
ETH Library

Mixed-curvature Variational
Autoencoders

Master Thesis

Author(s):
Skopek, Ondrej

Publication date:
2019

Permanent link:
https://doi.org/10.3929/ethz-b-000372387

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-9749-7241
https://doi.org/10.3929/ethz-b-000372387
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Mixed-curvature Variational
Autoencoders

Master Thesis

Ondrej Skopek

September 4, 2019

Advisors: Prof. Dr. Thomas Hofmann, Octavian-Eugen Ganea, Gary Bécigneul

Department of Computer Science, ETH Zürich

To my family and friends — for the never-ending support.

Abstract

It has previously been shown that using geometric spaces with non-zero
curvature (i.e. spherical, hyperbolic, or even mixtures of these) instead
of plain Euclidean spaces with zero curvature improves performance on
a wide range of Machine Learning tasks for learning representations in
domains ranging from Natural Language Processing to Computer Vision.

Recent work has leveraged these geometries to learn latent variable mod-
els like Variational Autoencoders (VAEs) in spherical and hyperbolic
spaces with constant curvature. While these approaches work well on
particular kinds of data that they were designed for (e.g. tree-like data
for a hyperbolic VAE), there exists no generic approach unifying all three
models. We develop a Mixed-curvature Variational Autoencoder, an ef-
ficient way to train a VAE whose latent space is a product of constant
curvature Riemannian manifolds, and whose per-component curvature
can also be learned. This approach presents a generalization of the stan-
dard Euclidean VAE to curved latent spaces, as the model essentially
reduces to the Euclidean VAE if the curvatures of all components of the
latent space go to 0. We show that this approach is more general and
surpasses all baselines on a range of different tasks.

ii

Acknowledgements

A big thank you goes to Yoshihiro Nagano and Emile Mathieu, for help with
reproducing their work and releasing their code, which was a helpful reference
point at multiple stages of this project.

Thank you to Andreas and Gregor, for help in deriving and verifying some of
the formulas for constant curvature spaces; my advisors, Octavian and Gary,
for the helpful discussions; and the Data Analytics Lab, the Leonhard cluster,
and ETH Zürich for GPU access and coffee.

I also want to thank Lukáš, for all the advice, discussions, and GPU access;
Vignesh, for all the advice and support; and last but not least, Pandy, for
always being there for me.

iii

Contents

Contents iv

1 Introduction 1

2 Geometry 4
2.1 A brief introduction to Riemannian geometry 4
2.2 Constant curvature spaces . 5

2.2.1 Euclidean space . 6
2.2.2 Hypersphere . 6
2.2.3 Hyperboloid . 7

2.3 Stereographically projected spaces 8
2.3.1 Projected hypersphere 10
2.3.2 Poincaré ball . 11
2.3.3 Gyrovector spaces . 11

2.4 Duality between constant curvature spaces 13
2.5 Brief comparison of constant curvature space models 13
2.6 Products of spaces . 15

3 Probability 18
3.1 Multivariate Normal distribution 18
3.2 Normal-like distributions in non-Euclidean constant curvature

spaces . 20
3.3 Von Mises-Fisher distribution 21
3.4 Wrapped Normal distributions 22

4 Variational Autoencoders 25
4.1 Autoencoders . 25
4.2 Variational Inference . 25

4.2.1 Tighter bounds on the marginal log-likelihood 27
4.3 Variational Autoencoders . 27

iv

Contents

4.3.1 Learning VAEs . 28
4.3.2 Riemannian manifolds as latent spaces 29
4.3.3 Latent space as a product of constant curvature spaces . 31
4.3.4 Overview of properties 31

5 Learning curvature 32
5.1 Fixed curvature VAEs . 32
5.2 Learnable curvature VAEs . 33
5.3 Universal curvature VAEs . 33

6 Experiments 36
6.1 Related work . 36

6.1.1 Universal models of geometry 36
6.1.2 Concurrent VAE approaches 37
6.1.3 Geometric deep learning 37
6.1.4 Geometry in VAEs . 38

6.2 Experimental setup . 38
6.3 Spherical covariance matrix parametrization 41
6.4 Diagonal covariance matrix parametrization 43

6.4.1 Dynamically-binarized MNIST reconstruction 43
6.4.2 Summary of experimental evaluation 47

6.5 Future work . 49

7 Conclusion 51

Bibliography 52

Notation 59

List of Theorems 62

List of Figures 64

List of Tables 66

A Geometrical details 68
A.1 Euclidean geometry . 68

A.1.1 Euclidean space . 68
A.2 Hyperbolic geometry . 69

A.2.1 Hyperboloid . 69
A.2.2 Poincaré ball . 76

A.3 Spherical geometry . 81
A.3.1 Hypersphere . 81
A.3.2 Projected hypersphere 88

A.4 Miscellaneous properties . 94

v

Contents

A.5 Angles in constant curvature spaces 98

B Probability details 100
B.1 Hyperspherical uniform distribution 100
B.2 Von Mises-Fisher distribution 101
B.3 Wrapped Normal distributions 101

C Variational Autoencoders 112
C.1 Why use Variational Autoencoders? 112

D Extended results 114
D.1 Implementation remarks . 114
D.2 Spherical covariance matrix . 116
D.3 Diagonal covariance matrix . 120

D.3.1 Dynamically binarized MNIST reconstruction 120
D.3.2 Dynamically binarized Omniglot reconstruction 128
D.3.3 CIFAR reconstruction 133

vi

Chapter 1

Introduction

Generative models present an ever-growing area of Machine Learning, where
we aim to model the data distribution p(x) over data points x belonging
to some most commonly high-dimensional space X (Doersch, 2016). As is
common with most Machine Learning models, X is usually a subset of a high-
dimensional Euclidean vector space Rn, with all the associated benefits: a
naturally definable scalar product, vector addition, and others. Yet, many
types of data have a strongly non-Euclidean latent structure (Bronstein et al.,
2017). A notorious example is the set of human-interpretable images – they
are usually assumed to live on a “natural image manifold” (Zhu et al., 2016),
i.e. a “lower-dimensional subset” of some high-dimensional space in which they
are represented. On this continuous manifold, one finds only (and all) the im-
ages that humans can interpret using their visual system. This would mean
that by moving along the manifold, we could continuously change the content
and appearance of images. To illustrate, for MNIST handwritten digits (Le-
Cun, 1998) the assumption conjectures that there exists a lower-dimensional
manifold M ⊆ R28×28, which is the manifold of all possible MNIST digit
images.

As mentioned in Nickel and Kiela (2017), changing the geometry of the under-
lying latent space enables us to represent some data better than is possible in
Euclidean space. For example, a binary tree has 2l nodes at level l (counting
from level 0) and 2l+1 − 1 nodes on levels less or equal to l. We can see that
the number of children grows exponentially with the distance from the root
node, where the distance between two nodes is the number of edges on the
shortest path between them. In a hyperbolic space with just 2 dimensions, we
can construct a representation of the tree that preserves the tree distance by
placing points at level l onto a sphere whose radius is proportional to l. All
the points in levels less than l will be inside the sphere, the ones on levels
greater than l will be outside of the sphere. This is not possible in Euclidean
space, because the area of a sphere grows only quadratically with respect to

1

Figure 1.1: Binary tree embedded in a Poincaré ball (Mathieu et al., 2019).

its radius, as opposed to the number of children growing exponentially. For
more details, see Kleinberg (2007) and Sarkar (2012), and for an illustration
see Figure 1.1. Similarly to how hyperbolic spaces can be thought of as “con-
tinuous trees” (Nickel and Kiela, 2017), spherical spaces could be thought of
as “continuous cycles”.

Motivated by these observations, a range of methods to learn representations
in different spaces of constant curvature have recently been introduced: learn-
ing embeddings in spherical spaces (Batmanghelich et al., 2016) (positive con-
stant curvature), hyperbolic spaces (Nickel and Kiela, 2017; Sala et al., 2018;
Tifrea et al., 2019) (negative constant curvature), and even in products of
spaces with constant curvature (Gu et al., 2019). The last of these approaches
aims to match the underlying geometry of the data even closer than the oth-
ers, by using a combination of different constant curvature spaces. How to
choose the dimensionality of partial spaces and their curvatures remains an
open question.

One of the most popular approaches to generative modeling recently is Vari-
ational Inference, and specifically, the Variational Autoencoder (Kingma and
Welling, 2014, VAE). It provides us with a way to sidestep the intractabil-
ity of marginalizing a joint probability model of the input and latent space
p(x, z) while allowing for a chosen prior probability p(z) on the latent space,
usually a Normal distribution N (0, I). Recently, variants of the VAE have
been introduced for spherical (Davidson et al., 2018; Xu and Durrett, 2018)
and hyperbolic (Mathieu et al., 2019; Nagano et al., 2019) latent spaces.

Our approach is a generalization of the different VAE variants to mixed-
curvature latent spaces — more precisely, products of constant curvature
spaces, similar to Gu et al. (2019). Modeling the latent space of a VAE only
as as a single constant curvature manifold limits the flexibility of the latent

2

space to assume a shape similar to that of the hypothetical intrinsic manifold.
Therefore, we aim to learn representations in products of spaces of constant
curvature, which has the advantage that we can obtain a better reduction
in dimensionality while not making optimization of the model significantly
more complex. The resulting latent space is then a “non-constantly” curved
manifold in an ambient Euclidean space.

Our main contributions are the following:

1. We develop a framework for manipulating representations and model-
ing probability distributions on non-fixed constant curvature spaces1.
Previously, only Mathieu et al. (2019) tried changing curvature on a
per-experiment basis (as a hyperparameter).

2. We show how to generalize Variational Autoencoders to learn latent
representations on products of constant curvature spaces, including a
procedure to learn the structure of the product of latent spaces itself.

3. On benchmark datasets, we show that this approach is applicable to
the tasks of structure reconstruction on a synthetic tree dataset (Math-
ieu et al., 2019) and image reconstruction on MNIST (LeCun, 1998),
Omniglot (Lake et al., 2015), and CIFAR (Krizhevsky, 2009).

In Chapter 2 we discuss the necessary geometrical background, with more
details in Appendix A. Chapter 3 contains definitions of probability distribu-
tions in products of constant curvatures spaces, with more details available
in Appendix B. Chapter 4 briefly introduces Variational Autencoders, and
formulates them for products of constant curvature spaces. Using the model
formulations, Chapter 5 contains the motivation for and approaches to learn-
ing curvature in these models. A detailed description of the experiments can
be found in Chapter 6, where we also elaborate on the interpretation of our
results, go over related work, and propose more future work. Additional plots
and experimental results can be found in Appendix D.

1The curvature is constant at all points in the space, but the value of the curvature itself
is not constant (fixed) during model training.

3

Chapter 2

Geometry

In this chapter, we take a closer look at a few models of spaces of constant
curvature, their characteristics, and common operations that will enable us to
work with representations in these spaces. Numerous details, properties, and
proofs are appended in Appendix A.

2.1 A brief introduction to Riemannian geometry

We briefly introduce the necessary differential geometry concepts, similarly to
Mathieu et al. (2019). For more details, please refer to Petersen et al. (2006)
or Cannon et al. (1997).

An elementary notion in Riemannian geometry is that of a real, smooth mani-
fold M⊆ Rn, which is a collection of real vectors x that is locally similar to a
linear space, and lives in the ambient space Rn. At each point of the manifold
x ∈M a real vector space of the same dimensionality asM is defined, called
the tangent space at point x: TxM. Intuitively, the tangent space contains all
the directions and speeds at which one can pass through x. Given a matrix
representation G(x) ∈ Rn×n of the Riemannian metric tensor g(x), we can
define a scalar product on the tangent space: 〈·, ·〉x : TxM × TxM → M,
where 〈a, b〉x = g(x)(a, b) = aTG(x)b for any a, b ∈ TxM. A Riemannian
manifold is then the tuple (M, g). The scalar product induces a norm on the
tangent space TxM: ||a||x =

√
〈a,a〉x∀a ∈ TxM (Petersen et al., 2006).

Although it seems like the manifold only defines a local geometry, it induces
global quantities by integrating the local contributions. The metric tensor
induces a local infinitesimal volume element on each tangent space TxM and
hence a measure is induced as well dM(x) =

√
|G(x)|dx where dx is the

Lebesgue measure. The length of a curve γ : t 7→ γ(t) ∈ M, t ∈ [0, 1] is given

by L(γ) =
∫ 1
0

√∥∥ d
dtγ(t)

∥∥
γ(t)

dt.

4

2.2. Constant curvature spaces

Straight lines are generalized to constant speed curves giving the shortest path
between pairs of points x, y ∈M, so called geodesics, for which it holds that
γ∗ = arg minγ L(γ), such that γ(0) = x, γ(1) = y, and

∥∥ d
dtγ(t)

∥∥
γ(t)

= 1.

Global distances are thus induced on M by dM(x,y) = infγ L(γ).

Using this metric, we can go on to define a metric space (M, dM). Moving
from a point x ∈ M in a given direction v ∈ TxM with constant velocity
is formalized by the exponential map: expx : TxM → M. There exists a

unique unit speed geodesic γ such that γ(0) = x and dγ(t)
dt

∣∣∣
t=0

= v, where

v ∈ TxM. The corresponding exponential map is then defined as expx(v) =
γ(1). The logarithmic map is the inverse logx = exp−1x : M → TxM. For
geodesically complete manifolds, i.e. manifolds in which there exists a length-
minimizing geodesic between every x,y ∈ M, such as the Lorentz model,
hypersphere, and many others, expx is well-defined on the full tangent space
TxM (Figure 3.1c).

To connect vectors in tangent spaces, we use the notion of parallel transport
PTx→y : TxM → TyM, which is an isomorphism between the two tangent
spaces, so that the transported vectors stay parallel to the connection (Fig-
ure 3.1b). It corresponds to moving tangent vectors along geodesics and de-
fines a canonical way to connect tangent spaces.

To be able to define constantly curved spaces, we first need to define the
notion of (Gaussian) curvature (Berger, 2012) at a point x ∈ M, denoted
K(x). Gaussian curvature is the product of all principal curvatures at that
point. The two principal curvatures at x are defined as the minimum and
maximum curvatures of the plane curves traversing the given point x. More
formally, a plane curve is any curve γ : [0, 1]→M. Traversing x means there
exists a unique t ∈ (0, 1) for which γ(t) = x. Since we deal with constant
curvature spaces, we simply denote curvature as K for the whole space from
now on.

2.2 Constant curvature spaces

Spaces/manifolds of constant curvature have the same curvature at every point
in the space/manifold. We can notice that there are three fundamentally
different types of manifold M we can define with respect to the sign of the
curvature: a positively curved space, a “flat” space, and a negatively curved
space. The most common realizations of those manifolds are the hypersphere
SK , the Euclidean space E, and the hyperboloid HK :

M =

SnK = {x ∈ Rn+1 : 〈x,x〉2 = 1/K}, for K > 0

En = Rn, for K = 0

Hn
K = {x ∈ Rn+1 : 〈x,x〉L = 1/K}, for K < 0

5

2.2. Constant curvature spaces

where 〈·, ·〉2 is the standard Euclidean inner product, and 〈·, ·〉L is the Lorentz
inner product,

〈x,y〉L = −x1y1 +

n+1∑
i=2

xiyi ∀x,y ∈ Rn+1.

Notice that En could be represented directly in Rn, whereas both SnK and Hn
K

need to be represented using more dimension in the ambient space Rn+1. To
simplify the notation, we sometimes use S = S1 and H = H−1. Instead of
curvature K, we often use the generalized notion of a radius:

R =
1√
|K|

.

An illustrative example of a hypersphere and a hyperboloid can be found in
Figure 2.2.

2.2.1 Euclidean space

Firstly, let us consider the K = 0 case. We formally define the n-dimensional
Euclidean manifold (with curvature K = 0, omitted from notation) as the set
En = Rn. Along with the Euclidean distance dE = ‖x− y‖2, they form the n-
dimensional Euclidean space (En, dE). This space is identical to the standard
Euclidean vector space Rn.

We will need the following operations in the space to work with our latent
representations later. Their properties and statements about correctness can
be found in Section A.1.1 in Appendix A. The exponential map in Euclidean
space is defined as

expx(v) = x+ v,

for all x ∈ En and v ∈ TxEn. Its inverse, the logarithmic map is

logx(y) = y − x,

for all x,y ∈ En. Parallel transport in Euclidean space is simply an identity
function

PTx→y(v) = v,

for all x,y ∈ En and v ∈ TxEn.

2.2.2 Hypersphere

A hypersphere, or an n-dimensional sphere with positive curvature K > 0, is
defined as the set

SnK =

{
x ∈ Rn+1 : 〈x,x〉2 = R2 =

1

K

}
.

6

2.2. Constant curvature spaces

As the curvature K increases, the radius R of the sphere decreases. Even
though the definition of the sphere uses a standard Euclidean dot product
〈·, ·〉2, the distance function induced by the metric tensor is different:

dS(x,y) = R cos−1
(
〈x,y〉2
R2

)
=

1√
K

cos−1 (K 〈x,y〉2) .

Formally, the n-dimensional hypersphere space is a sphere with the dS metric
(SnK , dS).

The operations we need can also be defined in the hypersphere. The exponen-
tial map is defined as

expKx (v) = cos
(√

K ‖v‖2
)
x+ sin

(√
K ‖v‖2

) v√
K ‖v‖2

,

for all x ∈ SnK and v ∈ TxSnK . Its inverse, the logarithmic map is

logKx (y) =
cos−1(α)√

1− α2
(y − αx),

where α = K 〈x,y〉2, for all x,y ∈ SnK . Parallel transport in the hypersphere
is

PTK
x→y(v) = v −

K 〈y,v〉2
1 +K 〈x,y〉2

(x+ y),

for all x,y ∈ SnK and v ∈ TxSnK . More details and properties can be found in
Section A.3.1 in Appendix A.

2.2.3 Hyperboloid

The hyperboloid Hn
K (also called the Lorentz model) for a given curvature

K < 0 is defined as

Hn
K = {x ∈ Rn+1 : 〈x,x〉L = −R2 =

1

K
,x1 > 0},

where 〈·, ·〉L is the Lorentzian inner product (or Minkowski inner product) as
defined previously.

We can point out that, similarly to the spherical and Euclidean spaces, for all
x,y ∈ Hn

K it holds that

〈x,y〉L = −R2 ⇐⇒ x = y.

Otherwise, 〈x,y〉L < −R2. This corresponds to the hyperbolic Cauchy-Schwarz
theorem (Ratcliffe, 2006, Theorem 3.1.6)

The induced distance function in the hyperboloid is

dH(x,y) = R cosh−1
(
−
〈x,y〉L
R2

)
=

1√
−K

cosh−1 (−K 〈x,y〉L) .

7

2.3. Stereographically projected spaces

Formally, the n-dimensional hyperboloid space is a hyperboloid with the dH
metric (Hn

K , dH).

Likewise, the necessary operations can also be defined in the hyperboloid, and
are dual to their hyperspherical equivalents. The exponential map is defined
as

expKx (v) = cosh
(√
−K ‖v‖L

)
x+ sinh

(√
−K ‖v‖L

) v√
−K ‖v‖L

,

for all x ∈ Hn
K and v ∈ TxHn

K . Its inverse, the logarithmic map is

logKx (y) =
cosh−1(α)√
α2 − 1

(y − αx),

where α = K 〈x,y〉L, for all x,y ∈ Hn
K . Parallel transport in the hyperboloid

is

PTK
x→y(v) = v −

K 〈y,v〉L
1 +K 〈x,y〉L

(x+ y),

for all x,y ∈ Hn
K and v ∈ TxHn

K . More details and properties can be found in
Section A.3.1 in Appendix A. For a summary of operations on the hyperboloid
and hypersphere, see Table 2.1.

2.3 Stereographically projected spaces

At first sight, the above spaces are enough to cover any possible value of
the curvature, and they define all the necessary operations we will need to
train VAEs in them. Unfortunately, both the hypersphere (Remark A.19)
and the hyperboloid (Remark A.3) have an unsuitable property, namely the
non-convergence of the norm of points as the curvature goes to 0. The intuition
is that both spaces grow as K → 0 and become locally “flatter”, but to do
that, their points have to go away from the origin of the coordinate space 0 to
be able to satisfy their definitions. A good example of a point that diverges is
the origin of the hyperboloid (equivalently, a pole of the hypersphere) µK0 =
(1/K, 0, . . . , 0)T = (R, 0, . . . , 0)T . In general, we can easily see that ‖x‖2 =
1
K

K→0−−−→ ±∞. That makes both of these spaces unsuitable for trying to learn
sign-agnostic curvatures.

Luckily, there exist well-defined positively and negatively curved spaces that
inherit most properties from the hyperboloid and the hypersphere, yet do
not have this property — namely, the Poincaré ball and the projected sphere,
respectively. We can obtain both of them using stereographic conformal pro-
jections of the hyperboloid and the hypersphere, meaning that angles are
preserved by the projection. Since the distance function on the hyperboloid
and hypersphere only depend on the radius and angles between points, they
are isometric.

8

2.3. Stereographically projected spaces

To obtain the models defined below, we first need to define the projection
function. For (ξ;xT)T ∈ Rn+1 where ξ ∈ R, x ∈ Rn, curvature K ∈ R and
the corresponding radius R = 1√

|K|

ρK((ξ;xT)T) =
Rx

R+ ξ
=

x

1 +
√
|K|ξ

ρ−1K>0(y) =

(
R
R2 − ‖y‖22
R2 + ‖y‖22

;
2R2yT

R2 + ‖y‖22

)T

ρ−1K<0(y) =

(
R
R2 + ‖y‖22
R2 − ‖y‖22

;
2R2yT

R2 − ‖y‖22

)T

ρ−1K (y) =

(
1√
|K|

1−K ‖y‖22
1 +K ‖y‖22

;
2yT

1 +K ‖y‖22

)T
,

where y ∈ Rn. The last formula is one that generalizes the two above for
any non-zero values of K. For more details, see Sections A.3.2, A.2.2, and
Theorem A.38 in Appendix A. These formulas correspond to the classical
stereographic projections defined for these models (Lee, 1997, Formula 3.9).
Note that both of these projections map the point µ0 = (R, 0, . . . , 0) in the
original space to µ0 = 0 in the projected space, and back.

Since the stereographic projection is conformal, the metric tensors of both
spaces will be conformal. In this case, the metric tensors of both spaces are
the same, except for the sign of K

gDKx = gPKx = (λKx)2gE,

for all x in the respective manifold (Ganea et al., 2018a, Section 2.1), and
gEy = I for all y ∈ E. The conformal factor λKx is defined as

λKx =
2

1 +K ‖x‖22
.

Among other things, this form of the metric tensor has the consequence that
we unfortunately cannot define a single unified inner product in all tangent
spaces at all points. The inner product at x ∈M has the form of

〈u,v〉x = (λKx)2 〈u,v〉2 ,

for all u,v ∈ TxM.

We can now define the two models corresponding to K > 0 and K < 0.

9

2.3. Stereographically projected spaces

(a) Illustration of a stereographic projec-
tion from S2 → D2 (Wikimedia, 2017).

(b) A stereographic projection from
Earth’s South pole (Wikimedia, 2012).

Figure 2.1: Illustrative visualizations of the stereographic projection ρK .

2.3.1 Projected hypersphere

An n-dimensional projected hypersphere with curvature K > 0 is defined as
the set

DnK = ρK(SnK \ {−µ0}) = Rn,

where µ0 = (R, 0, . . . , 0)T ∈ SnK . For an illustration, see Figure 2.1a. The
curvature of DK is identical to that of SK .

It is important to note that any point in Rn can be interpreted as a point
on the sphere without a “South pole” SnK \ {−µ0} using ρ−1K and any point
in Rn+1 (except points for which x1 = R) can be mapped to Rn using ρK .
To be able to backproject points into SK we need to, additionally, know the
curvature K.

The distance function induced by the metric tensor is

dD(x,y) = dS(ρ−1K (x), ρ−1K (y))

= R cos−1

(
1−

2R2 ‖x− y‖22
(R2 + ‖x‖22)(R2 + ‖y‖22)

)

=
1√
K

cos−1

(
1−

2K ‖x− y‖22
(1 +K ‖x‖22)(1 +K ‖y‖22)

)
.

Formally, the n-dimensional projected hypersphere space is a projected hyper-
sphere with the dD metric (DnK , dD).

10

2.3. Stereographically projected spaces

2.3.2 Poincaré ball

The n-dimensional Poincaré ball PnK (also called the Poincaré disk when n = 2)
for a given curvature K < 0 is defined as

PnK = ρK(Hn
K) =

{
x ∈ Rn : 〈x,x〉2 < R2

}
=

{
x ∈ Rn : 〈x,x〉2 < −

1

K

}
.

The induced distance function by the metric tensor is

dP(x,y) = dH(ρ−1K (x), ρ−1K (y))

= R cosh−1

(
1 +

2R2 ‖x− y‖22
(R2 − ‖x‖22)(R2 − ‖y‖22)

)

=
1√
−K

cosh−1

(
1−

2K ‖x− y‖22
(1 +K ‖x‖22)(1 +K ‖y‖22)

)
.

Formally, the n-dimensional Poincaré ball space is a Poincaré ball with the dP
metric (PnK , dP).

2.3.3 Gyrovector spaces

An important analogy to vector spaces (especially vector addition and scalar
multiplication) in non-Euclidean geometry is the notion of gyrovector spaces
(Ungar, 2008). Both of the above spaces DK and PK (jointly denoted asMK)
share the same structure, hence they also share the following definition for
Möbius addition, due to Ungar (2008).

The Möbius addition ⊕K of x,y ∈MK is defined as

x⊕K y =
(1− 2K 〈x,y〉2 −K ‖y‖

2
2)x+ (1 +K ‖x‖22)y

1− 2K 〈x,y〉2 +K2 ‖x‖22 ‖y‖
2
2

. (2.1)

We can now define “gyrospace distances” for both of the above spaces:

dDgyr(x,y) =
2√
K

tan−1(
√
K ‖−x⊕K y‖2)

dPgyr(x,y) =
2√
−K

tanh−1(
√
−K ‖−x⊕K y‖2)

These two distances are equivalent to their non-gyrospace variants

dM(x,y) = dMgyr(x,y),

as is shown in Theorems A.12 and A.29. Additionally, Theorems A.13 and
A.30 show that

dMgyr(x,y)
K→0−−−→ 2 ‖x− y‖2 = 2dE(x,y),

11

2.3. Stereographically projected spaces

which means that the non-gyrospace distance functions converge to the Eu-
clidean distance function as K → 0 as well. In practice, the gyrospace distance
functions are numerically more stable than the induced distance functions.

Since Ganea et al. (2018a); Tifrea et al. (2019) used the same gyrovector space
formalism to define an exponential map, its inverse logarithmic map, and
parallel transport in the Poincaré ball, we can define them for both manifolds.
The exponential map is defined as

expKx (v) = x⊕K

(
tan

(√
K
λKx ‖v‖2

2

)
v√

K ‖v‖2

)
in the projected hypersphere, and

expKx (v) = x⊕K
(

tanh

(√
−K

λKx ‖v‖2
2

)
v√

−K ‖v‖2

)
in the Poincaré ball, for all x ∈ Mn

K and v ∈ TxMn
K . Its inverse, the loga-

rithmic map is

logKx (y) =
2√
KλKx

tan−1
(√

K ‖z‖2
) z

‖z‖2

in the projected hypersphere, and

logKx (y) =
2√
−KλKx

tanh−1
(√
−K ‖z‖2

) z

‖z‖2

in the Poincaré ball, where z = −x⊕K y, for all x,y ∈Mn
K .

To define parallel transport, we first need the notion of gyration (Ungar, 2008)

gyr[x,y]v = 	K(x⊕K y)⊕K (x⊕K (y ⊕K v)).

Parallel transport in the both the projected hypersphere and the Poincaré ball
then is

PTK
x→y(v) =

λKx
λKy

gyr[y,−x]v,

for all x,y ∈ Mn
K and v ∈ TxMn

K . There are simpler variants of parallel
transport when we transport to or from µ0 = 0:

PTK
µ0→y(v) =

2

λKy
v

PTK
x→µ0

(v) =
λKx
2
v.

For more details on all of the above, see Sections A.3.2, A.2.2, and A.4 in
Appendix A.

12

2.4. Duality between constant curvature spaces

2.4 Duality between constant curvature spaces

It is very noticeable that most statements and operations in constant curvature
spaces have a dual statement or operation in the corresponding space with the
opposite curvature sign. For example, most theorems about the hyperboloid
apply (with small adjustments) to the hypersphere, and most theorems about
the Poincaré ball apply to the projected spherical space as well, and vice-versa.

The notion of duality is one which comes up very often in mathematics, and
in our case is based on Euler’s formula:

eix = cos(x) + i sin(x). (2.2)

It provides a connection between trigonometric, hyperbolic trigonometric, and
exponential functions. From this, a few useful relationships can be derived,
like

cosh(ix) = cos(x) cosh(x) = cos(ix)

sinh(ix) = i sin(x) sinh(x) = −i sin(ix)

tanh(ix) = i tan(x) tanh(x) = −i tan(ix)

and many more. Another important fact is the Pythagorean theorem and its
hyperbolic variant

cos2(x) + sin2(x) = 1, cosh2(x)− sinh2(x) = 1.

Using the above properties, along with the notion of principal square roots
of complex numbers

√
−z = i

√
z, we can convert any hyperbolic formula to

its spherical equivalent, and vice-versa. Using a curvature-aware definition of
trigonometric functions

sinK =

{
sin if K > 0

sinh if K < 0
cosK =

{
cos if K > 0

cosh if K < 0

tanK =

{
tan if K > 0

tanh if K < 0

we can summarize all the operations for all non-zero constant curvature spaced
defined above in Table 2.1 and Table 2.2 for projected spaces.

2.5 Brief comparison of constant curvature space mod-
els

So far, we have seen five different models of constant curvature space, each
of which has advantages and disadvantages when applied to learning latent
representations in them using VAEs.

13

2.5. Brief comparison of constant curvature space models

Distance d(x,y) =
1√
|K|

cos−1K (|K| 〈x,y〉K)

Exp. map expKx (v) = cosK (β)x+ sinK (β)
v

β
, β =

√
|K| ‖v‖K

Log. map logKx (y) =
cos−1K (α)

sinK(cos−1K (α))
(y − αx), α = K 〈x,y〉K

Par. transp. PTK
x→y(v) = v −

K 〈y,v〉K
1 +K 〈x,y〉K

(x+ y)

Table 2.1: Summary of operations in SK and HK .

Möbius add. x⊕K y =
(1− 2K 〈x,y〉2 −K ‖y‖

2
2)x+ (1 +K ‖x‖22)y

1− 2K 〈x,y〉2 +K2 ‖x‖22 ‖y‖
2
2

Distance d(x,y) =
1√
|K|

cos−1K

(
1−

2K ‖x− y‖22
(1 +K ‖x‖22)(1 +K ‖y‖22)

)
Gyr. dist. dgyr(x,y) =

2√
|K|

tan−1K (
√
|K| ‖−x⊕K y‖2)

Lambda λKx =
2

1 +K ‖x‖22

Exp. map expKx (v) = x⊕K

(
tanK

(√
|K|

λKx ‖v‖2
2

)
v√

|K| ‖v‖2

)

Log. map
logKx (y) =

2√
|K|λKx

tan−1K

(√
|K| ‖z‖2

) z

‖z‖2
where z = −x⊕K y

Gyration gyr[x,y]v = 	K(x⊕K y)⊕K (x⊕K (y ⊕K v))

Par. transp. PTK
x→y(v) =

λKx
λKy

gyr[y,−x]v

PTK
µ0→y(v) =

2

λKy
v, PTK

x→µ0
(v) =

λKx
2
v

Table 2.2: Summary of operations in DK and PK .

14

2.6. Products of spaces

A big advantage of the hyperboloid and hypersphere is that optimization in
the spaces does not suffer from as many numerical instabilities as it does in the
respective projected spaces. On the other hand, we have seen that when K →
0, the norms of points go to infinity. As we will see in experiments, this is not
a problem when optimizing curvature within these spaces in practice, except
if we’re trying to cross the boundary at K = 0 and go from a hyperboloid to a
sphere, or vice versa. Intuitively, the points are just positioned very differently
in the ambient space of H−ε and Sε, for a small ε > 0.

Since points in the n-dimensional projected hypersphere and Poincaré ball
models can be represented using a real vector of length n, it enables us to
visualize points in these manifolds directly for n = 2 or even n = 3. On
the other hand, optimizing a function over these models is not very well-
conditioned. In the case of the Poincaré ball, a significant amount of points
lie close to the boundary of the ball (i.e. with a squared norm of almost 1

K),
which causes numerical instabilities even when using 64-bit float precision in
computations.

A similar problem occurs with the projected hypersphere with points that are
far away from the origin 0 (i.e. points that are close to the “South pole” on
the backprojected sphere). Unintuitively, all points that are far away from
the origin are actually very close to each other with respect to the induced
distance function and very far away from each other in terms of Euclidean
distance. For an illustration, see Figure 2.1b.

Both distance conversion theorems (A.13, A.30) rely on the points being fixed
when changing curvature. If they are somehow dependent on curvature, the
convergence theorem does not hold. We conjecture that if points stay close
to the boundary in P or far away from 0 in D as K → 0, this is exactly the
reason for numerical instabilities (apart from the standard numerical problem
of representing large numbers in floating-point notation).

Because of the above reasons, we will do some of our experiments with the
projected spaces and others with the hyperboloid and hypersphere, and aim
to compare the performance of these empirically as well.

2.6 Products of spaces

In the whole chapter, we assumed our space consists of only one model of vary-
ing dimensionality n and fixed curvature K. In the spirit of Gu et al. (2019)
and being able to provide a unified formulation of our geometries (Section 2.4),
we propose learning VAE latent representations in products of constant curva-
ture spaces, contrary to existing VAE approaches which are limited to a single
Riemannian manifold as a latent space.

15

2.6. Products of spaces

Our latent spaces, therefore, consist of several component spaces (or compo-
nents)

M =
k

×
i=1

Mni
Ki
,

where ni is the dimensionality of the space, Ki is its curvature, and M ∈
{E, S,D,H,P} is the model choice. Note that, the notation is slightly loose,
i.e. it permits denoting a positively-curved hyperbolic space (or vice-versa).
We will assume only valid combinations of parameters.

Even though all components have constant curvature, the resulting manifold
M has non-constant curvature. Its distance function naturally decomposes
based on its definition

dM(x,y) =
k∑
i=1

dMni
Ki

(
x(i),y(i)

)
,

where x(i) represents a vector inMni
Ki

, corresponding to the part of the latent
space representation of x belonging to Mni

Ki
.

All other operations we defined on our manifolds are element-wise so the gen-
eralization is trivial — we simply decompose the representations into parts
x(i) as defined before, apply the operation on that part and concatenate the
resulting parts back:

x̃(i) = f
(ni)
Ki

(x(i)), x̃ =
k⊙
i=1

x̃(i).

The signature of the product space, i.e. its parametrization, has several degrees
of freedom per component:

1. the model M,

2. the dimensionality ni, and

3. the curvature Ki.

To summarize, we need to select all of the above for every component in our
product space. An example signature of total dimensionality 42 could be

(H2
−2)

6 × (S53)4 × E10.

However, due to representations of some spaces needing more dimensions, a
point in this space would be represented using a real vector of dimension
(2 + 1) · 6 + (5 + 1) · 4 + 10 = 52.

The notation used above is to be read as

(Mni
Ki

)j =
j

×
l=1

Mni
Ki
.

16

2.6. Products of spaces

(a) Sphere S2 (b) Torus S1 × S1 (c) Hyperboloid H2

Figure 2.2: Visualization of the topological difference between a two-
dimensional sphere, a torus, and a hyperboloid. Colors correspond to cur-
vature (red is -1, white is 0, blue is +1).

Remark (Euclidean constant curvature spaces are sub-divisible.) In
some spaces, like Euclidean spaces, the notation is redundant. For n1, . . . , nk ∈
Z, such that

∑k
i=1 ni = n ∈ Z, it holds that the Cartesian product of Euclidean

spaces Eni is

En =
k

×
i=1

Eni .

The proof follows directly from the definition of Rn.

However, the equality in Remark 2.1 does not hold for the hypersphere and
hyperboloid. This is due to the additional constraints posed on the points in
the definitions of individual models of curved spaces, and the remark does not
hold even if all the partial spaces have an equal Gaussian curvature and are
the same model.

A simple example (Figure 2.2) is that the product of two circles S1K is not
a sphere S2K , but a torus S1K × S1K , which is well-known to be topologically
different to a sphere (Gu et al., 2019). As stated above and apparent from
Figure 2.2b, the resulting space also does not have constant curvature, even
though both spaces were of the same type and had the same curvature.

17

Chapter 3

Probability

In this chapter, we present an overview of the different probability distribu-
tions in constant curvature spaces, in order to learn representations in latent
spaces with prior probability distributions enforced on them. Some details,
properties, and proofs are appended in Appendix B.

To be able to train Variational Autoencoders (Kingma and Welling, 2014), we
need to chose a probability distribution p as a prior on the latent represen-
tations, and a corresponding posterior distribution family q. Both of these
distributions have to be differentiable with respect to their parametrization,
they need to have a differentiable Kullback-Leiber (KL) divergence

DKL (q || p) = Ez∼q

[
log

(
q(z)

p(z)

)]
,

and be “reparameterizable” (Kingma and Welling, 2014, Section 2.4). For
distributions where the KL does not have a closed-form solution independent
on z, or where this integral is too hard to compute, we can estimate it using
Monte Carlo estimation

DKL (q || p) ≈ 1

L

L∑
l=1

log

(
q(z(l))

p(z(l))

)
if L=1

= log

(
q(z(1))

p(z(1))

)
,

where z(l) ∼ q for all l = 1, . . . , L.

The Euclidean VAE uses a natural choice for a prior on its latent representa-
tions — the Normal distribution.

3.1 Multivariate Normal distribution

In Euclidean space En, the Normal (Gaussian) distribution is defined as

N (x;µ,Σ) =
1√

(2π)n det(Σ)
exp((x− µ)TΣ−1(x− µ)),

18

3.1. Multivariate Normal distribution

where µ ∈ Rn and Σ ∈ Rn×n.

We notice that this distribution is differentiable with respect to both param-
eters µ and Σ. Sampling from this distribution is usually well supported by
all computational libraries, using the reparameterization trick

z0 ∼ N (0, I) =⇒ (µ+ Σz0) ∼ N (µ,Σ).

Importantly, this makes it possible to compute partial derivatives of the sample
z with respect to both parameters µ and Σ, which is crucial for learning a
VAE using this distribution as a prior on the latent space.

The only missing fact we need to train a VAE with a Normal prior on the
latent representations is the Kullback-Leiber (KL) divergence. For the multi-
variate Normal distribution, the KL has an explicit form with respect to the
parameters:

DKL (N (µ0,Σ0) || N (µ1,Σ1)) =

=
1

2

(
trace(Σ−11 Σ0) + (µ1 − µ0)

TΣ−11 (µ1 − µ0)− n+ ln
det(Σ1)

det(Σ0)

)
.

Remark (Diagonal covariance in multivariate Normal distributions)
It can be shown that a multivariate Normal distribution N (µ,Σ) with a diag-
onal covariance matrix

Σ = diag(σ211, σ
2
22, . . . , σ

2
nn),

is equivalent to a combination of n independent univariate Normal distribu-
tions N (µi, σ

2
ii), which is a very practical property. For details, see Do (2008).

What makes the Normal distribution in Euclidean a good choice for a prior?
Apart from satisfying the requirements for a VAE prior and posterior distri-
bution, it has additional properties.

Remark (Maximum Likelihood characterization) One of the formula-
tions of the Maximum Likelihood characterization, due to Gauss (1809), states
that the Maximum Likelihood Estimator (MLE) of the location parameter of
a location-scale distribution family is the sample arithmetic mean (for any
sample size) if and only if the family is Normal.

A location-scale family is one that has a vector location/mean parameter and
a scalar non-negative variance parameter.

Remark (Maximum Entropy principle) Out of all probability distributions
consistent with a given set of constraints, the distribution with maximum un-
certainty should be chosen (Jaynes, 1957).

Additionally, we know that if the solution exists, then it is unique with a given
set of constraints (although it does not have to exist).

19

3.2. Normal-like distributions in non-Euclidean constant curvature spaces

The Normal distribution is the Maximum Entropy distribution among all dis-
tributions on Rn with a specified covariance matrix Σ, and also satisfies the
MLE-characterization.

3.2 Normal-like distributions in non-Euclidean constant
curvature spaces

Generalizing the Normal distribution to spaces of constant non-zero curvature
is not straightforward. There exist several fundamentally different approaches,
with different properties. We discuss the following three generalizations based
on the way they are constructed (Mathieu et al., 2019, Appendix B):

• Wrapping – This approach leverages the fact that all manifolds define a
tangent vector space at every point. We simply sample from a Euclidean
Normal distribution in the tangent space at µ0 with mean 0, and use
parallel transport and the exponential map to map the sampled point
onto the manifold. The PDF can be obtained using the multivariate
chain rule if we can compute the determinant of the Jacobian of the
parallel transport and the exponential map. This is very computation-
ally effective at the expense of losing some theoretical properties. An
example of this category is the Wrapped Normal distribution presented
in Section 3.4.

• Restriction – The “Restricted Normal” approach is conceptually antag-
onal to the Wrapped Normal. Instead of expanding a point to a dimen-
sionally larger point, we restrict a point of the ambient space sampled
from a Euclidean Normal to the manifold. The consequence is that the
distributions constructed this way are based on the “flat” Euclidean dis-
tance. An example of this is the von Mises-Fisher (vMF) distribution
(Section 3.3).

• Maximize entropy – Assuming a known mean and covariance matrix
(first and second moments), we want to maximize the entropy of the
distribution (Pennec, 2006). This approach is usually called the Rie-
mannian Normal distribution. Mathieu et al. (2019) derive it for the
Poincaré ball, and Hauberg (2018) derive the Spherical Normal distribu-
tion on the hypersphere.

Riemannian Normal distributions resemble the Euclidean Normal distribu-
tion’s properties the closest, but it is usually very hard to sample from such
distributions, compute their normalization constants, and even derive the spe-
cific form. Since the gains for VAE performance using this construction of
Normal distributions is only marginal, as reported by Mathieu et al. (2019),
we have chosen to only make limited use of them.

20

3.3. Von Mises-Fisher distribution

To the best of our knowledge, there have not been attempts to establish
Restricted Normal distributions in hyperbolic spaces, neither are there any
“richer” non-scalar variance generalizations of the spherical variants (vMF).

Therefore, due to their simplicity, we focus primarily on Wrapped Normal
distributions.

3.3 Von Mises-Fisher distribution

The von-Mises Fisher (vMF) distribution is a probability distribution on Sn1
in the (n + 1)-dimensional ambient space Rn+1, parametrized by a mean
µ ∈ Rn+1, and a concentration parameter κ ∈ [0,∞) (Davidson et al., 2018;
Tanabe et al., 2007):

vMF(x|µ, κ) = Cn+1(κ) exp(κµTx),

Cn(κ) =
κn/2+1

(2π)n/2 In/2−1(κ)
,

Ir(x) =

∞∑
n=1

1

n!Γ(n+ r + 1)

(x
2

)2n+r
,

Γ(z) =

∫ ∞
0

xz−1 exp(−x)dx, z ∈ R>0,

where ||µ||2 = 1, i.e. µ ∈ Sn, Cn+1(κ) is the normalization constant, Ir denotes
the modified Bessel function of the first kind at order r, and Γ(z) denotes the
generalized factorial function (usually called “gamma function”). An interest-
ing property is that if κ→ 0+, vMF(·, κ) degenerates into the hyperspherical
uniform distribution and does not depend on the mean (Xu and Durrett, 2018).
For details on the hyperspherical uniform distribution, see Section B.1 in Ap-
pendix B.

If we place a hyperspherical uniform prior U(Sn−1) on the sphere Sn−1, we
can derive the KL divergence (Davidson et al., 2018, Appendix B):

DKL

(
vMF(µ, κ) ||U(Sn−1)

)
= κ

In/2(κ)

In/2−1(κ)
+ log Cn(κ) + log

(
2(πn/2)

Γ(n/2)

)
︸ ︷︷ ︸

Sn−1(1)

.

Notice that the second and third term is a log of the ratio of normalizers of
the vMF distribution and the hyperspherical uniform distribution. Xu and
Durrett (2018) arrive at the same KL divergence formulation.

Davidson et al. (2018) also derive the gradient of the KL divergence with
respect to κ, because automatic differentiation libraries have problems with

21

3.3. Von Mises-Fisher distribution

the calculation due to the occurrence of the modified Bessel function in the
KL:

∇κDKL

(
vMF(µ, κ) ||U(Sn−1)

)
=

=
1

2
κ

(In/2+1(κ)

In/2−1(κ)
−
In/2(κ)(In/2−2(κ) + In/2(κ))

In/2−1(κ)2
+ 1

)
.

The modified Bessel functions in the KL divergence term and in the formula
above can be computed in a numerically stable way using exponential scaling
Iexpr (κ) = exp(−κ)Ir(κ).

We are still missing a proper sampling scheme to be able to use the vMF
distribution in a VAE latent space. To date, the only way to sample from
a vMF distribution for n > 3 is a rejection-sampling scheme as described by
Davidson et al. (2018, Section 3.3 and Appendix A), Naesseth et al. (2017),
and Ulrich (1984). Algorithm 1 in Davidson et al. (2018) briefly summarizes
the result and the sampling process. It is important to note that the rejection-
sampling part of the procedure only happens on a one-dimensional random
variable, so it does not suffer from the “curse of dimensionality”. In the case of
n = 3, we can substitute rejection sampling with a direct sampling as outlined
in the algorithm.

However, as pointed out by Davidson et al. (2018), as dimensionality increases,
even a simple diagonal multivariate Normal distribution starts to approximate
a hypersphere, while its posterior becomes more expressive due to a different
variance parametrization (a diagonal matrix versus a single scalar concentra-
tion parameter). As noted in Section B.1, the sphere surface area starts to
collapse around n = 7 and vanishes as n→∞. Additionally, we also observed
that in practice the numerical properties of the rejection sampling procedure
(Algorithm 2, Davidson et al. (2018)) are insufficient and the procedure takes
significantly longer to converge as dimensionality increases, probably due to
numerical errors.

To the best of our knowledge, the von-Mises Fischer distribution was never
defined on a hypersphere of different radius than 1. In Remark B.1 in Ap-
pendix B we briefly elaborate on why sampling z ∼ vMF(µ, κ · R−n) on Sn1
and then orthogonally projecting

z′ =
Rz

‖z‖2
= Rz

the sampled point onto SnK is roughly equivalent to defining vMF on SnK di-
rectly.

It is worth noting that for a given µ ∈ Sn1 , Mardia (1975) has proven that the
vMF distribution is the Maximum Entropy distribution on the sphere, and
also satisfies the Maximum Likelihood characterization, hence it is as close

22

3.4. Wrapped Normal distributions

as we can get to a Normal distribution with a scalar scale parameter on the
hypersphere.

3.4 Wrapped Normal distributions

The following distribution can be applied to all manifolds that we have intro-
duced. The only differences are the specific forms of the operations and the
log-determinant in the PDF.

First of all, we need to define an “origin” point on the manifold, which we will
denote as µ0 ∈ MK . What this point corresponds to is manifold-specific: in
the hyperboloid and hypersphere it corresponds to the point

µ0 = (R, 0, . . . , 0)T ,

and in the Poincaré ball, projected sphere, and Euclidean space it is simply
µ0 = 0, the origin of the coordinate system.

Sampling from the distribution WN (µ,Σ) has been described in detail in
Nagano et al. (2019) and Mathieu et al. (2019). Essentially, this corresponds
to:

1. v ∼ N (µ0,Σ) ∈ Tµ0MK ,

2. u = PTK
µ0→µ(v) ∈ TµMK ,

3. z = expµKx (u) ∈MK .

The process is illustrated for H1 in Figure 3.1. The log-probability density
function can be computed by the reverse procedure:

1. u = logKµ (z) ∈ TµMK ,

2. v = PTK
µ→µ0

(u) ∈ Tµ0MK ,

3. logWN (µ,Σ) = logN (v;µ0,Σ)− log det
(
∂f
∂v

)
,

where f = expKµ ◦PTK
µ0→µ. We notice that the intermediate results for the

log-PDF u and v are the same as in the sampling procedure for a given x and
z. This allows us to not do redundant computations and also helps numerical
stability.

The specific forms of the log-PDF for the four spaces H, S, D, and P are
derived in Section B.3 of Appendix B. All the variants of this distribution are
reparameterizable, differentiable, and the KL can be computed using Monte
Carlo estimation. As a consequence of the distance function and operations
convergence theorems A.13, A.30, A.40, A.41, and A.43, we can see that the
Wrapped Normal distribution converges to the Euclidean Normal distribution
as K → 0.

23

3.4. Wrapped Normal distributions

(a) 1D Hyperboloid H1

(orange) and the tangent
space TµH1 (blue).

(b) Parallel transport of v
from Tµ0H1 (green) to u in
TµH1 (blue).

(c) Exponential map of u
from TµH1 (blue) onto the
manifold (orange) at µ.

Figure 3.1: Three-step transformation of a sampled point v in Tµ0H1 for the
hyperbolic Wrapped Normal distribution (Nagano et al., 2019).

24

Chapter 4

Variational Autoencoders

In this chapter, we briefly look at variational inference and introduce Varia-
tional Autoencoders (VAEs), originally defined by Kingma and Welling (2014)
and Rezende et al. (2014). Lastly, we re-formulate VAEs for latent spaces that
are products of constant curvature spaces.

4.1 Autoencoders

Autoencoders are neural networks used for reconstruction task (Goodfellow
et al., 2016). They consist of an encoder h = f(x) and a decoder x̂ =
g(h), where x represents the input and x̂ a reconstruction of the input. The
simplest choice for f and g would be identity functions — instead, we constrain
both functions so that they cannot reproduce the input x perfectly, hence
introducing a “bottleneck” into the model. The simplest variant of linear
autoencoders with mean squared loss directly correspond to a well-known
dimensionality reduction procedure, Principal Component Analysis (PCA).

4.2 Variational Inference

Casting our problem into a probabilistic view (as summarized by Blei et al.
(2017)): let x be a set of observed variables and z a set of latent (unobserved)
variables. Our model is the joint density p(z,x). We aim to find the “hid-
den” representation of our observed variables x, i.e. compute the conditional
distribution

p(z|x) =
p(z,x)

p(x)
.

The denominator (or the normalization constant), in Bayesian literature usu-
ally called the evidence, can also be computed from our model

p(x) =

∫
p(z,x)dz,

25

4.2. Variational Inference

which is effectively intractable to compute for most models.

Since we are therefore unable to do exact inference, we aim to do approximate
inference by introducing a distribution q from a variational distribution family
F and use optimization to find such a q ∈ F that approximates p(z|x) best.
This approach is called variational inference (Jordan et al., 1999).

Do note that there are other approaches to approximate inference. A natural
one is estimating p(z|x) pointwise, i.e. doing maximum a posteriori (MAP)
estimation. This is fast and simple to compute, but very biased. Another
standard approach is sampling using Markov Chain Monte Carlo (MCMC).
Whilst this is (asymptotically) unbiased and easy to set up, the speed of
convergence might be too slow, and convergence is hard to assess (Kingma
and Welling, 2014).

Formally, we attempt to find the best probability distribution q(z) from a
given family of distributions F , such that it approximates the exact conditional
distribution p(z|x) best (Blei et al., 2017)

q∗(z) = arg min
q(z)∈F

DKL (q(z) || p(z|x)) ,

where

DKL (q || p) = Ez∼q

[
log

(
q(z)

p(z)

)]
,

for any probability distributions q and p (Kullback and Leibler, 1951).

However, computing the KL divergence above is intractable in practice, as we
would have to evaluate log p(x)

DKL (q(z) || p(z|x)) = Ez∼q [log q(z)]−Ez∼q [log p(z|x)]

= Ez∼q [log q(z)]−Ez∼q [log p(z,x)] + log p(x).

From this, we can derive a lower-bound on log p(x)

log p(x) = Ez∼q [log p(z,x)]−Ez∼q [log q(z)] +DKL (q(z) || p(z|x))

= Ez∼q [log(p(x|z)p(z))]−Ez∼q [log q(z)] +DKL (q(z) || p(z|x))

= Ez∼q [log p(x|z)]−DKL (q(z) || p(z)) +DKL (q(z) || p(z|x))︸ ︷︷ ︸
≥0

≥ Ez∼q [log p(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL (q(z) || p(z))︸ ︷︷ ︸
regularization term

=: ELBO(q).

The name ELBO is a shortcut of evidence lower bound. Its first term is usually
called the reconstruction term, as it is proportional to the “difference” of the
input and the reconstruction. The KL term can be interpreted as a regularizer
to not let the variational distribution q(z) be “far” (in distribution space) from
the prior p(z).

26

4.3. Variational Autoencoders

Since log p(x) is a constant with respect to q(z), we can see that maximizing
the ELBO is equivalent to minimizing DKL (q(z) || p(z|x)), which was our
original intention

q∗(z) = arg min
q(z)∈F

DKL (q(z) || p(z|x)) = arg max
q(z)∈F

ELBO(q).

For more details on Variational Inference, see Blei et al. (2017).

4.2.1 Tighter bounds on the marginal log-likelihood

As proven by Burda et al. (2016, IWAE), we can obtain a tighter bound on
the evidence than the ELBO

ELBOL(q) = Ez(l)∼q

[
log

(
1

L

L∑
l=1

p
(
z(l),x

)
q
(
z(l)
))] .

As is apparent,

ELBO1(q) = Ez(l)∼q

[
log

(
1

1

1∑
l=1

p
(
z(1),x

)
q
(
z(1)

))]

= Ez∼q

[
log

(
p(z,x)

q(z)

)]
= ELBO(q).

Additionally, the property

log p(x) ≥ ELBOL+1 ≥ ELBOL,

means that the bound ELBOL imposes on the log-evidence log p(x) becomes
tighter as L grows. Even though it is computationally expensive to calculate
due to the sampling, we use it as an evaluation metric. For more details, see
(Burda et al., 2016).

4.3 Variational Autoencoders

We shortly present a generalized family of VAE models, so that we can ex-
change individual parts of the models and use our previously defined proba-
bility distributions. More about the motivation for using variational autoen-
coders compared to classical autoencoders can be found in Section C.1 of
Appendix C.

A variational autoencoder V consists of several parts: a latent space prior
distribution, a posterior distribution family, and an encoder and decoder maps
(and their parameters)

V = {p(z),Fq, fθ, gϕ}.

27

4.3. Variational Autoencoders

Similarly to the equivalent in a classical autoencoder, the encoder map fθ(x) :
X → Z is a differentiable function parametrized by θ, that (deterministically)
maps samples from the sample space X to the latent space Z. The encoder
is then defined as a probability distribution qfθ(x)(z), usually shortened to
qθ(z|x).

The decoder map gϕ(z) : Z → X is a differentiable function parameterized by
ϕ, that (deterministically) maps samples back from the latent space Z into
the sample space X . The decoder is then defined as a probability distribution
pgϕ(z)(x), usually shortened to pϕ(x|z).

4.3.1 Learning VAEs

To learn a VAE given a specific dataset X =
(
x(1), . . .x(N)

)
, we can choose an

appropriate posterior family, prior distribution, and an encoder and decoder
map structure. The most common choice of posterior family is the Normal dis-
tribution with the corresponding prior N (0, I), and the encoder and decoder
are usually two separate neural networks, where θ and ϕ correspond to their
respective weights and biases.

We can learn the weights θ and ϕ using gradient-based optimization of the
evidence lower bound, as defined in Section 4.2. A “forward pass” given a
specific sample x(n) using this model includes the following steps:

1. Encode the sample: x̃(n) = fθ
(
x(n)

)
.

2. Estimate the parameters of our posterior family:

µ
(
x̃(n)

)
= hµ

(
x̃(n)

)
σ2
(
x̃(n)

)
= exp

(
hσ

(
x̃(n)/2

))
Σ
(
x̃(n)

)
= σ2I

Above, we computed parameters of our sample-specific Normal distribu-
tion posterior. Using a single-layer neural network hµ, we made sure the
resulting mean has the proper dimensions. Using a different single-layer
neural network hσ, we compute the logarithm of the standard deviation
and transform it to the squared standard deviation. Finally, we trans-
form σ to a diagonal covariance matrix. Note that both neural networks’
weights and biases are part of θ.

There is an important choice to be made here, that changes the per-
formance of VAEs in practice: the specific form of the transformation
functions µ(·) and Σ(·). By changing these, we can influence the num-
ber of parameters of the encoder, but more importantly of the posterior
distribution — therefore significantly influence the degrees of freedom
the samples from this distribution will have.

28

4.3. Variational Autoencoders

3. Construct the sample-specific posterior:

qθ

(
z|x(n)

)
= N

(
z;µ

(
x̃(n)

)
,Σ
(
x̃(n)

))
.

4. Sample from the reparameterized posterior: z(n) ∼ qθ
(
z|x(n)

)
.

For example, z(n) = µ
(
x̃(n)

)
+ Σ

(
x̃(n)

)
v, where v ∼ N (0, I).

5. Decode back into the sample space: x̂(n) = gϕ
(
z(n)

)
.

6. Compute the loss for x̂(n): Ln(θ, ϕ) = ELBO
(
qθ
(
·|x̂(n)

))
.

Note that

ELBO(qθ(·|x̂(n))) = Ez∼q

[
log pϕ

(
x̂(n)|z

)]
︸ ︷︷ ︸
decoder reconstruction error

−DKL

(
qθ

(
z|x̂(n)

)
|| p(z)

)
︸ ︷︷ ︸

encoder regularization term

.

In the above, we used a Euclidean Normal distribution as q and p only as an
example. See Figure 4.1 for an illustration of the above algorithm. To get an
estimate of the marginal log-likelihood log p(x̂) for evaluation, we repeat steps
4–5 in the process L times and then compute ELBOL(q) instead (denoted as
LL).

For inference, we skip steps 1–3, sample from the prior z ∼ p(z) instead of
from the posterior in step 4, and decode exactly like in step 5.

4.3.2 Riemannian manifolds as latent spaces

To be able to learn latent representations in Riemannian manifolds instead of
in Rd as above, we only need to change step 2 of the VAE forward pass, and
the choice of prior and posterior distributions.

The prior and posterior have to be chosen depending on the chosen mani-
fold and are essentially treated as hyperparameters of our VAE. All the dis-
tributions we have mentioned so far are reparameterizable. Since we have
defined the Wrapped Normal family of distributions for all spaces, we can use
WN (µ0,σ

2I) as the posterior family, and WN (µ0, I) as the prior distribu-
tion. The actual forms of the distributions depend on the chosen constant
curvature space type.

In experiments, we sometimes use vMF(µ, κ) for the hypersphere SnK (or a
backprojected variant of vMF for DnK) with the associated hyperspherical uni-
form distribution U(SnK) as a prior, or the Riemannian Normal distribution
RN (µ, σ2) and the associated prior RNµ0, 1 for the Poincare ball PnK , which
are the corresponding maximum entropy distributions in those spaces.

29

4.3. Variational Autoencoders

Posterior

��

�

Encoder

= (�)�̃ ��

�()�̃ �()�̃

((�|�)||�(�)))DKL �� � ∼ �(�)

� = �() + �()��̃ �̃

Decoder

= (�)�̂ ��

[log (|�)]��∼ (�|�)��
�� �̂

Figure 4.1: Illustration of a VAE model. Green boxes represent sample and
latent space representations, red boxes represent parameterized functions (neu-
ral networks), the purple box represents a reparameterized source of random-
ness, yellow denotes a probability distribution, and blue boxes are loss terms.

For most distributions, the parametrization is the following:

µ
(
x̃(n)

)
= expKµ0

(
hµ

(
x̃(n)

))
σ2
(
x̃(n)

)
= exp

(
1 + log

(
hσ

(
x̃(n)

)))
+ ε

Σ
(
x̃(n)

)
= σ2I,

where ε = 10−5 is a small constant to prevent complete collapse. The ex-
ceptions to the above parametrization are the von Mises-Fischer distribution
and the Riemannian Normal distribution, where the scale parameter is scalar,
and we adjust σ and the dimensions of hσ accordingly (this is important
when comparing latent space degrees of freedom). Note that we can also use
a scalar parameterization with the Wrapped Normal and Gaussian Normal
distributions.

It is important to mention that all of the parameters of our model live in
Euclidean space, not on the manifolds. We just implicitly parametrize the
distributions in latent space using the exponential map at the origin of the
space expKµ0

.

30

4.3. Variational Autoencoders

4.3.3 Latent space as a product of constant curvature spaces

Given Remark 2.1, dividing the latent space of a VAE into different “com-
ponents” does not make topological sense. However, in spaces of non-zero
constant curvature, the remark does not hold. Therefore, we need a way to
define VAEs where Z is a Cartesian product of different subspaces, which are
each one of the defined models we have introduced previously.

Using the geometrical properties from Section 2.6, we have shown that all
operations defined we have defined in our manifolds “generalize” to products
of such spaces. Therefore, we simply define our latent space as some product
of I spaces

Z =
I

×
i=1

ZniKi ,

where each component ZniKi ∈ {S
ni
Ki
,DniKi ,E

ni ,Hni
Ki
,PniKi} is one of our defined

models. Then, we do steps 2–4 of the VAE forward pass per-component of

the latent space, and concatenate all samples z(n) =
⊙
i = 1Iz

(n)
(i) , where

z
(n)
(i) ∼ q

(i)
θ (z(i)|x(n)) from step 3. Every component has its own µ

(
x̃(n)

)
and

Σ
(
x̃(n)

)
functions, with the appropriate dimensionality-adjusting maps hµ

and hσ inside of them.

4.3.4 Overview of properties

To summarize, we have defined a fully specified VAE model with the latent
space lying on a product of Riemannian manifolds of constant curvature. The
motivation for this was that the latent space would, therefore, have different
curvature in different “components”, which should make it more suitable for
uncovering an even more compact hidden structure in a given dataset than
VAEs with a single constant curvature manifold as a latent space. What is
more, we can take derivatives with respect to the curvature in every component
of our space, and hence attempt to learn it from data as well.

Additionally, if we define the latent space to only consist of Euclidean, Poincaré
ball, and projected hypersphere models with the Wrapped Normal distri-
butions, the resulting VAE will be a generalization of the Euclidean VAE
(Kingma and Welling, 2014) as well as its spherical (Davidson et al., 2018; Xu
and Durrett, 2018) and hyperbolic (Mathieu et al., 2019; Nagano et al., 2019)
variants.

Finally, our VAE shows good asymptotic behavior as the curvatures of our
latent space components Ki go to 0 — essentially, the VAE degenerates into
the Euclidean VAE (Kingma and Welling, 2014).

31

Chapter 5

Learning curvature

We have already seen approaches to learning VAEs in products of spaces of
constant curvature. However, we can also change the curvature constant in
each of the spaces during training. The individual spaces will still have con-
stant curvature at each point, we just allow changing the constant in between
training steps. To differentiate between these training procedures, we will call
them fixed curvature and learnable curvature VAEs respectively.

The motivation behind changing curvature of non-Euclidean constant curva-
ture spaces might not be clear, since it is apparent from the definition of the
distance function in the hypersphere and hyperboloid

d(x,y) = R · θx,y,

that the distances between two points that stay at the same angle only get
rescaled when changing the radius of the space. Same applies for the Poincaré
ball and the projected spherical space since they are stereographic conformal
projections of the hyperboloid and the hypersphere, hence they preserve angles
between points.

The motivation for learning curvature in our model is that the decoder does
not only depend on pairwise distances, but rather on the specific positions of
points in the space. It can be conjectured that the KL term of the ELBO
indeed is only “rescaled” when we change the curvature, however, the re-
construction process is influenced in non-trivial ways. Since that is hard to
quantify and prove, we devise a series of practical experiments to show overall
model performance is enhanced when learning curvature.

5.1 Fixed curvature VAEs

In fixed curvature VAEs, all component latent spaces have a fixed curvature
that is selected a priori and fixed for the whole duration of the training pro-
cedure, as well as during evaluation. For Euclidean components it is 0, for

32

5.2. Learnable curvature VAEs

positively or negatively curved spaces any positive or negative number can be
chosen, respectively. For stability reasons, we select curvature values from the
range [0.25, 1.0], which corresponds to radii in [1.0, 2.0]. The exact curvature
value does not have a too significant impact on performance when training
a fixed curvature VAE, as motivated by the distance rescaling remark above,
although some constant might perform better. In the following, we refer to
fixed curvature components with a constant subscript, e.g. Hn

1 .

5.2 Learnable curvature VAEs

In all non-Euclidean manifolds, we can differentiate the ELBO with respect
to the curvature K. This enables us to treat K as a parameter of the model
and learn it using gradient-based optimization, exactly like we learn the en-
coder/decoder maps in a VAE.

There are several problems with this trivial approach. First of all, we have
no gradient with respect to K in a Euclidean model, as the curvature is 0.
Secondly, learning curvature directly is badly conditioned — we are trying to
learn one scalar parameter that influences the resulting decoder and hence the
ELBO quite heavily. It comes up in the PDF of the latent space distribution, in
the exponential mapping of the mean to the manifold, and in many more places
in the model. Hence, parts of the gradient for K come from the reconstruction
term and parts from the KL term. Lastly, when doing a curvature update,
we should adjust all the points so that their pairwise distances remain the
same. However, this is very hard to do since the points on our manifold are
parametrized by a neural network, therefore we resort to skipping this step,
and learning curvature “jointly” with the representations.

Empirically, we have found that Stochastic Gradient Descent works well to
optimize the radius of a component. We constrain the radius to be strictly
positive in all non-Euclidean spaces by applying a ReLU activation function
before we use it in operations

relu(R) = max(0, R).

To increase stability, we pre-train the model by first fixing the curvatures of
components for a few epochs and only later letting the model adjust the radii.

5.3 Universal curvature VAEs

In the previous two sections, we have explained how to train VAEs in latent
spaces that are products of constant curvature spaces. Additionally, we have
shown how to adjust the curvature of the component spaces during training.
However, we must still a priori select the “partitioning” of our latent space
— we must choose the number of components and for each of them select the

33

5.3. Universal curvature VAEs

dimension and at least the sign of the curvature of that component. We call
this the signature of the latent space. Hence, we have improved the flexibility
of our latent space geometry by introducing a product of spaces, but have
introduced the problem of signature estimation.

The simplest approach would be to just try all combinations and compare the
results on the specific dataset. This procedure would most likely be optimal,
but does not scale. With a latent space of dimension n, three types of com-
ponents (spherical, Euclidean, and hyperbolic), and a minimum component
dimensionality of 2, we would have to run

bn/2c∑
m=1

∑
k1+k2+...+km=n

(
n

k1, k2, . . . , km

)
3m =

bn/2c∑
m=1

3mmn

experiments, possibly multiple times to obtain confidence bounds, which is
infeasible in practice.

To eliminate this, we propose a method that approximates the resulting model
of the proposed grid search. We partition our space into 2-dimensional compo-
nents (if the number of dimensions is odd, one component will have 3 dimen-
sions). We initialize all of them as Euclidean components and train for half
the number of maximal epochs we are allowed. Then, we split the components
into 3 approximately equal-sized groups and make one group into hyperbolic
components, one into spherical, and the last remains Euclidean. We do this
by changing the curvature of a component by a very small ε — a reasonable
choice would be around 10−2 to 10−5. We then train just the encoder/decoder
maps for a few (e.g. 10) epochs to stabilize the representations after changing
the curvatures. Finally, we allow learning the curvatures of all non-Euclidean
components and train for the rest of the allowed epochs.

Note that the method is not completely general, as it never uses components
bigger than dimension 2, but the approximation has empirically performed
satisfactorily. The approach is general and we can select any dimensions of
components, but that re-introduces some of the complexity of doing a grid
search, as described above.

We also do not constrain the curvature of the components to a specific sign
in the last stage of training. Therefore, components may change their type of
space from a positively curved to a negatively curved one, or vice-versa. Even
though the gradient is not defined at K = 0, we can approximate it from both
sides using a Taylor expansion at 0. In practice, that is not necessary, as it is
very unlikely that the value of K will be set to exact K = 0 when optimized
using gradient descent.

Because of the divergence of points as K → 0 for the hyperboloid and hy-
persphere (Remark A.3 and A.19, Figure 5.1) and the equal ambient space

34

5.3. Universal curvature VAEs

Original

Figure 5.1: Visualization of a one-dimensional hypersphere and hyperboloid
around K = 0.

dimensionality, the universal curvature VAE assumes the positively curved
space is a projected hypersphere D and the negatively curved space is the
Poincaré ball P. In all experiments, this universal approach is denoted as Un.

35

Chapter 6

Experiments

In this chapter, we briefly review work related to ours. Then, we compare
our model to other current VAE approaches on the synthetic tree dataset
of Mathieu et al. (2019), on image reconstruction of dynamically binarized
MNIST (LeCun, 1998) and dynamically binarized Omniglot (Lake et al., 2015),
and image reconstruction of natural images of CIFAR-10 (Krizhevsky, 2009).
Our PyTorch (Paszke et al., 2017) code will be made available on GitHub1.
Additional implementation details, experimental results, tables, and plots are
appended in Appendix D.

6.1 Related work

6.1.1 Universal models of geometry

Duality between spaces of constant curvature (Section 2.4) was first noticed
by Lambert (1770), and later gave rise to various theorems that have the same
or similar forms in all three geometries, like the law of sines (Bolyai, 1832)

sinA

pK(a)
=

sinB

pK(b)
=

sinC

pK(c)
,

where pK(r) = 2π sinK(r) denotes the circumference of a circle of radius r in
a space of constant curvature K, and

sinK(x) = x− Kx3

3!
+
K2x5

5!
− . . . =

∞∑
i=0

(−1)iKix2i+1

(2i+ 1)!
.

Other unified formulas for the law of cosines, or recently, a unified Pythagorean
theorem has also been proposed (Foote, 2017):

A(c) = A(a) +A(b)− K

2π
A(a)A(b),

1https://github.com/oskopek/mvae

36

https://github.com/oskopek/mvae

6.1. Related work

where A(r) is the area of a circle of radius r in a space of constant curvature
K. Unfortunately, in this formulation A(r) still depends on the sign of K
w.r.t. the choice of trigonometric functions in its definition.

There also exist approaches defining a universal geometry of constant curva-
ture spaces. Li et al. (2001, Chapter 4) define a unified model of all three
geometries using the null cone (light cone) of a Minkowski space. The term
“Minkowski space” comes from special relativity and is usually denoted as
R1,n, similar to the ambient space of what we defined as Hn, with the Lorentz
scalar product 〈·, ·〉L. The hyperboloid Hn corresponds to the positive (upper,
future) null cone of R1,n. All the other models can be defined in this space
using the appropriate stereographic projections and pulling back the metric
onto the specific sub-manifold. Unfortunately, we found the formalism not
useful for our application, apart from providing a very interesting theoretical
connection among the models.

6.1.2 Concurrent VAE approaches

The variational autoencoder was originally proposed in Kingma and Welling
(2014) and concurrently in Rezende et al. (2014). One of the most common
improvements on the VAE in practice is the choice of the encoder and decoder
maps, ranging from linear parametrizations of the posterior to feed-forward
neural networks, convolutional neural networks, etc. For different data do-
mains, extensions like the GraphVAE (Simonovsky and Komodakis, 2018)
using graph convolutional neural networks for the encoder and decoder were
proposed.

The basic VAE framework was mostly improved upon by using autoregressive
flows (Chen et al., 2014) or small changes to the ELBO loss function (Burda
et al., 2016; Matthey et al., 2017). An important work in this area is β-VAE,
which adds a simple scalar multiplicative constant to the KL divergence term
in the ELBO, and has shown to improve both sample quality and (if β > 1)
disentanglement of different dimensions in the latent representation. For more
information on disentanglement, see Locatello et al. (2018).

6.1.3 Geometric deep learning

One of the emerging trends in deep learning has been to leverage non-Euclidean
geometry2 to learn representations, originally emerging from knowledge-base
and graph representation learning (Bronstein et al., 2017).

Recently, several approaches to learning representations in Euclidean spaces
have been generalized to non-Euclidean spaces (Dhingra et al., 2018; Ganea
et al., 2018b; Nickel and Kiela, 2017). Since then, this research direction has

2http://geometricdeeplearning.com/

37

http://geometricdeeplearning.com/

6.1. Related work

grown immensely and accumulated more approaches, mostly for hyperbolic
spaces, like Ganea et al. (2018a); Law et al. (2019); Nickel and Kiela (2018);
Tifrea et al. (2019). Similarly, spherical spaces have also been leveraged for
learning non-Euclidean representations (Batmanghelich et al., 2016; Wilson
and Hancock, 2010).

To be able to learn representations in these spaces, new Riemannian optimiza-
tion methods were required as well (Bécigneul and Ganea, 2019; Bonnabel,
2013; Wilson and Leimeister, 2018).

The generalization to products of constant curvature Riemannian manifolds
is only natural and has been proposed by Gu et al. (2019). They evaluated
their approach by directly optimizing a distance-based loss function using Rie-
mannian optimization in products of spaces on graph reconstruction and word
analogy tasks, in both cases reaping the benefits of non-Euclidean geometry,
especially when learning lower-dimensional representations.

6.1.4 Geometry in VAEs

One of the first attempts at leveraging geometry in VAEs was Arvanitidis
et al. (2018). They examine how a Euclidean VAE benefits both in sample
quality and latent representation distribution quality when employing a non-
Euclidean Riemannian metric in the latent space using kernel transformations.

Hence, a potential improvement area of VAEs could be the choice of the pos-
terior family and prior distribution. However, the Gaussian (Normal) distri-
bution works very well in practice, as it is the maximum entropy probability
distribution with a known variance, and imposes no constraints on higher-
order moments (skewness, kurtosis, etc.) of the distribution. Recently, non-
Euclidean geometry has been used in learning variational autoencoders as well.
Generalizing Normal distributions to these spaces is in general non-trivial (see
Section 3.2).

Two similar approaches, Davidson et al. (2018) and Xu and Durrett (2018),
used the von Mises-Fischer distribution on the unit hypersphere to generalize
VAEs to spherical spaces. The von Mises-Fischer distribution is again a max-
imum entropy probability distribution on the unit hypersphere, but only has
a spherical covariance parameter, which makes it less general than a Gaussian
distribution.

Conversely, two approaches, Mathieu et al. (2019) and Nagano et al. (2019),
have generalized VAEs to hyperbolic spaces — both the Poincaré ball and the
hyperboloid, respectively. They both adopt a non-maximum entropy proba-
bility distribution called the Wrapped Normal. Additionally, Mathieu et al.
(2019) also derive the Riemannian Normal, which is a maximum entropy distri-
bution on the Poincaré disk, but in practice performs similar to the Wrapped
Normal, especially in higher dimensions.

38

6.2. Experimental setup

Our approach generalizes on the afore-mentioned geometrical VAE work, by
employing a “products of spaces” approach similar to Gu et al. (2019) and
unifying the different approaches into a single framework for all spaces of
constant curvature.

6.2 Experimental setup

For our experiments, we use four datasets:

1. Branching diffusion process (Mathieu et al., 2019, BDP) — A synthetic
tree-like dataset with injected noise. Hence, a priori, hyperbolic VAEs
should have an advantage.

2. Dynamically-binarized MNIST digits (LeCun, 1998) — MNIST is a
dataset of 60 000 training samples and 10 000 testing samples, all of
which consist of grayscale 28×28 pixel handwritten digits 0–9. We bina-
rize the images similarly to Burda et al. (2016); Salakhutdinov and Mur-
ray (2008). The training set is binarized dynamically (uniformly sampled
threshold per-sample: bin(x) ∈ {0, 1}D = x > U [0, 1],x ∈ x ⊆ [0, 1]D),
and the evaluation set is done with a fixed binarization (x > 0.5).

3. Dynamically-binarized Omniglot characters (Lake et al., 2015) — Om-
niglot is a dataset of thousands of handwritten characters in 50 different
alphabets. Each image is grayscale 150×150 pixels, drawn by 20 different
people using Amazon’s Mechanical Turk. Before training and evaluat-
ing, we bilinearly downsample the image to 28×28 pixels and invert the
colors so that the background is black as in MNIST. Binarization is the
same as for MNIST.

4. CIFAR-10 (Krizhevsky, 2009) — CIFAR-10 is a dataset of thousands of
real-life 32× 32 pixel RGB color images in 10 classes (airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, and truck).

All models in all datasets are trained with early stopping on training ELBO
with a lookahead of 50 epochs and a warmup of 100 epochs (Bowman et al.,
2016). All BDP models are trained for a 1000 epochs, MNIST and Omniglot
models are trained for 300 epochs, and CIFAR for 200 epochs.

We compare models with a given latent space dimension using marginal log-
likelihood with importance sampling (Burda et al., 2016) with 500 samples,
except for CIFAR, which uses 50 due to memory constraints. Log-likelihood
is by definition a negative number, and larger values are better. In all tables,
we denote it as LL. We run all experiments at least 3 times to get an estimate
of variance when using different initial values.

In all the BDP, MNIST, and Omniglot experiments below, we use a simple
feed-forward encoder and decoder architecture consisting of a single dense

39

6.2. Experimental setup

layer with 400 neurons and element-wise ReLU activation

relu(x) = max(0, x).

Since all the VAE parameters {θ, ϕ} live in Euclidean manifolds, we can use
standard gradient-based optimization methods. Specifically, we use the Adam
(Kingma and Ba, 2015) optimizer with a learning rate of 10−3 and standard
settings for β1 = 0.9, β2 = 0.999, and ε = 10−8.

For the CIFAR encoder map, we use a simple convolutional neural networks
with three convolutional layers with 64, 128, and 512 channels respectively.
For the decoder map, we first use a dense layer of dimension 2048, and then
three consecutive transposed convolutional layers with 256, 64, and 3 channels.
All layers are followed by a ReLU activation function, except for the last one.
All convolutions have 4× 4 kernels with stride 2, and padding of size 1. Note
that this architecture is known to not produce state of the art images (Chen
et al., 2014), but we use it due to limited computation time.

The first 10 epochs for all models are trained with a fixed radius (and hence
curvature) of 11 − e where e denotes the epoch number, starting at 0. For
example, in epoch 9, the radius is therefore set to 2 (curvature ±0.25). This
corresponds to a burn-in period similarly to Nickel and Kiela (2017). For
learnable curvature approaches we then use Stochastic Gradient Descent with
learning rate 10−4 and let the optimizers adjust the value freely, for fixed
curvature approaches it stays at the last burn-in value.

All our models use the Wrapped Normal distribution, or equivalently Eu-
clidean Normal in Euclidean components, unless specified otherwise. We run
a few experiments with the Riemannian Normal and the von Mises-Fischer
distribution as well, clearly marked in plots and tables.

All fixed curvature components are denoted with a M1 or M−1 subscript,
or with “–fixed” in plots. Learnable curvature components do not have a
subscript. This notation is omitted for Euclidean components, as they are
always fixed. For example, Hn

−1 is a fixed curvature hyperboloid of dimension
n and Hn is the equivalent but with a learnable curvature. For an overview
of the different components, see Table 6.1.

As baselines, we train VAEs with spaces that have a fixed constant curvature,
i.e. assume a single Riemannian manifold (potentially a product of them) as
their latent space. It is apparent that our models with a single component,
like Sn1 correspond to Davidson et al. (2018) and Xu and Durrett (2018), Hn

−1
is equivalent to the Hyperbolic VAE of Nagano et al. (2019), Pn−c corresponds
to the Pc-VAE of Mathieu et al. (2019), and En is equivalent to the Euclidean
VAE of Kingma and Welling (2014).

In the following, we present a selection of all the obtained results. For more in-
formation and plots, see Appendix D. Do note that bold font numbers simply

40

6.3. Spherical covariance matrix parametrization

Curvature Notation
Ambient

Description
dimension

K > 0
Sn n+ 1 n-dim. hypersphere
Dn n n-dim. projected hypersphere

K = 0 En n n-dim. Euclidean space

K < 0
Hn n+ 1 n-dim. hyperboloid
Pn n n-dim. Poincaré disk

Table 6.1: Brief overview of components and their properties.

represent values that are particularly interesting, not necessarily best perform-
ers.

6.3 Spherical covariance matrix parametrization

Since the Riemannian Normal and the von Mises-Fischer distribution only
have a spherical covariance matrix, i.e. a single scalar variance parameter per
component, we briefly evaluate all our approaches with a spherical covariance
parametrization. The complete results can be found in Section D.2 of Ap-
pendix D.

Binary diffusion process For the BDP dataset and latent dimension 6 (Ta-
ble 6.2), we observe that all VAEs that only use the von Mises-Fischer distribu-
tion perform worse than a Wrapped Normal. However, when a VMF spherical
component was paired with other component types, it performed better than
if a Wrapped Normal spherical component was used instead.

Riemannian Normal VAEs did very well on their own — the fixed Poincaré
VAE (RN P2

−1)
3 obtains the best score. It did not fare as well when we tried

to learn curvature with it, however. Another thing to consider is that we,
unfortunately, were not able to run RN P6 due to issues with the rejection
sampling code not working well.

An interesting observation is that all single-component VAEs M6 performed
worse than product VAEs (M2)3 when curvature was learned, across all com-
ponent types. Our universal curvature VAE (U2)3 managed to get better
results than all other approaches except for the Riemannian Normal baseline,
but it is within the margin of error of some other models. It also outperformed
its single-component variant U6. However, we did not find that it converged
to specific curvature values, only that they were in the approximate range of
(−0.1,+0.1).

As expected, spherical models did worse than hyperbolic ones in general.

41

6.3. Spherical covariance matrix parametrization

Model LL ELBO BCE KL

S61 −55.81±0.35 −56.57±0.44 51.16±0.78 5.41±0.42
D6
1 −55.78±0.07 −56.38±0.06 50.85±0.20 5.53±0.24

E6 −56.28±0.56 −56.99±0.59 51.58±0.69 5.41±0.29
(H2
−1)

3 −56.08±0.52 −56.80±0.54 50.94±0.38 5.86±0.25
H6
−1 −56.18±0.32 −57.10±0.21 51.48±0.47 5.62±0.31

(P2
−1)

3 −55.98±0.62 −56.49±0.62 50.96±0.61 5.52±0.31
P6
−1 −56.74±0.55 −57.61±0.74 52.01±0.71 5.60±0.24

(RN P2
−1)

3 −54.99±0.12 −55.90±0.13 52.42±0.71 3.48±0.60

(S2)3 −56.05±0.21 −56.69±0.36 51.07±0.21 5.61±0.22
(D2)3 −56.06±0.36 −56.69±0.54 50.95±0.40 5.74±0.17
(H2)3 −55.80±0.32 −56.72±0.16 51.14±0.39 5.58±0.28
(P2)3 −56.29±0.05 −57.11±0.22 51.41±0.19 5.69±0.30
(RN P2)3 −56.25±0.56 −57.26±0.45 53.16±1.07 4.11±0.64

D2 × E2 × P2 −55.87±0.22 −56.35±0.22 50.67±0.57 5.69±0.43
E2 ×H2 × S2 −55.92±0.42 −56.54±0.45 51.13±0.74 5.41±0.40
E2 ×H2 × (vMF S2) −55.82±0.43 −56.32±0.47 51.10±0.67 5.21±0.20
E2 ×H2

−1 × (vMF S21) −55.77±0.51 −56.34±0.65 51.33±0.57 5.01±0.17

(U2)3 −55.56±0.15 −56.05±0.32 50.68±0.23 5.37±0.10

Table 6.2: Summary of results (mean and standard deviation), latent space
dimension 6, spherical covariance, on the BDP dataset.

Dynamically-binarized MNIST reconstruction We also tested our approach
on binarized MNIST (Table 6.3). With spherical covariance, we noticed that
VMF again rather under-performed Wrapped Normal, except when it was part
of a product like E2 ×H2 × (vMF S2).

The projected spherical space had big problems handling MNIST, especially
on its own. When paired with another Euclidean and a Riemannian Normal
Poincaré disk component, it performed well, but that might be because the
RN P−1 component achieved best results across the board on MNIST, both
when curvature was learned and especially if it was fixed. As we will see later,
it achieved the best results even when compared to diagonal covariance matrix
VAEs on 6-dimensional MNIST.

Several approaches seem to be better than the Euclidean baseline. That ap-
plies mainly to the above mentioned Riemannian Normal Poincaré ball com-
ponents, but also S6 both with Wrapped Normal and VMF, as well as most
product space VAEs with different curvatures (third section of the table). Our
(U2)3 performed similarly to the Euclidean baseline VAE.

42

6.4. Diagonal covariance matrix parametrization

Model LL ELBO BCE KL

S61 −96.71±0.17 −101.55±0.30 86.90±0.30 14.65±0.10
vMF S61 −97.03±0.14 −102.12±0.26 87.42±0.28 14.69±0.03
D6
1 −98.21±0.23 −103.02±0.14 88.44±0.05 14.58±0.11

E6 −97.16±0.15 −101.67±0.14 87.17±0.26 14.50±0.20
H6
−1 −97.10±0.44 −101.89±0.33 87.32±0.22 14.56±0.20

(P2
−1)

3 −97.56±0.04 −102.33±0.22 87.93±0.32 14.40±0.10
(RN P2

−1)
3 −92.54±0.19 −97.19±0.21 88.42±0.20 8.76±0.04

(S2)3 −96.46±0.12 −101.30±0.17 86.79±0.25 14.51±0.09
S6 −96.72±0.15 −101.39±0.16 86.69±0.15 14.70±0.13
vMF S6 −96.72±0.18 −101.55±0.21 86.82±0.23 14.73±0.02
D6 −97.72±0.15 −102.31±0.16 87.70±0.22 14.61±0.06
(H2)3 −97.37±0.13 −102.07±0.24 87.56±0.30 14.51±0.11
(RN P2)3 −94.16±0.68 −98.65±0.66 89.27±0.79 9.38±0.15

D2 × E2 × P2 −97.48±0.18 −102.22±0.29 87.85±0.17 14.37±0.13
D2 × E2 × (RN P2) −96.43±0.47 −101.31±0.51 88.82±0.50 12.50±0.03
D2
1 × E2 × (RN P2

−1) −96.18±0.21 −100.91±0.31 88.58±0.47 12.33±0.19
E2 ×H2 × S2 −96.80±0.20 −101.60±0.33 87.13±0.19 14.47±0.17
E2 ×H2

−1 × S21 −96.76±0.09 −101.48±0.13 86.99±0.17 14.49±0.05
E2 ×H2 × (vMF S2) −96.56±0.27 −101.49±0.28 86.58±0.36 14.91±0.14

(U2)3 −97.12±0.04 −101.68±0.06 87.13±0.14 14.55±0.16

Table 6.3: Summary of selected models (mean and standard deviation), latent
space dimension 6, spherical covariance, on the MNIST dataset.

6.4 Diagonal covariance matrix parametrization

All the following models are trained with a diagonal covariance matrix, i.e. a
vector of variance parameters per component. This corresponds to the most
common covariance matrix parametrization of VAEs (Kingma and Welling,
2014).

6.4.1 Dynamically-binarized MNIST reconstruction

The complete results can be found in Section D.3.1 of Appendix D.

First, we look at latent dimension 6 (Table 6.4). These models can directly be
compared to the spherical covariance MNIST 6 models, even though they have
more parameters (more covariance parameters). Interestingly, the Riemannian
Normal Poincaré ball VAE is still the best performer. The Euclidean baseline
VAE achieved better results than its spherical covariance counterpart. Overall,
the best result is achieved by the single-component spherical model, with

43

6.4. Diagonal covariance matrix parametrization

Model LL ELBO BCE KL

S61 −96.51±0.09 −101.29±0.18 86.71±0.20 14.58±0.13
D6
1 −97.89±0.10 −102.65±0.10 88.39±0.16 14.26±0.08

E6 −96.88±0.16 −101.36±0.08 86.90±0.14 14.46±0.07
H6
−1 −97.38±0.73 −102.22±0.95 87.75±0.59 14.47±0.37

P6
−1 −97.33±0.15 −102.02±0.35 87.71±0.36 14.31±0.04

S6 −96.44±0.20 −101.18±0.36 86.74±0.38 14.44±0.05
D6 −97.53±0.22 −102.31±0.38 87.97±0.37 14.34±0.08
(H2)3 −96.86±0.31 −101.61±0.30 87.13±0.30 14.48±0.08
H6 −96.90±0.26 −101.48±0.35 87.18±0.48 14.30±0.15
P6 −97.26±0.16 −102.00±0.17 87.58±0.16 14.42±0.08

D2 × E2 × P2 −97.37±0.14 −102.12±0.19 87.78±0.23 14.34±0.12
D2
1 × E2 × P2

−1 −97.29±0.16 −101.86±0.16 87.54±0.17 14.32±0.04
E2 ×H2 × S2 −96.71±0.19 −101.34±0.16 86.91±0.17 14.43±0.06
E2 ×H2

−1 × S21 −96.66±0.27 −101.46±0.44 87.02±0.38 14.44±0.08

(U2)3 −97.06±0.13 −101.66±0.19 87.22±0.12 14.44±0.07
U6 −96.90±0.10 −101.68±0.07 87.27±0.11 14.42±0.12

Table 6.4: Summary of selected models (mean and standard deviation), latent
space dimension 6, diagonal covariance, on the MNIST dataset.

learnable curvature S6. Interestingly, all single-component VAEs performed
better than their (M2)3 counterparts, except for the H6 hyperboloid, but only
by a tiny margin. Products of different component types also achieve good
results. Noteworthy is that their fixed curvature variants seem to perform
marginally better than learnable curvature ones. Our universal VAEs perform
at around the Euclidean baseline VAE performance. Interestingly, all of them
end up with negative curvatures −0.3 < K < 0.

Secondly, we run our models with a latent space dimension of 12 (Table 6.5).
We immediately notice, that not many models can beat the Euclidean VAE
baselines (E12 and (E2)6) consistently, but several are within the margin of
error. Notably, the product VAEs of H, S, and E, fixed and learnable H12, and
our universal VAE (U2)6. Interestingly, products of small components perform
better when curvature is fixed (but only by a very tiny margin), whereas single
big component VAEs are better when curvature is learned, but again within
the margin of error.

Thirdly, the experiments are repeated for a latent space dimension of 72 (Ta-
ble 6.6). At this dimension, the Euclidean single-component VAE performs
better than all other models. E72 performs best, in a close second (E2)36 and
our universal VAE (U2)36. Other well-performing models are learnable cur-

44

6.4. Diagonal covariance matrix parametrization

Model LL ELBO BCE KL

(S21)6 −79.92±0.21 −84.88±0.14 62.83±0.21 22.06±0.07
(D2

1)
6 −80.53±0.10 −85.59±0.08 63.62±0.12 21.97±0.16

(E2)6 −79.51±0.10 −83.91±0.12 61.84±0.06 22.07±0.13
E12 −79.51±0.09 −83.95±0.06 61.66±0.10 22.29±0.04
(H2
−1)

6 −80.54±0.23 −86.05±0.52 63.78±0.26 22.27±0.26
H12
−1 -79.37±0.14 −84.76±0.08 62.32±0.05 22.44±0.10

(P2
−1)

6 −80.39±0.07 −85.46±0.15 63.48±0.22 21.98±0.17

S12 −79.99±0.27 −84.78±0.26 62.89±0.29 21.89±0.18
D12 −80.37±0.16 −85.26±0.19 63.24±0.15 22.02±0.13
H12 −79.77±0.10 −84.58±0.15 62.49±0.10 22.09±0.20
(P2)6 −80.31±0.08 −85.35±0.10 63.57±0.17 21.79±0.07

(D2
1)

2 × (E2)2 × (P2
−1)

2 −80.14±0.11 −85.00±0.08 62.99±0.16 22.01±0.24
D4
1 × E4 × P4

−1 −80.14±0.20 −84.99±0.26 63.06±0.26 21.92±0.08
(E2)2 × (H2)2 × (S2)2 −79.59±0.25 −84.43±0.20 62.68±0.20 21.75±0.20
E4 ×H4 × S4 −79.69±0.14 −84.45±0.12 62.64±0.28 21.81±0.21

(U2)6 −79.61±0.06 −84.13±0.04 61.92±0.22 22.21±0.23
U12 −80.01±0.30 −84.86±0.51 62.90±0.63 21.96±0.16

Table 6.5: Summary of selected models (mean and standard deviation), latent
space dimension 12, diagonal covariance, on the MNIST dataset.

vature single-component hyperboloid H72 and hypersphere S72, and learnable
curvature product VAEs E24 ×H24 × S24 and D24 × E24 × P24.

Lastly, reconstruction of a few MNIST test digits from some of these models
can be visually compared in Figure D.7, and a small interpolation visualiza-
tion is available in Figure D.8. We also present an illustrative latent space
visualization in Figure D.9. All of the figures are attached in Appendix D.

Dynamically-binarized Omniglot reconstruction The complete results can
be found in Section D.3.2 of Appendix D.

For a latent space of dimension 6 (Table 6.7), the best of the baseline models is
the Poincaré VAE of (Mathieu et al., 2019). Our models that come very close
to the average estimated marginal log-likelihood, and are definitely within
the margin of error, are mainly (S2)3, D2 × E2 × P2, and U6. However, with
the variance of performance across different runs, we cannot draw a clear
conclusion (as is apparent from Figure D.10a in Appendix D). In general,
hyperbolic VAEs seem to be doing a bit better on this dataset than spherical
VAEs, which is also confirmed by the fact that almost all universal curvature
models finished with negative curvature components.

45

6.4. Diagonal covariance matrix parametrization

Model LL ELBO BCE KL

(S21)36 −78.43±0.44 −84.99±0.49 56.88±0.28 28.11±0.56
(D2

1)
36 −76.03±0.17 −83.04±0.25 54.35±0.15 28.69±0.17

E72 −74.42±0.06 −80.09±0.12 51.45±0.30 28.63±0.20
H72
−1 −77.30±0.12 −86.98±0.09 58.04±0.29 28.94±0.25

(P2
−1)

36 −76.11±0.08 −82.63±0.19 53.89±0.36 28.74±0.30
P72
−1 −77.50±0.05 −84.53±0.13 55.80±0.20 28.73±0.18

S72 −75.24±0.01 −81.39±0.14 53.03±0.27 28.36±0.16
(D2)36 −75.66±0.06 −81.94±0.09 53.32±0.16 28.61±0.11
(H2)36 −77.87±0.02 −83.95±0.02 55.71±0.35 28.24±0.36
H72 −75.03±0.11 −81.23±0.14 52.63±0.10 28.61±0.11
(P2)36 −75.77±0.12 −82.07±0.02 53.65±0.38 28.43±0.39
P72 −75.71±0.08 −81.95±0.09 53.29±0.14 28.67±0.05

(D2)12 × (E2)12 × (P2)12 −77.40±0.55 −83.35±0.41 53.90±0.40 29.45±0.12
(D2

1)
12 × (E2)12 × (P2

−1)
12 −75.36±0.23 −81.53±0.42 53.02±0.39 28.51±0.45

D24 × E24 × P24 −75.11±0.05 −80.99±0.07 52.48±0.19 28.52±0.16
(E2)12 × (H2)12 × (S2)12 −77.47±nan −83.28±nan 54.91±nan 28.36±nan
(E2)12 × (H2

−1)
12 × (S21)12 −77.53±0.34 −83.95±0.40 55.54±0.43 28.42±0.08

E24 ×H24 × S24 −75.04±0.16 −81.17±0.18 52.61±0.32 28.55±0.38

(U2)36 −74.64±0.08 −80.52±0.10 52.04±0.10 28.48±0.07
U72 −75.46±0.09 −81.76±0.09 53.27±0.18 28.49±0.18

Table 6.6: Summary of selected models (mean and standard deviation), latent
space dimension 72, diagonal covariance, on the MNIST dataset.

When we scale our models up to the latent space dimension 72 (Table 6.8),
we can see that the projected sphere and Poincaré ball VAEs perform better
across the board than VAEs with hyperboloid or hyperspherical components.
A clear trend is also that single-component VAEs (even learnable) seem to
do worse than mixtures of different constant curvature components, like the
(D2)12 × (E2)12 × (P2)12 VAE. However, the basic Euclidean VAE beats all
the other approaches at this latent space dimension, even though our (U2)36

model comes remarkably close and is actually within the margin of error, along
with (E2)36.

CIFAR-10 reconstruction Due to time constraints, several of the CIFAR
models have not been run 3 times, therefore, the results are rather preliminary.
Do note that however, especially in higher dimensions, the variance across runs
of the same model is usually not very big. If a model is only run once, its
standard deviation is defined as “not a number”(nan) for convenience. The
complete results can be found in Section D.3.3 of Appendix D.

46

6.4. Diagonal covariance matrix parametrization

Model LL ELBO BCE KL

S61 −136.69±0.94 −141.46±0.92 129.52±0.74 11.94±0.19
D6
1 −137.42±1.20 −141.95±1.94 130.70±2.18 11.25±0.26

E6 −136.05±0.29 −140.50±0.35 128.95±0.41 11.55±0.14
H6
−1 −137.09±0.06 −142.22±0.19 130.37±0.21 11.85±0.12

P6
−1 −135.86±0.20 −140.36±0.19 128.92±0.23 11.44±0.16

(S2)3 -136.14±0.27 −140.68±0.32 128.98±0.27 11.70±0.13
S6 −136.20±0.44 −140.76±0.45 129.10±0.37 11.66±0.13
(D2)3 −136.13±0.17 −140.59±0.15 129.10±0.20 11.49±0.12
D6 −136.30±0.08 −140.74±0.14 129.35±0.16 11.39±0.05
(H2)3 −136.17±0.09 −140.65±0.17 129.26±0.07 11.39±0.16
H6 −136.24±0.32 −140.92±0.33 129.48±0.27 11.45±0.12
(P2)3 −136.09±0.07 −140.41±0.08 129.04±0.05 11.37±0.08
P6 −136.05±0.44 −140.42±0.47 129.04±0.53 11.38±0.07

D2 × E2 × P2 −135.89±0.40 −140.28±0.42 128.75±0.40 11.53±0.04
E2 ×H2 × S2 −135.93±0.48 −140.51±0.53 128.85±0.48 11.66±0.14

(U2)3 −136.21±0.07 −140.65±0.30 129.14±0.34 11.52±0.15
U6 −136.04±0.17 −140.43±0.14 129.07±0.27 11.36±0.13

Table 6.7: Summary of selected models (mean and standard deviation), latent
space dimension 6, diagonal covariance, on the Omniglot dataset.

For a latent space of dimension 6, we can observe that almost all non-Euclidean
models perform better than the euclidean baseline E6. Especially well-performing
is the fixed hyperboloid H6

−1, and the learnable hypersphere S6. For more de-
tailed results, see Table 6.9. Unfortunately, we were not able to run more
models for a better comparison.

On higher dimensions, the Euclidean baseline triumphs over the very limited
models we were able to run (Table 6.10), although our universal curvature
approach does not trail far behind. Conclusive statements for this latent
space dimension cannot be made, as the comparison is very limited.

Curvatures for all learnable models on this dataset converge to values in the
approximate range of (−0.15,+0.15).

6.4.2 Summary of experimental evaluation

Concluding from the results presented above, we can safely say there does not
seem to be a single approach that can “do it all”, in the spirit of the “No Free
Lunch” theorem (Wolpert et al., 1997).

A very good model seems to be the Riemannian Normal Poincaré ball VAE

47

6.4. Diagonal covariance matrix parametrization

Model LL ELBO BCE KL

(S21)36 −112.33±0.14 −118.94±0.14 91.04±0.37 27.90±0.23
(D2

1)
36 −108.66±0.24 −116.06±0.18 85.95±0.16 30.11±0.04

E72 −105.89±0.16 −112.40±0.17 79.52±0.19 32.89±0.20
H72
−1 −111.19±0.42 −120.49±0.35 91.11±0.73 29.38±0.40

(P2
−1)

36 −109.05±0.09 −115.99±0.10 85.81±0.42 30.18±0.34
P72
−1 −111.24±0.28 −118.36±0.24 89.53±0.38 28.84±0.18

S72 −109.39±0.32 −116.42±0.32 87.22±0.58 29.20±0.28
D72 −108.81±0.08 −115.71±0.09 85.68±0.10 30.03±0.09
H72 −108.62±0.40 −115.54±0.30 85.18±0.62 30.37±0.34
(P2)36 −108.78±0.66 −115.54±0.70 85.16±1.38 30.38±0.69
P72 −109.66±0.61 −116.50±0.68 87.09±1.43 29.42±0.75

(D2)12 × (E2)12 × (P2)12 −107.02±1.56 −115.62±1.76 88.52±8.24 27.10±6.48
(D2

1)
12 × (E2)12 × (P2

−1)
12 −108.06±0.47 −114.92±0.39 83.95±0.58 30.97±0.22

(U2)36 −105.98±0.05 −112.70±0.19 79.85±0.80 32.85±0.61
U72 −106.58±0.12 −113.68±0.11 81.53±0.34 32.15±0.36

Table 6.8: Summary of selected models (mean and standard deviation), latent
space dimension 72, diagonal covariance, on the Omniglot dataset.

Model LL ELBO BCE KL

E6 −1896.19±2.54 −1905.75±3.19 1889.97±2.88 15.78±0.32
H6
−1 −1888.23±2.12 −1896.56±2.93 1882.05±2.65 14.51±0.34

P6
−1 −1893.27±0.61 −1902.67±0.74 1887.44±0.83 15.23±0.16

D6 −1893.85±0.36 −1902.67±0.69 1887.37±0.74 15.30±0.08
S6 −1889.76±1.62 −1897.31±1.71 1882.55±1.48 14.76±0.24
P6 −1891.40±2.14 −1899.68±2.74 1884.58±2.56 15.10±0.18
D2 × E2 × P2 −1899.90±4.60 −1904.63±1.46 1889.13±1.38 15.50±0.08
E2 ×H2 × S2 −1895.46±0.92 −1897.57±0.94 1882.84±0.70 14.73±0.24
(U2)3 −1895.09±4.27 −1904.46±5.21 1888.89±4.71 15.57±0.51

Table 6.9: Summary of selected models (mean and standard deviation), latent
space dimension 6, diagonal covariance, on the CIFAR dataset.

48

6.5. Future work

Model LL ELBO BCE KL

E512 −1814.12±0.16 −1819.06±0.20 1774.48±0.43 44.57±0.40
E172 ×H170 × S170 −1815.42±nan −1820.13±nan 1776.19±nan 43.94±nan
U512 −1814.37±nan −1819.42±nan 1775.29±nan 44.13±nan

Table 6.10: Summary of results (mean and standard deviation), latent space
dimension 512, diagonal covariance, on the CIFAR dataset.

RN Pn. However, it has practical limitations due to rejection sampling and
an unstable implementation.

On the contrary, von Mises-Fischer spherical VAEs have almost consistently
performed worse than their Wrapped Normal equivalents. Overall, Wrapped
Normal VAEs in all constant curvature manifolds seem to do a good job at
modeling the latent space.

A key takeaway is that our universal curvature models Un and (U2)bn/2c seem
to generally outperform their corresponding Euclidean VAE baselines in lower-
dimensional latent spaces and, with minor losses, manage to keep most of the
competitive performance as the dimensionality goes up, contrary to VAEs
with other non-Euclidean components.

6.5 Future work

Even though we have shown that one can approximate the true posterior
very well with Normal-like distributions in Riemannian manifolds of constant
curvature, there remain several promising directions of explorations.

First of all, an interesting extension of this work would be to try mixed-
curvature VAEs on graph data, e.g. link prediction on social networks, as some
of our models might be well suited for sparse and structured data. Another
very beneficial extension would be to investigate why the obtained results have
such a big variance across runs and try to reduce it. However, this is a problem
that affects the Euclidean VAE as well, even if not as flagrantly.

Secondly, we have empirically noticed that it seems to be significantly harder
to optimize our models in spherical spaces — they seem more prone to diver-
gence. In discussions, other researchers have also observed similar behavior,
but a more thorough investigation is not available at the moment. We have
side-stepped some optimization problems by introducing products of spaces —
previously, it has been reported that both spherical and hyperbolic VAEs gen-
erally do not scale well to dimensions greater than 20 or 40. For those cases, we
could successfully optimize a subdivided space (S2)36 instead of one big mani-
fold S72. However, that also does not seem to be a conclusive rule. Especially

49

6.5. Future work

in higher dimensions, we have noticed that our VAEs (S2)36 with learnable
curvature and D72

1 with fixed curvature seem to consistently diverge. In a few
cases S72 with fixed curvature and even the product (E2)12 × (H2)12 × (S2)12
with learnable curvature seemed to diverge quite often as well.

The most promising future direction seems to be the use of “Normalizing
Flows” for variational inference as presented by Rezende and Mohamed (2015)
and Gemici et al. (2016). More recently, it was also combined with “autore-
gressive flows” in Huang et al. (2018). Using normalizing flows, one should be
able to achieve the desired level of complexity of the latent distribution in a
VAE, which should, similarly to our work, help to approximate the true pos-
terior of the data better. The advantage of normalizing flows is the flexibility
of the modeled distributions, at the expense of being more computationally
expensive.

Finally, another interesting extension would be to extend the defined geo-
metrical models to allow for training generative adversarial networks (GANs)
(Goodfellow et al., 2014) in products of constant curvature spaces and benefit
from the better sharpness and quality of samples that GANs provide. Finally,
one could synthesize the above to achieve adversarially trained autoencoders
in Riemannian manifolds similarly to Kim et al. (2017); Makhzani et al. (2015);
Pan et al. (2018) and aim to achieve good sample quality and a well-formed
latent space at the same time.

50

Chapter 7

Conclusion

Generative modeling has gained huge popularity recently with practical appli-
cations in many industries. Variational autoencoders (VAEs) are a relatively
recent addition to the family of generative models and enables both generative
modeling and dimensionality reduction, with a special emphasis on learning
representations that occupy the latent space in a meaningful way. This is
achieved by having a prior assumption on the distribution of representation
in the latent space.

By transforming the latent space and associated prior distributions onto Rie-
mannian manifolds of constant curvature, it has previously been shown that
we can learn representations on curved space, which might be beneficial in the
case when our data has a strong underlying structure — for example tree-like,
or circular (directional).

Generalizing on the above ideas, we have extended the theory of learning
VAEs in Riemannian manifolds to products of constant curvature spaces. To
be able to do that, we derived the necessary operations in several models of
constant curvature spaces, extended existing probability distribution families
to these manifolds, and generalized VAEs to latent spaces that are products
of smaller “component” spaces. In our approach, each component of such
a product space can even have a different and learnable curvature (constant
across all points of the given component’s manifold).

On various datasets, we show that our approach is competitive with state of
the art VAEs. Additionally, it has the appealing property that it generalizes
the variational autoencoder — if the curvatures of all components go to 0, we
recover the classical Euclidean VAE of Kingma and Welling (2014).

51

Bibliography

Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley In-
terdisciplinary Reviews: Computational Statistics, 2(4):433–459, 2010. doi:
10.1002/wics.101.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space odd-
ity: on the curvature of deep generative models. In International Conference
on Learning Representations, 2018.

Kayhan Batmanghelich, Ardavan Saeedi, Karthik Narasimhan, and Sam Ger-
shman. Nonparametric Spherical Topic Modeling with Word Embeddings.
In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages 537–542. Association
for Computational Linguistics, 2016. doi: 10.18653/v1/P16-2087.

Gary Bécigneul and Octavian-Eugen Ganea. Riemannian Adaptive Optimiza-
tion Methods. In International Conference on Learning Representations,
2019.

Marcel Berger. A panoramic view of Riemannian geometry. Springer Science
& Business Media, 2012.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational Inference:
A Review for Statisticians. Journal of the American Statistical Association,
112(518):859–877, 2017.

Janos Bolyai. Appendix, Scientiam Spatii absolute veram exhibens: a veri-
tate aut falsitate Axiomatis XI. Euclidei (a priori haud unquam decidenda)
independentem; adjecta ad casum falsitatis, quadratura circuli geometrica.
Auctore Johanne Bolyai de eadem, Geometrarum in Exercitu Caesareo Re-
gio Austriaco Castrensium Capitaneo. Coll. Ref., 1832.

Silvere Bonnabel. Stochastic Gradient Descent on Riemannian Manifolds.
IEEE Transactions on Automatic Control, 58:2217–2229, 2013.

52

Bibliography

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz,
and Samy Bengio. Generating Sentences from a Continuous Space. In
Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning, pages 10–21. Association for Computational Linguistics,
2016. doi: 10.18653/v1/K16-1002.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst.
Geometric Deep Learning: Going beyond Euclidean data. IEEE Sig-
nal Processing Magazine, 34(4):18–42, July 2017. ISSN 1053-5888. doi:
10.1109/MSP.2017.2693418.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted
Autoencoders. In Proceedings of the 4th International Conference on Learn-
ing Representations, ICLR 2016, 2016.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al.
Hyperbolic geometry. Flavors of geometry, 31:59–115, 1997.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal,
John Schulman, Ilya Sutskever, and Pieter Abbeel. Variational Lossy Au-
toencoder. In Proceedings of the 2nd International Conference on Learning
Representations, ICLR 2014, 2014.

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M.
Tomczak. Hyperspherical Variational Auto-Encoders. In UAI, 2018.

Jay L Devore and Kenneth N Berk. Modern mathematical statistics with
applications. Springer, 2012.

Bhuwan Dhingra, Christopher J Shallue, Mohammad Norouzi, Andrew M Dai,
and George E Dahl. Embedding Text in Hyperbolic Spaces. arXiv preprint
arXiv:1806.04313, 2018.

Chuong B Do. The Multivariate Gaussian Distribution, 2008. URL http:

//cs229.stanford.edu/section/gaussians.pdf.

Carl Doersch. Tutorial on Variational Autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

Robert L. Foote. A Unified Pythagorean Theorem in Euclidean, Spherical, and
Hyperbolic Geometries. Mathematics Magazine, 90(1):59–69, 2017. ISSN
0025570X, 19300980.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic Neural
Networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 31, pages 5345–5355. Curran Associates, Inc., 2018a.

53

http://cs229.stanford.edu/section/gaussians.pdf
http://cs229.stanford.edu/section/gaussians.pdf

Bibliography

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic
Entailment Cones for Learning Hierarchical Embeddings. arXiv preprint
arXiv:1804.01882, 2018b.

Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus coni-
cis solem ambientium, volume 7. Perthes et Besser, 1809.

Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing Flows
on Riemannian Manifolds. arXiv preprint arXiv:1611.02304, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
Adversarial Nets. In Advances in Neural Information Processing Systems,
pages 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning Mixed-
Curvature Representations in Product Spaces. In International Conference
on Learning Representations, 2019.

Søren Hauberg. Directional Statistics with the Spherical Normal Distribution.
In 2018 21st International Conference on Information Fusion (FUSION),
pages 704–711. IEEE, 2018.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville.
Neural autoregressive flows. arXiv preprint arXiv:1804.00779, 2018.

Edwin T Jaynes. Information theory and statistical mechanics. Physical re-
view, 106(4):620, 1957.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.
Saul. An Introduction to Variational Methods for Graphical Models. Ma-
chine learning, 37(2):183–233, 1999.

Yoon Kim, Kelly Zhang, Alexander M Rush, Yann LeCun, et al. Adversarially
regularized autoencoders. arXiv preprint arXiv:1706.04223, 2017.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A Method for Stochastic Op-
timization. International Conference on Learning Representations (ICLR),
2015.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In
Proceedings of the 2nd International Conference on Learning Representa-
tions, ICLR 2014, 2014.

54

Bibliography

R. Kleinberg. Geographic Routing Using Hyperbolic Space. In IEEE INFO-
COM 2007 - 26th IEEE International Conference on Computer Communi-
cations, pages 1902–1909, May 2007. doi: 10.1109/INFCOM.2007.221.

Max Kochurov, Sergey Kozlukov, Rasul Karimov, and Viktor Yanush. Geoopt:
Adaptive Riemannian optimization in PyTorch. https://github.com/

geoopt/geoopt, 2019.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
Technical report, University of Toronto, 2009.

Solomon Kullback and Richard A. Leibler. On Information and Sufficiency.
Ann. Math. Statist., 22(1):79–86, 03 1951. doi: 10.1214/aoms/1177729694.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-
level concept learning through probabilistic program induction. Science, 350
(6266):1332–1338, 2015. ISSN 0036-8075. doi: 10.1126/science.aab3050.

Johann H Lambert. Observations trigonométriques. Mem. Acad. Sci. Berlin,
24:327–354, 1770.

Marc T Law, Jake Snell, and Richard S Zemel. Lorentzian distance learning,
2019.

Yann LeCun. The MNIST database of handwritten digits, 1998. URL http:

//yann.lecun.com/exdb/mnist/.

J.M. Lee. Riemannian Manifolds: An Introduction to Curvature. Graduate
Texts in Mathematics. Springer New York, 1997. ISBN 9780387983226.

Hongbo Li, David Hestenes, and Alyn Rockwood. A Universal Model for Con-
formal Geometries of Euclidean, Spherical and Double-Hyperbolic Spaces,
pages 77–104. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN
978-3-662-04621-0. doi: 10.1007/978-3-662-04621-0 4.

Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in
the unsupervised learning of disentangled representations. arXiv preprint
arXiv:1811.12359, 2018.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644,
2015.

Kanti V Mardia. Characterizations of directional distributions. In A Mod-
ern Course on Statistical Distributions in Scientific Work, pages 365–385.
Springer, 1975.

55

https://github.com/geoopt/geoopt
https://github.com/geoopt/geoopt
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Bibliography

Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and
Yee Whye Teh. Hierarchical Representations with Poincaré Variational
Auto-Encoders. arXiv preprint arXiv:1901.06033, 2019.

Löıc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning
Basic Visual Concepts with a Constrained Variational Framework. In Pro-
ceedings of the 5th International Conference on Learning Representations,
ICLR 2017, 2017.

Mervin E. Muller. A Note on a Method for Generating Points Uniformly
on N-dimensional Spheres. Commun. ACM, 2(4):19–20, April 1959. ISSN
0001-0782. doi: 10.1145/377939.377946.

Christian A. Naesseth, Francisco J. R. Ruiz, Scott W. Linderman, and
David M. Blei. Reparameterization Gradients through Acceptance-
Rejection Sampling Algorithms. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22
April 2017, Fort Lauderdale, FL, USA, pages 489–498, 2017.

Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, and Masanori
Koyama. A differentiable gaussian-like distribution on hyperbolic space
for gradient-based learning. arXiv preprint arXiv:1902.02992, 2019.

Maximilian Nickel and Douwe Kiela. Learning Continuous Hierarchies in the
Lorentz Model of Hyperbolic Geometry. In Proceedings of the 35th Inter-
national Conference on International Conference on Machine Learning -
Volume 50, ICML’18, 2018.

Maximillian Nickel and Douwe Kiela. Poincaré Embeddings for Learning Hi-
erarchical Representations. In Advances in Neural Information Processing
Systems 30, pages 6338–6347. Curran Associates, Inc., 2017.

Simon Pampena. The Poincaré disk is a model to “see” 2D hyperbolic space
by approximating what a hyperbola looks like from below, 2016. URL
https://twitter.com/mathemaniac/status/753728363563331584.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi
Zhang. Adversarially regularized graph autoencoder for graph embedding.
arXiv preprint arXiv:1802.04407, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic differentiation in PyTorch. In NIPS-W, 2017.

Xavier Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for
Geometric Measurements. Journal of Mathematical Imaging and Vision, 25
(1):127, Jul 2006. ISSN 1573-7683. doi: 10.1007/s10851-006-6228-4.

56

https://twitter.com/mathemaniac/status/753728363563331584

Bibliography

Peter Petersen, S Axler, and KA Ribet. Riemannian Geometry, volume 171.
Springer, 2006.

John Ratcliffe. Foundations of Hyperbolic Manifolds, volume 149. Springer
Science & Business Media, 2006.

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with
Normalizing Flows. arXiv preprint arXiv:1505.05770, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models.
arXiv preprint arXiv:1401.4082, 2014.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. Representation
tradeoffs for hyperbolic embeddings. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 4460–4469, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

Ruslan Salakhutdinov and Iain Murray. On the Quantitative Analysis of Deep
Belief Networks. In Proceedings of the 25th International Conference on
Machine Learning, ICML’08, pages 872–879, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390266.

Rik Sarkar. Low Distortion Delaunay Embedding of Trees in Hyperbolic
Plane. In Marc van Kreveld and Bettina Speckmann, editors, Graph Draw-
ing, pages 355–366, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-25878-7.

Irhum Shafkat. Intuitively Understanding Variational Au-
toencoders, 2018. URL https://towardsdatascience.com/

intuitively-understanding-variational-autoencoders-1bfe67eb5daf.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation
of small graphs using variational autoencoders. In International Conference
on Artificial Neural Networks, pages 412–422. Springer, 2018.

John Parr Snyder. Map projections–A working manual, volume 1395. US
Government Printing Office, 1987.

Akihiro Tanabe, Kenji Fukumizu, Shigeyuki Oba, Takashi Takenouchi, and
Shin Ishii. Parameter estimation for von Mises–Fisher distributions. Com-
putational Statistics, 22(1):145–157, Apr 2007. ISSN 1613-9658. doi:
10.1007/s00180-007-0030-7.

Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré
Glove: Hyperbolic Word Embeddings. In International Conference on
Learning Representations, 2019.

57

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Bibliography

Gary Ulrich. Computer Generation of Distributions on the m-Sphere. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 33(2):158–163,
1984. ISSN 00359254, 14679876.

Abraham Albert Ungar. A Gyrovector Space Approach to Hyperbolic Geom-
etry. Synthesis Lectures on Mathematics and Statistics, 1(1):1–194, 2008.

Wikimedia. Hyperbolic functions, 2009. URL https://commons.wikimedia.

org/wiki/File:Hyperbolic_functions-2.svg.

Wikimedia. Stereographic projection SW, 2012. URL https://en.

wikipedia.org/wiki/File:Stereographic_projection_SW.JPG.

Wikimedia. Stereographic projection in 3D, 2017. URL https://commons.

wikimedia.org/wiki/File:Stereographic_projection_in_3D.svg.

Benjamin Wilson and Matthias Leimeister. Gradient descent in hyperbolic
space. arXiv preprint arXiv:1805.08207, 2018.

Richard C. Wilson and Edwin R. Hancock. Spherical embedding and classi-
fication. In Edwin R. Hancock, Richard C. Wilson, Terry Windeatt, Ilkay
Ulusoy, and Francisco Escolano, editors, Structural, Syntactic, and Statisti-
cal Pattern Recognition, pages 589–599, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. ISBN 978-3-642-14980-1.

David H Wolpert, William G Macready, et al. No Free Lunch Theorems for
Optimization. IEEE transactions on evolutionary computation, 1(1):67–82,
1997.

Jiacheng Xu and Greg Durrett. Spherical Latent Spaces for Stable Varia-
tional Autoencoders. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 4503–4513. Association for
Computational Linguistics, 2018.

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Gen-
erative Visual Manipulation on the Natural Image Manifold. In Proceedings
of European Conference on Computer Vision (ECCV), 2016.

58

https://commons.wikimedia.org/wiki/File:Hyperbolic_functions-2.svg
https://commons.wikimedia.org/wiki/File:Hyperbolic_functions-2.svg
https://en.wikipedia.org/wiki/File:Stereographic_projection_SW.JPG
https://en.wikipedia.org/wiki/File:Stereographic_projection_SW.JPG
https://commons.wikimedia.org/wiki/File:Stereographic_projection_in_3D.svg
https://commons.wikimedia.org/wiki/File:Stereographic_projection_in_3D.svg

Notation

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

e(i) Standard basis vector with all 0 and a 1 at position i

diag(a) A square, diagonal matrix with entries given by a

trace(A) Trace of matrix A

ai Element i of vector a, with indexing starting at 1

Ai,j Element i, j of matrix A

Sets

A A set

R,C The set of real (complex) numbers

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of
A that are not in B

59

Bibliography

Calculus

dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) The Hessian matrix of f at input point x∫
f(x)dx Definite integral over the entire domain of x∫

S
f(x)dx Definite integral with respect to x over the set S

x→ c+, x→ c− x approaches c from above (below)

Probability and Information Theory

p(a) A probability distribution over a continuous variable,
or over a variable whose type has not been specified

a ∼ p Random variable a has distribution p

Ex∼p [f(x)] Expectation of f(x) with respect to p(x)

Var(f(x)) Variance of f(x) under p(x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under p(x)

H (x) Shannon entropy of the random variable x

DKL (p || q) Kullback-Leibler divergence of p and q (non-
symmetric)

N (x;µ,Σ) Normal (Gaussian) distribution over x with mean µ
and covariance Σ

60

Bibliography

Functions

f : A→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. Sometimes we write
f(x) and omit the argument θ to lighten notation.

log x Natural logarithm of x

〈x,y〉2 Standard scalar product in Rn,

n∑
i=1

xi, yi

||x||p Lp norm of x

Γ(z) Gamma function,

∫ ∞
0

xz−1 exp(−x)dx

x� y Concatenation of the vectors x and y

Abbreviations

BDP Binary Diffusion Process (Mathieu et al., 2019)

CDF Cummulative distribution function

CV Computer Vision

ELBO Evidence Lower Bound

IWAE Importance Weighted Autoencoder (Burda et al., 2016)

KL Kullback-Leiber (divergence)

ML Machine Learning

MLE Maximum Likelihood Estimation

NLU Natural Language Understanding

PCA Principal Component Analysis

PD Positive definite

PDF Probability density function

PSD Positive semi-definite

VAE Variational Autoencoder (Kingma and Welling, 2014)

vMF von Mises-Fisher distribution

61

List of Theorems

2.1 Remark (Euclidean constant curvature spaces are sub-divisible.) 17

3.1 Remark (Diagonal covariance in multivariate Normal distribu-
tions) . 19

3.2 Remark (Maximum Likelihood characterization) 19
3.3 Remark (Maximum Entropy principle) 19

A.1 Theorem (logx is the inverse of expx in En) 69
A.2 Theorem (Length preservation property of expx in En) 69
A.3 Remark (About the divergence of points in Hn

K) 70
A.4 Theorem (Exponential map in Hn

K) 71
A.5 Theorem (Logarithmic map in Hn

K) 72
A.6 Theorem (logKx is the inverse of expKx in Hn

K) 73
A.7 Theorem (Length preservation property of expKx in Hn

K) 73
A.8 Theorem (PTK

x→y transports points to the tangent space of y
in Hn

K) . 74
A.9 Theorem (Parallel transport preserves angles in Hn

K) 75
A.10 Corollary (Parallel transport in Hn

K is norm-preserving) 75
A.11 Theorem (Stereographic backprojected points of PnK belong to

Hn
K) . 76

A.12 Theorem (Distance equivalence in PnK) 78
A.13 Theorem (Gyrospace distance converges to Euclidean in PnK) . 78
A.14 Theorem (Distance converges to Euclidean as K → 0− in PnK) . 79
A.15 Theorem (Length preservation property of expKx in PnK) 79
A.16 Theorem (Parallel transport and its inverse in PnK) 80
A.17 Theorem (Parallel transport preserves angles in PnK) 81
A.18 Corollary (Parallel transport in PnK is norm-preserving) 81
A.19 Remark (About the divergence of points in SnK) 83
A.20 Theorem (Exponential map in SnK) 83
A.21 Theorem (Logarithmic map in SnK) 84

62

List of Theorems

A.22 Theorem (logKx is the inverse of expKx in SnK) 85
A.23 Theorem (Length preservation property of expKx in SnK) 85
A.24 Theorem (Parallel transport preserves angles in SnK) 86
A.25 Corollary (Parallel transport on SnK is norm-preserving) 87
A.26 Theorem (PTK

x→y transports points to the tangent space of y
in SnK) . 87

A.27 Remark (Homeomorphism between SnK and Rn) 88
A.28 Theorem (Stereographic backprojected points of DnK belong to

SnK) . 88
A.29 Theorem (Distance equivalence in DnK) 89
A.30 Theorem (Gyrospace distance converges to Euclidean in DnK) . 90
A.31 Theorem (Distance converges to Euclidean as K → 0+ in DnK) . 90
A.32 Theorem (logKx is the inverse of expKx in DnK) 91
A.33 Theorem (Length preservation property of expKx in DnK) 92
A.34 Theorem (Parallel transport and its inverse in DnK) 93
A.35 Theorem (Parallel transport preserves angles in DnK) 94
A.36 Corollary (Parallel transport on DnK is norm-preserving) 94
A.37 Theorem (Möbius addition converges to Eucl. vector addition) 94
A.38 Theorem (ρ−1K is the inverse stereographic projection) 95
A.39 Lemma (λKx converges to 2 as K → 0) 96
A.40 Theorem (expKx (v) converges to x+ v as K → 0) 96
A.41 Theorem (logKx (y) converges to y − x as K → 0) 97
A.42 Lemma (gyr[x,y]v converges to v as K → 0) 98
A.43 Theorem (PTK

x→y(v) converges to v as K → 0) 98

B.1 Remark (vMF distribution on SnK) 101
B.2 Theorem (Probability density function of WN (z;µ,Σ) in Hn) 101
B.3 Theorem (Probability density function of WN (z;µ,Σ) in Hn

K) 104
B.4 Theorem (Probability density function of WN (z;µ,Σ) in SnK) 107
B.5 Theorem (Probability density function of WN (z;µ,Σ) in PnK) 110
B.6 Theorem (Probability density function of WN (z;µ,Σ) in DnK) 111

D.1 Remark (Computability of functions with floating-point numbers)114
D.2 Remark (Practical limitations of constant curvature manifolds) 114

63

List of Figures

1.1 Binary tree embedded in a Poincaré ball (Mathieu et al., 2019). . . 2

2.1 Illustrative visualizations of the stereographic projection ρK 10
2.2 Visualization of the topological difference between a two-dimensional

sphere, a torus, and a hyperboloid. Colors correspond to curvature
(red is -1, white is 0, blue is +1). 17

3.1 Three-step transformation of a sampled point v in Tµ0H1 for the
hyperbolic Wrapped Normal distribution (Nagano et al., 2019). . . 24

4.1 Illustration of a VAE model. Green boxes represent sample and la-
tent space representations, red boxes represent parameterized func-
tions (neural networks), the purple box represents a reparameter-
ized source of randomness, yellow denotes a probability distribu-
tion, and blue boxes are loss terms. 30

5.1 Visualization of a one-dimensional hypersphere and hyperboloid
around K = 0. 35

A.1 “The Poincaré disk is a model to ‘see’ a 2D hyperbolic space by
approximating what a hyperbola looks like from below,” Pampena
(2016). 77

A.2 Visualization of cosh of an angle in H1
1 (Wikimedia, 2009). 99

B.1 Surface area plots for spheres of variable radius in n-dimensional
spaces. 101

C.1 VAE latent space representation plots of a VAE applied to MNIST
digits, using different parts of the ELBO loss for optimization
(Shafkat, 2018). 112

64

List of Figures

D.1 Learned curvature across epochs (with standard deviation) with
latent space dimension of 6, spherical covariance parametrization,
on the BDP dataset. 118

D.2 Learned curvature across epochs (with standard deviation) with
latent space dimension of 6, spherical covariance parametrization,
on the MNIST dataset. 118

D.3 Boxplot of evaluation marginal log-likelihoods at the end of train-
ing for BDP and MNIST, with spherical covariance per component. 119

D.4 Boxplot of evaluation marginal log-likelihoods at the end of train-
ing for MNIST, with diagonal covariance per component. 123

D.5 Learned curvature across epochs (with standard deviation) with
latent space dimension of 6, diagonal covariance parametrization,
on the MNIST dataset. 124

D.6 Learned curvature across epochs (with standard deviation) with
latent space dimension of 12, diagonal covariance parametrization,
on the MNIST dataset. 124

D.7 Qualitative comparison of reconstruction quality of randomly se-
lected runs of a selection of well-performing models on MNIST
test set digits. 125

D.8 Samples from various models of a grid search around 0 of a single
component’s latent space on MNIST test digits. 126

D.9 Illustrative latent space visualization of a randomly selected run of
the models E2 ×H2 × S2, E6, H6, and S6 on MNIST. 127

D.10 Boxplot of evaluation marginal log-likelihoods at the end of train-
ing for Omniglot, with spherical covariance per component. 128

D.11 Learned curvature across epochs (with standard deviation) with
latent space dimension of 72, diagonal covariance parametrization,
on the Omniglot dataset. 130

D.12 Qualitative comparison of reconstruction quality of randomly se-
lected runs of a selection of well-performing models on Omniglot
test set characters. 132

D.13 Boxplot of evaluation marginal log-likelihoods at the end of train-
ing for Omniglot, with spherical covariance per component. 133

D.14 Learned curvature across epochs (with standard deviation) with
latent space dimension of 6, diagonal covariance parametrization,
on the CIFAR dataset. 134

D.15 Qualitative comparison of reconstruction quality of randomly se-
lected runs of a selection of well-performing models on CIFAR test
set images. 135

D.16 Samples from various models of a grid search around 0 of a single
component’s latent space on cifar test digits. 136

65

List of Tables

2.1 Summary of operations in SK and HK 14
2.2 Summary of operations in DK and PK 14

6.1 Brief overview of components and their properties. 40
6.2 Summary of results (mean and standard deviation), latent space

dimension 6, spherical covariance, on the BDP dataset. 41
6.3 Summary of selected models (mean and standard deviation), latent

space dimension 6, spherical covariance, on the MNIST dataset. . . 42
6.4 Summary of selected models (mean and standard deviation), latent

space dimension 6, diagonal covariance, on the MNIST dataset. . . 44
6.5 Summary of selected models (mean and standard deviation), latent

space dimension 12, diagonal covariance, on the MNIST dataset. . 45
6.6 Summary of selected models (mean and standard deviation), latent

space dimension 72, diagonal covariance, on the MNIST dataset. . 46
6.7 Summary of selected models (mean and standard deviation), latent

space dimension 6, diagonal covariance, on the Omniglot dataset. . 47
6.8 Summary of selected models (mean and standard deviation), latent

space dimension 72, diagonal covariance, on the Omniglot dataset. 48
6.9 Summary of selected models (mean and standard deviation), latent

space dimension 6, diagonal covariance, on the CIFAR dataset. . . 48
6.10 Summary of results (mean and standard deviation), latent space

dimension 512, diagonal covariance, on the CIFAR dataset. 49

A.1 Euclidean operations. 68
A.2 Hyperbolic operations. 70
A.3 Poincaré ball operations. 76
A.4 Spherical operations. 82
A.5 Spherical projected operations. 88

66

List of Tables

D.1 Summary of results (mean and standard-deviation) with latent
space dimension of 6, spherical covariance parametrization, on the
BDP dataset. 116

D.2 Summary of results (mean and standard-deviation) with latent
space dimension of 6, spherical covariance parametrization, on the
MNIST dataset. 117

D.3 Summary of results (mean and standard-deviation) with latent
space dimension of 6, diagonal covariance parametrization, on the
MNIST dataset. 120

D.4 Summary of results (mean and standard-deviation) with latent
space dimension of 12, diagonal covariance parametrization, on the
MNIST dataset. 121

D.5 Summary of results (mean and standard-deviation) with latent
space dimension of 72, diagonal covariance parametrization, on the
MNIST dataset. 122

D.6 Summary of results (mean and standard-deviation) with latent
space dimension of 6, diagonal covariance parametrization, on the
Omniglot dataset. 129

D.7 Summary of results (mean and standard-deviation) with latent
space dimension of 72, diagonal covariance parametrization, on the
Omniglot dataset. 131

D.8 Summary of results (mean and standard-deviation) with latent
space dimension of 6, diagonal covariance parametrization, on the
CIFAR dataset. 134

D.9 Summary of results (mean and standard-deviation) with latent
space dimension of 512, diagonal covariance parametrization, on
the CIFAR dataset. 135

67

Appendix A

Geometrical details

This chapter provides detailed statements and proofs for various properties of
constant curvature spaces, operations thereon, and properties thereof.

A.1 Euclidean geometry

A.1.1 Euclidean space

An overview of all the necessary operations can be found in Table A.1.

Distance function

The distance function in En is

dE(x,y) = ‖x− y‖2 .

Due to the Pythagorean theorem, we can derive that

‖x− y‖22 = 〈x− y,x− y〉2 = ‖x‖22 − 2 〈x,y〉2 + ‖y‖22
= ‖x‖22 + ‖y‖22 − 2 ‖x‖2 ‖y‖2 cos−1 θx,y

Exponential map

The exponential map in En is

expx(v) = x+ v.

Distance dE(x,y) = ‖x− y‖2
Exp. map expx(v) = x+ v
Log. map logx(y) = y − x

Table A.1: Euclidean operations.

68

A.2. Hyperbolic geometry

The fact that the resulting points belong to the space is trivial. Deriving the
inverse function, i.e. the logarithmic map, is also trivial:

logx(y) = y − x.

Theorem A.1 (logx is the inverse of expx in En)

logx(expx(v)) = v.

Proof

logx(expx(v)) = logx(x+ v) = (x+ v)− x = v. �

Theorem A.2 (Length preservation property of expx in En) For all
points on the manifold x ∈ En and for all tangent vectors at that point v ∈
TxEn it holds that

dE(x, expx(v)) = ||v||2.

Proof

dE(x, expx(v)) = ‖x− expx(v)‖2 = ‖x− (x+ v)‖2 = ‖−v‖2 = ‖v‖2 . �

Parallel transport

We do not need parallel transport in the Euclidean space, as we can directly
sample from a Normal distribution. In other words, we can just define parallel
transport to be an identity function.

A.2 Hyperbolic geometry

A.2.1 Hyperboloid

An overview of all the necessary operations can be found in Table A.2.

Do note, that all the theorems for the hypersphere are essentially trivial corol-
laries of their equivalents in the hypersphere (and vice-versa) (Section A.3.1).
Notable differences include the fact that R2 = − 1

K , not R2 = 1
K , and all the

operations use the hyperbolic trigonometric functions sinh, cosh, and tanh, in-
stead of their Euclidean counterparts. Also, we often leverage the “hyperbolic”
Pythagorean theorem, in the form cosh2(α)− sinh2(α) = 1.

69

A.2. Hyperbolic geometry

Distance dH(x,y) =
1√
−K

cosh−1(−K 〈x,y〉L)

Exp. map expKx (v) = cosh (β)x+ sinh (β)
v

β
, where β =

√
−K ‖v‖L

Log. map logKx (y) =
cosh−1(α)√
α2 − 1

(y − αx), where α = K 〈x,y〉L

Par. transp. PTK
x→y(v) = v −

K 〈y,v〉L
1 +K 〈x,y〉L

(x+ y)

Table A.2: Hyperbolic operations.

Projections

Due to the definition of the space as a retraction from the ambient space, we
can project a generic vector in the ambient space to the hyperboloid using the
shortest Euclidean distance by normalization:

projHnK (x) = R
x

||x||L
=

x√
K ||x||L

.

Secondly, the n+1 coordinates of a point on the hyperboloid are co-dependent;
they satisfy the relation 〈x,x〉L = 1/K. This implies, that if we are given
a vector with n coordinates x̃ = (x2, . . . , xn+1), we can compute the missing
coordinate to place it onto the hyperboloid:

x1 =

√
‖x̃‖22 −

1

K
.

This is useful for example in the case of orthogonally projecting points from
Tµ0Hn

K onto the manifold.

Distance function

The distance function in Hn
K is

dKH (x,y) = R · θx,y = R cosh−1
(
−
〈x,y〉L
R2

)
=

1√
−K

cosh−1 (−K 〈x,y〉L) .

Remark (About the divergence of points in HnK) Since the points on the
hyperboloid x ∈ Hn

K are norm-constrained to

〈x,x〉L =
1

K
,

all the points on the hyperboloid go to infinity as K goes to 0− from below:

lim
K→0−

〈x,x〉L = −∞.

70

A.2. Hyperbolic geometry

This confirms the intuition that the hyperboloid grows “flatter”, but to do that,
it has to go away from the origin of the coordinate space 0. A good example of
a point that diverges is the origin of the hyperboloid µK0 = (1/K, 0, . . . , 0)T =
(R, 0, . . . , 0)T . That makes this model unsuitable for trying to learn sign-
agnostic curvatures, similarly to the hypersphere.

Exponential map

The exponential map in Hn
K is

expKx (v) = cosh

(
||v||L
R

)
x+ sinh

(
||v||L
R

)
Rv

||v||L
,

and in the case of x := µ0 = (R, 0, . . . , 0)T :

expKµ0
(v) =

(
cosh

(
||ṽ||2
R

)
R; sinh

(
||ṽ||2
R

)
R

||ṽ||2
ṽT
)T

,

where v = (0; ṽT)T and ||v||L = ||v||2 = ||ṽ||2.

Theorem A.4 (Exponential map in HnK) For all x ∈ Hn
K and v ∈ TxHn

K ,
the exponential map in Hn

K maps tangent space vectors v to the manifold:∥∥expKx (v)
∥∥2
L = 1/K = −R2.

Proof∥∥expKx (v)
∥∥2
L =

=

∥∥∥∥cosh

(
||v||L
R

)
x+ sinh

(
||v||L
R

)
Rv

||v||L

∥∥∥∥2
L

=

∥∥∥∥cosh

(
||v||L
R

)
x

∥∥∥∥2
L

+

∥∥∥∥sinh

(
||v||L
R

)
Rv

||v||L

∥∥∥∥2
L

+ 2

〈
cosh

(
||v||L
R

)
x, sinh

(
||v||L
R

)
Rv

||v||L

〉
L

= cosh2

(
||v||L
R

)
‖x‖2L + sinh2

(
||v||L
R

)
R2

||v||2L
‖v‖2L

+ 2 cosh

(
||v||L
R

)
sinh

(
||v||L
R

)
R

||v||L
〈x,v〉L︸ ︷︷ ︸

v∈TxHnK =⇒ 〈x,v〉L=0

= −R2 cosh2

(
||v||L
R

)
+R2 sinh2

(
||v||L
R

)
= −R2

(
cosh2

(
||v||L
R

)
− sinh2

(
||v||L
R

))
= −R2. �

71

A.2. Hyperbolic geometry

Theorem A.5 (Logarithmic map in HnK) For all x,y ∈ Hn
K , the logarith-

mic map in Hn
K maps y to a tangent vector at x:

logKx (y) =
cosh−1(α)√
α2 − 1

(y − αx),

where α = K 〈x,y〉L.

Proof We show the detailed derivation of the logarithmic map as an inverse
function to the exponential map logx(y) = exp−1x (y), adapted from (Nagano
et al., 2019).

As mentioned previously,

y = expKx (v) = cosh

(
‖v‖L
R

)
x+ sinh

(
‖v‖L
R

)
Rv

‖v‖L
.

Solving for v, we obtain

v =
||v||L

R sinh
(
‖v‖L
R

) (y − cosh

(
‖v‖L
R

)
x

)
.

However, we still need to rewrite ||v||L in evaluatable terms:

0 = 〈x,v〉L =
||v||L

R sinh
(
‖v‖L
R

)
〈x,y〉L − cosh

(
‖v‖L
R

)
〈x,x〉L︸ ︷︷ ︸
−R2

 ,

hence

cosh

(
‖v‖L
R

)
= − 1

R2
〈x,y〉L ,

and therefore

||v||L = R cosh−1
(
− 1

R2
〈x,y〉L

)
=

1√
−K

cosh−1(K 〈x,y〉L) = dKH (x,y).

Plugging the result back into the first equation, we obtain

v =
||v||L

R sinh
(
‖v‖L
R

) (y − cosh

(
‖v‖L
R

)
x

)

=
R cosh−1 (α)

R sinh
(
1
RR cosh−1 (α)

) (y − cosh

(
1

R
R cosh−1 (α)

)
x

)
=

cosh−1(α)

sinh(cosh−1(α))
(y − cosh(cosh−1(α))x)

=
cosh−1(α)√
α2 − 1

(y − αx),

72

A.2. Hyperbolic geometry

where α = − 1
R2 〈x,y〉L = K 〈x,y〉L , and the last equality assumes |α| > 1.

This assumption holds, since for all points x,y ∈ Hn
K it holds that 〈x,y〉L ≤

−R2, and 〈x,y〉L = −R2 if and only if x = y, due to Cauchy-Schwarz (Rat-
cliffe, 2006, Theorem 3.1.6). Hence, the only case where this would be a
problem would be if x = y, but it is clear that the result in that case is
u = 0. �

Theorem A.6 (logKx is the inverse of expKx in HnK)

logKx (expKx (v)) = v.

Proof

logKx (expKx (v)) =

= logKx

(
cosh

(
||v||L
R

)
x+ sinh

(
||v||L
R

)
Rv

||v||L

)
=

cosh−1(α)√
α2 − 1

(
cosh

(
||v||L
R

)
x+ sinh

(
||v||L
R

)
Rv

||v||L
− αx

)
=

||v||L

R

√
cosh2

(
||v||L
R

)
− 1

sinh

(
||v||L
R

)
Rv

||v||L

=
||v||L

R sinh
(
||v||L
R

) (sinh

(
||v||L
R

)
Rv

||v||L

)
= v,

where

α = −
〈
x, expKx (v)

〉
2

R2

= − 1

R2
cosh

(
||v||L
R

)
〈x,x〉L︸ ︷︷ ︸
=−R2

− sinh

(
||v||L
R

)
1

R||v||L
〈x,v〉L︸ ︷︷ ︸

v∈TxHnK =⇒ 〈x,v〉L=0

= cosh

(
||v||L
R

)
. �

Theorem A.7 (Length preservation property of expKx in HnK) For all
points on the manifold x ∈ Hn

K and for all tangent vectors at that point
v ∈ TxHn

K it holds that

dH(x, expKx (v)) = ||v||L.

73

A.2. Hyperbolic geometry

Proof

dH(x, expKx (v)) = R cosh−1

(
−
〈
x, expKx (v)

〉
L

R2

)

= R cosh−1
(

cosh

(
||v||L
R

))
= ||v||L,

where the equality

−
〈
x, expKx (v)

〉
L

R2
= cosh

(
||v||L
R

)
corresponds to the definition of α in the Proof of Theorem A.6. �

Parallel transport

Derivation of parallel transport Using the generic formula for parallel trans-
port in manifolds for x,y ∈M and v ∈ TxM

PTK
x→y(v) = v −

〈
logKx (y),v

〉
x

dM(x,y)
(logKx (y) + logKy (x)), (A.1)

and the logarithmic map formula from Theorem A.5

logKx (y) =
cosh−1(α)√
α2 − 1

(y − αx),

where α = − 1
R2 〈x,y〉L , we derive parallel transport in Hn

K :

PTK
x→y(v) = v +

〈y,v〉L
R2 − 〈x,y〉L

(x+ y).

A special form of parallel transport exists for when the source vector is µ0 =
(R, 0, . . . , 0)T :

PTK
µ0→y(v) = v +

〈y,v〉2
R2 +Ry1

y1 +R
y2
...

yn+1

 .

Theorem A.8 (PTKx→y transports points to the tangent space of y in HnK)
For all points on the manifold x,y ∈ Hn

K and a tangent vector v ∈ TxHn
K it

holds that
PTKx→y(v) ∈ TyHn

K .

74

A.2. Hyperbolic geometry

Proof 〈
y,PTK

x→y(v)
〉
L =

〈
y,v +

〈y,v〉L
R2 − 〈x,y〉L

(x+ y)

〉
L

= 〈y,v〉L +
〈y,v〉L

R2 − 〈x,y〉L
〈y,x+ y〉L

= 〈y,v〉L +
〈y,v〉L

R2 − 〈x,y〉L
(〈y,x〉L + 〈y,y〉L)

= 〈y,v〉L +
〈y,v〉L

R2 − 〈x,y〉L
(〈y,x〉L −R

2)

= 〈y,v〉L −
〈y,v〉L

R2 − 〈x,y〉L
(R2 − 〈y,x〉L)

= 〈y,v〉L − 〈y,v〉L = 0,

which implies PTK
x→y(v) ∈ TyHn

K . �

Theorem A.9 (Parallel transport preserves angles in HnK) For all
points on the manifold x,y ∈ Hn

K and tangent vectors v,v′ ∈ TxHn
K it holds

that 〈
PTK

x→y(v),PTK
x→y(v′)

〉
L =

〈
v,v′

〉
L .

Proof 〈
PTK

x→y(v),PTK
x→y(v′)

〉
L =

=

〈
v +

〈y,v〉L
R2 − 〈x,y〉L

(x+ y),v′ +
〈y,v′〉L

R2 − 〈x,y〉L
(x+ y)

〉
L

=
〈
v,v′

〉
L

+
〈y,v′〉L

R2 − 〈x,y〉L
〈v,x+ y〉L︸ ︷︷ ︸
〈v,y〉L

+
〈y,v〉L

R2 − 〈x,y〉L

〈
v′,x+ y

〉
L︸ ︷︷ ︸

〈v′,y〉L

+
〈y,v〉L 〈y,v′〉L
(R2 − 〈x,y〉L)2

〈x+ y,x+ y〉L︸ ︷︷ ︸
−R2+2〈x,y〉L−R2

=
〈
v,v′

〉
L + 2

〈y,v′〉L 〈y,v〉L
R2 − 〈x,y〉L

− 2
〈y,v〉L 〈y,v′〉L
(R2 − 〈x,y〉L)2

(R2 − 〈x,y〉L)

=
〈
v,v′

〉
L . �

Corollary (Parallel transport in HnK is norm-preserving)

||PTK
x→y(v)||L = ||v||L.

Proof

||PTK
x→y(v)||2L =

〈
PTK

x→y(v),PTK
x→y(v)

〉
L = 〈v,v〉L = ‖v‖2L ,

where the second equality corresponds to Theorem A.9. �

75

A.2. Hyperbolic geometry

Möbius add. x⊕K y =
(1− 2K 〈x,y〉2 −K ‖y‖

2
2)x+ (1 +K ‖x‖22)y

1− 2K 〈x,y〉2 +K2 ‖x‖22 ‖y‖
2
2

Distance dP(x,y) =
1√
−K

cosh−1

(
1−

2K ‖x− y‖22
(1 +K ‖x‖22)(1 +K ‖y‖22)

)
Gyr. dist. dPgyr(x,y) =

2√
−K

tanh−1(
√
−K ‖−x⊕K y‖2)

Lambda λKx =
2

1 +K ‖x‖22

Exp. map expKx (v) = x⊕K
(

tanh

(√
−K

λKx ‖v‖2
2

)
v√

−K ‖v‖2

)
Log. map

logKx (y) =
2√
−KλKx

tanh−1
(√
−K ‖z‖2

) z

‖z‖2
,

where z = −x⊕K y

Gyration gyr[x,y]v = 	K(x⊕K y)⊕K (x⊕K (y ⊕K v))

Par. transp. PTK
x→y(v) =

λKx
λKy

gyr[y,−x]v

PTK
µ0→y(v) =

2

λKy
v, PTK

x→µ0
(v) =

λKx
2
v

Table A.3: Poincaré ball operations.

A.2.2 Poincaré ball

An overview of all the necessary operations can be found in Table A.3.

Do note, that all the theorems for the projected hypersphere are essentially
trivial corollaries of their equivalents in the Poincaré ball (and vice-versa)
(Section A.3.2). Notable differences include the fact that R2 = − 1

K , not R2 =
1
K , and all the operations use the hyperbolic trigonometric functions sinh, cosh,
and tanh, instead of their Euclidean counterparts. Also, we often leverage the
“hyperbolic” Pythagorean theorem, in the form cosh2(α)− sinh2(α) = 1.

Stereographic projection

Theorem A.11 (Stereographic backprojected points of PnK belong to HnK)
For all y ∈ PnK , ∥∥ρ−1K (y)

∥∥2
L =

1

K
.

76

A.2. Hyperbolic geometry

Figure A.1: “The Poincaré disk is a model to ‘see’ a 2D hyperbolic space by
approximating what a hyperbola looks like from below,” Pampena (2016).

Proof

∥∥ρ−1K (y)
∥∥2
L =

∥∥∥∥∥∥
(

1√
|K|

K ‖y‖22 − 1

K ‖y‖22 + 1
;

2yT

K ‖y‖22 + 1

)T∥∥∥∥∥∥
2

L

= −

(
1√
|K|

K ‖y‖22 − 1

K ‖y‖22 + 1

)2

+
4 ‖y‖22

(K ‖y‖22 + 1)2

=
1

|K|
−(K ‖y‖22 − 1)2 + 4|K| ‖y‖22

(K ‖y‖22 + 1)2

=
1

−K
−(K ‖y‖22 − 1)2 − 4K ‖y‖22

(K ‖y‖22 + 1)2

=
1

K

(K ‖y‖22 − 1)2 + 4K ‖y‖22
(K ‖y‖22 + 1)2

=
1

K

K2 ‖y‖42 + 2K ‖y‖22 + 1

(K ‖y‖22 + 1)2

=
1

K

(K ‖y‖22 + 1)2

(K ‖y‖22 + 1)2
=

1

K
. �

77

A.2. Hyperbolic geometry

Distance function

The distance function in PnK is (derived from the hyperboloid distance function
using the stereographic projection ρK):

dP(x,y) = dH(ρ−1K (x), ρ−1K (y))

=
1√
−K

cosh−1

(
1−

2K ‖x− y‖22
(1 +K ‖x‖22)(1 +K ‖y‖22)

)

= R cosh−1

(
1 +

2R2 ‖x− y‖22
(R2 − ‖x‖22)(R2 − ‖y‖22)

)

Theorem A.12 (Distance equivalence in PnK) For all K < 0 and for all
pairs of points x,y ∈ PnK , the Poincaré distance between them equals the
gyrospace distance

dP(x,y) = dPgyr(x,y).

Proof Proven using Mathematica (File: distance limits.ws), proof involves
heavy algebra. �

Theorem A.13 (Gyrospace distance converges to Euclidean in PnK)
For any fixed pair of points x,y ∈ PnK , the Poincaré gyrospace distance be-
tween them converges to the Euclidean distance in the limit (up to a constant)
as K → 0−:

lim
K→0−

dPgyr(x,y) = 2 ‖x− y‖2 .

Proof

lim
K→0−

dPgyr(x,y) = 2 lim
K→0−

[
tanh−1(

√
−K ‖−x⊕K y‖2)√
−K

]
= 2 lim

K→0−

[
tanh−1(

√
−K ‖y − x‖2)√
−K

]
= 2 ‖y − x‖2 ,

where the second equality holds because of the theorem of limits of composed
functions, where

f(a) =
tanh−1(a

√
−K)√

−K
g(K) = ‖−x⊕K y‖2 .

We see that

lim
K→0−

g(K) = ‖y − x‖2

78

A.2. Hyperbolic geometry

due to Theorem A.37, and

lim
a→‖x−y‖2

f(a) =
tanh−1(a

√
−K)√

−K

Additionally for the last equality, we need the fact that

lim
x→0

tanh−1(a
√
|x|)√

|x|
= a. �

Theorem A.14 (Distance converges to Euclidean as K → 0− in PnK)
For any fixed pair of points x,y ∈ PnK , the Poincaré distance between them
converges to the Euclidean distance in the limit (up to a constant) as K → 0−:

lim
K→0−

dP(x,y) = 2 ‖x− y‖2 .

Proof Theorem A.12 and A.13. �

Exponential map

As derived and proven in Ganea et al. (2018a), the exponential map in PnK
and its inverse is

expKx (v) = x⊕K
(

tanh

(√
−K

λKx ‖v‖2
2

)
v√

−K ‖v‖2

)
logKx (y) =

2√
−KλKx

tanh−1
(√
−K ‖−x⊕K y‖2

) −x⊕K y
‖−x⊕K y‖2

In the case of x := µ0 = (0, . . . , 0)T they simplify to:

expKµ0
(v) = tanh

(√
−K ‖v‖2

) v√
−K ‖v‖2

logKµ0
(y) = tanh−1

(√
−K ‖y‖2

) y

‖y‖2
.

Theorem A.15 (Length preservation property of expKx in PnK) For all
points on the manifold x ∈ PnK and for all tangent vectors at that point
v ∈ TxPnK it holds that

dPgyr(x, expKx (v)) = λKx ||v||2.

79

A.2. Hyperbolic geometry

Proof

dPgyr(x, expKx (v)) =

=
2√
−K

tanh−1
(√
−K

∥∥−x⊕K expKx (v)
∥∥
2

)
=

2√
−K

tanh−1

(
√
−K

∥∥∥∥−x⊕K (x⊕K (tanh

(√
−K

λKx ‖v‖2
2

)
v√

−K ‖v‖2

))∥∥∥∥
2

)

=
2√
−K

tanh−1

(
√
−K

∥∥∥∥tanh

(√
−K

λKx ‖v‖2
2

)
v√

−K ‖v‖2

∥∥∥∥
2

)

=
2√
−K

tanh−1
(√
−K tanh

(√
−K

λKx ‖v‖2
2

)
‖v‖2√
−K ‖v‖2

)
=

2√
−K

tanh−1
(

tanh

(√
−K

λKx ‖v‖2
2

))
=

2√
−K
√
−K

λKx ‖v‖2
2

= λKx ‖v‖2 ,

where the third equality holds because of the left-cancellation law (Ganea
et al., 2018a, Section 2.3). �

Parallel transport

Ganea et al. (2018a); Kochurov et al. (2019) have also derived and imple-
mented the parallel transport operation for the Poincaré ball:

PTK
x→y(v) =

λKx
λKy

gyr[y,−x]v,

PTK
µ0→y(v) =

2

λKy
v,

PTK
x→µ0

(v) =
λKx
2
v,

where

gyr[x,y]v = −(x⊕K y)⊕K (x⊕K (y ⊕K v))

is the gyration operation (Ungar, 2008, Definition 1.11).

Theorem A.16 (Parallel transport and its inverse in PnK)

PTK
y→x(PTK

x→y(v)) = v.

80

A.2. Hyperbolic geometry

Proof We only use this fact for x or y equal to µ0, and for that, it is trivial.
Otherwise, one can prove it using the properties from Ungar (2008). �

Unfortunately, on the Poincaré ball, 〈·, ·〉x has a form that changes with respect
to x, unlike in the hyperboloid. This means that the following theorems do
not hold with respect to 〈·, ·〉2.

Theorem A.17 (Parallel transport preserves angles in PnK) For all
points on the manifold x,y ∈ PnK and tangent vectors v,v′ ∈ TxPnK it holds
that 〈

PTK
x→y(v),PTK

x→y(v′)
〉
y

=
〈
v,v′

〉
x
.

Proof〈
PTK

x→y(v),PTK
x→y(v′)

〉
y

= (λKy)2
〈
PTK

x→y(v),PTK
x→y(v′)

〉
2

= (λKy)2
(
λKx
λKy

)2 〈
gyr[y,−x]v, gyr[y,−x]v′

〉
2

= (λKx)2
〈
v,v′

〉
2

=
〈
v,v′

〉
x
,

where 〈gyr[x,y]v, gyr[x,y]v′〉2 = 〈v,v′〉2 is proven in Ungar (2008, Equa-
tion 1.32). �

Corollary (Parallel transport in PnK is norm-preserving)

||PTK
x→y(v)||y = ||v||x,

and hence

||PTK
x→y(v)||2 =

λKx
λKy
||v||2.

Proof

(λKy)2||PTK
x→y(v)||22 = ||PTK

x→y(v)||2y
=
〈
PTK

x→y(v),PTK
x→y(v)

〉
y

= 〈v,v〉x
= ‖v‖2x = (λKx)2 ‖v‖22 ,

where the third equality corresponds to Theorem A.17. �

81

A.3. Spherical geometry

Distance dS(x,y) =
1√
K

cos−1(K 〈x,y〉2)

Exp. map expKx (v) = cos
(√

K ‖v‖2
)
x+ sin

(√
K ‖v‖2

) v√
K ‖v‖2

Log. map logKx (y) =
cos−1(α)√

1− α2
(y − αx), α = K 〈x,y〉2

Par. transp. PTK
x→y(v) = v −

K 〈y,v〉2
1 +K 〈x,y〉2

(x+ y)

Table A.4: Spherical operations.

A.3 Spherical geometry

A.3.1 Hypersphere

An overview of all the necessary operations can be found in Table A.4.

Do note, that all the theorems for the hypersphere are essentially trivial corol-
laries of their equivalents in the hyperboloid (Section A.2.1). Notable differ-
ences include the fact that R2 = 1

K , not R2 = − 1
K , and all the operations

use the Euclidean trigonometric functions sin, cos, and tan, instead of their
hyperbolic counterparts. Also, we often leverage the Pythagorean theorem, in
the form sin2(α) + cos2(α) = 1.

Projections

Due to the definition of the space as a retraction from the ambient space, we
can project a generic vector in the ambient space to the hypersphere using the
shortest Euclidean distance by normalization:

projSn−1
K

(x) = R
x

||x||2
=

x√
K ||x||2

.

Secondly, the n + 1 coordinates of a point on the sphere are co-dependent;
they satisfy the relation 〈x,x〉2 = 1/K. This implies, that if we are given
a vector with n coordinates x̃ = (x2, . . . , xn+1), we can compute the missing
coordinate to place it onto the sphere:

x1 =

√
1

K
− ‖x̃‖22.

This is useful for example in the case of orthogonally projecting points from
Tµ0SnK onto the manifold.

82

A.3. Spherical geometry

Distance function

The distance function in SnK is

dKS (x,y) = R · θx,y = R cos−1
(
〈x,y〉2
R2

)
=

1√
K

cos−1 (K 〈x,y〉2) .

Remark (About the divergence of points in SnK) Since the points on the
hypersphere x ∈ SnK are norm-constrained to

〈x,x〉2 =
1

K
,

all the points on the sphere go to infinity as K goes to 0+ from above:

lim
K→0+

〈x,x〉2 =∞.

This confirms the intuition that the sphere grows “flatter”, but to do that, it
has to go away from the origin of the coordinate space 0. A good example of
a point that diverges is the north pole of the sphere µK0 = (1/K, 0, . . . , 0)T =
(R, 0, . . . , 0)T . That makes this model unsuitable for trying to learn sign-
agnostic curvatures, similarly to the hyperboloid.

Exponential map

Theorem A.20 (Exponential map in SnK) For all x ∈ SnK and v ∈ TxSnK ,
the exponential map in SnK maps tangent space vectors v to the manifold:∥∥expKx (v)

∥∥2
2

= 1/K = R2.

83

A.3. Spherical geometry

Proof∥∥expKx (v)
∥∥2
2

=

=

∥∥∥∥cos

(
||v||2
R

)
x+ sin

(
||v||2
R

)
Rv

||v||2

∥∥∥∥2
2

=

∥∥∥∥cos

(
||v||2
R

)
x

∥∥∥∥2
2

+

∥∥∥∥sin

(
||v||2
R

)
Rv

||v||2

∥∥∥∥2
2

+ 2

〈
cos

(
||v||2
R

)
x, sin

(
||v||2
R

)
Rv

||v||2

〉
2

= cos2
(
||v||2
R

)
‖x‖22 + sin2

(
||v||2
R

)
R2

||v||22
‖v‖22

+ 2 cos

(
||v||2
R

)
sin

(
||v||2
R

)
R

||v||2
〈x,v〉2︸ ︷︷ ︸

v∈TxSnK =⇒ 〈x,v〉2=0

= cos2
(
||v||2
R

)
R2 + sin2

(
||v||2
R

)
R2

= R2

(
cos2

(
||v||2
R

)
+ sin2

(
||v||2
R

))
= R2. �

Theorem A.21 (Logarithmic map in SnK) For all x,y ∈ SnK , the logarith-
mic map in SnK maps y to a tangent vector at x:

logKx (y) =
cos−1(α)√

1− α2
(y − αx),

where α = K 〈x,y〉2.

Proof Analogous to the proof of Theorem A.22.

As mentioned previously,

y = expKx (v) = cos

(
‖v‖2
R

)
x+ sin

(
‖v‖2
R

)
Rv

‖v‖2
.

Solving for v, we obtain

v =
||v||2

R sin
(
‖v‖2
R

) (y − cos

(
‖v‖2
R

)
x

)
.

However, we still need to rewrite ||v||2 in evaluatable terms:

0 = 〈x,v〉2 =
||v||2

R sin
(
‖v‖2
R

)
〈x,y〉2 − cos

(
‖v‖2
R

)
〈x,x〉2︸ ︷︷ ︸
R2

 ,

84

A.3. Spherical geometry

hence

cos

(
‖v‖2
R

)
=

1

R2
〈x,y〉2 ,

and therefore

||v||2 = R cos−1
(

1

R2
〈x,y〉2

)
=

1√
K

cos−1(K 〈x,y〉2) = dKS (x,y).

Plugging the result back into the first equation, we obtain

v =
||v||2

R sin
(
‖v‖2
R

) (y − cos

(
‖v‖2
R

)
x

)

=
R cos−1 (α)

R sin
(
1
RR cos−1 (α)

) (y − cos

(
1

R
R cos−1 (α)

)
x

)
=

cos−1(α)

sin(cos−1(α))
(y − cos(cos−1(α))x)

=
cos−1(α)√

1− α2
(y − αx),

where α = 1
R2 〈x,y〉2 = K 〈x,y〉2 , and the last equality assumes |α| > 1. This

assumption holds, since for all points x,y ∈ SnK it holds that 〈x,y〉2 ≤ R2,
and 〈x,y〉2 = R2 if and only if x = y, due to Cauchy-Schwarz (Ratcliffe, 2006,
Theorem 3.1.6). Hence, the only case where this would be a problem would
be if x = y, but it is clear that the result in that case is u = 0. �

Theorem A.22 (logKx is the inverse of expKx in SnK)

logKx (expKx (v)) = v.

Proof

logKx (expKx (v)) =

= logKx

(
cos

(
||v||2
R

)
x+ sin

(
||v||2
R

)
Rv

||v||2

)
=

cos−1(α)√
1− α2

(
cos

(
||v||2
R

)
x+ sin

(
||v||2
R

)
Rv

||v||2
− αx

)
=

||v||2

R

√
1− cos2

(
||v||2
R

) sin

(
||v||2
R

)
Rv

||v||2

=
||v||2

R sin
(
||v||2
R

) (sin

(
||v||2
R

)
Rv

||v||2

)
= v,

85

A.3. Spherical geometry

where

α =

〈
x, expKx (v)

〉
2

R2

=
1

R2
cos

(
||v||2
R

)
〈x,x〉2︸ ︷︷ ︸
=R2

+ sin

(
||v||2
R

)
1

R||v||2
〈x,v〉2︸ ︷︷ ︸

v∈TxSnK =⇒ 〈x,v〉2=0

= cos

(
||v||2
R

)
. �

Theorem A.23 (Length preservation property of expKx in SnK) For all
points on the manifold x ∈ SnK and for all tangent vectors at that point
v ∈ TxSnK it holds that

dS(x, expKx (v)) = ||v||2.

Proof

d2(x, expKx (v)) = R cos−1

(〈
x, expKx (v)

〉
2

R2

)

= R cos−1
(

cos

(
||v||2
R

))
= ||v||2,

where the equality

−
〈
x, expKx (v)

〉
2

R2
= cos

(
||v||2
R

)
corresponds to the definition of α in the Proof of Theorem A.22. �

Parallel transport

Using the generic formula for parallel transport in manifolds (Equation A.2.1)
for x,y ∈ SnK and v ∈ TxSnK and the spherical logarithmic map formula

logKx (y) =
cos−1(α)√

1− α2
(y − αx),

where α = K 〈x,y〉2 , we derive parallel transport in SnK :

PTK
x→y(v) = v −

〈y,v〉2
R2 + 〈x,y〉2

(x+ y)

= v −
K 〈y,v〉2

1 +K 〈x,y〉2
(x+ y).

86

A.3. Spherical geometry

A special form of parallel transport exists for when the source vector is µ0 =
(R, 0, . . . , 0)T :

PTK
µ0→y(v) = v −

〈y,v〉2
R2 +Ry1

y1 +R
y2
...

yn+1

 .

Theorem A.24 (Parallel transport preserves angles in SnK) For all
points on the manifold x,y ∈ SnK and tangent vectors v,v′ ∈ TxSnK it holds
that 〈

PTK
x→y(v),PTK

x→y(v′)
〉
2

=
〈
v,v′

〉
2
.

Proof 〈
PTK

x→y(v),PTK
x→y(v′)

〉
2

=

=

〈
v −

〈y,v〉2
R2 + 〈x,y〉2

(x+ y),v′ −
〈y,v′〉2

R2 + 〈x,y〉2
(x+ y)

〉
2

=
〈
v,v′

〉
2

−
〈y,v′〉2

R2 + 〈x,y〉2
〈v,x+ y〉2︸ ︷︷ ︸
〈v,y〉2

−
〈y,v〉2

R2 + 〈x,y〉2

〈
v′,x+ y

〉
2︸ ︷︷ ︸

〈v′,y〉2

+
〈y,v〉2 〈y,v′〉2
(R2 + 〈x,y〉2)2

〈x+ y,x+ y〉2︸ ︷︷ ︸
R2+2〈x,y〉2+R2

=
〈
v,v′

〉
2
− 2
〈y,v′〉2 〈y,v〉2
R2 + 〈x,y〉2

+ 2
〈y,v〉2 〈y,v′〉2
(R2 + 〈x,y〉2)2

(R2 + 〈x,y〉2)

=
〈
v,v′

〉
2
. �

Corollary (Parallel transport on SnK is norm-preserving)

||PTK
x→y(v)||2 = ||v||2.

Proof

||PTK
x→y(v)||22 =

〈
PTK

x→y(v),PTK
x→y(v)

〉
2

= 〈v,v〉2 = ‖v‖22 ,

where the second equality corresponds to Theorem A.24. �

Theorem A.26 (PTKx→y transports points to the tangent space of y in SnK)
For all points on the manifold x,y ∈ SnK and a tangent vector v ∈ TxSnK it
holds that

PTx→y(v) ∈ TySnK .

87

A.3. Spherical geometry

Proof 〈
y,PTK

x→y(v)
〉
2

=

〈
y,v −

〈y,v〉2
R2 + 〈x,y〉2

(x+ y)

〉
2

= 〈y,v〉2 −
〈y,v〉2

R2 + 〈x,y〉2
〈y,x+ y〉2

= 〈y,v〉2 −
〈y,v〉2

R2 + 〈x,y〉2
(〈y,x〉2 + 〈y,y〉2)

= 〈y,v〉2 −
〈y,v〉2

R2 + 〈x,y〉2
(〈y,x〉2 +R2)

= 〈y,v〉2 − 〈y,v〉2 = 0,

which implies PTK
x→y(v) ∈ TySnK . �

A.3.2 Projected hypersphere

An overview of all the necessary operations can be found in Table A.5.

Do note, that all the theorems for the projected hypersphere are essentially
trivial corollaries of their equivalents in the Poincaré ball (and vice-versa)
(Section A.2.2). Notable differences include the fact that R2 = 1

K , not R2 =
− 1
K , and all the operations use the Euclidean trigonometric functions sin, cos,

and tan, instead of their hyperbolic counterparts. Also, we often leverage the
Pythagorean theorem, in the form sin2(α) + cos2(α) = 1.

Stereographic projection

Remark (Homeomorphism between SnK and Rn) We notice that ρK is
not a homeomorphism between the n-dimensional sphere and Rn, as it is not
defined at −µ0 = (−R; 0T)T . If we additionally changed compactified the
plane by adding a point “at infinity” and set it equal to ρK(µ0), ρK would
become a homeomorphism. For an illustration, see Figure 2.1b and imagine
where Earth’s south pole would be represented if the projection was not cut off
at a given latitude.

Theorem A.28 (Stereographic backprojected points of DnK belong to SnK)
For all y ∈ DnK , ∥∥ρ−1K (y)

∥∥2
2

=
1

K
.

88

A.3. Spherical geometry

Möbius add. x⊕K y =
(1− 2K 〈x,y〉2 −K ‖y‖

2
2)x+ (1 +K ‖x‖22)y

1− 2K 〈x,y〉2 +K2 ‖x‖22 ‖y‖
2
2

Distance dD(x,y) =
1√
K

cos−1

(
1−

2K ‖x− y‖22
(1 +K ‖x‖22)(1 +K ‖y‖22)

)
Gyr. dist. dDgyr(x,y) =

2√
K

tan−1(
√
K ‖−x⊕K y‖2)

Lambda λKx =
2

1 +K ‖x‖22

Exp. map expKx (v) = x⊕K

(
tan

(√
K
λKx ‖v‖2

2

)
v√

K ‖v‖2

)
Log. map logKx (y) =

2√
KλKx

tan−1
(√

K ‖−x⊕K y‖2
) −x⊕K y
‖−x⊕K y‖2

Gyration gyr[x,y]v = 	K(x⊕K y)⊕K (x⊕K (y ⊕K v))

Par. transp. PTK
x→y(v) =

λKx
λKy

gyr[y,−x]v

PTK
µ0→y(v) =

2

λKy
v, PTK

x→µ0
(v) =

λKx
2
v

Table A.5: Spherical projected operations.

Proof

∥∥ρ−1K (y)
∥∥2
2

=

∥∥∥∥∥∥
(

1√
|K|

K ‖y‖22 − 1

K ‖y‖22 + 1
;

2yT

K ‖y‖22 + 1

)T∥∥∥∥∥∥
2

2

=

(
1√
|K|

K ‖y‖22 − 1

K ‖y‖22 + 1

)2

+
4 ‖y‖22

(K ‖y‖22 + 1)2

=
1

|K|
(K ‖y‖22 − 1)2 + 4|K| ‖y‖22

(K ‖y‖22 + 1)2

=
1

K

(K ‖y‖22 − 1)2 + 4K ‖y‖22
(K ‖y‖22 + 1)2

=
1

K

K2 ‖y‖42 + 2K ‖y‖22 + 1

(K ‖y‖22 + 1)2

=
1

K

(K ‖y‖22 + 1)2

(K ‖y‖22 + 1)2
=

1

K
. �

89

A.3. Spherical geometry

Distance function

The distance function in DnK is (derived from the spherical distance function
using the stereographic projection ρK):

dD(x,y) = dS(ρ−1K (x), ρ−1K (y))

=
1√
K

cos−1

(
1−

2K ‖x− y‖22
(1 +K ‖x‖22)(1 +K ‖y‖22)

)

= R cos−1

(
1−

2R2 ‖x− y‖22
(R2 + ‖x‖22)(R2 + ‖y‖22)

)

Theorem A.29 (Distance equivalence in DnK) For all K > 0 and for all
pairs of points x,y ∈ DnK , the spherical projected distance between them equals
the gyrospace distance

dD(x,y) = dDgyr(x,y).

Proof Proven using Mathematica (File: distance limits.ws), proof involves
heavy algebra. �

Theorem A.30 (Gyrospace distance converges to Euclidean in DnK)
For any fixed pair of points x,y ∈ DnK , the spherical projected gyrospace dis-
tance between them converges to the Euclidean distance in the limit (up to a
constant) as K → 0+:

lim
K→0+

dDgyr(x,y) = 2 ‖x− y‖2 .

Proof

lim
K→0+

dDgyr(x,y) = 2 lim
K→0+

[
tan−1(

√
K ‖−x⊕K y‖2)√

K

]

= 2 lim
K→0+

[
tan−1(

√
K ‖y − x‖2)√
K

]
= 2 ‖y − x‖2 ,

where the second equality holds because of the theorem of limits of composed
functions, where

f(a) =
tan−1(a

√
K)√

K

g(K) = ‖−x⊕K y‖2 .

90

A.3. Spherical geometry

We see that

lim
K→0−

g(K) = ‖y − x‖2

due to Theorem A.37, and

lim
a→‖x−y‖2

f(a) =
tan−1(a

√
K)√

K

Additionally for the last equality, we need the fact that

lim
x→0

tanh−1(a
√
|x|)√

|x|
= a. �

Theorem A.31 (Distance converges to Euclidean as K → 0+ in DnK)
For any fixed pair of points x,y ∈ DnK , the spherical projected distance between
them converges to the Euclidean distance in the limit (up to a constant) as
K → 0+:

lim
K→0+

dD(x,y) = 2 ‖x− y‖2 .

Proof Theorem A.29 and A.30. �

Exponential map

Analogously to the derivation of the exponential map in PnK in Ganea et al.
(2018a, Section 2.3–2.4), we can derive Möbius scalar multiplication in DnK :

r ⊗K x =
1

i
√
K

tanh(r tanh−1(i
√
K ‖x‖2))

x

‖x‖2
=

1

i
√
K

tanh(ri tan−1(
√
K ‖x‖2))

x

‖x‖2
=

1√
K

tan(r tan−1(
√
K ‖x‖2))

x

‖x‖2
,

where we use the fact that tanh−1(ix) = i tan−1(x) and tanh(ix) = i tan(x).
We can easily see that 1⊗K x = x.

Hence, the geodesic has the form of

γx→y(t) = x⊕K t⊗K (−x⊕K y),

and therefore the exponential map in DnK is:

expKx (v) = x⊕K

(
tan

(√
K
λKx ‖v‖2

2

)
v√

K ‖v‖2

)
.

91

A.3. Spherical geometry

The inverse formula can also be computed:

logKx (y) =
2√
KλKx

tan−1
(√

K ‖−x⊕K y‖2
) −x⊕K y
‖−x⊕K y‖2

In the case of x := µ0 = (0, . . . , 0)T they simplify to:

expKµ0
(v) = tan

(√
K ‖v‖2

) v√
K ‖v‖2

logKµ0
(y) = tan−1

(√
K ‖y‖2

) y√
K ‖y‖2

.

Theorem A.32 (logKx is the inverse of expKx in DnK)

logKx (expKx (v)) = v.

Proof

logKx (expKx (v)) =
2√
KλKx

tan−1
(√

K
∥∥−x⊕K expKx (v)

∥∥
2

) −x⊕K expKx (v)

‖−x⊕K expKx (v)‖2

=
2√
KλKx

tan−1
(√

K ‖−x⊕K y‖2
) −x⊕K y
‖−x⊕K y‖2

=
2√
KλKx

tan−1
(√

K
1√
K

tan

(√
K
λKx ‖v‖2

2

))

·
tan

(√
K

λKx ‖v‖2
2

)
v√

K‖v‖2
1√
K

tan
(√

K
λKx ‖v‖2

2

)
=

2√
KλKx

tan−1
(

tan

(√
K
λKx ‖v‖2

2

))
v

‖v‖2

=
2√
KλKx

√
K
λKx ‖v‖2

2

v

‖v‖2
= v,

where the third equality is based on the fact that

−x⊕K expKx (v) = −x⊕K

(
x⊕K

(
tan

(√
K
λKx ‖v‖2

2

)
v√

K ‖v‖2

))

= tan

(√
K
λKx ‖v‖2

2

)
v√

K ‖v‖2
,

and ∥∥−x⊕K expKx (v)
∥∥
2

=
1√
K

tan

(√
K
λKx ‖v‖2

2

)
. �

92

A.3. Spherical geometry

Theorem A.33 (Length preservation property of expKx in DnK) For all
points on the manifold x ∈ DnK and for all tangent vectors at that point
v ∈ TxDnK it holds that

dDgyr(x, expKx (v)) = λKx ||v||2.

Proof

dDgyr(x, expKx (v)) =

=
2√
K

tan−1
(√

K
∥∥−x⊕K expKx (v)

∥∥
2

)
=

2√
K

tan−1

(
√
K

∥∥∥∥∥−x⊕K
(
x⊕K

(
tan

(√
K
λKx ‖v‖2

2

)
v√

K ‖v‖2

))∥∥∥∥∥
2

)

=
2√
K

tan−1

(
√
K

∥∥∥∥∥tan

(√
K
λKx ‖v‖2

2

)
v√

K ‖v‖2

∥∥∥∥∥
2

)

=
2√
K

tan−1

(
√
K tan

(√
K
λKx ‖v‖2

2

)
‖v‖2√
K ‖v‖2

)

=
2√
K

tan−1
(

tan

(√
K
λKx ‖v‖2

2

))
=

2√
K

√
K
λKx ‖v‖2

2

= λKx ‖v‖2 ,

where the third equality holds because of the left-cancellation law (Ganea
et al., 2018a, Section 2.3). �

Parallel transport

Similarly to the Poincaré ball, we can derive the parallel transport operation
for the projected sphere:

PTK
x→y(v) =

λKx
λKy

gyr[y,−x]v,

PTK
µ0→y(v) =

2

λKy
v,

PTK
x→µ0

(v) =
λKx
2
v,

where

gyr[x,y]v = −(x⊕K y)⊕K (x⊕K (y ⊕K v))

is the gyration operation (Ungar, 2008, Definition 1.11).

93

A.3. Spherical geometry

Theorem A.34 (Parallel transport and its inverse in DnK)

PTK
y→x(PTK

x→y(v)) = v.

Proof We only use this fact for x or y equal to µ0, and for that, it is trivial.
Otherwise, one can prove it using the properties from Ungar (2008). �

Unfortunately, on the projected sphere, 〈·, ·〉x has a form that changes with
respect to x, similarly to the Poincaré ball and unlike in the hypersphere. This
means that the following theorems do not hold with respect to 〈·, ·〉2.

Theorem A.35 (Parallel transport preserves angles in DnK) For all
points on the manifold x,y ∈ DnK and tangent vectors v,v′ ∈ TxDnK it holds
that 〈

PTK
x→y(v),PTK

x→y(v′)
〉
y

=
〈
v,v′

〉
x
.

Proof〈
PTK

x→y(v),PTK
x→y(v′)

〉
y

= (λKy)2
〈
PTK

x→y(v),PTK
x→y(v′)

〉
2

= (λKy)2
(
λKx
λKy

)2 〈
gyr[y,−x]v, gyr[y,−x]v′

〉
2

= (λKx)2
〈
v,v′

〉
2

=
〈
v,v′

〉
x
,

where 〈gyr[x,y]v, gyr[x,y]v′〉2 = 〈v,v′〉2 is proven in Ungar (2008, Equa-
tion 1.32). �

Corollary (Parallel transport on DnK is norm-preserving)

||PTK
x→y(v)||y = ||v||x,

and hence

||PTK
x→y(v)||2 =

λKx
λKy
||v||2.

Proof

(λKy)2||PTK
x→y(v)||22 = ||PTK

x→y(v)||2y
=
〈
PTK

x→y(v),PTK
x→y(v)

〉
y

= 〈v,v〉x
= ‖v‖2x = (λKx)2 ‖v‖22 ,

where the third equality corresponds to Theorem A.35. �

94

A.4. Miscellaneous properties

A.4 Miscellaneous properties

Theorem A.37 (Möbius addition converges to Eucl. vector addition)

lim
K→0

(x⊕K y) = x+ y.

Note: This theorem works from both sides, hence applies to the Poincaré ball
as well as the projected spherical space. Observe that the Möbius addition has
the same form for both spaces.

Proof

lim
K→0

(x⊕K y) = lim
K→0

[
(1− 2K 〈x,y〉2 −K ‖y‖

2
2)x+ (1 +K ‖x‖22)y

1− 2K 〈x,y〉2 +K2 ‖x‖22 ‖y‖
2
2

]
= x+ y. �

Theorem A.38 (ρ−1
K is the inverse stereographic projection)

For all (ξ;xT)T ∈Mn
K , ξ ∈ R

ρ−1K (ρ((ξ;xT)T)) = x,

where M∈ {S,H}.

Proof

ρ−1K (ρK((ξ;xT)T)) = ρ−1K

(
x

1−
√
|K|ξ

)

=

 1√
|K|

K

∥∥∥∥ x

1−
√
|K|ξ

∥∥∥∥2
2

− 1

K

∥∥∥∥ x

1−
√
|K|ξ

∥∥∥∥2
2

+ 1

;

2xT

1−
√
|K|ξ

K

∥∥∥∥ x

1−
√
|K|ξ

∥∥∥∥2
2

+ 1

T

=
1/
√
|K|

K

∥∥∥∥ x

1−
√
|K|ξ

∥∥∥∥2
2

+ 1

K ∥∥∥∥∥ x

1−
√
|K|ξ

∥∥∥∥∥
2

2

− 1;
2
√
|K|xT

1−
√
|K|ξ

T

=
1/
√
|K|

K‖x‖22
(1−
√
|K|ξ)2

+ 1

(
K ‖x‖22

(1−
√
|K|ξ)2

− 1;
2
√
|K|xT

1−
√
|K|ξ

)T

95

A.4. Miscellaneous properties

We observe that ‖x‖22 = 1
K − ξ

2, because x ∈Mn
K . Therefore

ρ−1K (ρK((ξ;xT)T)) =

= . . . (above)

=
1/
√
|K|

K
1
K
−ξ2

(1−
√
|K|ξ)2

+ 1

(
K

1
K − ξ

2

(1−
√
|K|ξ)2

− 1;
2
√
|K|xT

1−
√
|K|ξ

)T

=
1/
√
|K|

(1−
√
|K|ξ)(1+

√
|K|ξ)

(1−
√
|K|ξ)2

+ 1

(
(1−

√
|K|ξ)(1 +

√
|K|ξ)

(1−
√
|K|ξ)2

− 1;
2
√
|K|xT

1−
√
|K|ξ

)T

=
1/
√
|K|

1+
√
|K|ξ

1−
√
|K|ξ

+ 1

(
1 +

√
|K|ξ

1−
√
|K|ξ

− 1;
2
√
|K|xT

1−
√
|K|ξ

)T

=
1/
√
|K|

1+
√
|K|ξ+1−

√
|K|ξ

1−
√
|K|ξ

(
1 +

√
|K|ξ − 1 +

√
|K|ξ

1−
√
|K|ξ

;
2
√
|K|xT

1−
√
|K|ξ

)T

=
1

2
√
|K|

(
2
√
|K|ξ; 2

√
|K|xT

)T
=
(
ξ;xT

)T
.

�

Lemma (λKx converges to 2 as K → 0) For all x in PnK or DnK , it holds
that

lim
K→0

λKx = 2.

Proof

lim
K→0

λKx = lim
K→0

2

1 +K ‖x‖22
= 2. �

Theorem A.40 (expKx (v) converges to x+ v as K → 0) For all x in
the Poincaré ball PnK or the projected sphere DnK and v ∈ TxM, it holds
that

lim
K→0

expKx (v) = expx(v) = x+ v,

hence the exponential map converges to its Euclidean variant.

96

A.4. Miscellaneous properties

Proof For the positive case K > 0

lim
K→0+

expKx (v) = lim
K→0+

(
x⊕K

(
tanK

(√
|K|

λKx ‖v‖2
2

)
v√

|K| ‖v‖2

))

= x+ lim
K→0+

(
tanK

(√
|K|

λKx ‖v‖2
2

)
v√

|K| ‖v‖2

)

= x+
v

‖v‖2
lim

K→0+

tan
(√

K
λKx ‖v‖2

2

)
√
K ‖v‖2

= x+ v,

due to several applications of the theorem of limits of composed functions,
Lemma A.39, and the fact that

lim
α→0

tan(
√
αa)√
α

= a.

The negative case K < 0 is analogous. �

Theorem A.41 (logKx (y) converges to y − x as K → 0) For all x,y in
the Poincaré ball PnK or the projected sphere DnK , it holds that

lim
K→0

logKx (y) = logx(v) = y − x,

hence the logarithmic map converges to its Euclidean variant.

Proof Firstly,

z = −x⊕K y
K→0−−−→ y − x,

due to Theorem A.37. For the positive case K > 0

lim
K→0+

logKx (y) = lim
K→0+

(
2√
|K|λKx

tan−1K

(√
|K| ‖z‖2

) z

‖z‖2

)

= lim
K→0+

 2

λKx

tan−1K

(√
|K| ‖z‖2

)
√
|K| ‖z‖2

z

= lim

K→0+

2

λKx
· lim
K→0+

tan−1
(√

K ‖z‖2
)

√
K ‖z‖2

· lim
K→0+

z

= 1 · 1 · (x− vy) = x− y,

due to several applications of the theorem of limits of composed functions,
product rule for limits, Lemma A.39, and the fact that

lim
α→0

tan−1(
√
αa)√

α
= a.

The negative case K < 0 is analogous. �

97

A.5. Angles in constant curvature spaces

Lemma (gyr[x, y]v converges to v as K → 0) For all x,y in the Poincaré
ball PnK or the projected sphere DnK and v ∈ TxM, it holds that

lim
K→0

gyr[x,y]x = v,

hence gyration converges to an identity function.

Proof

lim
K→0

gyr[x,y]v = lim
K→0

(K(x⊕K y)⊕K (x⊕K (y ⊕K v)))

= −(x+ y) + (x+ (y + v))

= −x− y + x+ y + v = v,

due to Theorem A.37 and the theorem of limits of composed functions. �

Theorem A.43 (PTKx→y(v) converges to v as K → 0) For all x,y in the
Poincaré ball PnK or the projected sphere DnK and v ∈ TxM, it holds that

lim
K→0

PTKx→y(v) = v.

Proof

lim
K→0

PTKx→y(v) = lim
K→0

(
λKx
λKy

gyr[y,−x]v

)
= lim

K→0

λKx
λKy︸︷︷︸
K→0−−−→1

· lim
K→0

gyr[y,−x]v︸ ︷︷ ︸
K→0−−−→v

= v,

due to the product rule for limits, Lemma A.39, and Lemma A.42. �

A.5 Angles in constant curvature spaces

In the Euclidean space, we can define the notion of an “angle” between the two
vectors (or equivalently hyperplanes) thanks to the Cauchy-Schwarz theorem:

〈x,y〉2 = ||x||2||y||2 cos θx,y,

i.e. the scalar product decomposes into a product of the norms of the two
normal (orthogonal) vectors and the cosine of the angle θx,y between them.
Consequently, we have

θx,y = cos−1
(
〈x,y〉2
‖x‖2 ‖y‖2

)
,

98

A.5. Angles in constant curvature spaces

1

1 X

Y

cosh a

sinh a
x² – y² = 1

a/2

Figure A.2: Visualization of cosh of an angle in H1
1 (Wikimedia, 2009).

which gives us a specific formula for the “angle” between x and y.

Since the inner product at every point in the hypersphere SnK and the hyper-
boloid Hn

K is the same, we can define a notion of angles between points on
these manifolds. For the hypersphere, the inner product coincides with the
inner product in the ambient Euclidean space, therefore angles and norms
correspond to the Euclidean variants as well.

For the hyperboloid model Hn
K , we have

〈x,y〉L = ||x||L||y||L cosh θx,y = −R2 cosh θx,y,

due to the hyperboloid variant of Cauchy-Schwarz (Ratcliffe, 2006, Theo-
rem 3.1.6) (see Figure A.2). Subsequently

θx,y = cosh−1
〈x,y〉L
||x||L||y||L

= cosh−1
(
−
〈x,y〉L
R2

)
= cosh−1 (K 〈x,y〉L) ,

because

||x||L =
√
〈x,x〉L =

√
−R2 = iR ∀x ∈ Hn

K ,

and

||x||L||y||L =
(√
−R2

)2
= (iR)2 = −R2 ∀x,y ∈ Hn

K ,

which simplifies the angle formula in that space.

99

Appendix B

Probability details

B.1 Hyperspherical uniform distribution

The notion of a “uniform” distribution with uniform probability mass at every
point defined on a surface in Rn can be naturally applied to hyperspheres SnK ,
where for any point x ∈ Rn+1 it holds that

U(x; SnK) =

{
1

Sn(R) if x ∈ SnK
0 otherwise,

where Sn(R) denotes the surface area of an SnK with radius R = 1/
√
K

Sn(R) =
2
(
π
n+1
2

)
Γ
(
n+1
2

) Rn.
This distribution is useful, as it provides a good prior for representations on
the sphere.

We see that the probability U(x;SnK) only depends on the curvature and
dimensionality (i.e. does not depend on x), and is constant non-zero on all
points of SnK . Figure B.1 shows a plot of how the surface area of a hypersphere
changes with respect to its parameters.

To efficiently sample from the distribution U(SnK), we sample x ∼ N (0, I),
x ∈ Rn+1. We then normalize to obtain a sample

R

||x||2
x ∼ U(SnK).

For a proof of this method and a more thorough discussion, see Muller (1959).

100

B.2. Von Mises-Fisher distribution

(a) Surface area of SnK .

5 10 15 20 25
Dim

5

10

15

20

25

30

35

Surface Area

(b) Surface area of Sn1 .

Figure B.1: Surface area plots for spheres of variable radius in n-dimensional
spaces.

B.2 Von Mises-Fisher distribution

Remark (vMF distribution on SnK)

x ∼ vMF(µ, κ,K) ≈ Rx ∼ vMF(µ, κ′),

where κ′ ∝ κ ·Kn/2 = κ · 1
Rn .

Even though this is just a (crude) approximation, the intuition behind it is that
the vMF distribution on the unitary hypersphere with a given κ should scale
with respect to the radius approximately like the uniform distribution does.

B.3 Wrapped Normal distributions

Theorem B.2 (Probability density function of WN (z;µ,Σ) in Hn)

logWN (z;µ,Σ) = logN (v; 0,Σ)− (n− 1) log

(
sinh (‖u‖L)

‖u‖L

)
,

where u = logµ(z) and v = PTµ→µ0(u) ∈ Tµ0Hn.

Proof This was shown by Nagano et al. (2019). We reproduce it here be-
cause the following theorems about Wrapped Normal distributions in other
manifolds build on this.

Given two random variables x,y such that y = f(x) for an invertible and
continuous map f (Devore and Berk, 2012, Section 5.4), it holds that

log p(y) = log p(x)− log det

(
∂f

∂x

)
.

In our case, f = expµ ◦PTµ0→µ, and f−1 = PTµ→µ0 ◦ logµ.

101

B.3. Wrapped Normal distributions

The determinant decomposes using the chain rule and the fact that det(AB) =
det(A) det(B):

det

(
∂f(v)

∂v

)
= det

(
∂ expµ(u)

∂u

)
· det

(
∂ PTµ0→µ(v)

∂v

)
.

The derivative of parallel transport PTx→y(v) for any x,y ∈ Hn and v ∈
TxHn is a map d PTx→y(v) : Tv(TxHn). Using the orthonormal basis (with
respect to the Lorentz product) {ξ1, . . . ξn}, we can compute the determinant
by computing the change with respect to each basis vector.

d PTx→y(ξ) =
∂

∂ε

∣∣∣∣
ε=0

PTx→y(v + εξ)

=
∂

∂ε

∣∣∣∣
ε=0

[
(v + εξ) +

〈y,v + εξ〉L
1− 〈x,y〉L

(x+ y)

]
=

[
ξ +

〈y, ξ〉L
1− 〈x,y〉L

(x+ y)

]
ε=0

= PTx→y(ξ).

Since parallel transport preserves norms and vectors in the orthonormal basis
have norm 1, the change is ‖d PTx→y(ξ)‖L = ‖PTx→y(ξ)‖L = 1.

For computing the determinant of the exponential map Jacobian, we choose
the orthonormal basis {ξ1 = u/ ‖u‖L , ξ2, . . . , ξn}, where we just completed
the basis based on the first vector. We again look at the change with respect
to each basis vector. For the basis vector ξ1:

d expx(ξ1) =
∂

∂ε

∣∣∣∣
ε=0

expx

(
u+ ε

u

‖u‖L

)

=
∂

∂ε

∣∣∣∣
ε=0

cosh

(∥∥∥∥u+ ε
u

‖u‖L

∥∥∥∥
L

)
x+

sinh
(∥∥∥u+ ε u

‖u‖L

∥∥∥
L

)
∥∥∥u+ ε u

‖u‖L

∥∥∥
L

(
u+ ε

u

‖u‖L

)
=

∂

∂ε

∣∣∣∣
ε=0

[
cosh (| ‖u‖L + ε|)x+

sinh (| ‖u‖L + ε|)
‖u‖L | ‖u‖L + ε|

(‖u‖L + ε)u

]
=

[
(‖u‖L + ε) sinh (| ‖u‖L + ε|)

| ‖u‖L + ε|
x+

cosh (| ‖u‖L + ε|)
‖u‖L

u

]
ε=0

=
‖u‖L sinh (‖u‖L)

‖u‖L
x+

cosh (‖u‖L)

‖u‖L
u

= sinh (‖u‖L)x+ cosh (‖u‖L)
u

‖u‖L
,

where the third equality is due to∥∥∥∥u+ ε
u

‖u‖L

∥∥∥∥
L

=

∥∥∥∥(1 +
ε

‖u‖L

)
u

∥∥∥∥
L

=

∣∣∣∣1 +
ε

‖u‖L

∣∣∣∣ ‖u‖L = | ‖u‖L + ε|.

102

B.3. Wrapped Normal distributions

For every other basis vector ξk where k > 1:

d expx(ξ) =

=
∂

∂ε

∣∣∣∣
ε=0

expx(u+ εξ)

=
∂

∂ε

∣∣∣∣
ε=0

[
cosh (‖u+ εξ‖L)x+

sinh (‖u+ εξ‖L)

‖u+ εξ‖L
(u+ εξ)

]

=
∂

∂ε

∣∣∣∣
ε=0

cosh

(√
‖u‖2L + ε2

)
x+

sinh

(√
‖u‖2L + ε2

)
√
‖u‖2L + ε2

(u+ εξ)

=

ε cosh

(√
‖u‖2L + ε2

)
‖u‖2L + ε2

(u+ εξ)

+

(‖u‖2L ξ − εu+ ε(‖u‖2L + ε2)x) sinh

(√
‖u‖2L + ε2

)
(‖u‖2L + ε2)3/2

ε=0

=
‖u‖2L sinh (‖u‖L)

(‖u‖2L)3/2
ξ =

sinh (‖u‖L)

‖u‖L
ξ.

The third equality holds because

‖u+ εξ‖2L = ‖u‖2L + ε2 ‖ξ‖2L − 2 〈u, εξ〉L
= ‖u‖2L + ε2 − 2ε 〈u, ξ〉L
= ‖u‖2L + ε2,

where the last equality relies on the fact that the basis is orthogonal, and u is
parallel to ξ1 = u/ ‖u‖L, hence it is orthogonal to all the other basis vectors.

Because the basis is orthonormal the determinant is a product of the norms
of the computed change for each basis vector. Therefore,

det

(
∂ PTx→y(v)

∂v

)
= 1n = 1.

Additionally, the following two properties hold:∥∥∥∥sinh (‖u‖L)x+ cosh (‖u‖L)
u

‖u‖L

∥∥∥∥2
L

= sinh2 (‖u‖L) ‖x‖2L + cosh2 (‖u‖L)
‖u‖2L
‖u‖2L

= − sinh2 (‖u‖L) + cosh2 (‖u‖L) = 1,

103

B.3. Wrapped Normal distributions

and ∥∥∥∥sinh (‖u‖L)

‖u‖L
ξ

∥∥∥∥2
L

=
sinh2 (‖u‖L)

‖u‖2L
‖ξ‖2L =

sinh2 (‖u‖L)

‖u‖2L
.

�

Therefore, we obtain

det

(
∂ expx(u)

∂u

)
= 1 ·

(
sinh (‖u‖L)

‖u‖L

)n−1
.

Finally,

det

(
∂f(v)

∂v

)
= det

(
∂ expµ(u)

∂u

)
·det

(
∂ PTµ0→µ(v)

∂v

)
=

(
sinh (‖u‖L)

‖u‖L

)n−1
.

Theorem B.3 (Probability density function of WN (z;µ,Σ) in HnK)

logWN (z;µ,Σ) = logN (v; 0,Σ)− (n− 1) log

R sinh
(
‖u‖L
R

)
‖u‖L

 ,

where u = logKµ (z), v = PTK
µ→µ0

(u), and R = 1/
√
−K.

Proof The theorem is very similar to Theorem B.2. The difference is that
in this one, we do not assume unitary radius R = 1 = 1/

√
−K. Hence,

our tranformation function has the form f = expKµ ◦PTK
µ0→µ, and f−1 =

PTK
µ→µ0

◦ logKµ .

The derivative of parallel transport PTKx→y(v) for any x,y ∈ Hn
K and v ∈

TxHn
K is a map d PTK

x→y(v) : Tv(TxHn
K). Using the orthonormal basis (with

respect to the Lorentz product) {ξ1, . . . ξn}, we can compute the determinant
by computing the change with respect to each basis vector.

d PTK
x→y(ξ) =

∂

∂ε

∣∣∣∣
ε=0

PTK
x→y(v + εξ)

=
∂

∂ε

∣∣∣∣
ε=0

[
(v + εξ) +

〈y,v + εξ〉L
R2 − 〈x,y〉L

(x+ y)

]
=

[
ξ +

〈y, ξ〉L
R2 − 〈x,y〉L

(x+ y)

]
ε=0

= PTK
x→y(ξ).

Since parallel transport preserves norms and vectors in the orthonormal basis
have norm 1, the change is

∥∥d PTK
x→y(ξ)

∥∥
L =

∥∥PTK
x→y(ξ)

∥∥
L = 1.

104

B.3. Wrapped Normal distributions

For computing the determinant of the exponential map Jacobian, we choose
the orthonormal basis {ξ1 = u/ ‖u‖L , ξ2, . . . , ξn}, where we just completed
the basis based on the first vector. We again look at the change with respect
to each basis vector. For the basis vector ξ1:

d expKx (ξ1) =

=
∂

∂ε

∣∣∣∣
ε=0

expKx

(
u+ ε

u

‖u‖L

)

=
∂

∂ε

∣∣∣∣
ε=0

cosh

(
| ‖u‖L + ε|

R

)
x+

R sinh
(
|‖u‖L+ε|

R

)
‖u‖L | ‖u‖L + ε|

(‖u‖L + ε)u

=

(‖u‖L + ε) sinh
(
|‖u‖L+ε|

R

)
R| ‖u‖L + ε|

x+
cosh

(
|‖u‖L+ε|

R

)
‖u‖L

u

ε=0

= sinh

(
‖u‖L
R

)
x

R
+ cosh

(
‖u‖L
R

)
u

‖u‖L
,

where the second equality is due to∥∥∥∥u+ ε
u

‖u‖L

∥∥∥∥
L

=

∥∥∥∥(1 +
ε

‖u‖L

)
u

∥∥∥∥
L

=

∣∣∣∣1 +
ε

‖u‖L

∣∣∣∣ ‖u‖L = | ‖u‖L + ε|.

105

B.3. Wrapped Normal distributions

For every other basis vector ξk where k > 1:

d expKx (ξ) =

=
∂

∂ε

∣∣∣∣
ε=0

expKx (u+ εξ)

=
∂

∂ε

∣∣∣∣
ε=0

cosh

(
‖u+ εξ‖L

R

)
x+

R sinh
(
‖u+εξ‖L

R

)
‖u+ εξ‖L

(u+ εξ)

=
∂

∂ε

∣∣∣∣
ε=0

cosh

√
‖u‖2L + ε2

R

x+

R sinh

(√
‖u‖2L+ε2
R

)
√
‖u‖2L + ε2

(u+ εξ)

=

ε cosh

(√
‖u‖2L+ε2
R

)
‖u‖2L + ε2

(u+ εξ)

+

(R2 ‖u‖2L ξ −R2εu+ ε(‖u‖2L + ε2)x) sinh

(√
‖u‖2L+ε2
R

)
R(‖u‖2L + ε2)3/2

ε=0

=
R2 ‖u‖2L sinh

(
‖u‖L
R

)
R(‖u‖2L)3/2

ξ =
R sinh

(
‖u‖L
R

)
‖u‖L

ξ,

where the third equality holds because

‖u+ εξ‖2L = ‖u‖2L + ε2 ‖ξ‖2L − 2 〈u, εξ〉L
= ‖u‖2L + ε2 − 2ε 〈u, ξ〉L
= ‖u‖2L + ε2,

where the last equality relies on the fact that the basis is orthogonal, and u is
parallel to ξ1 = u/ ‖u‖L, hence it is orthogonal to all the other basis vectors.

Because the basis is orthonormal the determinant is a product of the norms
of the computed change for each basis vector. Therefore,

det

(
∂ PTx→y(v)

∂v

)
= 1n = 1.

Additionally, the following two properties hold:

106

B.3. Wrapped Normal distributions

∥∥∥∥d expKx

(
u

‖u‖L

)∥∥∥∥2
L

=

∥∥∥∥sinh

(
‖u‖L
R

)
x

R
+ cosh

(
‖u‖L
R

)
u

‖u‖L

∥∥∥∥2
L

= sinh2

(
‖u‖L
R

)
‖x‖2L
R2

+ cosh2

(
‖u‖L
R

)
‖u‖2L
‖u‖2L

= − sinh2

(
‖u‖L
R

)
+ cosh2

(
‖u‖L
R

)
= 1.

and

∥∥d expKx (ξ)
∥∥2
L =

∥∥∥∥∥∥
R sinh

(
‖u‖L
R

)
‖u‖L

ξ

∥∥∥∥∥∥
2

L

=
R2 sinh2

(
‖u‖L
R

)
‖u‖2L

‖ξ‖2L

=
R2 sinh2

(
‖u‖L
R

)
‖u‖2L

. �

Therefore, we obtain

det

(
∂ expKx (u)

∂u

)
= 1 ·

R sinh
(
‖u‖L
R

)
‖u‖L

n−1

.

Finally,

det

(
∂f(v)

∂v

)
= det

(
∂ expKµ (u)

∂u

)
·det

(
∂ PTK

µ0→µ(v)

∂v

)
=

R sinh
(
‖u‖L
R

)
‖u‖L

n−1

.

Theorem B.4 (Probability density function of WN (z;µ,Σ) in SnK)

logWN (z;µ,Σ) = logN (v; 0,Σ)− (n− 1) log

R
∣∣∣sin(‖u‖2R

)∣∣∣
‖u‖2

 ,

where u = logKµ (z), v = PTK
µ→µ0

(u), and R = 1/
√
K.

Proof The theorem is very similar to Theorem B.3. The difference is that in
this one, our manifold changes from Hn

K to SnK , hence K > 0. Our tranforma-
tion function has the form f = expKµ ◦PTK

µ0→µ, and f−1 = PTK
µ→µ0

◦ logKµ .

107

B.3. Wrapped Normal distributions

The derivative of parallel transport PTKx→y(v) for any x,y ∈ SnK and v ∈
TxSnK is a map d PTK

x→y(v) : Tv(TxSnK). Using the orthonormal basis (with
respect to the Lorentz product) {ξ1, . . . ξn}, we can compute the determinant
by computing the change with respect to each basis vector.

d PTK
x→y(ξ) =

∂

∂ε

∣∣∣∣
ε=0

PTK
x→y(v + εξ)

=
∂

∂ε

∣∣∣∣
ε=0

[
(v + εξ)−

〈y,v + εξ〉2
R2 + 〈x,y〉2

(x+ y)

]
=

[
ξ −

〈y, ξ〉2
R2 + 〈x,y〉2

(x+ y)

]
ε=0

= PTK
x→y(ξ).

Since parallel transport preserves norms and vectors in the orthonormal basis
have norm 1, the change is

∥∥d PTK
x→y(ξ)

∥∥
2

=
∥∥PTK

x→y(ξ)
∥∥
2

= 1.

For computing the determinant of the exponential map Jacobian, we choose
the orthonormal basis {ξ1 = u/ ‖u‖2 , ξ2, . . . , ξn}, where we just completed
the basis based on the first vector. We again look at the change with respect
to each basis vector. For the basis vector ξ1:

d expKx (ξ1) =

=
∂

∂ε

∣∣∣∣
ε=0

expKx

(
u+ ε

u

‖u‖2

)

=
∂

∂ε

∣∣∣∣
ε=0

cos

(
| ‖u‖2 + ε|

R

)
x+

R sin
(
|‖u‖2+ε|

R

)
‖u‖2 | ‖u‖2 + ε|

(‖u‖2 + ε)u

=

−(‖u‖2 + ε) sin
(
|‖u‖2+ε|

R

)
R| ‖u‖2 + ε|

x+
cos
(
|‖u‖2+ε|

R

)
‖u‖2

u

ε=0

= cos

(
‖u‖2
R

)
u

‖u‖2
− sin

(
‖u‖2
R

)
x

R
,

where the second equality is due to∥∥∥∥u+ ε
u

‖u‖2

∥∥∥∥
2

=

∥∥∥∥(1 +
ε

‖u‖2

)
u

∥∥∥∥
2

=

∣∣∣∣1 +
ε

‖u‖2

∣∣∣∣ ‖u‖2 = | ‖u‖2 + ε|.

108

B.3. Wrapped Normal distributions

For every other basis vector ξk where k > 1:

d expKx (ξ) =

=
∂

∂ε

∣∣∣∣
ε=0

expKx (u+ εξ)

=
∂

∂ε

∣∣∣∣
ε=0

cos

(
‖u+ εξ‖2

R

)
x+

R sin
(
‖u+εξ‖2

R

)
‖u+ εξ‖2

(u+ εξ)

=
∂

∂ε

∣∣∣∣
ε=0

cos

√
‖u‖22 + ε2

R

x+

R sin

(√
‖u‖22+ε2
R

)
√
‖u‖22 + ε2

(u+ εξ)

=

ε cos

(√
‖u‖22+ε2
R

)
‖u‖22 + ε2

(u+ εξ)

+

(R2 ‖u‖22 ξ −R2εu− ε(‖u‖22 + ε2)x) sin

(√
‖u‖22+ε2
R

)
R(‖u‖22 + ε2)3/2

ε=0

=
R2 ‖u‖22 sin

(
‖u‖2
R

)
R(‖u‖22)3/2

ξ =
R sin

(
‖u‖2
R

)
‖u‖2

ξ,

where the third equality holds because

‖u+ εξ‖22 = ‖u‖22 + ε2 ‖ξ‖22 − 2 〈u, εξ〉2
= ‖u‖22 + ε2 − 2ε 〈u, ξ〉2
= ‖u‖22 + ε2,

where the last equality relies on the fact that the basis is orthogonal, and u is
parallel to ξ1 = u/ ‖u‖2, hence it is orthogonal to all the other basis vectors.

Because the basis is orthonormal the determinant is a product of the norms
of the computed change for each basis vector. Therefore,

det

(
∂ PTx→y(v)

∂v

)
= 1n = 1.

109

B.3. Wrapped Normal distributions

Additionally, the following two properties hold:∥∥∥∥d expKx

(
u

‖u‖2

)∥∥∥∥2
2

=

∥∥∥∥cos

(
‖u‖2
R

)
u

‖u‖2
− sin

(
‖u‖2
R

)
x

R

∥∥∥∥2
2

= sin2

(
‖u‖2
R

)
‖x‖22
R2

+ cos2
(
‖u‖2
R

)
‖u‖22
‖u‖22

= sin2

(
‖u‖2
R

)
+ cos2

(
‖u‖2
R

)
= 1.

and

∥∥d expKx (ξ)
∥∥2
2

=

∥∥∥∥∥∥
R sin

(
‖u‖2
R

)
‖u‖2

ξ

∥∥∥∥∥∥
2

2

=
R2 sin2

(
‖u‖2
R

)
‖u‖22

‖ξ‖22

=
R2 sin2

(
‖u‖2
R

)
‖u‖22

. �

Therefore, we obtain

det

(
∂ expKx (u)

∂u

)
= 1 ·

R
∣∣∣sin(‖u‖2R

)∣∣∣
‖u‖2

n−1

.

Finally,

det

(
∂f(v)

∂v

)
= det

(
∂ expKµ (u)

∂u

)
·det

(
∂ PTK

µ0→µ(v)

∂v

)
=

R sin
∣∣∣(‖u‖2R

)∣∣∣
‖u‖2

n−1

.

Theorem B.5 (Probability density function of WN (z;µ,Σ) in PnK)

logWN PnK (z;µ,Σ) = logWNHnK (ρ−1K (z); ρ−1K (µ),Σ).

Proof Follows from Theorem B.3 and A.11.

Also proven by (Mathieu et al., 2019) in a slightly different form for a scalar
scale parameter WN (z;µ, σ2I). Given

logN (z;µ, σ2I) = −dE(µ, z)2

2σ2
− n

2
log
(
2πσ2

)
logWN (z;µ, σ2I) =−

dKP (µ, z)2

2σ2
− n

2
log
(
2πσ2

)
+ (n− 1) log

(√
−KdKP (µ, z)

sinh(
√
−KdKP (µ, z))

)
. �

110

B.3. Wrapped Normal distributions

Theorem B.6 (Probability density function of WN (z;µ,Σ) in DnK)

logWNDnK (z;µ,Σ) = logWN SnK (ρ−1K (z); ρ−1K (µ),Σ).

Proof Follows from Theorem B.4 and A.28. �

111

Appendix C

Variational Autoencoders

C.1 Why use Variational Autoencoders?

The motivation behind variational autoencoders is to be able to bring approx-
imate variational inference (Section 4.2) to autoencoders (Section 4.1). The
main benefit of this is learning “smooth” latent space representations, com-
pared to standard autoencoders, as is illustrated in Figure C.1.

Essentially, if we only optimize the reconstruction term of the ELBO (similar
to an autoencoder), the model tends to position learned representations in
the space arbitrarily so that it can reconstruct as well as possible and ends up
with a latent space that has “empty” parts where no observed data samples
get encoded. Hence, if we take two input data points, encode them, and
try to decode some of the latent representations on the shortest path between
them, we will essentially end up with very abrupt changes in the reconstructed
samples. This case loosely corresponds to a non-variational autoencoder. In

(a) Complete ELBO (b) Only reconstruction (c) Only KL

Figure C.1: VAE latent space representation plots of a VAE applied to MNIST
digits, using different parts of the ELBO loss for optimization (Shafkat, 2018).

112

C.1. Why use Variational Autoencoders?

the case of a classical deterministic autoencoder, there is not even a formal
way to “sample” from the model, as it is not stochastic.

If we optimize the complete ELBO, we get a regularization term in the form of
the KL divergence between our decoder posterior and the chosen prior on the
latent space. This means that the model will try to distribute all the latent
representations of samples according to the chosen prior. A generalization of
this intuition is the β-VAE (Matthey et al., 2017).

On the other end of the spectrum, if we only optimize the regularization part
of the ELBO, we will end up with collapsed posteriors (Bowman et al., 2016;
Chen et al., 2014). If the prior is a Normal distributionN (µ, σ2I), our encoder
will force σ towards 0. Even if we constrain σ ≥ 1, we will collapse to the
prior N (0, I).

113

Appendix D

Extended results

D.1 Implementation remarks

Remark (Computability of functions with floating-point numbers)
Do note, that several functions we employ in either the geometrical operations,
or probability distributions in Riemannian manifolds of constant curvature re-
quire some care to implement with numerical stability.

Notably, the arguments of sinh and cosh need to be clamped to around [−85, 85]
to not run into infinite floating-point numbers.

Likewise, cosh−1 and tanh−1 need to be clamped to an ε-neighborhood on the
edges of their domains. We use ε = 10−8. Similarly,

√
x needs to be imple-

mented as
√

max(ε, x) to have stable gradients.

Do note, that both log ◦ sinh and log ◦ cosh have explicit forms that reduce to
a “log-sum-exp” expression, which can be computed more efficiently and stably
using the log-sum-exp function provided by a given numerical computation
library.

Finally, some operations are more easily computable in practice when we re-
formulate them. For example, the original distance in a Poincaré ball (us-
ing cosh−1) is very numerically unstable, while the gyrospace distance (using
tanh−1) is dramatically more stable.

Remark (Practical limitations of constant curvature manifolds)
As noted in Remark D.1, functions used in spaces of constant curvature often
have to be artifically limited to stabilize training.

Additionally, for training in spaces like the Poincaré ball, we have to project
to an “open ball”, which means again choosing a fixed ε constant, to move
points away from the boundary. The distances on the hypersphere are by na-
ture limited to R · π (antipodal points), therefore (spherical) distances on the
projected hypersphere are also limited.

114

D.1. Implementation remarks

For these reasons, the representable distances in these manifolds are often
limited to only a few units. As we can see from our experiments, this does
not impact learning representations much, but it might be a problem in other
domains where the absolute values of distances is important as well.

115

D.2. Spherical covariance matrix

D.2 Spherical covariance matrix

Model LL ELBO BCE KL

(S21)3 −55.89±0.36 −56.72±0.40 51.01±0.31 5.72±0.09
S61 −55.81±0.35 −56.57±0.44 51.16±0.78 5.41±0.42
(vMF S21)3 −57.87±1.52 −58.64±1.63 53.96±2.16 4.68±0.53
vMF S61 −58.78±0.83 −60.74±2.29 56.03±2.64 4.71±0.48
(D2

1)
3 −56.01±0.24 −56.67±0.31 51.02±0.40 5.65±0.10

D6
1 −55.78±0.07 −56.38±0.06 50.85±0.20 5.53±0.24

(E2)3 −56.34±0.45 −56.94±0.50 51.32±0.55 5.62±0.19
E6 −56.28±0.56 −56.99±0.59 51.58±0.69 5.41±0.29
(H2
−1)

3 −56.08±0.52 −56.80±0.54 50.94±0.38 5.86±0.25
H6
−1 −56.18±0.32 −57.10±0.21 51.48±0.47 5.62±0.31

(P2
−1)

3 −55.98±0.62 −56.49±0.62 50.96±0.61 5.52±0.31
P6
−1 −56.74±0.55 −57.61±0.74 52.01±0.71 5.60±0.24

(RN P2
−1)

3 −54.99±0.12 −55.90±0.13 52.42±0.71 3.48±0.60

(S2)3 −56.05±0.21 −56.69±0.36 51.07±0.21 5.61±0.22
(vMF S2)3 −57.56±0.88 −57.80±0.89 52.68±1.62 5.12±0.84
S6 −56.06±0.51 −56.65±0.64 50.93±0.38 5.72±0.40
vMF S6 −58.21±0.92 −59.87±1.51 54.99±1.79 4.88±0.39
(D2)3 −56.06±0.36 −56.69±0.54 50.95±0.40 5.74±0.17
D6 −56.10±0.25 −56.69±0.17 50.90±0.19 5.79±0.03
(H2)3 −55.80±0.32 −56.72±0.16 51.14±0.39 5.58±0.28
H6 −56.03±0.21 −56.82±0.20 50.99±0.16 5.83±0.27
(P2)3 −56.29±0.05 −57.11±0.22 51.41±0.19 5.69±0.30
P6 −56.40±0.31 −57.13±0.25 51.17±0.33 5.96±0.27
(RN P2)3 −56.25±0.56 −57.26±0.45 53.16±1.07 4.11±0.64

D2 × E2 × P2 −55.87±0.22 −56.35±0.22 50.67±0.57 5.69±0.43
D2
1 × E2 × P2

−1 −56.06±0.41 −56.86±0.65 51.23±0.67 5.64±0.11
D2 × E2 × (RN P2) −56.35±0.82 −57.06±0.78 51.89±0.71 5.17±0.12
D2
1 × E2 × (RN P2

−1) −56.17±0.43 −56.75±0.56 51.80±0.80 4.95±0.32
E2 ×H2 × S2 −55.92±0.42 −56.54±0.45 51.13±0.74 5.41±0.40
E2 ×H2

−1 × S21 −56.04±0.57 −56.71±0.77 51.09±0.86 5.62±0.12
E2 ×H2 × (vMF S2) −55.82±0.43 −56.32±0.47 51.10±0.67 5.21±0.20
E2 ×H2

−1 × (vMF S21) −55.77±0.51 −56.34±0.65 51.33±0.57 5.01±0.17

(U2)3 −55.56±0.15 −56.05±0.32 50.68±0.23 5.37±0.10
U6 −55.84±0.38 −56.46±0.41 50.66±0.38 5.81±0.18

Table D.1: Summary of results (mean and standard-deviation) with latent
space dimension of 6, spherical covariance parametrization, on the BDP
dataset.

116

D.2. Spherical covariance matrix

Model LL ELBO BCE KL

(S21)3 −96.77±0.26 −101.66±0.32 87.04±0.49 14.62±0.18
(vMF S21)3 −97.72±0.22 −102.98±0.15 87.77±0.18 15.21±0.07
S61 −96.71±0.17 −101.55±0.30 86.90±0.30 14.65±0.10
vMF S61 −97.03±0.14 −102.12±0.26 87.42±0.28 14.69±0.03
(D2

1)
3 −97.84±0.10 −102.75±0.22 88.43±0.12 14.33±0.13

D6
1 −98.21±0.23 −103.02±0.14 88.44±0.05 14.58±0.11

(E2)3 −97.04±0.14 −101.44±0.18 86.77±0.22 14.67±0.22
E6 −97.16±0.15 −101.67±0.14 87.17±0.26 14.50±0.20
(H2
−1)

3 −97.31±0.09 −102.20±0.29 87.81±0.23 14.39±0.13
H6
−1 −97.10±0.44 −101.89±0.33 87.32±0.22 14.56±0.20

(P2
−1)

3 −97.56±0.04 −102.33±0.22 87.93±0.32 14.40±0.10
(RN P2

−1)
3 −92.54±0.19 −97.19±0.21 88.42±0.20 8.76±0.04

P6
−1 −97.80±0.05 −102.60±0.04 88.14±0.08 14.46±0.07

(S2)3 −96.46±0.12 −101.30±0.17 86.79±0.25 14.51±0.09
(vMF S2)3 −97.62±0.30 −102.72±0.37 87.48±0.37 15.24±0.03
S6 −96.72±0.15 −101.39±0.16 86.69±0.15 14.70±0.13
vMF S6 −96.72±0.18 −101.55±0.21 86.82±0.23 14.73±0.02
(D2)3 −97.68±0.24 −102.51±0.44 88.11±0.34 14.41±0.11
D6 −97.72±0.15 −102.31±0.16 87.70±0.22 14.61±0.06
(H2)3 −97.37±0.13 −102.07±0.24 87.56±0.30 14.51±0.11
H6 −97.47±0.16 −102.18±0.20 87.64±0.23 14.53±0.07
(P2)3 −97.62±0.05 −102.34±0.16 87.92±0.16 14.43±0.06
(RN P2)3 −94.16±0.68 −98.65±0.66 89.27±0.79 9.38±0.15
P6 −97.71±0.24 −102.55±0.21 88.24±0.23 14.32±0.04

D2 × E2 × P2 −97.48±0.18 −102.22±0.29 87.85±0.17 14.37±0.13
D2
1 × E2 × P2

−1 −97.58±0.13 −102.23±0.15 87.75±0.15 14.49±0.15
D2 × E2 × (RN P2) −96.43±0.47 −101.31±0.51 88.82±0.50 12.50±0.03
D2
1 × E2 × (RN P2

−1) −96.18±0.21 −100.91±0.31 88.58±0.47 12.33±0.19
E2 ×H2 × S2 −96.80±0.20 −101.60±0.33 87.13±0.19 14.47±0.17
E2 ×H2

−1 × S21 −96.76±0.09 −101.48±0.13 86.99±0.17 14.49±0.05
E2 ×H2 × (vMF S2) −96.56±0.27 −101.49±0.28 86.58±0.36 14.91±0.14
E2 ×H2

−1 × (vMF S21) −96.76±0.39 −101.82±0.13 87.08±0.06 14.74±0.13

(U2)3 −97.12±0.04 −101.68±0.06 87.13±0.14 14.55±0.16
U6 −97.26±0.16 −102.05±0.18 87.54±0.21 14.51±0.11

Table D.2: Summary of results (mean and standard-deviation) with latent
space dimension of 6, spherical covariance parametrization, on the MNIST
dataset.

117

D.2. Spherical covariance matrix

Figure D.1: Learned curvature across epochs (with standard deviation) with
latent space dimension of 6, spherical covariance parametrization, on the BDP
dataset.

Figure D.2: Learned curvature across epochs (with standard deviation) with la-
tent space dimension of 6, spherical covariance parametrization, on the MNIST
dataset.

118

D.2. Spherical covariance matrix

(a) BDP M-VAEs with dim(M) = 6.

(b) MNIST M-VAEs with dim(M) = 6.

Figure D.3: Boxplot of evaluation marginal log-likelihoods at the end of train-
ing for BDP and MNIST, with spherical covariance per component.

119

D.3. Diagonal covariance matrix

D.3 Diagonal covariance matrix

D.3.1 Dynamically binarized MNIST reconstruction

Model LL ELBO BCE KL

(S21)3 −96.57±0.04 −101.34±0.12 86.88±0.17 14.45±0.10
S61 −96.51±0.09 −101.29±0.18 86.71±0.20 14.58±0.13
(D2

1)
3 −97.81±0.14 −102.58±0.23 88.31±0.25 14.27±0.02

D6
1 −97.89±0.10 −102.65±0.10 88.39±0.16 14.26±0.08

(E2)3 −96.94±0.34 −101.34±0.41 86.89±0.36 14.44±0.11
E6 −96.88±0.16 −101.36±0.08 86.90±0.14 14.46±0.07
(H2
−1)

3 −97.19±0.32 −102.06±0.28 87.63±0.37 14.42±0.10
H6
−1 −97.38±0.73 −102.22±0.95 87.75±0.59 14.47±0.37

(P2
−1)

3 −97.57±0.12 −102.22±0.18 87.83±0.30 14.39±0.13
P6
−1 −97.33±0.15 −102.02±0.35 87.71±0.36 14.31±0.04

(S2)3 −96.78±0.35 −101.43±0.24 86.93±0.28 14.50±0.05
S6 −96.44±0.20 −101.18±0.36 86.74±0.38 14.44±0.05
(D2)3 −97.61±0.19 −102.37±0.26 87.96±0.21 14.41±0.06
D6 −97.53±0.22 −102.31±0.38 87.97±0.37 14.34±0.08
(H2)3 −96.86±0.31 −101.61±0.30 87.13±0.30 14.48±0.08
H6 −96.90±0.26 −101.48±0.35 87.18±0.48 14.30±0.15
(P2)3 −97.52±0.02 −102.30±0.07 88.11±0.07 14.19±0.12
P6 −97.26±0.16 −102.00±0.17 87.58±0.16 14.42±0.08

D2 × E2 × P2 −97.37±0.14 −102.12±0.19 87.78±0.23 14.34±0.12
D2
1 × E2 × P2

−1 −97.29±0.16 −101.86±0.16 87.54±0.17 14.32±0.04
E2 ×H2 × S2 −96.71±0.19 −101.34±0.16 86.91±0.17 14.43±0.06
E2 ×H2

−1 × S21 −96.66±0.27 −101.46±0.44 87.02±0.38 14.44±0.08

(U2)3 −97.06±0.13 −101.66±0.19 87.22±0.12 14.44±0.07
U6 −96.90±0.10 −101.68±0.07 87.27±0.11 14.42±0.12

Table D.3: Summary of results (mean and standard-deviation) with latent
space dimension of 6, diagonal covariance parametrization, on the MNIST
dataset.

We also present an illustrative latent space visualization of a randomly selected
run of the models E2×H2×S2, E6, H6, and S6 with spherical covariance (Fig-
ure D.9). E2 is visualized directly, S2 is visualized using a Lambert azimuthal
equal-area projection (Snyder, 1987, Chapter 24), H2 is transformed to the
Poincaré ball model using Equation 2.3. All other latent space sizes were first
projected using the respective transformation (to Poincaré ball, Lambert pro-
jection) if applicable, and then projected to R2 using Principal Component

120

D.3. Diagonal covariance matrix

Model LL ELBO BCE KL

(S21)6 −79.92±0.21 −84.88±0.14 62.83±0.21 22.06±0.07
S121 −80.72±0.34 −85.73±0.36 63.86±0.32 21.87±0.04
(D2

1)
6 −80.53±0.10 −85.59±0.08 63.62±0.12 21.97±0.16

D12
1 −80.81±0.12 −86.40±0.17 64.42±0.19 21.98±0.06

(E2)6 −79.51±0.10 −83.91±0.12 61.84±0.06 22.07±0.13
E12 −79.51±0.09 −83.95±0.06 61.66±0.10 22.29±0.04
(H2
−1)

6 −80.54±0.23 −86.05±0.52 63.78±0.26 22.27±0.26
H12
−1 −79.37±0.14 −84.76±0.08 62.32±0.05 22.44±0.10

(P2
−1)

6 −80.39±0.07 −85.46±0.15 63.48±0.22 21.98±0.17
P12
−1 −80.88±0.20 −85.87±0.45 63.66±0.59 22.21±0.17

(S2)6 −79.95±0.14 −84.90±0.25 62.83±0.34 22.07±0.17
S12 −79.99±0.27 −84.78±0.26 62.89±0.29 21.89±0.18
(D2)6 −80.40±0.09 −85.38±0.08 63.49±0.12 21.89±0.18
D12 −80.37±0.16 −85.26±0.19 63.24±0.15 22.02±0.13
(H2)6 −80.13±0.08 −85.22±0.24 63.32±0.34 21.90±0.10
H12 −79.77±0.10 −84.58±0.15 62.49±0.10 22.09±0.20
(P2)6 −80.31±0.08 −85.35±0.10 63.57±0.17 21.79±0.07
P12 −80.66±0.09 −85.55±0.03 63.55±0.17 22.00±0.14

(D2)2 × (E2)2 × (P2)2 −80.30±0.31 −85.22±0.40 63.52±0.48 21.70±0.11
(D2

1)
2 × (E2)2 × (P2

−1)
2 −80.14±0.11 −85.00±0.08 62.99±0.16 22.01±0.24

D4 × E4 × P4 −80.17±0.11 −84.95±0.27 62.87±0.39 22.08±0.18
D4
1 × E4 × P4

−1 −80.14±0.20 −84.99±0.26 63.06±0.26 21.92±0.08
(E2)2 × (H2)2 × (S2)2 −79.59±0.25 −84.43±0.20 62.68±0.20 21.75±0.20
(E2)2 × (H2

−1)
2 × (S21)2 −79.87±0.45 −84.82±0.61 62.66±0.42 22.17±0.20

E4 ×H4 × S4 −79.69±0.14 −84.45±0.12 62.64±0.28 21.81±0.21
E4 ×H4

−1 × S41 −79.77±0.09 −84.75±0.03 62.68±0.25 22.07±0.24

(U2)6 −79.61±0.06 −84.13±0.04 61.92±0.22 22.21±0.23
U12 −80.01±0.30 −84.86±0.51 62.90±0.63 21.96±0.16

Table D.4: Summary of results (mean and standard-deviation) with latent
space dimension of 12, diagonal covariance parametrization, on the MNIST
dataset.

Analysis (Abdi and Williams, 2010, PCA) and visualized directly.

121

D.3. Diagonal covariance matrix

Model LL ELBO BCE KL

(S21)36 −78.43±0.44 −84.99±0.49 56.88±0.28 28.11±0.56
(D2

1)
36 −76.03±0.17 −83.04±0.25 54.35±0.15 28.69±0.17

(E2)36 −74.53±0.06 −80.05±0.10 50.91±0.17 29.15±0.07
E72 −74.42±0.06 −80.09±0.12 51.45±0.30 28.63±0.20
(H2
−1)

36 −77.92±0.32 −84.76±0.55 56.85±0.60 27.91±0.42
H72
−1 −77.30±0.12 −86.98±0.09 58.04±0.29 28.94±0.25

(P2
−1)

36 −76.11±0.08 −82.63±0.19 53.89±0.36 28.74±0.30
P72
−1 −77.50±0.05 −84.53±0.13 55.80±0.20 28.73±0.18

S72 −75.24±0.01 −81.39±0.14 53.03±0.27 28.36±0.16
(D2)36 −75.66±0.06 −81.94±0.09 53.32±0.16 28.61±0.11
D72 −77.11±2.21 −83.94±2.81 54.94±2.55 29.00±1.31
(H2)36 −77.87±0.02 −83.95±0.02 55.71±0.35 28.24±0.36
H72 −75.03±0.11 −81.23±0.14 52.63±0.10 28.61±0.11
(P2)36 −75.77±0.12 −82.07±0.02 53.65±0.38 28.43±0.39
P72 −75.71±0.08 −81.95±0.09 53.29±0.14 28.67±0.05

(D2)12 × (E2)12 × (P2)12 −77.40±0.55 −83.35±0.41 53.90±0.40 29.45±0.12
(D2

1)
12 × (E2)12 × (P2

−1)
12 −75.36±0.23 −81.53±0.42 53.02±0.39 28.51±0.45

D24 × E24 × P24 −75.11±0.05 −80.99±0.07 52.48±0.19 28.52±0.16
(E2)12 × (H2

−1)
12 × (S21)12 −77.53±0.34 −83.95±0.40 55.54±0.43 28.42±0.08

E24 ×H24 × S24 −75.04±0.16 −81.17±0.18 52.61±0.32 28.55±0.38

(U2)36 −74.64±0.08 −80.52±0.10 52.04±0.10 28.48±0.07
U72 −75.46±0.09 −81.76±0.09 53.27±0.18 28.49±0.18

Table D.5: Summary of results (mean and standard-deviation) with latent
space dimension of 72, diagonal covariance parametrization, on the MNIST
dataset.

122

D.3. Diagonal covariance matrix

(a) MNIST M-VAEs with dim(M) = 6.

(b) MNIST M-VAEs with dim(M) = 12.

(c) MNIST M-VAEs with dim(M) = 72.

Figure D.4: Boxplot of evaluation marginal log-likelihoods at the end of train-
ing for MNIST, with diagonal covariance per component.

123

D.3. Diagonal covariance matrix

Figure D.5: Learned curvature across epochs (with standard deviation) with la-
tent space dimension of 6, diagonal covariance parametrization, on the MNIST
dataset.

Figure D.6: Learned curvature across epochs (with standard deviation) with
latent space dimension of 12, diagonal covariance parametrization, on the
MNIST dataset.

124

D.3. Diagonal covariance matrix

(a) Original (b) (E2)36

(c) (E2)3 (d) E2 ×H2 × S2

(e) (E2)12 × (H2)12 × (S2)12 (f) (U2)36

Figure D.7: Qualitative comparison of reconstruction quality of randomly
selected runs of a selection of well-performing models on MNIST test set digits.

125

D.3. Diagonal covariance matrix

(a) First component of (E2)3. (b) Second component of (E2)3.

(c) First (negative) component of
(U2)3.

(d) Second (negative) component of
(U2)3.

(e) P2 of E2 × P2 × D2. (f) D2 of E2 × P2 × D2.

Figure D.8: Samples from various models of a grid search around 0 of a single
component’s latent space on MNIST test digits. 126

D.3. Diagonal covariance matrix

(a) H2 of E2 ×H2 × S2 (b) H6

(c) E2 of E2 ×H2 × S2 (d) E6

(e) S2 of E2 ×H2 × S2 (f) S6

Figure D.9: Illustrative latent space visualization of a randomly selected run
of the models E2 ×H2 × S2, E6, H6, and S6 on MNIST.

127

D.3. Diagonal covariance matrix

D.3.2 Dynamically binarized Omniglot reconstruction

(a) Omniglot M-VAEs with dim(M) = 6.

(b) Omniglot M-VAEs with dim(M) = 72.

Figure D.10: Boxplot of evaluation marginal log-likelihoods at the end of
training for Omniglot, with spherical covariance per component.

128

D.3. Diagonal covariance matrix

Model LL ELBO BCE KL

(S21)3 −136.80±1.31 −141.68±1.52 131.73±5.65 9.95±4.33
S61 −136.69±0.94 −141.46±0.92 129.52±0.74 11.94±0.19
(D2

1)
3 −136.21±0.12 −140.44±0.17 128.93±0.14 11.51±0.04

D6
1 −137.42±1.20 −141.95±1.94 130.70±2.18 11.25±0.26

(E2)3 −136.08±0.21 −140.46±0.24 128.85±0.34 11.62±0.14
E6 −136.05±0.29 −140.50±0.35 128.95±0.41 11.55±0.14
(H2
−1)

3 −137.14±0.13 −141.87±0.16 130.18±0.21 11.69±0.10
H6
−1 −137.09±0.06 −142.22±0.19 130.37±0.21 11.85±0.12

(P2
−1)

3 −136.16±0.20 −140.63±0.32 129.29±0.34 11.34±0.03
P6
−1 −135.86±0.20 −140.36±0.19 128.92±0.23 11.44±0.16

(S2)3 −136.14±0.27 −140.68±0.32 128.98±0.27 11.70±0.13
S6 −136.20±0.44 −140.76±0.45 129.10±0.37 11.66±0.13
(D2)3 −136.13±0.17 −140.59±0.15 129.10±0.20 11.49±0.12
D6 −136.30±0.08 −140.74±0.14 129.35±0.16 11.39±0.05
(H2)3 −136.17±0.09 −140.65±0.17 129.26±0.07 11.39±0.16
H6 −136.24±0.32 −140.92±0.33 129.48±0.27 11.45±0.12
(P2)3 −136.09±0.07 −140.41±0.08 129.04±0.05 11.37±0.08
P6 −136.05±0.44 −140.42±0.47 129.04±0.53 11.38±0.07

D2 × E2 × P2 −135.89±0.40 −140.28±0.42 128.75±0.40 11.53±0.04
D2
1 × E2 × P2

−1 −136.01±0.31 −140.52±0.35 129.02±0.27 11.50±0.11
E2 ×H2 × S2 −135.93±0.48 −140.51±0.53 128.85±0.48 11.66±0.14
E2 ×H2

−1 × S21 −136.34±0.41 −141.02±0.46 129.24±0.47 11.78±0.10

(U2)3 −136.21±0.07 −140.65±0.30 129.14±0.34 11.52±0.15
U6 −136.04±0.17 −140.43±0.14 129.07±0.27 11.36±0.13

Table D.6: Summary of results (mean and standard-deviation) with latent
space dimension of 6, diagonal covariance parametrization, on the Omniglot
dataset.

129

D.3. Diagonal covariance matrix

Figure D.11: Learned curvature across epochs (with standard deviation) with
latent space dimension of 72, diagonal covariance parametrization, on the
Omniglot dataset.

130

D.3. Diagonal covariance matrix

Model LL ELBO BCE KL

(S21)36 −112.33±0.14 −118.94±0.14 91.04±0.37 27.90±0.23
(D2

1)
36 −108.66±0.24 −116.06±0.18 85.95±0.16 30.11±0.04

(E2)36 −105.96±0.33 −112.41±0.35 79.80±0.72 32.61±0.41
E72 −105.89±0.16 −112.40±0.17 79.52±0.19 32.89±0.20
(H2
−1)

36 −112.22±0.11 −119.06±0.15 91.30±0.47 27.76±0.35
H72
−1 −111.19±0.42 −120.49±0.35 91.11±0.73 29.38±0.40

(P2
−1)

36 −109.05±0.09 −115.99±0.10 85.81±0.42 30.18±0.34
P72
−1 −111.24±0.28 −118.36±0.24 89.53±0.38 28.84±0.18

S72 −109.39±0.32 −116.42±0.32 87.22±0.58 29.20±0.28
(D2)36 −108.89±0.36 −115.65±0.45 85.29±0.74 30.37±0.30
D72 −108.81±0.08 −115.71±0.09 85.68±0.10 30.03±0.09
(H2)36 −112.21±0.28 −118.74±0.30 91.03±0.76 27.71±0.47
H72 −108.62±0.40 −115.54±0.30 85.18±0.62 30.37±0.34
(P2)36 −108.78±0.66 −115.54±0.70 85.16±1.38 30.38±0.69
P72 −109.66±0.61 −116.50±0.68 87.09±1.43 29.42±0.75

(D2)12 × (E2)12 × (P2)12 −107.02±1.56 −115.62±1.76 88.52±8.24 27.10±6.48
(D2

1)
12 × (E2)12 × (P2

−1)
12 −108.06±0.47 −114.92±0.39 83.95±0.58 30.97±0.22

(E2)12 × (H2)12 × (S2)12 −114.85±0.38 −120.98±0.15 95.12±0.49 25.86±0.40
(E2)12 × (H2

−1)
12 × (S21)12 −110.28±0.37 −116.90±0.42 87.71±0.82 29.19±0.41

(U2)36 −105.98±0.05 −112.70±0.19 79.85±0.80 32.85±0.61
U72 −106.58±0.12 −113.68±0.11 81.53±0.34 32.15±0.36

Table D.7: Summary of results (mean and standard-deviation) with latent
space dimension of 72, diagonal covariance parametrization, on the Omniglot
dataset.

131

D.3. Diagonal covariance matrix

(a) Original

(b) (E2)36

(c) (U2)36

Figure D.12: Qualitative comparison of reconstruction quality of randomly
selected runs of a selection of well-performing models on Omniglot test set
characters.

132

D.3. Diagonal covariance matrix

D.3.3 CIFAR reconstruction

(a) CIFAR M-VAEs with dim(M) = 6.

(b) CIFAR M-VAEs with dim(M) = 512.

Figure D.13: Boxplot of evaluation marginal log-likelihoods at the end of
training for Omniglot, with spherical covariance per component.

133

D.3. Diagonal covariance matrix

Model LL ELBO BCE KL

S61 −1893.16±nan −1901.32±nan 1885.97±nan 15.35±nan
D6
1 −1891.69±nan −1897.77±nan 1884.12±nan 13.64±nan

E6 −1896.19±2.54 −1905.75±3.19 1889.97±2.88 15.78±0.32
H6
−1 −1888.23±2.12 −1896.56±2.93 1882.05±2.65 14.51±0.34

P6
−1 −1893.27±0.61 −1902.67±0.74 1887.44±0.83 15.23±0.16

D6 −1893.85±0.36 −1902.67±0.69 1887.37±0.74 15.30±0.08
S6 −1889.76±1.62 −1897.31±1.71 1882.55±1.48 14.76±0.24
P6 −1891.40±2.14 −1899.68±2.74 1884.58±2.56 15.10±0.18

D2 × E2 × P2 −1899.90±4.60 −1904.63±1.46 1889.13±1.38 15.50±0.08
E2 ×H2 × S2 −1895.46±0.92 −1897.57±0.94 1882.84±0.70 14.73±0.24

(U2)3 −1895.09±4.27 −1904.46±5.21 1888.89±4.71 15.57±0.51

Table D.8: Summary of results (mean and standard-deviation) with latent
space dimension of 6, diagonal covariance parametrization, on the CIFAR
dataset.

Figure D.14: Learned curvature across epochs (with standard deviation) with
latent space dimension of 6, diagonal covariance parametrization, on the CI-
FAR dataset.

134

D.3. Diagonal covariance matrix

Model LL ELBO BCE KL

E512 −1814.12±0.16 −1819.06±0.20 1774.48±0.43 44.57±0.40
E172 ×H170 × S170 −1815.42±nan −1820.13±nan 1776.19±nan 43.94±nan
U512 −1814.37±nan −1819.42±nan 1775.29±nan 44.13±nan

Table D.9: Summary of results (mean and standard-deviation) with latent
space dimension of 512, diagonal covariance parametrization, on the CIFAR
dataset.

(a) Original (b) E512

(c) E6 (d) (U2)3

(e) E2 × P2 × D2 (f) E2 ×H2 × S2

Figure D.15: Qualitative comparison of reconstruction quality of randomly se-
lected runs of a selection of well-performing models on CIFAR test set images.

135

D.3. Diagonal covariance matrix

(a) 2nd pair of latent dim. of E6. (b) 3rd pair of latent dim. of E6.

(c) 1st (positive) component of (U2)3. (d) 2nd (positive) component of (U2)3.

(e) P2 of E2 × P2 × D2. (f) D2 of E2 × P2 × D2.

Figure D.16: Samples from various models of a grid search around 0 of a single
component’s latent space on cifar test digits.

136

