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Abstract. Buildings are one of the largest energy consumers and greenhouse gas emitters in the 

world. As the largest part of the energy consumed by the existing non-insulated buildings occurs 

during the operation stage, retrofitting the building stock is crucial to reduce the environmental 

impact. To guarantee that the retrofit measures provide economic and environmental benefits, 

the whole life cycle should be assessed. However, the identification of environmental and at the 

same time cost-effective solutions is difficult due to the complexity and the uncertainty involved. 

Currently, simplified approaches based on limited assumptions are used that can lead to 

inaccurate results. This paper proposes a method for identifying robust renovation scenarios for 

residential buildings in Switzerland. The method and the developed tool use 47 uncertain 

parameters and Sobol’ indices to identify the most influential parameters. As such, robust 

renovation strategies can be identified in the early design stage.  

1. Introduction 

Buildings are the largest energy consumers in the world [1]. The largest part of the energy consumption 

of existing buildings occurs during the operation stage. Therefore, retrofitting buildings is crucial to 

reduce environmental impacts and meet the United Nations (UN) climate action goals. In order to assess 

the environmental impacts holistically, it is vital to assess the whole life cycle. Life Cycle Costing (LCC) 

and Life Cycle Assessment (LCA) are two well-known approaches for assessing the economic and 

environmental impacts of buildings. However, the conventional LCA and LCC approaches apply 

deterministic assumptions for many parameters. These assumptions are taken for the input model 

parameters (e.g. material properties, selected material costs and environmental impacts) as well as 

exogenous parameters, which cannot be affected by the designer but directly impact the model response 

(e.g. room temperature, external climate, discount rates, price growth rates). These assumptions are 
highly uncertain and the consequent inaccuracy might lead to the big performance gap between the 
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computed model and real result. Therefore, the question of uncertainty and data reliability has to be 

addressed to apply LCA and LCC as a practical and robust tool to assist policy decisions. Data quality 

and sensitivity of the results to the input data and the taken assumptions have been discussed in the field 

of LCA [2], [3]. Recent studies have shown that there is a balance point when the renovation can still 

be cost-effective and environmentally-friendly [4]. However, studies also highlighted the fact that the 

resulting uncertainties of LCC and LCA might be higher than the difference between two solutions [5]. 

Therefore, to achieve the robust renovation scenario in terms of LCC and LCA, the uncertainty sources 

need to be identified and quantified through rigorous statistical treatment. The current paper proposes a 

method to define the renovation scenario depending on the level of knowledge of the building. It is based 

on preliminary investigations in the field of historic building renovation [6]. The aim is to identify a 

robust renovation scenario by combining advanced statistical methods with the LCA and LCC 

methodologies. The proposed method is applied to an existing residential building located in 

Switzerland. The results show how to prioritize renovation strategies and at the same time determining 

the key parameters influencing the renovation 

using Sobol’ indices [7]. 

2. Methodology 

The methodology of the paper is shown in the 

Figure 1. First, the model for LCA and LCC 

calculations is created. After that, all possible 

renovation measures are selected and uncertain 

parameters for each measure are identified. 

Each uncertain parameter is described by a 

possible variability range and a distribution, 

which are selected according to literature 

sources or expert interviews. Then, the 

sensitivity analysis for all the measures is 

performed to understand the priorities for the 

renovation strategy. Finally, the uncertainty quantification on the selected strategy is applied to see the 

influence on the total LCC and LCA results. These steps are explained in further detail in the following. 

2.1. Integrated calculation for LCA and LCC.  

The model includes three steps – heating demand calculation, LCC and LCA. The overall objective is 

to create an integrated workflow for LCC and LCA. The metrics of interest for the integrated assessment 

are the total costs and environmental impacts. For both, LCA and LCC, the functional unit refers to the 

use of the building over its lifetime. A period of 60 years is used as a reference study period of the 

building at the year of renovation according to the Swiss standard SIA 2032 [8].  The whole calculation 

process is conducted using python programming language. 

 
Heating demand. The first step of the process includes the operational energy demand calculation which 

is performed according to the Swiss standard SIA 380/1 [9]. The calculation is performed using a quasi-

steady state approach based on monthly values in order to achieve low computational costs. 

Life cycle cost. The heating demand results are used for the LCC analysis. The stages for LCC include 

initial costs, operation, replacement and demolition. The net present value approach is selected for this 

study as a well-recognized and broadly used approach [10]. The cost data is taken from the Swiss Federal 

Office of Statistics [11].  

Life cycle assessment. In parallel with LCC, an LCA is applied. The conventional life cycle stages 

according to SN EN 15978 with the modules A1-A3 (production), B4 (replacement), B6 (operational 

energy use) and C1-C4 (end of life) are used as system boundaries for this study. KBOB 
"Ökobilanzdaten im Baubereich", a Swiss database is used for the life cycle impact assessment of the 

building materials and technical systems [12]. The greenhouse gas emissions (GHGe) are used as an 

Figure 1. Methodology steps. 
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indicator for climate change, (unit expressed in kg CO2-eq) and calculated based on the IPCC Global 

Warming Potential (GWP) characterizations factors [13].  

After the initial model is set, the validation of the heating demand results is performed using the Lesosai 

software which also complies with SIA 380/1 standard [14]. After the model is set, the possible 

renovation measures are applied in the model. 

2.2. Renovation measures selection 

Renovation strategies can be characterized differently depending on the design stage as well as different 

stakeholders. For instance, the priorities in renovation strategies for the whole Swiss building stock is 

likely to be different from the renovation priorities for one specific construction period or for an 

individual building as the level of details and knowledge about the initial model might vary highly. In 
case of different stakeholders, portfolio managers might have different perspective on renovation 

strategies and therefore, different goals compared to real estate managers or building owners. Therefore, 
a strategy that is able to cover all possible renovation scenarios is needed.  

The model is able to cover different levels of details. This allows modelling the input parameters and 

seeing their influence on the total LCA and LCC results. The method allows to assess different 

renovation strategies and understanding the most influential parameters using Sobol indices. 

The range of design parameters is selected to include all possible solutions, i.e. from the current state 

of the building to renovation solutions that comply or even outperform the requirements according to 

Swiss standards (e.g., the SIA 380/1 for the heating demand). Initially, the sensitivity analysis is 

performed to understand the influential parameters for the renovation in terms of LCA and LCC. 

Afterwards, the uncertainty quantification using polynomial chaos expansion (PCE) is used to see the 

influence of the input parameters’ range on the results.  

2.3. Uncertainty quantification 

Uncertainty quantification (UQ) aims at identifying all sources of uncertainty in the parameters of a 

model and assessing how they affect the model response. Sensitivity analysis is an important tool in UQ 

and allows to identify which input parameters, and combination thereof, influence the model output the 

most. The analysis is often carried out by propagating the uncertainty throughout the model, e.g. using 

Monte Carlo simulation. However, the resulting computational cost is prohibitive, as it would require 

thousands to millions of calls to the computational model. In this work, the computational model 

described above is approximated by a surrogate model, i.e. an easy-to-evaluate proxy. More specifically, 

polynomial chaos expansions (PCE) are used as a surrogate model as they allow efficient representation 

of the model response and can further be used for sensitivity analysis. 

Polynomial chaos expansion. A finite variance computational model is considered 𝑌 = ℳ(𝑿) that 

allows to compute some quantity of interest (herein, heating demand, LCA or LCC) and which takes as 

input an 𝛭-dimensional random vector 𝑿~𝑓𝑿(𝒙) whose marginals are assumed to be independent. PCE 

allows for a spectral decomposition of the random variable 𝑌 onto a set of orthonormal polynomials 

[15]: 

𝑌 = ∑ 𝑦𝜶𝜓𝜶(𝑿)

𝜶∈ℕ𝑀

                                                                  (1) 

where 𝜓𝜶(𝑿) = ∏ 𝜓𝛼𝑖(𝑋𝑖
𝑀
𝑖=1 ) are a set of multivariate orthonormal polynomials obtained by the tensor 

product of univariate polynomials. These polynomials are selected according to the marginal distribution 

of the random variables 𝑋, 𝛼 alpha are a set of indices and 𝑦𝛼 are coefficients to be computed. 

In practice, this infinite series is truncated into a finite set of polynomials, thus leading to an 

approximation. The surrogate model is obtained by calibrating the coefficients 𝑦𝛼 for a given set of 

polynomials. This can be achieved using different methods, among which are least-squares techniques. 

This requires first generating an experimental design (ED) { 𝒳, 𝒴 }, where 𝒳 =  {𝒙(𝑖) , 𝑖 = 1, … , 𝑁} 

correspond to uniformly sampled input points and 𝒴 are the corresponding model evaluations, i.e. 𝒴 =

{ℳ(𝒙(1)), … , ℳ(𝒙(𝑁))}. N is the ED size and typically ranges from tens to a few hundreds. Given the 
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ED, the coefficients are computed using least-squares minimization or other advanced techniques. 

Details on practical computation of PCE can be found in Gratiet et.al[16]. 

Global sensitivity analysis. Global sensitivity analysis [7] aims at quantifying the importance of each 

random input in the variability of a model output. Many methods found in the literature are based on the 

decomposition of the output variance [17]. Sobol’ indices are a popular technique that belong to this 

category of methods [7]. Assuming that the input 𝑿 are independent, the Sobol’ decomposition of the 

model ℳ reads [18]: 

          ℳ(𝒙) = ℳ0 + ∑ ℳ𝑖

𝑀

𝑖=0

(𝑥𝑖) + ∑ ℳ𝑖𝑗

𝑀

1≤𝑖≤𝑗≤𝑀

(𝑥𝑖 , 𝑥𝑗) + ⋯ + ℳ1,2,…𝑀(𝑥1, … 𝑥𝑀),                           (2) 

where 𝑀0 is a constant and the other summands satisfy the following orthogonality condition: 

                                                         ∫ ℳ𝑖1,…,𝑖𝑠(𝑥𝑖1,…𝑥𝑖𝑠
𝐷𝒙

)𝑓𝑋𝑖1
(𝑥𝑖1) … 𝑓𝑥𝑖𝑠

(𝑋𝑖𝑠)                                                (3)   

 𝑑𝑥𝑖1… 𝑑𝑥𝑖𝑠    = 0,        1 ≤ 𝑖1  ≤ ⋯ ≤  𝑖𝑠 ≤ 𝑀, 
 

It can then be shown that the output variance can be decomposed as follows [7]: 

𝐷 = 𝑉𝑎𝑟[ℳ(𝑿)] = ∑ 𝐷𝑖

𝑀

𝑖=1

+ ∑ 𝐷𝑖𝑗 + ⋯ +

𝑀

1≤𝑖≤𝑗≤𝑀

𝐷12…𝑀                                   (4) 

where 

𝐷𝑖1,…,𝑖𝑠 = ∫ ℳ𝑖1,…,𝑖𝑠(𝑥𝑖1,…𝑥𝑖𝑠
𝐷𝒙

) 

                                                                  𝑓𝑋𝑖1
(𝑥𝑖1) … 𝑓𝑥𝑖𝑠

(𝑋𝑖𝑠)𝑑𝑥𝑖1 … 𝑑𝑥𝑖𝑠                                                         (5)  

The Sobol’ indices are eventually obtained by normalizing the partial variances and read: 

𝑆𝑖1,…,𝑖𝑠 =
𝐷𝑖1,…,𝑖𝑠

𝐷
                                                                         (6) 

The first-order Sobol’ indices relate to the univariate term and express the additive effect of each 

input taken separately. Higher-order Sobol’ indices (combination of two or more variables) represent 

the interaction effects. Finally, the total order index for a given variable represents its own effect together 

with any interaction. A small value typically means that the parameter has very little effect on the output 

variability. As a consequence, setting the corresponding variable to a constant value would not affect 

the distribution of the quantity of interest. On the contrary, a large value means that the analyst should 

focus on reducing the corresponding parameter uncertainty. 

Sobol’ indices in the general case are computed using Monte Carlo simulation. However in this 

paper, we consider PCE-based Sobol’ indices as developed by B.Sudret [19]. Sobol’ indices can be 

obtained at no additional cost by simply post-processing the PCE coefficients. Further details on the 
computational aspects of sensitivity analysis can be found in the corresponding UQLab users 

manuals[20].  

3. Case study 

The chosen case study is located near Lausanne, Switzerland. The building was constructed in 1972 and 

has a total energy reference area of 1440 m2. The ground floor is partly occupied by the commercial 

space of 50 m2. The initial properties of the building can be seen in the Table 1. 

 

Table 1. Initial building properties before renovation 
Element Existing state of the building 

Ext.wall (Residential) 4cm mineral wool, U = 0.56 W/(m²K) 

Ext.wall (Shop) 4cm mineral wool, U = 0.71 W/(m²K) 

Ground floor 2cm cork in the shop, U = 1.4 et 3.2 W/(m²K) 

Ceiling against attic 6cm mineral wool, U = 0.5 W/(m²K) 
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Windows Double glazing (low-E layer, PVC frame, U=1.91 W/(m²K), gp = 0.55 

 

The current case study was selected from the eRen building models, because they cover different 

construction periods and were already characterised for their initial states i.e. before any renovation [21]. 

The construction period for this building was selected to be 1970s as it represents the majority of the 

Swiss building stock (32.5% of the entire building stock, [22]). Different goal and scope and settings 

for the model parameters can be chosen for the renovation measures of this building. They are presented 

in Table 2 for the three scopes of the assessment which are described below in separate sub-sections. 

 

Table 2. Parameters’ setting for the renovation of the building envelope in the three assessments 
 1st assessment 2nd assessment 3rd assessment 

Goal of the 

study 

Screening 

assessment of all 

possible measures 

Comparative LCA & LCC of two 

heating system replacement with a 

distribution of the U-values for the 

renovation of the envelope   

Comparative LCA & LCC of two 

heating system replacement with 

specific U-value and materials for 

the renovation of  the envelope 

Element  Solution 1 Solution 2 Solution 1 Solution 2 

Heating 

source and 

system 

Random heating 

systems (oil, gas, 

coal, wood pellets 

boilers) floor and 

radiators heating 

Wood pellets 

boiler, floor 

heating 

Gas boiler, floor 

heating 

Wood pellets 

boiler, floor 

heating 

Gas boiler, 

floor heating 

Roof 

insulation 

thickness 

 

Random values between the existing state and an 

improved U-value of 0.15 W/m2*K 

0.2 m 0.1 m 

Windows Random values between the existing state and an 

improved U-value of 0.6 W/m2*K 

Triple glazed, 

wooden frame, 

U-value –1.2 

W/m2*K 

Double 

glazed, PVC, 

U-value –1.4 

W/m2*K 

External 

walls 

Random values between the existing state and an 

improved U-value of 0.2 W/m2*K 

No insulation No insulation 

Floor 

insulation 

thickness 

Random values between the existing state and an 

improved U-value of 0.2 W/m2*K 

0.15 m 0.1 m 

 

3.1 Variability of all possible measures (screening assessment) 

In the first screening assessment, we assume the user of the tool does not know which scenarios to apply 

for the replacement of heating systems and for the renovation of the envelope. The idea is first to describe 

all possible renovation measures with different U-value requirements for the elements from no 

renovation up to very low U-values and different heating system types. For example, each building 

element can be kept either in its current state (uninsulated) or renovated according to different U-values 

(e.g., 0.25, 0.20, 0.10 [W/m2*K], etc.). The U-values after renovation were varied using continuous 
variables for the thicknesses and thermal conductivities values to ease the probabilistic assessment. 

Similarly, we also take into account the expected variations of the exogenous parameters, which can 

be seen in the Table 3. These parameters cannot be influenced by the designer and therefore, this 

uncertainty cannot be reduced during the design stages. The values were fixed based on variations 

around the conventional values defined in the SIA 380/1 standard and in the CRB (for costs’ 

parameters). 

 

Table 3. Exogenous parameters in the screening assessment and in the two comparative LCA & LCC  
Parameter Distribution Range, moments 

Room temperature Uniform 19 - 23 °C 

Discount rate Uniform 1 - 3 % 

Price growth for heating Uniform 3.5 - 5.5% 
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Thermal bridge Gaussian Mean – 10%, Std – 5% 

Airflow Uniform 0.7-0.9 m3/(m2*h) 

 

After the ranges of model and exogenous parameters are defined, the sensitivity analysis is conducted 

to identify the most sensitive parameters for this level of knowledge (screening assessment). To 

understand how the selected levels of performance for the envelope and technical systems influence the 

total LCA and LCC results, the uncertainty quantification using PCE method is applied in UQlab [23]. 

 

3.2 Comparison of two renovation scenarios  
Following the screening assessment, in a second step, comparative LCA and LCC are conducted. Two 

solutions of replacement of the heating system are chosen and compared (cf. Table 2). We assume the 

replacement of the old oil boiler by a new gas boiler (baseline case) and the replacement of a new wood 

pellet boiler (“environmental friendly” alternative). Each scenario is coupled with different renovation 

measures for the envelope (roof, external walls, windows and floor). For each scenario, the renovation 

measures of the building elements take random values for the insulation thickness, the thermal 

conductivity, the associated environmental impacts, and the investment costs between the existing state 

and an improved energy-efficient renovation as already introduced in section 3.1.  

In the third assessment (i.e., in the second comparative LCA & LCC analysis), a specific renovation 

scenario is applied for the building envelope (with a given U-value for each element after renovation. 

Assumptions for this scenario are presented in Table 2. This scenario represents the one defined in the 

eRen project. The same range for exogenous parameters as the ones presented in Table 3 were 

considered in these two comparative assessments. 
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4. Results 

 
Figure 2 (1). Sensitivity analysis using Sobol indices for the screening assessment when the variability 

of all the measures was applied. 

As it was mentioned in section 3, 47 model and exogenous parameters used for the building heating 

demand, LCA and LCC calculations are considered. The first screening assessment includes a range for 

all of them. The second and third assessments only include a range for the parameters that have an 

influence on the total LCA and LCC results. 

As it can be seen in Figure 2(1), when the variability of all measures is applied (using assumptions 

from section 3.1), we notice that from the 47 parameters defined with a range, only about 8 of them 

present a sensitivity index of more than 0.05. Looking at the LCA, the variance of the output GHG 

emissions is only driven by the uncertainty on the choice of the energy carrier. In terms of life cycle 

costs, more parameters are sensitive: model parameters (the heating costs, windows costs, the density 

of the insulation for the roof) and exogenous ones (room temperature, price growth heating, discount 

heating). Interestingly, the heating cost is comparatively less sensitive to the output result than the 

heating environmental costs (energy carrier GHG emissions). This can be explained by the higher 

variance of the energy carriers GHG emissions directly influencing the output results (GHG emissions 

of the building, see Figure 3). 

In the second and third comparative LCA & LCC, when the energy carrier is selected for each 

scenario using assumptions from Table 2, there is no more variability on the energy carrier GHG 

emissions. So the Sobol index becomes zero for this “known” parameter. In this case (Figure 2(2)), other 
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model parameters become sensitive in each scenario of heating system replacement (according to Sobol) 

e.g.,  the roof insulation and windows. In terms of exogenous parameters, for LCA, modelling 

parameters are prevailing in the first and second screening assessment, and once the roof insulation, 

windows and heating system are renovated, the exogenous parameters become of highest importance. 

In terms of LCC, it can be seen that the exogenous parameters appear to have high importance already 

in the first screening assessment (e.g. discount rate and price growth rate for heating).  

 

 
Figures 2(2) and 2(3). Sensitivity analysis for the second and third assessment (for specific heating 

systems’ choice) 

 

After the sensitivity analysis is conducted, uncertainty quantification for the selected renovation 

scenario is performed. As is was mentioned earlier, sensitivity analysis is helpful to identify the most 

sensitive parameters of the renovation measures. It goes along with the uncertainty quantification of 

different renovation scenarios but it cannot provide the optimal solution for the renovation. Therefore, 

at the current stage, two options were selected as possible renovation strategies.  

Figure 3 presents the probabilistic LCA and LCC results when all renovation measures are 

considered. The results show an important variability of both GHG emissions and total costs in CHF.  

 
Figure 3. LCA and LCC results for the uncertainty quantification on the screening assessment of the 

building (variability of all possible measures). 

 

The results for the probabilistic LCA and LCC for the second and third assessment are presented in 
Figures 4-5.  
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Figure 4. Comparative LCA and LCC results for solutions 1 and 2 using the applied measures of the 

second assessment. 

 
Figure 5. Comparative LCA and LCC results for solutions 1 and 2 using the applied measures of the 

third assessment 

 

While the first sensitive parameter in the screening assessment is fixed (in the second and third 

assessment) using low-GHG emissions heating systems’ solutions (wood pellets and heat pump), an 

important decrease in the mean value as well as uncertainty for both LCC and LCA can be observed. It 

can also be seen from two solutions that the decrease of the mean value for LCC does not occur with 

the same proportion as for LCA, which means that low GWP renovation measures do not necessarily 

yield low NPV. Therefore, an optimal solution that is both cost-effective and environmentally friendly 

still needs to be found. This can be potentially achieved by using multi-objective robust optimization 

under uncertainties.  

Interestingly, Figure 4 shows that solution 1 is a robust solution for lowering the GHG emissions 

compared to the solution 2 (as the error bars do not merge between the two). In contrast, we cannot 

distinguish the two solutions in terms of life cycle costs. This shows the usefulness of such combined 

statistical approach with usual LCA and LCC methodologies. 

5. Discussion 

The current study shows how to identify the influential parameters for the renovation using a sensitivity 

analysis. This approach allows understanding the focus of the renovation at the early design stage. At 

the current stage, the method is able to handle stochastic calculations of LCA and LCC of building 

renovation scenarios. The renovation scenarios definition can be more or less detailed (see section 4 

with a first screening assessment to a very specific third assessment). However, proper optimization 

process is needed to identify the best renovation strategy.  

So further  development will include the optimization under uncertainty, which allows understanding 

the renovation priorities as well as finding the optimal solutions in terms of LCA and LCC. 

In this paper, the approach was applied for one residential building in Switzerland. In the future, the 

aim is to analyse the applicability of this method for the Swiss building stock. In order to find an optimal 

robust solution for the renovation of the building stock, building archetypes for different construction 

periods will be analysed. 
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The current method also shows that there is a non-negligible influence of the exogenous parameters 

on LCC and LCA, which means that even with identification of a precise renovation scenario with 

powerful statistical treatment, there are still many uncertainties in the building’s life cycle. Therefore, it 

is crucial to consider parameters like occupants’ behaviour, possible degradation rates for the building 

materials and economical parameters like price growth rates and inflation. The associated exogenous 

parameters shall also be considered with their uncertainty (including climate change trends) for a more 

realistic analysis. In the current study, climate data from SIA was used and the modelling of the relevant 

climate data for this type of analysis is currently in progress.   

6. Conclusion 

A statistical method combined with existing LCA and LCC methodologies was applied to the renovation 
scenarios of one residential building in Switzerland. The proposed framework is able to compute 

probabilistic LCA and LCC to compare different renovation strategies for different levels of knowledge 
of the existing building. It also identifies the most influential parameters for each type of assessment 

(screening or detailed). First results show the range of impacts and costs for all possible renovation 

measures when the energy carrier and heating system are not chosen or known. Once the heating system 

is fixed, the level of uncertainty on LCA and LCC is much reduced allowing to focus on the renovation 

of the building envelope. A first comparative LCA and LCC on two renovation scenarios shows that the 

choice of the best scenario is robust for the LCA while it is not possible to conclude on the LCC part. It 

can also be observed from the results of uncertainty quantification that the minimum value is always 

closer to the mean than the maximum value, which means that without uncertainty consideration the 

values at risk for both LCC and LCA are high. This highlights the necessity of uncertainty propagation 

when LCA and LCC are used during the decision-making process.  
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