
ETH Library

Surface Urban Heat Island (S-
UHI) investigations using remote
sensing

Report

Author(s):
Philipp, Conrad H.

Publication date:
2019-10-23

Permanent link:
https://doi.org/10.3929/ethz-b-000372356

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Deliverable Technical Report

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000372356
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


 
 
 

DELIVERABLE 
TECHNICAL REPORT 

Version 23/20/2019 
 

D1.2a – Surface Urban Heat Island (S-UHI) investigations using 

remote sensing. 
 

 

Project ID NRF2019VSG-UCD-001 

Project Title 
Cooling Singapore 1.5:  

Virtual Singapore Urban Climate Design  

Deliverable ID 
D1.2a - Surface Urban Heat Island (S-UHI) 

investigations using remote sensing.  

Authors Conrad Philipp 

Contributors 

Omer Mughal (data support), Sailin Zhong 

(visualization of several data sets in 

Singapore Views) 

Date of Report 23/10/2019 

 

Version Date Modifications Reviewed by 

1 13/08/2019 Original Leslie Norford, Winston Chow 

 

 

 

 

 

 

 

 

 



 

  
 

 

 
 

DELIVERABLE TECHNICAL REPORT 
Version 23/10/2019 

 
 

2 

1 Abstract 

 

Roth (2013:145) defines and differentiates urban heat island (UHI) phenomena associated with air 

and surface temperatures: “The Canopy-Layer UHI (CL-UHI) and the Urban-Boundary Layer UHI 

(UBL-UHI) refer to a warming of the urban atmosphere whereas the Surface UHI (S-UHI) refers to 

a warming of the surface. The S-UHI … is a surface energy balance phenomenon and involves all 

urban facets (street, roofs, trees, etc.). Urban surface temperatures are sensitive to the relative 

orientation of the surface components to the sun by day and the sky at night, as well as to their 

thermal (e.g., heat capacity, thermal admittance) and radiative (e.g., reflectivity or albedo) 

properties. It is strongest during daytime when solar heating creates large differences between 

dry/wet and vegetated surfaces, horizontal surfaces such as roofs and pavements (industrial-

commercial zones, especially those with large, flat-topped buildings or extensive open areas of 

pavement e.g., airport, shopping malls, and major highway intersections). At night, some of the 

processes are reduced, and urban-rural differences and intra-urban variability of surface 

temperature are smaller than during the day”. Within this study meso-scale Urban Heat Island 

(UHI) assessment through remote sensing will be carried out to support the following essential 

urban climate research tasks: • Calculation of the surface temperature for Singapore via satellite 

based remote sensing data to map temporal changes of the Surface UHI (S-UHI) over the last 

decades. • Provision of environmental input data, products and information that shape the 

exposure to urban heat such as land cover, street geometry, building volume, large floor area, 

aspect ratio, shading, land use and land surface to be directly integrated into climate models (e.g. 

Cosmo, WRF). • Providing data that help to support the validation of the meso-scale canopy-layer 

models (e.g. SingV, WRF). • Processed output data to be incorperated into Singapore Views for 

visualization purposes.
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2 Introduction 

2.1 Objectives 

The meso-scale Urban Heat Island (UHI) assessment through remote sensing will be carried 

out to support the following essential urban climate research tasks: 

 Calculation of the surface temperature for Singapore via satellite based remote 

sensing data to map temporal changes of the Surface UHI (S-UHI) over the last 

decades. 

 Provision of environmental input data, products and information that shape the 

exposure to urban heat such as land cover, street geometry, building volume, large 

floor area, aspect ratio, shading, land use and land surface to be directly integrated 

into climate models (e.g. SingV, WRF). 

 Providing data that help to support the validation of the meso-scale canopy-layer 

models (e.g. SingV, WRF). 

 Processed output data to be incorperated into Singapore Views for visualization 

purposes. 

 

2.2 Hypothesis 

The aim of this task is to achieve the following goals:  

 Remote sensing allow investigating the surface temperature for Singapore via satellite 

based remote sensing data (Landsat-5 and -8) to map Singapore’s Surface Urban 

Heat Island (S-UHI) under the challenging circumstance of frequent cloud coverage. 

 Remote sensing data will support the investigation of temporal changes of S-UHI 

through to satellite day-time images of land cover modifications of the last decades. 

 Remote sensing data will allow to compare the Land Surface Temperature (LST) vs 

Local Climate Zones (LCZ) day-timenight-timefor day- and night-time. 

 Remote sensing investigations will enable to locate the surface temperature of the 

hottest and coldest districts (based on LST) for day- and night-time. day-timenight-time 

 Remote sensing investigations will enable to locate the surface temperature of hot 

spots and cold spots in relation to LCZ for day- and night-time. day-timenight-time 

 Remote sensing will provide environmental input data, products and information that 

shape the exposure to urban heat such as land cover, street geometry, building 

volume, large floor area, aspect ratio, shading, land use and land surface to be directly 

integrated into climate models (e.g. SingV, WRF). 

 Remote sensing data will support the validation of the meso-scale canopy-layer 

models (e.g. SingV, WRF). 

 Related remote sensing data will allow the comparison of surface-UHI and air 

temperature-UHI (initially for CS1.5 and in-depth under CS2.0). 

 Remote sensing data will support the guidance on urban planning / urban geometry to 

mitigate UHI and optimize outdoor thermal comfort (OTC). 

 Remote sensing data will support the development of a vulnerability map (see D2.3c) 

and other task of CS1.5. 

 Primary investigations of Singapore’s S-UHI via remote sensing will promote the 

related research for further investigations in Singapore and the tropics. 
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3 Methods 

3.1 Preparation 

 Data from the free-of-charge, accessible remote sensing satellite project Landsat were 

organized (Earthexplorer 2019).  

 Cloud-free Landsat images were used for Land Surface Temperature (LST) calculations, 

including data from Landsat-5 Thematic Mapper (TM) obtained on 13 September 1989 

and 25 December 2003, and Landsat8 Thermal Infrared Sensor (TIRS) data obtained on 

11 October 2015 and 24 May 2018.  

 Post-processed data from twelve Landsat-8 imageries were used to receive a Local 

Climate Zones (LCZ) map (Mughal et al., 2019). 

 

3.2 Design of the experiment / modelling 

 Urban heat Island studies support the concept that the land cover surfaces affect the heat 

balance in the built environment, and the magnitude of Surface UHI (S-UHI) effect varies 

across scales and different land surface materials. The types of materials (which affect 

their thermal properties) and their area of coverage (which affects heat accumulation) can 

significantly alter the S-UHI effect.  

 The LST calculation workflow is illustrated in Fig. 1 and described as follow: 

o First step: land cover classification (see 2.3.1).  

o Second step: atmospheric correction (see 2.3.2) 

 The software eCognition, ArcGIS 10.0 and Quantum GIS 3.8 were used to undertake the 

related raster calculations 
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Figure 1. The workflow of the land surface temperature map calculation based on Landsat satellite 

imageries: The surface temperature maps are created based on a land use information classification 

by means of the Landsat R-G-B visible bands (see 2.3.1) , as well as, on an atmospheric correction of 

the raw thermal band of Landsat (Source: Wyoming 2019, Mughal et al., 2019 and Earthexplorer 2019) 

using the atmospheric temperature and humidity profiles (see 2.3.2). 
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3.3 Experiment 

Local climate zone (LCZ) classification 

 

The Local Climate Zone (LCZ) map for Singapore (Fig. 2) was developed by Mughal et al., 

2019 following the WUDAPT methodology (Ching et al., 2018) for level 0 data (Mills et al., 

2015) using Landsat-8 imageries and high-resolution building height data. 

 

 

 
 

Figure 2. Map of LCZs over Singapore using the Random Forest Classification (Mughal et al., 2019). 

 

Twelve Landsat-8 images (level 1 images of 2015-2017) with a resolution of 30 m and a cloud 

cover less than 20% were seamlessly mosaicked to account for the high cloud coverage over 

Southeast Asia and Singapore. The Fmask algorithm (Qiu et al., 2017, Zhu, Wang and 

Woodcock, 2015) was applied before to further separate cloud cirrus, shadow and water from 

clear pixels. This image, together with data for building height and vegetation were used for 

the SAGA GIS software (Conrad et al., 2015) to discriminate between spectral attribute and 

building height of different LCZ types based on the training areas, which were created by 

digitizing parts of the city and the surrounding areas that represent exemplars of LCZ types in 

the study area based on researchers’ local knowledge (Mughal et al., 2019). 

The pixels in the study area were automatically classified into the LCZ types (Bechtel and 

Daneke, 2012, Bechtel et al., 2015) by SAGA GIS using the digitized areas. The training areas 

were refined and new ones were added iteratively until the outcome was satisfactory. To 

perform an accuracy assessment, a total of 415 validation points was randomly selected 

based on the classified LCZ map to compare with Google Earth imagery at each validation 

point. The calculated overall accuracy based on the confusion matrix C (Wang et al., 2018, 

Middel et al., 2018), is 70% in the urban areas (which means reliable according to Bechtel et 
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al., 2019). The final map should be treated as a general rather than a precise description of 

the city and its surrounding environment.  

 

The urbanized landscape covers 420 km² (Angel et al., 2016), the majority of which is as per 

Mughal et al., 2019: 

 

 Open High Rise            (LCZ4, 25.1 %), while the rest includes  

 Compact High Rise      (LCZ1, 3.3 %),  

 Compact Mid Rise        (LCZ2, 9.7 %),  

 Compact Low Rise       (LCZ3, 3.0 %),  

 Open Mid Rise             (LCZ5, 18.3 %),  

 Open Low Rise            (LCZ6, 8.7 %),  

 Light Weight Low Rise (LCZ7, 2.0 %),  

 Large Low Rise            (LCZ8, 12.4 %),  

 Sparsely Built               (LCZ9, 9.9 %) and  

 Heavy Industry             (LCZ10, 7.0 %). 

 

Modified Mono-Window Algorithm 

Remote sensing imageries consist of matrices of digital numbers DN to represent each pixel 

of the land surface. For the thermal bands of the satellites, the individual values of spectral 

radiance at the sensor’s aperture, L, can be estimated: 

L = G rescale × DN + B rescale,                                                                           (1) 

where the pairs of the actual calibration parameters G rescale and B rescale follow Table 1 (Barsi, 

2014), however, Band 11 of Landsat-8 is not listed due to its unsolved calibration problems. 

Table 1. Thermal band characteristics and parameters for Landsat satellites. 
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To connect this spectral radiance with the temperature of the pixel, Planck’s law is used to 

describe the relation between the temperature T and the emitted radiation of wavelength λ in 

case of black bodies: 

B (T, λ) = 2 h c² λ-5 / [exp (h c / k λ T) – 1],                         (2) 

using three universal parameters (Table 2). 

Table 2. Natural constants in PLANCK’s law. 

 

Their combination creates:  

                B (T, λ) = C1 λ-5 / [exp (C2 / λ T) – 1]                                    (3) 

with two formal values (Table 3). 

 

Table 3. Formal constants in PLANCK’s law. 

 

If only one individual wavelength is considered, the inversion of Equation (3) is possible:  

 

               T = C2 / [λ × ln (1 + C1 λ-5 B-1)].                                   (4) 
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However, in case of remote sensing the emitted radiation is combined over the measuring 

range of wavelengths from λmin to λmax. Due to the technical characteristics of each instrument, 

this compacting does not occur uniformly, but as per relative spectral response functions RSR 

(Fig. 3).  

 

Figure 3. Relative spectral response of the thermal bands of the Landsat satellites. 

The measured channel-integrated radiance L at a temperature T is defined as a weighted 

mean:   

                                                 L (T) =  
∫ 𝐁 (𝐓,𝛌) × 𝐑𝐒𝐑 (𝛌) 𝐝𝛌

𝛌𝐦𝐚𝐱
𝛌𝐦𝐢𝐧

∫ 𝐑𝐒𝐑 (𝛌) 𝐝𝛌
𝛌𝐦𝐚𝐱

𝛌𝐦𝐢𝐧

           (5) 

and can be estimated by numerical integration of both the numerator and the denominator. 

As the terrestrial ground temperatures of areas to be investigated are most likely to be 

between -30 °C and 70 °C (i. e. 243.15 K .. 343.15 K), the calculation according to Equation 

(5) was done for every instrument in steps of 5 K of this interval. The aim of this new method 

was to express a continuous relation of power series type: 

                                         L (T) = ∑ (𝐚𝐤 ×  𝐓𝐤)
𝐧

𝐤=𝟎 
,     (6) 

and the multiple linear regression showed, that fourth order approximations: 

                      L (T) = a4 × T4 + a3 × T3 + a2 × T2 + a1 × T + a0   (7) 

exclusively contain significant non-zero coefficients (Tab. 4) and thus they are sufficient to 

give a best possible fitting for L(T) (Tab. 5). The drawback of missing physical interpretability 

of the coefficients has been predominated by the advantage of highest accuracy and flexibility 

to any set of original data.  
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Table 4. Regression coefficients for Equation (7). 

 

 

Table 5. Determination coefficients R² and standard errors S for regression coefficients of Table 4. 

 

In an analogous way the inversion of Equation (6) can be done: 

T (L)  = ∑ (𝐛𝐤 ×  𝐋𝐤),
𝐧

𝐤=𝟎 
        (8) 

 

while for the same data triples (λ; T; L) a seventh order power series: 

T = b7 × L7 + b6 × L6 + b5 × L5 + b4 × L4 + b3 × L3 + b2 × L2 + b1 × L + b0  (9) 

 

should be applied (Tabs. 6 and 7), instead of simple linearized Taylor expansion (Qin et al. 

2016, Wang et al., 2003). 
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Table 6. Regression coefficients for Equation (9). 

 

 

Table 7. Determination coefficients R² and standard errors S for regression coefficients of Tab. 6. 

 

With the L-values derived from a remote sensing picture according to Equation (1) the 

brightness temperatures Tb can be computed using Equation (9). They are determined by the 

radiation that arrives at the satellites, i. e. as though emitted by a fictitious blackbody that 

would be located directly in front of the instruments.  

Correction from Brightness Temperatures to Land Surface Temperatures 

During its penetration through the atmosphere the emitted radiance is weakened by 

absorption, but also amplified by atmospheric emittances. The latter can be split into an up-

dwelling portion Lup that reaches the probe directly and into a down-dwelling share Ldown that 

will be reflected by the ground and, therefore, also reduced by atmospheric absorption. 

Furthermore, each investigated pixel area of the earth’s surface is considered to be non-black 

and LAMBERTian, i. e. the uniform radiation to every direction can be expressed as product of 
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blackbody radiation L (Ts) and ground emissivity ε, while (1-ε) defines the share of reflecting 

(i. e. non-absorbing) a radiation that has arrived at the surface.  

The mentioned balance, called Radiation Transfer Equation (RTE), forms a reference to the 

brightness temperature Tb: 

 

L (Tb) = ε × τ × L (Ts) + (1 – ε) × τ × Ldown + Lup.     (10) 
 

 

Qin et al., 2001 developed the Mono-Window Algorithm (MWA) to handle the atmospheric 

correction and postulated the strong similarity of the two components of atmospheric 

emittance at a fictitious temperature Ta: 

 
 

Ldown ≈ Lup = (1 – τ) × L (Ta),       (11) 
 

 

to be approximated according to Sobrino et al., 1990 as effective mean atmospheric 

temperature by: 

 

Ta =  
∫ T(z) × w(z) dz

A
0

W
,         (12) 

 
with the altitude A of the satellite, the vertical temperature profile T(z) from nadir to probe, 

and the vertical water content w(z) of the atmosphere on the same path. Furthermore, the 

total atmospheric water content W from nadir to the altitude of the instruments is defined as: 

 

W = ∫ 𝑤(𝑧) 𝑑𝑧
𝐴

0
.        (13) 

 

Normally, the height profile of the absolute water content w(z) is not accessible, but the 

relative humidity RH(z) is, and only multiplying by the local atmospheric saturation humidity 

SH(z) must be done: 

 
𝑤(𝑧) = RH (z) × SH (z).        (14) 

 

This saturation value that depends only on the local temperature T(z) in K, or ϑ(z) in °C, can 

be extracted from physical tables (e. g. [..]) and is fitted best (see Table 8) by an exponential 

fifth degree power series: 

 

             SH (z) = SH (ϑ(z)) = exp [∑ (𝑑𝑘 ×  𝜗(𝑧)𝑘)
5

𝑘=0 
]  g/m³,                             (15) 

 
with coefficients according to Tab. 9.  
 

Table 8. Determination coefficient R² and standard error S for regression coefficients of Tab. 9. 
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Table 9. Regression coefficients for Equation (15). 

 

 

In the multitude of studies dealing with urban agglomerations there is an access to weather 

stations, where meteorological balloons are launched to provide atmospheric profiles of 

temperature and relative humidity close to the areas under remote sensing investigation. 

Typically, the profiles are measured several times a day, allowing an interpolation for the 

satellite overpass time t
OP

:     

 

𝐓(𝐭𝐎𝐏) =
𝐓𝟏 𝐱 𝐟(𝐭𝟐

)−𝐓𝟐 𝐱 𝐟(𝐭𝟏
)+(𝐓𝟐−𝐓𝟏

) 𝐱 𝐟(𝐭𝐎𝐏)

𝐟(𝐭𝟐
)−𝐟(𝐭𝟏)

 ,    (16) 

on the basis of: 

𝐟 (𝐭) = 𝐜𝐨𝐬𝟐(𝛑
𝐭− 𝐭𝐦𝐚𝐱

𝟐𝟒
) ,     

 (17) 

with the times of measurement t1 and t2 (in h) and their assigned temperatures T1 and T2, as 

well as, tmax (in h) as time of the maximum temperature taken from this day’s meteorological 

records.  

The mean atmospheric temperature Ta is estimated by numerical integration as per Equations 

(12) and (13), and there is no need to use any linear approximation of the relation between 

this Ta and the near surface temperature To, as suggested in Qin et al., 2001. 

From Equation (10) with (11) and (12) follows: 

L (Ts) = L (Tb) / C – D / C × L (Ta)      (18) 

with  

                             C = ε × τ         (19) 

and 

                              D = [1 + (1 - ε) × τ] × (1 – τ),                            (20) 
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as the basic relation to enable an inversion to the land surface temperature (LST) Ts according 

to Equation (9), while the value of L (Tb) is taken from the spectral radiance L according to 

Equation (1).  

2.3.2.3  Estimation of the atmospheric transmittance τ 

During its penetration through the atmosphere the emitted radiance is weakened by 

absorption, and in the thermal bands almost solely the water molecules are responsible for it. 

Wang et al., 2003 presented for Landsat-8 a variety of stepwise linear approximations how 

the transmittance τ depends on the total atmospheric water content W under different regional 

and seasonal conditions. However, in this study τ was referred to W and the nadir air 

temperature To to provide a general cubic power series of these two variables: 

 

τ = c9 × T0² × W + c8 × T0 × W² + c7 × T0³ + c6 × T0² + c5 × T0 ×  

                   W + c4 × T0 + c3 × W³ + c2 × W2 + c1 × W +c0.             

(21) 

                                                                              

Due to several demands on LST-evaluations from Egypt to Australia and Japan, ten cities 

were taken as reference locations (Tab. 10). They cover a wide and typical area of climates, 

as their KÖPPEN-GEIGER classification (see Peel et al., 2007) demonstrates. The data basis to 

execute the regression was formed by 24 sets for every city, i. e. at 0, 6, 12, and 18 o’clock 

GMT of January, March, May, July, September, as well as, November, 2014. Actual 

atmospheric measurements (Wyoming 2019) were used to obtain the height profiles of 

temperature and relative humidity. Since their outputs also contain the atmospheric 

transmission values for each of the Landsat types, it was only necessary to calculate W 

according to Equations (13) to (15).     

Table 10. Cities involved in τ -regression. 
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For each Landsat instrument, the regression was started with the full approach (21), but 

stepwise the regression coefficients without significance were removed until final and sufficient 

terms remained in form of Equation (22) with coefficients according to Tab. 11:  

 

τ = c5 × T0 × w + c4 × T0 + c3 × w³ + c2 × w2 + c1 × w + c0.    (22) 

 

Only for Landsat-5 the mixed term T0 × w is clearly non-zero, while in case of the other two 

thermal bands c5 falls out. The statistical criteria of the regressions (Tab. 12) indicate an 

excellent fit for the entire geographical scope of involved cities by day and by night, as well 

as, in summer and in winter, and no subjective selection of the respective standard 

atmosphere situation is necessary. 

Table 11. Regression coefficients for Equation (22). 

 

 

Table 12. Determination coefficient R² and standard error S for regression coefficients of Table 11. 

 

 

Specification of the ground emissivity ε 

Due to the limited availability of historical land-use information and time constrains of this 

pilot study, the specification of ε was omitted, and all pixel values were assigned with 0.9. 

Further investigation will specify ε-values for each LCZ within a typical range from 0.9 for 

urban areas to 0.99 for water, based on a specifically developed LCZ map following the 

procedure within chapter 2.3.1 for April 2016 [Mughal et al, 2019].      
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4 Results 

4.1 Outputs 

The following outputs of this investigation of land surface temperatures via remote sensing 

data from the satellite Landsat 5-8 could be generated: 

 Land surface temperature maps for Singapore: 13 September 1989 (10:42 am),                           

25 December 2003 (10.55am), 11 October 2015 (11.14pm) and 24 May 2018 

(11.15am). 

 Detection and mapping of Singapore’s land surface temperatures in relation to the 

Local Climate Zones (LCZ) for 24 May 2018 (11.15am) and 11 October 2015 

(11.14pm). 

 Detection and mapping of Singapore’s hottest and coldest land surface temperatures 

in relation to districts (Total: 55) and subzones (Total: 323) for 24 May 2018 (11.15am) 

and 11 October 2015 (11.14pm). 

 Environmental input data, products and information that shape the exposure to urban 

heat such as land cover, street geometry, building volume, large floor area, aspect 

ratio, shading, land use and land surface to be directly integrated into climate models  

(e.g. SingV, WRF) 

 Data that help to support the validation of the meso-scale canopy-layer models  

(e.g. SingV, WRF) 

 Post-processed data for the visualization in Singapore Views 

 

4.2 Analysis 

The analysis led to the following findings: 

 A remote sensing day-time image of 24 May 2018 (11.15am, see Fig. 4) and a remote 

sensing night image of 11 October 2015 (11.14pm) were used to distinguish the 

average surface temperature of different land cover types and Local Climate Zones 

for Singapore. 
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Figure 4. Surface temperatures in °C for 24 May 2018 (11.15 am local time) (Source: Earthexplorer 

2019). 

 

 Temporal changes of the land surface temperature due to land cover modifications within 

the last decades were detected based on day-time images of 1989, 2003 and 2018. 

Hereby, urbanization/industrialization (e.g. Jurong Island, see Fig. 5), as well as 

deforestation (e.g. Johor Bahru) and land reclamation (e.g. Changi Airport, see Fig. 6) 

were the main sources for an increase of the land surface temperature over time:  
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Figure 5. Land use changes and related surface temperatures of Jurong Island (1989, 2003 and 

2018) (Source: Earthexplorer 2019). 

 

 
 

Figure 6. Land use changes and related surface temperatures of Changi Airport (1989, 2003 and 

2018) (Source: Earthexplorer 2019). 

 

 The Local Climate Zones (LCZ) considered as urban are during day-time the warmest 

areas of Singapore, whereby the LCZ considered as rural are the colder areas within 

Singapore (see Figs. 7 and 8). The average temperature difference between urban LCZs 

and the rural vegetation related LCZs is within the day-time of 24 May 2018 about 6 

degrees. Water is about 2 degrees Celsius colder than vegetation and thus the coldest 

land cover type. 
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Figure 7. Average surface temperature for the LCZ during day-time (24 May 2018, 11.15am)  

(Source: Earthexplorer 2019, Mughal et al., 2019). 

 
 

Figure 8: Weighted average surface temperature for the LCZ during day-time (24 May 2018, 

11.15am) (Source: Earthexplorer 2019, Mughal et al., 2019). 

 

 

 

 The LCZs considered as urban are during night-time the warmest areas of Singapore, 

whereby the LCZs considered as rural are, except for water through its thermal capacity, 

the colder areas within Singapore (see Fig. 9 and 10). The average temperature 

difference between urban LCZs and the rural vegetation related LCZs is within the night-

time of 11 October 2015 (2 degrees), with LCZ water having the highest temperature due 

to its heat capacity. 
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Figure 9. Average surface temperature for the LCZ during night-time (11 October 2015, 11.14pm) 

(Source: Earthexplorer 2019, Mughal et al., 2019). 

 

 
 

Figure 10. Weighted average surface temperature for the LCZ during night-time (11 October 2015, 

11.14pm) (Source: Earthexplorer 2019, Mughal et al., 2019). 

 

 The surface temperature of the hot spots (5% hottest areas) within the day-time images 

of 2018 in relation to LCZ could be detected (Fig. 11). Large low-rise buildings, heavy 

industry and open-mid-rise contain 78.9% of the hot spot areas in the day image. 
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Figure 11. Highest surface temperature versus Local Climate Zones during day-time (24 May 2018, 

11.15am) (Source: Earthexplorer 2019, Mughal et al., 2019). 

 

 The surface temperature of the cold spots (5% coldest areas) during day-time in relation 

to LCZ could be detected (see Fig. 12). Dense trees and water contain 81.2% of the 

cold spots in the day image. 

 

 
Figure 12. Lowest surface temperature versus Local Climate Zones during day-time (24 May 2018, 

11.15am) (Source: Earthexplorer 2019, Mughal et al., 2019). 

 

 The surface temperature of hot spots (5% hottest areas) within the night-time image from 

11 October 2015 in relation to LCZ could be detected (see Figure 13). Water contains, 

through its heat capacity, more than 60% of the hot-spot areas, followed by 15% of heavy 

industry related areas in the night image. 



 

  
 

 

 
 

DELIVERABLE TECHNICAL REPORT 
Version 23/10/2019 

 
 

23 

 
Figure 13. Highest surface temperature versus Local Climate Zones during night-time (11 October 

2015, 11.14pm) (Source: Earthexplorer 2019, Mughal et al., 2019). 

 

 

 The surface temperature cold spots (5% coldest areas) during the night-time image of 11 

October 2015 in relation to LCZ could be detected (see Fig.14). Dense trees and scattered 

trees contain 60% of the cold spots in the night image. 

 

 
Figure 14. Lowest surface temperature versus Local Climate Zones during night-time (11 October 

2015, 11.14pm) (Source: Earthexplorer 2019, Mughal et al., 2019). 

 

 It was possible to locate the hottest and coldest plan areas by means of satellite 

imageries of 2018, 11.15am and 2015, 11.14pm (see Fig. 15 and 16). 
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Figure 15 and 16: Surface temperatures of the five hottest and five coldest plan areas for the day 

image 2018 (above) and night image 2015 (below) (Source: Earthexplorer 2019, DATA-GOV 2019). 

 

 The remote sensing data could be post-processed for visualising purposes in Singapore 

Views (see Figure 17). 
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Figure 17. Visualization of remote sensing surface temperature data of 24 May 2018 in Singapore 

Views (Source: Earthexploerer 2019, Sailin Zhong, Conrad Philipp, Wang Ran, Mughal et al., 2019 

and CIVAL at Future Cities Lab,). 

 

 Environmental input data, products and information that shape the exposure to urban 

heat, such as land cover, street geometry, building volume, large floor area, aspect ratio, 

shading, land use and land surface, could be provided to be directly integrated into climate 

models (e.g. SingV, WRF). 

 

 Data about the surface temperature could be generated that help to support the validation 

of the meso-scale canopy-layer models (e.g. SingV, WRF). 
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5 Conclusions  

5.1 Summary of findings 

 It was feasible to calculate the surface temperature for Singapore via satellite based 

remote sensing data, under the challenging circumstance of frequent cloud coverage 

above Singapore, and to map temporal changes of the Surface Urban Heat Island  

(S-UHI) over the last decades. 

 Environmental input data, products and information that shape the exposure to urban 

heat, such as land cover, street geometry, building volume, large floor area, aspect ratio, 

shading, land use and land surface, to be directly integrated into climate models (e.g. 

SingV, WRF) could be provided. 

 It was practicable to provide data that help to support the validation of the meso-scale 

canopy-layer models (e.g. SingV, WRF) 

 It was possible to investigate the temporal changes of S-UHI due to land cover 

modifications from day-time images of 1989, 2003 and 2018.  

 It was feasible to compare the Land Surface Temperature (LST) vs Local Climate Zones 

(LCZ) based on a 2018 day-time image and a 2015 night-time image.  

 It was possible to locate the hottest and coldest districts (based on LST) with the help of 

satellite images of 2018, 11.15am and 2015, 11.14pm.  

 It was feasible to locate the hot and cold spots in relation to LCZ (based on LST) using 

satellite imageries of 2018, 11.15am and 2015, 11.14pm.  

 The generated data will be able to support the guidance on Urban Planning / Urban 

Geometry to mitigate UHI and optimize Outdoor Thermal Comfort (OTC).  

 The remote sensing data will support the development of a Vulnerability Map.  

 The generated remote sensing data will support the comparison of surface-UHI and air 

temperature-UHI (initially for CS1.5 and in-depth under CS2.0). 

 The calculated remote sensing data could be processed for Singapore Views for 

visualization purposes. 

 Primary investigation of the surface temperature for Singapore will increase the interest 

in remote sensing for UHI examinations.  

 

5.2 Limitations 

 

 Availability of cloud-free images at adequate temporal resolution for respected areas of 

interest. 

 Demand on high-resolution remote sensing imageries can lead to costs of up to SGD 

100k. 
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7 Links to other tasks under CS1.5 / CS2.0 

 

 Micro-scale / Mesoscale assessment (WRF) 

Provide urban land cover, land use maps, surface temperature information and support 

the validation of the model. 

 

 Transport assessment  

Derive fine-scale urban land cover and land use maps which can be fed into the traffic 

simulation model in order to quantify emissions from the current transport system. 

  

 Energy assessment  

Provide a large variety of data sets, maps, statistics and insights to support the modelling 

of anthropogenic heat (e.g. night-time light images that can be correlated with 

anthropogenic heat emissions) to better understand the drivers of anthropogenic heat, 

particularly in Jurong Island. 

 

 Urban design assessment  

Provide detailed information of high spatial and temporal resolution on the current state 

of urban environmental parameters, like land cover, street geometry, building volume, 

gross floor area, aspect ratio, shading, land use and land surface temperature.  

These layers can be used for comparison with future urban planning scenarios, climate-

responsive urban layout variants and alternative/optimal urban designs identified by the 

semi-automated machine learning tools. Furthermore, they can be integrated into the 

stakeholder negotiation tool to form a baseline/reference scenario. 

 

 List of strategies 

Support assessment on the current role of existing vegetation (trees, shrubs, grass), as 

well as, water bodies and their configuration in affecting outdoor thermal comfort.  

 

 Strategy validation  

Produce city-wide maps of vegetation indicators and parameters at a spatial resolution of 

20m. They will thus support the planned field surveys and manipulations conducted in 

different thermal environments and will help to upscale obtained experimental results. 

 

 Vulnerability map 

Provide environmental data, products and information that shape the exposure to urban 

heat and include multi-sensor, long-term time series of land surface temperature and high 

spatial resolution layers of Singapore’s urban environment (e.g. urban land cover/ use, 

fractional building, vegetation and water cover, 3D city model). 

 

 OTC range calibration  

Provide urban land cover/land use maps and surface temperature information to support 

the validation of the model. 
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 Cognitive study / Physiological study  

Through a long-term analysis of land surface temperatures, remote sensing allows to 

reveal and characterize typical temperature hot spots. This information as a basis to 

identify suitable locations (i.e. with prolonged heat exposure), to identify locations 

featuring levels of heat exposure, identify regions of exceptional heat stress in Singapore, 

i.e., regions that particularly impact vulnerable people. 

 

 Willingness to pay / Cost-benefit analysis 

Support analysing the environmental impact and effectiveness of different measures to 

mitigate Singapore’s UHI. In this way, economic benefits of certain measures or their 

impacts on real estate prices can be better compared to their positive and/or negative 

environmental consequences. 

 

 Integration of models  

The remote sensing data and products can either be directly integrated into climate 

models, or they can be compared with modelling results.  

  

 Climate Design Guidelines / Decision support system  

Detailed planning and design guidelines to mitigate UHI and improve OTC will be 

supported by GIS analyses that can be implemented with the various remote sensing 

data/products and modelling results (time series of land surface temperature to identifying 

hot and cool spots on the island, deriving various maps on urban green and land surface 

temperature, which can be jointly investigated and integrated into models). 

 

 Data visualization 

Remote sensing related data (e.g. surface temperature map for Singapore) will be 

visualized in Singapore Views. 

 


