∂t
Gαβ(t, t+) + i εα 〈Ψ0| c†β(t+)cα(t) |Ψ0〉− δαβ

= −i
∑
γγ ′β ′

Vαβ ′,γγ ′ 〈Ψ0| c†β(t+)c†γ(t)cγ ′(t)cβ ′(t) |Ψ0〉 .
(183)
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The second term on the left side is −εαGαβ(t, t+), if I write the term
with a time ordering operator and pick up the minus sign from parti-
cle exchange. Therefore I get:

(
i
∂

∂t
− εα

)
Gαβ(t, t+) − δαβ

= −i
∑
γγ ′β ′

Vαβ ′,γγ ′ 〈Ψ0| c†β(t+)c†γ(t)cγ ′(t)cβ ′(t) |Ψ0〉 .
(184)

if I now use the definition of the free one-particle Green’s function:

G0αβ(t, t
′) =

δ(t− t ′)δαβ
i ∂∂t − εα

, (185)

I can rewrite the left side of the equation in the following way:
(
i
∂

∂t
− εα

)[
Gαβ(t, t+) −G0αβ(t, t

+)
]

= −i
∑
β ′γγ ′

Vαβ ′,γγ ′ 〈Ψ0| c†β(t+)c†γ(t)cγ ′(t)cβ ′(t) |Ψ0〉 .
(186)

Remember that we chose Ĥkin to be diagonal. Therefore G0αβ(t, t
+)

is diagonal by definition as well.
On the right side of the equation one has almost two times 〈Hint〉.

Now, I introduce the sum over α on both sites:∑
α

(
i
∂

∂t
− εα

)[
Gαα(t, t+) −G0αα(t, t

+)
]

= −i
∑

αβ ′γγ ′
Vαβ ′,γγ ′ 〈Ψ0| c†α(t+)c†γ(t)cγ ′(t)cβ ′(t) |Ψ0〉 .

(187)

If one now compares the right side of the equation with equation 157,
one has two times the expectation value of Hint on the right side of
the equation:∑

α

(
i
∂

∂t
− εα

)[
Gαα(t, t+) −G0αα(t, t

+)
]
= −i 2〈Hint〉 . (188)

This shows that one can describe the expectation value of the two-
particle Coulomb interaction by one-particle Green’s functions. Since
α = β the definition of the free one-particle Green’s function reduces
to G0αα(t, t+) =

(
i ∂∂t − εα

)−1
, and I obtain:∑

α

G0αα(t, t
+)−1

[
Gαα(t, t+) −G0αα(t, t

+)
]
= −i 2〈Hint〉 . (189)

In the main text, 〈Hint〉 is defined by 1
2tr[ΣG]. To get to this result I

will use the Dyson equation:

Σ = G−1
0 −G−1 , (190)
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and multiply from the right by G:

ΣG = G−1
0 G−G−1G

= G−1
0 G− 1

= G−1
0 [G−G0]

(191)

However, although the last line looks more or less the same as the left
side of equation 189, we encounter a problem. The Dyson equation
is made for matrices, and equation 189 is only for the diagonal parts
of G.

Assuming now that one is only interested in the diagonal parts of
the matrix product ΣG:

(ΣG)αα =
∑
β

ΣαβGβα . (192)

Now we use equation 191 to rewrite this to:∑
β

ΣαβGβα =
∑
β

(G0αβ)
−1[Gβα −G0βα] . (193)

Now I can use the fact, that G0αβ is diagonal and insert a δαβ:∑
β

ΣαβGβα =
∑
β

(G0αβ)
−1δαβ[Gβα −G0βα] (194)

if one does the summation over β the result is:∑
β

ΣαβGβα = (G0αα)
−1[Gαα −G0αα] (195)

which is exactly what is written on the left side of equation 189 in
case of a diagonal G0. Therefore the result reduces to:∑

α

∑
β

Σαβ(t, t+)Gβα(t, t+) = −i 2〈Hint〉 (196)

⇔ 〈Hint〉 = −
i

2

∑
αβ

Σαβ(t, t+)Gβα(t, t+) . (197)

This is of course:

〈Hint〉 = −
i

2
tr
[
Σ(t, t+)G(t, t+)

]
(198)

which is exactly the result that is given in the paper from [127], or in
the book from [113].

Since G and Σ act only at the same time t (t+), one can transform
the result easily to the frequency domain or Matsubara functions. The
result in the Matsubara frequency domain is:

〈Hint〉 =
1

2

∑
n

tr [Σ(iωn)G(iωn)] . (199)
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