
Diss. ETH no. 26220

Optimization and Feedback Control of the Size and
Shape Evolution of Elongated Crystals in Suspension

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Stefan Bötschi
MSc ETH ME, ETH Zurich

born on 24.12.1989

citizen of
Zürich, Switzerland

accepted on the recommendation of

Prof. Dr. Marco Mazzotti (ETH Zurich), examiner
Prof. em. Dr. Manfred Morari (ETH Zurich), co-examiner

Prof. Dr. Kai Sundmacher (Otto von Guericke University Magdeburg),
co-examiner

2019





Acknowledgments

First and foremost, I would like to express my gratitude to my supervi-
sors, Prof. Marco Mazzotti and Prof. Manfred Morari, for welcoming me
as a doctoral student and for their constant support and guidance. Work-
ing in their groups over the past few years has been a very rewarding
experience, both from a professional and from a personal point of view.
I deeply admire their impressively sharp minds, their ability to provide
constructive criticism any time, their continuous strive for clarity, and
their constant encouragement “to keep it simple”.

I also thank Prof. Kai Sundmacher for his interest in my work and
for generously acting as a co-examiner of this thesis.

I feel privileged to have received outstanding public education at
ETH Zurich over many years, and I gratefully acknowledge the funding
of the Swiss National Science Foundation for carrying out my doctoral
studies in the scope of the “CrystOCAM 2.0” research project (project
number 155971). At this point, I also thank the Swiss Confederation
for generously funding these two institutions, thereby providing great
opportunities for many people; students and staff alike.

Special thanks go to David Ochsenbein, who, as an experienced doc-
toral candidate and later as a postdoctoral researcher, patiently intro-
duced me to the world of crystallization and who provided a direction
and a purpose for my first efforts in the field. Special thanks also go
to my fellow doctoral student and “project buddy” Ashwin Kumar Ra-
jagopalan. Ashwin’s tireless efforts enabled the experimental campaigns
conducted during “CrystOCAM 2.0”. I have experienced our close col-
laboration as exceptionally fruitful and beneficial for the outcome of
the project. I highly value Ashwin’s extraordinary skills as an engineer,
his diligence, his devotion to his work, and also his humorous nature. I

I



thank him for countless hours of fun work, both in front of the computer
screen and in the lab. For the future, I wish Ashwin a very successful
and rewarding career.

I thank my former colleagues at the Automatic Control Laboratory
(IfA), especially Benjamin Flamm, Sandro Merkli, Alex Liniger, and
Tobias Sutter, for making my first one and a half years as a doctoral
student enjoyable. I would also like to thank Prof. John Lygeros for
letting me be a part of IfA a little longer.

As to my colleagues at the Separation Processes Laboratory (SPL), I
owe thanks to all of you for forming a fun and an extremely social group,
but also for many enlightening discussions, qualified opinions, and for
rewarding teamwork. You helped me to strike a balance between being a
busy doctoral candidate and leading a great student life. At this point,
I especially want to mention Federico Milella, Franziska Ortner, Fabio
Salvatori, Zoran Bjelobrk, Pietro Binel, Stefano Zanco, Pawel Orlewski,
and, of course, “los amigos de G20”: José-Francisco Pérez-Calvo, Elena
dos Santos, and Ian de Albuquerque. My work at SPL was also facilitated
by the gifted students whom I supervised or helped supervising, namely,
Janik Schneeberger, Till Karbacher, and Igor Rombaut. I also thank
Daniel Trottmann for supporting the lab work that was conducted during
the “CrystOCAM 2.0” project with his admirable craftsmanship.

Finally, and most importantly, I thank my family: my amiable and
caring sisters, Corina and Seraina; and my parents, Jürg and Tina, and
my grandparents, Eva and late Ernst, for their selfless care for their
children and grandchildren, for their modesty, and for being unequivocal
in their support of education.

Zürich, August 2019

II



Abstract

The purification and the solidification of substances is of interest in a
large number of applications in the fine chemical, pharmaceutical, and
food industries. Batch crystallization from solution is often applied to
fulfill this task. The macroscopic shapes of the crystals obtained in this
way are governed by the principles of crystallography, and thus they
exhibit a compound-specific diversity. Still, the shape and also the size
of these solids can be influenced by the choice of the process operating
conditions, for instance, by varying the driving force or by applying
mechanical action. Since the particle size and shape distribution (PSSD)
is widely accepted to be a central attribute of the obtained solid powder,
the ability to engineer crystalline particles to a desirable size and shape
is of great interest regardless of the application.

The main purpose of this thesis is to develop, to implement, and
to evaluate—both in simulation and in experiments—optimization and
feedback control algorithms aimed at the manipulation of particle size
and shape during batch crystallization processes. The presented method-
ologies are mainly concerned with elongated (or needle-like) crystals,
since particles of this type often cause problems in the pharmaceutical
industry. The main challenges encountered during the development of
these methodologies are their high requirements with respect to online
size and shape monitoring abilities, the limited predictive capabilities
of currently available crystal shape evolution models, and the often en-
countered lack of physical actuators to alter the crystal shape.

In particular, the following results have been achieved:

• Model-based path planning methodologies have been developed for
studying computationally the possible size and shape transitions

III



of single crystals undergoing temperature cycling.

• Feedback control laws for driving the average particle dimensions
of ensembles of elongated crystals to target regions during growth-
dominated batch cooling crystallization have been conceived and
successfully validated.

• A feedback controller for the targeted length reduction of elongated
particles using wet milling has been designed and tested.

• A multidimensional kinetic model for the dissolution of an elon-
gated organic compound has been identified from experimental
data. Furthermore, a simple feedback law for the controlled op-
eration of dissolution stages has been implemented.

• The feedback controllers developed for wet milling and dissolution
have been integrated and combined with a simple controlled growth
stage to operate a multistage process for the systematic PSSD mod-
ification in a fully automated, controlled, and thus robust manner.
In particular, a significant and repeatable shape transformation
from elongated to more equant particles has been realized in lab-
scale experiments.

From a control systems engineering point of view, the results col-
lected in this thesis simply represent yet another example of the po-
tential of feedback control. From a crystallization perspective, however,
the developed control and operating strategies represent a novel and ro-
bust approach to crystallizing compounds that form elongated particles.
The key benefits of these strategies are that most of them do not re-
quire kinetic models to operate the process and that they can mitigate
considerably undesirable batch-to-batch variations in terms of selected
properties of the product PSSD.
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Zusammenfassung

Das Reinigen und das Verfestigen von Substanzen ist in vielen Anwen-
dungen in der chemischen, pharmazeutischen und Nahrungsmittelindus-
trie von Interesse. Zur Erfüllung dieser Aufgabe wird oftmals Batch-
Kristallisation aus der Lösung verwendet. Die makroskopischen Formen
der Kristalle, die auf diese Weise entstehen, sind durch die Prinzipien der
Kristallografie gegeben und weisen deswegen eine stoffspezifische Diversi-
tät auf. Dennoch können die Form und auch die Grösse dieser Festkörper
durch die Wahl der Prozessbedingungen beeinflusst werden, zum Beispiel
durch das Variieren der chemischen Antriebskraft oder durch mechani-
sche Einflussnahme. Weil die Grössen- und Formverteilung der Partikel
eine weitläufig akzeptierte zentrale Eigenschaft des erhaltenen Pulvers
ist, ist die Fähigkeit, kristalline Partikel in eine wünschenswerte Grösse
und Form zu bringen unabhängig von der Anwendung von grossem In-
teresse.

Das Hauptziel dieser Arbeit ist das Entwickeln, das Implementieren
und das Beurteilen von Optimierungs- und Regelungsalgorithmen zur
Manipulation von Partikelgrösse und -form während Batch-Kristallisati-
onsprozessen, sowohl mittels Simulation als auch mittels Experimenten.
Die vorgestellten Methoden beziehen sich hauptsächlich auf längsförmige
(oder nadelförmige) Kristalle, weil Partikel dieser Art oftmals Probleme
in der pharmazeutischen Industrie verursachen. Die grössten Heraus-
forderungen, die während der Entwicklung dieser Methoden angetroffen
wurden, sind deren hohe Anforderungen an die Echtzeitüberwachung von
Grösse und Form, die begrenzten prädiktiven Fähigkeiten von zurzeit
verfügbaren Modellen für die Kristallformentwicklung, sowie auch der
oftmals angetroffene Mangel an physischen Aktuatoren zur Änderung
der Kristallform.
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Insbesondere wurden die folgenden Resultate erzielt:

• Modellbasierte Methoden zur Planung von Trajektorien wurden
entwickelt, um computergestützt die möglichen Grössen- und Form-
veränderungen von Einzelkristallen mittels Temperaturzyklen zu
untersuchen.

• Regelalgorithmen, um die durchschnittlichen Partikelabmessungen
von Populationen längsförmiger Kristalle während wachstumsdo-
minierten Batch-Kühlkristallisationsprozessen zu Zielregionen hin
zu steuern, wurden konzipiert und erfolgreich validiert.

• Ein Regelalgorithmus zur gezielten Reduktion der Länge von längs-
förmigen Partikeln mittels Nassmahlen wurde entwickelt und ge-
testet.

• Ein mehrdimensionales kinetisches Modell für die Auflösung eines
längsförmigen organischen Stoffes wurde aus experimentellen Daten
abgeleitet. Weiter wurde ein simpler Regelalgorithmus für den kon-
trollierten Betrieb von Auflösungsstufen implementiert.

• Die Regelalgorithmen, die für das Nassmahlen und die Auflösungs-
phase entwickelt wurden, wurden mit einer einfachen geregelten
Wachstumsphase kombiniert, um einen Mehrphasenprozess für die
systematische Veränderung der Grössen- und Formverteilung der
Partikel in einer vollständig automatisierten, geregelten, und des-
halb robusten Art und Weise zu betreiben. Insbesondere wurde in
Laborexperimenten eine bedeutende und wiederholbare Formverän-
derung von längsförmigen hin zu kompakteren Partikeln realisiert.

Von einem regelungstechnischen Standpunkt aus gesehen stellen die
in dieser Arbeit gesammelten Resultate einfach ein weiteres Beispiel
des Potenzials der Rückkopplungsregelung dar. Aus der Perspektive der
Kristallisation hingegen entsprechen die entwickelten Regel- und Steue-
rungsstrategien einem neuartigen und robusten Ansatz, um Stoffe zu
kristallisieren, die längsförmige Partikel bilden. Die Hauptvorteile dieser
Strategien sind, dass die meisten von ihnen keine kinetischen Modelle
benötigen, um den Prozess durchzuführen und dass sie unerwünschte
Batch-zu-Batch-Abweichungen von ausgewählten Eigenschaften der Grös-
sen- und Formverteilung des Produktes bedeutend abschwächen können.
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Chapter 1

Introduction

Compounds of interest need to be purified and solidified in a large num-
ber of applications in the fine chemical, pharmaceutical, and food indus-
tries. Crystallization from solution is one of the most widespread tech-
niques to fulfill this task. The physical principle of this unit operation is
to generate and to maintain a chemical potential difference that acts as
a driving force for the compound in solution to undergo a transition into
the solid, crystalline state. For reasons of simplicity and flexibility, this
process is often carried out in a stirred tank, called the batch crystallizer,
and the supersaturated state can, for instance, be achieved by cooling
the solution, evaporating the solvent, or adding antisolvent. Due to the
highly regular and ordered nature of the crystal lattice, the resulting solid
particles exhibit excellent purity. The macroscopic shapes of the crystals
or particles obtained during crystallization steps are generally diverse.1
They are compound-specific and governed by the principles of crystallog-
raphy. Still, the size and the shape of the particles can be influenced by
exploiting a variety of factors such as polymorphic transformations,2,3
the choice of solvent,4,5 the presence of impurities or additives,5,6 and
the supersaturation.7,8

The particle size and shape distribution (PSSD) of the crystallized
solids is of high importance for two main reasons. First, since crystal-
lization usually takes place early in the production chain, it impacts the
performance of downstream unit operations. Second, important quality
attributes of the product are also affected by particle size and shape.9–11
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1. Introduction

For instance, the size and the shape of the particles consisting of the ac-
tive pharmaceutical ingredient (API) affect the dissolution rate and thus
the uptake into a patient’s body.12,13 Another example is that elon-
gated particles cause serious difficulties in downstream processing steps
such as filtration14 and powder flow.15,16 Particle size and shape can
also influence catalytic activity17 or simply the physical appearance of
a powder.18

Regardless of the application, the ability to engineer crystalline par-
ticles to a desirable size and shape is of great interest. Accordingly,
methodologies to “manipulate crystal size and shape in a predictable
manner” were seen as potentially revolutionary in a widely cited per-
spectives article about API product and process design that was pub-
lished about a decade ago.19 In the same article, achieving the desired
product purity, crystal form, PSSD, yield, and productivity were listed
as the main goals for any API crystallization process.19 This thesis is
mainly concerned with the third of these goals.

The purpose of this thesis is to develop, to implement, and to evaluate
optimization and feedback control algorithms aimed at the manipulation
of particle size and shape during batch crystallization processes. In this
context, it needs to be emphasized that considering both the size and
the shape of the particles is far from being established in the crystalliza-
tion literature, not to mention in industry. On top of that, experimental
validations of such concepts are very rare (see, e.g., refs 20 and 21). The
methodologies presented in this thesis are mainly concerned with elon-
gated crystals, since particles of this type are encountered often in the
pharmaceutical industry and because their shape can often be described
using no more than two dimensions. Note that in this thesis, for reasons
of simplicity, the term needle-like is used as an umbrella term to refer to
any type of elongated particle (i.e., to refer to particles with an aspect
ratio above one, where the aspect ratio is the ratio of the particle length
and width). While suitable process models are required to perform pro-
cess optimization, online monitoring tools enable the application of feed-
back control. Thus, in the following sections of this introductory chapter,
particle size and shape modeling concepts are summarized and an online
monitoring tool is introduced. Reviewing these techniques provides the
basis for the work reported in this thesis.
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1.1. Modeling Particle Size and Shape

1.1 Modeling Particle Size and Shape
Ideal crystals are faceted, symmetrical bodies whose appearance is a di-
rect consequence of the regular arrangement of the constituting molecules
or ions in the crystal lattice.9 Convex polytopes are a means to math-
ematically characterize such a body. Due to symmetry, both the size
and the shape of a crystal can usually be described by a relatively small
number of characteristic dimensions. This is done by grouping all the
crystal facets with identical properties and assigning one characteristic
dimension to each of the obtained facet groups. Such a characteristic
dimension usually quantifies the normal distance of one of the facets in
the group to the center of the crystal body.22 An example with two
characteristic dimensions is described in Section 2.5.1.

In crystallization processes, many particles do not exhibit the geo-
metrically ideal shape of a convex polytope, be it because of defects in
the crystal lattice or simply because of collisions that induce attrition or
breakage. Even if most of the crystals were ideal, it is extremly difficult to
monitor the characteristic dimensions of a large number of these faceted
bodies reliably and quickly enough for process control purposes. Thus,
generic particle shape models are often adopted, where the true shape of
a particle is approximated by a simple geometric body such as a sphere,
a cube, a cuboid, a rod, or a cylinder. Usually, these generic shapes can
be fully characterized using between one and three characteristic dimen-
sions that are all perpendicular to each other, which implies—contrary to
the more general description of the convex polytopes mentioned above—
that none of the faces of the body can appear or disappear when it grows
or dissolves.23 An illustrative example, where a cylinder is used to ap-
proximate an elongated crystal, is given in Section 2.5.2.

Regardless of the employed crystal shape model (convex polytope or
generic), the characteristic dimensions can be grouped into a vector L. A
population (i.e., a set of crystalline particles) can then be described as a
set of points in the particle size and shape space spanned by the dimen-
sions of L. As the number of particles in a population becomes larger
and larger, the population can be characterized by a continuous density
function. Within the widely used population balance framework,24 this
function is often called the number density function f(t,L) (or PSSD).
In the general case L ∈ Rn, the quantity f(t,L) dVL corresponds to the
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number of particles (usually per mass of solvent) contained in the in-
finitesimal volume dVL = dL1 dL2 . . . dLn around L in the particle size
and shape space. In this thesis, the special case L = [L1 L2]T ∈ R2

is considered. Thus, the number density function f(t, L1, L2) can con-
veniently by visualized as a contour plot. A detailed discussion of how
to visualize two-dimensional PSSDs, especially experimentally acquired
ones, can be found in Section 5.4.1. Returning to the general case of n
characteristic dimensions, in a batch crystallizer under the assumption
of perfect mixing, the evolution of the PSSD f(t,L) over time is modeled
by the partial differential equation

∂f(t,L)
∂t

+∇L ·
(
X(t,L,y)f(t,L)

)
= B(t,L,y)−H(t,L,y) (1.1)

where X is a vector of positive growth rates or negative dissolution
rates, y is a vector of properties of the liquid phase with entries such as
the solute concentration, the temperature, or the supersaturation, and
B and H are source and sink terms modeling the birth and the death
of particles, respectively. Apart from a few simple problems, obtaining
an analytical solution to eq 1.1, which is called the population balance
equation (or PBE), is generally infeasible. Thus, a variety of numerical
solution techniques have been developed.24–29

The reader interested in an in-depth treatment of the modeling of
crystal size and shape is kindly referred to the dissertations by Christian
Borchert30 and David R. Ochsenbein.31
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1.2 Monitoring Particle Size and Shape Dis-
tributions

In order to model or to control a crystallization process, the ability
to quantitatively monitor both the solid phase (suspended particles) and
the liquid phase (solute dissolved in the solvent) is indispensable. For
process control, online monitoring is required, which means that the
sampling time of the monitoring device has to be much shorter than the
characteristic time constant of the observed process dynamics. In this
section, one possibility to monitor online the evolution of the solid phase
(i.e., the PSSD) is summarized, while monitoring of the liquid phase (i.e.,
of the solute concentration) is addressed in Section 1.3.

Often, commercially available solid phase characterization tools con-
dense shape related information of crystals into a single characteristic
length.34 Hence, a one dimensional particle size distribution (PSD) is
obtained, leaving out the shape information of the crystals. However,
due to the variety of shapes exhibited by crystals, a multidimensional
PSSD is required to accurately quantify the population of crystals. For
instance, applying one-dimensional solid characterization techniques to
elongated particles was shown to yield misleading PSDs if the shape of
the particles evolves over time.35 As a remedy, multiprojection imaging
systems were proposed,23,36–39 as they are able to tackle shape-related
issues rather satisfactorily. The stereoscopic imaging setup reported pre-
viously,39 henceforth referred to as the flow through cell (FTC), used
a dual-projection technique capable of merging particle size information
provided by two cameras into PSSDs. The major drawback of the FTC
was its bulky mechanical design (126×126×90 cm), making it vulnerable
to vibrations during image acquisition. Moreover, the employed Xenon
flashes required additional optics to provide collimated light. Also, a
square flow channel assembled by gluing four sapphire glass windows

The material presented in Section 1.2 has been adapted from ref 32 (Rajagopalan,
A. K.; Schneeberger, J.; Salvatori, F.; Bötschi, S.; Ochsenbein, D. R.; Oswald, M. R.;
Pollefeys, M.; Mazzotti, M. A comprehensive shape analysis pipeline for stereoscopic
measurements of particulate populations in suspension. Powder Technol. 2017, 321,
479–493. DOI: 10.1016/j.powtec.2017.08.044). A complete presentation of this mate-
rial appears in Ashwin Kumar Rajagopalan’s dissertation.33
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1. Introduction

held by a brass holder was used, making maintenance of the device cum-
bersome.

Based on the issues described above, a more compact version of the
optomechanical setup (80×74×42 cm) was developed with the goal of
overcoming the problems associated with the FTC. The smaller setup,
henceforth referred to as dual imaging system for crystallization ob-
servation (µ-DISCO), fits into a standard laboratory hood and is less
vibration-susceptible during operation. A schematic of this setup is shown
in Figure 1.1; it consists of two monochrome CMOS cameras in an
orthogonal configuration with telecentric optics resulting in an ortho-
graphic projection with very low spatial distortions. The camera-lens
system provides a field of view of 2.41× 2.02 mm and the image resolu-
tion of both cameras is 2448×2048 pixels. Thus, one pixel of the camera
corresponds to about 1 µm2 in the focal plane. The suspension is sampled
from the crystallizer using a peristaltic pump and flows through a quartz
square channel embedded in a sampling loop. The cross section of the
custom designed, one-piece flow channel is 2× 2 mm and incorporates
the two transitions between the circular tubing and the square channel
at both ends. Two high-power, telecentric LED illuminators that emit
collimated light rays parallel to the optical axis produce high-contrast sil-
houettes of particles passing through the flow channel. The whole setup
is mounted on an optical rail construction. Manual translation stages
that allow high precision alignment of the two cameras, and rotation
stages that allow orienting the parallel illumination beams, are used.
The cameras are connected to high-speed USB 3.0 ports and controlled
with custom drivers.

The introduction of the new cameras allows to operate the µ-DISCO
either in a standard mode with a constant low frame rate (1–7 Hz) or
in a so-called burst mode. In the burst mode, after triggering a burst, a
predefined number of image pairs is acquired as quickly as possible (with
a theoretical maximum frame rate of 75 Hz). This mode of operation is
particularly useful for capturing processes with fast dynamics, such as
the dissolution of crystals. In both modes, the µ-DISCO can be oper-
ated either online, i.e., the image processing is performed on the fly, or
offline, where the image processing is performed after the image acqui-
sition for the entire measurement period. In the scope of this thesis, the
µ-DISCO was exclusively operated in the burst mode. Image acquisition
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1. Introduction

bursts were performed at equally spaced points in time. The sampling
intervals were 2 min for offline image processing and 5 min for online pro-
cessing. In the online case, the image processing delay is about 2 min.
After this delay, a number of signals (e.g., PSSDs, particle counts, total
particle volume) become available and can be used in feedback control
algorithms.

Apart from the hardware and the improved image acquisition proto-
col (burst mode), the main innovation of the µ-DISCO with respect to
the FTC is its image analysis pipeline. It features a stereoscopic cam-
era calibration model to compensate for mechanical misalignment of the
cameras, adaptive background subtraction to exclude dust or scratches
on the flow channel from the analysis, improved particle contour match-
ing between two simultaneously acquired images, and volumetric 3D re-
construction of the detected particles. The reconstructed crystals are
subjected to a supervised shape classification strategy, which categorizes
each detected crystal into five shape classes (sphere, needle, quasi-equant,
platelet, and non-convex). Afterwards, the characteristic dimensions of
the classified particles are determined, allowing for the reconstruction
of a PSSD for each shape class by applying a binning protocol. The
sequence of image processing steps from image acquisition to PSSD re-
construction is illustrated in Figure 1.2. A more detailed explanation of
the single steps can be found elsewhere.32

1.3 Monitoring the Solute Concentration

One of the most commonly available and extensively used techniques
for online solute concentration estimation in crystallization processes is
the attenuated total reflectance Fourier transform infrared (ATR-FTIR)
spectroscopy. It has been applied to obtain solubility curves,41–43 to
study fundamental phenomena in a batch crystallization process,3,37,43–47

The material presented in Section 1.3 has been adapted from ref 40 (Bötschi, S.;
Rajagopalan, A. K.; Morari, M.; Mazzotti, M. An Alternative Approach to Estimate
Solute Concentration: Exploiting the Information Embedded in the Solid Phase. J.
Phys. Chem. Lett. 2018, 9, 4210–4214. DOI: 10.1021/acs.jpclett.8b01998). The au-
thor of this thesis and Ashwin Kumar Rajagopalan contributed equally to this article.
A complete presentation of this material appears in Ashwin Kumar Rajagopalan’s
dissertation.33
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1. Introduction

and to apply feedback control to crystallization processes.21,48 Calibra-
tion methods exist to relate the IR absorbance to the solute concentra-
tion.42,49 Irrespective of the calibration method used, there are systems
which are often difficult to characterize using the ATR-FTIR, e.g, sys-
tems with low solubility, with low peak sensitivity of the compound in
the mid-IR region, with low absolute change in the solute concentration
during the crystallization process, or with a combination of these fea-
tures.49,50 Unfortunately, these unfavorable experimental conditions oc-
cur when working with low seed loadings of β l-glutamic acid (BLGA) in
water, which is the system primarily used in this thesis. These conditions
prohibited the use of commercially available spectroscopic techniques to
accurately observe the evolution of the solute concentration.

Fortunately, in a seeded batch crystallization process where no reac-
tions occur, the presence of solid particles and their change over time
inherently contains information regarding the liquid phase through the
mass conservation constraint, i.e., an increase in the mass of the crystals
is reflected as a decrease in the solute concentration, and vice-versa. This
basic principle can be exploited by means of multiprojection imaging de-
vices, such as the µ-DISCO,32 that provide time-resolved measurements.
Apart from characterizing the population of crystals, the image analysis
routines of the µ-DISCO provide an estimate of the visual hull51 of the
particles observed in the channel. The volume of a specific visual hull
can be seen as an approximation to the volume of the corresponding
particle. A schematic of this particle volume approximation procedure is
visualized in Figure 1.3. Below, the quantity obtained by estimating and
summing up the visual hull volumes of all the particles imaged within a
short period of time, i.e., between the time instants t and t+ ∆t (where
∆t can be the duration of a µ-DISCO burst), will be referred to as the
total visual hull volume V̂ (t) at time t.

In order to estimate the change in the solute concentration based on
the observed change in the total visual hull volume, the material balance

ĉ(t) = c0 − ρc
(
φvV̂ (t)− Vseed

)
(1.2)

10



1.3. Monitoring the Solute Concentration

Figure 1.3: Schematic of the visual hull approximation procedure for the sil-
houettes of a needle-like particle observed by the two cameras of a stereoscopic
imaging device such as the µ-DISCO.32 The two silhouettes (green and gray
areas on the vertical planes) are projected into and intersected in space, yield-
ing the visual hull (dark body) of the particle.

is employed, where ĉ and c0 are the estimated solute concentration at
time t and the known initial solute concentration, respectively, both on
a per mass of solvent basis. ρc is the crystal density, φv is a scaling factor
explained below, V̂ is the total visual hull volume observed at time t,
and Vseed is the volume of seeds added per mass of solvent. The latter
quantity is defined as

Vseed = mseed

msolventρc
(1.3)

where mseed is the mass of seeds and msolvent is the mass of the pure sol-
vent. Since a measurement approach that is based on sampling particles
from a crystallizer is considered, a scaling factor φv has to be introduced
to account for the difference in the volume of particles observed by the
device V̂ in the time interval between t and t + ∆t and the total vol-
ume of particles in the crystallizer. At the time instant t0 (i.e., when the

11



1. Introduction

seeding takes place), the total volume of the solids in the crystallizer is
given by the known volume of the seeds. Thus, the scaling factor can
initially be taken to be the ratio of the volume of the seeds (which, for
convenience, is normalized by the solvent mass) and V̂ (t0). Under the
assumption that the ratio of the total solid volume in the crystallizer to
the sampled solid volume remains constant over the course of the batch
experiment, the same scaling factor can be applied at all sampling in-
stants with t > t0. Thus, the scaling factor in eq 1.2 is defined to be the
constant

φv = Vseed

V̂ (t0)
(1.4)

The method proposed here to estimate the solute concentration has
a certain error associated with it. First, the visual hull volume overes-
timates the true volume of the observed crystals.32 Second, to use the
information provided by sampling devices in a quantitative way, the sam-
pling from the crystallizer needs to be unbiased and consistent over time,
which may or may not be the case. One way of assessing the impact of
these errors, and thus the accuracy of the method, is to compare the
solute concentration estimates obtained from eq 1.2 with independent
measurements. To this end, a series of batch experiments was carried
out with the aim of obtaining the solubility curve of BLGA in water us-
ing the proposed method and of comparing this curve to solubility data
available in the literature. Saturated solutions of BLGA in water were
prepared in a lab-scale batch crystallizer at multiple temperatures. Sub-
sequently, the clear solutions were cooled to a relative supersaturation
level of 1.01, where the relative supersaturation is defined as the ratio of
the solute concentration to the solubility. Afterward, small amounts of
seed crystals were suspended in the solutions, where these amounts had
to be chosen so as there was only a small number of overlapping parti-
cles39 in the images taken by the µ-DISCO. After an initial steady state
phase, the suspensions were heated slowly using predefined temperature
profiles to drive them to slightly undersaturated conditions. Then, the
suspensions were kept at the chosen final temperatures for several hours

12



1.3. Monitoring the Solute Concentration

to let them equilibrate. This procedure should lead to the dissolution of
solids and an associated change in the solute concentration, which could
be visualized in the phase diagram. During all the experiments and all the
experimental phases, the evolution of the solid phase was characterized
using the µ-DISCO. A detailed description of the materials and methods,
of the experimental setup, and of the employed experimental protocol
is outside the scope of this section and can be found elsewhere.40 Also
note that a second experimental campaign applying the proposed solute
concentration estimation method to the system vanillin in water can be
found in the same reference. In a postprocessing step, eq 1.2 was applied
to estimate the evolution of the solute concentration over time for each
experiment. It is important to note that online estimation is possible as
well. By combining the solute concentration estimates for the multiple
experiments obtained in this way, a certain range of the solubility curve
of BLGA in water could be covered. The independently measured sol-
ubility curve used for comparison is reported in the literature.3,52 This
solubility curve was also used to obtain the value of c0 in eq 1.2 at the
corresponding saturation temperatures of the experiments.

A total of five experiments was performed using BLGA and accord-
ing to the procedure outlined above, each covering a different part of the
temperature range from 25.0 ◦C to 30.6 ◦C. Below, these five experiments
will be referred to as experiments α through ε. The corresponding re-
sults are visualized in Figure 1.4. From Figure 1.4a,b, it is clear that the
concentration estimate increased in accordance with the process temper-
ature profile, thereby slowly reaching plateaus while the temperature was
kept constant as well. In Figure 1.4c, it can be seen that the concentra-
tion versus temperature evolution of the five experiments stayed close
to the solubility of BLGA in water reported in the literature3,52 and
approached it during the intermediate and final temperature plateaus.
A comparison with concentration estimates obtained from ATR-FTIR is
also shown in Figure 1.4c, where it can be seen that the ATR-FTIR data
are more noisy than those obtained from the µ-DISCO. The relevance of
this comparison and the details thereof are discussed in ref 40.

In addition to the BLGA solubility measurements summarized above,
an elementary error analysis of eq 1.2 was performed using a simulation
study that mimics the conditions of experiment α. This study is ex-
plained in ref 40. Two different errors, namely, the random error that
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1.4. Optimization and Control of Crystal Size and Shape

stems from the fluctuation in the obtained total visual hull volume and
the systematic error resulting from the overestimation of the total parti-
cle volume by the total visual hull volume were evaluated. The random
and the systematic error committed on the concentration estimate were
0.01 g kg−1 and 0.08 g kg−1, respectively.

To summarize, even though the presented method is approximate in
nature, estimating the solute concentration by observing the solid phase
is promising, as the solubility measurements obtained show good agree-
ment with literature data. The method is useful in situations where em-
ploying commercially available standard solute concentration monitor-
ing tools is challenging, which was the case for most of the experimental
campaigns performed to validate the concepts presented in this thesis.
Additionally, in the development phase of fine chemical production pro-
cesses, both the solid and the liquid phase could be characterized using
the same device. In such a scenario, this approach would eliminate the
need to develop calibration models for characterizing the liquid phase,
which is beneficial since only small amounts of the compound may be
available.

1.4 Optimization and Control of Crystal Size
and Shape

There are multiple challenges associated with optimizing and control-
ling the evolution of the size and the shape of crystals in suspension. In
this work, we distinguish control strategies that rely on kinetic models
(e.g., growth or dissolution rates) from those that solely require ther-
modynamic knowledge (i.e., solubility data) or do not require any prior
knowledge at all. The former control schemes will be referred to as model-
based approaches, whereas the latter will be called model-free. In terms
of optimization strategies for the crystal size and shape evolution, it lies
in their nature that they are model-based. Also note that in this thesis,
the term control always refers to techniques from the field of automatic
control or control systems engineering.

A recurring theme in this thesis is the trade-off between the model-
based and the model-free operation of crystal size and shape modification
processes. Multidimensional kinetic models of the crystal size and shape
evolution allow to study the process through simulation, be it for the
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1. Introduction

purpose of gaining an increased understanding of the process itself or
of optimizing it. However, kinetic process models are always compound-
specific, their development has proven to be a challenging and tedious
task (see, e.g., refs 46,53–56 and Chapter 5 of this thesis), and the re-
sulting model predictions are still uncertain from a quantitative point
of view. In light of the last point, feedback control is essential to oper-
ate the process robustly.48,57–59 Another challenge is the fact that the
optimization and model-based control problems that arise when trying
to systematically modify particle size and shape are very complex, al-
ready in the single crystal case (see Chapter 2). The process dynamics
are highly nonlinear58 and the batch process is inherently transient in
nature, i.e., it is not operated at steady state.60 The optimization and
control problems get even more involved when moving to the industri-
ally relevant case of particle ensembles. An alternative approach presents
itself in the combination of advanced online monitoring techniques and
simple, potentially model-free feedback control strategies. By definition,
kinetic models are not required for operating them,59 but such models
can still be useful in the design phase. In fact, the availability of only
one such model (capturing the dynamics of the process at least qualita-
tively) enables the development and initial testing of suitable model-free
feedback control algorithms through simulation. Afterward, these con-
trol laws can be validated experimentally and potentially also be applied
to systems (i.e., compounds and solvents) that are different from that
the controller has originally been developed for.

Regardless of the chosen process operating strategy, crystallization
from solution usually suffers from severe underactuation,61 i.e., the lack
of potent physical actuators to influence the particle size and shape evo-
lution during the process. This aspect of the problem is certainly among
the most challenging ones, which makes it the second recurring theme
in this thesis. As demonstrated previously (and also in Chapter 6 of this
thesis), one way of mitigating the problem of underactuation is by com-
bining several unit operations such as growth, dissolution, and milling
to a cyclic size and shape modification process.21,62–64

16



1.5. Structure of this Thesis

1.5 Structure of this Thesis
This thesis consists of original work that has been published in a num-
ber of peer-reviewed journal contributions32,40,52,65–68 or that has been
accepted for publication.69 A significant part of the work, namely, the
experimental studies, was conducted in close collaboration with a fellow
doctoral student, Ashwin Kumar Rajagopalan. In this thesis, an effort is
made to rearrange and to combine the material reported in the articles
mentioned above into chapters that have a well-defined theme, thereby
thoroughly covering—both from a conceptual and from an experimental
point of view—the optimization and control aspects of the research con-
ducted within the SNSF-funded “CrystOCAM 2.0” project. The chapters
of this thesis are independent in the sense that they contain all the re-
quired definitions. The overlap with the journal publications is indicated
as footnotes at the beginning of each chapter or section.

In Chapter 2, optimization methodologies are developed to assess
temperature cycling, i.e., consecutive cycles of growth and dissolution,
as a process to systematically modify the size and the shape of single
crystals growing in a batch process. For a given two-dimensional kinetic
model, the trade-off between the required path time and the required
number of switches between growth and dissolution to achieve a desired
size and shape transition is quantified. The material reported in Chap-
ter 2 has been published in ref 52.

The computational tools presented in Chapter 2 are not directly ap-
plicable to the case of polydisperse particle ensembles and they do not
take into account uncertainties in the process model. One can address
these issues by simplifying the initial problem, for instance by consider-
ing average characteristics instead of an entire particle population and
by first addressing single unit operations (i.e., growth and dissolution
stages) instead of the complete cyclic process. These unit operations can
then be operated robustly by employing a combination of online monitor-
ing and feedback control. In Chapter 3, two control strategies to operate
a growth stage for a population of needle-like seed crystals are presented.
One of these controllers is inherently model-based, while the other can
also be operated without any kinetic model. Both controllers aim at di-
recting the average length and width of the crystals in the population
toward a desired target by acting on the process temperature. The model-
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1. Introduction

free control strategy was successfully validated experimentally and parts
of the results of this campaign are presented in Chapter 3. The material
reported in Chapter 3 has been published in refs 65 and 66.

In Chapter 4, a feedback control approach for the systematic re-
duction of the average length (and thus of the average aspect ratio) of a
population of needle-like crystals is introduced. This controller makes use
of wet milling as a potent physical actuator to modify particle size and
shape. An excerpt of the results of a dedicated experimental campaign
are presented, demonstrating the effectiveness of the control strategy.
The material reported in Chapter 4 has been published in ref 67.

In Chapter 5, due to the lack of multidimensional dissolution rate
models in the literature, a study on two-dimensional population balance
modeling of the dissolution of BLGA in water is presented. One of the ob-
tained models is used to discuss the potential of temperature cycling for
particle size and shape manipulation for this compound. Furthermore, a
feedback controller aimed at robustly operating dissolution stages within
cyclic size and shape modification processes is presented. Finally, results
from an experimental campaign that validate the performance of the
control algorithm are presented and discussed. The material reported in
Chapter 5 has been published in ref 68.

In Chapter 6, the control strategies for wet milling and dissolution
(see Chapters 4 and 5, respectively) are combined with a simple con-
trolled growth stage to form a controlled multistage process with the
purpose of particle size and shape modification. This process is oper-
ated in a fully automated manner, without the need of kinetic process
models, and it has the capability to significantly reduce the aspect ra-
tio of needle-like seed particles. The results of an experimental campaign
using two different compounds prove additionally that the controlled op-
eration of this process introduces considerable robustness with respect
to variations in the initial conditions of the batch, thereby mitigating
batch-to-batch variations. The material reported in Chapter 6 has been
accepted for publication; see ref 69.

Finally, in Chapter 7 conclusions drawn from the contributions col-
lected in this thesis are made from a high-level perspective. Accordingly,
possible directions for future work in the field of optimizing and control-
ling the size and shape evolution of crystals in suspension are suggested.
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Nomenclature

Acronyms

API active pharmaceutical ingredient
ATR-FTIR attenuated total reflectance Fourier transform infrared
BLGA β l-glutamic acid
DISCO dual imaging system for crystallization observation
FTC flow through cell
IR infrared
PBE population balance equation
PS(S)D particle size (and shape) distribution
SNSF Swiss National Science Foundation

Roman symbols

B source term of a PBE [µm−n kg−1 s−1]
c solute concentration (per mass of solvent basis) [g kg−1]
f number density function (PSSD) [µm−n kg−1]
H sink term of a PBE [µm−n kg−1 s−1]
L vector of characteristic particle dimensions [µm]
mseed seed mass [g]
msolvent solvent mass [kg]
n # dimensions of the particle size and shape space [–]
T temperature [◦C]
t time, unit varies
dVL infinitesimal volume around L [µmn]
V̂ total visual hull volume [µm3]
Vseed volume of seeds added per solvent mass [µm3 kg−1]
X vector of growth or dissolution rates [µm s−1]
y vector of properties of the liquid phase, unit varies

Greek symbols

α, . . . , ε experiment labels
ρc crystal density [g µm−3]
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1. Introduction

φv scaling factor for particle volume [kg−1]

Superscripts and subscripts

0 initial value (at seed addition)
ˆ measurement or estimate
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Chapter 2

Single Crystal Temperature
Cycling

2.1 Introduction
During crystallization from solution, the application of consecutive cycles
of growth and dissolution is a technique with the potential to systemati-
cally modify the size and shape of the resulting particles.21,55,62,70–73 In
this thesis, this type of process operation is referred to as temperature
cycling.

Particle size is often described by one characteristic particle dimen-
sion. Several studies in the literature apply model expressions for the
growth and the dissolution rate of the particle size with the goal of opti-
mizing the final particle size distribution of a batch crystallization pro-
cess.74–76 Approaches to temperature cycling that do not rely on kinetic
models, but purely on feedback of measurements provided by process an-
alytical technology, were shown to be capable of increasing the average
crystal size.77–79 It was also demonstrated that programmed temper-
ature cycles can enhance crystal purity.80 If the crystal shape is to be

The work presented in this chapter has been reported in ref 52 (reproduced with
permission from Bötschi, S.; Ochsenbein, D. R.; Morari, M.; Mazzotti, M. Multi-
Objective Path Planning for Single Crystal Size and Shape Modification. Cryst.
Growth Des. 2017, 17, 4873–4886. DOI: 10.1021/acs.cgd.7b00837. Copyright 2017
American Chemical Society).
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2. Single Crystal Temperature Cycling

taken into account as well, it is necessary to use at least two independent
particle dimensions and thus to work with particle size and shape distri-
butions (PSSDs). Imaging devices capable of quantifying the evolution
of particle shape characteristics over time have been reported20,23,32,39,81

(see also Section 1.2). The data obtained from these and similar tools can
be applied, among other things, to estimate the parameters of model ex-
pressions for the growth and the dissolution rates of independent crystal
dimensions.46,53,54,56

From a process design point of view, the ability to assess the poten-
tial of particle size and shape modification via temperature cycling, given
the kinetic model of a specific compound, is desirable. For single crystals,
contributions from Doherty’s group70,71,82,83 provide a methodology to
predict the shape evolution of faceted crystals during growth, dissolution,
and cycles of growth and dissolution under the assumption of constant
relative facet growth and dissolution rates; corresponding experimental
studies were presented as well.71,84 Bajcinca and co-workers62,72,73 de-
rived analytical results enabling the computation of supersaturation and
undersaturation trajectories that cause a time-optimal size and shape
change of both single crystals and PSSDs. These results hinge on the
assumption that the growth and dissolution rates are modeled as simple
power laws of supersaturation and undersaturation. One of these results
was applied in an experimental context, but without studying the in-
fluence of the explicit temperature dependence of the employed kinetic
models on the result of the optimization problem.21

In this chapter, the temperature cycling problem is addressed in the
case of complex model expressions for the growth and dissolution rates
of the independent crystal dimensions that depend on temperature ex-
plicitly. The focus lies on the computation of temperature trajectories
that result in desired size and shape changes with short path time and
a given maximum number of switches between supersaturated and un-
dersaturated states of the solution. For the sake of obtaining a simple
operating protocol, it is desirable to keep the number of switches low.
On the other hand, allowing more switches for a desired transition in
the crystal size and shape space corresponds to accessing more degrees
of freedom for constructing time-optimal paths, which may change the
evolution of the crystal size and shape significantly. In more general
terms, it is anticipated that the path time and the number of switches
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2.2. Problem Statement

may represent a trade-off in the sense of conflicting objectives, which will
be explored in this chapter. The discussion of this problem is restricted to
single crystals whose size and shape can be described or reasonably well
approximated by two independent dimensions. A derivative-free path
planning methodology that enables the assessment of the potential for
modifying the size and shape of such crystals is suggested. Additionally,
such methodology is an effective tool for analyzing the trade-off between
the minimum required process time and the maximum allowed number
of switches. The results obtained with this methodology are compared
with those produced by an alternative, gradient-based approach to the
path planning problem.

This chapter is organized as follows. First, the single crystal temper-
ature cycling problem is stated in Section 2.2. Second, a derivative-free
methodology for approximating the solution of the temperature cycling
problem aimed at minimum process time is introduced in Section 2.3.
Moreover, an extension to this methodology is described that enables
the quantification of the trade-off introduced above. In Section 2.4, an
alternative, gradient-based path planning approach is presented. Finally,
in Section 2.5, case studies based on both approaches, using two different
model compounds, are presented and discussed.

2.2 Problem Statement

The basic setting is the batch crystallization of single crystals of a so-
lute from its solution in a specific solvent. Crystals whose size and shape
can be described or well approximated by the same two independent
dimensions L1 and L2 at any time of the process are considered. This
assumption is consistent with previous work involving generic particle
models,23,39,54,56 and also with crystals modeled as convex polyhedra as
long as the borders of the morphology cone30 are not crossed (see, e.g.,
Eisenschmidt and co-workers21,46). Macroscopic models of the growth
rates Gi(S, T,L) and of the dissolution rates Di(S, T,L) along the two
characteristic dimensions (i = 1, 2) as explicit functions of relative su-
persaturation or undersaturation S, temperature T , and the particle
dimensions L = [L1 L2]T are assumed to be available. The relative su-
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2. Single Crystal Temperature Cycling

persaturation or undersaturation is defined as

S = c

c∗(T ) (2.1)

where c is the solute concentration in the given solvent, and c∗(T ) rep-
resents the solute solubility in the solvent as a function of temperature
T . Equation 2.1 is substituted for the dependence on S of the growth
and dissolution rates. Thus, in the absence of nucleation and breakage,
the evolution of the ith crystal dimension is governed by the growth rate
Gi
(
c(t), T (t),L(t)

)
≥ 0 (i = 1, 2) in the supersaturated case S > 1, and

by the dissolution rate Di

(
c(t), T (t),L(t)

)
≤ 0 (i = 1, 2) in the under-

saturated case S < 1. Note that in the saturated case S = 1, the crystal
dimensions L(t) remain constant (Gi = Di = 0, i = 1, 2). The solute
concentration c in the batch crystallizer is a dependent variable that
evolves according to the material balance

c(t) = c0 + ρc

ms

(
V0 − V

(
L(t)

))
(2.2)

where c0 is the initial solute concentration, V0 the initial crystal volume,
V
(
L(t)

)
the current crystal volume, ρc the crystal density, and ms the

solvent mass.
For consecutive cycles of growth and dissolution, the switched, gen-

erally nonlinear system of differential algebraic equations (DAEs)

dL(t)
dt =

{
G
(
c(t), T (t),L(t)

)
if S(t) ≥ 1

D
(
c(t), T (t),L(t)

)
if S(t) < 1

(2.3)

c(t) = c0 + ρc

ms

(
V0 − V

(
L(t)

))

is obtained, with the growth and dissolution rate vectors G(c, T,L) =

24



2.2. Problem Statement

[
G1(c, T,L) G2(c, T,L)

]T and D(c, T,L) =
[
D1(c, T,L) D2(c, T,L)

]T,
respectively, and the given initial conditions L(0) = L0, and c(0) = c0.
Notice that the time dependence of the variables in the equations is omit-
ted in some cases to enhance readability. Also note that the temperature
is not a state of the system model, i.e., it is assumed that it can be
adjusted instantaneously. This assumption is often justifiable, because
the thermal dynamics of a small batch crystallizer for single crystals are
usually considerably faster than the dynamics of crystal growth and dis-
solution. Thus, the control input of the system model given in eq 2.3 is
defined to be directly the temperature T (t).

The basic problem considered in this chapter is the computation of
a temperature trajectory T (t) that causes a size and shape change of a
single crystal from given initial dimensions L0 = [L10 L20]T and from a
given initial solute concentration c0 to desired target crystal dimensions
Lt = [L1t L2t]T in the smallest possible time tf and with an upper limit
on the number of switches from a supersaturated to an undersaturated
state, and back. In a first step, the minimum-time problem is stated
without any restriction concerning the number of switches. This problem
can be formulated as the optimal control problem

minimize
T (t), tf

tf

subject to eq 2.3 t ∈ [0, tf ]
Tmin ≤ T (t) ≤ Tmax

S(t) ∈
{[
SD,min, SD,max

]
∪
[
SG,min, SG,max

]}
Vmin ≤ V

(
L(t)

)
L(0) = L0

c(0) = c0

L(tf) = Lt

(2.4)

The decision variables are the temperature profile T (t) and the pro-
cess time tf . Constraints on the temperature, the supersaturation, and
the undersaturation are introduced, because models for the growth and
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2. Single Crystal Temperature Cycling

dissolution rates are usually only valid within certain ranges of these
quantities (see, e.g., refs 54 and 46). Note that the constraint on S(t)
consists of the union of the two ranges SD,min ≤ S(t) ≤ SD,max ≤ 1
and 1 ≤ SG,min ≤ S(t) ≤ SG,max, which are disjoint in the general case.
Additionally, the crystal volume is constrained to lie above a minimum
volume Vmin in order to prevent complete dissolution of the crystal. Note
that in any numerical and also practical context, the strict equality con-
straint on the final size and shape vector L(tf) in fact corresponds to a
small, finite target region.

In general, the optimal control problem stated in eq 2.4 is nonlinear
and also nonconvex, which makes it challenging to solve. A derivative-free
methodology for computing an approximate solution to eq 2.4 is intro-
duced in Section 2.3, including an extension of this methodology that
yields a solution in the case of an additional constraint on the maximum
allowed number of switches between supersaturation and undersatura-
tion.

2.3 Derivative-free Path Planning Approach
The switched dynamics of eq 2.3 and the constraint on S(t) in eq 2.4
determine the nonsmooth nature of the optimal control problem stated
in Section 2.2. Therefore, in this section, a derivate-free methodology for
computing an approximate solution to this problem is suggested.

2.3.1 Attainable Regions for Crystal Size and Shape
The growth and dissolution rate vectors G(c, T,L) and D(c, T,L), re-
spectively, are restricted to certain subspaces.72,73 Thus, in a first step,
the concept of attainable regions for crystal size and shape via a single
growth or dissolution stage is introduced. A vector

[
LT c

]T can be as-
signed to every point L in the crystal size and shape space, where the
solute concentration c at that point is given by eq 2.2. For any such
vector, a growth rate vector with maximum possible slope Gmax(c,L)
(called growth maximum vector) and a growth rate vector with mini-
mum possible slope Gmin(c,L) (called growth minimum vector) exist,
as illustrated in Figure 2.1a. The direction and the magnitude of these
vectors are determined by both the model expressions for the growth
and dissolution rates and the constraints imposed on temperature, su-
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2.3. Derivative-free Path Planning Approach

persaturation, and undersaturation. During an infinitesimally small time
step, growth trajectories starting at

[
LT c

]T cannot leave the cone de-
fined by the growth maximum and minimum vectors, irrespective of the
applied (feasible) temperature level. As the values of L and c progress
in time, the growth maximum and minimum vectors change as well. The
dissolution maximum and minimum vectors Dmax(c,L) and Dmin(c,L),
respectively, are defined likewise. The two boundary curves of the crystal
size and shape region attainable from a specific initial vector

[
LT c

]T by
growth (dissolution) can be identified by integrating eq 2.3 once with the
temperature trajectory T (t) chosen such that the growth (dissolution)
maximum vector is followed at every point in time, and once such that
the growth (dissolution) minimum vector is followed.

A related concept is that of constant temperature attainable regions.
In contrast to the more general attainable regions introduced above, a
constant temperature attainable region consists of the set of all constant
temperature trajectories that violate neither the constraints on temper-
ature nor those on supersaturation and undersaturation when starting
from a specific initial vector

[
LT c

]T. Such a constant temperature at-
tainable region is always a subset of the more general attainable region
from the same initial state. An illustrative example of the two different
types of attainable regions is shown in Figure 2.1b.

In many cases, the region attainable by a single growth or disso-
lution stage can be significantly enlarged by temperature cycling, i.e.,
by appending consecutive cycles of dissolution and growth to the ini-
tial stage.72,73 As described in the next section, the concept of constant
temperature attainable regions allows a conceptually simple approach to
the temperature cycling problem of eq 2.4. Note that a similar approach
based on the more general attainable regions would also be feasible.

2.3.2 Shortest Path Approach
The optimal control problem of eq 2.4 can be approximated by con-
sidering a directed graph obtained by performing the sequence of steps
listed below. This approach is motivated by the observation that con-
stant temperature attainable regions are often small compared with a
region of interest in the crystal size and shape space (see Figure 2.1b),
which leads to the computationally desirable case of a sparse graph.
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L1

L2

Gmax

Gmin

Dmax

Dmin
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 L
2

 L
1

(b)

Figure 2.1: (a) Qualitative illustration of the growth maximum vector
Gmax(c,L), the growth minimum vector Gmin(c,L), the dissolution maximum
vector Dmax(c,L), and the dissolution minimum vector Dmin(c,L). (b) At-
tainable regions of two different initial vectors

[
LT c

]T for a cylindrical particle
(length L1 and width L2) with growth and dissolution rates chosen for the sake
of clarity of representation. The attainable regions (growth in blue, dissolution
in red) are bounded by solid lines, whereas the dashed black lines represent
the minimum allowed and the maximum achievable particle volume, the latter
being defined by the concentration at which T = Tmin achieves S = SG,min.
The corresponding constant temperature attainable regions have dotted lines
as boundaries.
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2.3. Derivative-free Path Planning Approach

1. The crystal size and shape space is discretized using a grid within
the ranges L1,min ≤ L1 ≤ L1,max and L2,min ≤ L2 ≤ L2,max or
within any other region of interest. This discretization yields a
finite set of grid points P = {L1, . . . ,LNP} with cardinality NP .
Again, note that the solute concentration cj at each grid point
Lj ∈ P is defined by eq 2.2.

2. Constant temperature attainable regions are computed for each
grid point Lj ∈ P, separately for both growth and dissolution. The
computation consists of repeated forward integrations of eq 2.3 us-
ing the elements of a discrete, finite set of constant temperature val-
ues that covers the whole range of feasible initial temperatures at[
LT
j cj

]T. The set of growth and dissolution trajectories obtained
in this way constitutes the constant temperature attainable region
of a certain grid point Lj . Let the set of grid points that lie within
this region be Rj = {Lk ∈ P | Lk reachable from Lj with T (t) =
const.} with cardinality NRj ; this set is a discrete representation
of the constant temperature attainable region of the grid point Lj .

3. Constant temperature levels Tjk and trajectory times tjk that con-
nect the base points Lj ∈ P with all the grid points Lk ∈ Rj
of the corresponding constant temperature attainable regions are
computed. If the growth and dissolution trajectories that consti-
tute the constant temperature attainable region of Lj (see previous
step) do not intersect in the crystal size and shape space, the map-
pings Lk → Tjk and Lk → tjk are unique, and Tjk and tjk can be
well approximated by interpolation.

The assumption of non-intersecting constant temperature trajecto-
ries (see step 3 above) is reasonable from a physical point of view,
and it therefore imposes only a mild restriction on the model expres-
sions for the growth and dissolution rates. Still, note that if this as-
sumption should not be satisfied, finding an approximate solution to
eq 2.4 becomes significantly more challenging, except in the trivial cases
G1(c, T,L) = G2(c, T,L) and D1(c, T,L) = D2(c, T,L), the latter of the
two being addressed in Section 2.5.1.

The three steps above yield a sparse directed graph H = (V,A)
whose finite set of nodes V corresponds to the set of grid points P of the
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2. Single Crystal Temperature Cycling

spatial discretization. The finite set of arcs A consists of the constant
temperature trajectories that connect the grid points Lj ∈ P, and the
nonnegative arc weights are defined by the associated path times tjk.
Shortest paths between arbitrary nodes of this directed graph can be
found efficiently using Dijkstra’s algorithm.85 Provided that the initial
node I ∈ V and the target node F ∈ V correspond to the grid points
L0 and Lt, respectively, such a shortest path represents an approximate
solution of the optimal control problem stated in eq 2.4. The corre-
sponding temperature profile T (t) is piecewise constant and consists of
the sequence of pairs (Tjk, tjk) that is associated with the arc sequence
of the shortest path.

The accuracy of the shortest path (SP) approach described above is
governed by the extent and the resolution of the spatial discretization.
Note that once the directed graph H has been constructed for a fixed set
of initial conditions L(0) = L0 and c(0) = c0, an approximate solution
of the optimal control problem of eq 2.4 can efficiently be obtained for
a large number of targets Lt.

It is worth noting that the SP approach presented in this section has
similarities to dynamic programming (DP). In fact, general shortest path
problems and deterministic DP problems with a finite set of states are
closely related.86 In our case, this means that once the directed graph H
is available, the shortest path between any two nodes can also be found
using standard DP approaches. One could also try to formulate eq 2.4
directly as a DP problem, i.e., without constructing first the directed
graph H. However, at least two complications would arise. First, the
process time tf in eq 2.4 is subject to optimization, and consequently,
time would have to be introduced as an additional state variable in
the DP problem. Second, addressing the final state constraint in eq 2.4
would require the computation of backward reachable sets.87 The SP
approach introduced in this section is believed to be more intuitive,
especially because it is based on the concept of attainable regions (see
Section 2.3.1).

2.3.3 Shortest Path Approach with a Limited Num-
ber of Switches

In this section, the SP approach introduced in Section 2.3.2 is extended
to the case where the temperature cycling problem posed in eq 2.4 is to
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2.3. Derivative-free Path Planning Approach

be solved with the additional constraint of a maximum allowed number
of switches between growth and dissolution. The basic idea is to modify
the directed graph H = (V,A) that was constructed for a specific prob-
lem, as suggested by Zenklusen.88 The methodology is exemplified by
means of the simple directed graph H shown in Figure 2.2a. In fact, this
directed graph can be viewed as consisting of three elements: the set of
nodes, among which the initial node I and the final node F ; the set of
growth arcs (solid blue arrows); and the set of dissolution arcs (dotted
red arrows); each arc has its own weight, indicating the time needed to
move along the arc. Then, one can define two subgraphs, Hg and Hd,
constituted only of the growth and the dissolution arcs, respectively, and
of the nodes connected to their heads and tails, with the exception of
the initial node I and the arcs connected to it (see Figure 2.2c,d). Like-
wise, one can define two reduced forms of the original directed graph
H, namely, one without the dissolution arcs (called HG, see Figure 2.2c)
and one without the growth arcs (called HD, see Figure 2.2d). These four
building blocks, namely, the directed graphsHG,HD,Hg, andHd, can be
combined to form two alternating sequences HG-Hd-Hg-Hd-. . . and HD-
Hg-Hd-Hg-. . . , with a total number of nmax + 1 building blocks each,
where nmax ∈ {0, 1, 2, . . .} defines an upper limit for the range of the
number of switches between growth and dissolution arcs that is to be
investigated. Whenever two copies of the same node are present in two
adjacent building blocks, these are connected with a new unidirectional
auxiliary arc (representing an instantaneous switch between growth and
dissolution) with an associated weight of 0. To the two resulting extended
graphs KG and KD (see Figure 2.2e for an example of an extended graph
KG with nmax = 2) Dijkstra’s algorithm85 can be applied, thus yield-
ing a set of shortest paths connecting the initial node I with the final
node F0 = F and all its copies Fn (n ∈ {1, . . . , nmax}), starting with
either a growth step or a dissolution step, depending which of the two
extended graphs is used. Note that this set of paths covers the whole
range of allowed switches from 0 to nmax, and thus quantifies the trade-
off between the required path time and the maximum allowed number
of switches between growth and dissolution to reach the target node F .
A postprocessing step produces a Pareto front, as explained below.

A more formal description of the algorithm to construct an extended
graphKG is given in Table A.1 in Appendix A; the algorithm to construct
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KD proceeds analogously.
Concerning our simple example for nmax = 2, the Pareto front corre-

sponding to the directed graph H of Figure 2.2a is shown in Figure 2.2b.
By inspection of the extended graph KG shown in Figure 2.2e, the short-
est paths from I to F1 and F2 are identified as I–3–6–6’–F1 (path time
9.2) and I–3–3’–4’–4”–F2 (path time 8.5), respectively. Notice that there
is no path from I to F0, i.e., a path without any switches does not exist.
In this simple example, the Pareto front can be confirmed by directly
inspecting the original directed graph H in Figure 2.2a. Namely, the
shortest path from I to F with 1 switch is identified as I–3–6–F (path
time 9.2), and that with 2 switches as I–3–4–F (path time 8.5).

Two important remarks regarding the procedure described in this
section have to be made:

• The overall trade-off is constructed by taking the pointwise mini-
mum between the two trade-offs obtained from the two extended
graphs KG (enforcing the first arc in the shortest path to be a
growth arc) and KD (enforcing the first arc to be a dissolution
arc).

• Artifacts in the trade-offs can appear when multiple switches be-
tween copies of the same node v ∈ V occur, e.g., when zero-weight
arcs between copies of the target node F are followed. Then, the re-
sulting trade-off contains points that have equal process time, but
a different number of switches. The points with too many switches
are artifacts and thus not part of the corresponding Pareto front,
which is defined here in the strict sense of the term. However, such
artifacts can readily be detected during a postprocessing step. In
the results of the case studies presented in Section 2.5, points that
are optimal in the Pareto sense and thus not artifacts are high-
lighted. Fronts that have not been postprocessed in this way are
called Pareto-like fronts. The term trade-off is used whenever it
is not necessary to distinguish between the Pareto front and the
Pareto-like front, or when both concepts are addressed simultane-
ously.
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Figure 2.2: Example of constructing an extended graph KG.
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2.4 Gradient-based Path Planning Approach

An alternative way of approaching the temperature cycling problem
stated in eq 2.4 is to cast it into a multistage optimal control problem by
fixing the number of stagesM and the nature of the first stage, which can
be either growth or dissolution. To this end, let M = {1, 2, . . . ,M} =
MG ∪ MD be the set of stages. If the first stage is a growth stage,
the set of growth stages is MG = {1, 3, 5, . . .}, otherwise it is MG =
{2, 4, 6, . . .}. In both cases, the set of dissolution stages is MD = M \
MG. Let l ∈ M enumerate the alternating sequence of growth and dis-
solution stages. The multistage optimal control problem is

minimize
T l(t), tlf l=1,...,M

M∑
l=1

tlf

subject to dLl(t)
dt =

{
G
(
cl(t), T l(t),Ll(t)

)
if l ∈MG

D
(
cl(t), T l(t),Ll(t)

)
otherwise

cl(t) = c0 + ρc

ms

(
V0 − V

(
Ll(t)

))
Ll(0) = Ll−1(tl−1

f )
cl(0) = cl−1(tl−1

f )
Tmin ≤ T l(t) ≤ Tmax

Sl(t) ∈
{[
SG,min, SG,max

]
if l ∈MG[

SD,min, SD,max
]

otherwise

Vmin ≤ V (Ll(t))
0 ≤ tlf , t ∈ [0, tlf ], l ∈M
LM (tMf ) = Lt

(2.5)

where t0f = 0, L0(0) = L0, and c0(0) = c0.
The multistage optimal control problem posed in eq 2.5 can be tran-

scribed into a nonlinear program (NLP) by using the technique of mul-
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tiple shooting over multiple stages.89 In order to do so, the duration tlf
of each of the M stages is defined to be a decision variable of the NLP.
Note that the lower bound on each stage duration tlf is set to zero, so
as the NLP solver is free to effectively skip certain stages. Second, Nint
shooting intervals per stage are introduced, and an unknown constant
temperature, i.e., the control input, is introduced for each shooting in-
terval. These control inputs represent anotherM ·Nint decision variables.
Third, the continuous-time ODE that represents the first constraint in
eq 2.5 is discretized in time. The second and fourth constraint in eq 2.5,
which represent the material balance, can be implicitly satisfied by sub-
stituting the algebraic constraint on cl(t) in the right-hand side of the
ODE constraint. Finally, theM ·Nint end states of each shooting interval
are introduced as decision variables, which enables ensuring the conti-
nuity of the crystal size and shape vector L(t) across the boundaries
of both the shooting intervals and the stages. If the resulting NLP is
feasible, a stationary point can be computed using a dedicated solver.

In the following, the methodology described above is referred to as
the multistage (MS) approach. Compared with the SP approach, the MS
approach to the temperature cycling problem has the advantage that
the crystal size and shape space does not need to be discretized using
a fixed, finite grid. However, because this approach relies on gradient-
based optimization of a nonconvex problem, convergence to a satisfactory
stationary point cannot be guaranteed, not even if reasonable initial
guesses for all the decision variables are available. In particular, note
that the number of stages effectively used by the obtained solution may
often be smaller than M . Finally, to determine an appropriate number
of stages and nature of the first stage, a series of NLPs has to be solved
for each target crystal size and shape Lt.

2.5 Case Studies
In this section, models of the growth rates, the dissolution rates, and the
solubilities of the two systems potassium dihydrogen phosphate (KDP)
in water and β l-glutamic acid (BLGA) in water are introduced. Then,
three case studies that illustrate the methodologies described in Sec-
tions 2.3 and 2.4 are presented; two based on KDP, and one on BLGA.

The implementation of the SP approach relied on the Matlab90
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L2

L1

Figure 2.3: Ideal potassium dihydrogen phosphate crystal with L1
L2

= 5
2 ; visu-

alized using the multi-parametric toolbox (MPT3)93

(v8.6) routines shortestpath for Dijkstra’s algorithm85 and ode23 for
the integration of eq 2.3, where the algebraic part of this system of
equations was differentiated once with respect to time to obtain a system
of ODEs. The construction of the directed graph H (see Section 2.3.2)
was parallelized and carried out on a multiprocessor system with 32 CPU
cores.

In the MS approach, the direct transcription steps listed in Sec-
tion 2.4 were performed using the software CasADi91 (v3.1) interfaced
from Matlab90 (v8.6). The number of shooting intervals per stage of
eq 2.5 was set to 30, and the continuous-time dynamics on each shoot-
ing interval were discretized using five steps of the standard fourth-
order Runge-Kutta scheme. The resulting NLP was solved by IPOPT92

(v3.12).

2.5.1 Potassium Dihydrogen Phosphate (KDP)
KDP crystals grown in water have two independent facet families.8
Their corresponding dimensions L1 and L2 are shown in Figure 2.3,
whereas the required geometrical information can be found elsewhere.30
Eisenschmidt et al.46 measured the solubility of KDP in water and pro-
vided a model of the facet growth and dissolution rates. The solubility
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is

c∗(T ) = 4.6479× 10−5 T 2 − 2.2596× 10−2 T + 2.8535 (2.6)

and the expressions for the growth and the dissolution rates are

Gi = kg,i exp
(
− EA,g,i

RT

)
(S − 1− s1,iθ

2 − s2,iθ − s3,i) (2.7)

Di = kd,i exp
(
− EA,d,i

RT

)
(S − 1) (2.8)

where i = 1, 2, T is the temperature in Kelvin, and θ = T − 273.15
is the temperature in degrees Celsius. The parameters associated with
the growth rates Gi in eq 2.7 are listed in Table 2.1. Note that if
S − 1− s1,iθ

2 − s2,iθ− s3,i < 0, Gi has to be set to 0 to prevent the un-
physical situation of a negative growth rate. As the dissolution rates D1
and D2 observed by Eisenschmidt et al.46 are practically equal, it is as-
sumed here—for the sake of simplicity—that both facet families dissolve
with equal rates. Note that this assumption simplifies the computation of
the constant temperature attainable regions and the temperature levels
Tjk (see Section 2.3.2) in the dissolution case. In fact, Tjk are the tem-
peratures that correspond to an initial undersaturation of S = SD,min
(implying fast dissolution), and they can always be obtained by inverting
eq 2.1. The values for the parameters of eq 2.8 are listed in Table 2.1 as
well.

The parameters for the constraints in eqs 2.4 and 2.5 were fixed
at Tmin = 298.15 K, Tmax = 318.15 K, SG,min = 1.08, SG,max = 1.12,
SD,min = 0.95, and SD,max = 0.99. The prismatic, rectangular facets
(associated with the dimension L2) are present in the crystals as long as
the condition L1 > 0.68265L2 is satisfied and the corresponding crystal

37
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Table 2.1: Parameter values for the growth rates Gi and the dissolution rates
Di of KDP. (Adapted with permission from ref 46. Copyright 2015 American
Chemical Society.)

Parameter Unit i = 1 i = 2
kg,i µm s−1 1.370× 107 6.010× 106

EA,g,i J mol−1 3.910× 104 3.710× 104

s1,i
◦C−2 5.906× 10−6 1.706× 10−5

s2,i
◦C−1 −1.079× 10−3 −1.913× 10−3

s3,i – 6.585× 10−2 9.732× 10−2

kd,i µm s−1 5.450× 105 5.450× 105

EA,d,i J mol−1 2.825× 104 2.825× 104

volume is30

V (L) = 10.9479L2
2L1 − 4.9825L3

2 (2.9)

The density of KDP crystals is ρc = 2.34 g cm−3.94 The parameters ms,
c0, L0, Lt, and Vmin (see eqs 2.3, 2.4, and 2.5) are specific to the case
studies presented in Sections 2.5.3 and 2.5.4.

2.5.2 β L-Glutamic Acid (BLGA)
The crystal morphology of the β polymorph of l-glutamic acid is deter-
mined by the interplay of three independent facet families.54,95 However,
because the shape of these crystals is generally needle-like, it can be ap-
proximated by cylinders of suitable length L1 and width L2,54 as shown
in Figure 2.4. The corresponding approximate particle volume is given
by

V (L) = π

4L
2
2L1 (2.10)
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Figure 2.4: Ideal β l-glutamic acid crystal approximated by a cylinder with
L1
L2

= 50
9 ; visualized using the multi-parametric toolbox (MPT3)93

The solubility of BLGA in water was measured by Schöll et al.3 An
exponential fit to these data yields

c∗(T ) = 3.3652× 10−3 exp
(
3.59× 10−2 θ

)
(2.11)

The growth rate model of BLGA in the L1 and L2 directions used in
this chapter consists of the empirical expression

Gi = kg,i,1(S − 1)kg,i,2 exp
(
− kg,i,3

T

)
i = 1, 2 (2.12)

where T is the temperature in Kelvin. The parameters were fitted ac-
cording to Ochsenbein et al.,54 but using the mean crystal length and
width (as illustrated in Figure 2.4) as measured outputs and considering
only desupersaturation experiments where both mean length and width
increased over time. The resulting parameter values are listed in Ta-
ble 2.2. The constraints on temperature and supersaturation were set to
Tmin = 298.15 K, Tmax = 314.15 K and SG,min = 1.10, SG,max = 1.25,
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Table 2.2: Parameter values for the growth rates and the dissolution rates of
BLGA.

Parameter Unit i = 1 i = 2
kg,i,1 µm s−1 2.403× 103 5.812× 101

kg,i,2 – 3.665 2.477
kg,i,3 K 2.434× 103 2.422× 103

kd,i,1 µm s−1 2.0 1.0
kd,i,2 – 1.6 1.8

respectively. For BLGA, a fictitious dissolution rate model of the form

Di = −kd,i,1(1− S)kd,i,2 i = 1, 2 (2.13)

was used, where the corresponding parameter values are also listed in
Table 2.2. The temperature limits were the same as those for growth.
The undersaturation limits were set to SD,min = 0.9 and SD,max = 0.99.
The density of BLGA crystals is ρc = 1.59 g cm−3.96 Analogous to KDP,
the parameters ms, c0, L0, Lt, and Vmin (see eqs 2.3, 2.4, and 2.5) are
case-specific.

2.5.3 Case study 1: KDP
The first case study is based on the KDP model introduced in Sec-
tion 2.5.1. For the SP approach, the region of interest in the crys-
tal size and shape space was defined to be the rectangle bounded by
L1,min = 95 µm, L1,max = 560 µm, L2,min = 35 µm, and L2,max = 465 µm.
This region was discretized using a regular grid spacing of ∆L = 3.75 µm.
The parameters ms, c0, L0, Lt, and Vmin were set to the values reported
in Table 2.3. Note that the rather small value of the solvent mass ms
was chosen to achieve a significant variation of the solute concentra-
tion during the growth and dissolution stages, which in turn facilitates
comparing the characteristics of the SP and the MS approach.

In a first step, the trade-off between the path time (from L0 to Lt)
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Table 2.3: Parameter values for case study 1 (KDP).

Parameter Unit Value
ms g 0.0400
c0 g g−1 0.3325
L0 µm [200 200]T
Lt µm [320 200]T
Vmin µm3 V

(
[140 120]T

)
≈ 1.3× 107

and the maximum allowed number of switches between growth and disso-
lution was quantified. For the SP approach, the methodologies described
in Sections 2.3.2 and 2.3.3 were applied while setting nmax = 15. For the
MS approach, eq 2.5 was solved repeatedly for the sequence of maximum
allowed number of stages from M = 1 (no switch) to M = 16 (fifteen
switches). For each number of stages, the problem was solved twice: once
starting with a growth stage, and once starting with a dissolution stage.
In all cases, the initial guesses for the decision variables were set to 500 s,
[200 200]T µm, and 308.15 K for the stage duration, the crystal dimen-
sions, and the temperatures, respectively. The trade-offs obtained in this
way are illustrated in Figure 2.5a. For the SP approach, the path with
thirteen switches corresponds to the overall shortest path in the associ-
ated directed graph H (see Section 2.3.2). That is, given the space dis-
cretization ∆L = 3.75 µm, there exists no shorter path. Compared with
the solutions of the SP approach, those of the MS approach correspond
to path times that are up to 5.7 % smaller (one switch). This difference
is attributed to the fact that the trajectories of the MS approach are not
restricted to move between the nodes of a fixed grid in the crystal size
and shape space. For both approaches, Figure 2.5a shows that at least
one switch is required to reach the desired target Lt. Furthermore, the
decrease in the path time is 10.2 % (MS) and 14.2 % (SP) when choosing
the path with fifteen and thirteen switches, respectively, instead of that
with only one switch.

Figure 2.5a suggests that the paths with two or three switches are
a good compromise between keeping the path time and the number
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Figure 2.5: (a) Trade-off between the path time and the maximum allowed
number of switches between growth and dissolution for both the SP (circles)
and the MS (diamonds) approach in the first case study (Section 2.5.3). Points
that are optimal in the Pareto sense are highlighted with filled markers. (b)
Paths in the crystal size and shape space corresponding to the colored elements
of the Pareto front obtained from the SP approach in Figure 2.5a. The gray
dots represent the chosen space discretization. The dash-dotted line indicates
the minimum allowed crystal volume Vmin. The gray shaded region excludes
KDP morphologies for which one of the two facet families would be absent.
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of switches low. The trajectories associated with two allowed switches
are shown in Figure 2.6 for both approaches. Note that the piecewise-
constant temperature profiles shown in Figure 2.6b are the actual re-
sults of the optimization. The trajectories of the crystal dimensions L
(Figure 2.6a), the supersaturation S (Figure 2.6c), and the solute con-
centration c (Figure 2.6d) were obtained in a postprocessing step by
conducting forward simulations of eq 2.3 using the computed tempera-
ture profiles. It can be seen in Figure 2.6a that the trajectories obtained
with both the SP and the MS approach hit the target point Lt. Both
approaches try to operate close to the constraints SG,min and SD,min (see
Figure 2.6c). This behavior can be explained with the employed growth
and dissolution rates for the KDP facets (see eqs 2.7 and 2.8): since
D1 = D2 is assumed, there is no spatial degree of freedom during the
dissolution stages, and keeping the undersaturation at SD,min thus cor-
responds to the fastest possible operating policy. For a fixed value of
the solute concentration c, the ratio of G1 and G2 decreases monotoni-
cally with increasing supersaturation, i.e., growing at SG,min leads to the
largest progress toward the target Lt measured in spatial coordinates.

If a maximum of thirteen instead of two switches is allowed, the SP
and the MS approach yield the piecewise constant temperature profiles
shown in Figure 2.7b. The other trajectories (see Figures 2.7a,c-d) were
again obtained by forward simulation. The MS approach converged to a
solution that makes use of only seven out of the allowed thirteen switches.
An important observation is that both approaches lead to paths in the
crystal size and shape space that cycle along the minimum volume line
(see Figure 2.7a), while trying to stay as close as possible to the supersat-
uration and undersaturation constraints SG,min and SD,min, respectively
(see Figure 2.7c). The former behavior is a consequence of the explicit
temperature dependence of the employed growth and dissolution rates
(see eqs 2.7 and 2.8). In fact, a smaller crystal volume (i.e., closer to
the minimum volume line) corresponds to a higher solute concentra-
tion in the closed system, and thus higher temperatures are required to
achieve specific supersaturation or undersaturation levels (e.g., SG,min
or SD,min). These higher temperatures then increase the growth or dis-
solution rates. Therefore, for both approaches, larger allowed numbers
of switches correspond to paths that cycle along the minimum allowed
crystal volume line. For the SP approach, this behavior can be observed
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in Figure 2.5b. In this way, the overall path time for reaching the target
Lt can be reduced, and the characteristic shape of the trade-offs shown
in Figure 2.5a follows. In an experimental context, the presence of ther-
mal inertia would prevent an accurate implementation of the very short
dissolution stages (see Figure 2.7b). However, note that the presented
path planning methodologies provide a variety of Pareto-optimal trajec-
tories, enabling the selection of the most suitable solution for the specific
system.

Compared with the MS approach, the SP approach offers the possi-
bility to quantify the trade-off between the path time and the maximum
allowed number of switches for a large number of target points Lt. The
directed graphH and the extended graphs KG and KD (see Sections 2.3.2
and 2.3.3) are independent of the target point Lt, i.e., they have to be
constructed only once. The construction of H, which is clearly the most
computationally intensive step, required about 3000 s for this case study,
using the parallel setup mentioned above. Having KG and KD available
as well, the Pareto-like front for reaching a given target point Lt can be
computed in the order of 1 s on an off-the-shelf notebook, whereas the
MS approach requires in the order of 1000 s to 2000 s for each Lt.

In the context of this case study, the trade-off was quantified for each
of the grid points used as target points. For each of these target points Lt,
both the path with the minimum path time and the path corresponding
to the minimum possible number of switches were computed. These so-
lutions correspond to the two extreme points of the Pareto front of each
target point. The results are illustrated in Figure 2.8. It can be seen in
Figure 2.8b that a single dissolution stage decreases the initial crystal
size, but the ratio L1

L2
remains constant since we have L1(0) = L2(0)

and D1 = D2. On the contrary, a single growth stage does increase the
ratio L1

L2
. In summary, based on the KDP model and the initial crystal

dimensions considered in this case study, temperature cycling can only
produce more elongated KDP crystal shapes. Whether this finding is de-
sirable or not from a process design point of view depends on the specific
target application of the solid product. In any case, it is recommended to
model the growth and the dissolution rates for ranges of allowed super-
saturation and undersaturation, respectively, as large as possible, since
Figures 2.6c and 2.7c indicate that the corresponding constraints are a
limiting factor.
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Figure 2.6: Trajectories associated with two allowed switches for both the SP
and the MS approach in the first case study (Section 2.5.3). SP growth and
dissolution stages are colored in navy blue and dark red, respectively; MS
stages in light blue and pink. (a) Paths in the crystal size and shape space.
The gray dots represent the space discretization chosen for the SP approach.
The dash-dotted line indicates the minimum allowed crystal volume Vmin. The
gray shaded region excludes KDP morphologies for which one of the two facet
families would be absent. (b) Temperature profiles; (c) supersaturation and
undersaturation profiles; (d) solute concentration profiles.
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c

Figure 2.7: Trajectories associated with thirteen allowed switches for both the
SP and the MS approach in the first case study (Section 2.5.3). SP growth
and dissolution stages are colored in navy blue and dark red, respectively; MS
stages in light blue and pink. (a) Paths in the crystal size and shape space.
The gray dots represent the space discretization chosen for the SP approach.
The dash-dotted line indicates the minimum allowed crystal volume Vmin. The
gray shaded region excludes KDP morphologies for which one of the two facet
families would be absent. (b) Temperature profiles; (c) supersaturation and
undersaturation profiles; (d) solute concentration profiles.
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Figure 2.8: (a) Map that visualizes the minimum path time required to reach
each grid point in the first case study (SP approach). The path time (in hours)
is encoded in the color bar. (b) Map that shows the minimum number of
switches required to reach each grid point in the first case study (SP approach).
The red dot represents the initial crystal dimensions L0, and the red dotted line
is the diagonal. The dash-dotted line indicates the minimum allowed crystal
volume Vmin. The gray shaded region excludes KDP morphologies for which
one of the two facet families would be absent. Gray dots represent grid points
that cannot be reached from L0.
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2.5.4 Case study 2: KDP with Different Amounts of
Solvent

The purpose of the second case study is to investigate the effect of chang-
ing the solvent mass ms in eqs 2.3 and 2.5 on the trade-off between the
path time and the maximum allowed number of switches. For a given
change in size and shape of the single crystal during growth or disso-
lution, different amounts of solvent lead to faster or slower variation of
the solute concentration. In an experimental context, for a fixed initial
solute concentration c0 and fixed initial crystal dimensions L0, vary-
ing the solvent mass would correspond to changing the size of a small
batch crystallizer containing the single crystal. A different interpretation
presents itself in the form of the following thought experiment: assume
that instead of a single crystal, a certain number of crystals was initially
suspended in a small batch crystallizer, all of them with identical di-
mensions, and behaving identically during the subsequent growth and
dissolution stages. Within the framework of eq 2.3, this situation could
be modeled by simply dividing the solvent mass ms by the number of
crystals. Thus, solving the temperature cycling problem for small sol-
vent masses can be seen as a step toward investigating the behavior of
monodisperse crystal populations. In any case, more pronounced changes
in the solute concentration are expected to amplify the influence of the
explicit temperature dependence of the crystal growth and dissolution
rates on the solution of the temperature cycling problem.

In this case study, the parameters listed in Sections 2.5.1 and 2.5.3
remained unaltered—apart from the solvent mass ms. The MS approach
was used to compute the trade-offs between the path time and the
maximum allowed number of switches for the series of solvent masses
ms = {0.4 g, 0.1 g, 0.07 g, 0.04 g}. The resulting Pareto-like fronts are il-
lustrated in Figure 2.9. Notice that the Pareto-like front for ms = 0.04 g
is the same as the corresponding MS front shown in Figure 2.5a in the
first case study. As expected, the trade-off between the two objectives is
most pronounced for the case with the smallest solvent massms = 0.04 g.
Figure 2.9 also reveals that the solvent mass has the biggest impact on
the path time for the paths with only one and two allowed switches.
As can be seen from the trajectories shown in the previous case study
(see Section 2.5.3), low numbers of switches correspond to paths that are
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[
]

[ ]

Figure 2.9: Pareto-like fronts between the path time and the maximum allowed
number of switches between growth and dissolution for the compound KDP
and a series of solvent masses ms (Section 2.5.4). All fronts were computed
using the MS approach.

forced to move far away from the minimum volume line, thus having to
operate at relatively low solute concentrations for a long time span, and
not being able to exploit the accelerating effect of the explicit tempera-
ture dependence of the growth and dissolution rates. On the other hand,
if the solvent mass is high (and, consequently, the suspension density is
low), this effect is negligible, and the process can be run using the lowest
possible number of switches without a significant process time penalty.

In the case of ms = 0.4 g, the front shown in Figure 2.9 exhibits a
comparatively longer path time at nine allowed switches. The reason is
that the numerical solver converged to an unfavorable local optimum
of eq 2.5 in this case, making use of only two out of the nine allowed
switches. Note that this behavior could be partially mitigated by chang-
ing the details of the numerical implementation, e.g., the initial guess for
the decision variables, the number of shooting intervals, the integrator
scheme for the differential equations, or the NLP solver.
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2.5.5 Case study 3: BLGA

In the context of the third case study, the SP approach was applied
to the BLGA model introduced in Section 2.5.2. The rectangular re-
gion of the crystal size and shape space bounded by L1,min = 20 µm,
L1,max = 350 µm, L2,min = 16 µm, and L2,max = 120 µm was discretized
with a resolution of ∆L1 = 2.5 µm and ∆L2 = 2 µm. Keeping in mind
the cylindrical particle shape model employed for BLGA (see Figure 2.4),
a lower limit of L1

L2
= 1.5 was imposed on the crystal aspect ratio. As

BLGA crystals grow slowly, the constant temperature attainable regions
(see Section 2.3.1) were restricted to contain only grid points that can
be reached within a time span of three days for each growth and dis-
solution stage. The values of the parameters ms, c0, L0, Lt, and Vmin
(see eqs 2.3, 2.4, and 2.5) are reported in Table 2.4. The value for Lt
was chosen since the transition from L0 to Lt represents a reduction
of the crystal aspect ratio L1

L2
from 3 to 2. The trade-off between the

required path time and the allowed number of switches to achieve this
transition is plotted in Figure 2.10. This figure shows that the desired
change in crystal size and shape is feasible if at least one switch between
growth and dissolution is made along the path. On the basis of the SP
approach with the given space discretization, the path consisting of nine
switches represents the overall shortest path in the associated directed
graph H (see Section 2.3.2). However, the reduction in path time when
choosing this solution instead of that with just one switch is only 1 %.
The reason for this is that the change of solute concentration along the
paths is virtually negligible in this case study. In this context, note that
compared with the initial KDP crystal in the previous two case studies
(see Sections 2.5.3 and 2.5.4), the initial volume of the BLGA crystal
considered here is about 300 times smaller.

The piecewise constant temperature profile that defines the path with
two switches is illustrated in Figure 2.11b. A forward simulation of eq 2.3
with this temperature profile produced the trajectories shown in Fig-
ures 2.11a,c-d. It can be seen in Figure 2.11c that the desired reduction
of the crystal aspect ratio requires operating close to the supersatura-
tion and undersaturation limits SG,min and SD,max, because these values
correspond to low and high ratios of G1

G2
and D1

D2
, respectively. A conse-

quence of this is the long path time of 191 h to achieve the requested size
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Table 2.4: Parameter values for the BLGA case study.

Parameter Unit Value
ms g 0.0300
c0 g g−1 0.0105
L0 µm [120 40]T
Lt µm [120 60]T
Vmin µm3 V

(
[50 40]T

)
≈ 6.3× 104

[
]

[ ]

Figure 2.10: Trade-off between the path time and the maximum allowed num-
ber of switches between growth and dissolution for the SP approach in the
third case study (Section 2.5.5). Points that are optimal in the Pareto sense
are highlighted with filled markers.
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and shape change.
Taking all the grid points in the discretized size and shape space as

target points, the path corresponding to the minimum process time and
that comprising the smallest possible number of switches was computed
for each of them. The results are illustrated in Figure 2.12. These plots
confirm that based on the BLGA model introduced in Section 2.5.2, the
aspect ratio L1

L2
of the chosen initial crystal with dimensions L0 can be

reduced by temperature cycling. However, the required process time is
very high, i.e., in the order of a few hundred hours, which may make the
implementation of this process unreasonable in many cases.

2.6 Conclusions
In this chapter, the systematic modification of single crystal size and
shape via temperature cycling was treated for the case where crystal
size and shape can be described by two independent dimensions. To this
end, a derivative-free path planning methodology (SP) to compute a tem-
perature profile that induces a desired size and shape change of a single
crystal in a batch crystallization framework was proposed. This method-
ology is able to quantify the trade-off between the required process time
and the allowed number of growth and dissolution stages. The results
obtained by employing this methodology were compared with those ob-
tained from an alternative, gradient-based approach (MS) in the form of
a case study for the compound KDP.

A potential application of the SP approach lies within a model pre-
dictive control (MPC) framework. The methodology can be used to ef-
ficiently plan paths online, since efficient implementations of Dijkstra’s
algorithm85 are widely available and the required directed graphs (see
Section 2.3) can be constructed off-line. In this way, feedback of size
and shape measurements can help to counteract the undesired influ-
ences of modeling errors, process disturbances, and the thermal inertia
of the crystallizer. The key drawback of the SP approach is that it is
based on a fixed, finite discretization of the crystal size and shape space.
Furthermore, it cannot be easily extended to higher dimensional crystal
shape models, mainly because the computational time for constructing
the directed graphs may grow exponentially with the number of crystal
dimensions.
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Figure 2.11: Trajectories associated with two allowed switches for the SP ap-
proach in the BLGA case study (Section 2.5.5). Growth and dissolution stages
are colored in navy blue and dark red, respectively. (a) Paths in the crystal
size and shape space. The gray dots represent the chosen space discretization.
The dash-dotted line indicates the minimum allowed crystal volume Vmin. The
gray shaded region designates a lower limit imposed on the aspect ratio of the
BLGA crystal. (b) Temperature profiles; (c) supersaturation and undersatu-
ration profiles; (d) solute concentration profiles.
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[
]

[ ]

[
]

[ ]

Figure 2.12: (a) Map that visualizes the minimum path time required to reach
each grid point in the third case study (SP approach). The path time (in
hours) is encoded in the color bar. (b) Map that shows the minimum num-
ber of switches required to reach each grid point in the third case study (SP
approach). The red dot represents the initial crystal dimensions L0. The dash-
dotted line indicates the minimum allowed crystal volume Vmin. The gray
shaded region designates a lower limit imposed on the aspect ratio of the
BLGA crystal. Gray dots represent grid points that cannot be reached from
L0.

54



2.6. Conclusions

The MS approach does not require discretization of the size and shape
space and it can be straightforwardly implemented for higher dimen-
sional crystal shapes. Also, the general concept of multistage optimiza-
tion can be applied to more complex situations, and to the corresponding
models, involving populations of crystals undergoing temperature cycles.
However, convergence to a satisfactory stationary point of the underly-
ing nonconvex optimization problem cannot be guaranteed, which would
make the MS approach a potentially poor choice in the context of MPC.

The results obtained from applying both path planning approaches
within the case studies show that in the case of an explicit tempera-
ture dependence of the growth and dissolution rates, performing a large
number of temperature cycles while keeping the crystal volume small can
be favorable in terms of process time. However, such a strategy would
correspond to a complicated operating protocol, and realizing the associ-
ated rapid sequence of temperature changes might not be feasible. Also,
the uncertainties associated with the employed kinetic model have to be
kept in mind, for instance concerning parametric uncertainty or model
validity in the ranges of temperature, supersaturation, undersaturation,
and crystal dimensions considered. A key strength of both path planning
methodologies lies in their ability to provide not only one, but a variety
of solutions to the temperature cycling problem, enabling the selection
of a suitable path on a case-by-case basis by taking into account the
above considerations.

The results of the presented case studies also illustrate the limitations
of the temperature cycling process in terms of achieving a desired change
in crystal size and shape. Namely, besides the possibility that the growth
and dissolution rates of a certain compound may make such change en-
tirely impossible, it might also be that the required process time is un-
acceptably high. The availability of both accurate kinetic models—valid
within wide ranges of operating conditions—and suitable computational
methodologies substantially facilitates the identification of such limita-
tions.
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Nomenclature

Acronyms

BLGA β l-glutamic acid
DP dynamic programming
KDP potassium dihydrogen phosphate
MPC model predictive control
MS multistage
NLP nonlinear program
ODE ordinary differential equation
PS(S)D particle size (and shape) distribution
SP shortest path

Roman symbols

c solute concentration (per mass of solvent basis) [g g−1]
c∗ solubility (per mass of solvent basis) [g g−1]
D dissolution rate vector [µm s−1]
Di dissolution rate along ith particle dimension [µm s−1]
EA activation energy [J mol−1]
F final node of a path in a directed graph
G growth rate vector [µm s−1]
Gi growth rate along ith particle dimension [µm s−1]
I initial node of a path in a directed graph
k growth or dissolution rate parameter, unit varies
L particle dimension vector [µm]
Li ith particle dimension [µm]
M number of growth and dissolution stages [–]
ms solvent mass [g]
n number of switches between growth and dissolution [–]
NP cardinality of a set of grid points [–]
NR cardinality of a set of grid points within

an attainable region [–]
R ideal gas constant [J mol−1 K−1]
S relative supersaturation or undersaturation, c/c∗ [–]
s growth rate parameter (see eq 2.7), unit varies
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T temperature [K]
t time, unit varies
tf process time, unit varies
V crystal volume [µm3]
v node in a directed graph

Calligraphic symbols

A finite set of arcs in a directed graph
B finite set of arcs in an extended directed graph
H directed graph
K extended directed graph
M set of growth and dissolution stages
P finite set of grid points
R finite set of grid points within an attainable region
V finite set of nodes in a directed graph
W finite set of nodes in an extended directed graph

Greek symbols

θ temperature, θ = T − 273.15 [◦C]
ρc crystal density [g µm−3]

Superscripts and subscripts

0 initial value or condition
D dissolution
d dissolution
G growth
g growth
l stage index
max maximum or upper limit
min minimum or lower limit
t target
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Chapter 3

Feedback Control for Growth
Processes

3.1 Introduction
Due to the impact of the particle size and shape distribution (PSSD)
obtained from a crystallization step on the efficiency of downstream
operations as well as on product quality,9,10 there is an incentive to
manipulate particle size and shape already during the crystallization
step. In batch crystallization, the variation of supersaturation lends it-
self to this task, since this quantity can readily be altered using phys-
ical actuators such as, e.g., the crystallizer jacket temperature. Conse-
quently, considerable research efforts have been devoted to the calcula-
tion of temperature or supersaturation profiles that are, given a process
model, optimal with respect to some performance measure. Such a mea-

The work presented in this chapter has been reported in ref 65 (Bötschi, S.;
Rajagopalan, A. K.; Morari, M.; Mazzotti, M. Feedback Control for the Size and
Shape Evolution of Needle-like Crystals in Suspension. I. Concepts and Simulation
Studies. Cryst. Growth Des. 2018, 18, 4470–4483. DOI: 10.1021/acs.cgd.8b00473)
and adapted from ref 66 (Rajagopalan, A. K.; Bötschi, S.; Morari, M.; Mazzotti,
M. Feedback Control for the Size and Shape Evolution of Needle-like Crystals in
Suspension. II. Cooling Crystallization Experiments. Cryst. Growth Des. 2018, 18,
6185–6196. DOI: 10.1021/acs.cgd.8b01048). A complete presentation of the material
reported in ref 66 appears in Ashwin Kumar Rajagopalan’s dissertation.33
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sure can comprise quantities related to the one-dimensional particle size
distribution (PSD)75,97,98 or quantities related to the multidimensional
PSSD.62,99–103 However, it is well-known that the performance of crys-
tallization processes relying on predefined operating policies is prone to
deteriorate as a consequence of uncertainties in the model, entirely un-
modeled phenomena, and unexpected disturbances. Feedback control is a
promising approach to mitigate these undesirable effects, but its success-
ful implementation requires online monitoring tools.48,57–59,104 Imaging
devices for monitoring particle size and shape have undergone signifi-
cant progress within the last two decades.105 Various contributions in the
field of crystallization were reported in the literature.20,23,32,38,39,53,81,106
For instance, the µ-DISCO is a stereoscopic imaging device tailored to
provide statistically relevant PSSD measurements online (see also Sec-
tion 1.2).32

Assuming or possessing online monitoring capabilities to track the
evolution of the PSD or the PSSD, control schemes involving feedback
of related quantities can be developed. Control strategies that take into
account only the size of the particles but not their shape (i.e., mea-
surements of the PSD or related quantities only) are relatively com-
mon in the literature. Several of these studies implement some form of
model predictive control (MPC) and can thus be classified as model-
based.61,74,107–110 Approaches comprising model-free elements seem to
appear less frequently.111,112 The number of control schemes discussed
in the literature that make use of measurements related to the PSSD
(i.e., multiple characteristic particle dimensions) is yet limited. An early
contribution relied on image analysis to control the shape of sodium chlo-
rate crystals.20 A proportional controller (i.e., model-free) for reaching
a target average aspect ratio of potassium dihydrogen phosphate (KDP)
crystals by manipulating the concentration of a tailor-made additive
was also suggested.113 Furthermore, computationally efficient nonlinear
model predictive control (NMPC) schemes for the mean length and the
mean aspect ratio of KDP crystals, including a discussion on the state
estimation problem and the effect of uncertainties in the model, were
presented.114,115 Also, it was demonstrated experimentally that the av-
erage dimensions of a population of KDP crystals can be controlled using
temperature cycling based on a pragmatic model predictive approach.21
It is also worth noting that in the field of protein crystallization, a MPC
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methodology that is concerned with crystal shape but avoids feedback
of the latter by relying on growth rate models derived from extensive
kinetic Monte Carlo simulations was suggested.116,117

In this chapter, a seeded batch cooling crystallization process where
growth is the dominant phenomenon is considered. It is assumed that
a multidimensional growth rate model and online PSSD monitoring ca-
pabilities are available to design feedback control strategies, where the
accuracy of both the model and the monitoring is limited. A path fol-
lowing control (PFC) approach with the aim of driving the average di-
mensions of a population of needle-like seed crystals into a target region
by varying the process temperature is proposed. Both a model-based
and a model-free implementation of this control strategy are possible.
A considerably more complex NMPC scheme is presented as well. First,
simulation studies to assess and compare the effectiveness of these con-
trol strategies with respect to achieving the process goal are conducted.
Since obtaining multidimensional growth rate models necessitates sub-
stantial efforts,46,53–55 the requirements regarding the availability and
accuracy of such models to make the feedback control approach effective
are discussed. Obviously, these requirements go hand in hand with the
complexity of the corresponding control strategy. Second, an experimen-
tal validation of the simplest of the proposed controllers, the model-free
PFC, is presented using the system β l-glutamic acid (BLGA) in water.

This chapter is organized as follows. First, the problem to be in-
vestigated is stated in Section 3.2. Second, the path following control
approach and the nonlinear model predictive controller are introduced
in Sections 3.3 and 3.4, respectively. The process simulation framework,
into which the feedback controllers were integrated, is described in Sec-
tion 3.5. The simulation studies using both control strategies are pre-
sented in Section 3.6. Finally, the experimental campaign, where the
model-free PFC scheme was applied, is described in Section 3.7.

3.2 Problem Statement
In this chapter, seeded batch cooling crystallization is considered. Growth
of ensembles of needle-like particles whose size and shape can be approxi-
mated well by two independent dimensions is investigated. To obtain this
approximation, generic particle models, such as that of a cylinder with
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length L1 and width L2, are often employed, because imaging devices
can measure the corresponding characteristic particle dimensions rapidly
and robustly.23,32,39 The supersaturation and the temperature of the pro-
cess are constrained to regions where nucleation and agglomeration are
negligible. Also, breakage is assumed to be negligible. These conditions
enable the seed population to remain unimodal throughout the batch.
Therefore, the control strategies presented in Sections 3.3 and 3.4 focus
on the size and shape evolution of the seed crystals without addressing
additional objectives concerning, e.g., nucleated crystals. Note that in
this chapter, the term PSSD refers to a population of particles where
each particle is characterized by two internal coordinates.

The goal for the controlled process is to drive an average measure of
the size and shape of the particles in the seed population into a certain
target region in the two-dimensional size and shape space. For instance,
this space can be spanned by the number-weighted average dimensions

L̄1,n(t) = µ10(t)
µ00(t)

L̄2,n(t) = µ01(t)
µ00(t) (3.1)

or by their volume-weighted counterparts

L̄1,v(t) = µ22(t)
µ12(t)

L̄2,v(t) = µ13(t)
µ12(t) (3.2)

where

µij(t) =
∞∫

0

∞∫
0

Li1L
j
2f
(
t, L1, L2

)
dL1 dL2 (3.3)
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represents the ij-cross moment of the number density function f(t, L1, L2)
(i.e., the PSSD) at time t. Note that until Section 3.6, the number den-
sity function is defined with respect to the solvent mass, i.e., f has units
of µm−2 kg−1. In the experimental parts of this chapter (Section 3.7 and
the corresponding Appendix B), this is not the case and the number
density has units of µm−2. Obviously, according to eq 3.3, this change
of units also applies to the cross moments. It is also worth mentioning
that for a pure growth process with size-independent growth rates, a
given seed PSSD f0(L1, L2) undergoes a rigid shift in the plane spanned
by the two internal coordinates L1 and L2. In this case, the selection
of target number-weighted average dimensions also specifies the target
yield of the process.

The underlying assumption for controlling the process is that for a
given solute concentration, for a given population, and within certain
bounds for the temperature and the supersaturation, the ratio of the
rate of change of the two average dimensions dL̄1

dt /
dL̄2
dt is a monotonic

function of the process temperature. In this way, the evolution of the
average shape can be influenced by varying the temperature and thus
the supersaturation level. Note that this assumption is motivated by
the strong and monotonic supersaturation dependence of a number of
available multidimensional crystal growth rate models.46,53,54 Still, it is
important to keep in mind that it is generally not possible to achieve
arbitrary ratios of the aforementioned rate of change. This fact leads to
the concept of attainable regions for particle size and shape (see also
Section 2.3.1).21,52,62 It will be demonstrated that the feedback control
approaches introduced in the following two sections can also be applied to
automatically determine the boundaries of such attainable regions for a
given seed population. In the case of the suggested model-free controller,
this is possible without any prior knowledge of the multidimensional
growth rate.

3.3 Path Following Control
The concept of path following control is known from robotics where, e.g.,
wheeled robots are made to follow a predefined path on a plane.118,119
The basic idea of path following can be applied to the evolution of the
average dimensions of a growing population of crystals. A schematic of
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L̄1

L̄2

Target orthant

( ˆ̄L2,0,
ˆ̄L1,0

)

(L̄2,target, L̄1,target)

Ref. path

( ˆ̄L2(t), ˆ̄L1(t)
)e(t) > 0

Figure 3.1: Schematic of the path following control approach.

this approach is shown in Figure 3.1. Given the measured average di-
mensions [ ˆ̄L1,0

ˆ̄L2,0]T of the seed population and desired target average
dimensions [L̄1,target L̄2,target]T, the evolution of the measured average
dimensions [ ˆ̄L1(t) ˆ̄L2(t)]T is required to stay close to a predefined refer-
ence path that connects the two points. Note that, unlike in the case of
robotics, in this application staying close to the reference path is not an
objective per se, but merely a means toward the objective of reaching
the target point. To this end, the lateral deviation of [ ˆ̄L1(t) ˆ̄L2(t)]T from
the reference path in the two-dimensional crystal size and shape space
is defined to be the control error e(t), i.e.,

e(t) =
(
R′2(t)−R2(t)

)( ˆ̄L1(t)−R′1(t)
)

+
(
R1(t)−R′1(t)

)( ˆ̄L2(t)−R′2(t)
)√(

R2(t)−R′2(t)
)2 +

(
R1(t)−R′1(t)

)2
(3.4)
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where [R1(t) R2(t)]T and [R′1(t) R′2(t)]T are the two points of a discrete
representation of the reference path that are closest to [ ˆ̄L1(t) ˆ̄L2(t)]T at
time t, with the former point having a distance from the origin larger
than the latter. This definition implies that e(t) > 0 if [ ˆ̄L1(t) ˆ̄L2(t)]T
lies below the reference path, and vice versa (see Figure 3.1). A simple
proportional-integral (PI) controller is chosen to keep e(t) as close as
possible to zero. This controller produces a feedback contribution

∆Tfb(t) = kp
(
e(t) + 1

τI

∫ t

t0

e(s) ds
)

(3.5)

where kp and τI are tuning parameters and t0 is the seed addition time.
This feedback contribution is added to a feedforward signal Tff(t) (see
Section 3.3.3) to obtain the set point for the process temperature

Tset(t) = Tff(t) + ∆Tfb(t) (3.6)

The set point Tset(t) and the corresponding relative supersaturation
Sset(t) = c(t)/c∗

(
Tset(t)

)
are constrained as follows: Tmin ≤ Tset(t) ≤

Tmax and Smin ≤ Sset(t) ≤ Smax, respectively. Furthermore, integrator
wind-up is limited by pausing the integration in eq 3.5 whenever one of
the constraints on Tset(t) or Sset(t) is active.

By assigning a set point temperature that corresponds to a desired
final supersaturation Sfinal, auxiliary functionality of the controller ends
the batch as soon as the measured average dimensions have reached the
target orthant, where the lower left corner of this orthant is given by the
target point in Figure 3.1. Consequently, the batch time is not known a
priori.

The steps listed below are necessary to design the PFC for a specific
system.

1. Define the temperature and supersaturation limits Tmin, Tmax,
Smin, and Smax, as well as the final supersaturation level Sfinal.
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2. Given the seed PSSD with [ ˆ̄L1,0
ˆ̄L2,0]T, choose the desired target

point [L̄1,target L̄2,target]T.

3. Choose the reference path and the feedforward signal Tff(t).

4. Define the PI parameters kp and τI.

Suggestions for carrying out these steps are given in the following
subsections.

3.3.1 Temperature and Supersaturation Limits
The lower limit on the supersaturation Smin ensures significant growth,
i.e., progress along the path, while the upper limit Smax prevents notable
nucleation and agglomeration. The temperature bounds Tmin and Tmax
can be imposed, e.g., by operational constraints of the equipment or by
limited knowledge of the solubility. All these values should be selected
according to prior experimental insight into the system that is to be
controlled. The final supersaturation level Sfinal can be selected slightly
above saturation in order to prevent unwanted dissolution of the product
crystals due to uncertainty in the solubility data.

3.3.2 Target Selection
The evolution of the two average dimensions cannot be controlled inde-
pendently; i.e., manipulating the process temperature T does not suffice
to drive them to an arbitrary target point [L̄1,target L̄2,target]T. Changing
the process temperature will influence the ratio dL̄1

dt /
dL̄2
dt according to the

assumption made in Section 3.2, but it will also affect the overall growth
speed by altering the supersaturation. If estimates of the attainable re-
gion21,52,62 for the considered system are available, these can guide the
selection of the target. If not, the target can be selected purely based
on the desired final average size and shape. In this case, the process will
probably not reach the target point, but the PFC will constantly take
action and try to stay close to the reference path, only terminating the
batch when the target orthant (see Figure 3.1) is reached.

3.3.3 Reference Path and Feedforward Signal
If a multidimensional growth rate model is available, the reference path
and the feedforward signal Tff(t) can be determined simultaneously by
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running a dynamic optimization prior to starting the process. A suit-
able objective is to minimize the batch time subject to the dynamics of
the process, and subject to reaching the interior of a given box around
the target point. Further constraints are the bounds described in Sec-
tion 3.3.1 and a realistic upper limit for the rate of temperature change.
The decision variables are the batch time tf and a parametrized version
of the set point temperature profile Tset(t). After performing this opti-
mization, the optimized set point profile can directly be assigned to the
feedforward temperature signal, i.e., Tff(t) = Tset,opt(t).

A considerably simpler alternative is to choose the reference path to
be a line connecting [ ˆ̄L1,0

ˆ̄L2,0]T and [L̄1,target L̄2,target]T whose shape is
consistent with the shape of an experimental estimate of the attainable
region, or if the attainable region is unknown, to choose the straight line
connecting the two points. The feedforward temperature signal Tff(t) can
be chosen to be constant or, alternatively, some simple cooling profile.
In this way, the PFC becomes a model-free approach relying solely on
solubility data and on online monitoring to obtain measurements of the
average dimensions. Below, this alternative approach will be referred to
as model-free PFC, whereas the version featuring the optimization-based
determination of the reference path is referred to as model-based PFC.

3.3.4 PI Parameters
Assigning the correct sign to the proportional gain kp in eq 3.5 is cru-
cial. This is best achieved by performing a small number of experimental
batch runs in order to detect if the ratio dL̄1

dt /
dL̄2
dt increases or decreases

with the process temperature. One possible way of doing so, which com-
bines this task with the estimation of the attainable regions, is described
in Section 3.6.1. Because of the meaning the two tuning parameters kp
and τI have in the PI control law (see eq 3.5), reasonable values can
initially be selected according to physical insight. For instance, kp can
be chosen in the sense of a proportional band, i.e., based on a fraction
of the span of the temperature interval defined by the constraints Tmin,
Tmax, Smin, and Smax for a given initial solute concentration. As to the
integrator time constant τI, a single-digit percentage of a rough estimate
of the total batch time can be taken. If necessary, the values obtained in
this way can subsequently be tuned according to the outcome of batches
controlled by the PFC.
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3.4 Nonlinear Model Predictive Control

NMPC is a considerably more sophisticated control strategy than the
PFC approach introduced in Section 3.3. The basic idea is to repeatedly
solve a dynamic optimization problem (similar to the one suggested in
Section 3.3.3) at fixed sampling instants. The initial conditions of these
optimization runs are measurements or estimates of the current process
states. After an optimization run triggered at a sampling instant has
terminated, only the first value in the obtained optimal control input
profile is implemented. The procedure is then repeated at the next sam-
pling instant.

In this chapter, the goal of the dynamic optimization runs performed
at each sampling instant tk = t0 + ktsamp (k = 0, 1, 2, . . . ) is to find the
process temperature profile T (t) and the batch time tf that minimize
the deviation of the final average crystal dimensions from the target
point. To favor short batches, the batch time is penalized as well in
the objective function. The process temperature, rate of temperature
change, and the supersaturation are constrained, and the final average
dimensions have to lie within the target orthant (see Figure 3.1). The
mathematical formulation of this problem is

minimize
T (t), tf

qL̄1

(
L̄1(tk + tf)− L̄1,target

)2
+

qL̄2

(
L̄2(tk + tf)− L̄2,target

)2
+ tf
tf,0

subject to dµ00(t)
dt = 0

dµij(t)
dt = iG1µ(i−1)j(t) + jG2µi(j−1)(t),

ij ∈ {10, 01, 11, 20, 02, 21, 12, 22, 03, 13}
dc(t)

dt = −ρckv
dµ12(t)

dt

S(t) = c(t)
c∗
(
T (t)

) (3.7)
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Tmin ≤ T (t) ≤ Tmax∣∣∣∣ dT (t)
dt

∣∣∣∣ ≤ Ṫmax

Smin ≤ S(t) ≤ Smax, t ∈ [tk, tk + tf ]
tsamp ≤ tf
T (tk) = T̂ (tk)
c(tk) = ĉ(tk)
µij(tk) = µ̂ij(tk)
L̄1,target ≤ L̄1(tk + tf)
L̄2,target ≤ L̄2(tk + tf)

where qL̄i
(i = 1, 2) are weighting factors for penalizing the target de-

viation in the objective function, tf,0 is an initial guess for the batch
time tf , Gi = Gi

(
S(t), T (t)

)
(i = 1, 2) are the size-independent growth

rates along the two particle dimensions, ρc is the crystal density, kv is
the volume shape factor (π/4 for cylindrical particles), Ṫmax is an upper
limit on the rate of temperature change, and tsamp is the sampling time
of the controller. The dynamics of the process are given by the method
of moments25 and the material balance for the solute. The set of cross
moments µij with ij ∈ {00, 10, 01, 11, 20, 02, 21, 12, 22, 03, 13} is consid-
ered to be able to handle both the number-weighted (L̄i = L̄i,n, i = 1, 2)
and the volume-weighted (L̄i = L̄i,v, i = 1, 2) average dimensions. The
state estimates at time tk, and the measured process temperature at the
same instant of time, are ĉ(tk) and µ̂ij(tk), and T̂ (tk), respectively. It is
well-known that obtaining accurate state estimates is a nontrivial task
in general, which motivated dedicated research also in the field of batch
crystallization.120 In this chapter, a simplified approach to the state es-
timation problem is pursued. This approach is described in Section 3.5.5.

The optimization problem posed in eq 3.7 is a DAE-constrained op-
timal control problem, where the solute concentration c(t) and the cross
moments µij(t) represent the differential states of the DAE system and
the relative supersaturation S(t) corresponds to its algebraic state. One
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approach to obtaining a numerical solution to such a problem is direct
transcription, where the problem is transformed into a large scale non-
linear program (NLP) by simultaneously discretizing in time both the
continuous control profile T (t) and the states of the DAE system.89 For
the implementation in this chapter, a piecewise linear discretization with
K intervals was chosen for the profile T (t). The state evolution of the
DAE system in each of these intervals was discretized using M steps
of the implicit Euler scheme. These direct transcription steps were im-
plemented using the software CasADi (v3.3).91 A stationary point of
the resulting NLP was computed using IPOPT (v3.12).92 If the solver
reported termination in a local minimum, the optimized piecewise lin-
ear temperature profile was defined to be the current Tset,opt and the
value Tset,opt(tk + tsamp) was implemented as the current process tem-
perature set point Tset(tk). Otherwise, the previous value was kept, i.e.,
Tset(tk) = Tset(tk−1). As in the PFC strategy, the batch was considered
to be complete when the measurement of the average dimensions reached
the target orthant. In this case, the temperature corresponding to Sfinal
was chosen to be the set point temperature.

Since the NLP introduced above is inherently nonconvex, there is no
guarantee of finding the global optimum. For improving the closed-loop
behavior of the NMPC, i.e., for promoting convergence to similar control
strategies of subsequent optimization runs, it was helpful to initialize the
decision variables with the solution obtained at the previous sampling
instant. Note that a discussion of recursive feasibility and stability of the
considered NMPC problem lies outside the scope of this work. Still, in
the scope of the simulation studies presented in Section 3.6, it can be
said that neither feasibility nor stability issues were observed with the
chosen discretization parameters K and M .

3.5 Process Simulation Framework
The performance of the control strategies introduced in Sections 3.3
and 3.4 was analyzed and compared using a custom process simulation
framework that is illustrated schematically in Figure 3.2. This framework
features a population balance model (PBM) with a dedicated numeri-
cal solver, initialization of this model with experimentally acquired seed
PSSDs, a thermal model for a 2 L jacketed batch crystallizer connected
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ĉ(t)

f̂(t, L1, L2)

T (t)

f̃(t, L̃1, L̃2) c(t)

Figure 3.2: Schematic of the process simulation framework.

to a thermostat, and measurement models for the crystal population
(and its cross moments µ̂ij(t)) as well as for the solute concentration.
The measurements are modeled and provided to the chosen feedback
controller at the sampling instants tk = t0 + ktsamp (k = 0, 1, 2, . . . ).
On the basis of this information, the controller decides about the new
process temperature set point Tset(tk).

A key feature of the framework is the combination of a morpho-
logical population balance model with a detailed measurement model
for the PSSD. The framework simulates the process by solving a mor-
phological population balance model (MPBM) that is based on faceted
crystals modeled as convex polyhedra. On the other hand, the measure-
ment model for the PSSD is based on a simpler, generic particle model,
since it emulates the capabilities of an imaging-based online monitoring
device for the particle size and shape evolution.23,32,39

In the following subsections, the constituent parts of this framework
are explained in more detail.

3.5.1 Population Balance Model and Solver
A morphological population balance equation for the compound BLGA
was used to simulate the crystallization of needle-like particles. The
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approach applied in the preliminary virtual experiments presented in
ref 54 was followed. In this approach, the BLGA crystals are modeled
as convex polyhedra according to the three characteristic facet fami-
lies {101}, {010}, and {021}.37 The aspect ratio between the two facet
families {010} and {021} is fixed to 1, which excludes the possibility
of virtual facets and leads to a two-dimensional population f̃(t, L̃1, L̃2),
where the tilde superscript is used to explicitly distinguish the polyhe-
dral particle description from the generic, cylindrical particle model. The
two corresponding particle dimensions are defined as L̃1 = L{101} and
L̃2 = L{010} = L{021}, where L{101} and L{010} = L{021} are the perpen-
dicular distances of the facets to the center of the crystal. In this case,
and under the assumption of a perfectly mixed reactor, the MPBM for
the growth process is

∂f̃

∂t
+
∂
(
G̃1f̃

)
∂L̃1

+
∂
(
G̃2f̃

)
∂L̃2

= 0 (3.8)

where G̃i (i = 1, 2) are the facet growth rates. In this chapter, these facet
growth rates were obtained by transforming the BLGA growth rates

Gi = kg,i,1(S − 1)kg,i,2 exp
(
− kg,i,3

T

)
i = 1, 2 (3.9)

where the temperature T is in Kelvin here. These growth rates were
reported elsewhere (see also Section 2.5.2)52 and they are valid for the
cylindrical particle model. The corresponding parameters are listed in
Table 3.1. The transformation was performed according to

G̃1 = 1
2 cos(36.6°)G1 (3.10)

G̃2 = 1
2G2
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Table 3.1: Parameter values for the growth rates in eq 3.9.

Parameter Unit i = 1 i = 2
kg,i,1 µm s−1 2.403× 103 5.812× 101

kg,i,2 – 3.665 2.477
kg,i,3 K 2.434× 103 2.422× 103

where the first relation relies on the detailed crystal geometry,54 and
the second relation represents an assumption that was made because it
is exceedingly difficult to separate the influences of the two facet families
{010} and {021} on G2, the growth rate in the width direction.

To model also the evolution of the solute concentration c(t), it is
necessary to couple eq 3.8 with the material balance

dc
dt = −ρc

d
dt

∞∫
0

∞∫
0

Vc(L̃1, L̃2)f̃
(
t, L̃1, L̃2

)
dL̃1 dL̃2 (3.11)

where Vc(L̃1, L̃2) is the volume of a polyhedral crystal with given facet
distances L̃1 and L̃2.

The initial and boundary conditions

f̃(t0, L̃1, L̃2) = f̃0(L̃1, L̃2) (3.12)
f̃(t, 0, L̃2) = 0
f̃(t, L̃1, 0) = 0

c(t0) = c0 = S0c
∗(T0)

were employed to solve eqs 3.8 and 3.11. The numerical solution was
obtained using a fully discrete variant of a high resolution finite volume
scheme relying on the van Leer flux limiter.121 In this study, the compu-
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tational grid was chosen to span the ranges L̃1 ∈ [0, 400 cos(36.6°)] µm
and L̃2 ∈ [0, 100] µm with a resolution of 640 and 480 grid points,
respectively. The polyhedral particle volume Vc(L̃1, L̃2) used in eq 3.11
was precomputed numerically for each point [L̃1 L̃2]T in this grid using
the Multi-Parametric Toolbox.93

3.5.2 Seed PSSD
The seed population f̃0(L̃1, L̃2) in eq 3.12 was obtained from a sampled
population of needle-like crystals measured earlier.54 Since this measure-
ment was performed on the basis of a cylindrical particle model with par-
ticle length L1 and width L2, these dimensions were transformed into the
corresponding polyhedral facet distances L̃i (i = 1, 2) by applying the
same transformation as given in eq 3.10. Subsequently, the sampled and
transformed number density function was scaled to match the desired
seed mass mseed, resulting in the seed PSSD f̃0(L̃1, L̃2).

3.5.3 Thermal Model
A black-box modeling approach was applied to dynamically relate the
process temperature set point Tset(t) to the actual process temperature
T (t) (see Figure 3.2). To this end, step response data were collected from
a 2 L jacketed batch crystallizer that was filled with 2 kg of deionized
and filtered water, stirred at 300 rpm, and connected to a CC240wl-CC3
thermostat (Huber, Offenburg, Germany) with fixed internal controller
parameters (P-cascade = 1000, I-cascade = 1000, D-cascade = 0). The
second-order model

d2T (t)
dt2 + 2Γω0

dT (t)
dt + ω2

0T (t) = ω2
0Tset(t) (3.13)

was fitted to these data, which yielded the two model parameters Γ =
4.1× 10−1 and ω0 = 3.7× 10−3 s−1.

The differential equation given in eq 3.13 will subsequently be used
as a simple model for the dynamic transition of the current process tem-
perature T (t) to the set point temperature Tset(t) issued by the feedback
controller, also when the actual mass in the crystallizer is not exactly
2 kg, but in the order of this value.
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3.5.4 Measurement Model
Measurements of the crystal population at each sampling instant were
emulated using the virtual test bench (VTB) introduced previously.39
The basic principle is uniform sampling of particles from the current
morphological population, random placement and orientation of subsets
of the corresponding convex polyhedra in a virtual flow cell, followed by
stereoscopic projection, image analysis, and PSSD reconstruction. The
VTB was adapted to match the characteristics of the µ-DISCO,32 espe-
cially concerning the flow cell dimensions, the camera resolution and
magnification, and the stereoscopic contour matching. The following
pipeline describes the sequence of steps leading to a measurement of
the PSSD at a sampling instant tk:

1. Uniform sampling of Ns particles from the number density function
f̃(tk, L̃1, L̃2).

2. Placement of a subset of Np of the corresponding convex polyhe-
dra (which were generated with the Multi-Parametric Toolbox93)
in the virtual flow cell, using random particle positions and ori-
entations, but excluding the possibility of intersecting particles or
particles overlapping the borders of the cell.

3. Generation of two two-dimensional projections in order to emulate
stereoscopic imaging.

4. Conversion to binary images and particle contour extraction.

5. Stereoscopic contour matching as described previously.32

6. Characterization of the dimensions L1 and L2 of the particles by
imposing the generic, cylindrical particle model.23

7. Repetition of steps 2 through 6 until all the Ns sampled particles
have been placed in the cell.

8. Application of a binning protocol to obtain the sampled PSSD
f̂(tk, L1, L2) from the characterized particle dimensions.23

In this study, the VTB parameters introduced above were fixed at Ns =
4000 and Np = 25. These values were chosen to be on the conservative
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Figure 3.3: Arbitrary state of the virtual flow cell, containing 25 BLGA crystals
shown as red convex polyhedra. The black solid lines on the xz- and on the yz-
plane are the corresponding projections of the particle contours; i.e., these two
planes and the contours form the virtual images to be analyzed subsequently.

side concerning the accuracy of the imaging method in the simulation,
since typically around 10 000 particles per sampling instant are analyzed
in a real experiment, and given the total number of particles in the seed
population, one would expect about Np particles to be present in the
flow cell at each time instant. The chosen values of Ns and Np lead to
160 different flow cell states and corresponding pairs of virtual images
to be analyzed at each sampling instant. An example of such a state is
shown in Figure 3.3. Using these parameters, typically about 90 % of the
Ns particle contours could be matched and the corresponding particles
characterized.

The measurements of the solute concentration were emulated by sam-
pling from the Gaussian distribution

ĉ(tk) ∼ N
(
aĉc(tk), b2ĉ

)
(3.14)
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where aĉ and bĉ are parameters needed to define the mean of the Gaus-
sian and its standard deviation, respectively. In this study, the param-
eters aĉ and bĉ were fixed at the values 1.0 and 0.2 g kg−1, respectively
(see also Table 3.2). This choice leads to measurement noise levels that
are similar, but slightly larger in magnitude than those observed in ATR-
FTIR data obtained experimentally from the studied system (BLGA in
water).

Finally, it was assumed that the feedback controllers have access
to perfect measurements of the process temperature T (t), i.e., T̂ (tk) =
T (tk).

3.5.5 Interface to the Feedback Controllers
The measurements of the PSSD, of the solute concentration, and of the
temperature obtained at each sampling instant need to be made available
to the feedback controllers. Note that the former two measurements are
noisy.

The PFC strategy requires measurements of the average particle di-
mensions, the solute concentration, and the process temperature. The
noisy solute concentration measurements ĉ(tk) were low-pass filtered by
the discretized version of a first-order element with a corner frequency of
1/30 of the sampling frequency. Regarding the size and shape measure-
ments, the number-weighted average dimensions of the sampled PSSD
f̂(tk, L1, L2) (see the last step of the sequence listed in Section 3.5.4)
were calculated according to eq 3.1. These two average dimensions were
then low-pass filtered individually by a second-order Butterworth filter
designed using the Matlab command butter,122 where the cutoff fre-
quency was chosen to be 1/10 of the sampling frequency. The control
error e(t) was computed according to eq 3.4 using these filtered values.
Note that, unlike in the case of the solute concentration, no artificial
noise was added to the average dimensions calculated from the sampled
PSSDs. Still, random sampling of Ns particles from the true morpholog-
ical population and the characteristics of the measurement model (i.e.,
the VTB) already introduce noise and thus uncertainty into these sig-
nals.

The NMPC approach requires measurements of all the cross mo-
ments µij(tk) listed in Section 3.4, of the solute concentration, and of
the process temperature. The solute concentration was low-pass filtered
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making use of the same filter element as in the PFC strategy. Before
calculating the cross moments of the sampled PSSD and using them
as initial state estimates for the current NMPC iteration, the sampled
PSSD f̂(tk, L1, L2) was scaled according to

f̂scaled(tk, L1, L2) = f̂(tk, L1, L2)
c0 − ĉfilt(tk) + mseed

msolvent

kvρcµ̂12(tk) (3.15)

where µ̂12(tk) was computed from f̂(tk, L1, L2) and ĉfilt(tk) is the low-
pass filtered ĉ(tk). Note that the numerator of the scaling factor in eq 3.15
represents an estimate of the mass of solids per mass of solvent currently
in the crystallizer, whereas the denominator is the sampled mass of solids
per mass of solvent. Together with the low-pass filtering of ĉ(tk), this
scaling and the subsequent calculation of the cross moments according
to eq 3.3 can be seen as a state estimation approach, albeit it largely lacks
the filtering capabilities of more sophisticated concepts. In the scope of
this study, the NMPC was found to perform well using this approach.

3.6 Simulation Studies
The performance of the feedback controllers introduced in Sections 3.3
and 3.4 was assessed by coupling them with the process simulation frame-
work presented in Section 3.5. The PFC approach was compared with the
NMPC strategy. For both these control strategies, the number-weighted
average dimensions, as defined in eq 3.1, were taken as the quantities to
be controlled. It is emphasized here that the process model based on the
polytopic particle shape model (see eqs 3.8, 3.10, 3.11, and 3.12) was not
known to either of the presented feedback controllers, but merely served
to simulate a virtual crystallization process.

Due to the elaborate measurement model for the PSSD presented
in Section 3.5.4, the ratio between simulated batch time and required
computational time was about 10 to 1 using all the four cores of an
Intel Xeon E5-1630 v3 @ 3.70 GHz machine equipped with 32.0 GB of
RAM in parallel. The time required for the numerical solution of the
optimization problem posed in eq 3.7 was in the order of 2 s and thus it
had a small impact on the overall computational time.
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3.6.1 Path Following Control

In a first step, the model-free PFC (see Section 3.3) was used to obtain an
estimate of the attainable region for the number-weighted average dimen-
sions when starting from a given seed PSSD. To this end, two simulations
were run using the parameter values listed in Table 3.2. The goal of the
first closed-loop run was to automatically estimate the upper boundary
of the attainable region. Therefore, an extreme target corresponding to
substantial growth along L1 and almost no growth along L2 was chosen,
i.e., [L̄1,target L̄2,target]T = [150 30]T µm. The second run was intended
to estimate the lower boundary of the attainable region; i.e., the target
[L̄1,target L̄2,target]T = [100 60]T µm was chosen, which corresponds to
substantial growth along L2. In order to plan the model-free reference
paths (see Section 3.3.3), the first measurement [ ˆ̄L1,n(t0) ˆ̄L2,n(t0)]T of
each run (which was in the neighborhood of [74.5 27.5]T µm for both
runs) was taken as the initial point and connected with the target point
using a straight line, i.e., the path was planned online during the first
controller step. Furthermore, a constant feedforward temperature profile
Tff(t) = T0 was assigned. The results of these two runs are illustrated
in Figure 3.4, where the first run and the second run are referred to as
run α and β, respectively. As expected, it can be seen that both runs
failed to reach their target points. Run β did not even reach its target
orthant, because the process time was restricted to 50 h. Still, the slopes
of the evolutions of the measured average dimensions seem to be fairly
constant over the course of both runs, thus enabling a linear extrapo-
lation indicated by the dotted green lines in Figure 3.4a. The cone-like
area in between these lines can be seen as an estimate of the attain-
able region. Note that the fairly constant slopes of the boundaries of
the attainable region are a direct consequence of the growth rate model
given in eqs 3.9 and 3.10, since the ratio G̃1/G̃2, which determines these
slopes in the case of pure growth using number-weighted average dimen-
sions, is effectively determined by the supersaturation level. However,
the model-free PFC is not aware of this fact. It does not rely on any
specific structure of the growth rates, as long as the basic assumption in
Section 3.2 is satisfied.

The time series of the temperature, the concentration, the supersat-
uration, and the control error of the two runs are plotted in Figure 3.4b.
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Table 3.2: List of parameter values used in the simulation studies.

Parameter Unit Value
General
kv – π/4
ρc g µm−3 1.59× 10−12

mseed g 0.80
msolvent kg 1.75
T0

◦C 31.45
Tmin

◦C 20.00
Tmax

◦C 41.00
c∗ 3,52 g kg−1 3.37 e(3.59× 10−2 T )

S0 – 1.12
Smin – 1.10
Smax – 1.25
Sfinal – 1.05
t0 s 0.00
tsamp s 300.00
aĉ – 1.00
bĉ g kg−1 0.20
Ns – 4000
Np – 25
PFC
kp

◦C µm−1 -1
τI s 5000
NMPC
K – 40
M – 3
qL̄1

µm−2 1
qL̄2

µm−2 10
Ṫmax

◦C s−1 0.05/60
tf,0 s 3.60× 104
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Figure 3.4: Estimate of the attainable region for the number-weighted average
dimensions obtained from the model-free PFC approach. (a) Size and shape
space representation where L1 and L2 are the characteristic dimensions of the
generic, cylindrical particle model. The thin blue lines represent the contour
levels at 5 %, 25 %, 45 %, 65 %, 85 %, and 95 % of the maximum of the seed
number density function based on the cylindrical particle model (i.e., prior
to the transformation step described in Section 3.5.2). The black dashed lines
indicate the reference paths for the two runs, the upper one for the first run (re-
ferred to as α), and the lower one for the second run (referred to as β). The two
target orthants are given by the gray areas. The thick solid lines correspond to
the measured and low-pass filtered evolutions of the number-weighted average
dimensions and the dotted green lines represent linear fits to these data. (b)
Evolution of the temperature, the concentration, the supersaturation, and the
control error over time. The dark solid lines represent the simulated process
conditions, the black dotted lines indicate constraints, and the gray dotted
lines highlight the end of the profiles.
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Due to the significantly different supersaturation levels, the progress in
the size and shape plane (see Figure 3.4a) and the batch times vary
strongly between the two runs. Combining the information obtained
from Figure 3.4a and Figure 3.4b reveals that the upper boundary of
the attainable region corresponds to the upper limit of the supersatu-
ration Smax (run α) and that the lower limit was achieved by operating
at Smin (run β). Since the first run (α) produced the upper boundary
of the attainable region and the second run (β) produced the lower one
(as intended by the prior selection of the target points), the sign of the
controller parameter kp (see Table 3.2) was correct. Note that it is not
necessary to know the correct sign of kp before performing these two
runs for estimating the boundaries of the attainable region. If the sign
was wrong during the two runs, it would just mean that the two bound-
aries are identified in reverse order. Subsequently, comparing the results
of the two runs will enable the identification of the correct sign of kp.

Having an estimate of the attainable region for a given seed popula-
tion is of value in its own right. It also enables the selection of a reason-
able target point in the size and shape space for subsequent controlled
batch runs with the goal of repeatedly ending those batches at the same
average dimensions and with comparable yield. In this study, the two
targets [L̄1,target L̄2,target]T = [200 60]T µm and [L̄1,target L̄2,target]T =
[170 70]T µm were chosen to assess if the model-free PFC approach is
able to hit arbitrary target points within the attainable region. Two
corresponding closed-loop runs, using again the parameter values listed
in Table 3.2, were performed. The results are illustrated in Figure 3.5.
Since the attainable region was estimated a priori to be cone-like with
practically straight lines as boundaries (see Figure 3.4), the model-free
reference paths were again chosen to be straight lines (with Tff(t) = T0 as
the feedforward temperature profile). Results obtained from the model-
based PFC are not shown. In fact, the model-based PFC performed
similarly to its model-free counterpart when applied to the studied sys-
tem BLGA in water, since time-optimal reference paths to target points
are almost straight lines in this case. Note that this is not necessarily the
case for any system, i.e., using an available growth rate model to obtain
sensible reference paths might lead to increased performance in terms of
reaching the target and also to shorter batch times.

It is evident from Figure 3.5a that the model-free controller succeeded
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Figure 3.5: Closed-loop simulation runs using the model-free PFC scheme
with the two targets [L̄1,target L̄2,target]T = [200 60]T µm (run γ) and
[L̄1,target L̄2,target]T = [170 70]T µm (run δ). (a) Size and shape space rep-
resentation where L1 and L2 are the characteristic dimensions of the generic,
cylindrical particle model. The thin blue lines represent the contour levels
at 5 %, 25 %, 45 %, 65 %, 85 %, and 95 % of the maximum of the seed number
density function based on the cylindrical particle model (i.e., prior to the trans-
formation step described in Section 3.5.2). The black dashed lines indicate the
reference paths for the runs. The target orthants are given by the gray areas.
The thick solid lines correspond to the measured and low-pass filtered evolu-
tions of the number-weighted average dimensions, whereas the dotted green
lines represent the estimate of the attainable region taken from Figure 3.4. (b)
Evolution of the temperature, the concentration, the supersaturation, and the
control error over time. The dark solid lines represent the simulated process
conditions, the black dotted lines indicate constraints, and the gray dotted
lines highlight the end of the profiles.
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in its task: both batches ended close to their assigned target points, which
was enabled by good tracking of the reference paths. As can be seen in
Figure 3.5b, the batch time was close to 35 h for the first run with the
target [L̄1,target L̄2,target]T = [200 60]T µm (referred to as run γ). It
becomes clear from the corresponding time series plots of the control
error and the supersaturation that the controller had to increase the
supersaturation from the initial value of S0 = 1.12 to a level of about
1.17 in order to be able to follow the path. The target of the second
run δ, i.e., [L̄1,target L̄2,target]T = [170 70]T µm, was close to the lower
boundary of the attainable region. As a consequence, the controller chose
to operate at a comparatively low supersaturation level of about 1.11,
which enabled it to follow the reference path and to reach the target
point after about 123 h.

3.6.2 Nonlinear Model Predictive Control
The same problems considered in Section 3.6.1 using the model-free PFC
were tackled using the NMPC scheme presented in Section 3.4. Here, it
must be kept in mind that the model used in the controller is based on
the generic, cylindrical particle model (where the growth rate model is
defined in eq 3.9), which is in line with the capabilities of state-of-the art
online PSSD monitoring tools.23,32,39 Since the simulated process relies
on a more accurate particle model in the form of a convex polyhedron,
it is clear that there is a certain model/plant mismatch. Furthermore,
the controller only has access to information collected from a sampled
subset of all the particles in the population while relying on stereoscopic
imaging, which impedes the accuracy of the state estimate required for
solving the optimization problem posed in eq 3.7. The objective of the
simulation studies is thus to check if the feedback mechanism can miti-
gate these negative effects to a satisfactory degree.

The results obtained from the simulation runs aimed at estimating
the attainable region are shown in Figure 3.6. It is worth recalling that
the reference path in the size and shape space, the feedforward tem-
perature profile, and the control error are not defined for the NMPC
strategy, hence they cannot be plotted in Figure 3.6. Moreover, the evo-
lution of the measured average dimensions is not low-pass filtered in the
case of NMPC (see Section 3.5.5). Still, when comparing Figure 3.6 to
Figure 3.4, it can be seen that NMPC and PFC lead to very similar
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batch runs and boundaries of the attainable region.
The results of the two NMPC runs aimed at the two separate targets

[L̄1,target L̄2,target]T = [200 60]T µm (run γ) and [L̄1,target L̄2,target]T =
[170 70]T µm (run δ) are visualized in Figure 3.7. It can be seen in
Figure 3.7b that run γ ended after a batch time of about 39 h, because
the NMPC operated the batch at a relatively low supersaturation for
a long period of time, only realizing toward the end of the batch that
it had to lower the temperature, i.e., to increase the supersaturation,
in order to end up close to the target point. This observation is in line
with the curved evolution of the measured average dimensions shown
in Figure 3.7a. Qualitatively speaking, the same behavior can be ob-
served for the second run δ. The average supersaturation level for this
run was lower, since the target point was close to the lower boundary
of the attainable region. Therefore, the batch time of about 134 h was
significantly longer than for run γ. The behavior of increasing the super-
saturation toward the end of the batch is caused by a mismatch between
the predictions obtained from the population balance model used in the
controller and the evolution of the measurements taken from the mor-
phological population in the simulation framework. To be more precise,
the two models differ in terms both of the employed particle shape model
(generic versus polytopic) and of the growth rates (see eqs 3.9 and 3.10).
The impact that these differences have on the model predictions was in-
directly confirmed by running additional simulations (not shown here for
the sake of brevity) where the same generic, cylindrical particle model
was used both in the NMPC and in the simulation framework, with the
same growth rates. Thus, in those simulations, the NMPC had access to a
perfect process model. Those closed-loop runs led to a straight evolution
of the path toward the target using an almost constant supersaturation
level, similar to the behavior of the PFC discussed in Section 3.6.1. More
direct evidence of the impact of the model/plant mismatch is provided
by the dashed lines in Figure 3.7b, which represent the solution of the
optimization run (see eq 3.7) performed at the first sampling instant t0
of the corresponding batch run. Relying on the model and the initial
state estimates, the NMPC predicts to be able to reach the desired tar-
get orthants for run γ and δ within about 58 h and 180 h, respectively,
using practically constant supersaturation levels of about 1.14 and 1.10.
Obviously, these predictions are wrong for both runs. Despite these con-
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Figure 3.6: Estimate of the attainable region for the number-weighted average
dimensions obtained from the NMPC strategy. (a) Size and shape space rep-
resentation where L1 and L2 are the characteristic dimensions of the generic,
cylindrical particle model. The thin blue lines represent the contour levels
at 5 %, 25 %, 45 %, 65 %, 85 %, and 95 % of the maximum of the seed num-
ber density function based on the cylindrical particle model (i.e., prior to the
transformation step described in Section 3.5.2). The two target orthants are
given by the gray areas, the upper one for the first run (referred to as α), and
the lower one for the second run (referred to as β). The thick solid lines corre-
spond to the measured evolutions of the number-weighted average dimensions
and the dotted green lines represent linear fits to these data. (b) Evolution of
the temperature, the concentration, and the supersaturation over time. The
dark solid lines represent the simulated process conditions, the black dotted
lines indicate constraints, and the gray dotted lines highlight the end of the
profiles.
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siderations, it must be emphasized that the presence of the feedback
mechanism clearly enables the controller to fulfill its task and to termi-
nate close to the desired target points (see Figure 3.7a).

3.6.3 Robustness with Respect to Varying Growth
Rates

The product quality obtained from consecutive batch cooling crystal-
lization runs is known to vary in practice. It seems likely that this phe-
nomenon is caused by disturbances acting on the process such as, for in-
stance, residues from a previous batch resulting from improper cleaning
or impurities in general. One possible effect of impurities (or additives) is
that they may hinder the growth of certain crystal facets.5,6 In the case of
a batch run operated using a predefined cooling profile and without any
size and shape feedback control, it is evident that a different final PSSD
will result, even if the same seeds are used. Therefore, in this section,
the robustness of the model-free PFC scheme with respect to variations
in the growth rates in terms of achieving the same final average particle
dimensions is investigated by means of a parametric sensitivity study.
To this end, multiple closed-loop runs using the model-free PFC were
performed, each of which using a different exponent kg,1,2 for the rela-
tive supersaturation term in G̃1, the growth rate along the {101} facet
family of the BLGA crystals (see eqs 3.9 and 3.10). To be more pre-
cise, multipliers for the nominal value of kg,1,2 were chosen in the range
from 0.925 to 1.075. All these runs had the same target point, namely,
[L̄1,target L̄2,target]T = [150 50]T µm and they were performed using the
parameters listed in Table 3.2. A summary of the results obtained in
this way is illustrated in Figure 3.8. It is clear from Figure 3.8a that all
the runs except the one with a multiplier for kg,1,2 of 0.925 successfully
reached the target point. The reason why this specific run missed the
target point can be seen in Figure 3.8c: the PFC operated the batch at
the lower boundary of the allowed supersaturation range (Smin = 1.10).
Since the target point was missed, this means that an even lower super-
saturation and thus an even higher batch time (see Figure 3.8b) would
have been necessary to hit the target point in this run. For the remaining
runs, it can be seen in Figure 3.8b,c that the higher the average super-
saturation chosen by the PFC, the lower the batch time. More generally
speaking, altering the exponent of the supersaturation term in one of the
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Figure 3.7: Closed-loop simulation runs using the NMPC strategy with the two
targets [L̄1,target L̄2,target]T = [200 60]T µm (run γ) and [L̄1,target L̄2,target]T =
[170 70]T µm (run δ). (a) Size and shape space representation where L1 and
L2 are the characteristic dimensions of the generic, cylindrical particle model.
The thin blue lines represent the contour levels at 5 %, 25 %, 45 %, 65 %, 85 %,
and 95 % of the maximum of the seed number density function based on the
cylindrical particle model (i.e., prior to the transformation step described in
Section 3.5.2). The black dashed lines indicate the optimal paths obtained
from solving the optimization problem given by eq 3.7 at time t0, i.e., at the
first sampling instant. The target orthants are given by the gray areas. The
thick solid lines correspond to the measured evolutions of the number-weighted
average dimensions, whereas the dotted green lines represent the estimate of
the attainable region taken from Figure 3.6. (b) Evolution of the temperature,
the concentration, and the supersaturation over time. The dark solid lines
represent the simulated process conditions, the black dotted lines indicate
constraints, and the gray dotted lines highlight the end of the profiles. Again,
the black dashed lines indicate the optimal profiles obtained from solving the
optimization problem at time t0.
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Figure 3.8: Summary of the results obtained from several closed-loop
runs using the model-free PFC strategy, all aimed at the target point
[L̄1,target L̄2,target]T = [150 50]T µm, but using different exponents kg,1,2 for
the supersaturation term in the growth rate G̃1. (a) Size and shape space rep-
resentation of the measured final average dimensions where L1 and L2 are the
characteristic dimensions of the generic, cylindrical particle model. (b) Batch
times in hours. (c) Average relative supersaturation levels. The dark gray lines
are guides for the eye.

growth rates corresponds to changing the attainable region in the size
and shape space. In conclusion, if the change in the attainable region as
a function of the variation in the growth rates is not too pronounced,
the robustness provided by the model-free PFC scheme allows the aver-
age particle dimensions of multiple batch runs to reach the same target
point.

The same parametric sensitivity study was also conducted using the
NMPC. The results are similar to those obtained from the model-free
PFC, but they are not shown here for the sake of brevity.

3.7 Experiments
In this section, the experimental validation of the model-free PFC scheme
introduced above is presented using the system BLGA in water. Note
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that within this experimental section, the term PFC will always refer
to the model-free implementation of the controller. It was decided to
experimentally apply this specific controller, because it is the most simple
strategy among those presented in this chapter.

In a first step, a seed population was prepared. Afterward, a super-
saturation interval was identified experimentally in which the considered
process is growth-dominated. Then, the underlying assumption for the
operation of the PFC was verified for the case where volume-weighted
average dimensions are considered (see Section 3.2); i.e., it was verified
that the ratio of the rate of change of these two average dimensions is
monotonic in the process temperature. To this end, a constant supersat-
uration control (CSC)123,124 strategy was applied, which also allows to
experimentally estimate the attainable region for the average sizes and
shapes of a given seed population. Finally, multiple batch crystallization
runs controlled by the PFC were performed for the considered seed pop-
ulation with the goal of repeatedly reaching target average dimensions
within its attainable region.

To present the results concisely, the materials and methods applied to
perform the experimental campaign are explained in Appendix B. More
specifically, the materials are listed in Appendix B.1, the experimental
setup is described in Appendix B.2, and the applied solid phase charac-
terization technique is explained in Appendix B.3. In the same section,
an explanation is given for using the volume-weighted rather than the
number-weighted average dimensions in the experiments. Furthermore,
the seed preparation protocol is given in Appendix B.4, the chosen limits
for the operating conditions are listed in Appendix B.5, the experimen-
tal protocol is explained in Appendix B.6, and the technique applied to
estimate the solute concentration is summarized in Appendix B.7.

3.7.1 Constant Supersaturation Control
To select sensible target average particle dimensions for batches con-
trolled by the PFC, it is beneficial to estimate the attainable region for
crystal size and shape corresponding to a given seed population. Recall
from above that the attainable region is defined as a region in the space
with the two average dimensions as coordinates, which under the given
operating constraints is fully accessible to the seed population. In this ex-
perimental section, additionally the a priori experimental confirmation
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of the monotonicity assumption introduced in Section 3.2 is required.
After confirming this assumption, it is clear that the attainable region
for a given seed population and for the chosen supersaturation limits is
bounded by the two trajectories obtained with the supersaturation kept
constant at its two extremal values. To this aim, CSC experiments were
performed using the prepared seed population at four constant super-
saturation levels, all of them within the supersaturation limits given in
Table 3.3. For the sake of brevity, most of the parameters listed in this
table are explained in Appendix B. The four constant supersaturation
levels explored are referred to as ε, ζ, η, and θ, with values of 1.18, 1.14,
1.12, and 1.10, respectively.

Under supersaturated conditions, the solute concentration decreases
as the solute mass is taken up from the liquid phase onto the solid
phase. Hence, to maintain the supersaturation constant over time, the
temperature of the process must be lowered.123,124 To determine the
appropriate process temperature set point, the equation

Ŝ(t) = ĉfilt(t)
c∗
(
T (t)

) (3.16)

was solved for the temperature at each sampling instant of the controller
using the desired constant value of the supersaturation. The procedure
for obtaining the low-pass filtered solute concentration estimate ĉfilt(t)
is described in Appendix B.7.

The results of the CSC experiments also enable the selection of the
correct sign of kp in eq 3.5 for subsequent PFC experiments: a negative
kp results if the ratio dL̄1,v

dt /
dL̄2,v

dt decreases with temperature (increases
with supersaturation) and a positive kp is required in the opposite case.

The evolution of the low-pass filtered volume-weighted average di-
mensions in the crystal size and shape space of the seed population is
shown in Figure 3.9a for the four different supersaturation levels. As
expected for the needle-like BLGA in water, the population grows pref-
erentially along the L1 direction. A cone-like area can be observed in
this plot, with the trajectory corresponding to experiment ε (S = 1.18)
as the upper boundary and that of experiment θ (S = 1.10) as the lower
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Table 3.3: List of parameter values used in the CSC and PFC experiments.a

Parameter Unit Value
Experimental
ρc g µm−3 1.59× 10−12

c∗ 3,52 g kg−1 3.37 e(3.59× 10−2 T )

c0 g kg−1 9.86
mseed g 0.35
T ∗ ◦C 29.90
Tmin

◦C 20.00
Tmax

◦C 41.00
Smin – 1.10
Smax – 1.18
Sfinal – 1.05
Controller
tsamp min 5
tinitial min 5 (CSC)

30 (PFC)
tmax min 3000
tfinal min 70
ngrid – 500 (L1)

– 150 (L2)
kp

◦C µm−1 −0.5
τI s 5000
a Unless stated otherwise in the main text, the pa-
rameters given in this table were used for all the
experiments.
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Figure 3.9: CSC experiments to estimate the attainable region of the seed
population. (a) Evolution of the low-pass filtered volume-weighted average di-
mensions in the crystal size and shape space for crystals grown at S = 1.10
(θ), 1.12 (η), 1.14 (ζ), and 1.18 (ε). (b) Evolution of the solute concentration.
The solid markers represent the concentration estimate ĉ and the solid lines
represent the low-pass filtered concentration ĉfilt (see Appendix B.7). (c) Evo-
lution of the supersaturation Ŝ calculated according to eq 3.16. (d) Evolution
of the measured process temperature T .
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boundary. The intermediate supersaturations lie within this cone-like
area, which demonstrates the desired monotonic behavior of dL̄1,v

dt /
dL̄2,v

dt
with respect to the supersaturation. The time-resolved evolution of con-
centration, supersaturation, and temperature is shown in Figure 3.9b-d.
The concentration and the process temperature do not change signifi-
cantly over the course of the experiments. From this observation, and as
also discussed in Appendix B.7, one can conclude that a constant tem-
perature would suffice to maintain an approximately constant supersat-
uration. It is also worth noting that the batch times are considerably
different for the different experiments. Finally, the chosen lower bound
on the supersaturation Smin can be justified by observing the evolution
of the average dimensions in experiment θ, where, over a 40 h period,
the average length and width increased only by approximately 19 µm
and 3 µm, respectively. It would have been difficult to guarantee any ob-
servable growth in the population if a value lower than 1.10 had been
allowed for Smin. As a general comment, it can be said that the attain-
able region is narrow. This fact can be attributed to how BLGA crystals
grow in water within the ranges of operating conditions explored within
this experimental campaign.

3.7.2 Path Following Control
The attainable region obtained from the experiments discussed in Sec-
tion 3.7.1 enabled an experimental campaign aimed at growing the BLGA
seed population to reach different target dimensions within its attainable
region. To this aim, two different target average dimensions were cho-
sen in the crystal size and shape space spanned by the volume-weighted
average length and width of the populations. One of these experiments
was repeated to assess if the control scheme was robust enough to guide
the seed population towards the desired target dimensions repeatedly.
Additionally, experiments with three different integrator time constants
τI (aimed at the same target dimensions) were performed to get a qual-
itative insight into the effect of the PI tuning parameters on the per-
formance of the controller. Note that a detailed parametric study of the
PI parameters is however beyond the scope of this section. For all these
PFC experiments, the reference paths were chosen to be the straight
lines connecting the initial measurement [ ˆ̄L1,0

ˆ̄L2,0]T obtained from the
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µ-DISCO and the assigned target [L̄1,target L̄2,target]T.
A total of five closed-loop experiments using the PFC are presented

here. The experiments with the two different targets [L̄1,target L̄2,target]T =
[240 52]T µm and [L̄1,target L̄2,target]T = [200 50]T µm are henceforth dis-
tinguished by referring to them as γ and δ, respectively. The three experi-
ments with target average dimensions corresponding to γ were performed
by choosing three different integrator time constants τI while keeping the
rest of the parameters listed in Table 3.3 constant. The values of τI were
5000 s, 10 000 s, and 50 000 s for γ1, γ2, and γ3, respectively. The two ex-
periments with target average dimensions corresponding to δ were per-
formed with the same experimental and controller parameters as listed
in Table 3.3. A constant feedforward temperature Tff of 26.8 ◦C was set
for both the targets, which corresponds to an initial supersaturation of
1.12.

The results obtained from the five experiments are illustrated in Fig-
ure 3.10. Out of the three γ experiments, the controller was successful in
driving γ1 to the target orthant, while this was not the case for γ2 and γ3.
This can be attributed to two factors, namely, the different τI values and
the maximum allowed batch times (duration of the main experimental
phase, see Appendix B.6) for the three experiments. The batch time for
γ1 was about 30 h, hence it was decided to limit tmax to 30 h for γ2 and
γ3. The evolution of the supersaturation and of the temperature for ex-
periments γ1 through γ3 shown in Figure 3.10c,d is qualitatively similar,
but shifted in time when compared among the experiments. These time
shifts are a direct consequence of the different integrator time constants
τI. For γ1 (τI = 5000 s), the integral part in eq 3.5 accumulated faster
than for γ2 (τI = 10 000 s), and that of the latter accumulated faster than
that of γ3 (τI = 50 000 s). In the extreme case of a very high value of τI,
i.e., when the contribution from the integral part is negligible as in the
case of γ3, the feedback controller acts less aggressively, which can im-
pact the path following performance and thus also the batch time. The
outcome of experiments γ1 through γ3 indicates that the combination of
the values kp = −0.5 ◦C µm−1 and τI = 5000 s is a reasonable choice for
achieving a satisfactory closed-loop performance in the studied system.

As can be seen in Figure 3.10b-e, the batch time of experiment δ1 was
twice that of experiment δ2. Experiment δ1 was operated at a supersatu-
ration level close to Smax for a significant portion of the batch duration,
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while the maximum supersaturation attained by δ2 was about 1.15. The
differences observed between the two repetitions may have different root
causes. The presence of impurities in the suspension or surface defects in
the seed crystals can alter the growth rates considerably. Moreover, the
presence of a different fraction of fines or of a different number of large
particles in the seed samples taken for the two experiments can also im-
pact the evolution of the controlled average quantity of the population
(i.e., the average dimensions). Nevertheless, it is crucial to notice that
the controller was able to guide the population towards the target for
both the repetitions, despite their obviously different behavior.

The initial (seeds) and final (products) PSSDs for experiments γ1,
γ2, δ1, and δ2 are shown in Figure 3.11a-d, from which two important
observations follow. First, both the seed and the final PSSDs of the
two repetitions for each target are very similar. Second, as expected
due to the different target average dimensions, the final PSSDs shown
in Figure 3.11a,b have covered a larger distance in the crystal size and
shape space than those shown in Figure 3.11c,d. A further interesting
observation is the presence of fines in the products of the γ experiments in
the form of peaks in the bottom left corner of Figure 3.11a,b. These peaks
might seem minor, but it must be kept in mind that the volume-weighted
representation of the PSSD attenuates the contribution of small particles.
The presence of these fines in the products can be attributed to two main
factors. First, small seed particles can be below the detection threshold
of the µ-DISCO initially, but they cross such threshold at some point
when growing at high supersaturations for extended periods. Second,
secondary nucleation or breakage can never be ruled out completely.
However, to the best of the author’s knowledge, BLGA in water does
not exhibit the latter two phenomena under the operating conditions
explored in this experimental section. Notice that the product PSSDs for
the δ experiments do not exhibit the presence of fines, even though δ1 was
operated at high supersaturations for a long duration. This observation
can be explained with the specific behavior of this particular experiment,
which has already been discussed above.
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Figure 3.11: Volume-weighted PSSDs f̂v (see Appendix B.3) normalized by
the maximum of each PSSD of the seeds (gray) and products (colored) at
the end of the main experimental phase of the PFC experiments (a) γ1, (b)
γ2, (c) δ1, and (d) δ2. The contour line values correspond to 0.1, 0.5, and
0.9 of each normalized PSSD. Along the L1 direction, a regular grid with a
spacing of 19 µm, 14 µm, 13 µm, and 13 µm for both seeds and products was
used for experiment γ1, γ2, δ1, and δ2, respectively. Along the L2 direction,
the corresponding grid spacing was 7 µm, 7 µm, 13 µm, and 6 µm.
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3.8 Conclusions
In this chapter, two different feedback control strategies for the evolu-
tion of the two average particle dimensions of populations of needle-like
crystals in growth-dominated batch cooling crystallization processes are
proposed. The first strategy is a PFC approach that can be operated
without kinetic models for crystal growth. The second approach is a
considerably more complex NMPC that relies on multidimensional crys-
tal growth rate models.

Being aware of the general lack of actuation in the considered pro-
cess, and of the limited controllability thereof, it has been demonstrated
in simulation studies how to automatically identify the boundaries of
the attainable region for the average crystal dimensions of a given seed
population (which is in fact defined independently of any control law)
using either feedback control strategy. It has also been shown that the
controllers are able to reach an arbitrary target average size and shape
within the interior of this region. On a more general level, the incorpo-
rated feedback of crystal size and shape information provides robustness
with respect to achieving process goals related to these quantities.

In the case of the considered growth-dominated batch process, the
simulation studies have not revealed performance benefits for NMPC
with respect to the model-free PFC, which is due to the unavoidable
presence of model/plant mismatch. Considering also the major effort
required to obtain multidimensional crystal growth rate models,46,53–55
it is concluded that the NMPC approach is too complex for this type of
application.

An experimental campaign confirmed that the model-free PFC, when
combined with suitable online monitoring tools to characterize the evo-
lution of the PSSD such as the µ-DISCO (see Section 1.2),32 is able to
guide the average dimensions of a population of needle-like BLGA seed
crystals towards a sensible target region in the crystal size and shape
space. Despite the likely presence of differences in the properties of the
seed particles and in their growth rates, the controller ensured repeata-
bility of the performed experiments in terms of reaching the assigned
target. This fact clearly demonstrates that the controller introduces a
considerable level of robustness with respect to unexpected disturbances,
which makes the outcome of consecutive batches much more predictable.
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For the system BLGA in water, the experiments showed that the
attainable region is narrow. Hence, achieving a significant change in the
shape of these crystals does not seem possible when only considering
a growth process. However, it is to be noted that the operation of the
model-free PFC strategy is not restricted to the system BLGA in wa-
ter. Thus, for a different compound with a broader attainable region,
applying this control law might already be sufficient to achieve a signif-
icant shape change. In any other case, there is a need to integrate the
growth step with more complex processes exhibiting increased actuation
with respect to the crystal size and shape, such as milling,63 temper-
ature cycling,21,52,55,62,71 combined cooling and antisolvent crystalliza-
tion,43,111,125 cooling crystallization under the influence of additives,5
or a combination thereof. One of way of operating such a process is pro-
posed in Chapter 6. Despite the limitations in terms of shape change
observed in the experiments, the work presented in this chapter provides
a basis to develop and to robustly control such integrated crystallization
processes in a model-free fashion.
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Nomenclature

Acronyms

ATR-FTIR attenuated total reflectance Fourier transform infrared
BLGA β l-glutamic acid
CSC constant supersaturation control/controller
DAE differential algebraic equation
DISCO dual imaging system for crystallization observation
KDP potassium dihydrogen phosphate
(M)PBM (morphological) population balance model
NLP nonlinear program
(N)MPC (nonlinear) model predictive control/controller
PFC path following control/controller
PI proportional-integral (controller)
PS(S)D particle size (and shape) distribution
rpm revolutions per minute
VTB virtual test bench

Roman symbols

aĉ multiplicative factor for mean of a Gaussian [–]
bĉ standard deviation of a Gaussian [g kg−1]
c solute concentration (per mass of solvent basis) [g kg−1]
c∗ solubility (per mass of solvent basis) [g kg−1]
e PFC control error [µm]
f number density function (PSSD)

[µm−2 kg−1] (simulations) or [µm−2] (experiments)
fv volume-weighted PSSD [µm−2] (experiments only)
Gi growth rate along ith particle dimension [µm s−1]
K # intervals for piecewise linear discretization [–]
kg,i,j jth parameter of the growth rate G̃i, unit varies
kp proportional gain of PI controller [◦C µm−1]
kv volume shape factor [–]
Li ith particle dimension [µm]
L̄i,n number-weighted average of ith particle dimension [µm]
L̄i,v volume-weighted average of ith particle dimension [µm]
L̄i placeholder for either L̄i,n or L̄i,v [µm]
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L̄i,target target average of ith particle dimension [µm]
mseed seed mass [g]
msolvent solvent mass [kg]
M # implicit Euler steps [–]
Np # sampled particles placed in virtual flow cell [–]
Ns # sampled particles (particle count) [–]
ngrid # of grid points for binning (experiments only) [–]
Ri and R′i ith dimension of points on the reference path [µm]
S relative supersaturation, c/c∗ [–]
Sfinal final supersaturation to end batch [–]
t time, unit varies
t0 seed addition time, unit varies
tf batch time in an optimization problem [s]
tk sampling instant (optimization and simulations) [s]
T process temperature [◦C] (unless specified otherwise)
T ∗ saturation temperature [◦C]
Ṫ rate of temperature change (NMPC) [◦C s−1]
qL̄i

weighting factor for NMPC objective [µm−2]
V total visual hull volume [µm3]
Vc single crystal volume [µm3]
Vseed volume of seeds per mass of solvent [µm3 kg−1]

Greek symbols

α, β, γ, δ labels for PFC or NMPC simulations or experiments
ε, ζ, η, θ labels for CSC experiments
Γ damping ratio [–]
µij ij-cross moment of PSSD [µmi + j kg−1] (simulations)

or [µmi + j] (experiments)
ρc crystal density [g µm−3]
τI integrator time constant of PI controller [s]
φn scaling factor for particle count [–]
φv scaling factor for particle volume [kg−1]
ω0 natural frequency [s−1]
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Superscripts and subscripts

0 initial value or initial guess
– average of the quantity
~ polyhedral particle model (for MPBM)
ˆ measurement or estimate
fb feedback
ff feedforward
filt low-pass filtered
final final phase of experiment
initial initial phase of experiment
max upper limit
min lower limit
opt optimized
samp sampling (interval)
set set point
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Chapter 4

Feedback Control for Wet
Milling Processes

4.1 Introduction
Milling is a widely applied unit operation during the production of solid
pharmaceuticals and fine chemicals. It has the potential to strongly mod-
ify the particle size and shape, either during or after a crystallization
step, which can increase the efficiency of various downstream unit oper-
ations and improve important quality attributes of the final product. For
instance, milling can enhance bioavailability, tablet content uniformity,
and powder compactability.126,127 Wet milling is often employed to pro-
duce narrow crystal size distributions without altering the crystallinity
of the solids. Dry milling techniques can have several disadvantages, such
as higher cost, generation of lattice defects, and amorphization, to name
a few.128–130

Because of the importance of wet milling in the pharmaceutical indus-
try, significant efforts have been directed toward studying and modeling
the breakage processes of suspended crystals, using both in situ and

The work presented in this chapter has been adapted from ref 67 (Rajagopalan,
A. K.; Bötschi, S.; Morari, M.; Mazzotti, M. Feedback Control for the Size and Shape
Evolution of Needle-like Crystals in Suspension. III. Wet Milling. Cryst. Growth Des.
2019, 19, 2845–2861. DOI: 10.1021/acs.cgd.9b00080). A complete presentation of the
material reported in ref 67 appears in Ashwin Kumar Rajagopalan’s dissertation.33

105

https://dx.doi.org/10.1021/acs.cgd.9b00080


4. Feedback Control for Wet Milling Processes

ex situ wet mills.64,127,129–138 These studies successfully demonstrate a
number of benefits from integrating wet milling with crystallization pro-
cesses. However, in all these studies, the mills were operated at predefined
rotor speeds, thereby missing the opportunity to exploit the potential of
applying feedback control to dynamically alter the rotor speed. Further-
more, most of the employed models were one-dimensional and the quan-
titative monitoring tools utilized in the experimental studies provided a
one-dimensional particle size distribution (PSD). Thus, the evolution of
the particle shape was neglected.

In recent years, thanks to increased efforts to develop solid phase
characterization tools to monitor the evolution of both particle size and
shape, breakage processes have been characterized with increased accu-
racy with respect to particle shape.137,139 These and similar efforts fa-
cilitate the development of complex processes involving growth, milling,
and dissolution stages that produce more equant particles starting from
needle-like seeds.64,136 The design of such processes should be followed
by feedback control efforts to increase process robustness.

The purpose of this chapter is to develop and to validate model-
free feedback control strategies to manipulate the size and the shape of
needle-like crystals using a wet mill as the physical actuator. The goal of
these controllers is to steer batches of needle-like seed particles to differ-
ent target average lengths in the crystal size and shape space. The control
laws were applied experimentally to the two needle-like compounds β l-
glutamic acid (BLGA) and γ d-mannitol (GDM). During these studies,
the stereoscopic imaging device µ-DISCO (see also Section 1.2)32 was
employed to obtain the required feedback of the particle size and shape
evolution.

This chapter is structured as follows. First, a brief overview of the
wet milling process is given in Section 4.2. Second, the control strate-
gies are presented in Section 4.3. The results obtained from experiments
using these control laws are discussed in Section 4.4. For the sake of
brevity, the materials and methods employed in the corresponding ex-
perimental campaign are provided in Appendix C. More specifically, the
materials are listed in Appendix C.1, the experimental setup is described
in Appendix C.2, and the applied solid phase characterization technique
is explained in Appendix C.3. The seed preparation protocol is given in
Appendix C.4, the chosen limits for the operating conditions are listed
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in Appendix C.5, and the experimental protocol is explained in Ap-
pendix C.6, the latter including a tabular listing of the employed exper-
imental and controller parameters.

4.2 Overview of Wet Milling
Wet or slurry milling involves pumping a suspension of crystals from a
well-mixed stirred tank through a mill to reduce the size of the crys-
tals. Two different configurations have been discussed in the literature,
namely, the Two Crystallizer (or single pass) configuration and the Re-
circulation configuration.126,127 These configurations are illustrated in
Figure 4.1. A brief summary of the advantages and the drawbacks of
these two configurations is presented in the following sections. Note that
in this work, only wet milling applied in the context of a batch crystal-
lization process is considered.

4.2.1 Two Crystallizer Configuration
The Two Crystallizer configuration is shown in Figure 4.1a. In this con-
figuration, the entire suspension is pumped from the primary crystallizer
through an active wet mill to the secondary crystallizer. Then, the sus-
pension is pumped back to the primary crystallizer through an inactive
wet mill. The major advantage of this configuration is that all the par-
ticles in the suspension pass the mill. However, the setup is complex
since it requires two temperature controlled stirred tank crystallizers.
Because of this inherent complexity, the Two Crystallizer configuration
is scarcely applied on an industrial scale.127 In this chapter, this config-
uration will not be explored any further. The mathematical modeling of
this configuration and a model-based operating policy are presented in
refs 137 and 67. In the latter reference, the two configurations shown in
Figure 4.1a are studied in detail and compared.

4.2.2 Recirculation Configuration
In the Recirculation configuration shown in Figure 4.1b, the suspension
is continuously mixed in the crystallizer and circulated through the mill.
The major advantage of this configuration is the fact that it does not
require an additional temperature controlled stirred tank crystallizer.
Therefore, the Recirculation configuration is often applied on an indus-
trial scale.126,127 In this chapter, this configuration is explored experi-
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mentally using a lab-scale setup. In this context, a quantity of interest
is the residence time of the suspension in the crystallizer τC, where this
residence time is defined as the ratio of the volume of the suspension in
the crystallizer VC to the flow rate of the suspension F through the mill.

4.3 Control of Wet Milling Stages

4.3.1 Average Characteristics of a Population

In this chapter, the volume-weighted average dimensions (L̄i,v, i = 1, 2)
of the population in the crystallizer, obtained from the cross-moments
of the particle size and shape distribution (PSSD), are considered to be
the quantities of interest for control. They are defined as

L̄1,v(t) = µ22(t)
µ12(t)

L̄2,v(t) = µ13(t)
µ12(t) (4.1)

where

µij (t) =
∞∫

0

∞∫
0

Li1L
j
2f (t, L1, L2) dL1 dL2 (4.2)

is the ij-cross moment of the number density function f(t, L1, L2) (i.e.,
the PSSD) at time t.

In the following sections, PSSDs obtained experimentally will be
highlighted by the hat symbol, i.e., f̂ . Equations 4.1 and 4.2 can also
be applied to f̂ , thus yielding the quantities ˆ̄Li,v (i = 1, 2). Please refer
to Appendix C.4 for further useful PSSD characteristics.
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4.3.2 Attainable Region for Particle Size and Shape
It was shown that there exists an attainable region in the crystal size
and space, spanned by the average length and width of a crystal popu-
lation characterized by two dimensions, for a seeded, growth-dominated
batch cooling crystallization process by solely manipulating the process
temperature.21,62,65,66 This region provides an indication as to whether
a target size and shape is accessible to the seed population under the
given operating constraints. The concept of the attainable region can
also be applied to breakage processes.

For the wet milling process considered in this chapter, it was demon-
strated previously that the influence of the residence time of the suspen-
sion inside the wet mill τWM (and thus of the flow rate F ) on the final
average particle dimensions is negligible as long as this residence time
is above a value of 5 s.137 Note that lower values of τWM usually pose
too high requirements on the employed pump that provides the flow rate
F . Thus, the rotor speed θ remains as the single control actuator and
it becomes clear that only one of the two quantities L̄1,v and L̄2,v can
be controlled independently. It is also well-known that needle-like crys-
tals undergoing milling preferentially break along the length direction
and exhibit a small change along the width direction even at high rotor
speeds. On the basis of these considerations, it was decided to design
feedback controllers and to subsequently perform experiments with the
aim of manipulating the average length of the crystal population rather
than its average width. In more detail, the goal of the developed control
laws is to mill the particle populations in such a way that after comple-
tion of the milling operation, the volume-weighted average length L̄1,v
is as close as possible to a given target value L̄1,target. In this way, the
volume-weighted average aspect ratio can be controlled.

4.3.3 Model-based Versus Model-free Control
Controlling the average length of a population of needle-like particles
undergoing wet milling is challenging for two main reasons. First, over-
shooting the target is irreversible. Second, the milling process proceeds
quickly when compared with the sampling period of a quantitative size
and shape monitoring device such as the µ-DISCO.32 Thus, the milling
stages and the PSSD measurements have to be performed consecutively,
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which makes it a discrete-time control problem.
If a quantitative model for a population of needle-like crystals un-

dergoing breakage is available, the rotor speed θ of the mill that leads
to a reduction of the initial measured volume-weighted average length
ˆ̄L1,v(t0) to a given target length L̄1,target can be calculated and applied
in an open-loop fashion. Unfortunately, multidimensional breakage mod-
els, such as the one for BLGA presented earlier,137 are hardly ever avail-
able. Even if they were, they could never be fully predictive because
of disturbances and modeling errors for some of the relevant phenom-
ena. Feedback control is able to compensate for these undesirable effects.
Also in the absence of any process model, model-free feedback controllers
can be applied to operate processes automatically—most likely not opti-
mally, but probably satisfactorily and robustly. In the following sections,
a benchmark strategy is introduced and two different model-free feed-
back policies are proposed. The PSSD undergoes consecutive cycles of
PSSD characterizations and milling stages, where the PSSD measure-
ment in each cycle takes place either immediately before (Sections 4.3.4
and 4.3.5) or after (Section 4.3.6) the milling stage. The performance
of these control laws has to be assessed with respect to their ability to
reach a given target average length L̄1,target and with respect to the num-
ber of milling stages required to do so. Below, the index k = 0, 1, 2, . . .
refers to the kth cycle and θ(k) denotes the rotor speed applied in the
kth milling stage as calculated by the employed operating policy. Ro-
tor speed bounds θmin ≤ θ ≤ θmax are enforced afterward. As soon as
ˆ̄L1,v(k) reaches the target, no further milling stages are run. Note that
a target is considered to be reached if ˆ̄L1,v lies within 3% of L̄1,target or
below it.

4.3.4 Benchmark Strategy

The benchmark strategy (abbreviated with the letter C) consists of ap-
plying the same constant rotor speed θ0 for each milling stage until the
target L̄1,target is reached. The applied rotor speed is thus

θ(k) = θ0 ∀k ≥ 0 (4.3)
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where θ0 is the only tuning parameter. This benchmark strategy is the
simplest operating policy possible and it is useful for assessing the per-
formance of the feedback controllers introduced below.

4.3.5 R Controller
The first feedback control law (abbreviated with the letter R, because
it was developed for the Recirculation configuration) is motivated by
the observation that the decrease in ˆ̄L1,v becomes smaller and smaller
with each milling stage when the same rotor speed is applied (see Sec-
tion 4.4.1). The goal of the control law proposed in this section is thus
to adjust the rotor speed to counteract this decrease in the change of
the average length across the milling stages. To this end, a control error
e(k) can be defined as

e(k) = ∆ˆ̄L1,v(1)
∆ˆ̄L1,v(k)

− 1 ∀k > 0 (4.4)

where the negative quantity ∆ˆ̄L1,v(k) = ˆ̄L1,v(k)− ˆ̄L1,v(k − 1) is the de-
crease in the measured average length across the previous milling stage.
This quantity is only defined for k > 0 and it holds e(1) = 0. By formu-
lating the control law as

θ(k) =
{
θ0 if k = 0
θ0
(
1 + κe(k)

)
if k > 0

(4.5)

where θ0 and κ are tuning parameters, it becomes clear that for k > 1,
the feedback part κθ0e(k) increases the rotor speed as a function of the
decrease of ˆ̄L1,v over the preceding milling stages.

4.3.6 Adaptive Controller
Besides either applying a model-based operating policy relying on a full
population balance model or employing completely model-free operating
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policies, there is the option to learn a simple process model online from
past data in the spirit of adaptive control. As can be seen in Section 4.4.1,
the evolution of ˆ̄L1,v shows similarities to an exponential decay when the
rotor speed is kept constant across the milling stages. This observation
motivates a discrete-time model of the form

∆L̄1,v(0) = 0
∆L̄1,v(k) = α∆L̄1,v(k − 1) + βθ(k) k ≥ 1, 0 < α < 1

(4.6)

where the negative quantity ∆L̄1,v(k) = L̄1,v(k)− L̄1,v(0) (k ≥ 1) is the
difference between the current and the initial volume-weighted average
length. Notice that this definition of ∆L̄1,v(k) is different than that of
∆ˆ̄L1,v(k) used in Section 4.3.5 and that L̄1,v(k) is obtained after milling
at θ(k). The simple model given in eq 4.6 exhibits the following favorable
features:

• The model is dynamic, i.e., it takes into account the past evolution
of L̄1,v and also the effect of the rotor speed.

• The model has only two parameters (α and β) and they can be
determined online automatically (see below).

• For 0 < α < 1 and θ(k) = const. ∀k, the model response is an expo-
nential decay in discrete-time, where the parameter α determines
the rate of decay.

• The second parameter β determines (together with α) the limit
value of ∆L̄1,v(k) as k →∞ for θ(k) = const. ∀k.

The adaptive control law (abbreviated with the letter A) based on the
process model given in eq 4.6 works as follows:

• The rotor speed is kept constant at θ0 for the first two milling stages
because two measurements of ∆L̄1,v are required to determine the
two model parameters α and β, hence θ(k) = θ0 for k = 1, 2.

• For k ≥ 3, first, one estimates α and β using all past measurements,
i.e., ∆ˆ̄L1,v(k−1), ∆ˆ̄L1,v(k−2), . . . ; then, one carries out a one-step
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extrapolation of the fitted model to calculate the rotor speed θ(k)
that yields the desired target average length after the kth milling
stage, thus obtaining

θ(k) = L̄1,target − ˆ̄L1,v(0)− α∆ˆ̄L1,v(k − 1)
β

(4.7)

It is worth noting that the fitting of the two model parameters α and β
can be formulated as a linear least-squares problem. However, to enforce
the constraint 0 < α < 1, the sum of the squared deviations between
∆ˆ̄L1,v(k) and the corresponding model predictions obtained from eq 4.6
was minimized with respect to α and β using Matlab’s fmincon.140

4.4 Results and Discussion
4.4.1 Comparison of the Benchmark and the Feed-

back Control Strategies
The two different feedback control strategies and the benchmark pol-
icy introduced in Sections 4.3.4 to 4.3.6 were tested experimentally us-
ing the Recirculation configuration according to the protocol detailed
in Appendix C.6. Two performance criteria have to be assessed for all
the policies: first, their ability to reach a given target average length
L̄1,target; then, the required number of full suspension passes nWM to do
so, where one full suspension pass corresponds to pumping the suspen-
sion through the mill for a duration of one crystallizer residence time
τC. To this aim, three experiments were performed, one each using the
benchmark strategy, the R, and the A controller, all of them with Seeds ζ
(see Appendix C.4) and an assigned target length L̄1,target of 150 µm. All
of these experiments were performed with a fixed set of controller tuning
parameters listed in Table C.2 in Appendix C.6. The resulting evolution
of the volume-weighted average length ˆ̄L1,v and of the rotor speed θ is
shown in Figure 4.2 as a function of the number of full suspension passes.
As expected, the different operating policies exhibit different behavior:
the R and the A controller managed to reach the target, while the bench-
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mark strategy (C) failed to do so even after 11 passes at a rotor speed θ
of 7500 rpm. This failure can be attributed to the fact that there exists
a grinding limit for any milling process with a fixed rotor speed, i.e., a
minimum achievable average length. Since this grinding limit appears to
be a function of the rotor speed under the conditions explored in this
work and it is a priori unknown, selection of a reasonable constant rotor
speed θ0 is difficult and feedback action on the rotor speed is required.

Even though both feedback controllers (R and A) managed to reach
the target, the corresponding closed-loop experiments differ in terms of
the applied rotor speed and in terms of the number of passes required, as
illustrated in Figure 4.2. The rotor speed is constant (θ0 = 7500 rpm) for
the first two milling stages when using both controllers, which is a con-
sequence of the definition of the control laws in Sections 4.3.5 and 4.3.6.
For the third and the following passes, the A controller calculated set
points that would enable reaching the target in a single pass according to
the simple adaptive model (see eq 4.7). However, since these set points
exceeded the upper bound of the rotor speed θmax, the set point was
constrained to this upper limit. In contrast to the A controller, the R
controller selected significantly lower rotor speeds for the third and the
following passes, which leads to a larger number of milling stages required
to reach the target. On the one hand, this behavior can be attributed to
the inherent differences in the control laws, and on the other hand, to the
specific choice of tuning parameters of the R controller, which might be
modified if necessary. In any case, both feedback controllers successfully
increased the rotor speed in order to overcome the issue of the grinding
limit observed when using the benchmark strategy.

The number of tuning parameters required by a given control law is
also a factor to consider. The benchmark strategy and the two feedback
controllers studied here have one tuning parameter in common, namely,
the initial rotor speed θ0. Contrary to the A controller, the R controller
has an additional tuning parameter κ.

On the basis of the above discussion, it was decided to use the A
controller to perform further closed-loop control experiments. This con-
troller clearly has the ability to reach reasonable target average lengths
and it makes use of the knowledge gained from prior milling stages re-
garding the evolution of the average length.
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Figure 4.2: Evolution of (a) the measured volume-weighted average length
ˆ̄L1,v and of (b) the rotor speed θ as a function of the number of full suspen-
sion passes nWM for experiments using the benchmark strategy (red circles),
the R controller (violet upward-pointing triangles), and the A controller (blue
downward-pointing triangles) with BLGA Seeds ζ and a target average length
L̄1,target = 150 µm. Along the L1 direction, a regular grid with 120 bins was
used to reconstruct the PSSDs and to compute the average dimensions, with a
grid spacing of 17 µm, 17 µm, and 16 µm for the experiments using the bench-
mark strategy, the R controller, and the A controller, respectively. Along the
L2 direction, the corresponding grid spacing was 6 µm, 7 µm, and 9 µm using
40 bins.
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4.4.2 Adaptive Controller

The A controller was employed to perform a series of closed-loop con-
trol experiments using the recirculation configuration and the compound
BLGA. A total of six experiments, three each for Seeds ε and Seeds ζ,
was performed using the protocol described in Appendix C.6. The goal
of these experiments was to reach three different targets for each batch of
seeds. The experiments are distinguished by labeling them ε1,A through
ε3,A for Seeds ε (targets 210 µm, 180 µm, and 150 µm) and ζ1,A through
ζ3,A for Seeds ζ (targets 300 µm, 225 µm, and 150 µm).

The resulting evolution of the volume-weighted average length and
width and the rotor speed θ for each full suspension pass are shown in
Figure 4.3a-c and Figure 4.3d-f for Seeds ε and Seeds ζ, respectively. Two
main observations can be made in these plots. First, it is clear that the
controller managed to drive the population to the target average length
L̄1,target in all the cases except ζ1,A, where the target was overshot. The
reason for the outcome of this experiment is that the A controller has to
apply a constant rotor speed of 7500 rpm during the first two full sus-
pension passes, where the outcome of these two passes is subsequently
used to fit the adaptive model. Thus, to reach targets close to the average
length of the seed population, such as in the case of ζ1,A, the design of the
controller would require lowering the initial rotor speed θ0. A second ob-
servation is that the different experiments showed a different evolution of
the rotor speeds through the milling stages and a different number of full
suspension passes required to reach the respective target. Experiments
ε1,A and ζ1,A required only two full suspension passes through the mill to
terminate the controller action, while experiments ε3,A and ζ3,A required
five full suspension passes due to the lower target average length. Exper-
iment ε3,A exhibits an interesting evolution of the rotor speed. After the
first two full suspension passes, the controller applied a rotor speed of
11 651 rpm. The target was not yet reached using this rotor speed, but
the average length ended up close to it. Being aware of the proximity
to the target and having adapted the exponential discrete-time model,
the controller applied a relatively low rotor speed of 6381 rpm, which
was again not sufficient to reach the target. After adapting the model
once more, the controller decided to use an intermediate rotor speed of
8163 rpm, which allowed reaching the target average length. The other
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Figure 4.3: Time-resolved evolution of the measured volume-weighted average
length ˆ̄L1,v and width ˆ̄L2,v for BLGA Seeds ε with target average lengths
L̄1,target (a) 210 µm (ε1,A), (b) 180 µm (ε2,A), and (c) 150 µm (ε3,A) and for
BLGA Seeds ζ with target average lengths L̄1,target (d) 300 µm (ζ1,A), (e)
225 µm (ζ2,A), and (f) 150 µm (ζ3,A) using the A controller. Along the L1
direction, a regular grid with 120 bins was used to reconstruct the PSSDs and
to compute the average dimensions with a grid spacing of 11 µm, 13 µm, 14 µm,
21 µm, 16 µm, and 16 µm for the experiments in panels a through f, respectively.
Along the L2 direction, the corresponding grid spacing was 7 µm, 7 µm, 8 µm,
7 µm, 6 µm, and 9 µm using 40 bins. The shaded gray region indicates the
milling stage, and the corresponding rotor speed θ is reported alongside.
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extreme case is experiment ζ3,A, which was already explained in detail
in Section 4.4.1 (see Figure 4.2).

In order to apply feedback control (for instance in the form proposed
in Section 4.3.6), the availability of an online size and shape monitoring
tool or method is a necessity. In the absence of such a tool or method, the
simplified model given by eq 4.6 can still be useful. Its parameters can
be estimated offline once for a given batch of seeds by conducting two or
more milling operations with different rotor speeds and by performing
intermediate measurements of the average crystal dimensions using any
available offline characterization technique. This procedure is far less
costly than developing a multidimensional population balance model and
the obtained ad-hoc process model is certainly better than not having
any model at all.

4.4.3 Generality of the Adaptive Controller
It is essential that the control strategies proposed in this chapter can be
applied to any compound that exhibits a needle-like morphology. The
breakage of crystals is a mechanical operation and the impact of the
milling stage on the reduction of the average dimensions of the seed
population depends on the physical properties of the crystals such as
their brittleness. Still, the proposed A controller (and also the R con-
troller) should be able to drive the average length of a seed population
toward a target length independently of the compound. To check if this
is indeed the case, closed-loop control experiments with GDM, also ex-
hibiting needle-like morphology, were performed using the A controller.

Seeds η (see Appendix C.4) were milled by employing the protocol
described in Appendix C.6 with the aim of reaching the three differ-
ent target average lengths of 225 µm (η1,A), 200 µm (η2,A), and 175 µm
(η3,A). On the basis of the observed evolution of the average length vi-
sualized in Figure 4.4, it is apparent that the controller was successful
in achieving its goal. Similar to the observations made in Section 4.4.2,
reaching the three targets requires different rotor speeds and a differ-
ent number of full suspension passes nWM. These experiments and the
closed-loop control experiments discussed in Section 4.4.2 indicate that
an initial rotor speed θ0 of 7500 rpm is a reasonable choice for an ac-
ceptable closed-loop performance in many cases.
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4. Feedback Control for Wet Milling Processes

Figure 4.4: Time-resolved evolution of the measured volume-weighted average
length ˆ̄L1,v and width ˆ̄L2,v for GDM Seeds η with target average lengths
L̄1,target (a) 225 µm (η1,A), (b) 200 µm (η2,A), and (c) 175 µm (η3,A) using
the A controller. Along the L1 direction, a regular grid with 120 bins was used
to reconstruct the PSSDs and to compute the average dimensions, with a grid
spacing of 13 µm, 12 µm, and 13 µm for the experiments in panels a through c,
respectively. Along the L2 direction, the corresponding grid spacing was 7 µm,
6 µm, and 6 µm using 40 bins. The shaded gray region indicates the milling
stage, and the corresponding rotor speed θ is reported alongside.
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4.5 Conclusions
Model-free control laws have been presented with the aim to systemat-
ically manipulate the size and the shape of needle-like crystals using a
rotor-stator wet mill. The proposed strategies have been tested in an ex-
perimental campaign to assess their performance, exploiting the online
monitoring capabilities of the µ-DISCO (see also Section 1.2).32 Specifi-
cally, the so-called adaptive (A) controller successfully managed to steer
three different seed populations of two different needle-like compounds
to desired target average lengths.

The control of wet milling operations represents a further step toward
integrating different unit operations to robustly and effectively manip-
ulate the size and the shape of needle-like crystals. Within such an in-
tegrated framework, controlled milling stages ensure a reduction in the
aspect ratio of the crystals without the loss of any yield. This shape
change comes at the cost of producing a lot of fine particles. Thus, a dis-
solution stage, which might further aid in the reduction of the particle
aspect ratio, or a fines separator should be employed afterward to re-
move them. One way of performing such a dissolution stage is presented
in Chapter 5.
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Nomenclature

Acronyms

A adaptive (controller)
BLGA β l-glutamic acid
C benchmark operating strategy
DISCO dual imaging system for crystallization observation
GDM γ d-mannitol
PS(S)D particle size (and shape) distribution
R variant of model-free feedback controller

Roman symbols

c solute concentration (per mass of solvent basis) [g kg−1]
c∗ solubility (per mass of solvent basis) [g kg−1]
e control error [–]
f number density function (PSSD) [µm−2]
fv volume-weighted PSSD [µm−2]
F volumetric flow rate [L s−1]
k cycle index (for feedback controllers) [–]
Li ith particle dimension (i = 1, 2) [µm]
L̄i,v volume-weighted average of ith particle dimension [µm]
L̄1,target target average length [µm]
mseed seed mass [g]
msolvent solvent mass [kg]
ngrid number of grid points for the PSSD binning protocol [–]
nWM number of full suspension passes (wet mill) [–]
S relative supersaturation, c/c∗ [–]
t time, unit varies
T temperature [◦C]
T ∗ saturation temperature [◦C]
V volume [L]

Greek symbols

α model parameter (A controller) [–]
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β model parameter (A controller) [µm min]
ε, ζ, η labels for seed populations
θ rotor speed [rpm]
κ tuning parameter (R controller) [–]
µij ij-cross moment of PSSD [µmi + j]
ρc crystal density [g µm−3]
σii,v volume-weighted broadness of the PSSD

along the ith dimension [µm]
τ residence time [s]

Subscripts and superscripts

ˆ measurement or estimate
0 initial value
A adaptive controller
C crystallizer
exp experimental
max upper limit
min lower limit
samp sampling
set set point
WM wet mill
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Chapter 5

Modeling and Control of Dis-
solution

5.1 Introduction
In the context of industrial crystallization from solution, dissolution pro-
cesses are of interest for a number of reasons. For instance, dissolution
plays an important role in solvent-mediated polymorphic transforma-
tions.3,141 As to pharmaceuticals, the dissolution rate of drugs in the
human body influences their bioavailability.9,13 Dissolution processes can
also be used to alter the relative area of crystal facets,84 which could,
for instance, be useful to increase the catalytic activity of solids.17 Some
of the aforementioned characteristics of the particles, and also others
such as downstream processability, depend in fact on the particle size
and shape distribution (PSSD). Cyclic processes involving dissolution
stages have been proposed to modify the PSSD in a systematic way,
since these stages add a degree of freedom for size and shape manipu-
lation,21,62,70,71,142,143 and because they can additionally be applied for
the purpose of fines removal63,64,78 or for the control of polymorphic

The work presented in this chapter has been reported in ref 68 (Bötschi, S.; Ra-
jagopalan, A. K.; Morari, M.; Mazzotti, M. Feedback Control for the Size and Shape
Evolution of Needle-like Crystals in Suspension. IV. Modeling and Control of Disso-
lution. Cryst. Growth Des. 2019, 19, 4029–4043. DOI: 10.1021/acs.cgd.9b00445).
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purity.144,145
Kinetic models of the dissolution process are valuable tools, be it for

process design and optimization or for the development and the initial
testing of feedback control strategies. Early investigations on dissolution
rate modeling proposed that the mass depletion rate during the dissolu-
tion of crystalline solids in solution is controlled by diffusion.146 In the
case of spherical particles, Sherwood correlations are available for the cor-
responding mass transfer rates under various convection regimes.18 How-
ever, dissolution mechanisms can vary as a function of the undersatura-
tion,83 and dissolution processes where the surface disintegration is the
rate limiting mechanism were observed and modeled as well.141,147–149 In
any case, the dissolution rate is expected to be a function of many factors
such as the undersaturation, the particle size and shape, the temperature,
and the agitation of the suspension, but also of the solvent, of additives,
and of the pH. Several studies in the literature present and apply dis-
solution rate models featuring a subset of these effects. Some of them
model the dissolution rate based on mass or concentration.141,149,150
If the evolution of the solid population is to be described as well, the
population balance equation (PBE) framework is often applied, mostly
using a single characteristic particle dimension.76,142,151 In this frame-
work, which is adopted in this chapter, the dissolution rate is defined as
the rate of change of a characteristic particle dimension. By considering
multiple characteristic particle dimensions, also the shape evolution of
the solids in the population during dissolution can be modeled.148 Only
a very small number of experimental studies report multidimensional
dissolution rate models for populations of particles, where their nature
is empirical.46,55

The purpose of this chapter is to address two objectives concern-
ing modeling and control of dissolution processes of needle-like crystals.
First, empirical two-dimensional kinetic models of the dissolution of the
needle-like compound β l-glutamic acid (BLGA) in water are identi-
fied from experimental data using a well-established parameter estima-
tion technique. One of these models is discussed in the context of cyclic
shape modification processes similar to that proposed in ref 63. Second,
a model-free feedback control strategy with the goal to dissolve a given
fraction of the initial particle volume, which is representative of the ini-
tial solid mass in a batch process, is presented. The idea behind this
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control law is to operate dissolution stages robustly and reliably, where
these stages can have various purposes on the process scale such as the
removal of fines. The controller is tested in a simulation framework using
the identified BLGA dissolution kinetics. Also, its performance and gen-
erality are validated in experiments using BLGA and a different com-
pound also forming needle-like crystals, vanillin. Note that controlled
dissolution has been addressed previously in the literature (see, e.g.,
refs 78 and 112). The novelty of the concept proposed in this chapter
lies mainly in the fact that the particle volume is observed directly and
that the controller works for very dilute suspensions, as demonstrated
in Section 5.5. Furthermore, some implementation details are given that
may reduce the required dissolution time without causing significant
overshoot of the target. Note that working with dilute suspensions may
prove useful during the development phase of a process when only small
amounts of the compound of interest may be available.

This chapter is organized as follows. First, the experimental protocols
are explained in Section 5.2. Second, the methods for the dissolution rate
modeling and the parameter estimation are given in Section 5.3. Third, in
Section 5.4, an important discussion of the issues that arise when graph-
ically representing PSSDs is presented, followed by the modeling results
and their discussion. Finally, the feedback control strategy is introduced,
implemented, and assessed in Section 5.5.

5.2 Experimental Protocols
For the sake of brevity, the details of the used materials (BLGA and
vanillin) and the employed seed preparation protocols are given in Ap-
pendix D.1 and Appendix D.2, respectively. In the following two subsec-
tions, the experiments used for the modeling study and those used to
test the feedback controller are described.

5.2.1 Experiments for Dissolution Rate Estimation
For estimating the two-dimensional dissolution rate of BLGA in water,
the data collected from 13 experiments (experiments E1 to E13) were
used (see their main characteristics in Table 5.1). All these experiments
were operated at low undersaturations, since higher driving forces would
lead to rapid dissolution of the seed crystals, which in turn would make
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it very challenging to monitor the particle size and shape evolution with
an adequate time resolution. The temperature range covered by these ex-
periments was chosen to be at or above room temperature since the em-
ployed monitoring device (i.e., the µ-DISCO32) features a sampling loop.
The experiments were performed using either crash heating steps or tem-
perature ramps with different heating rates and intermediate plateaus
to widen the range of the explored operating conditions.

Experiments E1 to E6 correspond to experiments α to ζ in a previous
work.40 The detailed experimental protocol, as well as an explanation of
the experimental setup and the device employed for characterizing both
the solid and the liquid phase, is given in this reference. For the sake of
completeness, a description of the setup is also provided in Appendix D.3.

The same experimental setup was applied for conducting experiments
E7 to E13. For these experiments, saturated solutions of BLGA in wa-
ter were prepared by adding excess BLGA, letting the solutions equili-
brate for at least 6 h, and then filtering them off. Afterward, for each
experiment, 2000.0 g of saturated solution were loaded into the reactor.
The saturation temperature was either 29.9 ◦C (E7 to E11) or 25.9 ◦C
(E12 and E13). For experiments E7 to E11, the clear solutions were
cooled to 29.1 ◦C and 1.0 g of BLGA seeds (prepared as described in Ap-
pendix D.2) were suspended. These suspensions were kept at the initial
temperature of 29.1 ◦C, which corresponds to a slightly supersaturated
state (S = 1.03) with negligible growth, for 2 h in order to properly char-
acterize the seed population. Afterward, for experiments E7 to E9, the
suspensions were heated consecutively and linearly to the four different
temperature plateaus 29.6 ◦C, 30.1 ◦C, 30.6 ◦C, and 31.1 ◦C, where the
temperature at each plateau was kept constant for 1 h before heating
to the next plateau. The heating rates in between these plateaus were
0.10 ◦C h−1, 0.25 ◦C h−1, and 0.50 ◦C h−1 for E7, E8, and E9, respec-
tively. Experiments E10 to E13 were crash heating experiments. After
the initial phase of 2 h at 29.1 ◦C, the suspensions in E10 and E11 were
crash heated to 30.6 ◦C and 30.3 ◦C, respectively, and subsequently kept
at these temperatures to let the suspensions equilibrate. Essentially the
same protocol was followed for E12 and E13, but at different tempera-
tures: the clear solutions were cooled to 25.1 ◦C before adding 1.0 g of
BLGA seeds, characterizing the seed population at this temperature over
2 h, and then crash heating to 26.3 ◦C and 26.6 ◦C, respectively.
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Table 5.1: List of experiments used to estimate the dissolution kinetics of
BLGA in water.a

Exp. Label in ref 40 T0 [◦C] Tsat [◦C] Tfinal [◦C] Profile Fit/Val.

E1 α 24.7 25.0 26.2 ramp fit.
E2 β 25.5 25.8 27.0 ramp fit.
E3 γ 26.7 27.0 28.2 ramp fit.
E4 δ 27.9 28.2 29.4 ramp fit.
E5 ε 29.1 29.4 30.6 ramp val.
E6 ζ 25.9 26.2 27.4 ramp val.
E7 – 29.1 29.9 31.1 ramp val.
E8 – 29.1 29.9 31.1 ramp val.
E9 – 29.1 29.9 31.1 ramp fit.
E10 – 29.1 29.9 30.6 step fit.
E11 – 29.1 29.9 30.3 step fit.
E12 – 25.1 25.9 26.3 step val.
E13 – 25.1 25.9 26.6 step val.
a

T0 is the initial temperature (at seed addition), Tsat is the saturation temper-
ature of the clear solution before seeding, and Tfinal is the final temperature of
the experiment. The column Profile highlights whether the basic type of tem-
perature profile applied during an experiment was a heating ramp or a heating
step. In the column Fit./Val., fit. indicates that an experiment was used for
fitting the parameters of the dissolution kinetics and val. indicates that it was
only used for model validation.
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5.2.2 Feedback Control Experiments

All the experiments performed using the feedback controller discussed
in Section 5.5 consisted of two distinct experimental phases, namely, of
an initial idle phase and of a main experimental phase. The protocols
for these two phases slightly differed for the two model compounds and
they are discussed below.

For each experiment performed with BLGA, a saturated solution at
29.9 ◦C was prepared by adding an excess amount of BLGA to water. The
suspension was equilibrated at the desired temperature at a stirring rate
of 400 rpm. The suspension was subsequently filtered off and 2000.0 g
of the clear solution were loaded into the reactor and cooled down to
an initial temperature of 29.1 ◦C corresponding to a supersaturation of
S0 = 1.03. For the experiments with the unmilled population discussed
in Section 5.5.2, 0.8 g of seeds was added once the initial temperature
was reached. For the experiments with the milled population discussed
in Section 5.5.3, 0.5 g of Seeds ε of ref 67 was added once the initial
temperature was reached. The population was then subjected to wet
milling at a constant rotor speed of 7500 rpm for a duration of 102 s
using the equipment and the recirculation configuration explained in
detail elsewhere67 (see Appendix D.3 for a summary; see also Chapter 4).

For each experiment performed with vanillin, a saturated solution
at 25 ◦C was prepared by adding an excess amount of vanillin to water
and stirring at 400 rpm. The suspension was equilibrated and filtered
off, and 2000.0 g of saturated solution was loaded into the reactor. The
clear solution was then cooled down to an initial temperature of 24.6 ◦C,
corresponding to a supersaturation of S0 = 1.02. Upon reaching this
temperature, 1.0 g of vanillin seeds was added. Note that for both com-
pounds, the chosen S0 ensured that neither dissolution nor detectable
growth took place before activating the feedback controller.

The initial phase started immediately after seed addition or wet
milling. During this phase, the suspension was monitored and character-
ized for a duration of 2 h and 3.5 h for BLGA and vanillin, respectively.
The same experimental setup and the same monitoring tool as referred
to in Section 5.2.1 were used. The measurements obtained during the
initial phase were not used for control purposes. For vanillin, a longer
duration of the initial idle phase was necessary as the aggregated vanillin
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seed crystals require about 1.5 h of deaggregation time in the suspension
to obtain a stable sampled particle count and a stable total visual hull
volume.40

For both the compounds, the duration of the main experimental
phase was set to 7 h. During this phase, the suspension was monitored
and characterized and the particle volume controller (see Section 5.5)
was operated with a sampling interval tsamp of 5 min. The total visual
hull volume (see ref 40 or Appendix D.3) obtained from each measure-
ment was fed back to the controller; below, this quantity will be referred
to as the sampled or observed particle volume. The total particle count,
comprising the particles of all the five shape classes identified and mea-
sured by the µ-DISCO (see also Section 1.2),32 was logged as well and
will be referred to as the particle count in Section 5.5.

5.3 Dissolution Rate Modeling and Param-
eter Estimation

Several candidate models for multidimensional dissolution kinetics were
defined and their parameters were estimated by fitting the models to
the available experimental observations. Afterward, in Section 5.4, one
of the fitted models is selected and analyzed in detail.

5.3.1 Population Balance Model
The dissolution of an ensemble of needle-like particles in suspension can
be modeled using a morphological population balance equation based on
a generic particle shape model such as that of a cylinder with length L1
and width L2, coupled with a material balance. The PBE can be written
as

∂f

∂t
+
∂
(
D1f

)
∂L1

+
∂
(
D2f

)
∂L2

= 0 (5.1)

where f(t, L1, L2) is the number density function (called PSSD for brevity),
which is defined on a per mass of solvent basis, and Di is the dissolution
rate of the ith characteristic particle dimension (i = 1, 2). In this chap-
ter, Di can be a function of Li, of the temperature T , and of the relative
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undersaturation S = c/c∗(T ), where c is the solute concentration defined
on a per mass of solvent basis, and c∗(T ) is the corresponding solubility
as a function of temperature. The effect of the agitation of the suspension
is not considered here since all the experiments (see Section 5.2.1) were
performed at the same stirring rate to keep the solids well suspended.
Whenever the solution is undersaturated (S < 1), Di is defined to be
negative, and Di = 0 otherwise. The initial and boundary conditions for
eq 5.1 are

f(0, L1, L2) = f0(L1, L2)
f(t,∞, L2) = 0 (5.2)
f(t, L1,∞) = 0

where f0(L1, L2) is the PSSD of the seed population. The PBE is coupled
with the material balance

dc
dt = −ρckv

d
dt

∞∫
0

∞∫
0

L1L
2
2f
(
t, L1, L2

)
dL1 dL2 (5.3)

where ρc is the crystal density and kv is the volume shape factor. The
initial condition for eq 5.3 is c(0) = c0, where c0 is the initial solute
concentration. The PBE model given by eqs 5.1 to 5.3 was solved nu-
merically as explained in Appendix D.6.

The volume-weighted average particle length and width are quantities
of interest in this chapter. They are defined as

L̄1,v(t) = µ22(t)
µ12(t)

L̄2,v(t) = µ13(t)
µ12(t) (5.4)
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where

µij(t) =
∞∫

L2,min

∞∫
L1,min

Li1L
j
2f(t, L1, L2) dL1 dL2 (5.5)

with Li,min = 0 (i = 1, 2) is the ij-cross moment of the PSSD f .
An alternative would be to use number-based average particle dimen-

sions, which are defined as

L̄1,n(t) = µ10(t)
µ00(t)

L̄2,n(t) = µ01(t)
µ00(t) (5.6)

and which are barely used in this chapter for reasons that are explained
in Section 5.4.1. A further quantity of interest is the volume-weighted
PSSD

fv(t, L1, L2) = L1L
2
2f(t, L1, L2)
µ12(t) (5.7)

which indicates the mass distribution of the population.
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5.3.2 Candidate Dissolution Rate Models

The four models considered in this chapter are based on the following
empirical expressions for the dissolution rate:

M1: Di = −kd,i(1− S) (5.8)
M2: Di = −kd,i(1− S)ks,i (5.9)

M3: Di = −kd,i exp
(
− ks,i

T

)
(1− S) (5.10)

M4: Di = −kd,i(1− S)
(

1 + Li
Lref

)−ks,i

(5.11)

where i = 1, 2 indicates the particle dimension, kd,i and ks,i are the pa-
rameters to be estimated, and Lref is a unit reference length. Model M1
depends on two unknown parameters, namely, kd,1 and kd,2, it is linear
in the undersaturation, and it depends neither explicitly on the temper-
ature nor on the particle size. Model M2 is a four-parameter model that
allows the dissolution rates to be nonlinear functions of the undersatura-
tion. It is clear that M1 is a special case of M2, but with fewer degrees of
freedom to prevent a potential overfit. Model M3 is also a four-parameter
model, but it is linear in the undersaturation and includes an explicit
temperature dependence (here, T is the process temperature in Kelvin).
Finally, model M4, which depends on four parameters as well, is linear in
the undersaturation and features a dissolution rate in the ith direction
that depends on Li.

Clearly, models M1 to M4 cover only a subset of the possible physical
dependencies of the dissolution rates (and combinations thereof) and
they were selected after prior testing to strike a balance between the
experimental data available and the model complexity. Covering more
dependencies is often not useful because such complicated models are
heavily overparametrized in the sense that they cannot be explained by
the data collected in a reasonable experimental campaign.
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5.3.3 Fitting Procedure
The parameters in the models M1 to M4 were determined by the maxi-
mum likelihood estimation (MLE) method. A summary of this method,
including the methodology to quantify the parameter uncertainty, is
given in Appendix D.4.

Three measured quantities were chosen for fitting, namely, the volume-
weighted average particle length L̄1,v, the volume-weighted average par-
ticle width L̄2,v, and the solute concentration c. As explained in Ap-
pendix D.5, not all the collected experimental data was used for fitting,
but only a subset (that covers the whole temperature range), which en-
abled independent model validation. Prior to fitting, the experimental
data set was preprocessed as detailed in Appendix D.5, mainly to obtain
seed populations for the PBE model and to ensure equal weight of the
experiments and the measured quantities in the fitting procedure.

5.4 Modeling Results and Discussion
5.4.1 Graphical Representation of PSSDs
Graphical representations of two-dimensional PSSDs have been presented
in previous publications,23,32,39,54,63,64,66,67,137 usually using the volume-
weighted PSSD fv defined in eq 5.7. The reason for not showing the
PSSD f itself is that its graphical representation is generally dominated
by fines. For each point in time, both f and fv can be visualized, for
instance, as two-dimensional contour plots.

Before being able to visualize the PSSD of a set of particles observed
and characterized during an experiment, the PSSD itself needs to be
obtained by binning the characteristic dimensions of the particles into a
predefined size grid.23 Thus, the quality of such a PSSD is inherently a
function of the number of sampled particles and of the chosen grid res-
olution. If the number of particles sampled from a given PSSD becomes
smaller and smaller for a fixed grid, both the graphical representation
of the PSSD and the accuracy of its average particle dimensions are
affected.

To illustrate the issue with the graphical representation of the PSSD
analyzed here, the PSSD of the initial steady state phase of experiment
E5 has been obtained using three different numbers of particles. The
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Table 5.2: Properties of the PSSDs visualized in Figure 5.1 (seeds of experiment
E5).

Quantity Unit Values
Nt – 10 30 60
Ns – 80 202 240 458 475 764
L̄1,v µm 376.2 375.7 374.8
L̄2,v µm 57.5 57.8 57.7

number of particles sampled to obtain these PSSDs, Ns, as well as their
volume-weighted average particle dimensions are listed in Table 5.2. For
instance, the first PSSD was obtained by binning Ns = 80 202 particles
that were observed during the first Nt = 10 sampling instants (corre-
sponding to the first 20 min) of experiment E5. The details on the em-
ployed grid and the binning protocol can be found in Appendix D.6. A
contour plot obtained by rescaling the corresponding fv using its max-
imum is shown in Figure 5.1a. It is clear from Figure 5.1b,c that the
graphical representation can be improved by increasing the number of
data points Nt, which corresponds to sampling more particles. According
to Table 5.2, a sixfold increase in the number of sampling instants and
sampled particles (i.e., Nt = 60 data points, corresponding to almost
500 000 particles) is sufficient to obtain a rather smooth contour plot for
this specific population without affecting the average dimensions. Thus,
there is an important observation here. There appear to be two differ-
ent accuracy thresholds in terms of required number of particles; one for
obtaining a smooth graphical representation of fv and one for obtain-
ing converged values for the average dimensions. These thresholds are
a function of the PSSD itself, of the grid resolution, and additionally,
in the case of the graphical representation, also of the chosen contour
levels. In any case, the threshold for a smooth graphical representation
is at a much higher level than that for accurate average dimensions.

After the loss of many particles during dissolution, the number of
sampling instants required to reach the threshold for the graphical rep-
resentation is generally higher than before. To illustrate this issue, the
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Table 5.3: Properties of the PSSDs visualized in Figure 5.2 (seeds and products
of experiment E11).

Quantity Unit Values
Seeds Products

Nt – 60 10 30 60 90
Ns – 308 486 24 876 74 421 150 262 226 975
L̄1,n µm 199.5 216.0 216.7 216.5 216.3
L̄2,n µm 35.1 38.6 38.5 38.4 38.3
L̄1,v µm 489.0 454.4 453.5 453.3 454.4
L̄2,v µm 75.9 73.2 72.9 72.5 72.7

volume-weighted seed PSSD of experiment E11 and four of its volume-
weighted product PSSDs (obtained by combining particles observed dur-
ing different numbers of sampling instants) are shown in Figure 5.2 and
their properties are listed in Table 5.3. The product PSSD in Figure 5.2b
was obtained from only about Ns = 25 000 particles. When increasing
Ns, the body of the PSSD becomes more pronounced and the PSSD ap-
pears less fragmented, as shown in Figure 5.2c-e. To obtain the relatively
smooth contour plot shown in Figure 5.2e, about Ns = 225 000 particles
were required by combining Nt = 90 sampling instants corresponding to
180 min of experimental time. Thus, collecting enough data points at the
end of a dissolution experiment to obtain a sufficiently smooth graphical
representation of the volume-weighted product PSSD is often imprac-
tical. Nevertheless, it should be kept in mind that only the graphical
representation is affected by this limitation but not the average dimen-
sions, which is confirmed by the data reported in Table 5.3. It is also
worth noting in Table 5.3 that both L̄i,n (i = 1, 2) increased from the
seed to the product PSSDs, whereas the L̄i,v (i = 1, 2) decreased. The
increase of L̄i,n (i = 1, 2) might seem counterintuitive at first, but since
these are unweighted average quantities, they are heavily affected by the
disappearance of a large number of small particles. L̄i,v (i = 1, 2), on the
contrary, are hardly affected by small particles.
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5. Modeling and Control of Dissolution

5.4.2 Model Fit and Validation

The estimated parameter values are listed in Table D.1 in Appendix D.7.
In the case of model M1, the result was k∗d,1 = 2.32 ± 0.14 µm s−1 and
k∗d,2 = 0.19 ± 0.01 µm s−1. The confidence intervals for these two pa-
rameters are narrow, indicating that they are well determined. For the
remaining models (M2 to M4), the optimized value of the objective func-
tion (see eq D.1 in Appendix D.4) is a bit lower (see Table D.1 in Ap-
pendix D.7), but at least some of the parameters, if not all, are badly
determined in the sense that the confidence intervals are relatively large.
On the basis of these considerations, and also for reasons of simplicity,
only model M1 will be analyzed in detail and used in the work that
follows below.

In Figure 5.3, the concatenated time series of the experimental data
and of the corresponding model predictions using the fitted model M1
are plotted. Recall from Section 5.3.3 that the fitted outputs were L̄1,v,
L̄2,v, and c. The relative supersaturation and undersaturation profiles
were calculated using the concentration and the temperature profiles
and the known solubility of BLGA in water. It can be seen in Figure 5.3
that the model tends to slightly underpredict the drop in L̄1,v and L̄2,v,
while the increase in c is slightly overpredicted in most cases. All con-
sidered, there is a reasonably good agreement between the experimental
data and the model predictions for all the three fitted quantities. Note
that it is not possible to perfectly fit all the three measured quantities
at the same time, because the generic cylindrical particle model utilized
is only an approximation of the true particle shape.54 In Figure 5.3, the
relative deviation of the predicted undersaturation profiles from the ex-
perimental ones is of about 0.5 % to 1.0 %. The magnitude of this devia-
tion is consistent with the estimated error of the employed concentration
measurement technique.40

The predictive capabilities of the model M1 were tested by using the
validation experiments listed in Table 5.1. The concatenated time series
of these experiments and the corresponding model predictions are shown
in Figure 5.4. It can be concluded that the model M1 can predict the
validation experiments with a similar quality as that of the fitted ones.

The model fit with respect to the evolution of the PSSD is of interest
as well. In Figure 5.5, the initial and the final volume-weighted PSSDs of
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5.4. Modeling Results and Discussion
μ

μ

Figure 5.3: Concatenated time series of the experimental data used for fitting
(pink markers) and the resulting model predictions (blue lines) using the fit
of model M1. The sequence of the fitted experiments is E1, E2, E3, E4, E11,
E10, and E9 (see Table 5.1) from left to right and the alternating shaded
background indicates the different experiments.
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5. Modeling and Control of Dissolution

μ
μ

Figure 5.4: Concatenated time series of the experimental data used for valida-
tion (pink markers) and the corresponding predictions obtained from model
M1 (blue lines). The sequence of the validation experiments is E5, E6, E7, E8,
E12, and E13 (see Table 5.1) from left to right and the alternating shaded
background indicates the different experiments.
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5.4. Modeling Results and Discussion

the fitted experiments E1 and E11, respectively, are shown. By definition,
the seed populations in the experiments and in the corresponding model
simulations are identical. As shown in Figure 5.5b,c,e,f, the experimental
and the modeled final PSSDs agree well qualitatively, even though the
PSSDs themselves were not fitted. Compared with the simulated PSSDs,
the experimental ones are based on a smaller number of particles, which
causes their graphical representation to be considerably less smooth.

The PSSDs of the two validation experiments E6 and E13, which are
shown in Figure 5.6, also exhibit good qualitative agreement between
experiments and model predictions. It is worth noting that the exper-
imental final population of experiment E13 (see Figure 5.6f) exhibits a
better agreement with the corresponding simulation (see Figure 5.6e)
than that of E11 (see Figure 5.5e,f). This observation is consistent with
the data preprocessing steps described in Appendix D.5; i.e., the exper-
imental final population of E13 consists of a larger number of particles
than that of E11 and than those of most of the other experiments.

5.4.3 Considerations Concerning Processes for Crys-
tal Shape Modification

Using the two-dimensional dissolution rate model M1 for BLGA in wa-
ter, an assessment of the potential for crystal shape modification using
temperature cycles (see, e.g., refs 62 and 21) or cycles of growth, milling,
and dissolution (see, e.g., refs 63 and 64) can be conducted.

The modeled ratioD1/D2 is neither a function of undersaturation nor
of temperature. Thus, in this case, it is not possible to control the particle
shape evolution with a strategy such as the path following controller
proposed previously.65 This is a compound-specific feature and it might
be different when applying a larger driving force. Still, it has to be kept in
mind that quantitative online monitoring (and thus control) of particle
size and shape at high dissolution rates is very challenging. This is not
just due to the current limitations of available shape monitoring devices
in terms of their sampling rate, but also because the more particles
dissolve, the less accurate and the more noisy the measurement of the
population becomes.

The model M1 predicts a ratio of D1/D2 of about 12, i.e., dissolu-
tion along L1 is much faster than along L2, thus yielding a reduction
in aspect ratio. However, dissolution stages with the aim of shape mod-
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5. Modeling and Control of Dissolution

ification should be combined with time-consuming growth stages to re-
cover the lost yield, and it was shown elsewhere that growth also evolves
primarily along the length direction of the BLGA needles.54 Thus, for
BLGA, it can now be concluded that consecutive cycles of growth and
dissolution would either have little impact on particle shape or require
a large number of cycles to achieve such impact.

It was shown previously that wet milling also reduces the length
of the needle-like BLGA particles while having little impact on their
width.67,137 Thus, wet milling can drastically reduce the particle aspect
ratio in a short period of time without affecting the yield of the process,
contrary to dissolution. Therefore, the relative productivity of the cyclic
shape modification process can be increased by adding wet milling stages,
while dissolution remains valuable as an intermediate fines removal step.

5.5 Particle Volume Control
5.5.1 Control Concept
Irrespective of the nature of the cyclic shape modification process con-
sidered and of the characteristics of a specific compound, operating dis-
solution stages in a controlled and reproducible way is a requirement for
them to be effective. Since a high yield is generally required, it is impor-
tant that a sufficient fraction of the solids survives the dissolution stage.
Therefore, it suggests itself to measure and control online the volume of
the solids during dissolution. The goal is to dissolve a given fraction of
the initial particle volume—and not more—by manipulating the process
temperature. An alternative would be to select a final temperature for
the dissolution stage purely based on solubility data.63 However, since
reaching solid-liquid equilibrium can require a long time, the proposed
controlled approach can be more time efficient. It is also more robust,
since solubility curves can be uncertain in practice.40

A particle volume control strategy was developed and tested in a
PBE simulation framework using the dissolution rate model M1 pre-
sented in Section 5.4.2. A dissolution stage operated by the resulting
control scheme consists of three phases (all within the main experimen-
tal phase introduced in Section 5.2.2). In a first phase, if the system is
supersaturated initially, crash heating to a temperature that corresponds
to saturation or that lies close to saturation (Sinit ≥ 1) is performed. The
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5.5. Particle Volume Control

duration of this first phase is referred to as tinit and can be zero as it is
optional (tinit ≥ 0 s).

In a second phase, a constant heating rate ṪHR is applied to initiate
dissolution. The open-loop set point for the process temperature is then

Tol(t) = T (tinit) +
∫ t

tinit

ṪHR dt′ = T (tinit) + ṪHR(t− tinit) t ≥ tinit

(5.12)

During the heating ramp, the evolution of the particle volume in the
population, V (t), is observed and the third phase is initiated as soon as
Vfilt(t) ≤ Vtarget, where Vfilt(t) is the median filtered V (t) (to attenuate
rare measurement outliers) and Vtarget is the predefined final particle
volume, i.e., the volume of crystals that survives dissolution. To reduce
the time required for the second phase, a closed-loop contribution can
be added to the process temperature set point. Its purpose is to increase
the heating rate as long as the measured particle volume is still far away
from the specified target. To this end, a control error e can be defined
as

e(t) =
{
Vfilt(t)− Vtarget if Vfilt(t) ≥ Vtarget

0 otherwise
(5.13)

and proportional control can be applied to create a closed-loop contri-
bution to the heating rate according to

d
dt Tcl(t) = ṪHR

e(tinit)
e(t) t ≥ tinit (5.14)

The choice of the proportional gain in eq 5.14 ensures both d
dtTcl(tinit) =
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5. Modeling and Control of Dissolution

ṪHR and a gradual decrease of the closed-loop contribution to the heating
rate toward zero as the observed particle volume approaches its target
value from above. In terms of the temperature set point, the proportional
control law given in eq 5.14 translates into an integral one, that is

Tcl(t) = ṪHR

e(tinit)

∫ t

tinit

e(t′) dt′ t ≥ tinit (5.15)

The process temperature set point is thus Tset(t) = Tol(t) if the parti-
cle volume controller is operated in the open-loop mode and Tset(t) =
Tol(t) + Tcl(t) if the closed-loop contribution is active as well. Note that
despite the terminology used here, the open-loop mode of the controller
also employs feedback of the quantity of interest (i.e., of the particle vol-
ume), but only to decide when the heating phase should be terminated.

During the third phase, i.e., after the target particle volume was
reached for the first time (Vfilt(t) ≤ Vtarget for some t), crash cooling to
a temperature that corresponds to a saturated or to a slightly supersat-
urated state Sfinal ≥ 1 is applied.

During the first and the last phase, a constant supersaturation con-
troller (see, e.g., refs 123 and 124) is effectively active, so feedback of
the solute concentration is applied as well. This is however not a require-
ment to operate the proposed controller. In fact, if the solubility curve
is unknown for a given compound, but if the system starts from equilib-
rium, the first phase can be omitted and the last phase can alternatively
be operated at constant temperature. Also note that instead of directly
measuring the particle volume during the second phase, an accurate mea-
surement of the solute concentration can be used: if the initial particle
mass (and thus the volume) is known, the reduction in the particle vol-
ume can be inferred from the evolution of the solute concentration due
to the mass conservation constraint.

5.5.2 Particle Volume Control Applied to an Un-
milled BLGA Population

The performance of the particle volume controller was verified exper-
imentally using unmilled BLGA seed particles. Two experiments were
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5.5. Particle Volume Control

conducted according to the protocol given in Section 5.2.2. Simulations
of these two experiments were performed and their outcome was com-
pared to that of the experiments. The experiments were seeded with one
of the two batches of BLGA seeds that was also used for the dissolu-
tion rate modeling. This approach should correspond to the best case
scenario in terms of further exploring the predictive capabilities of the
model. The simulations were performed as follows:

• The PBE framework described in Section 5.3.1 was employed while
using the fitted dissolution rate model M1 with the parameters kd,1
and kd,2 fixed at 2.30 µm s−1 and 0.19 µm s−1, respectively.

• The initial PSSD for each simulation was obtained in the same way
as described in Appendices D.5 and D.6.

• At every sampling instant, a simulated concentration measurement
was obtained by adding noise sampled from a Gaussian distribu-
tion with zero mean and a standard deviation of 0.01 g kg−1 to the
simulated concentration c(t). This noisy measurement was subse-
quently low-pass filtered in the same way as in the experiments (the
details of the filtering are described elsewhere,65 see Section 3.5.5).
For the particle volume measurement, Ns(t) = bNs,0µ00(t)/µ00(0)e
particles were sampled from the simulated PSSD f(t); sampled
particles with L2 > L1 were discarded and the remaining particles
were binned into a PSSD. Then, the volume of all the sampled
particles V (t) was computed from this binned PSSD and the same
median filter as in the experiments was applied to obtain Vfilt(t).
The constant Ns,0 was chosen for each simulation so as the initial
sampled particle volume V (0) was the same as that in the corre-
sponding experiment.

• The temperature set point Tset(t) was calculated according to the
control laws introduced in Section 5.5.1 and filtered through a
model of the thermal dynamics of the batch crystallizer employed
to obtain the simulated process temperature (this thermal model
was described previously,65 see Section 3.5.3). The simulated mea-
surement of this temperature was assumed to be exact.

For the experiments and the simulations, the parameters listed in
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Table 5.4: Particle volume controller parameters used for the studies presented
in Sections 5.5.2 to 5.5.4.

Parameter Unit Unmilled BLGA Milled BLGA Vanillin
Vtarget/V (0) – 0.70 0.80 or 0.60 0.70 or 0.50
tsamp min 5.00 5.00 5.00
tinit min 20.00 20.00 20.00
Sinit – 1.01 1.01 1.01
Sfinal – 1.03 1.03 1.02
ṪHR

◦C h−1 0.20 0.15 0.15

Table 5.4 were used. The results of the first experiment and of the cor-
responding simulation, where the open-loop mode of the controller was
employed, are shown in Figure 5.7a,b. In the second experiment and in
the corresponding simulation, the closed-loop mode was used instead.
These results are plotted in Figure 5.7c,d. Note that all the time series
shown in Figure 5.7 (and also those presented in Sections 5.5.3 and 5.5.4)
start at the beginning of the main experimental phase, which corresponds
to the starting point of the particle volume controller. It can be seen in
Figure 5.7a that the evolution of the set point temperature and of the
process temperature was virtually identical for the experiment and the
simulation during the first 4 h. In both cases, the system state fell be-
low the solubility curve after about 2 h (at 29.9 ◦C). At this point, the
concentration in the simulation started to increase almost immediately,
whereas the experimental concentration showed a somewhat delayed re-
sponse. The same behavior can be seen for the evolution of the sampled
particle volumes in Figure 5.7b. Because of this delay, the dissolution
stage of the experiment (i.e., the second phase of the particle volume
controller) took about 1 h longer than that of the simulation. Since the
cylindrical particle model employed in the simulation only approximates
the geometry of the real crystals, it is not possible to match both the
initial sampled particle volume and the sampled particle count of the
simulation and the experiment, as can be seen in Figure 5.7b. As al-
ready explained above, Ns,0 in the simulation was chosen such that the
initial sampled particle volume matched with the experiment. In the
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Figure 5.7: Comparison between two experimental runs of the particle volume
controller using unmilled BLGA seed crystals and the corresponding simula-
tions. Evolution of the process temperature set point (simulation: dotted light
red, experimental: dotted dark red), of the process temperature (simulation:
solid light red, experimental: solid dark red), and of the concentration mea-
surement (raw simulation: dotted light blue, low-pass filtered simulation: solid
light blue, raw experimental: dotted dark blue, low-pass filtered experimental:
solid dark blue) for (a) the open-loop and (c) the closed-loop mode. Further-
more, evolution of the observed particle volume (raw simulation: dotted light
green, median filtered simulation: solid light green, raw experimental: dotted
dark green, median filtered experimental: solid dark green), evolution of the
particle count (raw simulation: light orange, raw experimental: dark orange),
and the target volume Vtarget (dashed green) for (b) the open-loop and (d)
the closed-loop mode.
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parts of the two experiments and the two simulations where the systems
were slightly supersaturated, the observed particle count and particle
volume are constant, as expected. In the transient parts, the slopes of
the simulated and of the experimental concentration profile, as well as
those of the sampled particle volume, were essentially the same, as shown
in Figure 5.7a,b. The same observation can be made in Figure 5.7c,d for
the second experiment. As expected, when activating the closed-loop
contribution, it can be seen in Figure 5.7c that the heating rate applied
by the controller initially doubled and then gradually decreased toward
the end of the heating phase. In this way, the delay in the response of
the experiment was reduced. This reduction enabled the evolution of the
temperature, of the concentration, and of the sampled particle volume
to be almost the same for the experiment and the simulation, as shown
in Figure 5.7c,d.

The comparison between the experiments and the simulations pre-
sented in this section indicates that the developed PBE model is able
to predict the evolution of the considered quantities rather well, but
also that it is not fully predictive in any situation. Therefore, and since
disturbances can additionally play a role, the application of feedback
control will always be beneficial. In fact, Figure 5.7b,d shows that the
controller was able to drive the observed particle volume to the target
value with only a small overshoot in all the four cases, i.e., both in the
two simulations and in the two experiments. Due to the slower heating
rate, the open-loop mode of the controller required about 5 h to do so in
the experiment, whereas the closed-loop mode needed only 3 h.

5.5.3 Particle Volume Control Applied to a Milled
BLGA Population

The particle volume controller with the closed-loop action was also ap-
plied to a different BLGA seed population that underwent a wet milling
step prior to dissolution. The purpose of this investigation was to verify
that the control strategy can be applied independently from the char-
acteristics of the seed particles. To this end, two experiments operated
using the particle volume controller were performed according to the
protocol described in Section 5.2.2, where the parameters listed in the
corresponding column of Table 5.4 were used. Note that the heating rate
parameter ṪHR was slightly decreased to 0.15 ◦C h−1 to reduce the risk
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of overshooting the target volume.
The results of these two experiments are illustrated in Figure 5.8.

The goal of the first experiment was to retain 80 % of the initial particle
volume after the dissolution stage. The controller was able to achieve
this goal, as shown in Figure 5.8b. According to the applied heating
ramp in Figure 5.8a, the system state fell below the solubility curve (at
29.9 ◦C) after about 1.5 h. The response in the observed particle volume
(see Figure 5.8b) and the concentration estimate derived from it (see
Figure 5.8a) became apparent with a delay of about 1 h. Then, within
another hour, the target volume was reached and the controller ended the
dissolution stage by crash cooling to the final supersaturation (Sfinal =
1.03). During the course of this experiment, the sampled particle count
dropped from about 7500 to 5500. The second experiment, where the goal
was to retain only 60 % of the initial particle volume after the dissolution
stage, shows qualitatively the same behavior as the first one, as shown in
Figure 5.8c,d. Again, the controller succeeded in stopping the dissolution
process close to the target volume. The sampled particle count in the
second experiment started from about the same value as in the first
experiment, i.e., from around 7500, whereas a more pronounced drop to
about 4500 was observed subsequently.

5.5.4 Particle Volume Control Applied to a Vanillin
Population

To further examine its general applicability, the proposed controller was
applied to a different system, namely, vanillin in water. Two experiments
were performed according to the protocol described in Section 5.2.2. The
controller was operated in the closed-loop mode using the parameters
listed in the corresponding column of Table 5.4. The goal of the first
experiment was to dissolve 30 % of the initially observed particle vol-
ume. The time series of this experiment are plotted in Figure 5.9a,b.
The solubility curve was crossed after 1 h (at 25 ◦C). Then, as shown
in Figure 5.9a,b, the onset of the dissolution was captured almost im-
mediately in terms of a decrease in the sampled particle volume and a
corresponding increase in the solute concentration. The target volume
was reached after 2.5 h and the controller successfully terminated the dis-
solution stage by crash cooling. In Figure 5.9b, it can be seen that the
particle count dropped from about 8500 to 3500 during this experiment.
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Figure 5.8: Two experimental runs of the closed-loop mode of the particle
volume controller using milled BLGA seed crystals. Evolution of the process
temperature set point (dotted red), of the process temperature (solid red), of
the concentration measurement (raw: dotted blue, low-pass filtered: solid blue)
for (a) Vtarget = 0.8V (0) and (c) Vtarget = 0.6V (0). Furthermore, evolution of
the observed particle volume (raw: dotted green, median filtered: solid green),
evolution of the particle count (raw: orange), and the target volume Vtarget
(dashed green) for (b) Vtarget = 0.8V (0) and (d) Vtarget = 0.6V (0).
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Figure 5.9: Two experimental runs of the closed-loop mode of the particle
volume controller using vanillin seed crystals. Evolution of the process tem-
perature set point (dotted red), of the process temperature (solid red), and of
the concentration measurement (raw: dotted blue, low-pass filtered: solid blue)
for (a) Vtarget = 0.7V (0) and (c) Vtarget = 0.5V (0). Furthermore, evolution of
the observed particle volume (raw: dotted green, median filtered: solid green),
evolution of the particle count (raw: orange), and the target volume Vtarget
(dashed green) for (b) Vtarget = 0.7V (0) and (d) Vtarget = 0.5V (0).
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The time series of the second experiment, where the goal was to
dissolve 50 % of the initial particle volume, are plotted in Figure 5.9c,d.
The outcome of this experiment is qualitatively similar to that of the
first experiment. It can be seen in Figure 5.9d that the sampled particle
count in this experiment started from about 6500, which is lower than in
the first experiment (see Figure 5.9b). This difference can be explained
by the fact that the vanillin seed particles show a significant degree of
aggregation at the point of seeding, which slowly decreases over time
and more quickly at undersaturated conditions. The initial degree of
aggregation is difficult to reproduce from one experiment to the other.
Still, both experiments show a very similar observed particle volume
initially, which is consistent with using the same seed mass.

5.6 Conclusions
Two-dimensional population balance models for the dissolution of the
needle-like compound BLGA in water have been obtained from exper-
imental data. Within the considered range of temperatures (25.0 ◦C to
31.1 ◦C) and relative undersaturations (0.98 to 1.00), a simple expres-
sion for both dissolution rates was able to fit the data well, where this
expression is linear in the driving force and independent explicitly of
temperature with a resulting constant ratio D1/D2 of 12. The range of
experimental operating conditions explored to obtain this model is ad-
mittedly narrow. Still, the presented model is, to the best of the author’s
knowledge, the first of this kind for the compound BLGA. For instance,
it is useful for the presented discussion of the potential of cyclic size and
shape modification processes.

The obtained dissolution kinetics were embedded in a simulation
framework to test a model-free feedback control strategy that targets
the dissolution of a given fraction of the initially observed particle vol-
ume. This particle volume controller can, for instance, be applied for
controlled fines removal after wet milling stages or during temperature
cycling processes. The controller has been tested further in a thorough
experimental campaign involving seed populations of the two compounds
BLGA and vanillin. It was able to operate the dissolution stages in all
these experiments in a reliable and robust manner. Thus, a controlled
method of operating dissolution stages is now available and ready to be
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combined with feedback control strategies for growth65,66 and milling67
to realize a cyclic shape modification process for needle-like particles,
where this process can be operated without the need of kinetic models
describing the individual stages and the whole cycle. In Chapter 6, an
approach to operating such a process is proposed.
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Nomenclature

Acronyms

BLGA β l-glutamic acid
DISCO dual imaging system for crystallization observation
E experiment
M (candidate) model
MLE maximum likelihood estimation/estimate
PBE population balance equation
PSSD particle size and shape distribution

Roman symbols

c solute concentration (per mass of solvent basis) [g kg−1]
c∗ solubility (per mass of solvent basis) [g kg−1]
Di dissolution rate along ith particle dimension (i = 1, 2) [µm s−1]
e control error [µm3]
F−1
χ2 inverse of the chi-square cumulative distribution function [–]
f number density function (PSSD) [µm−2 kg−1]
fv volume-weighted PSSD [µm−2]
J MLE objective function [–]
kd,i parameter of a dissolution rate model [µm s−1]
ks,i parameter of a dissolution rate model, unit varies
kv volume shape factor [–]
Li ith particle dimension (i = 1, 2) [µm]
Lref unit reference length [µm]
L̄i,n number-weighted average of ith particle dimension (i = 1, 2) [µm]
L̄i,v volume-weighted average of ith particle dimension (i = 1, 2) [µm]
Np number of parameters [–]
Ns number of sampled particles [–]
Nt number of data points [–]
Nv number of measured quantities for fitting [–]
S relative supersaturation or undersaturation, c/c∗ [–]
T temperature, unit varies
ṪHR heating rate [◦C h−1]
t time, unit varies
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V (sampled) particle volume [µm3]
Vθ parameter covariance matrix, units of the entries vary
ymk kth data point of the mth measured quantity, unit varies

Greek symbols

α, . . . , ζ experiment labels used in ref 40
η confidence level (probability) [–]
θ model parameter vector, units of the entries vary
µij ij-cross moment of a PSSD [µmi + j kg−1]
ρc crystal density [g µm−3]

Superscripts and subscripts

0 initial value
′ integration variable
ˆ measurement
∗ minimizer
cl closed-loop
filt low-pass or median filtered
final final value
init initial (first) phase of the particle volume controller
min lower limit
ol open-loop
samp sampling
sat saturation
set set point
target target value for controller

Mathematical operators

b·e round to nearest integer
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Chapter 6

A Controlled Multistage Pro-
cess

6.1 Introduction
Imaging techniques to monitor the shape evolution of crystals in solution
and populations thereof are becoming increasingly popular.32,53,81,106
If the employed imaging devices feature online monitoring capabilities,
many possibilities in terms of feedback control of crystal shape are opened
up. So far, experimental studies of this type have appeared scarcely in
the literature (see also Chapters 3 and 4),20,21,66,67 while other contri-
butions applied and exploited the feedback of crystal size, but not of
shape.61,109–111,125,152

The purpose of this chapter is to present and validate experimentally
a controlled and reproducible batch process that transforms needle-like
seed crystals into more equant particles, including its experimental vali-
dation. As described elsewhere,63,64,153 the process itself has been devel-
oped and applied previously in an uncontrolled fashion, mainly using a

The work presented in this chapter has been accepted for publication69 (Bötschi,
S.; Rajagopalan, A. K.; Rombaut, I.; Morari, M.; Mazzotti, M. From needle-like
toward equant particles: A controlled crystal shape engineering pathway. Comput.
Chem. Eng. 2019, in press). The author of this thesis and Ashwin Kumar Ra-
jagopalan contributed equally to this work. A similar presentation of this material
appears in Ashwin Kumar Rajagopalan’s dissertation.33
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model-based approach to select and to thus predefine suitable operating
conditions, while considering the achievable size and shape change of the
particles as well as the yield and the productivity of the process. It is
evident that these are important process goals. However, there are addi-
tional and equally relevant aspects of the process that have not been con-
sidered so far, namely its automation, its operation without the need of
kinetic process models, its robustness with respect to disturbances, and
the repeatability of its outcome (i.e., the mitigation of batch-to-batch
variations). Therefore, this chapter addresses the latter aspects, and its
focus lies on establishing two important novelties: first, the fully auto-
mated and controlled process operation in the absence of kinetic process
models, and second, the robustness of the process control scheme with re-
spect to achieving product particle size and shape distributions (PSSDs)
with consistent average characteristics over consecutive batches. Since
achieving a significant size and shape change of the particles under these
new prerequisites is already challenging, the yield and the productivity
of the process are not considered here, leaving the treatment and the
integration of these aspects for a potential future work. To achieve the
two goals introduced above, the feedback controllers developed for wet
milling (see Chapter 4) and dissolution (see Chapter 5) have been inte-
grated and combined with a simple controlled growth stage (operated by
a variant of the constant supersaturation controller, CSC, already used
in Chapter 3) to form a controlled multistage process.

This chapter is organized as follows. First, an overview of the con-
trolled multistage process is given in Section 6.2, including a summary
of the individual stage controllers. Second, a cycle logic to plan the op-
eration of the entire process is described in Section 6.3. Finally, the
experimental validation of the proposed process control approach using
two different needle-like compounds, namely, β l-glutamic acid (BLGA,
an amino acid) and γ d-mannitol (GDM, a sugar alcohol), is discussed
in Section 6.4.

6.2 Process Overview
A batch process, in this chapter referred to as the multistage process,
to transform needle-like seed particles into more equant particles was
previously modeled and tested experimentally.63,64,153 To facilitate the
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transition to nicely shaped, well-developed crystals, this process is oper-
ated in a cyclic fashion, where one cycle consists of three stages, namely,
of a growth, a breakage, and a dissolution stage. These three stages serve
different purposes: the growth stage is a cooling crystallization step that
generates yield and increases the size of the particles by crystallizing
the solute from the liquid phase, while avoiding observable nucleation;
the breakage stage is a wet milling step that reduces the particle aspect
ratio (defined as the ratio of the particle length to the particle width) by
mechanical action, while leaving the yield unaffected; finally, the disso-
lution stage is a heating step, during which many of the fines generated
in the breakage stage are dissolved and the particle size and thus the as-
pect ratio can be reduced further depending on the operating conditions.
The PSSD can be modified by altering the operating conditions of the
individual stages, by varying the number of cycles, or by a combination
thereof. In principle, these operating conditions (here, the temperatures
during the growth and the dissolution stages and the rotor speed of the
wet mill in the breakage stage, as well as the duration of these stages)
can be chosen using two different approaches: either by predefining them
on the basis of available process models or prior experimental insight, as
done previously,64,153 or by employing feedback controllers that select
the operating conditions automatically and dynamically, either in the
presence (model-based) or in the absence (model-free) of process models.
Often, the presence of process disturbances and unmodeled phenomena
(in the case of model-based operating strategies) is a strong advocate
to apply feedback control. Following this credo, feedback controllers al-
ready discussed above can be applied for each of the three stages (see
Chapters 3, 4, and 5)65–68 to form a controlled multistage process. In the
context of these control laws, the needle-like particles are approximated
as cylinders with length L1 and width L2, and the resulting particle size
and shape distributions are reduced to corresponding average quanti-
ties, L̄1 and L̄2, to address the issue of polydispersity. On the basis of
this simplification, the main goal of the controlled multistage process is
a targeted reduction of the average particle aspect ratio L̄1/L̄2 by ma-
nipulating the size and shape evolution of the crystals. For the sake of
independence of this chapter, the ideas behind the single control laws
operating the individual stages are summarized below.

Within the scope of this thesis, two options to control the cooling
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step (i.e., the growth stage) seem to be suitable. The first one is a model-
free path following controller that manipulates the process temperature
to drive the average particle dimensions of the seed population into a
target orthant in the plane spanned by the average crystal length and
width (see Section 3.3).65,66 If the effect of the process temperature on
the evolution of the average particle aspect ratio is small or if no prior
knowledge is available to select reasonable target orthants, an alternative
is to simply apply constant supersaturation control to run the cooling
stage at a constant supersaturation level (CSC, see Section 3.7.1) and
to terminate it when a given target average crystal length has been
reached. In this chapter, this latter, simpler approach is applied. Even
though the corresponding control law itself is not complicated, note that
it still needs feedback of both the solute concentration and the average
particle length.

During the breakage stage, the suspension in the batch crystallizer is
initially circulated through a wet mill operated at a fixed rotor speed for
a predefined amount of time. From the resulting change of the average
particle length, a simple dynamic model can be identified and subse-
quently extrapolated to calculate a wet mill rotor speed that drives the
average crystal length to a target value, thereby considerably reducing
the aspect ratio of the majority of the particles in the ensemble (see also
Section 4.3.6).67

The dissolution stage could in theory be operated using the same
methods proposed for the growth stage, i.e., by driving the seed popula-
tion into a target orthant by manipulating the temperature, or alterna-
tively by operating the dissolution stage at a constant undersaturation
and aborting the process when a given target average crystal length has
been reached. A considerably simpler alternative is to dissolve a given
fraction of the initially suspended particle volume (being proportional
to the particle mass). To this end, the process temperature is increased
slowly and the reduction of the particle volume is observed so as to ter-
minate the heating stage as soon as enough dissolution has taken place.
In this way, fine particles are dissolved automatically and the loss of
yield remains contained, but control over the size and shape evolution
is given up in this stage (see also Section 5.5.1).68 In this chapter, this
alternative is applied.

An important feature of the controllers for these individual stages is

164



6.3. The Cycle Logic

that they require only thermodynamic knowledge (i.e., solubility data)
to operate the process, but no kinetic models. It was shown that the
individual controllers perform well under a variety of conditions (see
Chapters 3, 4, and 5).66–68 Therefore, a natural evolution of the preced-
ing efforts is to integrate these individual controllers and to operate the
multistage process in a fully controlled fashion, as opposed to how it was
operated previously.64,153

6.3 The Cycle Logic
Since the stage control laws operate the individual stages and not the
whole cycle, a cycle logic is required additionally that provides targets
for the individual stage controllers on the basis of the overall process
goals. Kinetic process models for the crystal shape evolution would ob-
viously be useful to devise such logic, but they are hardly ever available.
Even if such models were available, their predictive capabilities would be
limited. Therefore, a simpler approach has been followed, the concept of
which is best explained in the plane spanned by the two average parti-
cle dimensions L̄1 and L̄2. Below, these quantities are equivalent to the
volume-weighted average particle dimensions defined as

L̄1,v(t) = µ22(t)
µ12(t)

L̄2,v(t) = µ13(t)
µ12(t) (6.1)

where

µij (t) =
∞∫

0

∞∫
0

Li1L
j
2f (t, L1, L2) dL1 dL2 (6.2)

is the ij-cross moment of the measured number density function (i.e., the
PSSD) f (t, L1, L2) at time t. A schematic of the cycle logic is shown in
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Figure 6.1: Schematic of the cycle logic of the controlled multistage process,
including the evolution of the average particle dimensions over the individual
stages. Note that this figure merely provides an illustration of the end points
for each stage. It does not quantitatively represent the path undertaken by the
average dimensions for each stage.

Figure 6.1. The average dimensions of the seed population are denoted
by the point L̄

s. The evolution of these average dimensions is shown
qualitatively for the special case of two cycles. In the general case, the
cycles transform the seed population into the product population with
average dimensions denoted by the point L̄

p, which corresponds to a
significant reduction of the average particle aspect ratio. In more de-
tail, the nth cycle transforms the average dimensions of the population
from L̄

g
n−1, the end point of the previous cycle (or, for n = 1, from the

seed population L̄
s), to L̄

g
n, with intermediate points L̄

m
n and L̄

d
n. The
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transition from L̄
g
n−1 to L̄

m
n is a wet milling stage, that from L̄

m
n to L̄

d
n

is a dissolution stage, and that from L̄
d
n to L̄

g
n is a growth stage. For

many compounds exhibiting a needle-like morphology, often not much
can be done to control the average particle width L̄2 during the single
stages (see Chapters 3, 4, and 5).66–68 Therefore, it is suggested here to
specify only the intermediate and the final average lengths of the needle-
like particles. These average lengths can be considered as waypoints for
the entire cyclic process. Note that in the context of this chapter, the
exact values of these waypoints are not important, but defining them
in some way is a prerequisite for the entire process to function. In their
absence, or when a stage controller fails to reach its stage target, the
target average length for the product population will be missed.

A suitable cycle logic can be defined using four parameters: `ref , `m1 ,
ω, and ξ. `ref should be set to a value that is in the order of the average
particle length in the seed population. If the multistage process is run
for several batches in a row using the same or a similar seed population,
`ref should be kept constant over the batch runs to have the same stage
targets. In the first cycle (n = 1), the target for the milling stage is
defined by the parameter `m1 . In general terms, the milling target is
`mn = ωn−1`m1 with 0 < ω < 1. The target for the dissolution stage is not
fixed in the plane of the average dimensions, but simply specified as a
fraction ξ of the total solid volume that should survive the dissolution
stage. L̄

d
n is then an unknown function of L̄

m
n and ξ. To be more specific,

the average dimensions and therefore the average particle aspect ratio
are affected by the dissolution of the crystals, even if these quantities are
not directly controlled. The target for the growth stage that terminates
each cycle is given by `gn = ωn`ref . Since 0 < ω < 1 and since L̄2 does not
change much, this expression ensures a reduction of the average particle
aspect ratio over each cycle. Note that the parameters ω and ξ need not
take the same values for all the cycles. However, in this chapter, this is
the case for reasons of simplicity. After selecting reasonable values for
the above mentioned four constants that reflect the desired reduction of
the average particle aspect ratio, the job of reaching the intermediate
targets can conveniently be delegated to the feedback controllers for the
single stages.

167



6. A Controlled Multistage Process

6.4 Experimental Validation

The main task of the process control scheme described above is to reach
the target average particle length of the last cycle repeatedly over consec-
utive batches, even in the presence of disturbances or slight deviations in
the initial conditions, e.g., in case of differences in the seed populations
or in the initial solute concentration. Also, it needs to be proven that the
process indeed provides the desired reduction of the particle aspect ratio
and that it produces nice crystals. Its general applicability to a number
of compounds is crucial as well, as it guarantees that the process is not
tailor-made for a specific compound. To validate all these requirements,
an experimental campaign has been conducted. Two different systems,
namely, BLGA in water and GDM in a mixture of water and propan-2-ol
have been considered. Apart from the fact that both BLGA and GDM
crystals exhibit a needle-like morphology under the conditions explored
in this chapter, other properties such as their thermodynamic (solubility)
and kinetic (growth and dissolution rates) behavior are significantly dif-
ferent,153 making them two suitable systems to test the effectiveness and
the general applicability of the proposed controlled process. As already
explained in Section 6.1, the yield and the productivity are not explicitly
taken into account here. Nevertheless, note that an overall positive yield
can always be achieved by arbitrarily growing the seed crystals prior to
running the controlled multistage process.

The required feedback signals for the individual controllers (see Sec-
tion 6.2) such as the average particle dimensions, the particle volume,
or the solute concentration can be provided by the µ-DISCO, an ex situ
stereoscopic imaging device (see Sections 1.2 and 1.3).32,40 For the sake
of brevity, the explanation of the employed materials and the experimen-
tal setup, including the µ-DISCO and the rotor-stator wet mill used for
wet milling, is provided in Appendices E.1 to E.3. Note that any other
solid phase characterization device that is able to provide a PSSD and
any other liquid phase characterization device that is able to measure the
solute concentration could be employed as well, as long as these devices
provide measurements on a time scale significantly shorter than that of
the process dynamics.
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6.4.1 Multistage Process Experiments with BLGA
Using One or Two Cycles

It was shown previously that the number of cycles used for the multi-
stage process can significantly alter the characteristics of the product
population.64 It was thus decided to perform repeated controlled multi-
stage experiments, starting from the same initial conditions and with the
same cycle logic parameters, but with a different number of cycles. To
this aim, a single cycle experiment, referred to as κ1, and a two cycle ex-
periment, referred to as κ2, for the compound BLGA using Seeds κ (see
Appendix E.4) were conducted. In both experiments, the aspect ratio re-
duction was achieved by setting the parameters of the cycle logic `m1 and
ω to the values 200 µm and 0.7, respectively. Note that the latter choice
corresponds to reducing the average crystal length by a factor of ω = 0.7
per cycle. `ref was set to 360 µm, because this value is relatively close to
the initial average particle lengths. The value of ξ = 0.8 was selected to
strike a balance between removing fines and not losing too much solid
mass during the dissolution stages. The detailed experimental protocol
applied for these two experiments and the most important parameters
of the individual stage controllers are explained in Appendix E.5. Note
that all the four parameters of the cycle logic were identical for both
experiments.

The initial and the final PSSDs of experiments κ1 and κ2 are shown
in Figure 6.2. In this and in subsequent figures, the PSSDs are visualized
as volume-weighted distributions defined as

fv(t, L1, L2) = L1L
2
2f(t, L1, L2)
µ12(t) (6.3)

All the particles characterized during the first six and the last six sam-
pling instants of the experimental time series were combined to obtain
the PSSDs before and after the experiments, respectively. As expected,
it can be seen in Figure 6.2a,c that the PSSDs before initiating the con-
trolled multistage process are indeed very similar. As experiment κ1 was
subjected to one cycle and experiment κ2 was subjected to two cycles, the
final PSSDs illustrated in Figure 6.2b,d are very different. Two observa-
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Figure 6.2: PSSDs fv (obtained using eq 6.3 and normalized by the maximum
of each PSSD) before experiment (a) κ1 and (c) κ2 and after experiment (b)
κ1 and (d) κ2 for the controlled multistage process experiments using Seeds κ

of BLGA crystals. Experiments κ1 and κ2 consisted of one and two cycles of
the controlled multistage process, respectively. The contour levels correspond
to 0.1, 0.5, and 0.9 of each normalized PSSD. Along the L1 direction, a regular
grid with 120 bins and a spacing of 21 µm and 13 µm was used for experiment κ1
and κ2, respectively. Along the L2 direction, the corresponding grid spacing
was 7 µm and 6 µm using 40 bins. The solid circular markers indicate the
average dimensions of the populations.
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tions can be made from these final PSSDs. First, the average dimensions
of the population after κ1 are larger than those of that after κ2, which is
a consequence of the lower target average lengths used in the stages of
the second cycle. Second, due to the presence of a second milling stage,
the broadness of the final PSSD of experiment κ2 is smaller than that of
experiment κ1.

A detailed visualization of the results of experiments κ1 and κ2 is
provided in Figure 6.3. In this figure, further quantities of interest are
introduced, namely, the volume-weighted average particle aspect ratio,
φ at time t, given by

φ(t) = L̄1,v(t)
L̄2,v(t)

(6.4)

the volume-weighted broadness of the measured PSSD along each of the
two dimensions at time t, which is defined as

σ11,v(t) =
√
µ32(t)/µ12(t)−

(
µ22(t)/µ12(t)

)2
σ22,v(t) =

√
µ14(t)/µ12(t)−

(
µ13(t)/µ12(t)

)2 (6.5)

and the volume-weighted ratio of the broadness along the two dimen-
sions, ψ at time t, defined as

ψ(t) = σ11,v(t)
σ22,v(t) (6.6)

Note that all the quantities defined in eqs 6.4 to 6.6 are volume-weighted.
Below, for the sake of brevity, this feature of these quantities will no
longer be called out in the text. Also note that all the quantities in
Figure 6.3a-e are based on the low-pass filtered evolution of L̄i,v and
σii,v (i = 1, 2) to attenuate measurement noise. The low-pass filtered
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Figure 6.3: (a) Low-pass filtered evolution of the average length L̄1,v and width
L̄2,v for BLGA experiment κ1 (solid green line) and κ2 (solid blue line). The
circular markers, downward pointing triangular markers, and upward pointing
triangular markers indicate the average dimensions before the experiment, at
the end of the first cycle (both κ1 and κ2), and at the end of the second
cycle (κ2 only), respectively. The horizontal dashed lines indicate the target
average length at the end of the first cycle (`g1) and that at the end of the
second cycle (`g2). The broadness of the measured PSSD (obtained using eq 6.5
and low-pass filtered subsequently) along (b) the length and (c) the width
direction, (d) the average particle aspect ratio (obtained using eq 6.4 with
low-pass filtered arguments), and (e) the ratio of the broadness along the two
dimensions (obtained using eq 6.6 with low-pass filtered arguments) before the
experiment (s), at the end of the first cycle (g1), and at the end of the second
cycle (g2). (f) Time tstage required for the individual stages to reach their
respective targets. κ1 and κ2 consisted of one and two cycles of the controlled
multistage process, respectively. The bars in panels b through f share the color
code for the two experiments with panel a.
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evolution of L̄1,v and L̄2,v plotted in Figure 6.3a is similar until the end
of the first cycle for both the experiments. The second cycle for ex-
periment κ2 leads to an additional considerable reduction of the average
length L̄1,v. It is interesting to note that the average width L̄2,v increased
slightly over the course of the first cycle for both the experiments, while
for experiment κ2, this gain in the average width L̄2,v was lost over the
course of the second cycle. This can be attributed to two factors. The
first factor is the reduction of the average width L̄2,v during the second
milling stage. The second factor is the effect of the relatively high su-
persaturation employed during the growth stages. In more detail, for the
system BLGA in water, the ratio of the growth rates along the length di-
rection of the particles to that along their width direction increases with
supersaturation.54,66 Since both the experiments had the same initial
conditions and the same targets for the individual stages, the evolution
of the two broadness measures, that of the average particle aspect ra-
tio, and that of the ratio of the broadness along the two dimensions
shown in Figure 6.3b-e is very similar until the end of the first cycle.
Apart from the broadness measure along the width direction illustrated
in Figure 6.3c, the second cycle of κ2 yields a further significant decrease
of these quantities, which is beneficial in terms of obtaining a more com-
pact distribution consisting of more equant particles. From Figure 6.3f,
it is clear that for the system BLGA in water, the growth stages are
responsible for the largest part of the required process time. Still, the
time required by the wet milling and the dissolution stages is significant
as well. It can also be seen in Figure 6.3f that the times required for
the milling and the dissolution stages are almost identical for the first
cycle of both the experiments. However, the growth stage in experiment
κ1 took slightly longer than that in experiment κ2 to reach the desired
target. Based on the operating conditions of the milling and the dissolu-
tion stages (not shown here for the sake of brevity), it appears that this
difference in the growth times is not due to any differences in the oper-
ating conditions of the preceding stages, but due to the batch-to-batch
variations in the growth rates that can always occur.

The micrographs of Seeds κ and those of the crystals obtained after
experiments κ1 and κ2 are presented in Figure 6.4. These micrographs,
as expected, confirm the considerable reduction in the average length of
the crystals, and thereby of the average particle aspect ratio, for each
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6. A Controlled Multistage Process

Figure 6.4: Darkfield micrographs of (a) Seeds κ, and of the crystals obtained
(b) after experiment κ1 and (c) after experiment κ2. The scale bars in the
micrographs correspond to 500 µm.

cycle of the controlled multistage process. It is interesting to note that
upon undergoing the cyclic process, the surface of the crystals appears
to be healed when compared with the seed particles. In more detail,
the crystals obtained after the experiments have a smoother and a more
regular surface, along with well developed facets that are characteristic
of the compound BLGA.

Finally, it is concluded from the results presented in this section
that performing two cycles instead of just one is preferable. The second
cycle clearly helps to achieve a significant reduction of the average par-
ticle aspect ratio, which makes investing more process time acceptable.
Therefore, the remaining experiments presented in this chapter were all
performed using two cycles of the controlled multistage process.

6.4.2 Multistage Process Experiments with BLGA
Using Two Cycles

In this section, three further experiments that were conducted with the
system BLGA in water are presented. In a preliminary phase, a given
batch of BLGA seed crystals, referred to as Seeds λ (see Appendix E.4),
was grown to a given target average length by means of a growth stage
at constant supersaturation. Subsequently, two cycles of the controlled
multistage process were run to reduce the average particle aspect ratio
of the particle populations obtained after this preliminary growth step.
By varying the target average length of the preliminary growth step, the
effect of differences in the initial conditions (seed population and initial
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solute concentration) was investigated. Below, the main phases compris-
ing the controlled multistage process will be referred to as experiments
λ1, λ2, and λ3. All the parameters of the cycle logic, especially also `ref ,
were kept constant to ensure that experiments λ1 to λ3 were run with
the same targets. The detailed experimental protocol and the most im-
portant parameters of the individual stage controllers are explained in
Appendix E.5.

The PSSDs before and after experiments λ1 to λ3, as well as micro-
graphs of the corresponding final particle populations, are illustrated in
Figure 6.5. In Figure 6.5a,c,e, it can be seen that the PSSDs obtained af-
ter the preliminary growth steps (i.e., before the experiments) are indeed
different. Nevertheless, the final PSSDs visualized in Figure 6.5b,d,f are
almost identical, as intended. The micrographs presented in Figure 6.5g-i
confirm in a qualitative manner that the obtained crystal populations
are indeed very similar, both in terms of the size and the shape of the
particles.

More detailed results of experiments λ1 to λ3 are displayed in Fig-
ure 6.6. In Figure 6.6a, the low-pass filtered evolution of L̄1,v and L̄2,v
shows that the controlled process operation enables the transformation
of seed populations with different average dimensions (circular mark-
ers) into PSSDs with very similar average dimensions, either using one
(downward pointing triangles) or two cycles (upward pointing triangles).
Figure 6.6d illustrates that a reduction of the average particle aspect ra-
tio over the two cycles was achieved, from an initial value of about 5 to 6
to a final value of about 3. Furthermore, Figure 6.6b,c indicates that also
the broadness measure of the PSSDs along the L1 direction decreased
over the cycles, while that along the L2 direction was barely affected.
Clearly, this observation goes along with a reduction of the ratio of the
broadness along the two dimensions ψ, as can be seen in Figure 6.6e.

The duration of each stage (three stages per cycle) is visualized in
Figure 6.6f. As expected, the duration of the first milling stage (m1)
slightly increases with increasing initial average particle length of the
three experiments. Since more milling has to be applied to the popula-
tions with a large initial average particle length, more particle surface
area and rougher particle surfaces are created, thus increasing the growth
rate and reducing the time required for the growth stage of the first cycle
(g1). Still, regardless of the initial condition, the growth stages make the
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Figure 6.5: PSSDs fv (obtained using eq 6.3 and normalized by the maxi-
mum of each PSSD) before experiment (a) λ1, (c) λ2, and (e) λ3 and after
experiment (b) λ1, (d) λ2, and (f) λ3 for the controlled multistage process
experiments using BLGA Seeds λ. The contour levels correspond to 0.1, 0.5,
and 0.9 of each normalized PSSD. Along the L1 direction, a regular grid with
120 bins and a spacing of 12 µm, 12 µm, and 12 µm was used for experiments λ1
to λ3, respectively. Along the L2 direction, the corresponding grid spacing was
10 µm, 8 µm, and 10 µm using 40 bins. The solid circular markers indicate the
average dimensions of the populations. Darkfield micrographs of the crystals
obtained after experiment (g) λ1, (h) λ2, and (i) λ3. The scale bars in the
micrographs correspond to 500 µm.
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Figure 6.6: (a) Low-pass filtered evolution of the average length L̄1,v and width
L̄2,v for BLGA experiments λ1 (solid green line), λ2 (solid blue line), and λ3
(solid brown line). The circular markers, downward pointing triangular mark-
ers, and upward pointing triangular markers indicate the average dimensions
before the experiment, at the end of the first cycle, and at the end of the second
cycle (after the experiment), respectively. The horizontal dashed lines indicate
the target average length at the end of the first cycle (`g1) and that at the end
of the second cycle (`g2). The broadness of the measured PSSD (obtained using
eq 6.5 and low-pass filtered subsequently) along (b) the length and (c) the
width direction, (d) the average particle aspect ratio (obtained using eq 6.4
with low-pass filtered arguments), and (e) the ratio of the broadness along
the two dimensions (obtained using eq 6.6 with low-pass filtered arguments)
before the experiment (s), at the end of the first cycle (g1), and at the end of
the second cycle (g2, after the experiment). (f) Time tstage required for the in-
dividual stages to reach their respective targets. The bars in panels b through
f share the color code for the three experiments with panel a.
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6. A Controlled Multistage Process

largest contribution to the overall process time.

6.4.3 Repeatability of Multistage Process
Experiments with BLGA

Two further controlled multistage process experiments with the com-
pound BLGA and an initial growth stage were performed. These exper-
iments are referred to as experiments λ4 and λ5. Their purpose was to
check the repeatability of the process outcome (i.e., the properties of
the final PSSD) when using virtually identical initial conditions, iden-
tical cycle parameters, and the same number of cycles. The detailed
experimental protocol applied for these two experiments is explained in
Appendix E.5. Note that these experiments had a preliminary growth
stage with a target average length of 360 µm.

The initial and the final PSSDs of experiments λ4 and λ5 are vi-
sualized in Figure 6.7. It can be seen in Figure 6.7a,c that the PSSDs
obtained after the preliminary growth steps are very similar, which corre-
sponds to nearly identical initial conditions for the subsequent controlled
multistage process. The final PSSDs illustrated in Figure 6.7b,d are very
similar as well, as expected when applying the controlled size and shape
modification process.

More detailed results of experiments λ4 and λ5 are provided in Fig-
ure 6.8. In Figure 6.8a, it can be seen that the low-pass filtered evolution
of L̄1,v and L̄2,v is similar, with a slight difference in L̄2,v. It can also
be seen that experiment λ4 failed to reach `g2, the target average parti-
cle length of the second growth stage, by a few microns. The reason is
that the control computer (see Appendix E.3) accidentally ran out of disk
space shortly before the end of this experiment, preventing it from saving
the data and terminating the controlled process properly. Figure 6.8b-e
confirms that the evolution of the two broadness measures, that of the
average particle aspect ratio, and that of the ratio of the broadness along
the two dimensions (as defined in Section 6.4.1) is indeed very similar for
the two experiments. As can be seen in Figure 6.8f, the times required
for the constituent stages are similar as well, with the exception of that
of the first growth stage (g1), where experiment λ4 took significantly
longer. This difference will be explained at the end of this section.

In Figure 6.9a-e, the time series of the solute concentration, the tem-
perature, the supersaturation, the average length, and the average width
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Figure 6.7: PSSDs fv (obtained using eq 6.3 and normalized by the maximum
of each PSSD) before experiment (a) λ4 and (c) λ5 and after experiment (b)
λ4 and (d) λ5 for the controlled multistage process experiments using Seeds λ

of BLGA crystals. The contour levels correspond to 0.1, 0.5, and 0.9 of each
normalized PSSD. Along the L1 direction, a regular grid with 120 bins and a
spacing of 17 µm and 14 µm was used for experiment λ4 and λ5, respectively.
Along the L2 direction, the corresponding grid spacing was 7 µm and 6 µm
using 40 bins. The solid circular markers indicate the average dimensions of
the populations.
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Figure 6.8: (a) Low-pass filtered evolution of the average length L̄1,v and width
L̄2,v for BLGA experiment λ4 (solid green line) and λ5 (solid blue line). The
circular markers, downward pointing triangular markers, and upward pointing
triangular markers indicate the average dimensions before the experiment, at
the end of the first cycle, and at the end of the second cycle (after the exper-
iment), respectively. The horizontal dashed lines indicate the target average
length at the end of the first cycle (`g1) and that at the end of the second cycle
(`g2). The broadness of the measured PSSD (obtained using eq 6.5 and low-pass
filtered subsequently) along (b) the length and (c) the width direction, (d)
the average particle aspect ratio (obtained using eq 6.4 with low-pass filtered
arguments), and (e) the ratio of the broadness along the two dimensions (ob-
tained using eq 6.6 with low-pass filtered arguments) before the experiment
(s), at the end of the first cycle (g1), and at the end of the second cycle (g2).
(f) Time tstage required for the individual stages to reach their respective tar-
gets. The bars in panels b through f share the color code for the different
experiments with panel a.
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are provided for experiments λ4 and λ5. Additionally, the evolution of
the wet mill rotor speed during the two milling stages of these two exper-
iments is visualized in Figure 6.9f. Note that the rotor speed evolution
is not plotted against the process time, but against the number of wet
milling steps nWM. The solute concentration estimate was rather noisy
during the milling stages, as can be seen in Figure 6.9a. As expected for
the compound BLGA, a relatively quick increase was observed during
the subsequent dissolution stages, whereas a slow decrease took place
during the growth stages. Comparing the final with the initial concen-
tration values, it can be said that a small positive yield resulted for both
experiments. The temperature profiles visualized in Figure 6.9b show
that the temperature was kept constant during the milling stages, that
slow heating ramps were applied during the dissolution stages, and that,
due to the low seed mass, little cooling was required to keep the su-
persaturation constant during the growth stages. The evolution of the
estimated supersaturation profiles plotted in Figure 6.9c is sensible as
well, with one exception: during the dissolution stages, it seems that the
solution was slightly supersaturated instead of undersaturated. However,
from the experimental observations it can be said that the particle vol-
ume was decreasing, i.e., the particles were dissolving. Therefore, the
slight deviation from the expected undersaturation could be explained
by a combination of the errors in the employed concentration estimation
technique (which are in the order of 1 %, see ref 40) and uncertainties
in the solubility curve (see eq E.1 in Appendix E.2) that have to be ex-
pected always. Since the dissolution stages were operated by a feedback
controller that observes the particle volume directly and not the solute
concentration estimate,68 these deviations do not matter and the disso-
lution was performed successfully. The time series of the average particle
dimensions are visualized in Figure 6.9d,e. During the first growth stage
(i.e., between d1 and g1), the increase of the average length in λ5 was
quicker than that in λ4. The higher growth rate during that stage is
confirmed by the faster depletion of the concentration, as can be seen
in Figure 6.9a. It is clear that batch-to-batch variations in the growth
rates can always occur. Here, the reason for the observed difference in
the growth rate may also be that one additional milling step and higher
wet mill rotor speeds were applied by the milling controller towards the
end of the first milling stage of λ5, as illustrated in Figure 6.9f. As al-
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Figure 6.9: Time series of the controlled multistage process experiments λ4
(green) and λ5 (blue) using BLGA Seeds λ. (a) Evolution of the solute con-
centration. The solid markers represent the concentration estimate c and the
solid lines represent the corresponding low-pass filtered signal cfilt (see Ap-
pendix E.2). (b) Evolution of the measured process temperature T . (c) Evo-
lution of the supersaturation S (calculated according to eq E.3 given in Ap-
pendix E.2). Evolution of (d) the average length L̄1,v and (e) the average
width L̄2,v. The solid markers represent the experimentally obtained average
dimensions and the solid lines are the corresponding low-pass filtered signals.
(f) Evolution of the rotor speed θ in the wet mill as a function of the number
of wet milling steps nWM. The identifiers mn, dn, and gn indicate the end
of the milling, of the dissolution, and of the growth stage for the nth cycle,
respectively.
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ready explained in Section 6.4.2, more intense wet milling creates more
particle surface area and also rougher crystal surfaces, thus leading to
quicker growth in the next growth stage.

All considered, it can be said that the experiments presented in this
section confirm that the proposed control approach manages to reach
the desired target repeatedly.

6.4.4 Multistage Process Experiments with GDM
Before applying the controlled multistage process to a different com-
pound (such as GDM in a 10/90 wt-% mixture of propan-2-ol and water),
a few preliminary characterization steps need to be performed. First, the
properties of the seed population need to be known and the parameters
of the cycle logic should be adapted to these properties and to the desired
shape change of the particles. In this work, however, this first step was
not required, because these properties and goals were similar to those in
the BLGA experiments. Therefore, the values for `ref , `m1 , ω, and ξ were
left unchanged such that the individual stages had the same goals (or tar-
gets) as those of the experiments with BLGA presented in Sections 6.4.1
to 6.4.3. In a second step, a basic understanding of the kinetics of the
compound should be acquired to be able to tune the individual stage
controllers. To this end, a few preliminary seeded growth experiments
were performed with GDM to identify a constant supersaturation level
at which growth occurs at a reasonable rate, but no significant nucleation
is observed. The outcome of these experiments is not shown here for the
sake of brevity, but it became clear quickly that the growth rate was sig-
nificantly higher than that of BLGA. Thus, the superaturation applied
during the growth stages was lowered. In addition to these growth tests,
heating ramps were applied to a batch of milled seeds starting from a
slightly supersaturated state. GDM was observed to have a high dissolu-
tion rate, thereby leading to the loss of a large number of crystals within
a short period of time (in the order of 15 min). Therefore, the heating
rate applied in the dissolution controller (see Section 5.5.1 or ref 68)
was halved. For the milling stages, no initial characterization steps were
required, because the milling controller is adaptive and because it works
well for the compound GDM,67 as demonstrated in Section 4.4.3.

Two experiments were conducted with GDM in a 10/90 wt-% mix-
ture of propan-2-ol and water. The first experiment was seeded with a
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batch of GDM seed crystals, referred to as Seeds ν (see Appendix E.4),
and the controlled multistage process was run right after seeding. In case
of the second experiment, the seeds were grown to a given target average
length by means of a preliminary growth step at constant supersatura-
tion. Subsequently, the controlled multistage process was run. The main
phases operated by the multistage process of these two experiments will
be referred to as experiments ν1 and ν2, respectively. The detailed ex-
perimental protocol for the GDM experiments and the most important
parameters of the individual stage controllers are explained in detail in
Appendix E.6.

The PSSDs before and after experiments ν1 and ν2 are visualized
in Figure 6.10. As expected, the initial PSSDs are different for the two
experiments, as can be seen in Figure 6.10a,c, whereas the final PSSDs
are very similar, as shown in Figure 6.10b,d. More detailed results of
experiments ν1 and ν2 are visualized in Figure 6.11. Figure 6.11a con-
firms that the controlled multistage process can transform populations
with different average particle dimensions to populations with very sim-
ilar average dimensions also in the case of GDM. In Figure 6.11d, it
can be seen that the average particle aspect ratio was reduced from
about 6 to a value slightly below 4. The broadness measures depicted
in Figure 6.11b,c decreased over each cycle for both the length and the
width direction. Thus, the ratio of the broadness along the two dimen-
sions shown in Figure 6.11e remained approximately the same over the
two cycles. In Figure 6.11f, it can be seen that the growth stages for
the two GDM experiments, contrary to those of the BLGA experiments,
did not require more time than the milling and the dissolution stages.
This can partially be attributed to the higher growth rate of GDM.
The second reason for this observation can be traced back to the wet
milling stages: it was observed that the GDM crystals are more brittle
than those of BLGA, with a tendency to shatter into a large number
of small fragments. In their entirety, these fragments contribute signif-
icantly to the overall solid volume, thus influencing even the average
dimensions. During the dissolution stages, many of these fragments dis-
appeared, which thereby increased the average dimensions. The increase
in L̄1,v to be covered during the subsequent growth stage is thus smaller.
Note that due to the high dissolution rate combined with the thermal
inertia of the crystallizer and that of the thermostat, the particle volume
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Figure 6.10: PSSDs fv (obtained using eq 6.3 and normalized by the maximum
of each PSSD) before experiment (a) ν1 and (c) ν2 and after experiment (b)
ν1 and (d) ν2 for the controlled multistage process experiments using GDM
Seeds ν. The contour levels correspond to 0.1, 0.5, and 0.9 of each normalized
PSSD. Along the L1 direction, a regular grid with 120 bins and a spacing of
13 µm and 12 µm was used for experiment ν1 and ν2, respectively. Along the
L2 direction, the corresponding grid spacing was 6 µm and 6 µm using 40 bins.
The solid circular markers indicate the average dimensions of the populations.
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Figure 6.11: (a) Low-pass filtered evolution of the average length L̄1,v and
width L̄2,v for GDM experiments ν1 (solid green line) and ν2 (solid blue
line). The circular markers, downward pointing triangular markers, and up-
ward pointing triangular markers indicate the average dimensions before the
experiment, at the end of the first cycle, and at the end of the second cycle
(after the experiment), respectively. The horizontal dashed lines indicate the
target average length at the end of the first cycle (`g1) and that at the end of
the second cycle (`g2). The broadness of the measured PSSD (obtained using
eq 6.5 and low-pass filtered subsequently) along (b) the length and (c) the
width direction, (d) the average particle aspect ratio (obtained using eq 6.4
with low-pass filtered arguments), and (e) the ratio of the broadness along
the two dimensions (obtained using eq 6.6 with low-pass filtered arguments)
before the experiment (s), at the end of the first cycle (g1), and at the end of
the second cycle (g2, after the experiment). (f) Time tstage required for the in-
dividual stages to reach their respective targets. The bars in panels b through
f share the color code for the two experiments with panel a.
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undershot its target during the dissolution stages (not shown here for the
sake of brevity). In general, it can be said that running the controlled
multistage process for GDM is more challenging, also because both its
solubility and its growth and dissolution rates in the chosen solvent mix-
ture are higher than those of BLGA in water. Still, it has been shown
that the controlled multistage process is able to achieve the process goals
and to yield a significant shape change to more equant particles also in
this case.

6.5 Conclusions
An extension of a previously suggested multistage process63,64 for the
batch-wise transformation of needle-like seed crystals into more equant
particles has been presented. The two previously unexplored and striking
features of this extension are, first, that the process is operated in a fully
automated and controlled manner without the need of kinetic process
models, and second, that it provides robustness with respect to achieving
PSSDs with desirable properties repeatedly over consecutive batches.
Both of these developments have been enabled by a combination of online
monitoring of the particle size and shape evolution with feedback control
techniques.

The robustness of the proposed approach has been validated by means
of an experimental campaign for the system BLGA in water, during
which batch experiments with different initial conditions were success-
fully steered toward final PSSDs with nearly identical properties. This
capability of the proposed process control scheme is very valuable in
terms of mitigating undesirable batch-to-batch variations in the solid
product. Further experiments using the same system were conducted to
investigate the impact of the number of cycles on the products and to
assess the repeatability of the process outcome. The general applicability
of the approach has been demonstrated as well by successfully applying
it to a different, more challenging system, namely, to GDM in a mixture
of propan-2-ol and water. In all the experiments, a significant reduc-
tion of the average particle aspect ratio (from about 5 to 6 to about 3
for BLGA, and from about 6 to slightly below 4 for GDM) and of the
broadness of the final PSSD was achieved. Such a shape transformation
would be of interest, e.g., in the pharmaceutical industry for facilitating
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downstream operations.
While the advantages of the controlled multistage process are clear,

there is still room for improvement. For instance, the proposed cycle
logic, including the chosen sequence of stages (milling followed by dis-
solution followed by growth), has not been optimized with respect to
any performance criteria. Therefore, the stage targets were chosen more
or less arbitrarily and the impact of these decisions on the batch time
and the productivity is not taken into account. Obviously, some sort
of process model would be helpful to design a better cycle logic, while
feedback control would still be essential to counteract uncertainties and
disturbances.
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Nomenclature

Acronyms

BLGA β l-glutamic acid
DISCO dual imaging system for crystallization observation
GDM γ d-mannitol
PSSD particle size and shape distribution

Roman symbols

c solute concentration (per mass of solvent basis) [g kg−1]
c∗ solubility (per mass of solvent basis) [g kg−1]
d dissolution stage identifier
f number density function (PSSD) [µm−2]
fv volume-weighted PSSD [µm−2]
g growth stage identifier
k placeholder for stage identifier, k = {d, g, m, p, s}
`kn target average length of stage k in the nth cycle
`m1 parameter of the cycle logic [µm]
`ref parameter of the cycle logic [µm]
Li ith particle dimension (i = 1, 2) [µm]
L̄i average of ith particle dimension (i = 1, 2) [µm]
L̄

k
n vector of average particle dimensions L̄

k
n = [L̄1 L̄2]T [µm],

at the end of stage k of the nth cycle
L̄i,v volume-weighted average of ith dimension (i = 1, 2) [µm]
m milling stage identifier
n cycle counter
nWM number of wet milling steps
p product identifier
S (relative) supersaturation, c/c∗ [–]
s seed identifier
T temperature [◦C]
t time [h]
tstage stage duration [h]
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Greek symbols

θ rotor speed (of the wet mill) [rpm]
κ BLGA seed population; experiment label
λ BLGA seed population; experiment label
µij ij-cross moment of the PSSD [µmi + j]
ν GDM seed population; experiment label
ξ parameter of the cycle logic [–]
σii,v volume-weighted broadness of the PSSD

along ith dimension (i = 1, 2) [µm]
φ volume-weighted particle aspect ratio [–]
ψ volume-weighted ratio of the broadness

along the two dimensions [–]
ω parameter of the cycle logic [–]

Subscripts and superscripts

filt filtered (low-pass or median)

190



Chapter 7

Concluding Remarks and Out-
look

The work collected in this thesis represents a step toward the robust
operation of batch crystallization processes, where the term robust here
refers to obtaining a product PSSD with desirable properties repeatedly
in consecutive batches, despite the presence of unpredictable process dis-
turbances. Achieving the presented results was enabled by a combination
of advanced online monitoring and a number of feedback control laws,
mostly without the need of kinetic process models. From a control sys-
tems engineering point of view, most of the applied techniques are rather
basic and this thesis simply embodies another example of the potential of
feedback control. However, from a crystallization perspective, the chosen
approaches to achieving target crystal sizes and shapes are both novel
and promising. As outlined in Chapter 1, producing tailored crystal sizes
and shapes is highly desirable in many applications of crystalline solids.
Even in cases when the engineering tools presented in this thesis are
not sufficient to fully achieve this goal, their capability to operate the
process automatically and to reduce batch-to-batch variations in terms
of selected properties of the final PSSD are valuable.

In this chapter, a few general conclusions are drawn and some per-
spectives are given concerning the vital online monitoring aspect and
concerning the modeling and control aspects of batch crystallization pro-
cesses with particle size and shape objectives. Afterward, some reflections
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on the specific approaches proposed in this thesis are provided.

7.1 Thoughts on Online Monitoring
The slowly increasing availability of quantitative online size and shape
monitoring tools will pave the way for a larger number of studies on
feedback control of crystal size and shape. From today’s point of view,
imaging is the only promising technique to tackle the online shape mon-
itoring problem. In terms of employing either ex situ or in situ imag-
ing devices, it is clear that the former offer distinct advantages when it
comes to monitoring accuracy, whereas the latter do not suffer from the
drawbacks of a sampling loop (invasive nature and potentially biased
sampling). Regardless of the type of the imaging device, it is desirable
from a control perspective to reduce the processing time of the images
(the µ-DISCO currently requires in the order of 2 min per meassurement)
by optimizing the image analysis software. The benefits would be that
the online monitoring could be performed either with a shorter sampling
time, which would enable observing processes on a faster time scale, or
that more images could be acquired per time, which would provide more
accurate PSSD data. In light of today’s abundance of powerful comput-
ing hardware, this is simply a software engineering effort.

Coming back to ex-situ monitoring, devices designed for this task
should be enhanced with dilution loops23,33—preferably fully automated
ones—to make them applicable to suspension densities higher than those
explored in this work. Given the high dilution ratios that would be re-
quired, it could be favorable to no longer continuously sample the sus-
pension and pump it through the monitoring device, but to sample,
dilute, and measure in a batch-wise manner. Clearly, the development
of such a dilution loop would make the online monitoring and control
approaches proposed in this thesis more appealing from an industrial
point of view. On an industrial scale, sampling a bit of suspension from
a large tank will hardly pose a problem in terms of the invasise nature of
the measurement, but more likely in terms of obtaining a representative
sample of the population inside the crystallizer. Also, note that diluting
the observed suspension is an option that cannot be offered by in situ
techniques.
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7.2 Thoughts on Modeling and Control
In terms of the control aspect, this thesis spotlights the trade-off between
the model-based and the model-free approach to systematic crystal size
and shape modification. Modeling of the kinetics (e.g., crystal growth,
dissolution, and breakage rates) clearly provides an increased under-
standing of the process itself. It also permits simulation studies for the
purpose of process analysis, process optimization, or the development
and the initial testing of suitable feedback control laws. Nevertheless,
developing such models is difficult, time-consuming, very compound-
specific, and the resulting models are still quantitatively uncertain. It
has been shown in this thesis that online monitoring combined with
model-free feedback control is a viable alternative to operating the pro-
cess. This approach is especially useful when multiple compounds are to
be considered and when the development time should remain relatively
low.

From a control engineering point of view, there is no doubt that
model-based control laws are generally more powerful than their model-
free counterparts. The reason for the bias in this thesis toward model-free
techniques is in fact not the unavailability of more sophisticated control
algorithms, but the obvious lack of quantitatively predictive crystal size
and shape evolution models. Model-based control algorithms to make
use of a priori quantified model uncertainty have been proposed also
for crystallization processes.74,107 Thus, Bayesian estimation could be
applied more frequently in modeling studies to better quantify paramet-
ric uncertainty (see, e.g., refs 154 and 155). However, it also needs to
be said that these approaches do not help in keeping the complexity of
the modeling and control tasks at bay; in fact, quite the contrary is the
case. This issue has to be kept in mind, especially since taking into ac-
count also particle shape, and not only size, automatically increases the
dimensionality of the problem.

A general credo in process modeling is that every model needs a
purpose and that the chosen type of model needs to serve this purpose.
While certainly being the means of choice when performing modeling to
increase the understanding of the process, the widely applied population
balance framework is not the most suitable tool for obtaining control-
oriented models, mainly due to its comparatively high complexity and
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associated computational costs. An alternative presents itself in the form
of a combination of data-driven modeling with simpler model structures
that can reliably capture the principal dynamics of the process. A few
studies in the literature109,152 and the adaptive controller for the wet
milling process presented in Chapter 4 represent steps in that direction.

Two methods from control systems engineering that have not been
explored in this work are iterative learning control (ILC)156 and batch-
to-batch techniques to adapt process models. There are a number of
studies in the literature that apply these techniques also to batch crystal-
lization, thereby exploiting the repetitive nature of batch processes (see,
e.g., refs 157 and 158 and refs therein). It is clear that basic ILC and
batch-to-batch model adaption techniques cannot anticipate and com-
pensate for process disturbances that vary from batch to batch. Thus,
and in terms of applying the benefits of ILC and similar concepts also to
crystal shape control, these methods could be an excellent extension of
some of the model-free feedback controllers proposed in this thesis. For
instance, ILC could be applied to augment some of the presented feed-
back controllers with feedforward signals that are improved from batch
to batch.

7.3 Some Reflections on More Specific
Points

The single crystal temperature cycling approach proposed in Chapter 2
has not been implemented experimentally. The developed path planning
algorithms could easily be used as a basis to develop a suitable feedback
controller. Since single crystals are known to exhibit significant growth
rate dispersion,56 an experimental study on single crystal shape control
might be useful in the sense of providing another example on how the
introduction of feedback can mitigate model uncertainties.

The PFC strategy introduced in Chapter 3 has been proven to work
well both in simulations and in experiments in the sense of yielding very
similar product PSSDs for consecutive batches. In the case of seed pop-
ulations with an unknown or with a very narrow attainable region, the
process goals of the PFC might prove to be too stringent and could be
relaxed straightforwardly. For instance, the target orthant of the PFC
could be expanded to a target half-plane for the average particle length
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in order to ensure termination of the growth process. If means of shape
actuation other than a growth phase are available, it can prove useful to
replace the PFC with an even simpler CSC approach that automatically
ends the growth process as soon as a certain minimum crystal length
(or process yield) is achieved, as demonstrated in Chapter 6. Applying
the PFC to batch crystallizations operated with higher suspension den-
sities is feasible provided that the online monitoring problem for this
case is solved and as long as the process remains growth-dominated. If
significant nucleation takes place, additional monitoring efforts have to
be undertaken to distinguish the population of nucleated crystals from
that of the seeds, while the PFC should only be applied to the seed
population. Considerable agglomeration or breakage should be avoided
since the PFC has not been designed to handle these phenomena.

The adaptive controller for the milling process introduced in Chap-
ter 4 relies on a very simple model of the breakage process. The control
strategy has been proven to perform well in experiments using differ-
ent compounds in the sense of reaching different target average particle
lengths as long as the allowed range of rotor speeds is not too wide. Still,
widening this range would be useful for increased or more efficient shape
actuation. The inherently nonlinear nature of the milling process might
be captured in a better way by using a slightly more complex model in
the adaptive controller, probably featuring an additional parameter to
be estimated online. A potential shortcoming of the milling controller
is that it estimates the parameters of its internal process model based
on only a few, noisy measurements of the average particle dimensions.
While this is unavoidable when milling a previously unknown particle
population for the first time, the model could be estimated offline and
its parameters could be adapted only moderately when milling the same
population repeatedly in consecutive batches. As of the applicability of
the proposed milling controller to higher suspension densities, this should
be possible without modification of the control law, of course provided
that the online monitoring works reliably.

Most likely due to its simplicity, the particle volume controller pro-
posed in Chapter 5 has proven to perform very reliably on the lab-scale
provided that the dissolution kinetics are not too fast compared with
the sampling rate of the online monitoring tool and compared with the
thermal dynamics of the crystallizer. The particle volume controller can
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represent both a controlled fines removal strategy and a tool to indirectly
reduce the aspect ratio of needle-like particles. For pure fines removal
purposes, the heating of the entire slurry in a batch crystallizer can be
inefficient both energetically and timewise. In such a context, a similar
controller could also be used in combination with a dedicated, heated
fines removal loop. Similar to the milling controller, it should be possi-
ble to apply the particle volume controller to high suspension densities,
provided that reliable online monitoring of the evolution of the particle
volume is feasible.

As of the cyclic size and shape modification process consisting of
controlled growth, milling, and dissolution stages, it would be desirable
to increase its productivity, where producitivity is considered to be the
ratio of yield and process time. Fines removal using a dedicated loop
could already help to do so. Alternatively, to reduce the time required to
perform temperature cycles, two stirred tanks or two separate temper-
ature baths (thermostats) for the crystallizer jacket could be employed
(see, e.g., ref 21). A natural way of introducing also control over the
width of the needle-like particles would be to apply the PFC strategy
in the growth stages instead of the more basic CSC. Of course, it would
also be interesting to experimentally validate the controlled multistage
process proposed in Chapter 6 at higher suspension densities. Concern-
ing the process goals of any size and shape modification process, it is
essential that more research efforts such as that presented in ref 159 in-
vestigate the quantitative relation between properties of the PSSD and
downstream processing efficiency and product quality. Such efforts would
enable a systematic selection of targets for the control algorithms, which
in turn would lay the foundations for developing a less arbitrary and
thus a more purposeful cycle logic than that presented in Chapter 6.

Finally, it is vital to keep in mind the underactuation problem in
terms of the particle size and shape evolution mentioned in Chapter 1.
Thus, continued efforts should be directed toward developing control laws
for additional and potentially unconventional actuators or processes. For
instance, the addition of anti-solvent or additives, sonication, or spherical
agglomeration could be explored and robustified by introducing feedback
control.
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Appendix A

Supplementary Material for
Chapter 2

Table A.1: Algorithm to construct an extended directed graph KG, starting
from a directed graph H = (V,A) (see Section 2.3.3).

Step Description
1. Let nmax ∈ {0, 1, 2, . . .} be the maximum number of

switches between growth and dissolution that is allowed.
2. Assign a unique label to each node v ∈ V of the directed

graph H = (V,A). In particular, let I ∈ V be the label of
the node that corresponds to the grid point L0.

3. Split the set of arcs A of the graph H into two disjoint
sets AG and AD, where AG contains all the growth arcs,
and AD contains all the dissolution arcs. Additionally, let
AG,I ⊂ AG be the set of all growth arcs that have either
end at the node I. Also, define AD,I ⊂ AD to be the set of
all dissolution arcs that have either end at the node I.

4. Create a new directed graph KG = (WG,BG) with initially
empty sets of nodes and arcs WG and BG, respectively.
Initialize the counter variable n = 0.
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5. If n = 0, let Bn = AG; otherwise, let Bn = AG \ AG,I .
Then, letWn ⊆ V be the set of nodes that are connected to
at least one of the arcs in Bn. If n > 0, assign a new, unique
label to all the nodes in Wn and update also the labels of
the arc heads and tails in Bn. Finally, add Wn to WG, i.e.,
WG ←WG ∪Wn, and add Bn to BG, i.e., BG ← BG ∪ Bn.

6. If n = 0, skip this step. Otherwise, note that every node in
the two sets Wn−1 and Wn is a relabeled copy of a node in
the set V. For each node v ∈ V \ I, check if copies of this
node are present in both Wn−1 and Wn. If this is the case,
add an arc with weight 0 to BG with its tail and head at
the node copies in Wn−1 and Wn, respectively.

7. Increment the counter, i.e., n← n+1. Terminate if nmax =
0

8. Let Bn = AD \ AD,I . Also, let Wn ⊆ V be the set of nodes
that are connected to at least one of the arcs in Bn. Assign
a new, unique label to all the nodes in Wn and update also
the labels of the arc heads and tails in Bn. Then, add Wn

to WG, i.e., WG ← WG ∪ Wn, and add Bn to BG, i.e.,
BG ← BG ∪ Bn.

9. For each node v ∈ V \ I, check if copies of this node are
present in both Wn−1 and Wn. If this is the case, add an
arc with weight 0 to BG with its tail and head at the node
copies in Wn−1 and Wn, respectively.

10. Increment the counter, i.e., n← n+ 1.
11. Repeat steps 5 through 10, and terminate as soon as n =

nmax + 1.
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B.1 Materials
Deionized and filtered (filter size of 0.22 µm) water obtained from a Milli-
Q Advantage A10 system (Millipore, Zug, Switzerland) was used for
all the experiments performed in the scope of Chapter 3. Monosodium
l-glutamic acid monohydrate (NaGlu, Sigma-Aldrich, Buchs, Switzer-
land, purity > 99 %) and hydrochloric acid (HCl, Sigma-Aldrich, Buchs,
Switzerland, 37-38 %) were used as delivered for the preparation of seed
crystals. Two different polymorphs of l-glutamic acid exist, namely, the
prismatic, metastable α polymorph and the needle-like, stable β poly-
morph.49 β l-glutamic acid (Sigma-Aldrich, Buchs, Switzerland, purity
> 99 %) was used to prepare saturated solutions. Since BLGA crystals
obtained from the manufacturer were milled, they were not used as seeds
for the experiments. Instead, the seed preparation protocol described in
Appendix B.4 was employed.

B.2 Experimental Setup
All the experiments were performed in a 2 L glass jacketed stirred tank
crystallizer (inner diameter = 15 cm) connected to a ministat 230-CC3
thermostat (Huber, Offenburg, Germany) with fixed internal controller
parameters (P-cascade = 1000, I-cascade = 750, D-cascade = 0). The
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suspension was stirred by a four-blade glass impeller with 45° inclined
blades and a diameter of 60 mm (LaboTechSystems LTS AG, Reinach,
Switzerland). A stirring rate of 400 rpm was used for all the experiments,
except during seed preparation. To monitor and characterize the evolu-
tion of the process, the suspension from the crystallizer was pumped
through an ex situ stereoscopic imaging device using a sampling loop
(see Appendix B.3).

B.3 Characterization Technique
A stereoscopic imaging device, the µ-DISCO shown in Figure B.1, was
used to measure the evolution of the PSSD.32 The suspension sampled
from the reactor was pumped through a square quartz channel embed-
ded in a sampling loop at a flow rate of 400 mL min−1. It was observed
that this flow rate was adequate to ensure minimum sedimentation of
the particles along the sampling loop. Every 5 min, 800 images of the
suspension were acquired using the burst mode at frame rates of up to
75 fps. Motion blur in such imaging systems can often be encountered
when the suspension is pumped at a high flow rate and when the images
are acquired with long exposure times. Eventually, motion blur can lead
to an inaccurate characterization of the size and shape of the observed
particles. Therefore, during the image acquisition phase, the flow rate
of the suspension was reduced to 100 mL min−1 in order to eliminate
motion blur. Upon the acquisition of the images, the original flow rate
of 400 mL min−1 was resumed.

The images were processed online using an automated image analysis
routine, which provided the size and shape of the imaged crystals. At
each sampling instant, on an average, around 10 000 particles were char-
acterized by the µ-DISCO. The elongated BLGA crystals were mostly
classified as needles and quasi-equant particles using the classification
algorithm described elsewhere.32 Particles assigned to these two classes
were assumed to be primary particles and, based on the generic particle
shape models proposed previously, each primary particle was approxi-
mated by a cylinder with length L1 and width L2.23 The PSSDs were
reconstructed by applying a binning protocol using a regular grid along
the length and width dimension over all the primary particles character-
ized by the µ-DISCO.23 Upon the reconstruction of the PSSD for the pri-
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mary particles, the characteristics of the distribution such as the average
particle length and width can be described using different combinations
of cross moments of the PSSD. For instance, the average dimensions of
the population can be defined on a number- or on a volume-weighted
basis,23,39 as already described in Section 3.2.

The measurement technique has a threshold on the smallest size of
the particle that can be observed.32 During a growth process, particles
generated due to secondary nucleation, or fines present in the batch of
seed crystals, if any, can lead to new particles being observed by the
µ-DISCO once they reach the minimum detectable size. Eventually, this
can have a significant impact on the number-weighted average dimen-
sions. On the contrary, the volume-weighted average dimensions are usu-
ally only slightly affected, if at all. Hence, the volume-weighted average
length and width of the measured PSSD were used, as defined in eq 3.2.
Note that in the experimental part of Chapter 3 (i.e., in Section 3.7 and
in this Appendix), the cross moments are obtained from the experimen-
tally measured number density function f̂(t, L1, L2) that is not defined
with respect to the solvent mass; i.e., f̂ has units of µm−2.

A regular grid with 500 bins along the L1 direction and with 150
bins along the L2 direction was used for the online reconstruction of the
PSSDs and for the evaluation of the cross moments of the distribution for
all the PFC experiments. The two quantities ˆ̄L1,v and ˆ̄L2,v were fed back
to the PFC control algorithm to provide size and shape feedback. Prior
to using them in the control algorithm described in Section 3.3, they
were low-pass filtered as described in Section 3.5.5. After conducting the
CSC experiments (see Section 3.7.1), the cutoff frequency of the low-pass
filter was reduced to 1/20 of the sampling frequency to reduce the noise
level even further during the PFC experiments.

The volume-weighted PSSD f̂v visualized in Section 3.7.2 is defined
as

f̂v(t, L1, L2) = L1L
2
2f̂(t, L1, L2)
µ̂12(t) (B.1)
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B.4 Preparation of Seed Crystals
The seed crystals of BLGA were obtained via pH-shift precipitation fol-
lowed by polymorphic transformation, i.e., involving two steps. In the
first step, equimolar amounts of NaGlu and HCl were mixed in deion-
ized and filtered water with continuous stirring at 300 rpm at 5.0 ◦C for
1 h to produce crystals of the α polymorph. The α crystals obtained were
filtered and dried. Subsequently, a solution saturated with respect to α

l-glutamic acid at 45 ◦C was created by mixing equimolar amounts of
NaGlu and HCl. The α crystals obtained from the previous step were
allowed to undergo a polymorphic transformation over 36 h to form the β

polymorph.160 The transformed crystals were subsequently filtered and
dried.

One batch of seed crystals was used for the results presented in
Sections 3.7.1 and 3.7.2. This batch was obtained by wet-milling at
10 000 rpm (IKA Magic Lab rotor-stator wet mill equipped with the
MK/MKO 300 module) BLGA crystals obtained at the end of the pre-
cipitation process, followed by dry sieving (40-63 µm).

B.5 Limits on Operating Conditions
A lower and an upper limit both on the supersaturation and on the tem-
perature were defined for the experiments to satisfy various operational
constraints. The limits were chosen based on experimental experience
with BLGA in water. The lower limit on the supersaturation Smin was
set to 1.10 to ensure significant growth, whereas the upper limit Smax
was set to 1.18 to prevent observable nucleation and agglomeration. The
bounds on the operating limits of the temperature Tmin and Tmax were
fixed at 20 ◦C and 41 ◦C, respectively. In the considered system BLGA
in water, the temperature limits themselves are not critical. They were
chosen so that the bounds on the supersaturation can be satisfied at
any time by selecting an appropriate process temperature, and so that
the upper boundary of the temperature range explored elsewhere54 was
not exceeded. A final supersaturation Sfinal of 1.05 was defined to end
batches controlled by the PFC upon reaching the target orthant (see
Figure 3.1). The value of Sfinal was chosen to ensure that no dissolution
of the product crystals occurs, possibly due to the uncertainty in the
solubility data. Crystal growth was not observed at S = 1.05.
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B.6 Experimental Protocol
All the experiments presented in Sections 3.7.1 and 3.7.2 had three dis-
tinct phases, namely, an initial idle phase, a main experimental phase,
and a final phase.

For all the experiments, a saturated solution of BLGA in water was
prepared at 29.9 ◦C by adding excess BLGA crystals to the pure solvent.
The reactor was kept at constant temperature and at the desired stirring
rate to let the suspension equilibrate. The saturated solution was then
filtered off and 2000.0 g were put back into the reactor. The tempera-
ture of the reactor was then reduced to the initial temperature T (t0)
corresponding to the desired initial supersaturation S(t0) for a given ex-
periment. When T (t0) was reached, 0.35 g of BLGA seeds prepared using
the protocol described in Appendix B.4 were added and the experiments
were subjected to the three distinct measurement phases explained be-
low. Note that the low seed loading was chosen so that particles rarely
overlapped in the images, thereby ensuring the accuracy of the charac-
terization technique (see Appendix B.3). To operate with higher solid
phase concentrations (amount of seed crystals suspended in the solu-
tion), a dilution loop would be required, as described previously.23

During the initial idle phase, the controller was inactive, i.e., the sus-
pension was monitored and characterized, but the process temperature
set point in the thermostat was not updated. The duration of the initial
idle phase, tinitial, was 5 min and 30 min for CSC and PFC experiments,
respectively.

During the main experimental phase, the controller was operated
with a sampling time of 5 min, i.e., the suspension was monitored and
characterized, and based on the desired controller action (CSC or PFC),
an updated process temperature set point was assigned to the thermo-
stat. The maximum allowed duration of the main experimental phase
for a given experiment was tmax and the value assigned to this upper
limit depended on the type of experiment being conducted. For the CSC
experiments, tmax ranged from 14 h to 40 h, depending on the desired
supersaturation at which the experiment was conducted, and the main
experimental phase was always ended after tmax. For the PFC exper-
iments, tmax was set to 50 h, unless explicitly stated otherwise in Sec-
tion 3.7.2. If the PFC was able to drive the measured average dimensions
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into the target orthant before tmax, the controller switched to a process
temperature set point corresponding to a supersaturation of Sfinal to end
the batch. The PFC did the same if the target orthant was not reached
until the end of the main phase, i.e., at tmax.

During the final phase, the PFC was inactive. A constant supersat-
uration of Sfinal was maintained for 70 min (tfinal) for all the CSC and
PFC experiments.

B.7 Solute Concentration Estimation
To determine the correct temperature set point during a CSC experi-
ment, or to keep the supersaturation of the liquid phase within the chosen
supersaturation limits during a PFC experiment, a measurement of the
current solute concentration is required. For the experiments presented
in Section 3.7, the solute concentration estimation technique explained
in Section 1.3 was slightly modified. In more detail, a second scaling
factor φn was introduced in eq 1.2, yielding the concentration estimate

ĉ(t) = c0 − ρc
(
φvφnV̂ (t)− Vseed

)
(B.2)

where φn compensates for unwanted changes in the observed particle
count over the course of a growth experiment. This scaling factor is
defined as

φn = N̂s,0

N̂s(t)
(B.3)

where N̂s(t) is the particle count at time t and N̂s,0 is the initial par-
ticle count at seed addition. Prior to using ĉ defined in eq B.2 in the
controllers, it was low-pass filtered as described in Section 3.5.5, thus
yielding ĉfilt(t). The supersaturation estimate Ŝ at time t was then ob-
tained using eq 3.16.

For the experiments presented in Sections 3.7.1 and 3.7.2, a combi-
nation of the low seed loading and the slow growth of BLGA in water
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resulted in a small change in the solute concentration over time. Thus,
a viable alternative may be to approximate CSC experiments by sim-
ply operating at a constant temperature, where such temperature, given
the initial solute concentration c0, corresponds to the desired constant
supersaturation. Similarly, for PFC experiments, instead of supersatu-
ration limits, the temperatures corresponding to Smin and Smax at the
known initial solute concentration c0 could be used as limits for the tem-
perature set point to ensure that there is considerable growth of the pop-
ulation without significant nucleation and agglomeration. This alterna-
tive would completely eliminate the need for online solute concentration
measurements when performing batches controlled by both controllers.
Nevertheless, to operate the controlled process in the most general way,
concentration estimation (here, based on stereoscopic imaging using the
µ-DISCO) was employed for both CSC and PFC experiments.
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C.1 Materials

For all the experiments performed in Chapter 4, deionized and filtered
(filter size of 0.22 µm) water obtained from a Milli-Q Advantage A10 sys-
tem (Millipore, Zug, Switzerland) was used. For the preparation of β l-
glutamic acid (BLGA) seed crystals, monosodium l-glutamic acid mono-
hydrate (Sigma-Aldrich, Buchs, Switzerland, purity > 99 %) and hy-
drochloric acid (Sigma-Aldrich, Buchs, Switzerland, 37-38 %) were used
as delivered. BLGA obtained from the manufacturer (Sigma-Aldrich,
Buchs, Switzerland, purity > 99 %) was used to prepare saturated so-
lutions in water. d-mannitol (DM, Sigma-Aldrich, Buchs, Switzerland,
purity > 98 %) obtained from the manufacturer was used to prepare sat-
urated solutions in ethanol (Fisher Scientific, Reinach, Switzerland, an-
alytical reagent grade). d-mannitol exhibits three different polymorphs.
The γ polymorph (GDM), which is needle-like, is the thermodynami-
cally stable form161 and was used as seed crystals. The seed crystals of
BLGA and GDM used were prepared using the protocols described in
Appendix C.4. It is worth noting that BLGA is weakly soluble in wa-
ter (9.86 g kg−1 at 29.9 ◦C), whereas GDM is almost insoluble in ethanol
(0.16 g kg−1 at 25.0 ◦C).
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C.2 Experimental Setup
The experimental setup consists of four main elements, namely, the crys-
tallizer, the online solid phase characterization device µ-DISCO,32 the
rotor-stator wet mill, and the control computer, as shown in Figure 4.1
in Section 4.2.

All the experiments performed in the scope of Chapter 4 made use
of a 2 L glass jacketed stirred tank crystallizer (inner diameter = 15 cm)
connected to a ministat 230-CC3 thermostat (Huber, Offenburg, Ger-
many). The suspension was sampled from this crystallizer to character-
ize the evolution of the solid phase using the µ-DISCO as described in
Appendix C.3. The suspension was stirred at 400 rpm by a 4-blade glass
impeller with 45° inclined blades and a diameter of 60 mm (LaboTech-
Systems LTS AG, Reinach, Switzerland).

An IKA Magic Lab equipped with the MK/MKO module (IKA-
Werke, Staufen im Breisgau, Germany) served as the rotor-stator wet
mill in all the experiments. The suspension was pumped through the
mill using a peristaltic pump (Ismatec, Wertheim, Germany) at a flow
rate of 1.18 L min−1. The wet mill was connected to a ministat 230-
NR Pilot ONE thermostat (Huber, Offenburg, Germany) to regulate the
temperature of the wet mill jacket.

The image analysis routines described elsewhere32 and the wet mill
operating and control algorithms discussed in Sections 4.3.3 to 4.3.6 were
implemented in a personal computer (control computer, see Figure 4.1
in Section 4.2) running Matlab.140 The interface between the control
computer and the rotor-stator wet mill, as well as that between the
computer and the peristaltic pump of the wet mill, was realized using an
ATmega32U4 microcontroller (Atmel Corporation, San Jose, USA) run-
ning a custom firmware (not shown in Figure 4.1). The output from the
control computer running the wet mill operating and control algorithms
is the rotor speed set point θset for the wet mill.

C.3 Characterization of the Solid Phase
The µ-DISCO,32 an ex situ stereoscopic imaging device that monitors
the evolution of the multidimensional PSSD, was used to characterize
the crystals suspended in the crystallizer. In the case of the Recircu-
lation configuration (see Section 4.2), the solid phase is characterized
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by the µ-DISCO after one full suspension pass, where one full suspen-
sion pass corresponds to pumping the suspension through the mill for
a duration of one crystallizer residence time τC. A total of 800 pairs of
images were obtained at a frequency of up to 75 fps either every 5 min
or every 10 min. The images thus obtained were processed online using
automated image analysis routines; most of the detected particles were
classified either as needle-like or as quasi-equant. The particles that fell
under these two classes were assumed to be primary particles and each
of them was approximated as a cylinder of length L1 and width L2 us-
ing the generic particle shape model proposed previously.23 Afterward,
a binning protocol was applied to the characterized particles to generate
online a two-dimensional PSSD using a regular grid with 500 and 150
bins along the L1 and the L2 direction, respectively. This PSSD was used
for control. For illustration purposes in Chapter 4, a regular grid with
a different number of bins is used. The grid properties will be specified
whenever the quantities of interests are shown. Note that all the number
of bins along each dimension used in the scope of Chapter 4 guaran-
teed the convergence of the volume-weighted average dimensions of the
distribution.

C.4 Preparation of Seed Crystals
The BLGA seed crystals were obtained using a two-step process, namely,
pH-shift precipitation followed by a solvent-mediated polymorphic trans-
formation of l-glutamic acid from the α form to the β form (see Ap-
pendix B.4). Two different batches of BLGA seeds, referred to as Seeds
ε and Seeds ζ, were prepared.

Seeds ε were obtained by wet milling BLGA crystals obtained at the
end of the two-step process described above at 7000 rpm. The milled
crystals were subsequently suspended in a saturated solution at 30 ◦C
and heated up to 32 ◦C to dissolve the fines produced during the milling
step. After the solution was filtered off, the crystals were dry-sieved (>
40 µm) and suspended in a saturated solution at 29.9 ◦C. This suspension
was subsequently heated up to 33.5 ◦C to remove additional fines. After
filtration and drying, Seeds ε were obtained.

Seeds ζ were obtained by suspending the BLGA crystals obtained
at the end of the two-step process described above in a saturated solu-
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tion at 29.9 ◦C and by heating this suspension to 32 ◦C at 0.4 ◦C h−1.
Subsequently, the suspension was cooled down to 30 ◦C at 0.3 ◦C h−1.
Upon reaching the final temperature, the suspension was filtered and
the retained solids were dried.

GDM seeds were not prepared specifically for the experiments per-
formed in the scope of Chapter 4. The seed crystals were the products
obtained at the end of a process experiment (Experiment M3 in ref 153)
involving consecutive cycles of crystallization, milling, and dissolution,
as described elsewhere.153 The GDM seed crystals are referred to as
Seeds η.

The average characteristics of the populations of Seeds ε, Seeds ζ, and
Seeds η are given in Table C.1 and the corresponding PSSDs are shown
in Figure C.1. Recall that the volume-weighted average dimensions (L̄i,v,
i = 1, 2) are defined in eq 4.1. The volume-weighted broadnesses (σii,v,
i = 1, 2) listed in Table C.1 are additional useful characteristics of a
PSSD that can be seen as measures of the spread of the distribution
along the characteristic particle dimensions. They are defined as

σ11,v(t) =
√
µ32(t)/µ12(t)−

(
µ22(t)/µ12(t)

)2
σ22,v(t) =

√
µ14(t)/µ12(t)−

(
µ13(t)/µ12(t)

)2 (C.1)

The volume-weighted PSSDs fv illustrated in Figure C.1 are defined as

fv(t, L1, L2) = L1L
2
2f(t, L1, L2)
µ12(t) (C.2)

Equations C.1 and C.2 can also be applied to an experimentally mea-
sured PSSD f̂ , thus yielding the quantities σ̂ii,v (i = 1, 2) and f̂v, re-
spectively.
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Figure C.1: Volume-weighted PSSDs f̂v (obtained using eq C.2 and normalized
by the maximum of each PSSD) of (a) Seeds ε and (b) Seeds ζ of BLGA
crystals, and of (c) Seeds η of GDM crystals. The contour levels correspond
to 0.1, 0.5, and 0.9 of each normalized PSSD. Along the L1 direction, a regular
grid with 120 bins and a spacing of 12 µm, 21 µm, and 13 µm was used for Seeds
ε, Seeds ζ, and Seeds η, respectively. Along the L2 direction, the corresponding
grid spacing was 9 µm, 7 µm, and 7 µm using 40 bins.
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Table C.1: Measured volume-weighted average length ˆ̄L1,v, width ˆ̄L2,v, and
the measured volume-weighted broadness of the seed PSSD along the length
direction σ̂11,v and along the width direction σ̂22,v for the BLGA and the GDM
seeds.

Compound Seeds ˆ̄L1,v [µm] ˆ̄L2,v [µm] σ̂11,v [µm] σ̂22,v [µm]
BLGA ε 278 62 125 25

ζ 418 63 229 27
GDM η 356 57 149 25

C.5 Limits on Operating Conditions
Two different operating conditions were constrained for all the exper-
iments, namely, the rotor speed θ of the wet mill and the duration of
the main experimental phase tmax (see Appendix C.6). The rotor speed
was limited to the interval from 3000 to 12 000 rpm. The upper limit
was set to 12 000 rpm in order to prevent excessive breakage that would
occur at higher rotor speeds and that could easily lead to irreversible
overshooting of the target average length.

C.6 Experimental Protocol
The experiments performed in the scope of Chapter 4 consisted of three
phases, namely, an initial idle phase, a main experimental phase, and a
final phase. Since different control strategies and compounds were used
in the experimental campaign, the protocols for the experiments differed
slightly, as detailed below.

For all the experiments performed with BLGA, an excess amount of
BLGA crystals was added to water at 29.9 ◦C to prepare a saturated
solution. The suspension was equilibrated by keeping the crystallizer at
the desired temperature and stirring rate. The suspension was then fil-
tered off and 2000.0 g of clear solution was loaded into the crystallizer.
The temperature of the crystallizer was then reduced to the experimen-
tal temperature Texp of 29.1 ◦C corresponding to a supersaturation Sexp
of 1.03. Upon reaching the desired temperature, 0.50 g of BLGA seeds
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prepared as described in Appendix C.4 was added to the saturated so-
lution. Note that the mild supersaturation level chosen ensured that
neither dissolution nor detectable growth of the crystals occurred during
the milling experiments.

For all the experiments performed with GDM, an excess amount of
GDM crystals was added to ethanol at 25.0 ◦C to prepare a saturated
solution. The suspension was equilibrated by keeping the crystallizer at
the desired temperature and stirring rate. The suspension was then fil-
tered off and 1500.0 g of clear solution was put back into the crystallizer.
Since GDM is practically insoluble in ethanol, the experiments were con-
ducted at 25.0 ◦C corresponding to a saturated solution (Sexp = 1.00).
Subsequently, 0.35 g of GDM seeds obtained using the protocol described
in Appendix C.4 were added to the saturated solution.

It is acknowledged that the suspension density used in the experi-
ments is quite low, but a dilution loop could potentially be employed to
deal with higher suspension densities.23

During the initial idle phase, the suspension was monitored and char-
acterized, but the measurements thus obtained were not used for control
purposes. The duration of this phase was tinitial = 5 min. The measure-
ments obtained during this phase are not shown in Section 4.4.

The duration of the main experimental phase was tmax = 75 min.
During this phase, the control laws were active and the suspension was
characterized every tsamp = 10 min. Except for the benchmark strategy,
the volume-weighted average length of each PSSD measurement was fed
to the employed control law to determine the rotor speed set point θset.
Subsequently, the suspension was milled for a duration of τC using the
Recirculation configuration (see Section 4.2.2), which corresponds to one
full suspension pass. The sequence of PSSD characterization, control law
execution, and milling was repeated every 10 min either until the target
average length was reached or until the end of the main experimental
phase.

During the final phase, the controllers were inactive and the suspen-
sion was characterized for a duration of tfinal = 10 min.
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Table C.2: Experimental and controller parameters used in Chapter 4.

Parameter Unit Value
BLGA experiments
ρc g µm−3 1.59× 10−12

c∗ 3,52 g kg−1 3.37 e(3.59× 10−2 T )

c0 g kg−1 9.86
mseed g 0.50
msolvent kg 1.98
T ∗ ◦C 29.90
Sexp – 1.03
GDM experiments
c0 g kg−1 0.16
mseed g 0.35
msolvent kg 1.50
T ∗ ◦C 25.00
Sexp – 1.00
Wet mill
τWM s 5.72
τC s 102.00
Controllers
ngrid – 500 (L1)

– 150 (L2)
tsamp min 10
tinitial min 5
tmax min 75
tfinal min 10
θmin rpm 3000
θmax rpm 12000
θ0 rpm 7500
κ µm−1 0.1
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D.1 Materials
Deionized and filtered (filter size of 0.22 µm) water was obtained from a
Milli-Q Advantage A10 system (Millipore, Zug, Switzerland, resistance
18.2 MΩ cm at 25 ◦C) and used as a solvent in all experiments.

For the experiments with the compound l-glutamic acid, the needle-
like, stable β polymorph was used to prepare saturated solutions (Sigma-
Aldrich, Buchs, Switzerland, purity > 99 %). The stable form I of vanillin
(Sigma-Aldrich, Buchs, Switzerland, tested according to Ph. Eur.) was
purchased and used for the preparation of saturated solutions. The pur-
chased BLGA and vanillin crystals were not used for seeding the exper-
iments. Instead, a dedicated seed preparation protocol was applied, as
described in Appendix D.2.

For determining relative supersaturation and undersaturation levels
and the corresponding temperatures, the same solubility curves as in
ref 40 were used for both BLGA and vanillin. These solubility curves
are provided in Figure D.1.

D.2 Preparation of Seed Crystals
For BLGA, the seed crystals were initially obtained using a two-step
pH-shift precipitation process. In the first step, equimolar quantities
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Figure D.1: Solubility curves (on a per mass of solvent basis) of BLGA3,52

(orange solid line) and vanillin41 (green solid line) in water.

of monosodium l-glutamic acid monohydrate (NaGlu, Sigma-Aldrich,
Buchs, Switzerland, purity > 99 %) and hydrochloric acid (HCl, Sigma-
Aldrich, Buchs, Switzerland, 37-38 %) in deionized and filtered water
were mixed, while constantly stirring at 300 rpm at 5.0 ◦C for 1 h. This
step produces crystals of the α polymorph of l-glutamic acid (ALGA).
The suspension was subsequently filtered off and the ALGA crystals were
dried. In the second step, the ALGA crystals obtained in the previous
step were suspended in a saturated solution of ALGA in water at 45.0 ◦C
(prepared by mixing equimolar quantities of NaGlu and HCl). The crys-
tals of the α polymorph were then allowed to undergo a solvent-mediated
polymorphic transformation to the β polymorph. This suspension was fil-
tered off after 48 h and the BLGA crystals thus obtained were dried.40

The seeds for experiments E1 to E6 (see Section 5.2.1) and for the
feedback control experiments discussed in Sections 5.2.2 and 5.5.2 were
obtained by dry-sieving the crystals collected at the end of the afore-
mentioned two-step process using the sieve fraction 90-180 µm.40

The seeds for experiments E7 to E13 (also see Section 5.2.1) were
produced as follows: 2500.0 g of saturated solution of BLGA in water
were prepared at 29.9 ◦C by adding excess amounts of commercial BLGA
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and letting the suspension equilibrate for at least 6 h while stirring at
400 rpm before filtering off the solution. Then, 15 g of the BLGA crystals
obtained from the pH-shift precipitation were suspended in this solution.
Subsequently, the suspension was cooled to let the BLGA crystals grow,
first with a linear temperature ramp to 25.0 ◦C over 2 h and then with
another linear temperature ramp to 23.0 ◦C for a duration of 12 h. Then,
the solution was filtered off and the retained BLGA crystals were dried.
Finally, the particles were dry-sieved using the sieve fraction 90-355 µm.

The seeds for the feedback control experiments using milled seeds (see
Section 5.5.3) correspond to Seeds ε of ref 67 (see also Appendix C.4).
First, BLGA crystals obtained at the end of the two-step process de-
scribed above were wet milled at 7000 rpm. The milled crystals were
subsequently suspended in a saturated solution at 30 ◦C. This suspen-
sion was then heated up to 32 ◦C to dissolve the fines produced in the
previous milling step. The crystals obtained after filtering the suspension
were dry-sieved (> 40 µm). These crystals were then suspended in a sat-
urated solution at 29.9 ◦C and heated up to 33.5 ◦C to remove additional
fines. The suspension was filtered off and then dried to obtain the batch
of Seeds ε.67

The vanillin seeds used for the feedback control experiments discussed
in Sections 5.2.2 and 5.5.4 are the same as those reported elsewhere.40
These seed crystals were obtained as follows: first, a saturated solution of
vanillin in water was prepared at 40 ◦C, corresponding to a concentration
of 23.49 g kg−1 on a per mass of solvent basis; subsequently, the saturated
solution was crash-cooled to 20 ◦C to nucleate and grow the vanillin
crystals; and finally, once the temperature reached 20 ◦C, the suspension
was filtered off and the retained solids were dried overnight.40

D.3 Experimental Setup
The experiments presented in this chapter were performed in a 2 L glass
jacketed stirred crystallizer. A ministat 230-CC3 thermostat (Huber, Of-
fenburg, Germany) was used to control its temperature. The suspensions
were stirred at a constant rate of 400 rpm using a 4-blade glass impeller
of 60 mm diameter at an inclination of 45° (LaboTechSystems LTS AG,
Reinach, Switzerland).

The characterization of the solid phase was performed using an ex situ
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stereoscopic imaging device, the µ-DISCO.32 A total of 500 or 800 pairs
of images were obtained at a frequency of up to 75 fps every 2 min or
5 min. The images thus obtained were processed using fully automated
image analysis routines implemented in a control PC to generate a two-
dimensional PSSD using a regular grid. These image analysis routines,
apart from providing a PSSD, also provide an estimate of the visual
hull51 of a particle observed in the flow channel, which serves as an ap-
proximate, but direct observation of the volume of the corresponding
particle. In the batch system employed here, the change in the solute
concentration can thus be inferred from the observed change in the to-
tal visual hull volume (which is simply the sum of all the single parti-
cle visual hull volumes obtained from a sequence of images taken at a
given time instant) by means of the mass conservation constraint. The
interested reader can find a detailed explanation of this procedure in
Section 1.3 or in ref 40. The total visual hull volume also served as the
feedback signal for the control algorithm introduced in Section 5.5. A
schematic of the experimental setup is shown in Figure D.2. The image
analysis routines32 and the control algorithms were implemented in a
control PC running Matlab.162

An IKA Magic Lab equipped with the MK/MKO module (IKA-
Werke, Staufen im Breisgau, Germany) was additionally used as the
rotor-stator wet mill in the feedback control experiments using the milled
seeds (see Section 5.5.3). The suspension was pumped from the crystal-
lizer through the mill using a peristaltic pump (Ismatec, Wertheim, Ger-
many) at a flow rate of 0.9 L min−1 and immediately recirculated back
into the crystallizer afterward. The jacket temperature of the wet mill
was regulated using a ministat 230-NR Pilot ONE thermostat (Huber,
Offenburg, Germany).

D.4 Maximum Likelihood Estimation

According to the procedure and the underlying assumptions described
elsewhere in detail,54,163,164 it can be shown that the MLE, i.e., the
parameter vector θ that maximizes the probability of observing the ex-
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perimental data set, is the minimizer of the function163

J(θ) = Nt

2

Nv∑
m=1

ln
( Nt∑
k=1

(
ŷmk − ymk(θ)

)2) (D.1)

where Nt is the total number of data points in the experimental time
series, Nv is the number of measured quantities, ŷmk is the kth data
point of the mth measured quantity, and ymk(θ) is the corresponding
model prediction, which depends on the parameter vector θ.

This optimization problem is nonlinear and nonconvex in general,
which means that finding a global minimizer cannot be guaranteed. To
rate the quality of any local minimizer, a visual inspection of the fit be-
tween the experimentally measured quantities and the model predictions
was performed. Furthermore, confidence regions were computed to as-
sess how well a minimizer θ∗ was determined for each candidate model.
As explained elsewhere,54,163,164 after approximating the measurement
error covariance matrix and computing the sensitivities of the model
predictions with respect to the parameters, an estimate of the positive
semidefinite parameter covariance matrix Vθ can be obtained. The hy-
perellipsoidal confidence region in the Np-dimensional parameter space
is then given as

{θ ∈ RNp | (θ − θ∗)TV −1
θ (θ − θ∗) ≤ F−1

χ2 (η,Np)} (D.2)

where F−1
χ2 (η,Np) is the inverse of the chi-square cumulative distribution

function with Np degrees of freedom at the probability η. As a simplified
representation of the multidimensional confidence region, the dimensions
of its axis-aligned bounding box are taken as parameter confidence in-
tervals (see Section 5.4.2 and Appendix D.7).

D.5 Data Preprocessing
As indicated in Table 5.1, the experiments were split into a subset of
experiments used for fitting and a second subset used solely for vali-
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dation. The experiments used for fitting were selected such that their
subset spans the whole temperature range explored and contains data
from both seed populations and from both temperature ramp and step
profiles.

The first 2 h for each experiment were combined into a single data
point to obtain the seed population. The same was done for the last 2 h
(E12 and E13) or the last 20 min (remaining experiments) to obtain the
product population. This was done to increase the number of particles
constituting the seed and product PSSDs, which in turn improves the
accuracy of the simulation and of the graphical representation of the
PSSDs (see also Sections 5.4.1 and 5.4.2).

Prior to evaluating the objective function given in eq D.1, further
preprocessing steps were applied to the experimental data as follows:

• All the experiments listed in Table 5.1 were started at slightly
supersaturated conditions; these initial phases with S > 1 were
removed from the data.

• The time series of experiments with a significantly longer duration
than that of the shortest experiment were down-sampled to en-
sure that the objective function was not dominated by the longer
experiments.

• After down-sampling, the time series of all the experiments consid-
ered for fitting were concatenated, thus resulting in a total number
of Nt data points.

• The time series of the three measured quantities L̄1,v, L̄2,v, and
c (i.e., Nv = 3 in eq D.1) were scaled relative to each other such
that they had comparable magnitudes (maximum measured con-
centration divided by the measured maximum of each of the three
outputs). Note that the lower bounds of the integrals in eq 5.5,
i.e., L1,min and L2,min, were left at zero in the case of experimental
data.
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D.6 Solution of the Population Balance
Equation

The PBE model given by eqs 5.1 to 5.3 was solved numerically using
a fully discrete high resolution finite volume method with the van Leer
flux limiter. At the lower boundary of the physical domain, which is
given by L1 = 0 or L2 = 0, a numerical outflow boundary condition was
applied.121 As explained in Appendix D.5, the seed PSSDs f0 consisted of
the particles observed during the initial 2 h (steady state phase) for each
experiment listed in Section 5.2.1. The applied binning protocol used a
regular grid with a constant resolution of 360 (along L1) by 120 (along
L2). The bin sizes along L1 and L2 ranged from 6.3 µm to 8.4 µm and
from 2.4 µm to 4.1 µm, respectively. They were determined individually
for each experiment based on the largest experimentally detected particle
dimensions. Note that the grid resolution was ensured to be high enough
by running test simulations and comparing the results obtained from
the HFRVM with those from the standard method of moments. After
binning, the seed PSSDs were rescaled to match the experimental seed
mass. The constants ρc and kv in eq 5.3 were set to 1.59× 10−12 g µm−3

(the density of BLGA) and π/4 (for cylinders), respectively.
To simulate the volume-weighted average dimensions defined in eq 5.4

realistically, the lower detection limits L1,min and L2,min of the employed
solid phase characterization device should be taken into account. These
quantities were set to the smallest experimentally characterized particle
length and width, which was about 10 µm and 3 µm, respectively. Addi-
tionally, before evaluating eq 5.5 in the simulations, f was set to zero for
the regions where L2 > L1, because the employed solid phase monitor-
ing device always assigns the larger measured dimension of a needle-like
particle to the length L1 and the smaller one to the width L2. Finally,
the same scaling factors as mentioned at the end of Appendix D.5 (last
point) were applied to the model predictions prior to evaluating the ob-
jective function given in eq D.1.

D.7 Parameter Estimation Results
The results obtained by fitting the candidate models M1 to M4 to the
preprocessed experimental data are reported in Table D.1. For each
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μ

μ

Figure D.3: Objective function value J(θ) (see eq D.1) and parameter confi-
dence region for the fit of model M1. The objective function values are visu-
alized by a selection of contour levels (colored areas and gray lines) and the
numbers are reported alongside. The white ellipsoid represents the 95 % pa-
rameter confidence region (determined according to eq D.2). The white dotted
rectangle highlights the axis-aligned bounding box of this confidence region.
The white point in the center of the ellipsoid corresponds to the nominal values
of k∗

d,1 and k∗
d,2 given in Table D.1.

model, the value J(θ∗) of the objective function (see eq D.1) at the
local minimizer θ∗, as well as the corresponding parameter values and
their confidence intervals (confidence level η = 95 %), are given. All these
values were computed separately using both a sequential quadratic pro-
gramming routine (Matlab’s fmincon165) and a particle swarm algo-
rithm (Matlab’s particleswarm166). Since the latter did not improve
the fit and for the sake of brevity, its detailed results are not reported.

Since M1 defines a two-dimensional parameter space, the objective
function J(θ) can be evaluated and visualized, as shown in Figure D.3.
It can be readily seen that the objective function for model M1—given
the available experimental data—is at least locally convex and exhibits
a rather shallow minimum that extends along a constant ratio of the
two parameters kd,1 to kd,2. Nevertheless, the minimizer can be found
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reliably, as indicated by the small 95 % confidence region.

Table D.1: Parameter estimation results for all the candidate models.

Model Quantity Unit fmincon165

M1 J(θ∗) – 6745
k∗d,1 µm s−1 2.32 ± 0.14
k∗d,2 µm s−1 0.19 ± 0.01

M2 J(θ∗) – 6600
k∗d,1 µm s−1 (6.66± 8.43)× 101

k∗d,2 µm s−1 (1.09± 1.60)× 102

k∗s,1 – 1.73 ± 0.26
k∗s,2 – 2.37 ± 0.31

M3 J(θ∗) – 6713
k∗d,1 µm s−1 (0.23± 3.01)× 101

k∗d,2 µm s−1 (0.10± 1.61)× 104

k∗s,1 K (0.00± 3.96)× 103

k∗s,2 K (2.59± 4.86)× 103

M4 J(θ∗) – 5670
k∗d,1 µm s−1 2.24 ± 0.33
k∗d,2 µm s−1 (6.43± 3.47)× 10−4

k∗s,1 – (5.05± 1.89)× 10−2

k∗s,2 – −1.29 ± 0.12
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Supplementary Material for
Chapter 6

E.1 Materials

Monosodium l-glutamic acid monohydrate (NaGlu, Sigma-Aldrich, Buchs,
Switzerland, purity > 99 %) and hydrochloric acid (HCl, Sigma-Aldrich,
Buchs, Switzerland, 37-38 %) were used as purchased to prepare seed
crystals. Deionized and filtered (filter size of 0.22 µm) water taken from
a Milli-Q Advantage A10 system (Millipore, Zug, Switzerland) was used
as a solvent for all the experiments. The needle-like, stable β polymorph
of l-glutamic acid was used for all the experiments with that compound.
The saturated solutions were prepared using commercially purchased
β l-glutamic acid (BLGA, Sigma-Aldrich, Buchs, Switzerland, purity
> 99 %).

d-mannitol (DM, Sigma-Aldrich, Buchs, Switzerland, purity > 98 %)
obtained from the manufacturer was used to prepare saturated solu-
tions in a 10/90 wt-% mixture of propan-2-ol (VWR International S.A.S,
Fontenay-sous-Bois, France, analytical reagent grade) and deionized and
filtered water. The γ polymorph (GDM), which exhibits a needle-like
morphology, is the thermodynamically stable form161 and was used to
seed the experiments with this compound.

Dedicated seed preparation protocols, which are described in Ap-
pendix E.4, were employed to produce the seeds crystals for both BLGA
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and GDM used in the experiments.

E.2 Solubility Curves
The solubility curves used to determine the supersaturations of BLGA
in water3,52 and of GDM in a 10/90 wt-% mixture of propan-2-ol and
water153 are

c∗(T ) = 3.37 e(3.59× 10−2T ) (E.1)

and

c∗(T ) = 64.9 e(3.45× 10−2T ) (E.2)

respectively, where c∗(T ) is the solubility in g kg−1 on a per mass of
solvent basis and T is the temperature in ◦C. The solubility curves within
the temperature range of interest are shown in Figure E.1.

For all the experiments presented in Chapter 6, the supersaturation
S at a given time t was computed as

S(t) = cfilt(t)
c∗
(
T (t)

) (E.3)

where c∗ is the solubility (see eqs E.1 and E.2) as a function of the cur-
rent process temperature T (t) and cfilt(t) is the low-pass filtered solute
concentration estimate.

E.3 Experimental Setup
The experiments were performed in a 2 L glass jacketed stirred crystal-
lizer. A ministat 230-CC3 thermostat (Huber, Offenburg, Germany) was
used to control its temperature. The suspensions were stirred at a con-
stant rate of 400 rpm using a 4-blade glass impeller of 60 mm diameter at
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Figure E.1: Solubility curves of BLGA in water3,52 (green solid line) and GDM
in a 10/90 wt-% mixture of propan-2-ol and water153 (blue solid line). The
inset figure shows the solubility curve of BLGA in water with a narrower limit
for the concentration axis.

an inclination of 45° (LaboTechSystems LTS AG, Reinach, Switzerland).
The characterization of the solid phase was performed using the ex situ
stereoscopic imaging device µ-DISCO (see Section 1.2).32 An IKA Magic
Lab equipped with the UTL module (IKA-Werke, Staufen im Breisgau,
Germany) was the rotor-stator wet mill used in all the experiments. The
suspension was pumped through the mill using a peristaltic pump (Is-
matec, Wertheim, Germany) at a flow rate of 0.9 L min−1. The jacket
temperature of the wet mill was regulated using a ministat 230-NR Pi-
lot ONE thermostat (Huber, Offenburg, Germany). A schematic of the
complete setup is shown in Figure E.2.

The suspension from the crystallizer was pumped to the µ-DISCO
and in there through a transparent channel with a square cross section
at a flow rate of 0.4 L min−1 and 0.1 L min−1 during the idle and the
measurement phase, respectively. A total of 800 pairs of images were
obtained using the stereoscopic imaging setup at a theoretical maximum
frequency of 75 fps every 5 min (measurement phase). As an exception, in
the case of a wet milling stage, the solid phase was characterized by the
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Figure E.2: Schematic of the experimental setup (crystallizer and recirculation
loop including the wet mill) coupled with the stereoscopic imaging device (µ-
DISCO) via a sampling loop. On the basis of the image data received from
the µ-DISCO, the control computer calculates and provides set points for the
rotor speed of the wet mill (θset) and for the temperature of the suspension in
the crystallizer (Tset).
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µ-DISCO every 10 min, because one full suspension pass through the wet
mill67 (roughly corresponding to running the mill for a duration of 102 s
and also referred to as one wet milling step in Section 6.4.3) had to take
place additionally between the measurements. The images thus obtained
were processed on the fly using automated image analysis routines.32 For
the seed particle ensembles considered in Chapter 6, around 80 % of the
detected particles were classified to be either of the needle-like or of the
quasi-equant type. Each particle that fell into either of these two shape
classes was approximated as a cylinder of length L1 and width L2 using
the generic particle shape model proposed elsewhere.23 After image ac-
quisition, particle classification, and characterization, a binning protocol
was applied to the set of characterized particles to generate online a two-
dimensional particle size and shape distribution (PSSD) using a regular
grid with 500 and 150 bins along the L1 and the L2 direction, respec-
tively. This PSSD was used for calculating and controlling the average
particle length during the growth and the milling stages. For plotting
purposes, a regular grid with 120 and 40 bins along the L1 and the L2
direction, respectively, was used for improved visualization of the results
presented in Chapter 6. Prior to using the average particle dimensions
in the control algorithms and prior to presenting them in the plots, they
were low-pass filtered as described previously (see also Section 3.5.5 and
Appendix B.3).65,66 During the dissolution stages, the feedback signal
was a median-filtered version of the sum of all the estimated single par-
ticle volumes detected by the µ-DISCO for each sampling instant. This
sum corresponds to the so-called total visual hull volume of all the de-
tected particles (i.e., using all the five shape classes of the µ-DISCO),
as described previously (see also Section 1.3).40,68 Since the setup cor-
responds to a (closed) batch system, the change in the total visual hull
volume was used for estimating the evolution of the solute concentration,
as described elsewhere in detail (see also Section 1.3).40 The estimated
solid phase concentration was low-pass filtered, as described previously
(see also Section 3.5.5),65 before using it in the control algorithms and
in eq E.3.

The image analysis routines32 and the control algorithms for the
milling and the dissolution stages described previously (see also Sec-
tions 4.3 and 5.5)67,68 were implemented in a personal computer (con-
trol computer) running Matlab.140 The set point calculation of the
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constant supersaturation controller (CSC, see, e.g., refs 123 and 124)
was performed in the same computer by inverting eq E.3, i.e., by solving
it for the temperature for given values of S and cfilt(t). The interface
between the control computer and the rotor-stator wet mill, as well as
that between the computer and the peristaltic pump of the wet mill, was
realized using an ATmega32U4 microcontroller (Atmel Corporation, San
Jose, USA) running a custom firmware (not shown in Figure E.2). The
output from the control computer running the control algorithms was
either the rotor speed set point θset (in rpm) for the wet mill in case of a
milling stage or the temperature set point Tset (in ◦C) for the thermostat
of the crystallizer in case of a growth or a dissolution stage.

Darkfield micrographs were obtained using a Leica DM8000 M optical
microscope (Leica Microsystems (Schweiz) AG, Heerbrugg, Switzerland)
equipped with LED illumination and a 12.5 MP digital color camera with
a CCD sensor at fivefold magnification.

E.4 Preparation of Seed Crystals
For the experiments with the compound BLGA, two different batches of
seed particles were used. They are referred to as Seeds κ and Seeds λ. Ini-
tially, the BLGA seeds were obtained using a two-step process involving
a pH-shift precipitation followed by a solvent-mediated transformation
of the α polymorph to the β polymorph of l-glutamic acid (see also
Appendix B.4).66

Seeds κ were obtained by dry-sieving (>63 µm) the particles obtained
at the end of the two-step process. These crystals were then suspended
in a saturated solution of BLGA in water at 29.9 ◦C and the suspension
was heated to 33 ◦C at a rate of 0.4 ◦C h−1. In order to recover the mass
that was lost during the heating step and to grow the crystals to a larger
size, the suspension was subsequently cooled down to 29.9 ◦C at a rate
of 0.3 ◦C h−1. After filtering off the solution, washing the crystals with
acetone, and drying the washed crystals, Seeds κ were obtained.

Seeds λ were obtained by dry-sieving (63 µm-90 µm) the seeds ob-
tained from the aforementioned two-step process. The crystals thus ob-
tained were suspended in a saturated solution at 29.5 ◦C and this sus-
pension was heated to 30.3 ◦C at a rate of 0.3 ◦C h−1. Subsequently, the
suspension was first crash cooled to 26.0 ◦C and then cooled to 25.5 ◦C at
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Table E.1: The measured average length L̄1,v, width L̄2,v, and the measured
broadness of the seed PSSD along the length direction σ11,v and along the
width direction σ22,v for Seeds κ, Seeds λ, and Seeds ν.

Compound Seeds L̄1,v [µm] L̄2,v [µm] σ11,v [µm] σ22,v [µm]
BLGA κ 361 51 162 20

λ 286 55 122 19
GDM ν 356 57 149 25

a rate of 0.06 ◦C h−1. Upon reaching the final temperature, the solution
was filtered off and the retained crystals were dried.

For the experiments with the compound GDM, a single batch of seed
crystals, referred to as Seeds ν, was used. This batch of seed crystals
corresponds to the products obtained at the end of an uncontrolled mul-
tistage process experiment (Experiment M3 in ref 153) comprising wet
milling, dissolution, and growth steps.

The average characteristics of the populations of Seeds κ, Seeds λ,
and Seeds ν are given in Table E.1 and the corresponding PSSDs are
visualized in Figure E.3.

E.5 Protocol for the Multistage Process
Experiments with BLGA

Seven controlled multistage process experiments were performed with
the compound BLGA. Their most important characteristics are listed
in Table E.2. The main phases of these experiments during which the
multistage process controller was active are referred to as experiments
κ1, κ2 and experiments λ1 to λ5. For all these experiments, saturated
solutions of BLGA in water were prepared by adding an excess amount
of purchased BLGA to water and letting the suspension equilibrate for
a duration of at least 6 h at a temperature of 29.9 ◦C while stirring at
400 rpm. Afterward, the solution was filtered off and 2000.0 g of clear,
saturated solution was loaded into the crystallizer. After inserting the
sampling loop of the µ-DISCO and that of the wet mill into the crys-
tallizer, the solution was cooled to 29.1 ◦C, corresponding to an initial
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Figure E.3: PSSDs fv (obtained using eq 6.3 and normalized by the maximum
of each PSSD) of (a) Seeds κ and (b) Seeds λ of BLGA crystals, and of (c)
Seeds ν of GDM crystals. The contour levels correspond to 0.1, 0.5, and 0.9 of
each normalized PSSD. Along the L1 direction, a regular grid with 120 bins
and a spacing of 15 µm, 12 µm, and 13 µm was used for Seeds κ, Seeds λ, and
Seeds ν, respectively. Along the L2 direction, the corresponding grid spacing
was 8 µm, 7 µm, and 7 µm using 40 bins. The solid circular markers indicate
the average dimensions of the populations.
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supersaturation of 1.03.

E.5.1 Experiments without Initial Growth Stage
After reaching the desired initial supersaturation, 0.40 g of Seeds κ was
added. The subsequent experiment consisted of two phases, namely, of
an initial idle phase and of a main experimental phase. The duration of
the initial idle phase was 30 min, during which the suspension was kept
at constant temperature and monitored and characterized using the µ-
DISCO, but no process controller was active. After this idle phase, the
multistage process controller was started to operate the main experi-
mental phase. Either one (experiment κ1) or two (experiment κ2) cycles
of wet milling, dissolution, and growth were performed using the stage
control algorithms and the cycle logic described in Sections 6.2 and 6.3,
respectively. The chosen parameters of the cycle logic are provided in
Table E.2. Recall from Section 6.3 that `ref should correspond more or
less to the average particle length in the seed population. It is worth
noting that the initial measurement of the average particle length in
each experiment can be different from the value of L̄1,v reported in Ta-
ble E.1 due to measurement noise and due to random variations when
sampling from a vial containing all the seed crystals. According to the
values reported in Table E.2, the goal of the milling stage of the first
cycle was to reduce the average particle length of the seed population
from `ref = 360.0 µm to `m1 = 200.0 µm. To do so, the adaptive milling
controller presented elsewhere (see also Section 4.3.6) was used with an
initial wet mill rotor speed of θ0 = 7500 rpm and an upper limit of
θmax = 12000 rpm.67 The subsequent first dissolution stage had to re-
move 1−ξ = 20 % of the particle volume present at the beginning of this
stage. The closed-loop mode of the particle volume controller presented
previously (see also Section 5.5.1) was employed to do that,68 with an
initial supersaturation of Sinit = 1.01 approached during tinit = 20 min,
a heating rate parameter of ṪHR = 0.15 ◦C h−1, and a final supersat-
uration of Sfinal = 1.10. After dissolution, the first growth stage was
initiated with the goal of growing the remaining particles to an average
particle length of `g1 = ω`ref = 252.0 µm. This growth stage was oper-
ated by means of a CSC at S = 1.16. After reaching the target average
length of the first growth stage, the suspension was heated to achieve
a final supersaturation of S = 1.05. In the case of experiment κ1, the
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suspension was then filtered off and the product crystals were collected
and dried over night.

For experiment κ2, the second cycle started with a milling stage im-
mediately after the first cycle had ended, using the same control algo-
rithm, but operated at a constant temperature corresponding to a super-
saturation of S = 1.05 instead of S = 1.03. The target average length for
the milling controller was `m2 = ω`m1 = 140.0 µm. The second dissolution
stage was run in the same way as the first one. The subsequent growth
stage was also run at a constant supersaturation of S = 1.16, but with
a target average particle length of `g2 = ω2`ref = 176.4 µm. After reach-
ing the target average length of the second growth stage, the suspension
was heated to achieve a final supersaturation of S = 1.05. Then, it was
filtered off and the product crystals were collected and dried over night.

Even though a fixed set of cycle logic parameters has been used here,
these can be potentially altered, which would obviously lead to different
average characteristics of the final PSSD and to a different duration of
the stages.

E.5.2 Experiments with Initial Growth Stage
After cooling the solution as described at the end of the initial paragraph
of Appendix E.5, 0.40 g of Seeds λ was added to the solution. Then, a
CSC phase was started to grow the seed crystals at a supersaturation
of S = 1.18 to the different average particle lengths given in the column
Init. growth of Table E.2. Afterward, the supersaturation was lowered
to S = 1.03 and two cycles of the controlled multistage process were run
in the same way as explained in Appendix E.5.1, but obviously using
the Seeds λ crystals grown during the initial growth phase instead of
using Seeds κ. Note that the parameter `ref of the cycle logic was set
to 360 µm in all cases (despite the different targets of the preliminary
growth phases) to ensure that the stage targets were the same for all
these five experiments referred to as λ1 to λ5.

E.6 Protocol for the Multistage Process
Experiments with GDM

Two controlled multistage process experiments were performed with the
compound GDM. Their most important characteristics are listed in Ta-
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ble E.2. The main phases of these two experiments during which the
multistage process controller was active are referred to as experiments
ν1 and ν2. For both experiments, saturated solutions of GDM in a 10/90
wt-% mixture of propan-2-ol and water were prepared by adding an ex-
cess amount of purchased GDM to the mixture and letting the suspen-
sion equilibrate for a duration of at least 6 h at a temperature of 26.0 ◦C
while stirring at 400 rpm. Afterward, the solution was filtered off and
2000.0 g of clear, saturated solution was loaded into the crystallizer. Af-
ter inserting the sampling loop of the µ-DISCO and that of the wet mill
into the crystallizer, the solution was cooled to 25.1 ◦C, corresponding
to an initial supersaturation of 1.03.

E.6.1 Experiment without Initial Growth Stage
After cooling the clear solution, 0.30 g of Seeds ν was added. Similar to
the experiments conducted using BLGA, the experiment consisted of a
30 min initial idle phase (suspension kept at constant temperature and
characterized using the µ-DISCO) and of a main experimental phase
with an active multistage process controller (experiment ν1). Two cy-
cles of wet milling, dissolution, and growth were performed using the
stage control algorithms and the cycle logic described in Sections 6.2
and 6.3, respectively. The parameters of the cycle logic were the same
as those for the BLGA experiments and they are listed in Table E.2. As
already mentioned in Section 6.4.4, the individual stage controllers were
operated with the same parameters as used for the BLGA experiments
(see Appendix E.5.1), with a few exceptions. First, the heating rate pa-
rameter of the particle volume controller was reduced to a lower value
of ṪHR = 0.075 ◦C h−1. Also, the final supersaturation at the end of the
dissolution stage was set to Sfinal = 1.05. Second, the CSC growth stages
were operated at a relatively low supersaturation of S = 1.05. This su-
persaturation was chosen because of the high growth rate of GDM and
because the compound was observed to nucleate significantly at super-
saturations above 1.07 in the employed mixture of water and propan-2-ol.
The third exception was that also the milling stage of the second cycle
(and not only that of the first cycle) was operated at a supersaturation
of S = 1.03 instead of S = 1.05.

After reaching the target average length at the end of the growth
stage of the second cycle, the suspension was heated to achieve a final
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supersaturation of S = 1.03. The suspension was then filtered and the
product crystals were collected and dried over night.

E.6.2 Experiment with Initial Growth Stage
After cooling the solution, 0.30 g of Seeds ν was added. Then, a CSC
phase was initiated to grow the seed crystals at S = 1.05 to an average
particle length of 400 µm before starting experiment ν2. Upon reaching
the target, the controlled multistage process was run in the same way as
explained in Appendix E.6.1 (see also the cycle logic parameters listed
in Table E.2), but obviously starting from the crystals grown during the
preliminary growth phase.
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