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Abstract— Autonomous vehicles are being used increasingly
often for a range of tasks, including automated highway driving
and automated parking. These systems are typically either spe-
cialized for structured environments and depend entirely on such
structure being present in their surroundings, or are specialized
for unstructured environments and ignore any structure that may
exist. In this paper, we present a hybrid autonomous system
that recognizes and exploits structure in the environment in the
form of driving lanes, yet also navigates successfully when no
such information is present. We believe this approach is more
flexible and more robust than either of its sub-components alone.
We demonstrate the effectiveness of our system on both marked
roads and unmarked lots under the presence of dynamic objects,
such as pedestrians or other vehicles.

I. INTRODUCTION

Every year, thousands of people are killed in road acci-
dents, with millions more injured. The vast majority of these
accidents are due to human error, with roughly 5% caused
by vehicle defects [1]. Such staggering findings motivate the
use of driver assistant systems and fully automated vehicles
to increase driver and passenger safety.

Driver assistant systems can help drivers to identify dan-
gerous vehicle states and traffic scenarios and reduce the risk
of accidents. These driver assistant systems are widespread
in all categories of vehicles and range from anti-lock brakes
to radar based adaptive cruise control. The development of
these systems has been accelerated by integrated drive-by-wire
components such as electronic gas pedals, brakes, and steering
systems.

The development of such components has also hastened
the arrival of autonomous passenger vehicles. In 1997, the
NavLab vehicles travelled ‘no hands’ across the United States,
requiring only accelerator and brake pedal interaction from
the driver [2]. In 2005, 23 autonomous vehicles started a race
across the Nevada desert in the DARPA Grand Challenge race
[3], with 5 of them finishing the 211.1 Km distance.

Most of these systems depend on environmental structure
like driving lanes or dense sets of GPS points. However, in
many common driving scenarios neither of these sources of
information will be available, for example, when leaving a
road and entering a parking lot.

Autonomous navigation in unstructured environments is an
active research area in field robotics, and a number of effective
approaches have been developed that address this task [4]-[7].
A common technique is to maintain a map of the environment
and use this to plan safe paths to a desired goal location.
As the vehicle traverses the environment, it updates its map
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and path based on its observations. Such an approach works
well when dealing with reasonably small areas, but storing and
planning over maps of the entire environment is impractical
when traversing long distances. Further, without taking into
account non-spatial information such as road markings, these
approaches are unable to ensure that the vehicle stays within
its lane (or even on the road) when navigating through highway
or urban environments.

In this paper we present a hybrid navigation system that
combines the benefits of existing approaches for driving in
structured environments (e.g. roads) and unstructured envi-
ronments (e.g. parking lots). When driving on detectable
roads, the system uses visual lane detection and laser range
data to generate a local map, which is processed by a local
planner to guide the vehicle down the lane while avoiding
obstacles. When driving in unstructured environments, the
system employs a global map and planner to generate an
efficient trajectory to a desired goal. The combined system is
capable of navigating a passenger car to a given goal position
without relying on road structures, yet it makes use of such
structure when it is available. We also describe extensions to
this approach capable of dealing with dynamic obstacles, such
as pedestrians or other vehicles, that are commonly found in
realistic driving scenarios.

We begin by briefly introducing our autonomous Smart
vehicle and its onboard sensors. We then describe our system
for navigating structured and unstructured environments, and
go on to describe how this system can be used in environments
containing dynamic obstacles. In Section IX we present results
from runs performed in road and parking lot scenarios and we
conclude with discussion.

II. VEHICLE AND SENSORS

Our vehicle is a Smart fortwo passenger car that has been
modified for autonomous operation. Firstly, we have interfaced
the Smart’s controller area network (CAN) bus to access data
on the dynamic state of the vehicle, specifically the wheel
speed and the steering angle. We have also added actuators
to the brake pedal and interfaced the electronic gas pedal
and power steering. Finally, a number of sensors (discussed
below) have been added to provide vehicle and environmental
information. A detailed description of the mechanical and
architectural aspects of the vehicle can be found in [8].



Fig. 1. Our autonomous Smart car platform. There are three fixed laser range
finders mounted on the front of the vehicle and on the sides of the roof, and
two spinning laser range finders mounted together on the center of the roof.
Inside the vehicle, mounted behind the windscreen, is an automotive camera
used for lane detection.

A. Proprioceptive Sensors

As with many other passenger cars, the Smart is equipped
with a variety of sensors which are linked using the vehicle’s
CAN bus. By interfacing this bus it is possible to access the
sensor data and measure the vehicle’s dynamic state precisely.

a) Wheel Encoders: The overall vehicle speed is derived
from the four wheel encoders with a resolution of 0.5 revo-
lIutions/minute. The steering wheel angle is available with a
resolution of 0.04°.

b) IMU: We have added a 6 degree of freedom IMU to
the Smart that is able to measure angular rates up to 100°/sec
at a resolution of 0.025°. Lateral accelerations in all three
dimensions can be measured up to 2g with a resolution of
0.01 m/s.

B. Exteroceptive Sensors

c) Differential GPS system: (Omnistar Furgo 8300HP,
rain proof antenna) This system provides an accurate position
estimate together with its standard deviation when satellites
providing the GPS drift correction are visible from the car.
When no correction is available standard GPS is provided.

d) Laser Range Finders: We use five SICK laser range
finders for sensing the spatial structure of the environment.
These are configurable laser range finders based on time of
flight measurements, with angular resolutions of 1 or 0.5°,
angular ranges of 180° and measuring ranges up to 80 meters.
Three of these lasers are kept at fixed angles—one at the front
of the vehicle and two on the sides of the roof—to quickly
detect upcoming obstacles and difficult terrain, and two of the
lasers are mounted to a spinning platform—on the center of

the roof—to provide full 3D information about the vicinity of
the vehicle.

e) Monocular Camera: An automotive gray-scale cam-
era is mounted inside the vehicle at the top of the windscreen
for observing the area in front of the vehicle and detecting
lane information. The resolution of the camera is 750 x 400
pixels and it delivers information at 25 frames per second.

III. POSITION ESTIMATION

The localization algorithm used in our system is based on
the information form of the Kalman filter, the Information
filter. This filter has the property of summing information
contributions from different sources in the update stage. This
characteristic is very interesting when many sensors are in-
volved, which is the case in our system. Our sensor fusion
scheme is based on [9] [10] and [11]. To accurately localize the
vehicle, four different sensors are used: DGPS, IMU, optical
gyro and vehicle sensors (wheel encoders and steering angle
sensor). The combination of their measurements allows the
estimation of the vehicle’s 6 degrees of freedom i.e. the 3D
position (X, y, z) and the attitude (roll, pitch, heading).

A detailed description of this aproach can be found in [8].

IV. TRAVERSABILITY ESTIMATION

Reliable estimates of the traversable area in the vicinity of
the vehicle are crucial for autonomous driving. We currently
use the three static laser range finders on our vehicle to
estimate the traversability of the area in front of the vehicle.

Given a laser range observation, we first compute the end
points of the individual beams. We then add the 3D points
to the cells of a local two-dimensional grid map according to
the x, y-coordinate of the beam (horizontal position). We then
parse the cells and compute the mean and variance of the
z-values (vertical position) for each cell. The traversability
classification of a cell is performed locally based on these
values. When adding observations from multiple laser range
finders into a single grid, it is often the case that false obstacles
are detected by some of the lasers (described as phantom
obstacles by Thrun et al. [12]). These false obstacles are
caused by small errors in the pitch estimate of the pose
of the vehicle. To remove these artifacts, we compute the
traversability estimate individually for each scan and merge the
independently-estimated traversability values into a common
grid structure. We found that this yields good results when
moving on streets as well as on unpaved roads. An example
traversability map produced by this approach is shown in
Figure 2.

V. TRAVERSABILITY PREDICTION

If an autonomous vehicle has onboard far-range sensors,
then the information from these sensors can be used by the
vehicle to enable smooth following of winding roads and
early reaction to obstacles in the vehicle’s route. The smaller
the sensing range, the more extreme the obstacle avoidance
movements of the vehicle must be. This is also true for
following the current road lane. To generate smoother motion



Fig. 2. A traversability map obtained using the three fixed laser range finders
on our vehicle. Black areas are untraversable and the red/grey arrows illustrate
the trajectory taken by the car.

of the vehicle using only our laser range finders, we perform
a prediction of the traversable area at a far range by using the
accurate near-range information provided by these sensors.

In order to perform the prediction, we compute a 1D pattern
of average cost values. This pattern is generated by storing,
for each cell in our 1D pattern, the average cost of all the
already-observed cells in our local cost map that have their
lateral offset position from the current route match the cell
position in our 1D template. This process is illustrated by the
image in the second row of Figure 3.

We then use this pattern to estimate unknown traversability
cost values for cells far away from the vehicle along the
current route (illustrated by the blue lines in the same figure).
In this way, we obtain an estimate of the expected cost in
the currently unobserved area. The image in the last row of
Figure 3 provides an example result of this estimation. The
area within the red rectangle is the measured cost map and
the the area in the blue rectangle is the predicted cost based
on the measured cost map.

This technique allows us to estimate the traversability of
areas that have not been observed with the sensors. This
prediction does not cope with unforseen obstacles but it does
help the car to improve its estimate of the road projection. This
is especially important if the localization is affected by GPS
drift, since in this case it is not sufficient to simply follow the
predefined route. With our approach we are able to robustly
estimate the road and the traversable area, even when faced
with GPS drift or outages.

VI. DRIVING IN STRUCTURED ENVIRONMENTS

When driving in structured environments such as roads or
highways, it is important for safety that vehicles abide by
traffic rules and stay in their own lanes. For autonomous
vehicles, such structure is useful because it constrains the
available actions of the vehicle and reduces the complexity
of the navigation task. For instance, if an autonomous vehicle
is traveling down a road, it knows it must stay within its
current lane so the lane can be used as a guide for where the
vehicle must travel to next. Such an approach can be coupled
with a standard commercial navigation unit that provides
higher-level guidance on when to turn down which street.

Fig. 3. The traversability prediction. The image in the first row shows a local
cost map representing the traversable and non-traversable area. The dashed
line illustrates the route. Based on this map and the route description, we
compute a 1d cost pattern based on the cell labeled by the red lines in the
image in the second row. We then use this pattern to predict the traversability
in from of the car (illustrated by the blue lines in the third figure). Finally,
we obtain a cost prediction for cells not observed to far by the robot (labeled
by the blue rectangle in the last image).

The resulting combined system can autonomously navigate
between arbitrary road locations.

However, to ensure safe navigation, it is not enough to just
follow the current lane. The vehicle must be alert at all times
and able to avoid other cars and objects that may unexpectedly
place themselves in its path, such as cars pulling out from
driveways or pedestrians crossing the street, for example. To
achieve such behavior in our Smart, we construct a local map
using the traversability estimation method described in the
previous section and plan a collision-free path through this
map. Both the map and the plan are updated frequently (at 20
and 10 Hz, respectively). With both the local obstacles and
lane information encoded in the local map, the vehicle is able
to plan trajectories that keep it within the current lane and also
avoid any obstacles.

A. Lane Detection

To extract lane information, we use a monocular gray-
scale camera designed for automotive use and a real-time lane
detection algorithm running on a separate computer equipped



Fig. 4. Example results from our lane detection approach applied to images
from a straight (top) and curved (bottom) section of road.

with a frame grabber. Our approach combines hypotheses
from several lane detection algorithms, each designed to detect
different types of lanes, such as the closest lane to the vehicle,
straight lanes, or curved or symmetric lanes. These algorithms
rely mainly on the spatial gradient of the image to extract
their hypotheses. The results of the individual algorithms are
then combined to determine the most probable lane. Example
results from our lane detection algorithm are shown in Figure
4 and more details on the algorithm can be found in [13].

B. Local Planning

In order to follow the current lane safely and smoothly, we
project a set of potential vehicle actions onto our traversability
map and check the cost of these actions. For this, we use an
approach similar to that used by the Stanford Racing Team
in the Grand Challenge [12]. We take the centerline of the
lane and use this to construct a set of possible trajectories for
the vehicle to execute. These trajectories vary in their lateral
offset from the nominal centerline path and provide a series
of alternatives from which the best obstacle-free trajectory can
be selected.

By exploiting the structure of the driving lane, this com-
bined approach provides smooth, safe trajectories for the
vehicle when it is operating on roads.

VII. DRIVING IN UNSTRUCTURED ENVIRONMENTS

In unstructured environments where there is no lane infor-
mation to guide or constrain the actions of the vehicle, we
must use a more general approach for navigation. For instance,
imagine our vehicle has arrived at its intended destination

address and now wants to park in a specified goal location
within the parking lot. To do this, we can still use the local
planning component of our system, however we now need to
compute a path for the planner to follow as we no longer have
lane information to provide this for the vehicle. To generate
these paths we use the Field D* algorithm, which has been
incorporated into several fielded robotic systems [14]. This
algorithm provides very low-cost 2D paths through grid-based
representations of an environment and is able to repair these
paths to account for new information as the vehicle observes
obstacles during its traverse. These paths do not take into
account the heading restrictions of the vehicle and instead
approximate the least-cost path to the goal for a vehicle that
can turn in place. Because Field D* does not encode the
mobility constraints of the vehicle, it cannot be used alone
for accurate trajectory planning for the vehicle. Consequently,
we combine it with a local planner to provide feasible paths.

One way to do this is to use the Field D* path as the input
to our local planner, which will then track this path to the goal.
As the vehicle navigates through the environment, the global
Field D* path is updated based on new information received
through the onboard sensors, and the trajectories generated by
the local planner are subsequently updated to reflect the new
global path. This approach works well in static environments,
where the Field D* path can be quite accurately tracked using
the local planner. However, in dynamic environments such an
approach may not be ideal, as discussed below.

VIII. NAVIGATING IN DYNAMIC ENVIRONMENTS

Typical driving scenarios involve dynamic obstacles: there
are usually pedestrians or other vehicles moving around within
the environment that need to be avoided. These dynamic
obstacles need to be accurately detected and reasoned about
in order to produce safe paths for our vehicle to traverse. In
the following two subsections we describe extensions to our
navigation approach that enable us to model and reason about
dynamic elements.

A. Mapping Dynamic Environments

To detect and predict the trajectories of moving objects,
several approaches have been proposed in the robotics commu-
nity. Feature-based approaches operate extract features from
the raw data and then track these features to compute their
motion parameters. Such approaches are suitable for a variety
of sensor data, for example, vision, radar, and laser, and have
been widely used [15]. However, these approaches typically
require a priori knowledge of the features to track and are
therefore only suitable for the detection of well defined classes
of objects. Raw data-based approaches, on the other hand,
detect motion from raw sensor data and do not depend on
any model of the objects being observed. They are thus less
accurate for predicting well-behaved, known object classes
but perform well when confronted with a range of different
dynamic elements.

Our vehicle uses a raw data-based scan alignment approach
to detect moving objects in the environment. Based on work



Fig. 5. Scan points taken during a test ride on campus. The static structure of the environment (curbs, buildings) is detected as static parts of the environment

while the oncomming vehicle forms an L-shaped set of dynamic points.

introduced by Jensen [16], our algorithm extends the iterative
closest points algorithm (ICP) [17]. The ICP algorithm aligns
two sets of points by iteratively finding the set of points in one
scan that are closest to a set of points in the other scan, and
then computing a transformation that minimizes the distance
between the two sets of points. Special care has to be taken to
suppress outliers, which are points that are present in one scan,
but not in the other, because they bias the alignment. The pose
correction d, d,, d© is computed as a weighted mean over all
connected points. The link between a scan point (x;,y;) and
a scan point (x;,y;) is expressed by a link variable ; = j.
With this the pose correction can be computed from the linked
scan points and results in

1
dy = 7 (i — ) (1)
1=I*
d, = 1 ; 2
y*jZ:I*(yliyli) ( )
1
e = 7 (pi — d1,) 3)
i=1I*

Linking and correcting are repeated until the correction value
is below a predefined threshold. The resulting transformation
determines the displacement from the reference to the corre-
spondence pose.

While in scan matching outliers are a disturbing factor and
are filtered out in each iteration, they are very useful for the
detection of dynamic obstacles. In our approach, the outliers
found in each iteration of scan matching are collected and
clustered. The resulting clusters are candidates for dynamic
objects and are tracked to derive their motion parameters.
Figure 5 provides an example illustrating this ability of this
approach to filter static points from those in motion.

B. Planning in Dynamic Environments

When driving within road lanes, dynamic obstacles usually
do not significantly interfere with the traverse of our vehicle
because their behavior is well-defined. To ensure we don’t
collide with any of these obstacles, our local planner can
estimate the trajectories of these other vehicles or pedestrians
and then check that its intended trajectory does not intersect
these objects at any point in time. Figure 6 shows a simple
example of this reasoning. The local planner can then remove

from contention any trajectories that intersect dynamic obsta-
cles (or modify the velocity profile of the trajectory to avoid
the obstacle). Since the local planner is generating a series
of possible trajectories that span the current driving lane, at
least one of these trajectories should still be obstacle-free if
the dynamic obstacle is abiding by traffic rules.

For our unstructured driving scenario, the situation is com-
plicated because the dynamic obstacles may interfere entirely
with the global path being tracked. Thus, it may not be possible
to track this path using our local planner. Instead, we may need
to evaluate a more general set of possible local trajectories
for the vehicle to execute, including some that do not follow
the current path. For this, we use an approach that follows a
large body of work on outdoor mobile robot navigation [4],
which has the local planner project out a range of possible
local trajectories and then evaluate each trajectory based on
both the cost of the trajectory itself (in terms of curvature,
terrain, distance, etc), as well as the cost of a global path
from the endpoint of the local trajectory to the goal. Thus,
rather than a single global path being planned from the current
vehicle position to the goal, global paths are planned from
each trajectory endpoint. Since Field D*, like most replanning
algorithms, performs planning in a backwards direction out
from the goal, computing these extra paths and their associated
costs is very efficient (and often requires no extra planning at
all).

Figure 7 shows an illustrative example of this combined
approach. Here, a set of local arc-based trajectories are shown
in red/gray, with the best trajectory shown in blue/black. Here,
the best trajectory was selected based on a combination of
the cost of the trajectory itself and the cost of a global path
from the end of the trajectory to the goal (the goal is shown
as a filled circle at the right of the figure). The global path
from the end of the best trajectory to the goal is also shown in
blue/black. In this example, a purely local planner would have
selected the straight trajectory leading directly to the right,
as this brings it closest to the goal in terms of straight-line
distance. However, such a trajectory could cause it to get stuck
behind the clump of obstacles in the middle of the map.

IX. EXPERIMENTS

We have tested our system in both structured and unstruc-
tured environments. For structured environments, we had the
vehicle drive down a road and record the resulting local maps.
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Fig. 6. Local planning amidst dynamic obstacles. If an agent (facing upwards) assumes the dynamic obstacle (traveling in from the right) is static when
choosing its next action (potential actions shown as the arcs emanating out from the agent), it may select an action that will have it collide with the obstacle
at some future point in time. Instead, it needs to estimate the position of the dynamic obstacle in the future and use these estimates to select an action that
will avoid the obstacle at all times. The three images show the potential position of the agent based on its available actions, as well as the position of the
dynamic obstacle, at three stages in time (the color of each agent reflects the time).
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Fig. 8. Results from global planning and mapping in an unstructured environment. Shown here is the map created from the laser during an autonomous
traverse from an initial position on a rural road to a goal position inside a large parking lot. Also shown is the path (in blue/black) traversed by the vehicle.
The vehicle began from the position marked in green/gray at the top of the map, and navigated to the goal position marked in red/gray at the bottom.
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Fig. 9. Snapshots from a video taken of the traverse in Figure 8.



Fig. 7. Global Planning in Unstructured Environments. The vehicle
projects a set of feasible local trajectories through the local map from its
current position and orientation (trajectories for a single speed are shown in
red/gray). The cost of each of these trajectories is computed based on the cost
of the cells the trajectory travels through (darker areas are more expensive,
with black cells representing obstacles). A global path is planned from the
end of each trajectory to the goal (shown as a filled circle on the right side of
the map) and the cost of this path is added to the cost of the trajectory. The
best trajecotry is shown in blue/black, along with the global path from the
end of this trajectory to the goal. The map here has been configuration-space
expanded so that the vehicle can be treated as a single point during planning.

Figure 10 shows the combined cost map constructed from
the series of local maps and highlights both obstacles and lane
information. Since the laser range data does not contain any
information about the lane markings, the vision-based lane
detection system is necessary to keep the vehicle in its lane.

To test our vehicle in unstructured environments, we gave it
a more complex task. We began on a road and tasked it with
autonomously navigating to a goal location in a nearby parking
lot. Because there were large shrubs between its initial position
and its goal, it was forced to travel down the road until it
observed an opening through which it could enter the parking
lot. At this point it entered the parking lot and navigated to
its goal location.

Figure 8 shows the resulting map built by the vehicle and
the vehicle’s traverse. Figure 9 shows a series of images taken
from a video of the traverse. Overall the vehicle travelled about
140 meters in 62 seconds, i.e. at average speed of roughly 2.3
m/s.

The vehicle trajectory seen in Figure 8 shows its ability to
navigate in a scenario given a sparse set of waypoints and a
combination of global and local path planning techniques.

Together these experiments illustrate our vehicle’s ability
to navigate through both road and non-road environments.
Our vehicle effectively avoids obstacles to reach a defined
goal position without relying on an a priori model of the
environment.

X. CONCLUSION

In this paper we have presented a hybrid approach for
autonomous navigation in structured and unstructured envi-
ronments. Our approach exploits any lane structure present
in the environment and combines this with local obstacle
information to guide the vehicle along safe trajectories. When
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Fig. 10.  Results from our lane detection and mapping in a structured
environment. Data was gathered from roughly 100 meters of traverse down a
road (traveling from left to right). The top image shows the combined local
maps created by the vehicle during the traverse, with lane information shown
as dark gray areas and obstacles shown in black. Notice that the obstacle
information does not provide any real indication of the location of the lane or
even road, and so does not suffice for safely guiding the vehicle. The bottom
image shows a satellite map of the area.

no structure is detected, the approach falls back on a global
planner that generates efficient paths for the vehicle to desired
goal locations. We have provided results demonstrating the
operation of the vehicle in both structured and unstructured
environments.
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