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A B S T R A C T

Sampling in both the signal processing as well as statistical sense is studied
in this thesis. We first start by investigating the mathematical properties of
a common event-based sampling method, send-on-delta sampling, in de-
tail. The analysis focuses on the extent to which bandlimited functions
can be either reconstructed or approximated from the samples that are ob-
tained if the function is sampled by the send-on-delta scheme. It turns out
that for square-integrable, continuous and bandlimited functions the main
deficit of send-on-delta sampling is that it generates only finitely many
sampling points. Standard stability results therefore preclude an exact re-
construction of the underlying function from the acquired samples. We
next investigate whether under additional assumptions on the sampled
functions besides bandlimitedness, stable reconstruction is feasible from
finitely many sampling points only. We find that this is indeed the case,
as every square-integrable and bandlimited function is compressible in the
prolate spheroidal wave function basis. We use this basis, together with
results from infinite-dimensional compressed sensing, to show that stable
recovery is possible from finitely many sampling points that are uniformly
distributed (in the probabilistic sense) in a time interval in which most of
the function energy is concentrated. We then show how continuous-time
filtering can be carried out on a sequence of samples that are obtained
by sampling a bandlimited function irregularly (the particular sampling
mechanism is not important for these findings). Discrete-time filtering
therefore does not need to be carried out on samples obtained from a
regular sampling pattern. Finally, we investigate sampling in the statistical
sense. Using ideas from information theory, specifically universal coding,
we show explicitly by example how sampling priors on parametric fami-
lies influence the amount of information transmitted from the parametric
family to the data obtained. We show that the choice of sampling prior
has implications for machine learning in that the solution obtained by a
machine learning algorithm depends on the sampling prior.
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Z U S A M M E N FA S S U N G

Im Rahmen dieser Arbeit wird Abtastung im Sinne der Signalverarbeitung
und Statistik untersucht. Zuerst analysieren wir detailliert die mathemati-
schen Eigenschaften des ereignisbasierten Abtastverfahrens Send-on-Delta
Abtastung. Schwerpunkt der Analyse ist dabei die Frage, ob bandbegrenz-
te Funktionen aus den mittels Send-on-Delta Abtastung gewonnenen Ab-
tastwerten entweder rekonstruiert oder aber approximiert werden können.
Für quadratintegrable, stetige und bandbegrenzte Funktionen liegt das
Hauptproblem der Send-on-Delta Abtastung darin, dass nur endlich viele
Abtastwerte generiert werden. Aus der Literatur bekannte Stabilitätsresul-
tate schliessen daher eine exakte Rekonstruktion der abgetasteten Funkti-
on aus ebendiesen Abtastwerten aus. Als nächstes analysieren wir daher,
inwiefern durch Hinzunahme weiterer Annahmen (d.h. zusätzlich zur An-
nahme der Bandbegrenztheit) eine stabile Rekonstruktion der abgetasteten
Funktion aus endlich vielen Abtastwerten möglich ist. Dass dies in der Tat
der Fall ist, zeigen wir mit Hilfe der Prolate-Spheroidal-Wave-Funktionen
Basis, in der jede quadratintegrable und bandbegrenzte Funktion kompres-
sibel ist. Mit Hilfe dieser Basis und Compressed Sensing in unendlichdi-
mensionalen Räumen zeigen wir dann, dass eine stabile Rekonstruktion
aus endlich vielen in der Zeit gleichverteilten Abtastwerten möglich ist.
Die Abtastzeitpunkte befinden sich dabei in dem Intervall, in dem der
Grossteil der Funktionsenergie konzentriert ist. Wir zeigen dann, wie zeit-
kontinuierliche Filterung auf Funktionswerten ausgeführt werden kann,
die einer irregulären Abtastsequenz entsprechen, wobei der Abtastmecha-
nismus für diese Untersuchung belanglos ist. Zeitdiskrete Filterung bedarf
daher nicht einer regulären Abtastfolge. Schliesslich untersuchen wir die
Abtastung im statistischen Sinne. Unter Zuhilfenahme von Theorien aus
der Informationstheorie, vor allem aus der Universal Coding Theorie, zei-
gen wir den Einfluss des Sampling Priors, der auf einer parametrischen
Familie definiert ist, auf den Informationsfluss von der parametrischen
Familie zu der Datenstichprobe auf. Wir zeigen dann, dass die Wahl des
Sampling Priors Auswirkungen auf das Maschinelle Lernen aufweist, da
die vom Algorithmus gefundenen Lösungen vom Sampling Prior abhän-
gig sind.
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1
I N T R O D U C T I O N

The word sampling as used in the mathematical sciences possesses differ-
ent meanings. One interpretation of the word, derived from statistics, is
based on the process of obtaining realizations of a random variable/vector
and using these realizations to infer something about the underlying dis-
tribution(s). The other meaning, traditionally used in the field of signal
processing, is based on the process of pointwise evaluation of a function
such that the collected information is sufficient for reconstruction/filtering.
The latter sampling process is mostly understood to be deterministic, i.e.
the pointwise samples are taken at a predetermined set of places (in time
or space), tailored only to the space in which the sampled function lives.
The deterministic nature of pointwise sampling can be relaxed, however,
and replaced by random sampling. Random sampling can arise through
different mechanisms. One mechanism that leads to random sampling is
event-based sampling of stochastic processes. In this paradigm, samples are
generated whenever some deterministic criterion is fulfilled by the under-
lying function. Another mechanism is a random sampling pattern that is
uncoupled from the sampled function/stochastic process. For randomness
to be mathematically tractable, it requires structure. Structure is in partic-
ular required if a question such as “Is there enough information recorded
in the sampled values for the function to be reconstructible?“ is to be an-
swered. Another question that requires assumptions on the structure of
the random sampling pattern is whether a sampling pattern will result in
aliasing. The more precise the questions asked, the more structure is im-
posed on the sampling pattern. Many properties such as reconstructability
of a sampled function from the sample values alone directly translate into
yes/no statements on the sufficiency of a sampling pattern structure for
the preservation of the desired property. As such, with respect to a spe-
cific property that a sampling pattern should preserve, different sampling
methods can only be compared in terms of whether or not the desired
property is retained.

To what extent is randomness beneficial when compared to determin-
istic sampling schemes? An answer to such a question depends on the
specific operation that should be carried out on the sampled function val-
ues. To shed light on the possible benefits of randomness, two possible
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2 introduction

operations on the sampled values are discussed in Sections 1.1 and 1.2:
reconstruction and spectrum estimation.

Sampling in the statistical sense leads to a gradual reduction in uncer-
tainty. A similar statement can only be made partially for signal process-
ing sampling. As stated above, sampling patterns need to be tailored to
the function space in which the sampled function resides. Consider the
space of square-integrable (in the Lebesgue sense) and bandlimited func-
tions. Given a function from such a space, finitely many samples cannot
characterize a function uniquely. In fact, a function of arbitrarily smaller
bandwidth than the sampled function can perfectly interpolate the finitely
many samples, provided the energy of the interpolating function is not
constrained. As such, moving from n to n + 1 samples does not in itself
lead to a better identifiability of the original function from its samples in
the discussed function space. Additional assumptions need to be placed
on the function space, such as sparsity constraints in some frame/basis
or stronger concentration in time properties (effectively moving to a dif-
ferent function space, for example to some weighted L1 space), such that
an increase from n to n + 1 samples leads to an effective gain in informa-
tion. Alternatively, some additional constraints on the sampled function
besides the sampling values themselves can be provided by the sampling
mechanism itself. Event-based sampling can in particular provide such im-
plicit constraints. The differential gain in information provided by each
new sample therefore strongly depends on the a priori assumptions which
structure the underlying function space.

Reduction in uncertainty is in some sense equivalent to better predictabil-
ity. As predictability can be assessed in statistical terms (in case that either
the sampled function is stochastic or the sampling pattern is random), it
is a property that should be fulfilled by both sampling in the statistical as
well as signal processing sense. In time-series analysis, for example, pre-
dicting the future from finitely many past observations (samples) is a com-
mon task. If the time-series structure is partly unknown, then prediction
consists of two parts, that is model identification and forecasting. The oper-
ations of reconstruction and filtering from signal processing can be under-
stood as predictions as well, as they consist of an (optimal) inference of the
desired function from observations. Both prediction in the statistical and
signal processing sense are partly ambiguous, if either the model/function
space is too large or too few observations are given. The study of sampling
schemes that encode some property of the sampled function optimally can
be effectively carried out statistically.
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In Sections 1.1 and 1.2, reconstruction and spectrum estimation from
both deterministic as well as randomly distributed sampling patterns are
discussed.

1.1 reconstructability

Under which conditions is it possible to fully reconstruct a function from a
set of samples? The number and type of samples required clearly depends
on the function space in which the sampled function lives. Polynomials
of fixed and finite order, for example, are in general fully specified by a
finite number of samples, while piecewise linear functions are determined
by specifying the function values at the ends of the linear segments. Both
examples allow for the use of irregularly spaced samples in general. In
both examples the number of required sampling points is inherently con-
nected to the degrees of freedom that a function from the respective space
possesses.

These general ideas apply to function spaces of bandlimited functions
as well. Consider the Paley-Wiener space of square-integrable and contin-
uous functions whose Fourier transform is restricted to a compact interval
on the real line. in general, absent any further assumptions, functions from
the Paley-Wiener space have infinitely many degrees of freedom, and so in-
finitely many (countable infinity) sampling values will have to be taken for
the function to be in principle reconstructible from its samples. Functions
living in the Paley-Wiener space are entire functions, i.e. they are holomor-
phic on the entire complex plane. Since holomorphic functions are analytic,
they can be expressed as a power series. A local power series expansion
such as a Taylor series therefore fully describes the function everywhere.
In the Taylor series case, the samples would correspond to (higher-order)
derivatives of the function at the expansion point, yielding a full descrip-
tion of the sampled function. The description of a function from the Paley-
Wiener space via a Taylor series at an expansion point is, however, not sta-
ble with respect to noise. Small perturbations of the expansion coefficients
will not lead to small changes in the reconstructed function in general. As
such, limited numerical precision implies that a Taylor series representa-
tion of Paley-Wiener functions is not sufficient for practical implementa-
tions. Stability with respect to noise necessitates a certain distribution of
sampling times along the real line. The set of conditions imposed on sam-
pling patterns such that they are stable is known for Paley-Wiener spaces.
Both necessary and sufficient conditions are fully specified. A particularly
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important part in these conditions is played by the Nyquist-Landau rate
which is the lowest average sampling rate below which stable sampling
is infeasible [1]. For lowpass functions, the Nyquist-Landau rate is equal
to the more well-known Nyquist rate. Two different sampling regimes can
now be differentiated. The differentiation is with respect to whether the
average sampling rate corresponds exactly to the Nyquist-Landau rate or
whether it is strictly larger. In case the average sampling rate is equal to the
Nyquist-Landau rate, then reconstruction is possible if the set

{
eitnx}, with

(tn)n∈Z the sampling pattern and x the frequency variable, constitutes a
Riesz basis for the space of square-integrable functions with the same sup-
port as the frequency support of the Paley-Wiener function. Rather com-
plicated conditions on (tn)n∈Z that ensure the Riesz basis property have
been described [2]. Simplified sufficient conditions are known that guaran-
tee the Riesz basis property as well [3]. These conditions stipulate that the
sampling pattern should be a perturbed uniform sampling pattern, with
the maximum amount of perturbation of each sample from its nominal
uniform position bounded from above by known constants. In case the av-
erage sampling rate is larger than the Nyquist-Landau rate, then the set{

eitnx} should form a frame for the space of square-integrable functions
with the same support as the frequency support of the Paley-Wiener func-
tion. Necessary as well as sufficient conditions for this frame property have
been fully described [4]. Once the frame property is ensured, then power-
ful iterative reconstruction algorithm can be leveraged [5].

1.2 spectrum estimation and aliasing

A common problem in applications is the estimation of the power spec-
trum (or the power spectral density, in case it exists) from the sampled
values of a weakly-stationary and mean-square continuous stochastic pro-
cess. If uniform samples are taken, it is well known that a bandlimited
function has to be sampled at the Nyquist rate or higher for the estima-
tion of the power spectrum to be possible [6]. Sufficieny of sampling at
the Nyquist rate is not given for bandlimited functions in general, but de-
pends in addition on other properties of the function, such as in which
function space it is contained. To be precise, if the power spectral density
belongs to Lp (−πw, πw), p > 1 and w > 0, then Nyquist rate uniform sam-
pling is sufficient, otherwise oversampling is required. If non-bandlimited
functions or functions with unknown bandlimit are sampled at a fixed
uniform rate, then a consistent estimation of the power spectrum of the
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sampled stochastic process cannot be carried out from the samples alone.
The reason for this behavior is the presence of aliasing, that is the overlap
of shifted copies of the power spectral density of the sampled stochastic
process. For uniform sampling, absense of aliasing is therefore equivalent
to the fact that the power spectrum can be estimated from the samples
alone.

Random sampling has therefore been investigated as a possible mecha-
nism to circumvent this problem which is inherently associated with uni-
form sampling. Given the crucial observation that a consistent estimation
of the power spectrum is possible in the absence of aliasing for uniform
sampling, conditions were sought that guarantee this alias-free property
for larger classes of spectra under random sampling, in particular for non-
bandlimited spectra. A first definition specifying when a sampling pattern
is alias-free with respect to a set of spectra reads as follows:

The sampling sequence {tn} is alias free relative to S (a family
of spectra) if no two random processes with different spectra
belonging to S yield the same correlation sequence {r (n)}. [7]

The correlation sequence {r (n)} is specified by r (n) = E [x (tm+n) x∗ (tm)],
where x is the stochastic process, (·)∗ denotes complex conjugation and
the expectation E [·] is taken over the process x and the sampling pattern
{tn}. One of the first random sampling schemes investigated was addi-
tive random sampling which can be described by the following sampling
mechanism: tn = tn−1 + γn with γn ∼ p (τ) and p (τ) a probability density
function in L2 (0, ∞). Additive random sampling is alias-free with respect
to any power spectral density contained in L1 ∩ L2 if the characteristic
function φ (ω) =

∫ ∞
0 p (τ) eiωτdτ takes no value more than once on the

real axis [8]. This condition is sufficient, but not necessary. It holds in par-
ticular also for non-bandlimited spectra. A specific instance of additive
random sampling which is alias-free (in the sense of the above definition)
is Poisson sampling, for which p (τ) is taken as p (τ) = βe−βτ for τ ≥ 0
and β > 0. Poisson sampling is alias-free for arbitrary β > 0, implying that
a sampling scheme can be alias-free even if the average sampling rate is
far below the Nyquist-Landau rate. Another sampling scheme which was
found to be alias-free (in the sense of the above definition) with respect to
the set of spectra with power spectral densities in L1 ∩ L2 is the scheme
tn = tn−1 + γ, where γ is a fixed random variable with distribution on
[0, ∞) and finite mean [9]. This sampling scheme corresponds to a uni-
form sampling pattern with a random but fixed spacing. Since no uniform
sampling scheme can lead to a consistent spectrum estimator for arbitrary
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power spectra, the alias-free property described by the above definition
does not guarantee that the spectrum can be consistently estimated from
the randomly sampled values. It is therefore a necessary, but not a suffi-
cient condition. The main problem of the above definition is that one is
averaging over the sampling pattern {tn}, which implies that the specific
sampling times are not taken into account when estimating the spectrum.
In fact, only the set of values {x (tn)} can be used for the spectrum es-
timation. A new definition of alias-free sampling that takes into account
specific sampling times was therefore required. It is given in [10]. Sam-
pling schemes that are alias-free relative to this latter definition but not to
the first definition given can be found, implying that the two definitions
are not equivalent. Poisson sampling is alias-free with respect to the lat-
ter definition as well [10]. Consistent estimators have been described for
Poisson sampling [10, 11].

If a minimum separation between consecutive samples is prescribed,
then it was shown that no sampling scheme is alias-free relative to both
definitions for the set of all spectra [12]. For Poisson sampling, for exam-
ple, no such minimum separation can be found if the number of samples
grows to infinity. Consistent estimators have been described that take such
a minimum separation into account [13]. A minimum separation is a prac-
tical constraint, as sampling devices cannot sample at an arbitrary fast rate.

The careful use of randomness in the construction of a sampling scheme
has led to benefits not available to uniform sampling schemes. It is interest-
ing to note that Poisson sampling, being closely related to stationary Pois-
son point processes, is the point process with the largest entropy among
all point processes fulfilling some conditions (cf. [14]). It is hence a pro-
cess with maximal uncertainty. Uniform sampling, on the other hand, is
by definition as regular as possible. Relaxing the structure in one domain
(the sampling scheme) has led to an increased set of spectra that can be
resolved from the samples alone.

The first definition describing when a sampling scheme is alias-free rel-
ative to a family of spectra S is centered around the correlation sequence
{r (n)}. It demands in particular that a one-to-one mapping exists between
spectra and correlation sequences. Spectrum estimation can then proceed
based solely on the knowledge of {r (n)} (a consistent estimator does not
exist in the general case). Recently, event-based sampling schemes have
gained popularity. An example of such a scheme is level-crossing (cf. [15]).
Here we show that level crossing sampling cannot be used to resolve any
spectrum from the samples alone. The output of a level-crossing scheme is
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always the same value, implying that an empirical determination of the cor-
relation sequence from the samples alone always yields the same sequence
for all input processes. There is hence no one-to-one mapping from spec-
tra to correlation sequences from which it follows that level-crossing is not
alias-free. Another common example of an event-based sampling scheme
is send-on-delta sampling (cf. [16]). A new sample is generated whenever
the function has changed by some preset threshold since the last recorded
sample. Multiplying the stochastic process with a fixed scalar changes the
power spectral density only by a scalar as well, while the output of a send-
on-delta sampler depends in a nonlinear way on the scalar. Spectrum esti-
mators will in general produce different estimates depending on whether
an unscaled/scaled stochastic process is sampled by a send-on-delta sam-
pler, the relationship between the two estimates being nonlinear.

1.3 outlook and structure of thesis

The discussion in Sections 1.1 and 1.2 has shown that under certain con-
ditions random sampling can be beneficial. In the case of reconstruction,
stable reconstructability can be guaranteed for some types of irregular sam-
pling. Uniform sampling is therefore not special, being just a specific case
that fulfills some reconstructability conditions. For the estimation of the
spectrum of a stochastic process, however, it has been seen that random
sampling (which is different from deterministic irregular sampling) can
provide benefits not available to uniform sampling, as it can lead to the ex-
istence of consistent power spectrum estimators even for non-bandlimited
processes.

Chapter 2 investigates send-on-delta sampling in detail. It will be shown
that functions living in Paley-Wiener spaces (which contain most real-
world bandlimited functions) cannot be stably reconstructed from the sam-
ples. Modifications of the sampling scheme are then proposed that en-
sure reconstructability. The reason for the lack of stability of this sampling
scheme in Paley-Wiener spaces is that only finitely many samples are gen-
erated irrespective of the precise threshold chosen. The global sampling
density is hence equal to zero which is below the Nyquist-Landau rate.
To ensure stability of reconstruction from finitely many samples, other re-
strictions have to be placed on the function besides the Paley-Wiener space
restriction. Sparsity in some basis/frame is such an additional assump-
tion. Chapter 3 uses this additional assumption of sparsity to show that
stable reconstruction of a bandlimited function is indeed possible from
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finitely many samples. For this analysis, a prolate spheroidal wave func-
tions basis is used, which for many reasons constitutes a preferred basis
for bandlimited functions. This basis is in particular suited for describ-
ing effectively timelimited bandlimited functions, i.e. bandlimited func-
tions for which most of the energy is concentrated in a finite time inter-
val. For such effectively timelimited bandlimited functions, only finitely
many expansion coefficients in a prolate spheroidal wave function basis
expansion will have values departing significantly from zero, while the re-
maining coefficients will be (numerically speaking) very close to zero. The
precise number of nonzero coefficients depends on the time-bandwidth
product of the sampled functions, where time refers to the effective time
interval to which the function is constrained. Using such sparsity results,
infinite-dimensional compressed sensing theory can be leveraged. Infinite-
dimensional compressed sensing is an extension of classical compressed
sensing theory (which operates on finite dimensional spaces) to infinite-
dimensional spaces such as Hilbert spaces of functions. Combining the
reproducing kernel Hilbert space nature of Paley-Wiener spaces (point-
wise sampling corresponds to inner products of the function with some
measurement kernel) with the properties of the prolate spheroidal wave
function basis, we can then show that finitely many samples are sufficient
to guarantee stable reconstruction with a certain probability in case the
samples are distributed with uniform probability in the interval of inter-
est. The resulting reconstruction algorithm does not correspond to some
series expansion any more (as in the usual sampling series for uniform
sampling), but an l1-optimization algorithm needs to be used in line with
compressed sensing theory to reconstruct the function.

In Chapter 4 we discuss the filtering of irregularly sampled bandlim-
ited functions. Conventionally, discrete-time filtering has been restricted to
uniformly sampled bandlimited functions, as such sampling ensures (pro-
vided the sampling rate is higher than the Nyquist rate) that discrete-time
processing is equivalent to an underlying continuous-time filtering. Under
uniform sampling, analog filtering can therefore equivalently be directly
carried out on a digital computer. In this chapter, we discuss a method
that enables an equivalent operation on irregular samples, i.e. a mapping
from continuous-time convolution to operations carried out only on irreg-
ularly sampled values. Conditions on the required sampling patterns are
discussed in this chapter that enable such an equivalent representation.
The results described in Chapter 4 therefore directly reflect those described
in Section 1.1: under certain conditions, both reconstruction and filtering
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can be done based on irregular samples only. The mathematical descrip-
tion of reconstruction/filtering from irregular samples, however, is more
involved than for the uniformly sampled counterpart.

In Chapter 5 sampling from a statistical perspective is discussed. The
task studied is sequential prediction of stochastic processes. Having ob-
served n samples, sample n + 1 is to be predicted. As a specific instan-
tiation of a strictly stationary stochastic process an Ornstein-Uhlenbeck
process is taken. The observed realizations of the stochastic process, how-
ever, do not correspond to one stochastic process, but are instead drawn
from a parametric family of stochastic processes. The parametric family
indexes the parameters of the stochastic process. No fixed model can be
optimal for all realizations from the parametric family at all times, for
an optimal model is tailored to the specific set of parameters describing
an element of the parametric family. A model that is optimal for the en-
tire parametric family can therefore only be asymptotically optimal for
a member of the parametric family. Notions of optimality are discussed
in the literature on universal coding. An optimal model is dependent on
the way realizations are drawn from the parametric family which in turn
depends on the sampling prior on the parameters of the parametric fam-
ily. For the case of the Ornstein-Uhlenbeck parametric family, a specific
sampling prior exists which maximizes the information transmitted from
the obtained realizations to the parameters indexing the parametric fam-
ily, which is Jeffreys’ prior. Jeffreys’ prior is explicitly derived in Chapter 5

for the Ornstein-Uhlenbeck parametric family. We connect these results to
notions of indistinguishability: having observed n samples, is it possible
to statistically distinguish two different stochastic processes from the same
parametric family from the n samples alone? Jeffreys’ prior underlying the
data generating process is then an optimal way to transmit as much in-
formation as possible from the parametric family to the stochastic process
realizations. We then show by a concrete example that a machine learn-
ing algorithm attempting to learn a model for the entire parametric family
will only generalize if the data are drawn according to Jeffreys’ prior. By
generalization we mean that prediction quality does not degrade if the test
prior is different from the training prior. Jeffreys’ prior turns out to be a
worst-case prior: if a model is learned for this prior, it will equally work
for any other (less information transmitting) prior. We then discuss the
implications of these findings for machine learning.

The thesis concludes with a summary and an outlook to potential future
research that could be based on the results presented herein.





2
O N S E N D - O N - D E LTA S A M P L I N G O F B A N D L I M I T E D
F U N C T I O N S

Event-based sampling schemes have been used to exploit the sparse nature
of many real-world signals. These sampling schemes follow a general ab-
stract principle: a sample is generated whenever a suitably defined event
has occurred in the measured signal. In the absence of activity, no sam-
ples are generated by event-based sampling schemes. Signals with inter-
mittent activity are ubiquitous in the real world, be it speech or movement
captured by a camera, for example. Another potential advantage of event-
based sampling schemes is the fact that the sampling rate is dynamically
adjusted by the activity that is being measured. Quickly changing scenes
– quick has to be understood with respect to the events that are detected
– produce more samples than slowly changing signals. The sampling pat-
tern that results from the application of an event-based sampler to a signal
is in general irregular.

Sampling schemes are classically formulated for bandlimited functions.
In this chapter, we study an event-based sampling scheme known as Send-
on-Delta sampling (cf. [18]) which is applied to bandlimited functions. This
sampling scheme has found use in the design of biologically inspired hard-
ware [19, 20]. Particular emphasis is placed on the question whether the
resulting sampling pattern is sufficient for a full reconstruction of the un-
derlying function, provided the function is bandlimited. As such, this chap-
ter forms a bridge between the world of signal processing on the one hand
and modern sampling schemes with origins in different domains.

2.1 introduction

Classical sampling schemes such as the Whittaker-Kotelnikov-Shannon
sampling method [21] sample a signal at a predetermined set of time in-
stants {tn}n∈Z, recording the amplitude values { f (tn)}n∈Z at these times.
The sampling pattern itself is matched to the nature of the sampled func-
tion. The classical function space used for sampling expansions is the
Paley-Wiener space, defined as PWπw := { f : f ∈ L2(R)

⋂
C(R), supp f̂ ⊆

1 Published in [17] © 2017 IEEE

11
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[−πw, πw], w > 0}, where L2(R) is the space of all square-integrable
(Lebesgue) functions over R, C(R) is the space of all continuous functions
on the real line, supp is the support of a function, and f̂ is the Fourier
transform of the function f : f̂ (ω) = 1√

2π

∫ ∞
−∞ f (t)e−iωtdt. For PWπw, the

question of which sets of sampling times allow stable reconstruction was
solved both for the case of sampling at the Nyquist-Landau rate (leading to
a Riesz basis expansion) and for oversampling (leading to a frame expan-
sion) [4, 21]. There are few studies such as the one in [22], where functions
belonging to larger function spaces than PWπw are considered. [22] studies
in particular functions belonging to the Bernstein class B∞

σ . B∞
σ is defined

as the space consisting of entire functions of exponential type at most σ
that belong to L∞(R) on the real line. Sufficient conditions on an over-
sampled sampling set that ensure reconstructability are given. In [23, 24],
sampling of PW∞

π and B∞
π is studied. The sampling instants are the zeros

of sine-type functions.
Event-based sampling schemes generate sampling points whenever the

sampled function fulfills a condition for the generation of an event. Clas-
sical examples are Level-Crossing [15], Send-on-Delta [16] and Sine-Wave-
Crossing sampling [25]. Reconstruction is possible from Sine-Wave-Crossing
samples as long as certain requirements on the frequency and amplitude of
the sine-wave sampler are met. Reconstruction from Level-Crossing sam-
ples has been studied with an approximate reconstruction solution for the
special case of zero-crossings given in [26]. Another approach for event-
driven sampling has been proposed in [27]. Time-encoding ensures recon-
structability of bandlimited functions. In [28], the time-encoding approach
is extended to general shift-invariant subspaces.

In this chapter, we study the behavior of Send-on-Delta sampling which
has recently been used in event-based sensors [19, 20] that attempt to
mimic biological sensors such as the cochlea or the retina. Send-on-Delta
sampling is studied in PWπw and in B∞

σ . In the latter case, we restrict our
study to those functions that are not constant on time intervals above a cer-
tain length. Only real-valued functions are considered in this chapter. We
show that Send-on-Delta sampling is a sampling scheme that generates a
finite number of samples for functions in PWπw making stable reconstruc-
tion infeasible. For functions in our restricted B∞

σ function space, however,
a sufficient amount of samples can be generated provided that the thresh-
old chosen is a function of time. To the best of our knowledge we are the
first to analyze the global behavior of Send-on-Delta sampling, contrasting
with local analysis as carried out in [16].
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2.2 send-on-delta sampling in the paley-wiener space

We show that Send-on-Delta sampling generates finitely many samples
when sampling signals from PWπw irrespective of the chosen threshold.
Our proof follows [29]. We start by noting the following:

f ∈ PWπw ⇒ f → 0 as t→ ±∞ (2.1)

The time at which sampling begins is denoted by t0 ∈ R. θ > 0 is the
Send-on-Delta threshold. A new sample is generated at time tj+1 if the fol-
lowing condition is met: | f (tj+1)− f (tj)| = θ. We now prove the following
proposition:

Proposition 1. Given θ and t0 as above, we have for f ∈ PWπw:

1. A finite number of samples are produced by Send-on-Delta sampling.

2. The total number of samples is bounded from above by ‖ f ’‖1
θ + 1, where f ’

is the derivative of f .

Proof.

0 < θ =
∣∣∣ f (tj+1)− f (tj)

∣∣∣ ≤ ∣∣∣ f (tj+1)
∣∣∣+ ∣∣∣ f (tj)

∣∣∣ (2.2)

If the tn tend to infinity, then by observation (3.23) the values of f at the
sampling points tend to zero. This, however, contradicts inequality (2.2).
All tn must therefore be finite. Samples will therefore only be generated in
a compact interval [a, b]. Consider such an interval [a, b] and assume that
m consecutive sampling times {tj, ..., tj+m−1} are contained in [a, b]. If m is
equal to 1, it is clear that the number of samples in this interval is finite.
We can therefore restrict our attention to the case m ≥ 2. Let 0 ≤ k ≤ m− 2.
We have

θ = | f (tj+k+1)− f (tj+k)| =
∣∣∣ ∫ tj+k+1

tj+k

f ’(t)dt
∣∣∣

≤
∫ tj+k+1

tj+k

| f ’(t)|dt

We sum up over all intervals set up by the sampling times {tj, ..., tj+m−1}
in [a, b]. We obtain

(m− 1)θ ≤
∫ b

a
| f ’(t)|dt (2.3)
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With a→ −∞ and b→ ∞ it follows from (2.3):

m ≤ ‖ f ’‖1
θ

+ 1 (2.4)

Using Hölder’s inequality on (2.3), we obtain the following bound for the
number of sampling times in [a, b]:

m ≤ ‖ f ’‖2
θ

(b− a)
1
2 + 1

Since ‖ f ‖2 is finite by assumption, ‖ f ’‖2 is finite by Bernstein’s inequality.
The number of samples generated must therefore be finite.

Remark 1. Level-Crossing sampling behaves fundamentally different from
Send-on-Delta sampling as it can produce both a finite and an infinite
amount of samples. Consider in particular the function f (t) = 1−sinc(t)

t

with sinc(t) = sin(t)
t . This function is bandlimited, its Fourier transform be-

ing f̂ (ω) = i
2

√
π
2 (sgn(1−ω) + ωsgn(ω− 1) + 2sgn(ω)−ωsgn(ω + 1)−

sgn(ω + 1)). f is furthermore in L2:
∫ ∞
−∞ | f (t)|

2dt = π
3 . f must therefore

decay to zero for t → ±∞. Consider now the intersection of f with a
function ∀t g(t) = c, c ∈ R. g corresponds to sampling levels, while c
describes the position of the level. One obtains sinc(t) = 1− ct. As sinc
is amplitude bounded for all t, the line 1− ct will (for c 6= 0) eventually
leave (for sufficiently large or small t) the amplitude region swept out by
sinc. The time spent in this amplitude region is therefore limited. No line,
however, can cross a Sinus Cardinalis function infinitely often in a finite
time interval. For c 6= 0 the number of intersection points is therefore fi-
nite. For c = 0 the only intersection is at t = 0. In order to obtain infinitely
many samples, one would therefore require an infinite set of sampling lev-
els. Consider now f (t) = sinc(t). This function has infinitely many zero
crossings. We conclude: contrary to Send-on-Delta sampling which always
produces finitely many samples for signals from PWπw, Level-Crossing
sampling can result in both a finite and an infinite number of samples.

It is now clear that functions in PWπw cannot be reconstructed from sam-
ples generated with Send-on-Delta sampling. The global sampling density
is in particular equal to zero and therefore below the Nyquist-Landau rate.
Send-on-Delta is hence not a stable sampling scheme. Locally, the number
of samples generated depends both on the threshold chosen and the local
derivative of the function considered. The distribution of local samples is
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therefore dependent on both the function and the threshold chosen. In sec-
tion 2.4 it will be seen, however, that the approximation error is bounded
due to the very nature of Send-on-Delta sampling.

2.3 send-on-delta sampling in a restricted bernstein class

To produce infinitely many samples, it seems intuitively clear that what is
needed as input are oscillatory functions with infinite energies, i.e. func-
tions in L∞(R) with minimum deviations from their local means. From
now on, θ is a function of time: θ = θ(t). By varying θ, we aim at obtaining
sampling patterns that meet the requirements of [22] for reconstructability.
The method described in [22] could then be used for reconstruction.

We consider functions f that live in B∞
σ , are continuous and that adhere

to the following restriction:

1. Oscillation =
∫

I | f (t)−mI( f )|dt ≥ CI > 0, where mI( f ) = 1
|I|
∫

I f (t)dt

Given a function f in B∞
σ , I is an interval in which at least one sample is

demanded. The size of I depends on σ. Our aim is therefore, considering
interval I, to find a θ so that at least one sample is generated, assuming CI
is known. The required minimum local oscillation of the function rules out
describing such a function in PWπw.

Proposition 2. Given CI > 0, the number of samples in an interval I obtained
from sampling a function living in the restricted B∞

σ function space with Send-on-
Delta will be greater than one if θ fulfills the following condition:

θ ≤ CI
|I|

Proof. As the mean of a function has no influence on the number of gener-
ated samples in an interval (we assume that a first sampling point is given),
we henceforth consider only zero-mean functions in interval I. The func-
tions which we consider therefore must fulfill the following conditions:∫

I
| f (t)|dt ≥ CI > 0 (2.5)

∫
I

f (t)dt = 0 (2.6)

Assume first that only condition (2.5) is valid. A function that generates
the least number of samples (no samples) is the constant function in I
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with constant value h = CI/|I|. Condition (2.6) is now assumed to hold,
too. We split up I into two disjoint sets I1 and I2 (|I1| + |I2| = |I|). On
I1, f (t) is assumed to have positive values, on I2, f (t) is assumed to have
negative values. I1 and I2 are in general unions of countably many disjoint
sets. Adding up all values of integrals evaluated on the disjoint sets that
constitute I1, we obtain a value of CI/2. Equivalently we obtain a value of
−CI/2 for I2. Let us now consider I1. Irrespective of the ratio |I1|/|I|, the
mean of f (t) on I1 is equal to CI

2|I1|
and on I2 equal to − CI

2|I2|
. We study three

cases:
|I1|/|I| < 1/2 and |I2|/|I| > 1/2 (2.7)

|I1|/|I| > 1/2 and |I2|/|I| < 1/2 (2.8)

|I1|/|I| = 1/2 and |I2|/|I| = 1/2 (2.9)

We introduce the following notation (see Fig. 2.1): h<1 = CI
2|I1|

> CI
|I| = h(0),

where h<1 corresponds to the mean of f (t) in I1 in case condition (2.7)
applies, and h(0) corresponds to the mean of f (t) in I in case only condition
(2.5) applies (we only consider the lower limit). h>1 is the mean in I1 in
case condition (2.8) is valid. h<2 and h>2 are defined similarly. h=1 = −h=2
correspond to the mean in I1 and I2 in case condition (2.9) applies. We start
with condition (2.7) and deduce:

h<1 > h(0) (2.10)

h>2 > −h(0) (2.11)

Let us fix a coordinate system: I = [0, x], I1 = [0, x1] and I2 = (x1, x], x >
x1 > 0. It is assumed that I1 and I2 are connected sets, as this minimizes
the number of samples generated. We obtain

d
dx1

h<1 (x1) = −
CI

2x2
1

(2.12)

d
dx1

h>2 (x1) = −
CI

2(x− x1)
2 (2.13)

Since we assume at the moment that condition (2.7) holds, it follows that
− CI

2(x−x1)
2 > − CI

2x2
1
. It then follows that h<1 grows faster than h>2 for decreas-

ing x1. This implies that with decreasing x1, the difference between h<1 and
h>2 grows. Equivalent results for h>1 and h<2 can be obtained if (2.8) is valid.
The minimum difference between the mean values in I1 and I2 will there-
fore be found under condition (2.9), namely h=1 − h=2 = 2h(0). Since f (t) is
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Figure 2.1: Illustration of the basic principle behind the proof of proposition 2

© 2017 IEEE

continuous, every point between either h<1 and h>2 or between h>1 and h<2
will have to be passed at least once. The minimum number of samples can
therefore be found under condition (2.9). The number of samples gener-
ated in I depends on the last sample before I as well. By choosing θ = h(0),
we ensure that at least one sample will be generated in I, irrespective of
the previous sample.

Remark 2. In case the function f is amplitude bounded, we can determine
a miminum separation between consecutive samples generated from sam-
pling a function from the Paley-Wiener space with Send-on-Delta. Such a
minimum separation result easily follows from Bernstein’s inequality [30]:
If f ∈ PWπw, then ‖ f ’‖∞ ≤ πw‖ f ‖∞. If ‖ f ‖∞ = c, c > 0, then ∆t =

θ
πwc ,

where ∆t is the minimum separation between two consecutive samples. For
functions for which no amplitude bound is known, such a miminum sep-
aration result cannot be found, at least not for functions that are sampled
during a finite time interval [31].

Remark 3. The method described in proposition 2 for choosing θ to ensure
at least one sample in an interval can also be used for functions from
PWπw. The local distribution of sampling times can be partially influenced
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this way. Since θ → 0 is not feasible in practice (this would be required due
to notion (3.23)), the method does not generate infinitely many samples.

Remark 4. Let us give an example: for f ∈ B∞
π−δ, 0 < δ < π, |I| is equal

to 1/2. I can be shifted once a new sample has been obtained in such a
way that the first time instant of I coincides with the last sampling time
recorded.

Remark 5. If θ is varied with time, both the sample times and θ need to be
stored for reconstruction.

Remark 6. If too many samples are generated in a specific I, samples should
be deleted to meet the requirements of [22] for reconstruction. For f ∈
B∞

π−δ, 0 < δ < π, only those samples closest to the integers should be
kept, i.e. only one sample should remain in |t − n| < 1/4, n ∈ N; all
other samples should be deleted. If a local approximation is performed,
however, samples should be kept to ensure good local approximation to
the underlying function.

Remark 7. Estimation of the precise value of CI seems to be difficult in gen-
eral. If a minimal CI was known for the entire function, θ could be adjusted
once and for all, making sure that a sufficient amount of samples would
be generated. This, however, would incur a surplus in samples in regions
of the function where there is a larger local oscillation than such a mini-
mum oscillation. Setting θ once by adjusting it to the minimum oscillation,
however, alleviates one from having to store the temporal development of
θ.

Remark 8. If no upper bound for the L2 norm of the function is known, then
no upper bound on the number of samples generated in a finite interval by
means of Send-on-Delta sampling can be given. This follows directly from
the theory of superoscillations [31]. Functions in PWπw can have arbitrary
finite derivatives locally, irrespective of the particular bandwidth πw.

2.4 approximation in the paley-wiener space

As shown above, stable reconstruction is not feasible for functions in PWπw
sampled with Send-on-Delta. Given that an ideal reconstruction cannot be
achieved, one can attempt to obtain a faithful approximation.

Besides providing timing information and (indirectly) amplitude infor-
mation at the sampling times, Send-on-Delta implicitly restricts possible
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function values between two sampling points. For t ∈ (tj, tj+1), where tj
and tj+1 are consecutive sampling times,

| f (t)− f (tj)| < θ (2.14)

is valid. By the above observation (equation (3.23)), f (t) decays to zero for
t→ ±∞. For t0 � 0, we assume that

| f (t0)− f (t)| < θ, t < t0, (2.15)

i.e. no sample would have been generated prior to the first sample (cf. [29]).
By choosing a Schwartz class function ψ with ψ̂ = 1 on [−πw, πw], w > 0
and ψ̂ compactly supported, f (t) can be reconstructed from an oversam-
pled sampling set:

f (t) = ∑
k∈Z

f (βk)ψ(t− βk), 0 < β < 1/w

β depends on the particular ψ chosen. Approximations f̃ (βk) to the f (βk)
values on the oversampled grid can be obtained by any interpolation method
that fulfills conditions (2.14) and (2.15). Feasible options are in particular
linear interpolation and nonlinear constrained parametric spline interpola-
tion [32]. Both methods lead to error estimates on the estimated samples:

| f (βk)− f̃ (βk)| ≤ 2θ, k ∈ Z

The infinite sum
f̃ (t) = ∑

k∈Z

f̃ (βk)ψ(t− βk)

converges uniformly [29].
If the approximated/reconstructed function is itself not required to be

in PWπw, other solutions can be found [33, 34]. Using such variable band-
width theorems, however, does not ensure that condition (2.14) is satisfied
in the approximated function. A very precise reconstruction can be ob-
tained for those intervals of the sampled function, however, that contain
large oscillations away from their local mean.

2.5 conclusion

We have shown that Send-on-Delta is a sampling scheme that allows for
only approximate reconstructions of functions in PWπw as it generates
finitely many samples. For functions in a restricted B∞

σ space, a method
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for changing θ is described that ensures that a sufficient number of sam-
ples are recorded. For PWπw, only an approximation to the true function is
feasible. Due to the particular nature of Send-on-Delta sampling, however,
the error in the approximate reconstruction can be bounded from above.
Send-on-Delta sampling can therefore be used only if mathematically pre-
cise reconstruction is not necessary since all real-world signals will belong
to PWπw than to infinite-energy signals contained in B∞

σ . Since all practi-
cally implementable sampling schemes will only yield approximations to
a signal (sampling can only occur during a finite time interval and with
finite precision), however, it is justified to use Send-on-Delta sampling, par-
ticularly if sampling hardware is required to be energy-efficient.



3
O N A P P R O X I M AT I O N O F B A N D L I M I T E D F U N C T I O N S
W I T H C O M P R E S S E D S E N S I N G

Compressed sensing as a field was started with two seminal publications
by Donoho [36] and Candès, Romberg and Tao [37]. Most compressed sens-
ing theory was developed for finite dimensional spaces to deal with the
following problem: given a vector in CN or RN , is it possible to recon-
struct it from m < N measurements provided the vector is sparse in some
transform domain? Here we briefly outline major developments made in
answering this question. The description is based on a standard exposition
of the field by Foucart and Rauhut [38].

Given a sparse vector x ∈ CN and a measurement matrix A ∈ Cm×N , is
it possible to reconstruct x from y = Ax, knowing that x is sparse? Let us
assume that x is s-sparse, i.e. it has at most s non-zero entries. Two different
cases can now be distinguished. The first case aims at determining condi-
tions that the measurement matrix A needs to fulfill such that all s-sparse
vectors x can be recovered from the measurements y (the uniform setting),
while the second case looks at conditions A needs to fulfill for a fixed x
to be recoverable from y (the nonuniform setting). The minimal number of
measurements m is equal to 2s in the first case and to s + 1 in the second.
Explicit measurement matrices A can be constructed that reach this lower
bound in the number of measurements. 2s resp. s + 1 measurements, how-
ever, do not provide stability with respect to a lack of precise sparsity and
measurement errors. For the reconstruction from 2s resp. s + 1 measure-
ments (the minimal number of measurements) it is necessary to solve the
following optimization problem

min
z∈CN

‖z‖0 subject to Az = y, (3.1)

where ‖·‖0 counts the number of non-zero entries in the argument. No
algorithms are known that solve the optimization problem (3.1) efficiently
for realistic m and N. The optimization problem is therefore relaxed to a
convex optimization problem

min
z∈CN

‖z‖1 subject to Az = y, (3.2)

2 Published in [35] © 2018 IEEE
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which is also known as basis pursuit. A more general optimization prob-
lem known as quadratically constrained basis pursuit

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η (3.3)

takes into account measurement noise by introducing η, the noise level,
into the optimization procedure. Conditions on A can now be derived that
ensure that (3.2) and (3.3) yield the correct result x. In the uniform setting,
conditions known under the name null space property need to be fulfilled.
In the noiseless case, the null space property demands that vectors living
in the null space of matrix A are not too sparse. If the null space property
is fulfilled, then (3.2) yields the same solution as (3.1). For the nonuniform
recovery setting, finer conditions on A and x can be derived (the conditions
obviously depend now on x as well) which ensure reconstructability of x
via (3.2) or (3.3). If A guarantees reconstructability in the uniform sense for
all s-sparse x, then it guarantees it for the nonuniform setting as well.

As a verification of the null space property is not trivial for a given ma-
trix, other conditions have been derived that ensure that (3.2) or (3.3) find
the true solution. One such condition is the restricted isometry property.
A measurement matrix A fulfills the restricted isometry property if the
smallest δ ≥ 0 such that

(1− δ) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ) ‖x‖2
2 for all s-sparse x (3.4)

is small for large enough s. Explicitly constructed matrices are known that
fulfill the restricted isometry property if the number of measurements m
is bounded from below by m ≥ Cs2 with C a constant. It is important to
iterate that the discussion so far has not assumed that any quantity, that
is neither A nor x, is random. If the measurement matrix has a sufficiently
small restricted isometry constant, then the optimization procedures (3.2)
and (3.3) yield an exact or approximate reconstruction of x from the mea-
surements y. The introduction of randomness (subgaussian random matri-
ces can be used) in the construction of A can be used to lower the required
number of measurements from Cs2 to m ≥ Cδslog (eN/s), where Cδ is a
constant depending on δ (an upper bound that the restricted isometry con-
stant should fulfill). If the measurement matrix is random, however, then
the restricted isometry constant is only smaller than δ with a probability at
least 1− ε (ε > 0 enters in a precise lower bound for the minimal number
of measurement m – the smaller ε, the larger m has to be). Reconstruction
results obtained from (3.2) or (3.3) with A a subgaussian random matrix,
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however, are then also only exact or approximate (with error bounds de-
pending on the noise η) with a probability at least equal to 1− ε.

Such lower bounds on the required number of measurements m are es-
sentially optimal. To see this, the notion of Gelfand m-width is introduced.
Given a normed space X and a subset K thereof, define the Gelfand m-
width as

dm (K, X) := inf
Lm

{
sup

x∈K∩Lm
‖x‖ , Lm subspace of X with codim (Lm) ≤ m

}
.

(3.5)
‖·‖ denotes the norm with which the normed space is equipped. The
Gelfand m-width therefore attempts to find a subspace in which x is small.
A related notion is the Kolmogorov m-width

dm (K, X) := inf
Xm

{
sup
x∈K

inf
z∈Xm

‖x− z‖ , Xm subspace of X with dim (Xm) ≤ m

}
,

(3.6)
which measures the extent to which K can be approximated by a linear
subspace. Define the notion of compressive m-width

Em (K, X) := inf
A,∆

{
sup
x∈K
‖x− ∆ (Ax)‖ , A : X → Rm linear, ∆ : Rm → X

}
,

(3.7)
where A is a nonadaptive linear map, and ∆ an arbitrary reconstruction
map. If the subset K satisfies −K = K and K + K ⊂ aK for some constant
a > 0, then

dm (K, X) ≤ Em (K, X) ≤ adm (K, X) . (3.8)

The unit ball BN
1 :=

{
z ∈ CN : ‖z‖1 ≤ 1

}
in lN

1 models compressible vec-
tors well. If K is chosen as BN

1 and X as lN
p for 1 < p ≤ 2, then the Gelfand

m-width of K in X can be upper and lower bounded as follows:

c1min
{

1,
log (eN/m)

m

}1−1/p
≤ dm

(
BN

1 , lN
p

)
≤ c2min

{
1,

log (eN/m)

m

}1−1/p

(3.9)
for m < N and constants c1, c2 > 0. Eq.(3.9) leads directly to the following
statement (Proposition 10.7 in [38]) for the recovery of vectors that are not
exactly sparse, but only compressible (stability property): If some matrix
A ∈ Rm×N and a reconstruction map ∆ : Rm → RN exist such that

‖x− ∆ (Ax)‖p ≤
C

s1−1/p inf
z∈CN

{‖x− z‖1 , z is s-sparse} (3.10)
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for 1 < p ≤ 2 and all x ∈ RN , then there exist constant c1, c2 > 0 (which
depend only on C) such that

m ≥ c1slog
(

eN
s

)
(3.11)

if s > c2. Eq. (3.10) can be compared to the sharp estimate

inf
z∈CN

{
‖x− z‖p , z is s-sparse

}
≤

c1,p

s1−1/p ‖x‖1 (3.12)

with c1,p =
(

1
p

)1/p (
1− 1

p

)1−1/p
. Eq. (3.12) and (3.10) are bounded by sim-

ilar terms from the right. The optimal sharp estimate in Eq. (3.12) bounds
the best s-term approximation to x from above (this best estimate requires
knowing the s most important entries of x). The minimal number of mea-
surements needed as described by Eq. (3.11) enable a similar reconstruc-
tion error, but now the knowledge of the s most important terms of x is
not required. Only a slightly larger number of nonadaptive measurements
are necessary to obtain the same information as knowing the s most im-
portant entries a priori.

The introduction of randomness in the construction of the measurement
matrix allows for Eq. (3.10) and (3.11) to be reached. Moreover, the recon-
struction map ∆ is explicitly given as well. The careful use of randomness
has therefore enabled more efficient sampling than what can be achieved
with the currently known best deterministic sampling schemes.

In the rest of this chapter, we describe the use of compressed sensing
(specifically infinite-dimensional versions thereof) to enable the stable sam-
pling and reconstruction of bandlimited functions from only finitely many
pointwise samples.

3.1 introduction

The approximate reconstruction of a bandlimited function in an interval
from a finite number of samples is a well-studied problem. The classical
Whittaker-Shannon-Kotelnikov sampling theorem requires infinitely many
samples for the reconstruction of the entire bandlimited function [21]; re-
construction within a compact interval from samples taken at the Nyquist
rate can lead to major errors as the sinc-function decays only with a rate
of 1

t for t → ∞, i.e. samples from far outside the interval to be recon-
structed can influence the values of the function in the interval to a major
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extent. Such truncation errors have been thoroughly studied in the liter-
ature. By introducing oversampling, local reconstruction can be achieved
with far greater accuracy, as the reconstruction function can be chosen to
decay much faster in time than the sinc-function associated with Nyquist-
rate sampling. Errors arising from truncated sinc-expansions in the over-
sampling regime have been studied by Helms and Thomas [39]; the same
authors also developed bounds for the truncation errors in case of self-
truncating sampling expansions. Truncation error bounds for finite-energy
signals were derived by Brown [40]. A related approach was followed by
Knab who analyzed error bounds arising from estimating a bandlimited
function in an interval from a finite number of equidistant samples using
Lagrange interpolation [41]. Error bounds for Lagrange interpolation from
equidistant samples of a bandlimited function depending on the sampling
rate and the Nyquist rate were developed by Radzyner and Bason [42].
Klamer and Masry studied error bounds arising from Lagrange interpo-
lation of bandlimited functions with finitely many sampling points dis-
tributed according to a point process [43]. They derived error bounds for
sampling points distributed according to a Poisson point process in partic-
ular. Strohmer and Tanner considered nonuniform periodic sampling, de-
riving a reconstruction algorithm using a finite number of samples [44]. Re-
turning to Lagrange interpolation, Selva considered a weighted Lagrange
interpolation scheme for the local approximation of a bandlimited func-
tion from nonuniform samples [45]. Explicit error bounds were given for
nonuniform sampling schemes with a maximum deviation of individual
samples from a uniform grid.

As described in the beginning of this chapter, compressed sensing (CS)
studies the solution of underdetermined linear systems, exploiting random
measurements and the sparsity of the signal to be reconstructed. Classical
CS theory was developed for finite-dimensional spaces. Recently, Adcock
and Hansen extended CS theory to infinite-dimensional spaces, thereby
enabling the application of CS to functions living in Hilbert spaces [46].

Through the combination of infinite-dimensional CS with the theory
of Prolate Spheroidal Wave Functions (PSWF), we derive approximation
methods for bandlimited functions. A similar approach which can be found
in [47] uses CS to recover functions sampled pointwise, assuming that the
functions are sparse in a PSWF basis. The main difference of our work
from [47] is that we lower the lower bounds on the number of measure-
ments sufficient for faithful approximation; additionally, our method does
not require sampling points distributed according to a Chebyshev distri-
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bution for reconstructing expansion coefficients above a certain index. In-
stead, uniform sampling can be used throughout in our formulation. In
Section 3.2 we discuss the main aspects of infinite-dimensional CS and
recapitulate the basics of PSWF and Reproducing Kernel Hilbert Spaces
(RKHS). Thereafter we derive our main results.

3.1.1 Notation

The version of the Fourier transform used in this chapter is

f̂ (ω) =
1√
2π

∫ ∞

−∞
f (t)e−iωtdt.

All considered functions live in the Paley-Wiener space PWπw := { f : f ∈
L2(R)

⋂
C(R), supp f̂ ⊆ [−πw, πw], w > 0}, where L2(R) is the space of

all square-integrable (Lebesgue) functions over R, C(R) is the space of all
continuous functions on the real line, supp is the support of a function,
and f̂ is the Fourier transform of the function f . The reproducing kernel
of PWπw is kπw(t, s) = w · sinc(w(t − s)), where sinc(t) = sin(πt)

πt . The
coherence v(U) of an infinite matrix U is defined as v(U) = supi,j∈N|uij|
with uij the entries of matrix U. 〈·, ·〉 denotes the inner product in a generic
Hilbert space H over C. The effective interval in which most of the function
energy is concentrated has length T > 0.

3.2 infinite-dimensional compressed sensing

Let H be a separable Hilbert space with an orthonormal basis {φj}j∈N.
Then every function in H can be expanded as f = ∑∞

j=1 αjφj with αj =

〈 f , φj〉. Let ∆ = supp( f ) ⊂ {1, . . . , M} with M ∈ N and supp( f ) = {j ∈
N : αj 6= 0}. If |∆| = r, f is (r, M)-sparse in the basis {φj}j∈N. The best
approximation error for compressible signals (see [38]) can then be defined
as

σr,M(α) = min{‖α− η‖1 : η is (r, M)-sparse}. (3.13)

Let ζ1( f ), ζ2( f ), . . . , be a countable collection of samples with ζ j( f ) =
〈 f , ψj〉 and {ψj}j∈N an orthonormal basis for H. The infinite matrix

U =


〈φ1, ψ1〉 〈φ2, ψ1〉 〈φ3, ψ1〉 . . .

〈φ1, ψ2〉 〈φ2, ψ2〉 〈φ3, ψ2〉 . . .
...

...
...

. . .

 , (3.14)
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is an isometry. Suppose that m of the first N measurements ζ j( f ) are
chosen uniformly at random with the position of the chosen measure-
ments being indicated by Ω ⊂ {1, . . . , N} and |Ω| = m. Define PΩ
to be the orthogonal projection from l2(N) to span{ej : j ∈ Ω} with
{ej : j ∈ N} the canonical basis of l2(N) and PM the orthogonal pro-
jection to span{ej : j = 1, . . . , M}. One result from [46] reads then as
follows: Provided certain technical requirements on N and m are met, then
by solving the finite-dimensional problem

inf
η∈l1(N)

‖η‖1 subject to PΩUPMη = PΩζ, (3.15)

a solution ξ can be found with probability 1− ε, ε > 0, which is close in
norm to the true solution α:

‖ξ − α‖ ≤ 8
(

1 +
2N
m

)
σ|∆|,M(α). (3.16)

One requirement on m is

m ≥ C · N · v2(U) · |∆| ·
(

log
(

ε−1
)
+ 1
)
· log

(
MN

√
|∆|

m

)
, (3.17)

i.e. the number of necessary measurements m in order to obtain a faithful
reconstruction with sufficiently high probability is bounded from below. C
is a fixed constant in Eq. (3.17).

3.2.1 Prolate Spheroidal Wave Functions

We recapitulate the basics of Prolate Spheroidal Wave Functions (PSWF)
briefly. The PSWF were introduced into signal analysis in a series of pa-
pers [48–50]. They are solutions to both a differential equation and to an in-
tegral equation, forming an orthonormal basis for the Paley-Wiener space
on the real line. The PSWF satisfy the integral equation∫ 1

−1

sin(c(x− y))
π(x− y)

φ(y)dy = λφ(x), |x| ≤ 1, (3.18)

where c = πwT
2 . The differential equation which the PSWF satisfy is

d
dx

(1− x2)
dφ

dx
+ (χ− c2x2)φ = 0. (3.19)
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Equation (3.18) has solutions for discrete values of λ which can be sorted
in a descending order:

λ0 > λ1 > λ2 > · · · > 0 . (3.20)

Possible eigenvalues λ are functions of c, i.e. λi = λi(c), i ∈ N0. The
PSWF basis numbering starts with 0, contrary to the generic basis {φ}i∈N.
The PSWF constitute an optimal basis for the space of bandlimited func-
tions [51]. We consider a subclass of the Paley-Wiener space of functions
with maximum energy E. Then the Kolmogorov n-width dn in L2(− T

2 , T
2 )

of the energy-bounded subclass of the Paley-Wiener space equipped with

the L2-norm in
(
− T

2 , T
2

)
is equal to dn =

√
Eλn and the subspace which

leads to this infinum is Sn = span(φ0, φ1, . . . , φn−1), φj being the PSWF.
The best approximation to a function f in an interval living in the energy-
bounded Paley-Wiener space in any n-dimensional subspace is then given
by ∑n−1

j=0 〈 f , φj〉φj. The worst case error arising from this approximation is

equal to
√

Eλn.

3.2.2 Reproducing Kernel Hilbert Space

PWπw is a Reproducing Kernel Hilbert Space (RKHS). The reproducing
kernel is given by kπw(t, s) = w · sinc(w(t − s)). If s is chosen to corre-
spond to { n

w}n∈Z, then the set 1√
w{kπw(t, n

w )}n∈Z is an orthonormal basis
for PWπw. Sampling at the Nyquist rate corresponds therefore implicitly
(after normalization of sample values by 1√

w ) to inner products with an
orthonormal basis. In the case of oversampling (samples are taken at the
rate { n

w′ }n∈Z, w′ > w) the induced set of functions

1√
w′
{kπw′(t,

n
w′

)}n∈Z, (3.21)

forms a tight frame with unit frame bound in PWπw. Consider now the
infinite matrix U from Eq. (3.14) with {ψi}i∈N a tight frame with unit
frame bound and {φi}i∈N an orthonormal basis for PWπw. U is an isometry.
Indeed,

Uα = U


〈 f , φ1〉
〈 f , φ2〉
〈 f , φ3〉

...

 =


〈 f , ψ1〉
〈 f , ψ2〉
〈 f , ψ3〉

...

 = ζ( f ), (3.22)
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with f ∈ PWπw. By Parseval’s identity it holds that ‖α‖2 = ‖ f ‖2. ‖ζ( f )‖2

is furthermore equal to ‖ f ‖2 as the set {ψi}i∈N is a tight frame with unit
frame bound. Hence ‖Uα‖2 = ‖α‖2 and U is an isometry.

3.2.3 Infinite Dimensional Compressed Sensing with PSWF basis

3.2.3.1 Approximation on the real line

We estimate an upper bound for the coherence of matrix U defined in Eq.
(3.14) with the PSWF basis {φi} and the tight frame {ψi} from Eq. (3.21).
All PSWF have unit energy on the real line. A standard result from the
theory of RKHS (see [52]) yields that the maximum value attainable by a
function from the RKHS at an arbitrary point t0 ∈ R, R being the domain,
assuming that the function has energy E, is given by max‖ f ‖2≤E | f (t0)|2 =

Ek (t0, t0), k(t, s) being the reproducing kernel. It follows that the coher-

ence of the infinite matrix U is bounded from above by v (U) ≤
√

w
w′ . We

conclude that the coherence of the infinite matrix U in Eq. (3.14) depends
on the bandwidth πw and on the sampling rate w′ > w. By oversampling
suitably, the coherence of U can be made as small as required.

Let us now study the term N · v2 (U) from Eq. (3.17). As discussed above,
an upper bound for the squared coherence v2 (U) of matrix U in Eq. (3.14)
is equal to w divided by w′. Furthermore, the following is valid:

f ∈ PWπw ⇒ f → 0 as t→ ±∞. (3.23)

Therefore, for every function in PWπw there exists a T > 0 such that almost

all of the energy of the function is located in
[
− T

2 , T
2

]
. We consider equis-

paced sampling points in
[
− T

2 , T
2

]
, spaced apart by 1

w′ . N, the number of

sampling points in
[
− T

2 , T
2

]
, is therefore linear in w′. The matrix PNUPM

from which m rows are drawn with uniform distribution is therefore close
to an isometry, implying that the theorems from [46] apply. The product of
N and v2 (U) reduces to a constant value which depends on w. Disregard-
ing log-terms, the number of measurements needed scales then linearly
with |∆| as can be seen from Eq. (3.17):

m ≥ C · T · w · |∆| ·
(

log
(

ε−1
)
+ 1
)
· log

(
MN

√
|∆|

m

)
. (3.24)

In the case of sampling the function globally, the number of measure-
ments would therefore be proportional to the support |∆| and the time-
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bandwidth product T · w. For a general bandlimited function, one cannot
assume a priori knowledge on ∆. By assuming sparsity, however, a ban-
dlimited function can be fully reconstructed from finitely many samples
in a stable way. Without the assumption of sparsity, infinitely many sam-
ples are necessary for a sampling set to be stable [21]. A stable sampling
scheme in this sense is then also a set of uniqueness, i.e. there is only one
bandlimited function whose values at the sampling set correspond to the
sampled values.

Remark 1. In principle, one could choose a different orthonormal basis
for PWπw than the one set up by the PSWF. Since bandlimited functions
are contained in L2 (R) on the real line, any orthonormal basis for L2 (R)
would suffice. The reproducing kernel for PWπw, however, acts as a low-
pass filter, implying that any non-bandlimited basis element from such
a hypothetical orthonormal basis would first have to be ideally lowpass-
filtered before being evaluated at a specific point. Since the PSWF are ban-
dlimited themselves, pointwise evaluation suffices.

Remark 2. The size of N (or equivalently of w′) influences the irregular-
ity of the sampling pattern. The larger N becomes, the more the sam-

pling process resembles truly uniform sampling on the interval
[
− T

2 , T
2

]
.

In fact, a larger N implies a greater possible sampling pattern irregu-
larity in

[
− T

2 , T
2

]
. This can be seen as follows: Set C′ = C · N · v2(U) ·(

log
(
ε−1)+ 1

)
(C′ is a constant for fixed ε), and |∆| = M. We obtain the

following inequality from Eq. (3.17):

emmC′M ≥ C′′NC′M, (3.25)

with C′′ =
(

M
√

M
)C′M

. In the case of a growing N, the required m in
order to fulfil Eq. (3.25) (and hence Eq. (3.17)) will grow slower than N.
This can be seen by comparing the derivative of the left hand side of Eq.
(3.25) with respect to m with the derivative of the right hand side with
respect to N. For the left hand side one obtains emmC′Me−1 (C′M + m) and
for the right hand side C′′NC′M N−1C′M. If N and m are chosen in such a
way as to fulfil Eq. (3.25) it follows that

emmC′Me−1 (C′M + m
)
≥ C′′NC′Me−1 (C′M + m

)
≥ C′′NC′M N−1C′M, (3.26)

provided that C′M + m ≥ eN−1C′M. The latter inequality is certainly ful-
filled as N is always larger than e.
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3.2.3.2 Approximation in intervals

Assume now that we are only interested in the approximation of a ban-
dlimited function in an interval. In general, finitely many samples in an
interval do not determine a bandlimited function uniquely. By restricting
a bandlimited function to an interval, the resulting function space ceases
to be a RKHS, that is, pointwise sampling is no longer continuous. After
normalization, the PSWF form an orthonormal basis for the interval of
interest. Within the interval, an upper bound for the values of the PSWF
cannot be obtained from RKHS techniques as in Section 3.2.3.1. It is known,
however, that for large enough integers n ≥ 0 the largest absolute value
of the normalized PSWF can be found at − T

2 and T
2 [53]. Furthermore, an

upper bound for this largest value is proportional to
√

n [53]. Hence the
approach from Section 3.2.3.1 cannot be used, as no upper bound for the
coherence can be given. Following Corollary 7.1 in [54], we use a weighted
minimization scheme to solve the interpolation problem in the interval by
introducing weights {wi} which grow as fast as the maximum value of
the PSWF in our interval of interest, i.e. with rate

√
i. Following the line

of argument given in [54], it transpires that the number of measurements
needed in the interval of interest is proportional to M2, with M the largest
integer for which a coefficient that is nonzero is expected. As discussed
above in Section 3.2.1, the worst case error of functions from the energy-
bounded Paley-Wiener space expanded in a subspace spanned by the first
n PSWF basis elements is equal to

√
Eλn. Given that λ decays rapidly for

n > 2c
π , in general one will need more than 2c

π PSWF basis elements for an
acceptable worst case approximation error. Equating n with M and setting
∆ = {1, . . . , M} (in general, all coefficients 〈 f , φj〉 for j ∈ {1, . . . , M} will
be nonzero), one can conclude that one has to oversample locally, as 2c

π

corresponds to the number of Nyquist-rate samples in an interval [− T
2 , T

2 ].
It is interesting to observe the qualitative difference between the sam-

pling of bandlimited functions on the real line and on intervals assuming
sparsity. In the former case, the number of sampling points sufficient scales
linearly with |∆|, in the latter case quadratically. As mentioned above, one
of the reasons for this behavior is the lack of continuity in the sampling
process in the time-limited case since the space is no longer a RKHS.

Remark 3. A different approach to approximate a bandlimited function lo-
cally from uniformly distributed samples can be based on previous work
showing how to determine the Restricted Isometry Property (RIP) for finitely
many measurements in potentially infinite-dimensional Hilbert spaces [55].
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It is known (see [5]) that for sampling times {tn}n∈Z with a maximum sepa-
ration δ = supn∈Z (tn+1 − tn) <

1
w the following is true for any f ∈ PWπw:

(1− δw)2 ‖ f ‖2 ≤ ∑
n∈Z

ωn | f (tn)|2 ≤ (1 + δw)2 ‖ f ‖2 (3.27)

with ωn = tn+1−tn−1
2 . We assume that nearly all of the energy of f is lo-

cated in the interval of interest. This assumption is in contrast to the first
part of Section 3.2.3.2 in which it was not assumed that the interval of
interest contains most of the signal energy. By suitable time-windowing
that leaves the function bandlimited (albeit with a potentially different
bandlimit), however, one can enforce this energy condition. By sampling
only in the interval of interest, Eq. (3.27) will not be strictly fulfilled; we
disregard this error from now on as it can be made arbitrarily small by
increasing our interval. Using Theorem II.2 from [55] and Eq. (3.27), we
now show that uniformly distributed sampling points satisfy the RIP with
a large probability. Define the continuous linear map L that operates on
the coefficients η of f ∈ PWπw in the PSWF basis and that returns m
pointwise evaluations of f distributed uniformly in the interval

[
− T

2 , T
2

]
,

each sample being rescaled by
√

ωn. Let µ be the probability measure
which leads to uniformly distributed rescaled sampling points in

[
− T

2 , T
2

]
.

Then Eµ‖L(η)‖2 = ω ∑m
i=1

∣∣∣ f (− T
2 + iΛ

)∣∣∣2 with Λ = T
m+1 and ω = Λ =

1
w′ . Hence, if m is chosen such that the induced w′ ≥ w, it follows that
Eµ‖L(η)‖2 = ‖ f ‖2. As in [55], define δS,µ,2 = supx∈S

∣∣‖L (η) ‖2 −Eµ‖L(η)‖2
∣∣ =(

2δw + δ2w2) ‖ f ‖2 using Eq. (3.27), with S being the set of 2|∆|-sparse
coefficient vectors η with unit energy ‖ f ‖2 = 1. Since the RIP constant
δRIP ≥ δS,µ,2, it is necessary to oversample for a RIP constant below one to

be feasible: (2δw + δ2w2) < 1 ⇔ δ <
√

2−1
w . If, as above, ∆ ⊂ {1, . . . , M},

then S has a finite upper box-counting dimension (cf. [55] for definitions).
Additionally, for Theorem II.2 from [55] to work, the following probability
must be bounded from above:

P
{∣∣∣‖L(η1)‖2 −Eµ‖L(η1)‖2 − ‖L(η2)‖2 + Eµ‖L(η2)‖2

∣∣∣ ≥
λ‖η1 − η2‖

}
, (3.28)

with η1 and η2 ∈ S or zero in all its entries and λ ≥ 0. For η1 and η2 either
all zero or identical, a bound is trivial, i.e. statement (3.28) has probability
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one. For η1 and η2 distinct, we can use Hoeffding’s inequality to obtain an
upper bound. Using Eq. (3.27), we derive:

P
{∣∣∣‖L(η1)‖2 −Eµ‖L(η1)‖2 − ‖L(η2)‖2 + Eµ‖L(η2)‖2

∣∣∣ ≥
λ‖η1 − η2‖

}
≤ 2exp

(
− λ2

8δ2w2

)
. (3.29)

Equation (3.29) is valid for all λ. It is worth emphasizing that Eq. (3.29)
is only a correct statement insofar as Eq. (3.27) is true which necessitates
oversampling. In case m points are chosen with uniform probability inde-
pendently in an interval

[
− T

2 , T
2

]
and sorted in ascending order, the dis-

tribution for the greatest distance between any two consecutive points is

given by Fδ(z) =
(

1− (T−z)m

Tm

)m−1
with z ranging from zero to T. Fδ2(z) is

then given by Fδ2(z) =

1−

(
T−z

1
2

)m

Tm

m−1

. Hence it follows that δ2 < Λ

(assuming δ < 1) with overwhelming probability for even slight oversam-
pling (factor two); Eq. (3.29) can then be manipulated to yield:

P
{∣∣∣‖L(η1)‖2 −Eµ‖L(η1)‖2 − ‖L(η2)‖2 + Eµ‖L(η2)‖2

∣∣∣ ≥
λ‖η1 − η2‖

}
≤ 2exp

(
− λ2m

8Tw2

)
. (3.30)

Given that the continuous linear map L has a finite upper box-counting
dimension and that inequality (3.30) holds, we conclude by invoking The-
orem II.2 from [55]: The RIP holds with probability 1− ξ, i.e. δS,µ,2 ≤ δRIP
for any ξ, δRIP ∈ (0, 1) if

m ≥ 8CTw2

δ2
RIP

max
{
(2 |∆|+ 1) log

(
1
εS

)
, log

(
6
ξ

)}
, (3.31)

with C > 0 a constant independent of all other parameters and εS given
in [55]. The bound shown in Eq. (3.31) is structurally similar to the one
derived in Eq. (3.24).

3.3 implementation and results

The PSWF are generated by using a freely available numerical software
package [56]. Since the generation of PSWF with a large parameter c is nu-
merically difficult, we have restricted our practical investigation to c = 30.
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To test the algorithm, a speech signal is bandpass-filtered and the result-
ing bandpass-filtered signal is represented in its equivalent baseband form.
This equivalent baseband form is then sampled uniformly in an interval.
An illustrative example is shown in Fig. 3.1. In this example, T is set to 2,
while c = 30. 90 sampling points are uniformly distributed within the inter-
val

[
− T

2 , T
2

]
. The approximation via weighted l1-minimization in the inter-

val is essentially perfect. It is worth pointing out that the actual number of
measurements needed is smaller than the number required by theory. The
upper bound discussed in Section 3.2.3.2 for the normalized PSWF ele-
ment i (proportional to

√
i) seems to be a conservative estimate in practice.

The homotopy method is used in our implementation for the minimiza-
tion of the CS problem. In the case of noisy measurements, a weighted
l1-minimization is able to recover a solution with an error proportional to
the noise term. Fig. 3.2 depicts the same signal as Fig. 3.1; contrary to the
case in Fig. 3.1, however, uniform i.i.d. noise (SNR ≈ 4) is added to the
perfect sampling values.
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Figure 3.1: Example of a reconstructed equivalent baseband signal (real part): M
= 30; 90 uniformly distributed sampling points; c = 30 © 2018 IEEE

3.4 conclusion

We have discussed and derived methods for approximating bandlimited
functions on the real line or in finite intervals from finitely many samples
generated by a uniformly distributed sampling process, assuming sparsity
in the PSWF basis. In the case that nearly all of the signal energy is concen-
trated in the interval of interest, the number of sampling points necessary
is proportional to the sparsity in the PSWF basis. In the case that a signifi-
cant portion of the signal energy is outside the interval of interest, we have
derived results showing that a lower bound for the number of sampling
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Figure 3.2: Example of a reconstructed equivalent baseband signal (real part):
M = 30; 90 uniformly distributed sampling points; c = 30; SNR ≈ 4,
i.i.d. uniformly distributed noise on sampling values © 2018 IEEE

points sufficient is proportional to M2, assuming all coefficients up to M
are to be recovered. Future work includes investigating the reason for this
qualitative change in behavior when moving from the real line to finite
intervals.
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F I LT E R I N G O F N O N U N I F O R M LY S A M P L E D
B A N D L I M I T E D F U N C T I O N S

Most signals in the natural world are continuous-time in nature. An opera-
tion often applied to such continuous-time functions f is continuous-time
convolution with some filter g:

( f ∗ g) (t) =
∫ ∞

−∞
f (τ) g (t− τ) dτ. (4.1)

Due to the ubiquity of digital computers, it is desirable to find methods
that enable the realization of Eq. (4.1) on such devices. A mapping from
the space in which the continuous-time functions and filters reside to a
sequence space is hence required. For the two operations in the two do-
mains to be equivalent, the mapping should constitute an isomorphism.
In principle arbitrary many possible mappings exist. A useful restriction
placed on mappings is to demand that the time-invariant nature of filter-
ing in continuous-time is preserved for the mapped discrete sequence, i.e.
that the discrete filtering is shift-invariant. A classical example for a map-
ping with such a property is the uniform sampling of square-integrable
bandlimited functions at an appropriate sampling rate: in this case, time-
invariant continuous-time filters are mapped onto shift-invariant discrete-
time filters. Uniform sampling is not the only mapping scheme with such
a desirable property. It was recognized early on that a suitably modified
version of the bilinear transform (which is often used in filter design to
map continuous-time onto discrete-time filters and vice versa) preserves
the convolution property as well [58]. The possible set of functions is fur-
thermore larger than for uniform sampling as the continuous-time func-
tion only needs to be square-integrable and not bandlimited any more.
Necessary and sufficient conditions were then given to ensure that the iso-
morphisms linking the continuous-time to the discrete space preserve the
convolution property, thereby in principle allowing arbitrarily many dif-
ferent mappings [59]. A review by Oppenheim and Johnson discusses and
summarizes the conditions that mappings need to fulfill for convolution to
be preserved [60].

3 Published in [57] © 2019 IEEE
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In the case of dense enough irregular sampling of bandlimited square-
integrable functions, the mapping from the continuous-time space to the
sequence space is isomorphic as well. Instead of orthonormal bases, how-
ever, Riesz bases and frames are now required. Shift-invariant linear fil-
tering, i.e. convolution, cannot be carried out any more directly on the
irregular samples. Different algorithms are needed for the filtering on the
sampled values. In the rest of this chapter, a possible approach is discussed
that enables filtering. The scheme is iterative in nature, and each iteration is
composed of discrete convolutions. The cumulative effect of the iterations
is an approximation of Eq. (4.1) on the set of sampling times.

4.1 introduction

The filtering of irregularly sampled bandlimited functions has been stud-
ied far less than the uniform counterpart, even though nonuniform sam-
pling patterns arise often in practice, either as defects in uniform sampling
or deliberately, such as in MRI (to accelerate measurements, for example)
and seismology [61]. In the uniform sampling case, a wide body of litera-
ture describing the design and analysis of digital filters is available [62].
Irregular sampling of functions (albeit without the assumption of ban-
dlimitedness) has recently become popular within the area of event-based
signal processing, but has been mostly addressed from a hardware per-
spective [63]. The IIR filtering of functions sampled with a level-crossing
scheme has been discussed as well [64]. It is an interesting problem to
study under which conditions on the filters filtering can be performed on
irregularly sampled bandlimited functions and which conditions the irreg-
ular sampling pattern has to fulfill for such filtering to be feasible. In the
uniform sampling case, most attention has been focused on the design and
analysis of linear time-invariant resp. linear shift-invariant systems (LTI
resp. LSI), for those systems allow the filtering of a function with a time-
invariant filter via convolutions. If the sampling pattern is nonuniform,
however, no such time-invariant filter exists. Instead, filters will depend
on the specific structure of the sampling pattern and will hence have to
change over time.

Continuous convolution is mapped to discrete convolution for uniformly
sampled bandlimited functions. Continuous filtering can hence be fully
carried out on a discrete representation of the uniformly sampled bandlim-
ited function. The mapping of continuous convolution onto operations per-
formed on irregularly sampled bandlimited functions is feasible as well [65,
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66]. The specific structure of this mapping is described in Section 4.2. The
operations on the sampled values as described in these references, however,
do not correspond to a discrete convolution. Since all operations, however,
only require the sampled values, a filtering operation is performed that is
in some sense equivalent to classical discrete-time filtering.

4.1.1 Previous Work

Previous work on the filtering of nonuniformly sampled functions focused
either on the design of time-varying finite impulse response (FIR) filters
via the minimization of some cost term [67] or on filtering via Projections
onto Convex Sets (POCS) type algorithms [68]. For both approaches, no
analysis of sampling pattern requirements is given to ensure equivalence
of numerical filtering to continuous-time filtering. The first approach addi-
tionally requires the estimation of the Fourier transform of the function to
be filtered. In the second approach it is not possible to use arbitrary filter
functions due to the nature of the POCS algorithm employed.

The algorithm discussed in this chapter enables the filtering of bandlim-
ited functions with bandlimited filters to a desired precision, in case effects
such as truncation, aliasing and time jitter errors are not taken into account.
All operations are furthermore carried out at the sampling instants, i.e. no
uniform grid is required as in [68]. Contrary to [67], the filtering is in prin-
ciple exact (disregarding error terms found in the filtering of uniform sam-
pling as well) as it does not require the minimization of some surrogate
cost function.

4.1.2 Notation

The version of the Fourier transform used is f̂ (u) = 1√
2π

∫ ∞
−∞ f (t)e−iutdt.

All considered functions live in the space L1 (R), and are additionally ban-
dlimited: supp f̂ ⊆ Q, where supp denotes the support of a function
and Q is any bounded set in R. A sampling pattern (tn)n∈Z is associated
with partitions of unity Ψ = (ψn)n∈Z. Characteristic functions on Voronoi
regions are an example for a partition of unity. A sampling pattern is γ-
dense, γ > 0, if ∪n∈Z tn + [−γ, γ] = R. δtn denotes a time-shifted Dirac
delta function.
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4.2 filtering

In Section 4.2.1, the mapping of continuous-time filtering onto operations
carried out using only irregularly sampled function values is briefly de-
scribed. Thereafter the filtering algorithm based on such an approximation
is described in Section 4.2.2.

4.2.1 Approximation of Convolutions

Assume that f is a bandlimited function in L1 (R) with supp f̂ ⊆ Q and
define the operator D+

Ψ ( f ) acting on f as follows:

D+
Ψ ( f ) = ∑

n∈Z

f (tn) ‖ψn‖1 δtn . (4.2)

The partition of unity Ψ reweights the sampling values ( f (tn))n∈Z to ac-
count for local irregularities in the sampling pattern. Given the operator
Eq. (4.2), the following approximation to a convolution Cg f := f ∗ g can be
defined, where g is a bandlimited function in L1 (R):

Ag f :=
(

D+
Ψ ( f )

)
∗ g. (4.3)

The function f is to be convolved with a bandlimited function g with
supp ĝ ⊆ Q. If a function h with the properties ĥ ≡ 1 on Q and supp ĥ ⊆
Q0 (with Q ⊆ Q0 and Q0 a bounded set) is introduced, then the following
equivalence can be shown (Proposition 6.1 in [66]), with Ch f := f ∗ h:

Cg f = Cg Ah

(
∞

∑
k=0

(Ch − Ah)
k

)
f . (4.4)

Expanding the expression
(

∑∞
k=0 (Ch − Ah)

k
)

f in Eq. (4.4), the following
iterative procedure is obtained:

f0 := f (4.5)

fk+1 := fk ∗ h− D+
Ψ ( fk) ∗ h. (4.6)

Eq. (4.6) then directly implies that

Cg fk = CgCh fk = CgD+
Ψ ( fk) + Cg fk+1, k ≥ 0, (4.7)

yielding by induction

f ∗ g =
m

∑
k=0

(
D+

Ψ ( fk) ∗ g
)
+ fm+1 ∗ g, m ∈N. (4.8)
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A requirement for the validity of Eq. (4.4) is that Ch− Ah is a contraction on
the space of bandlimited functions with support on Ω0. Ch − Ah is a con-
traction if the sampling density is sufficiently high. For lowpass functions
h, for example, that have frequency support supp ĥ ⊆ [−πw, πw] with
w > 0, the sampling pattern must necessarily be γ-dense with γ smaller
than 1/w [69]. If Ch − Ah is a contraction, then the terms fm+1 in Eq. (4.8)
decay at a geometric rate. The specific decay properties depend on the sam-
pling pattern. For regular equidistant sampling of lowpass functions, for
example, Theorem 6.11 in [21] shows that Cg f = Cg Ah f for f , g and h as
above, hence one iteration is sufficient. Irregular sampling patterns require
in general more iterations. The results shown in Section 4.3 indicate that a
small value of m is often sufficient for good numerical performance. Since
Eqs. (4.5) and (4.6) contain only linear operators, an error analysis for prac-
tical implementation errors (e.g. due to truncation, aliasing, and time jitter)
can be carried out (cf. a related analysis for the case of reconstruction [70]).
If these error types are present, then Eq. (4.8), truncated to the first m terms,
will only result in an approximate convolution, even if m→ ∞.

4.2.2 Filtering Algorithm

The algorithm given in Section 4.2.1 can be directly implemented on the
sampling values. Given the definition of the Fourier transform used in this
letter and the requirements on h described in Section 4.2.1, the convolution
of fk and h in Eq. (4.6) results in

√
2π fk, while D+

Ψ ( fk) ∗ h reduces to
∑n∈Z fk (tn) ‖ψn‖1 h (t− tn). The k-th term fk is then given by

fk = (2π)
k
2 f − ∑

n∈Z

f (tn) ‖ψn‖1 hk∗ (t− tn)

− ∑
n∈Z

f1 (tn) ‖ψn‖1 h(k−1)∗ (t− tn)− · · ·

− ∑
n∈Z

fk−1 (tn) ‖ψn‖1 h (t− tn) , (4.9)

with hl∗ defined as
hl∗ := h ∗ h ∗ · · · ∗ h︸ ︷︷ ︸

l times

. (4.10)

Eq. (4.9) can be directly evaluated on the sampling pattern (tn)n∈Z for each
k. Then Eq. (4.8), if the correction term fm+1 ∗ g is discarded, can be evalu-
ated on (tn)n∈Z as well, yielding an approximate convolution, or, in case of
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uniform sampling, perfect convolution in the case where practical imple-
mentation errors are not present. The partition of unity Ψ used in Eqs. (4.9)
and (4.8) can be chosen in such a way as to be numerically beneficial.

Assume now that Q = [−πw, πw] with w > 0. h can then be chosen as

ĥλ (u) =


1, |u| ≤ πw

1− |u|−πw
λπw , πw ≤ |u| ≤ (1 + λ)πw

0, |u| ≥ (1 + λ)πw,

(4.11)

with λ > 0. The larger λ is, the faster the decay of hλ. A large λ therefore
implies that in the evaluation of Eq. (4.6) at sampling time tj, only nearby
sampling times matter as hλ

(
tj − tn

)
decays quickly in tn. With increasing

λ, the filtering becomes more local in nature. The downside of a larger λ is
the requirement of a denser sampling pattern. Such a statement therefore
directly echoes similar statements for uniform sampling in case of over-
sampling. Higher iteration orders, however, require a larger neighborhood
of sampling time tj as the filters hl∗ tend to broaden with increasing l. If
Q was shifted to [u0 − πw, u0 + πw] with u0 ∈ R and u0 known, then the
algorithm remains unchanged, provided h and g are suitably modulated
in frequency space.

If h, g and f are chosen such that supp ĝ ⊆ supp f̂ ⊆ supp ĥ, then the
required sampling density is determined by h. For defining an approxi-
mation of convolutions on irregularly sampled functions, however, only
supp ĝ ⊆ supp ĥ is required. The requirement of supp f̂ ⊆ supp ĥ is
necessary such that Eqs. (4.5) and (4.6) can be evaluated directly on the
sampling values without knowing f itself as ĥ ≡ 1 on Q results in all sam-
pling values just being rescaled upon convolution. The downside of such a
choice of h is that the sampling pattern is not tailored anymore to the filter
g itself. To understand this point, it is worthwhile to consider the case of
uniform sampling. For uniform sampling, it is possible to undersample a
bandlimited function and still filter it perfectly if the frequency support
of the filter is contained only within the nonoverlapping regions of the
spectrum of the undersampled function. Sampling at or above the Nyquist
rate is therefore not always necessary for filtering a bandlimited function.
An extrapolation of such a statement to filtering performed on irregularly
sampled functions is not possible within the framework discussed in this
letter as supp f̂ ⊆ supp ĥ is required. γ must therefore necessarily be
smaller than 1/ (1 + λ)w if Q = [−πw, πw] and h is chosen according to
Eq. (4.11) [69].
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4.3 numerical examples

To illustrate the algorithm, two differently sampled bandlimited functions
are lowpass filtered. The first example involves a uniformly sampled ban-
dlimited function with missing samples, while the second example is based
on a bandlimited function that is sampled by an event-based sampling
mechanism. In both cases, time-domain forms of Eq. (4.11) as well as of
hλ convolved with itself are required. These forms are given in Eqs. (4.12)-
(4.13), with hλ (t) = h1∗

λ (t), for 1 ≤ l ≤ 2.

h1∗
λ (t) =

2
√

2 sin (πwt (1 + λ/2)) sin (πwtλ/2)
π3/2λwt2 (4.12)

h2∗
λ (t) =

2
√

2 (πwλt cos (πwt) + sin (πwt)− sin (πwt (1 + λ)))

π5/2t3λ2w2 (4.13)

Closed-form expressions of hl∗
λ for the case of l > 2 can be easily derived

as well. The first lowpass filter used is bandlimited (therefore not causal)
and given by

ĝ1 (u) =


e
−π2w2

f −e
u2−2π2w2

f

e
u2−π2w2

f
, |u| < πw f

0, |u| ≥ πw f

(4.14)

and

g1 (t) =

√
2
π

e−π2w2
f=
{

eiπw f tD+

(
t
2
+ iπw f

)}
−√

2
π

e−π2w2
f
sin
(

πw f t
)

t
, (4.15)

where i is the imaginary unit, = {·} the imaginary part of its argument, w f
the cutoff frequency of the filter and D+ the Dawson function. The second
lowpass filter used is a first order Butterworth filter. This filter is causal but
not bandlimited. Its use therefore results in an unavoidable aliasing error.
Its time-domain form is given by

g2 (t) = πve−πvtu (t) , (4.16)

where u is the step function and v > 0 determines the cutoff frequency.
Eq. (4.15) is additionally chosen as the first bandlimited function to be
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filtered, i.e. ∀t f1 (t) = g1 (t) with w f = w. The ground truth filtered signal
is then readily obtainable if f1 is convolved with g1:

( f1 ∗ g1) (t) =

√
2
π

e−π2
(

w2
f +w2

) sin
(

πw f t
)

t
−√

2
π
=
{

eiπw f t−2π2w2
f D+

(
t
2
+ iπw f

)}
−√

2
π
=
{

eiπw f t−π2
(

w2
f +w2

)
D+

(
t
2
+ iπw f

)}
+

1√
π
=
{

eiπw f t−2π2w2
f D+

(
1√
2

(
t
2
+ 2iπw f

))}
. (4.17)

The second bandlimited function to be filtered is given by

f̂2 (u) =


1, |u| ≤ π w

1+µ

1− (1+µ)|u|−πw
µπw , π w

1+µ ≤ |u| ≤ πw

0, |u| ≥ πw,

(4.18)

with µ > 0. The filtered function ( f2 ∗ g2) (t) is then obtained as

( f2 ∗ g2) (t) =
1

2µ
√

2πwt
e−πvtvu (t)

(
2µπ2wt+

4eπvt (1 + µ)

(
cos (πwt)− cos

(
πwt

1 + µ

))
+

4πt (1 + µ)< {(w + iv) Si (πt (w + iv))}+
4πt (1 + µ)< {i (w + iv)Ci (πt (w + iv))}+

4πt<
{

i (w + i (v + µv))∗ Ci∗
(

πt
(

w
1 + µ

+ iv
))}

−

4πt<
{
(w + i (v + µv)) Si

(
πt
(

w
1 + µ

+ iv
))})

(4.19)

with < (·) the real part of its argument, Ci the cosine integral, Si the sine
integral and (·)∗ the complex conjugate of its argument.

For the numerical filtering examples, the following parameter choices
are made: f1 and f2 have a cutoff frequency of πw = 1, i.e. w = 1, w f = 0.5
is used in g1, and v = 0.01 and v = 0.5 are chosen for g2. These two choices
of v lead to different amounts of aliasing error in the eventual filtering.
For f2, µ = 1 is chosen. For the auxiliary function Eq. (4.11), λ = 1 is
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taken. Given the choices of w and λ, a maximum distance of 0.5 between
consecutive samples is then required for the filtering to be feasible. This
requirement on the sampling pattern, however, is only sufficient for f1 ∗ g1.
Since g2 is not bandlimited, this maximum distance between consecutive
samples is not sufficient if the filtering of f2 ∗ g2 is be carried out on the
irregular samples - an aliasing error is unavoidable.
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Figure 4.1: Result of f1 ∗ g1; f1 and g1 as well as parameter choices are given in
Section 4.3. The ground truth filtered function f1 ∗ g1 is on top of the
numerically computed filtered function. © 2019 IEEE

The first nonuniform sampling pattern considered is obtained by drop-
ping samples from a uniform sampling pattern (with a distance between
consecutive samples of 0.25 before removal of samples). The sample dele-
tion is done such that the maximum distance between consecutive samples
of the resulting irregular sampling pattern is 0.5, i.e. if a sample is dropped,
the next one will certainly be kept. Three iterations of Eq. (4.6) are used in
all numerical examples. Examples of filtering functions sampled with such
a sampling pattern are shown in Figs. 4.1, 4.2 and 4.3.

The second nonuniform sampling pattern considered is obtained by the
application of the Send-on-Delta sampling scheme on a bandlimited func-
tion [16]. If the function was sampled at tj, then a new sample would be
generated at the first time point tj+1 for which the following condition
holds: | f (tj+1)− f (tj)| = δ, with δ > 0. An example of filtering a bandlim-
ited function sampled by Send-on-Delta is shown in Fig. 4.4.
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Figure 4.2: f2 ∗ g2; f2 and g2 are given in Section 4.3; v = 0.01. © 2019 IEEE

4.4 discussion

The examples from Section 4.3 show that - provided both the function
to be filtered and the filter are bandlimited - the numerically computed
solution is close to ground truth. Fig. 4.3 as compared to Fig. 4.2 illustrates
the impact of aliasing on the numerical filtering. The presence of aliasing
is unavoidable as the Butterworth filter used is not bandlimited. To avoid
aliasing (at the cost of distorting the filter, however), it would be necessary
to warp the filter in the frequency domain, as is commonly done in uniform
discrete-time filtering via the bilinear transform. Fig. 4.4 shows that in
regions of sufficient sampling density, the filtering is better than in regions
of insufficient density (left and right parts of Fig. 4.4).

Even in the case when the filter g is chosen to be causal, the overall
algorithm is noncausal as h is noncausal. If it is desired to filter a func-
tion at time point tj, then nearby sampling times tn need to be kept for
which hλ

(
tj − tn

)
is nonzero. With increasing iteration number, the auxil-

iary functions tend to get broader, implying that the amount of buffering
required depends strongly on the total number of iterations.

The filtering algorithm discussed in this chapter is simple to implement
and flexible. As all operations are carried out directly on the nonuniform
samples themselves, the discrete-time equivalent of continuous convolu-
tion is achieved, even though the algorithm itself does not correspond to
a convolution operation. Future investigations could target hardware im-
plementations to enable real-time filtering of nonuniformly sampled func-
tions.
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Figure 4.3: f2 ∗ g2; f2 and g2 are given in Section 4.3; v = 0.5. © 2019 IEEE
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Figure 4.4: f2 ∗ g2; f2 and g2 are given in Section 4.3. Send-on-Delta with δ =
0.008 and v = 0.01. The numerical result is close to the ground truth
- a significant difference can only be seen at the last samples. © 2019
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5
O P T I M A L S A M P L I N G O F PA R A M E T R I C FA M I L I E S

Inference from data is an old problem in statistics. Classical approaches
following Fisher’s work deal with the parametric case: it is assumed that
a parametric family is known which contains the data-generating distri-
bution; the task of inference then consists in estimating an optimal set of
parameters via the maximum likelihood method from the data in order to
identify the data-generating distribution or a distribution close to it. For
this approach to be successful, is is necessary that the parametric family is
not too wide and that a large number of samples is given. A different line
of work dealing with the nonparametric case is connected to Kolmogorov,
Glivenko and Cantelli: Glivenko and Cantelli showed that for any proba-
bility distribution function of a random variable ξ, F (z) = P {ξ < z}, the
empirical distribution function Fl (z) = 1

l ∑l
i=1 θ (z− zi) (with θ (u) = 1 if

u ≥ 0 and θ (u) = 0 for u < 0 and z1, . . . , zl i.i.d. according to the un-
known distribution function F) converges in probability to F (z), i.e. for
any ε > 0 [71]

lim
l→∞

P
{

sup
z
|F (z)− Fl (z)| > ε

}
= 0. (5.1)

The rate of convergence was given by Kolmogorov. The approach pio-
neered by this latter approach formed the starting point for the develop-
ment of statistical learning theory. Here we briefly sketch the main ele-
ments of this theory as it forms the basis for understanding the general-
ization behavior of supervised machine learning methods. The discussion
follows standard expositions of the field [71, 72].

Assume that some generator G is given that independently draws data
x ∈ Rn from a fixed but unknown probability distribution function F, as
well as some supervisor S returning an output y for every input x accord-
ing to a distribution function F (y|x). Additionally, a learning machine is
given that can implement a set of functions f (x, α), α ∈ Λ, where Λ is
some set of parameters. Given i.i.d. data (x1, y1) , . . . , (xl , yl), the goal of
learning consists in minimizing the risk functional

R (α) =
∫

L (y, f (x, α)) dF (x, y) , (5.2)

4 Accepted for publication by Neural Computation
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with Eq. (5.2) being minimized for some f (x, α0) and L (·, ·) being some
loss function. (x1, y1) , . . . , (xl , yl) is the only information given about the
unknown F. Instead of using data (xi, yi), the risk functional Eq. (5.2) can
be written more abstractly as

R (α) =
∫

Q (z, α) dF (z) , α ∈ Λ, (5.3)

for F defined on some space Z and the only information provided about
F being the i.i.d. samples z1, . . . , zl . In this form, risk minimization can be
seen as encompassing many problems such as pattern recognition, regres-
sion and density estimation. Eq. (5.3) can be replaced by the empirical risk
functional

Remp (α) =
1
l

l

∑
i=1

Q (zi, α) , (5.4)

which can be minimized over Q (z, α), α ∈ Λ. Assume that the minimum
of Eq. (5.4) for l samples zi is given by Q (z, αl). Statistical learning theory
deals primarily with the two following questions: what are the conditions
placed on the learning machine Q (z, α), α ∈ Λ, that guarantee that a mini-
mization of Eq. (5.4) converges in probability to a minimum of Eq. (5.3) for
l → ∞, and what conditions can be placed on the function set of the learn-
ing machine to guarantee that the convergence is fast. The first demand is
known as consistency of the learning method. It turns out that empirical
risk minimization is consistent if the following condition holds [71]

lim
l→∞

P

{
sup
α∈Λ

(
R (α)− Remp (α)

)
> ε

}
= 0, ∀ε > 0. (5.5)

Eq. (5.5) is similar in structure to Eq. (5.1). For consistency and fast con-
vergence to hold simultaneously for all possible distribution functions F,
a necessary and sufficient condition is that the learning machine Q (z, α),
α ∈ Λ, has finite VC dimension [71, 72]. The VC dimension intuitively mea-
sures the maximum number of data samples that can be shattered by the
set Q (z, α), α ∈ Λ. For pattern recognition problems, the VC dimension is
given by the maximum number h of samples z1, . . . , zh which can be de-
scribed in all 2h possible ways by the learning machine. Generalizations of
the concept exist for real-valued functions as well. Minimizing Eq. (5.4) for
a particular l yields as solution some Q (z, αl) which in general induces a
generalization error in the following sense with probability at least 1− η

R (αl) ≤ Remp (αl) + Φ (h, η, l) . (5.6)
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Φ (h, η, l) increases with growing VC dimension h and decreases in l. To
minimize the generalization error, it is therefore advisable to choose a
learning machine Q (z, α), α ∈ Λ, with small VC dimension, while the
learning machine should still be flexible enough to find a small empirical
risk Eq. (5.4). These two goals are in general contradictory.

5.1 introduction

The main problems in machine learning are density estimation, regression
and classification based on samples drawn according to an unknown but
fixed probability distribution function F. To assess the quality of a machine
learner, the notion of generalization was introduced, most prominently in
statistical learning theory [71, 72]. Statistical learning theory describes con-
ditions on the hypothesis space of the learning algorithm and the number
of samples drawn from F such that the empirical risk is close in probabil-
ity to the expected risk. For generalization to be defined in this framework,
it is crucial that the expected risk is calculated with respect to the same
probability distribution function that generated the samples used for the
evaluation of the empirical risk. A change in the probability distribution
function cannot be directly incorporated into statistical learning theory.

Recent findings have shown, however, that even slight changes in the
probability distribution function that generates the data (i.e. different distri-
bution functions for the training/test set) lead to decreases in performance
of the learned model [73]. This problem can be partially circumvented
by including data drawn from different possible probability distribution
functions (which are allowed to possess different functional forms) in the
training set, effectively demanding that a joint solution is found for all sub-
problems [74]. In the limit, it is possible that infinitely many probability
distribution functions could have generated the data. One possible way
of modeling the infinitely many data-generating probability distribution
functions is by grouping them into a parametric family.

In this chapter, we assume that the data-generating process is itself para-
metric. Data are then drawn from the whole parametric family: the task
that a learning algorithm has to solve is to learn a model for the entire
parametric family. Without further prior information on the specific prob-
abilistic structure of the test set, it is a natural requirement to demand that
a learned model is equally good for all members of the parametric family.
The central question studied in this chapter is therefore how training sets
containing a finite number of samples can be constructed such that the
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training set represents the entire parametric family optimally. The tools
needed for the analysis carried out in this chapter mostly stem from infor-
mation theory, specifically universal coding theory, and not from machine
learning [75, 76].

For the sake of clarity and in order to derive quantitative statements,
we focus on a specific stochastic process, the Ornstein-Uhlenbeck process.
Being both a Gaussian and Markovian process, this stochastic process is
rich in structure while still being analytically tractable. Most of the results
presented in this chapter, however, will apply to more general problem
classes.

As alluded to above, the problem of how to optimally sample from a
parametric family is tightly connected to universal coding theory. Some
universal coding inequalities described in Section 5.2 directly correspond
to the problem of sequential prediction in the case of an Ornstein-Uhlenbeck
process as shown in Section 5.3. The specific stochastic process chosen
therefore yields a task (sequential prediction – having observed a time
series up to sample n, sample n + 1 is predicted) which directly corre-
sponds to questions of how to sample a parametric family optimally in
the sense of universal coding theory. The chapter concludes by empirically
studying the generalization behavior shown by a deep network trained
on the Ornstein-Uhlenbeck parametric family in an autoregressive manner.
We empirically find that a simple model trained on optimally constructed
training sets generalizes better to changes in the test set distribution than
if the model is trained on suboptimally generated training sets.

notation Let xn = (x1, x2, · · · , xn) be a sequence of real-valued ele-
ments and Xn = (X1, X2, · · · , Xn) a sequence of random variables on Rn.
In this work, Xn will denote strictly stationary stochastic processes. Define
a set of probability density functions (PDF) {Pλ, λ ∈ Ω} on Rn with Ω a
compact subset of Rm, assuming there are m free parameters. | · | denotes
the operation of taking the determinant of a square matrix. log (·) is the
natural logarithm.

5.2 review on universal coding

We give a brief description of ideas from the universal coding literature
which are crucial for this work. Assume that a family of PDFs {Pλ, λ ∈ Ω}
on Rn and an observed sequence xn = (x1, x2, · · · , xn) (which is generated
by one of the densities in the family) is given. If the specific PDF Pλ generat-
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ing xn is known, then the entropy rate lim
n→∞

1
n Eλ [−log (Pλ (Xn))] = H (λ),

with Eλ [·] the expectation with respect to Pλ, corresponds to the best com-
pression of the source. Such a compression statement follows from the
asymptotic equipartition property (AEP) [76]. For the sampled strictly sta-
tionary Ornstein-Uhlenbeck process which is discussed in Section 5.3 in
more detail, the AEP holds [77]. If Pλ is not known, however, the question
arises of whether it is still possible (asymptotically in n) to reach the en-
tropy rate of the stochastic process, provided that the parametric family
{Pλ, λ ∈ Ω} is known. Universal coding theory answers this question in
the affirmative for a wide class of parametric families [78]. To show this, a
mixture source P (xn) =

∫
Ω w (λ) · Pλ (xn) dλ is introduced, with w a PDF

(we do not consider cases in which w might be discrete) on Ω. This mixture
source can then be used as a replacement for the unknown Pλ. A natural
question associated with such a mixture source is how w should be chosen.
It is intuitively clear that mixture sources P (xn) set up by different w will
behave differently. It turns out that a particular choice of w carries with it a
notion of channel capacity. Let Λ denote a random variable with PDF w on
Ω. The parameters λ indexing Pλ are realizations of Λ. The prior w∗ which
reaches channel capacity Cn = sup

w
Iw (Λ; Xn) with channel input Λ and

channel output Xn, where Iw (Λ; Xn) denotes mutual information induced
by w (λ) Pλ (xn), maximizes the mutual information between Λ and Xn. If
Λ is distributed as w∗, then observations xn generated by Pλ contain most
information about the m parameters in Ω. Additionally, w∗ has the further
property of being the prior that induces maximin redundancy [78]. The
channel capacity Cn is furthermore a lower bound on the Kullback-Leibler
divergence between the true data generating distribution Pλ and any other
PDF Q (xn) [79]:

D (Pλ||Q) > (1− ε)Cn. (5.7)

Inequality (5.7) holds for all ε > 0 and for all λ ∈ Ω except for some λ in a
subset B ⊂ Ω whose size under w∗ vanishes at an exponential rate with Cn.
For w = w∗, D (Pλ||P∗) = Cn, with P∗ the mixture source with capacity-
achieving prior w∗. Hence for w∗ nearly all sources Pλ lie on or close to
a hypersphere centered at P∗ with Kullback-Leibler divergence equal to
Cn, as can be inferred from the previous discussion and inequality (5.7).
It is crucial to emphasize that this statement only holds for the capacity-
achieving prior w∗. Other mixture sources based on different priors w will
in general be closer to some subset of sources in the parametric family
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{Pλ, λ ∈ Ω}, and have larger Kullback-Leibler divergence than Cn to other
sources in the parametric family.

It is interesting to note that for the parametric family introduced in
Section 5.3 (sampled strictly stationary Ornstein-Uhlenbeck processes) an
asymptotically accurate form of the channel capacity can be deduced [80]:

Cn =
m
2

log
( n

2π

)
+ log

∫
Ω

√
|I (λ)|dλ + o (1) , (5.8)

with o (1) tending to zero for n → ∞ and I (λ) the Fisher information
matrix of the stochastic process:

Iij (λ∗) = lim
n→∞

1
n

{
∂2

∂λi∂λj
Eλ∗ [−log Pλ (Xn)]

}
λ∗

, (5.9)

with i and j ranging from 1 to m and λ∗ in Ω.
An additional interpretation of Cn can be given in terms of the num-

ber of distributions in {Pλ, λ ∈ Ω} that are distinguishable based on the
observation of a sequence of length n [75, 81]. It is intuitively clear that
different sources in the parametric family {Pλ, λ ∈ Ω} are not necessarily
distinguishable after observing n samples. This notion can be made more
precise by using the language of hypothesis testing. For the parametric fam-
ily discussed in this paper, this analysis is described in Section 5.3. Note
that Eq. (5.8) is a consequence of choosing Jeffreys’ prior in the mixture
source P (xn) which is given by the following expression [82]:

wJeffreys (λ) =

√
|I (λ)|∫

Ω

√
|I (λ′)|dλ′

, (5.10)

which is asymptotically equal to the capacity-achieving prior w∗ for the
parametric family considered in this paper. The number of distinguishable
distributions after observing a sequence of length n is roughly equal to eCn .
Since Jeffreys’ prior (Eq. (5.10)) is asymptotically capacity inducing, the
maximal number of distinguishable distributions is reached for Jeffreys’
prior. More precisely, if Λ is distributed according to wJeffreys, then the
sampled stochastic processes Pλ are maximally distinguishable on average.
Any other prior w would (at least asymptotically) lead to a smaller num-
ber of distinguishable distributions. This argument can be strengthened by
appealing to the analogue of Eq. (5.7) for arbitrary priors [79]. It can be
shown that D (Pλ||Q) is larger than (1− ε)CR, with ε > 0 and CR equal to
the logarithm of the maximal number of random sources chosen under the
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prior w that can be distinguished in the sense of having a bounded error
probability [79]. Q is an arbitrary distribution on xn as in Eq. (5.7). The
inequality holds again for all parameters λ except in a set B′ ⊂ Ω whose
size measured by w tends to zero for n→ ∞ under certain conditions.

The previous ideas, although formulated in terms of probabilities (equiv-
alently, in terms of log-loss) can be directly applied to the case of sequen-
tial prediction under the MSE loss, at least for the Gauss-Markov processes
used in this chapter. This idea is described in Section 5.3.

5.3 lower bounds on the sequential prediction error

In this section, we first introduce the parametric family which is studied in
this chapter. Thereafter we derive lower bounds on the sequential predic-
tion error under the MSE loss for different priors w from which the strictly
stationary sampled Ornstein-Uhlenbeck processes are drawn.

5.3.1 Some Results on the Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is defined as

dXt = θ (µ− Xt) dt + σdWt, (5.11)

with θ > 0, µ ∈ R, t ≥ 0, σ > 0 and Wt the standard Wiener process. For
the process to be strictly stationary, the first value x0 at time t = 0 is drawn
from a Gaussian distribution with mean µ and variance σ2

2θ . In the strictly
stationary case, the Ornstein-Uhlenbeck process can be alternatively writ-
ten as follows:

Xt = µ +
σ√
2θ

e−θtWe2θt , (5.12)

with {We2θt} a time-scaled Wiener process. We next derive some bounds
on the growth of strictly stationary Ornstein-Uhlenbeck processes. These
bounds are needed in the explicit construction of the RNN that implements
the asymptotically optimal solution of the sequential prediction problem
described in Section 5.4.1. To understand the growth behavior of the strictly
stationary Ornstein-Uhlenbeck process, the law of the iterated logarithm
is invoked:

lim sup
t→∞

|Wt|√
2tlog (log (t))

= 1 a.s. (5.13)

By applying the law of the iterated logarithm to the time-scaled Wiener

process, the denominator of Eq. (5.13) is changed to
√

2e2θtlog
(
log
(
e2θt
))

,
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while the numerator is replaced by |We2θt |. Multiplying the denominator by
σ√
2θ

e−θt, one obtains σ√
θ

√
log (2θt). Hence one can conclude the following

about the second term of Eq. (5.12):

lim sup
t→∞

σ√
2θ

e−θt |We2θt | =
σ√
θ

√
log (2θt). (5.14)

For a finite t > 0, there will in general exist a constant C > 0 such that
the strictly stationary Ornstein-Uhlenbeck process in [0, t] will be a.s. con-
tained within the interval[

µ− C
σ√
θ

√
log (2θt), µ + C

σ√
θ

√
log (2θt)

]
. (5.15)

5.3.2 Sampling the Ornstein-Uhlenbeck Process

We consider Ornstein-Uhlenbeck processes drawn from a parametric fam-
ily. The two free parameters are µ ∈ (c, d) with c, d ∈ R, d > c and
θ ∈ (a, b) with a, b ∈ R+, b > a. σ ∈ R+ is arbitrary but fixed. The uni-
formly sampled Ornstein-Uhlenbeck process amounts to an autoregressive
AR(1)-process

Xnδ = e−θδX(n−1)δ + µ
(

1− e−θδ
)
+ εn, (5.16)

with εn ∼ N
(

0, σ2

2θ

(
1− e−2θδ

))
independent over time, δ > 0 the distance

between consecutive samples and Xnδ the n-th sample. (Xδ, X2δ, . . . , Xnδ)
>

is distributed according to a multivariate normal distribution with mean
vector (µ, µ, . . . , µ)> and covariance matrix

Σ =
σ2

2θ


1 e−θδ . . . e−θ(n−1)δ

e−θδ 1 . . . e−θ(n−2)δ

...
...

. . .
...

e−θ(n−1)δ e−θ(n−2)δ . . . 1

 . (5.17)

We next derive the asymptotic Kullback-Leibler divergence between two
strictly stationary Ornstein-Uhlenbeck processes as well as the Fisher in-
formation matrix of this stochastic process. Both are needed for the subse-
quent discussion of distinguishability as well as for the explicit construc-
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tion of Jeffreys’ prior. The inverse of covariance matrix (5.17) is given by

Σ−1 =
2θ

σ2
(
1− e−2θδ

) ·

1 −e−θδ 0 · · · 0

−e−θδ 1 + e−2θδ −e−θδ · · · 0

0 −e−θδ 1 + e−2θδ · · · 0
...

...
...

. . .
...

0 0 0 · · · −e−θδ

0 0 0 · · · 1


, (5.18)

which is a symmetric tridiagonal matrix. From Eq. (5.18) we obtain the
determinant of Σ

|Σ| = 1
|Σ−1| =

σ2n (1− e−2θδ
)n−1

(2θ)n . (5.19)

The asymptotic Kullback-Leibler divergence is then equal to

D (µ1, θ1||µ0, θ0) = lim
n→∞

1
n

D
(

P(µ1,θ1)
||P(µ0,θ0)

)
=

1
2

θ0

θ1

1
1− e−2θ0δ

(
1− 2e−(θ0+θ1)δ + e−2θ0δ

)
+

(µ1 − µ0)
2 θ0

σ2
(
1− e−2θ0δ

) (1− e−θ0δ
)2
−

1
2
+

1
2
· log

(
1− e−2θ0δ

1− e−2θ1δ

)
+

1
2
· log

(
θ1

θ0

)
. (5.20)

Evaluating the Fisher information matrix Eq. (5.9) for the strictly stationary
sampled Ornstein-Uhlenbeck process, we find

I (µ∗, θ∗) = ((e2θ∗δ−1)−2θ∗δ)
2

2θ2∗(e2θ∗δ−1)
2 + δ2 1

e2θ∗δ−1 0

0 2θ∗
σ2

eθ∗δ−1
eθ∗δ+1

 , (5.21)
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where we first differentiate with respect to θ and then with respect to µ.
Eq. (5.20) can be locally approximated as follows:

D (µ1, θ1||µ0, θ0) ≈
1
2

(
θ1 − θ0 µ1 − µ0

)
I (θ0, µ0)

(
θ1 − θ0

µ1 − µ0

)
. (5.22)

Eq. (5.22) is a quadratic approximation to Eq. (5.20), i.e. it corresponds
to a Taylor expansion truncated after the second expansion coefficient.
Eq. (5.21), plugged into Eq. (5.10), yields Jeffreys’ prior for the paramet-
ric family composed of sampled Ornstein-Uhlenbeck processes. Jeffreys’
prior is visualized in Fig. 5.1 for δ = 10.

Printed by Wolfram Mathematica Student EditionFigure 5.1: Jeffreys’ and uniform prior for the Ornstein-Uhlenbeck process

5.3.3 Lower Bounds

In Section 5.2, various lower bounds under log-loss were discussed that
pertain to representing a parametric family by some mixture source. Here
we discuss lower bounds under MSE loss for the task of sequential predic-
tion tailored to the sampled Ornstein-Uhlenbeck process.
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Theorem 1. Consider Gaussian ARMA processes with compact parameter
space Ω ⊂ Rm, m > 0, and p autoregressive terms, p < m. Given any prior
w on Ω with corresponding random coding capacity CR and any ε > 0, the
following lower bound is valid for all parameters λ except in a set B′ ⊂ Ω
whose size measured by w tends to zero for n→ ∞:

1
n− p

Eλ

[
n

∑
i=p+1

(
Xi − hi

(
Xi−1

))2
]
≥

σ2 (λ)

[
1 + (1− ε)

2CR
n− p

]
, (5.23)

with σ2 (λ) the variance of the stationary Wold decomposition of the stochas-
tic process and x̂i = hi

(
xi−1) any measurable prediction function.

Proof. The random coding theorem [79] holds for Gaussian ARMA pro-
cesses. In case Pλ and Q from Eq. (5.7) as well as its extension to the
random coding case are both Gaussian distributions, the random coding
theorem leads directly to a lower bound on the MSE loss. Pλ (xn) is the
probability of data sequence xn induced by the Gaussian ARMA model,
while Q (xn) is obtained by converting the arbitrary prediction function
x̂i = hi

(
xi−1) into a PDF:

Q
(

xi|xi−1
)
=

√
1

2πσ2 (λ)
e
− (

xi−hi(xi−1))
2

2σ2(λ) . (5.24)

The prediction begins after observing p initial values. We then find that

Eλ

[
log

Pλ (Xn)

Q (Xn)

]
= −1

2
(n− p) +

1
2σ2 (λ)

Eλ

[
n

∑
i=p+1

(
Xi − hi

(
Xi−1

))2
]

,

(5.25)
which upon rearranging and insertion into the random coding theorem
and division by n− p yields Eq. (5.23).

Corollary 1. For a strictly stationary sampled Ornstein-Uhlenbeck process
with sampling interval δ > 0, the following lower bound is obtained:

1
n− 1

E(µ,θ)

[
n

∑
i=2

(
Xiδ − hi

(
X(i−1)δ

))2
]
≥

σ2 (1− e−2θδ
)

2θ

[
1 + (1− ε)

2CR
n− 1

]
, (5.26)
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Proof. By choosing σ2 (λ) =
σ2(1−e−2θδ)

2θ and p = 1 according to the Ornstein-
Uhlenbeck process specifications Eq. (5.16), the desired result is obtained.

Remark 1. If the prior w is chosen as Jeffreys’ prior, then the random coding
capacity CR can be replaced by Cn from Eq. (5.8) in the case of Gaussian
ARMA processes.

Theorem 5.23 is a generalization of a well known lower bound obtained
for a uniform prior w [83]. The greatest lower bound results from choosing
Jeffreys’ prior. In the case of a uniform prior w, the number of distinguish-
able distributions is proportional to n

m
2 , provided that some parameter

estimators exist that converge sufficiently fast (cf. [79]). The conditions
hold for the strictly stationary sampled Ornstein-Uhlenbeck process. In
that case, CR in Inequality (5.23) has to be replaced by m

2 log (n) with m = 2
in our case on account of the number of free parameters in the Ornstein-
Uhlenbeck parametric family. Note that if w was chosen such that only one
distribution could be effectively distinguished, the lower bound would be

equal to
σ2(1−e−2θδ)

2θ . The same lower bound would be reached if the two
free parameters θ and µ were known and would not have to be estimated
first. The second part of Eq. (5.23) (1− ε) 2CR

n−p hence measures the addi-
tional complexity of having unknown free parameters.

The lower bound in Eq. (5.23) for Jeffreys’ prior and the lower bound
for the uniform prior can be reached asymptotically. By estimating the AR-
coefficient ψ1 = e−θδ and ψ2 = µ

(
1− e−θδ

)
with ordinary least squares

(OLS), which for the Ornstein-Uhlenbeck process coincides with a maxi-
mum likelihood (ML) estimation of the two parameters conditioned on the
first observation, and using these estimates to predict the next sample x̂iδ =

ψ̂1x(i−1)δ + ψ̂2, one obtains: E(µ,θ)

[(
Xiδ − X̂iδ

)2
]
=

σ2(1−e−2θδ)
2θ

(
1 + 2

i
)
+

O
(

i−
3
2

)
[84, 85]. Summing the previous expression from i = 2 to n and

dividing by n− 1, one obtains

1
n− 1

n

∑
i=2

E(µ,θ)

[(
Xiδ − X̂iδ

)2
]

=
σ2 (1− e−2θδ

)
2θ

(
1 +

2 (Hn − 1)
n− 1

)
+

O

H( 3
2 )

n − 1
n− 1

 , (5.27)
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with Hi being the i−th harmonic number and H(m)
i the i−th generalized

harmonic number. For n → ∞, Hn can be approximated by log (n), while
the second term tends to zero. Hence the lower bound in Eq. (5.23) can
be reached asymptotically in the Ornstein-Uhlenbeck case as can be seen
by inspecting the asymptotic behavior of the term Cn

n−1 with Cn given by
Eq. (5.8).

5.3.4 Distinguishability Of Processes From The Ornstein-Uhlenbeck Parametric
Family

Explicit regions of indistinguishability for the Ornstein-Uhlenbeck para-
metric family are now constructed. If only a finite number of samples are
given, then distinct strictly stationary Ornstein-Uhlenbeck processes will
not be distinguishable if their parameters (θ0, µ0) and (θ1, µ1) are too close
to one another in a suitable sense. To make this notion more precise, we
construct regions of indistinguishability around (θ0, µ0) such that, given n
samples, the process corresponding to parameters (θ0, µ0) and a process
corresponding to parameters drawn from the region of indistinguishabil-
ity around (θ0, µ0) will not be effectively distinguishable. The analysis is
based on a related investigation of distinguishability for i.i.d. stochastic
processes [81]. Let us therefore assume that a realization of the random
vector (Xδ, . . . , Xnδ)

> has been observed. P(θ0,µ0) corresponds to the null
hypothesis, while P(θ1,µ1)

is the alternative hypothesis. The observed ran-
dom vector is drawn from either P(θ0,µ0) or P(θ1,µ1)

. Assuming that the
type-I error probability αn is bounded from above by a constant ε ∈ (0, 1),
αn ≤ ε, the minimum type-II error probability

βε
n = inf

An⊆Rn

αn≤ε

βn, (5.28)

with An an acceptance region for the null hypothesis, is given asymptoti-
cally (via a generalized Stein’s Lemma [86]) as

lim
n→∞

− 1
n

log (βε
n) = D (µ1, θ1||µ0, θ0) . (5.29)
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For a fixed number of samples n, we then find the following region of
indistinguishability around (θ0, µ0)

κ

n
≥ D (µ1, θ1||µ0, θ0) ≈

1
2

(
θ1 − θ0 µ1 − µ0

)
I (θ0, µ0)

(
θ1 − θ0

µ1 − µ0

)
, (5.30)

with κ = −log (β∗) + log (1− ε) and β∗ a constant between 0 and 1. For
sufficiently large n, β∗ will be smaller than βε

n, showing that the type-II
error will be greater than a certain constant. Eq. (5.30) shows that the re-
gions of indistinguishability around (θ0, µ0) are given by ellipses whose
major axes depend on the local value of the Fisher Information Matrix.
Starting with such regions of indistinguishability, a covering of parameter
space can be carried out. An illustration of such a procedure is given in
Fig. 5.2 with parameters β∗ = 0.95, ε = 0.01 and δ = 0.1 for two different
sequence lengths n = 50 and n = 100.
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Figure 5.2: Coarse illustrative partition of parameter space by regions of indis-
tinguishability
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5.4 empirical results with deep networks

The results described in Sections 5.2 and 5.3 are intrinsic properties of para-
metric families. We first recapitulated general results of universal coding
theory and derived specific results for the Ornstein-Uhlenbeck parametric
family thereafter. By an empirical analysis, we show in this Section that
the previously made statements have repercussions for machine learning
as well. The choice of the specific learning algorithm is to some extent arbi-
trary for this task. We have hence chosen standard RNN architectures with
LSTM units [87], as these are state of the art for time series prediction.

We first describe a constructive scheme to approximate the optimal so-
lution from Section 5.3.3 within the hypothesis space of a RNN. The ap-
proximation methods described in Section 5.4.1 are used to verify that the
chosen RNN architecture described in Section 5.4.2 can in principle ap-
proximate closely the optimal solution. To carry out the approximations,
the results from Eq. (5.15) and the appendix of this chapter are required as
the domain of the input to the RNN needs to be known.

5.4.1 Approximating The Optimal Solution Through Explicit Construction

A RNN with a single hidden layer with LSTM units is used for the se-
quential prediction task. In order to approximate the solution based on
the OLS equations discussed in Section 5.3.3 (cf. [85] for the OLS equa-
tions), each sub-expression in the OLS equations is approximated through
one of the units in the recurrent layer. In order to approximate the expres-
sion x2 + y, for example, we first approximate x and y through two of
the recurrent units, x2 with another unit and finally x2 + y with a fourth
unit. The OLS equations contain both polynomial terms of second order as
well as reciprocal terms. Three main ideas are used for the approximation
of the equations with the LSTM layer. The first idea is to rescale the in-
put to the approximately linear region of the corresponding tanh/sigmoid
non-linearity. This step requires a careful analysis of the growth behav-
ior of the individual terms in the OLS equations. Eq. (5.15) provides an
upper and lower bound within finite time intervals for the strictly station-
ary Ornstein-Uhlenbeck process, with C ≈ 1 from numerical simulations.
From this as well as a more thorough analysis of the growth behavior of
terms in the OLS equations detailed in the appendix of this chapter, it
is possible to obtain scaling factors that ensure that the rescaled input is
within the linear region for some finite time horizon. The second idea is
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to approximate the multiplication operation required in the OLS equations
by the use of Hadamard multiplication in the LSTM update equation for
the cell state. The last idea is to approximate the division operation by first
approximating the inverse of the divisor and by then using the multiplica-
tion approximation to multiply the dividend and the inverse of the divisor.
For the approximation of the inverse, we can either train a sub-network
to approximate the operation within our range of interest or we can use a
constructive approximation scheme closely based on previous work [88].

5.4.2 Training On Jeffreys’ Prior And Uniform Prior

To elucidate the importance of sampling of the parameter space on the per-
formance of the RNN, we train two networks with the same configuration
and training conditions, one where the process parameters are sampled ac-
cording to Jeffreys’ prior and the other where the sampling is carried out
according to a uniform prior. We choose a network with a single layer of
100 units, followed by a linear transformation to a single dimension for the
prediction. This network can approximate the optimal solution closely. The
network is trained with stochastic gradient descent with a learning rate of
0.001 with early stopping. The range of the parameter µ for the process
is (−2, 2), while the range for the parameter θ is (0.01, 3). The sampling
interval δ is set to 10, while n is arbitrarily set to 500.

Each of the two trained models are tested on sequences drawn from the
two priors - Jeffreys’ and Uniform. The results for the case of 50 parameters
sampled during training are shown in Table 5.1. The results are averaged
over 5 draws of parameter sampling and 10 random initializations of the
network for each draw.

It is observed that with an increasing number of parameter samples
drawn from the parameter space, the difference in the performance of the
models trained on the two priors gets smaller. This can be seen in Fig. 5.3,
in which the performance of the models trained on stochastic process real-
izations drawn from the two priors (Jeffreys’ and Uniform) and tested on
Jeffreys’ prior is plotted against the number of stochastic process realiza-
tions drawn.

5.5 discussion

Classical machine learning theory investigates the learnability of relation-
ships from i.i.d. samples drawn from a fixed but unknown probability
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Test Prior

Uniform Jeffreys’

Train Uniform 2.91± 0.4 3.83± 0.25

Prior Jeffreys’ 2.94± 0.32 3.4± 0.2

Optimal 0.79 1.11

Table 5.1: Comparing the performance (MSE) of models trained on the two pri-
ors and tested on the two priors. ’Optimal’ is related to the lower
bounds from Section 5.3.3.

distribution, as alluded to in Section 5.1. For the non-i.i.d. case, extensions
of statistical learning theory type guarantees have been developed (cf. [89,
90] as well as references therein). Generalization is always understood to
refer to the same distribution generating the training/test set.

If multiple distributions are to be learned, it is natural to require the
model to do equally well on all of them. This requirement can be directly
translated into the language of universal coding theory. The number of
independent realizations of stochastic processes p drawn independently
according to some prior w on the compact parameter space as well as the
length n of each stochastic process realization are, as is intuitively clear,
crucial for any required theory of generalization in the parametric family
context. In classical statistical learning theory it is n, as well as the com-
plexity of the hypothesis space, which is the main focus of investigation.
For finite n, only finitely many stochastic processes are distinguishable.
Asymptotically in n, for the stochastic processes considered in this paper,
the capacity-inducing prior will be given by Jeffreys’ prior. Since the max-
imum number of distinguishable models is close to eCn , p will have to be
at least equal to eCn . In fact, since Cn is in general growing with increas-
ing n, the minimum number of required stochastic process realizations p
will depend on n. The dependence of p on n therefore implicitly reflects
the fact that the number of distinguishable distributions in a parametric
family grows with increasing n. Since the capacity-inducing prior w∗ is
the prior under which the maximum number of distributions in the para-
metric family are distinguishable, it follows that p adapted to this prior
is sufficient for any other prior. Finding a p adapted to w∗ is therefore a
necessary requirement if one attempts to learn the entire parametric fam-



66 optimal sampling of parametric families

101 102

Number of sampled parameters during training

4.0

5.0

T
es

ti
n

g
on

Je
ff

re
ys

’
p

ri
or

(M
S

E
)

Comparison of sampling Jeffreys’ prior vs Uniform prior

Jeffreys’

Uniform

Figure 5.3: Comparing the performance (MSE) of the models trained on two
priors, tested on Jeffreys’ prior, with increasing number of sampled
parameters during training.

ily. The empirical counterpart of this statement for the case of MSE loss is
found in Fig. 5.3 as well as Table 5.1. Training on stochastic process real-
izations drawn from Jeffreys’ prior ensures that testing on a different prior
(here the uniform prior was chosen) does not lead to an increased MSE
loss. Training on the uniform prior and testing on Jeffreys’ prior, however,
leads to a marked increase in MSE loss.

The capacity used in the lower bound Eq. (5.7) as well as in the lower
bound Eq. (5.23) is the capacity of the parametric family and not the capac-
ity of the hypothesis space of the machine learner. Notions of capacity for
the machine learner reflect the richness of the class of functions that such
a learner can approximate. The capacity Cn, on the other hand, measures
the richness of the parametric family.

Assume that it was only known that a set of observations could be mod-
elled by a parametric family with m free parameters, while the specific
form of the parametric family was not known. In such a case, it would
not be possible to obtain p such that, uniformly for all possible parametric
families with m free parameters, p would be sufficient to guarantee that
any parametric family could be fully learned (in the sense that the solu-
tion found should be close to a mixture source induced by the capacity-
achieving prior). If the form of the parametric family was not known, it
seems reasonable to use stochastic process realizations drawn uniformly
from the space of parameters. If the capacity-inducing prior, however, was
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very different from the uniform prior, then most of the obtained realiza-
tions from the uniform prior would not facilitate learning the parametric
family fully. The ill-adapted sampling mechanism would prohibit an op-
timal learning of the parametric family. The testing error in Fig. 5.3, with
testing performed by drawing stochastic process realizations from Jeffreys’
prior and training carried out either by using Jeffreys’ or the Uniform prior,
converges to the same error for increasing p. This behavior is expected in
view of the fact that the two priors are positive everywhere within the pa-
rameter space, as can be seen in Fig. 5.1. A more subtle analysis of this fact
can be carried out by noting that the number of distinguishable distribu-
tions under both priors is not too different from one another as discussed
in Section 5.3.3 for the parametric family considered in this paper.

Eq. (5.23) provides a lower bound on the sequential prediction error for
the MSE loss, assuming that the form of the parametric family was known.
The empirical results obtained in Section 5.4, on the other hand, do not re-
quire knowledge of the specific form. By the explicit construction detailed
in Section 5.4.1, it is shown that a solution close to an optimal solution
lies in the hypothesis space of the chosen network architecture. It is hence
guaranteed that the chosen deep network is in principle well specified. The
results shown in Table 5.1 indicate that the empirical solution found by
the network does not reach the lower bounds, here denoted by ’Optimal’,
implying that an inefficiency exists in the optimization procedure. A thor-
ough analysis is outside of the scope of this chapter, however, as it would
necessitate an investigation of the loss landscape of the chosen deep net-
work with stochastic process realizations drawn according to some prior
w as input as well as of the optimization algorithm used.

Empirically it was observed in the experiments that if one first trains the
deep network with observations drawn from some prior w1 until conver-
gence and thereafter changes the prior to some w2 and continues training,
the previously found solution changes. This behavior is expected in view
of the previous discussion, as a changed prior induces a different optimal
solution. It follows that there is a close link between optimal solutions and
the sampling of parameter space.

Most of the previous statements hold for more general families of dis-
tributions and not only for parametric families. Eq. (5.7) as well as the
statements on the capacity-achieving prior hold in particular in more gen-
eral contexts [79]. The simple form of the capacity Eq. (5.8) as well as the
fact that Jeffreys’ prior is asymptotically capacity-inducing are, however,
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not correct in a more general context. To achieve optimality, however, the
sampling mechanism should still be matched to w∗.

appendix

We derive some results which are needed for the explicit construction of
the RNN used to implement the aymptotically optimal solution for the se-
quential prediction of the sampled strictly stationary Ornstein-Uhlenbeck
process. Let us study the time-integral of the strictly stationary Ornstein-
Uhlenbeck process:

Yt =
∫ t

0
Xsds. (5.31)

{Yt} is a Gaussian process implying that it is fully characterized by its
mean and covariance function. For the mean as a function of t one obtains

E [Yt] = E

[∫ t

0
µ +

σ√
2θ

e−θsWe2θs ds
]
=
∫ t

0
E

[
µ +

σ√
2θ

e−θsWe2θs

]
ds = µt,

(5.32)
with the exchange of integration and expectation order justified by Fubini’s
theorem, while the covariance function is given by

Cov (Yt, Ys) = E [YtYs]− µ2ts = E

[∫ s

0

∫ t

0
XaXbdadb

]
− µ2ts

=
σ2

2θ3

(
e−θs + e−θt − e−θ|t−s| + 2θmin (s, t)− 1

)
. (5.33)

Let us next analyze the time-integral of the squared strictly stationary
Ornstein-Uhlenbeck process:

Zt =
∫ t

0
X2

s ds. (5.34)

The expectation of {Zt} is given by

E [Zt] = E

[∫ t

0
µ2 +

√
2µ

σ√
θ

e−θsWe2θs +
σ2

2θ
e−2θsW2

e2θs ds
]

=

(
µ2 +

σ2

2θ

)
t, (5.35)
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while the covariance function is

Cov (Zt, Zs) = E

[∫ s

0

∫ t

0
X2

a X2
b dadb

]
−
(

µ2 +
σ2

2θ

)2

ts

=
σ4

8θ4

(
e−2θs + e−2θt − e−2θ|t−s| + 4θmin (t, s)− 1

)
+

2µ2σ2

θ3

(
e−θs + e−θt − e−θ|t−s| + 2θmin (t, s)− 1

)
. (5.36)

{Zt} is not a Gaussian process. Let us study sums of the form ∑n
i=1 X(i−1)δ

with a sampling interval δ and {Xt} a strictly stationary Ornstein-Uhlenbeck
process.(

X0, Xδ, . . . , X(n−1)δ

)>
is distributed according to a multivariate normal

distribution with mean vector (µ, µ, . . . , µ)> and covariance matrix

Σ =
σ2

2θ


1 e−θδ . . . e−θ(n−1)δ

e−θδ 1 . . . e−θ(n−2)δ

...
...

. . .
...

e−θ(n−1)δ e−θ(n−2)δ . . . 1

 . (5.37)

Hence it follows that the sum ∑n
i=1 X(i−1)δ is distributed according to a

Gaussian distribution with mean nµ and variance

Var

(
n

∑
i=1

X(i−1)δ

)
=

σ2

2θ

2e−θ(n−1)δ − 2eθδ + n
(
e2θδ − 1

)(
eθδ − 1

)2 . (5.38)

Next sums of the form ∑n
i=1 X2

(i−1)δ are studied. We find E
[
∑n

i=1 X2
(i−1)δ

]
=(

µ2 + σ2

2θ

)
and

Var

(
n

∑
i=1

X2
(i−1)δ

)
=

σ2

2θ

8θµ2
(

e−θ(n−1)δ − eδθ + neδθ − n
)

(
e2δθ − 1

)2 nσ2+

2σ2
(

e−2(n−1)δθ − e2δθ + ne2δθ − n
)

(
e2δθ − 1

)2 +

8θµ2
(

e−θ(n−1)δ − eδθ + neδθ − n
)

(
e2δθ − 1

)2

 . (5.39)



70 optimal sampling of parametric families

Given that ∑n
i=1 X(i−1)δ is a Gaussian random variable,

(
∑n

i=1 X(i−1)δ

)2
will

be a noncentral χ2 distribution. (∑n
i=1 X(i−1)δ)

2

σ2
2θ

2e−θ(n−1)δ−2eθδ+n(e2θδ−1)

(eθδ−1)
2

is hence distributed

as

χ2

1,
n2µ2(

σ2

2θ

2e−θ(n−1)δ−2eθδ+n(e2θδ−1)

(eθδ−1)
2

)2

 . (5.40)



6
S U M M A RY A N D O U T L O O K

The benefits of randomness and irregularity have been studied in this the-
sis. In Chapter 3 it has been shown that the use of randomness in sampling
in addition to some sparsity assumptions has enabled the stable recovery
of a bandlimited function from finitely many samples. Such a result can-
not be obtained for deterministic sampling schemes in general. Chapter 4

has then shown that operations such as filtering which are commonly per-
formed on uniformly sampled functions can be extended to nonuniformly
sampled ones, provided the maximum distance between consecutive sam-
ples is bounded by a constant which depends on the bandwidth of the
sampled function. To preserve some properties needed to define an ap-
proximation to a convolution operation, some restriction to the possible
amount of irregularity is therefore necessary. Chapter 5 has then shown
that the specific nature of randomness used in sampling (in the statisti-
cal sense) has implications on the amount of information transmitted by
the sampled data. Randomness/irregularity therefore has to be matched
to specific problems to be optimal or to provide benefits. Chapter 5 has
additionally shown that solutions found by black-box machine learning
methods strongly depend on sampling procedures, i.e. on the way train-
ing data are generated.

This thesis can be extended in multiple ways. In Chapter 2, event-based
sampling of bandlimited functions was studied. An extension of such an
analysis to other function spaces would be useful as many real-world sig-
nals are not bandlimited or possess an unknown bandlimit. For a non-
bandlimited function to be reconstructible from its samples, different con-
ditions are in general required than for the bandlimited case. Shift-invariant
function spaces are commonly encountered as models that are more flexi-
ble than bandlimited function spaces. Necessary and sufficient conditions
on the sampling pattern which ensure reconstructability have been in-
vestigated for these spaces [91–94]. Instead of starting with a function
space and identifying necessary and sufficient sampling set requirements,
it would be interesting to reverse this process: given an event-based sam-
pling scheme, determine and describe the function space whose members
can be uniquely identified from samples obtained by the event-based sam-
pling scheme. A related investigation has been carried out for zero-crossing

71
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sampling [95]. A subclass of bandpass signals is described in this publica-
tion for which the zero-crossing samples determine the original function. It
would be a fruitful endeavor to extend these results to more general event-
based sampling schemes. Chapter 4 studied the filtering of irregularly sam-
pled bandlimited functions. An algorithm for filtering was given. Efficient
numerical implementations could be investigated next which could be sim-
ilar to fast reconstruction algorithms (cf. [96]) as the underlying mathemat-
ical structure is similar in both cases. The impact of different error types
such as truncation, jitter, quantization and aliasing errors on the quality of
the filter algorithm could be investigated as well. Due to the linearity of
all involved operations in the algorithm, such a study could be carried out
both analytically as well as numerically.

Chapter 5 could be extended in multiple different directions. Explicit
schemes could be developed that implement minimax optimal cumulative
Kullback-Leibler risk prediction for Ornstein-Uhlenbeck parametric fami-
lies. The basic ingredients for such an approach are already developed as
an explicit formula for Jeffreys’ prior has been derived in this chapter. Such
a prediction scheme could then be compared to Kalman filters, for exam-
ple, which can be derived for a Gaussian prior on the parameter space
of the parametric family. A different extension of this chapter could be a
study on how to make black-box machine learning algorithms more data
efficient. The results shown in Chapter 5 indicate that on average more
information is provided to a learning algorithm if data are sampled ac-
cording to the capacity-inducing prior than according to a different prior.
If fast and data-efficient learning of a parametric family is desired and if
only few realizations can be drawn from a parametric family, it is certainly
beneficial to draw these realizations according to the capacity-inducing
prior. Machine learning approaches are particularly suitable for the case
that it is easier to derive the capacity-inducing prior of a problem than to
solve the ensuing analytical integrals needed for the determination of the
minimax optimal cumulative Kullback-Leibler risk prediction scheme. The
latter part could be substituted by a machine learning algorithm. In princi-
ple it would be possible to use similar results as those derived in Chapter 5

for the task of incremental learning. If only few example across categories
and within categories can be kept, then it would be preferential to choose
them according to the capacity-inducing prior, as this would ensure that
these examples contain on average the maximum amount of information
about the underlying classification task. The main difficulty that such a
method would face is the general lack of knowledge about the probability
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distributions which describe different categories. It might even be argued
that the determination of these distributions from the data (either explicitly
or implicitly) is the task that a machine learning algorithm should solve.
Without some estimates of the distributions of the categories that are to
be learned, however, no capacity-inducing prior can be derived. Future in-
vestigations could therefore preferentially identify problems for which it is
easy to obtain some estimates of the underlying probability distributions,
but for which it is hard to derive optimal solutions. For this type of prob-
lems, the analysis presented in Chapter 5 could provide a good starting
point.
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