
ETH Library

Increased reproducibility and
comparability of data leak
evaluations using ExOT

Conference Paper

Author(s):
Miedl, Philipp ; Klopott, Bruno; Thiele, Lothar

Publication date:
2020-06-15

Permanent link:
https://doi.org/10.3929/ethz-b-000377986

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.23919/DATE48585.2020.9116497

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-5828-8532
https://doi.org/10.3929/ethz-b-000377986
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.23919/DATE48585.2020.9116497
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Increased reproducibility and comparability of data leak evaluations using ExOT

Philipp Miedl†

miedlp@ethz.ch
Bruno Klopott†

klopottb@student.ethz.ch
Lothar Thiele†

thiele@ethz.ch

Abstract

As computing systems are increasingly shared among dif-
ferent users or application domains, researchers have inten-
sified their efforts to detect possible data leaks. In particular,
many investigations highlight the vulnerability of systems w. r. t.
covert and side channel attacks. However, the effort required
to reproduce and compare different results has proven to be
high. Therefore, we present a novel methodology for covert
channel evaluation. In addition, we introduce the Experiment
Orchestration Toolkit ExOT, which provides software tools to
efficiently execute the methodology.

Our methodology ensures that the covert channel analysis
yields expressive results that can be reproduced and allow
the comparison of the threat potential of different data leaks.
ExOT is a software bundle that consists of easy to extend C++
libraries and Python packages. These libraries and packages
provide tools for the generation and execution of experiments,
as well as the analysis of the experimental data. Therefore,
ExOT decreases the engineering effort needed to execute our
novel methodology. We verify these claims with an extensive
evaluation of four different covert channels on an Intel Haswell
and an ARMv8 based platform. In our evaluation, we derive
capacity bounds and show achievable throughputs to compare
the threat potential of these different covert channels.

1. INTRODUCTION

As computing devices are getting more powerful, they are
often intended for shared use to fully utilise the available
resources. For example, multiple users have access to the
same cloud computing infrastructure, or mobile devices are
used for multiple application domains with different security
clearances such as business and private applications. Cloud
and mobile computing systems must prevent data leak from
one user, or one application domain, to another. Such a data
leak may exist in the form of a covert or side channel, which
are closely related. This relation is highlighted by Ristenpart
et al. [15], stating that “Covert channels provide evidence that
exploitable side channels may exist.”. In other words, covert
channels help to estimate the extend to which side channel
attacks might be feasible. This is important as quantifiable
metrics often cannot be determined for side channels, but
for covert channels it is relatively easy to derive well known
metrics.

†ETH Zurich, Computer Engineering and Networks Laboratory (TIK),
Gloriastrasse 35, Zurich, Switzerland

c©2020 IEEE

source

channel

sink

Figure 1: A data leak where the source emits information via the
channel, received by the sink and forwarded to an adversary. The
data transfer is either hidden (covert channel), or unintentional (side
channel).

We base our analysis of covert channels on the setup illus-
trated in Figure 1, which is widely used in literature. The
main components are (i) the source application with access
to confidential information, (ii) the channel, and (iii) the sink
application which receives and forwards data to an adversary.

While the system in Figure 1 looks rather simple, an ex-
haustive analysis can be very costly in terms of time and
engineering effort. Hence, an exhaustive analysis is not com-
mon practice and examples for limited experimental evidence
can be found in recent literature, for example the thermal and
cache covert channels. The thermal covert channel was first
presented by Masti et al. [8] and seemed to be quite harmless,
only allowing data transmission at 1.33bps with 11% bit error.
Yet, Bartolini et al. [3] showed in their analysis that the upper
channel capacity bound is beyond 100bps and outperformed
the experimental throughput results of Masti et al. [8] by more
than 20 times. This illustrates, how the lack of an exhaustive
analysis yields results that are not expressive and may lead
to false conclusions. In different work, Gruss et al. [6] stated
that the comparison of previously presented throughputs of
different cache covert channels was not possible. The authors
pointed out, that due to the different implementation strate-
gies all experiments had to be repeated. This might require
high engineering effort and highlights the importance of com-
parable metrics for data leaks, rather than implementations.
These examples indicate that there is a need for a well defined
methodology for the analysis of covert channels.

Such a methodology would allow a confident estimation
of the threat potential of a covert channel if it is (i) general
applicable to a large class of covert channels, (ii) defines
models, metrics and experiments, as well as (iii) ensures that
the results are reproducible, comparable and expressive. Based
on the international vocabulary of metrology [2] we define
reproducibility, comparability and expressiveness as follows.
Reproducibility. An analysis is reproducible if different re-
searchers can repeat it based on the description of the original
work, and derive the same conclusions.
Comparability. Comparability of different data leak analyses
is assured, if their results are reported using the same metrics.

For example, the threat potential of data leaks cannot be com-
pared if one is quantified using throughputs and another using
capacity bounds.
Expressiveness. Expressiveness of metrics describe qualita-
tively how well they characterise relevant properties of the
evaluated system. For example, an implementations might not
reveal the full potential of a data leak. Therefore, throughput
and the corresponding error rate are only expressive towards an
implementation, rather than a data leak. In contrast, the chan-
nel capacity bound reports the maximum possible throughput
under ideal conditions. Hence, the capacity bound is expres-
sive towards the threat potential of a data leak.
Contributions. To the best of our knowledge, we are the
first to propose a widely applicable methodology for covert
channel analysis. The methodology meets the requirements
for repeatability, comparability and expressiveness. Further-
more, it defines models, metrics and experiments. In addition,
we present the supporting Experiment Orchestration Toolkit
ExOT. It reduces the engineering effort needed to execute the
proposed methodology. ExOT is designed to be easily ex-
tended or reconfigured, such that a variety of different classes
of experiments can be executed. Thus, ExOT substantially
exceeds the functionality of previously presented work like the
Mastik toolkit [16] or libflush [5, 7]. For example, ExOT al-
lows to validate new as well as previously presented data leak
analyses or to quantify the effects of mitigation techniques.

2. REVISITING KNOWN COVERT CHANNELS

In this section, we review a selection of covert channels that
have been presented in recent years. While the selection is not
exhaustive, its purpose is to show the usability of the proposed
methodology and the toolkit. We choose two different covert
channels families, thermal and cache covert channels.

2.1. THERMAL

To establish a thermal covert channel, the source application
encodes information into temperature changes. By generating
a high utilisation, the cores of the platform heat up. If the
source application is idle the platform cores cool down. Bar-
tolini et al. [3] presented upper capacity bounds of 334bps for
an Intel Haswell and 414bps an ARMv7 architecture, respec-
tively. The determined throughputs are listed in Table 1.

2.2. CACHE

The cache covert channels considered in this work rely on
timing measurements during operations on data. If data resides
in different levels of the memory hierarchy, the time needed
for the data access will vary. As multiple cores share the last
level cache, the timing of applications on other cores can be
influenced by forcing specific cache blocks to be removed
from cache. Based on these forced timing variations, a cross-
core covert channel can be established.

In this work, we consider three different cache timing covert

Table 1: Throughputs of known covert channels, which are hard to
compare due to varying evaluation methods and error rates.

Covert Channel
Empirical Throughput / Error Rate
x86_64 ARM

Thermal 56bps / 1.74% 49bps / 1.70%
Flush+Flush 496KB/s / 0.84% 178.3Kbps / 0.48%
Flush+Reload 298KB/s / 0.00% 1.14Mbps / 1.10%
Flush+Prefetch 146KB/s / < 1% N/A

channels: (i) the Flush+Flush [6, 7] channel relying on the
execution time of the flush operation, (ii) the Flush+Reload [6,
7, 17] channel using the time needed to execute the reload
command, and (iii) the Flush+Prefetch [5] channel exploiting
the timing of the prefetch instruction. We will not provide
details of the underlying primitives due to space constraints.

None of the mentioned references present capacity bounds
for their covert channels, while all provided throughput exper-
iments. In Table 1, we report the results obtained from the re-
implementation of the “Flush+” channels by Gruss et al. [6].
The throughputs were all determined using different imple-
mentations and report different error rate metrics. Hence, they
cannot be used as a measure of the general threat potential of
this class of data leaks. The throughputs are only an expressive
metric for a specific implementation. We address the issue
of expressiveness and show that the new methodology allows
the comparison of threat potentials of fundamentally different
covert channels.

3. A COVERT CHANNEL ANALYSIS METHOD-
OLOGY

Figure 2 illustrates the four main steps of our proposed covert
channel analysis methodology. In this section, we describe
these four steps and how our toolkit implements them.

3.1. MODELLING

During the modelling phase, the covert channel needs to be
formally described. A model is a necessary prerequisite for
comparability and is beneficial when defining the metrics for
evaluation. For example in case of covert channels, the formal
models enables us to derive an upper capacity bound.

This phase cannot be automated as it relies on the expertise
of the researcher. However, the framework provides two ready-
to-use models, which can be applied and determine the experi-
mentation flow. The formal models that are implemented and
described in ExOT are (i) time-continuous and value-continu-
ous (e. g. thermal [3]), as well as (ii) time-discrete and value-
discrete (e. g. power [10]). One of these two models applies to
most covert and side channels.

3.2. CAPACITY BOUND DERIVATION

The capacity bound is a metric that allows to estimate the
threat potential of a covert channel. A capacity bound is

2

independent from implementation artifacts, as it describes
the maximum capacity of a channel achievable under ideal
conditions. Hence, capacity bounds are expressive regarding
the general threat potential of a data leak, rather than a specific
implementation. Examples for capacity bound derivations can
be found in related work [3, 4, 10, 12].

Depending on the previously established model, ExOT pro-
vides an experimentation scaffold to determine the parameters
necessary to derive the capacity bounds. This includes experi-
ment definition and configuration, as well as the experiment
generation, execution and analysis flow. In addition, ExOT
controls environmental factors, if the hardware setup allows
it. Furthermore, ExOT provides basic building blocks for the
applications generating the channel input and recording the
channel output. These building blocks can be used on many
different platforms, as ExOT also includes a cross-compilation
suite and allows for the integration with other tool chains.

3.3. EXPERIMENTAL CHANNEL EVALUATION

Based on the experimental evidence provided by the evalua-
tion, the previously established channel model and the capacity
bounds are validated. Furthermore, an expressive metric for
the threat potential of a specific implementation is provided in
the form of throughputs.

The experiments are conducted under well defined labo-
ratory conditions with a prescribed software flow to support
reproducibility. Their purpose is to understand the capabilities
of the channel and the effect of external influences. The ex-
periment setup ensures reproducibility as the source and the
sink application are well synchronized and external influences
are controlled. In this phase, first a simple stream of random
bits is transmitted from one application to another. Simple
source coding (conversion of bits to symbols) and line coding
(conversion of symbols to a channel input trace) techniques are
used to establish a rudimentary communication channel with
minimal engineering effort. Using this configuration, possible
throughputs with corresponding error rates are determined
and additional experiments are performed to better understand
the covert channel. For example, the effect of external influ-
ences or additional noise, e. g., generated by other applications
can be quantified. This approach yields useful insight for the
development of mitigation techniques.

ExOT provides the prescribed software flow and handles
source and sink application synchronisation. Furthermore,
ExOT offers a variety of different source and line coding
options that can be configured and applied to a randomly
generated bit stream. Moreover, ExOT also offers an interface
to control external influences and additional applications to
investigate external influences.

3.4. DEPLOYMENT TEST

Using the knowledge gained in the previous steps, it is pos-
sible to evaluate the covert channel in a real world scenario.
An example for a deployment test was presented by Maurice

Modelling
Capacity
Bound

Derivation

Experimental
Channel

Evaluation

Deployment
Test

Figure 2: Main steps of the proposed methodology for covert chan-
nel analysis.

environment
description file

configuration
file

experimental
data

driver

experiment
engine

python3 framework

zone(s) source app sink app jammer app(s)

Figure 3: Experimental setup using ExOT. The driver is the interface
to the experiment environment consisting of platform zone(s) and
the applications.

et al. [9]. In contrast to the experimental channel evaluation
phase, in the deployment test phase the source and sink appli-
cations have to operate fully autonomously. This requires that
the source and sink application also implement measures that
compensate for external influences, like noise or interference.
Furthermore, the application might also need to implement
sophisticated protocols with synchronisation methods, pack-
eting, bi-directional communication, error detection or error
correction. Therefore, such real world implementation can
be designed in many different ways and the throughput will
often heavily depend on the invested engineering effort. The
main goal of the deployment test is to show that an attack
can be deployed outside of a laboratory setup. In addition
to the previously determined metrics, the deployment tests
can yield additional measures like the attack footprint or the
necessary implementation effort. ExOT provides application
building blocks and experimentation execution flows to reduce
the engineering effort in this phase of the analysis.

Our methodology describes which metrics need to be deter-
mined and which experiments have to be executed, ensuring
reproducible, comparable and expressive results. As we will
show in Section 5, it is generally applicable to different kinds
of covert channels. Therefore, our proposed methodology
fulfils all the requirements defined in Section 1.

4. THE EXPERIMENT ORCHESTRATION
TOOLKIT (EXOT)

In this section, we present implementation details of our Exper-
iment Orchestration Toolkit ExOT. Figure 3 shows the struc-
ture of ExOT and the interaction of the different components
of the setup. Using a TOML1 configuration file and the envi-
ronment descriptor to capture relevant experiment parameters,
ExOT supports repeatability of the experiments.

The experiment environment consists of at least one plat-

1https://github.com/toml-lang/toml

3

https://github.com/toml-lang/toml

3 - Raw Data Processing
4 - Line Coding
5 - Source Coding
6 - Generate/Verify

2 - I/O Module
1 - Applications
0 - Channel

output formatting
symbol to trace
bits to symbols
generate bits

write schedule files
utilise channel

raw data to trace
trace to symbols
symbols to bits

calculate metrics

read meas. files
observe channel

covert information transmission

Layer Name Layer Functions

Figure 4: Information flow model. Data travels from the highest to
the lowest layer, gets transferred via the channel, and travels up to
the highest layer.

form zone, a source and sink application pair and optionally
jammer applications. Jammers can be used to simulate disrup-
tive influences on the covert channel, which is useful to either
(i) understand the influence of external factors on the covert
channel, or to (ii) evaluate possible mitigation strategies. All
applications are mapped to a zone, whereas one zone defines
a certain platform configuration. For example, a platform may
have a secure and an insecure zone.

The experiment engine will setup the environment by con-
figuring the zones(s) and applications as well as copying the
necessary data. It controls the experiment execution, fetches
the data and cleans up the environment after the experiment
execution has finished. The experiment engine also offers a
variety of debug outputs in the form of log-messages during
execution, or plots for data preview during analysis. The com-
plete flow from generating an experiment to analysis can be
written in one Python script, which makes experiments easier
to version and maintain.

4.1. CREATING SENDING AND RECEIVING APPLICA-
TIONS

We implemented the application library using C++17, taking
advantage of modern language features. This includes the
use of generic programming, compile-time code generation,
templated design and inheritance without complex class hier-
archies. These development paradigms ensure that the code
base is extendable without too much code duplication. The li-
brary provides basic building blocks for the application, whose
design is based on the concept of process networks.

The library also contains utilities for (i) a simple and reli-
able JSON interface for application configuration, (ii) logging
and debug output, (iii) file system and Model Specific Register
(MSR) handling (iv) execution, exception and signal handlers,
as well as (v) time keeping and clocking. In addition to the ap-
plication library of ExOT, we provide a compilation suite. This
compilation suite is based on docker and CMake, allowing
easy cross-compilation and integration with other tool-chains,
for example the Android NDK. This enables researchers to
easily port an analysis to different architectures.

4.2. INFORMATION FLOW

We base our data processing design on a layered information
flow model, illustrated in Figure 4. Similar to the well known
OSI model, information travels from the highest layer to the
lowest, and then up to the highest again. Layers 2 to 6 are
implemented as Python packages, which has the following
advantages: (i) there is no need for recompilation when a new
data processing scheme is tested, (ii) the implementation is
platform independent, and (iii) data checks, using for example
plots, and debugging are easy to perform.

4.3. EXTENDABILITY AND LIMITATIONS OF EXOT

Due to its design, ExOT can be applied to a wide variety of
fields and is not limited to analyses presented in this paper.
Using ExOT for additional channels, attacks or other analy-
ses requires an extension of the experiment definitions in the
Python framework. If specific deployment applications are
necessary, these can be implemented using the building blocks
of the C++17 library, or by extending the library.

The applicability of ExOT mostly depends on the platforms
the source, sink and jammer applications are run on. This
dependency arises as the application building blocks provided
by the C++ library often depend on architectural features of
the platform. For example, the timing accuracy and maximum
sampling period of the applications depends on the timing
source provided by a platform.

At the time of initial publication, ExOT supports various
platforms that are based on a Linux or Android Operating
System (OS) and requires SSH or ADB capabilities of the
platforms. However, an extension of ExOT to other OSs or
communication interfaces is possible. While including a new
communication interface only requires to add a fitting driver
to the Python framework, expanding ExOT to new OSs would
also call for an extension of the C++17 library.

5. RE-EVALUATING KNOWN COVERT CHAN-
NELS

In this section we show the experimental evaluation of the
covert channels presented in Section 2. We use the proposed
methodology and ExOT to derive comparable and expressive
metrics in a reproducible fashion. We determine a comparable
metric, namely the capacity bound, for all of the considered
covert channels. To provide experimental evidence for the
validity of the models and bounds, we conduct experimen-
tal throughput evaluations. These allow a direct comparison
of different implementations and platforms. In addition, we
analyse the robustness of the implementations towards inter-
ference. We perform the evaluation on (i) a Lenovo T440p
laptop based on a Intel i7-4700MQ, referred to as Haswell,
and (ii) a NVIDIA Jetson TX2 based on a dual-core Denver 2
64-bit CPU and quad-core ARM A57 cluster, referred to as
ARMv8. All information gathered during the experiments is
published to ensure reproducibility [13].

4

Table 2: Time for one covert channel use depending on the cache
state.

Covert Channel
Haswell ARMv8

cached flushed cached flushed

Flush+Flush 269.2ns 265.6ns 3569.2ns 3557.8ns
Flush+Reload 219.9ns 304.7ns 3634.4ns 4078.9ns
Flush+Prefetch 224.5ns 303.3ns 3605.6ns 4080.1ns

5.1. MODELLING AND CAPACITY BOUND DERIVATION

Thermal. For the thermal covert channel we use the estab-
lished model from Bartolini et al. [3]. After determining the
channel frequency spectrum, we apply the constrained-input
water-filling to determine the capacity. In contrast to the origi-
nal work, where either a single or the sum of all temperature
readings was used for data transmission, we will use the max-
imum of all core temperatures. This conforms to the way
readings are processed on the ARMv8 platform [1]. Further-
more, while the original work used channel sub-band splitting
to apply the constrained-input water-filling, we use a whiten-
ing filter in our calculations. Details on the experiments and
the calculations done to determine the capacity bound can be
found in Bartolini et al. [3] and the technical report appended
to this work [11].
Cache. Typically, there are multiple memory levels in a com-
puting system, i. e., up to three cache levels, the main mem-
ory and swap. However, as already indicated in the original
work [5–7, 17], our initial experiments have also shown that
it is only feasible to reliably control and determine whether
data is cached or not. Considering this observation and due to
the fact that no models of cache covert channels were given
in the original work, we establish a channel model based on a
state machine with two states and all possible transitions. We
use the method presented by Miedl and Thiele [10] to deter-
mine the maximum capacity of 1bit per channel use. To get a
comparable metric, we need to determine the duration of one
channel use. We define one channel use as (i) measuring the
timing with the defined method, and (ii) resetting the memory
state. The channel access times are measured by repeatedly
performing the Flush+Flush, Flush+Reload or Flush+Prefetch
access on either a cached or not-cached set. The measurement
results shown in Table 2 are the average time acquired from
a quarter million measurements per channel and cache state.
Using the best case timing for each cache channel, we derive
the upper channel capacity bounds.
Comparison. The formal models of the considered covert
channels enable us to derive capacity bounds, outlined in Fig-
ure 5. As expected, the capacity bounds suggest that the threat
potential of cache based data leaks is much higher than that of
thermal measurement based data leaks. However, the capaci-
ties vary by almost 10× when comparing our two platforms
Intel and ARMv8. Furthermore, the throughputs reported by
Gruss et al. [6] for their ARM based platform are higher than

Haswell
0.147

3765 4454 4548
Thermal Flush+Flush Flush+Reload Flush+Prefetch

ARMv8

Capacity
Bound
[kbps] 0.018

281 275 277

Thermal Flush+Flush Flush+Reload Flush+Prefetch

Figure 5: The capacity bounds indicate that cache based data leaks
have a higher threat potential than ones that are based on thermal
information.

the capacity bounds we derived for the ARMv8 platform. This
indicates that the threat potential of cache covert channels is
not only architecture, but also platform dependent and there-
fore highlights the importance of data leak evaluations on
different platforms.

5.2. EXPERIMENTAL CHANNEL EVALUATION

As a final step, we conduct experiments to validate the model
and the capacity bounds. Furthermore, we will assess how
jamming applications influence the performance of the covert
channels.

To quantify the performance of the covert channels we
divide the analysis into two phases, training and evaluation.
During the training phases, we transmit a random bitstream
with 1.5kbit, which we use to train the decoder decision device.
In the evaluation phase, a 5kbit bitstream is transmitted and
evaluated using the trained decoder decision device. We repeat
each phase 5 times and use the mean of the repetitions for
further calculations to compensate for variations introduced
by the hardware setup. Both phases are then executed for
multiple bitrates, such that we perform a bitrate sweep to
quantify the throughput to bit error rate relation. Figure 6
illustrates the results for the sweeps without interference in
the upper plots.
Thermal. The bitrate sweeps for the thermal covert channel
range from 5bps to 300bps on Haswell and from 1bps to
20bps on ARMv8. On both platforms we use a bitrate step size
of 1bps, a sampling period of 1ms and Manchester encoding,
similar to Bartolini et al. [3]. We show that it is possible to
achieve throughputs of almost 100bps with less than 1% bit
errors on the Haswell platform, and up to 5bps on ARMv8.
Hence, we outperform the previous implementation on Intel
Haswell [3]. However, our results validate the chosen model
and show that the new capacity bounds are tight.
Cache. In the original work, the channel accesses were per-
formed asynchronous accesses at the highest possible rate.
Therefore the throughput could not be controlled and it was
not possible to show how the transmission rate influences the
bit error rate. In contrast, our implementation allows to set the
transmission rate and channel accesses are timed. Therefore
we can perform a bitrate sweep from 6.4kbps to 5Mbps with
a step size of 64kbps to show how the bit error rate changes
with increasing throughput. However, the timekeeping nec-
essary to control the transmission rate limits our maximum
sampling period. If the sampling rate approaches 5 µs when
sampling only one cache set, we start to observe transmis-

5

0
10
20
30
40
50

1 10 100

Thermal
Bit
Errors
[%]

Bit Rate [bps]
10k 100k 1M

Flush+Flush

Bit Rate [bps]
10k 100k 1M

Flush+Reload

Bit Rate [bps]
10k 100k 1M

Flush+Prefetch

Bit Rate [bps]

0
10
20
30
40
50

1 10 100

Thermal
Bit
Errors
[%]

10k 100k 1M

Flush+Flush

10k 100k 1M

Flush+Reload

10k 100k 1M

Flush+Prefetch

No Interference

ffmpeg Interference

ARMv8 Haswell

Figure 6: Without interference the bit error increases similarly for all three cache covert channels, whereas higher throughputs can be
achieved on Haswell. The throughputs of the thermal and the Flush+Flush covert channel are more deteriorated by the ffmpeg interference,
whereas the effect are smaller on ARMv8.

sion errors due to inaccurate timing, i. e., channel accesses
are not synchronised. To be able to achieve high bitrates with
longer sampling periods, we therefore use 64 cache sets with
a spacing of 16sets in parallel. This allows us to sample every
22 µs on Haswell and 225 µs on ARMv8. We determine the
sampling rate on both platforms using the worst case time per
channel use for one set from Table 2, plus a small security
margin. On Haswell, this configuration allows us to establish
transmissions with less than 1% bit errors at almost 200kbps
using Flush+Flush, 300kbps with Flush+Reload and around
500kbps for Flush+Prefetch. On ARMv8 the channels allow
throughputs of around 15kbps using Flush+Flush, 40kbps
with Flush+Reload and Flush+Prefetch, for less than 1% bit
errors. The discrepancy of the results in comparison with
original work (see Table 1) can be pinned to differences of
the implementation and platforms. In addition, the experi-
mental results show a higher difference between the capacity
bound and the achieved throughputs, compared to the thermal
channel. This is caused by limitations of our implementa-
tion, namely the limitation of cache sets and sampling rate we
can use, rather than channel effects. Moreover, the capacity
bounds are not as tight as they are based on the optimistic
assumption that all channel accesses can be done with the
best case time reported in Table 2. Therefore we consider
the experimental evidence sufficient to validate the capacity
bounds.

Interference. To evaluate the performance of the covert chan-
nels under noisy conditions, we repeated the sweeps while
running a jammer application. To cause additional utilisation
of the cores and cache operations, we start video encoding us-
ing ffmpeg 1s prior to the transmission. The results illustrated
in the lower plots in Figure 6 show that both channels suffer
from interference. The influence of interference is lower on
the ARMv8 platform, as it is optimised for tasks like video
processing. Furthermore, the cache channels would also allow
to use multiple lines to increase robustness of the transmission
through redundancy, rather than increasing the throughput
using parallelism. Therefore we consider the cache covert
channel to be more robust and ultimately posing a higher

threat than the thermal covert channel.
Remarks. Our results show that throughput results can vary
to a great degree for different implementations. This illustrates
the necessity of the capacity bound as a metric for comparing
data leaks rather than throughput to compare implementations.
In addition, our evaluation also shows the importance for
experimental evidence to validate the models and metrics.

6. CONCLUDING REMARKS AND FUTURE OUT-
LOOK

In this work we proposed a methodology for covert channel
evaluation and presented the Experiment Orchestration Toolkit
ExOT. Our methodology ensures that covert channels analysis
results are reproducible, comparable and expressive. ExOT
reduces the engineering effort needed to execute the presented
methodology. The source code and documentation of ExOT is
publicly available for download on our website [14].

We show the effectiveness of our methodology and ExOT
by evaluating a thermal and three variations of cache covert
channels. In our evaluation we capture different aspects of
the data leaks by determining capacity bounds as well as
empirical throughput and error rates. Such comparable metrics
are fundamental to determine which data leaks need immediate
action and which ones can be tolerated.

ACKNOWLEDGEMENTS

The authors would like to thank Naomi Stricker for proofread-
ing the paper and the reviewers for the valuable feedback.

REFERENCES

[1] NVIDIA Tegra Linux Driver Package Development Guide 32.2
Release. https://docs.nvidia.com/jetson/l4t/index.html, 2018.

[2] J. 200. International vocabulary of metrology–basic and general
concepts and associated terms, 2012.

[3] D. B. Bartolini, P. Miedl, and L. Thiele. On the Capacity of
Thermal Covert Channels in Multicores. In Proceedings of the
Eleventh European Conference on Computer Systems, EuroSys

6

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html#wwpID0E0XH0HA

’16, pages 24:1–24:16, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4240-7. doi: 10.1145/2901318.2901322. URL
http://doi.acm.org/10.1145/2901318.2901322.

[4] D. Evtyushkin and D. Ponomarev. Covert channels through
random number generator: Mechanisms, capacity estimation
and mitigations. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages
843–857. ACM, 2016.

[5] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard.
Prefetch side-channel attacks: Bypassing smap and kernel aslr.
In Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security, pages 368–379. ACM,
2016.

[6] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+ flush:
a fast and stealthy cache attack. In International Conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 279–299. Springer, 2016.

[7] M. Lipp, D. Gruss, R. Spreitzer, and S. Mangard. Armaged-
don: Last-level cache attacks on mobile devices. CoRR
abs/1511.04897, page 169, 2015.

[8] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele,
and S. Capkun. Thermal Covert Channels on Multi-core
Platforms. In 24th USENIX Security Symposium (USENIX
Security 15), pages 865–880, Washington, D.C., Aug. 2015.
USENIX Association. ISBN 978-1-931971-232. URL https:

//www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/masti.

[9] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A.
Boano, S. Mangard, and K. Römer. Hello from the other side:
SSH over robust cache covert channels in the cloud. NDSS, San
Diego, CA, US, 2017.

[10] P. Miedl and L. Thiele. The Security Risks of Power Mea-
surements in Multicores. In Proceedings of the 2018 ACM
symposium on Applied computing. ACM, 2018.

[11] P. Miedl and L. Thiele. Capacity calculations in “Increased
reproducibility and comparability of data leak evaluations
using ExOT”. http://hdl.handle.net/20.500.11850/

378017, 03 2020.

[12] P. Miedl, X. He, M. Meyer, D. B. Bartolini, and L. Thiele.
Frequency Scaling as a Security Threat on Multicore Systems.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2497–2508, 2018.

[13] P. Miedl, B. Klopott, and L. Thiele. Data: Thermal and cache
covert channel analysis with ExOT. http://hdl.handle.

net/20.500.11850/378872, 03 2020.

[14] P. Miedl, B. Klopott, and L. Thiele. ExOT Website. https:

//www.exot.ethz.ch/, 03 2020.

[15] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security, pages
199–212. ACM, 2009.

[16] Y. Yarom. Mastik: A Micro-Architectural Side-Channel
Toolkit. https://cs.adelaide.edu.au/~yval/Mastik/,
2016. Accessed 21st of May 2019.

[17] Y. Yarom and K. Falkner. FLUSH+ RELOAD: a high resolution,
low noise, L3 cache side-channel attack. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 719–732,
2014.

7

http://doi.acm.org/10.1145/2901318.2901322
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
http://hdl.handle.net/20.500.11850/378017
http://hdl.handle.net/20.500.11850/378017
http://hdl.handle.net/20.500.11850/378872
http://hdl.handle.net/20.500.11850/378872
https://www.exot.ethz.ch/
https://www.exot.ethz.ch/
https://cs.adelaide.edu.au/~yval/Mastik/

