
DISS. ETH No. 25928

Managing and understanding
distributed stream processing

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by
Moritz Hoffmann

MSc ETH in Computer Science, ETH Zurich

born on January 3rd, 1986

citizen of the Federal Republic of Germany

accepted on the recommendation of

Prof. Dr. Timothy Roscoe (ETH Zurich), examiner
Prof. Dr. Gustavo Alonso (ETH Zurich), co-examiner

Prof. Dr. Peter Pietzuch (Imperial College London), co-examiner
Dr. Frank McSherry (ETH Zurich), co-examiner

2019

Abstract

Present-day computing systems have to deal with a continuous growth of data
rate and volume. Processing these workloads should introduce as little latency
as possible. Today’s stream processors promise to handle large volumes of
data while providing low-latency query results. In practice however, their
computational model, variations of the workload, and the lack of tools for
programmers can lead to situations where the latency increases significantly.
The reason for this lies in the design of today’s stream processing systems.

Specifically, stream processors do not supply meaningful information for de-
bugging root causes of latency problems. Additionally, they have inadequate
controllers to automate resource management based on workload properties
and requirements of the computation. Lastly, their reconfiguration mechanisms
are not compatible with low-latency query processing and cause a significant
latency increase while reconfiguring. Solving these problems is crucial to
enable users, programmers and operators to maximize the effectiveness of
stream processing.

To solve these problems, we present three complementing solutions. We first
propose a method to identify factors influencing query latency, using detailed
internal measurements combined with knowledge of the computational model
of the stream processor. Then, we use system-intrinsic measurements to
design and implement an automatic scaling controller for scale-out distributed
stream processors. It makes fast and accurate scaling decisions with minimum
delay. Lastly, we propose a scaling mechanism that reduces downtime during
reconfigurations by orders of magnitude. The mechanism achieves this by
interleaving fine-grained configuration updates and data processing.

The solutions presented in this thesis help designers of stream processors to
better optimize for low-latency processing, and users to increase their query
performance by providing better metrics and automating operational aspects.
We think this is an important step towards efficient stream processing.

i

Zusammenfassung

Die Datenmenge und die Datenfrequenz, mit der aktuelle Computersysteme
umgehen müssen, nimmt ständig zu, während zugleich Abfragen auf diese
Datenströme mit geringster Latenz bearbeitet werden sollen. Moderne Stream-
Prozessoren versprechen zwar, großeDatenvolumenmit geringerAbfragelatenz
bearbeiten zu können. In der Realität führen die internen Strukturen der Daten-
verarbeitung, Schwankungen der Arbeitslast und einMangel an Hilfsmitteln für
Programmierer jedoch zu Situationen, in denen die Abfragelatenz signifikant
ansteigt.

Der Grund dafür liegt im Design moderner Stream-Prozessoren. Diese stel-
len keine aussagekräftigen Informationen über den Status der Abfragen sowie
den Ursprung von Latenzproblemen zur Verfügung. Ihnen fehlen Kontroll-
mechanismen, die eine automatisierte Ressourcenzuordnung auf Grundlage
der Arbeitslast und der Abfrageeigenschaften möglich machen könnten. Auch
bieten sie keine Möglichkeiten, Konfigurationsänderungen ohne eine deutliche
Erhöhung der Latenz anzuwenden.
Um diese Probleme zu beheben, stellen wir drei sich ergänzende Lösungen

vor. Als erstes zeigen wir eineMethode, die es unterNutzung der internen Struk-
tur des Stream-Prozessors und mit Hilfe detaillierter Messungen ermöglicht,
genau zu identifizieren, wo Latenz entsteht. Auf der Basis von systemspezi-
fischen Messungen entwickeln wir zweitens eine automatische Steuerung zur
Skalierung verteilter Stream-Prozessoren, die schnell und präzise skaliert, und
dabei die Abfragelatenz möglichst wenig erhöht. Schließlich stellen wir einen
Mechanismus vor, der Konfigurationsänderungen in kleine Teile aufspaltet und
während der Berechnung von Abfragen anwendet, anstatt der üblichenMethode,
bei der die Berechnung angehalten und neu gestartet werden muss. Dieser
Ansatz reduziert die Ausfallzeit während der Änderung von Konfigurationen
stark.

iii

Zusammenfassung

Die in dieser Arbeit präsentierten Lösungen helfen Entwicklern von Stream-
Prozessoren, diese auf geringe Latenz zu optimieren, und erlauben Nutzern,
die Latenz ihrer Anfragen durch bessere Messdaten und Automatisierung zu
optimieren. Wir sind überzeugt, dass sie wichtige Beiträge zur Steigerung der
Effizienz von Stream-Prozessoren darstellen.

iv

Acknowledgments

The work presented in this dissertation would not have been possible without
the collaboration and interactions with wonderful friends and colleagues.
I would like to thank my advisor Timothy Roscoe for always supporting

me, believing in me, and guiding me during the course of my doctoral studies.
I would also like to thank Gustavo Alonso for co-advising my dissertation.
Thanks to you, Peter Pietzuch, for taking part in my committee and the valuable
feedback that you have given me. Thank you, Frank McSherry, for hours of
interesting discussions, brain-storming sessions and your positive attitude to
turn interesting ideas into successful research projects.

During my internship I had the opportunity to collaborate with many incred-
ibly smart collegues, which helped me to shape the structure of my dissertation:
Adrian L. Shaw, Alexander Richardson, Chris Dalton, Dejan Milojicic, Geof-
frey Ndu, Paolo Faraboschi, and Robert N. M. Watson.
A special thanks goes to all friends and collaborators from the Systems

Group and the Strymon project: Andrea, Claude, Desi, Gerd, Ghislain, Ingo,
John, Lefteris, Lukas, Matthew, Michal, Pratanu, Pravin, Renato, Reto, Roni,
Sebastian, Simon, Stefan, Vasia, and Zaheer. You all made it a pleasure to be
part of the group during the last five years.

Also thanks to all my friends for bearing with me during the time of writing,
and especially to Florian for designing the great cover page.
For many great things in my life, I would like to thank my parents Brigitte

and Hartmut. Your support, motivation and courage helped me through all
my studies and allowed me to pursue my path. Finally, special thanks to you,
Marina, for standing by my side and your patience during difficult times.

v

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1
1.1 Structure of the dissertation 3
1.2 Notes on collaborative work 5

2 Background and motivation 7
2.1 Stream processing concepts 7
2.2 Expressing queries as dataflows 8
2.3 A critical history of stream processing 11

2.3.1 First generation stream processors 12
2.3.2 Second generation stream processors 12
2.3.3 MapReduce: large-scale computations 15
2.3.4 Third-generation stream processors 16

2.4 Timely dataflow concepts . 20
2.5 Related work: Distributed systems performance analysis . . . 21
2.6 Related work: Scaling controllers for distributed stream pro-

cessors . 24
2.7 Related work: Applying configuration updates 28

2.7.1 State migration in streaming systems 29
2.7.2 Live migration in database systems 31
2.7.3 Live migration for streaming dataflows 31

3 Snailtrail 33
3.1 Critical path analysis background 36

vii

Contents

3.2 Online critical path analysis 38
3.2.1 Transient critical paths 38
3.2.2 Critical participation (CP metric) 41
3.2.3 Comparison with existing methods 44

3.3 Applicability to dataflow systems 45
3.3.1 Activity types . 46
3.3.2 Instrumenting specific systems 47
3.3.3 Model assumptions 48
3.3.4 Instrumentation requirements 49

3.4 Program activity graph construction 50
3.5 Snailtrail system implementation 53
3.6 CP-based performance summaries 56
3.7 Evaluation . 59

3.7.1 Experimental setting 59
3.7.2 Instrumentation overhead 60
3.7.3 Snailtrail performance 61
3.7.4 Comparison with existing methods 62
3.7.5 Snailtrail in practice 64

3.8 Critical participation: conclusion 68

4 DS2: Controlling distributed streaming dataflows 69
4.1 Background and motivation 71
4.2 The DS2 model . 72

4.2.1 Problem definition 73
4.2.2 Performance model 73
4.2.3 Assumptions . 79
4.2.4 Properties . 80

4.3 Implementation and deployment 82
4.3.1 Instrumentation requirements 82
4.3.2 Integration with stream processors 83
4.3.3 DS2 and execution models 86

4.4 Experimental evaluation . 87
4.4.1 Setup . 87
4.4.2 DS2 compared to Dhalion on Heron 88
4.4.3 DS2 on Flink . 89
4.4.4 Convergence . 91
4.4.5 Accuracy . 92
4.4.6 Instrumentation overhead 93

viii

Contents

4.5 DS2: conclusion . 97

5 Megaphone 99
5.1 State migration design . 101

5.1.1 Migration formalism and guarantees 101
5.1.2 Configuration updates 103
5.1.3 Megaphone’s mechanism 104
5.1.4 Example . 106

5.2 Implementation . 108
5.2.1 Megaphone’s operator interface 109
5.2.2 State organization . 110
5.2.3 Timely Dataflow instantiation 113

5.2.3.1 Monitoring output frontiers 113
5.2.3.2 Capturing Timely Dataflow idioms 113

5.2.4 Discussion . 114
5.3 Evaluation . 116

5.3.1 NEXMark benchmark 117
5.3.2 Overhead of the interface 124
5.3.3 Migration micro-benchmarks 125

5.3.3.1 Number of bins vary 129
5.3.3.2 Number of keys vary 131
5.3.3.3 Number of keys and bins vary proportionally 132
5.3.3.4 Throughput versus processing latency . . . 133
5.3.3.5 Memory consumption during migration . . 133

5.4 Megaphone: conclusion . 136

6 Conclusions 137
6.1 Requirements for efficient stream processing 139
6.2 Directions for future work 142

Bibliography 151

ix

1
Introduction

The continuously growing rate and volume of available data is one of the major
problems of present-day computing. This calls for systems that are able to
process and analyze stream-like data with minimal latency. Systems have to be
easy to understand and manage in order to provide latency guarantees. In this
dissertation we explore the problem of system observability and manageability,
and propose new and improved techniques that help stream processors to handle
large amounts of data and limit processing latency.

Many data-driven applications have to provide timely results on large vol-
umes of data, collected from various distributed sources. The data can be
seen as a continuous stream or flow of data because it is only revealed over
time. Typical applications include collecting and processing of data obtained
from environmental sensors to identify fluctuations over time and warn when
critical situations occur; analyzing user behavior on the Internet in real-time to
track trends; and complex analytics on financial transactions for fraud detection.
Many of the use cases will become more important in the future, which also
means that the amount of data will continue to increase.
Stream processing in software is a paradigm to answer queries over con-

tinually arriving data. Such systems are supposed to provide results based
on standing queries which are maintained with low latency while ingesting a
high throughput of events. Many queries can be represented as dataflows, a
graph-based query representation that enables simple and efficient parallel pro-
cessing. For this reason, stream processors can be scaled from single machines
to large clusters, depending on the computation’s resource requirements and
user’s latency targets. Stream processors provide a good basis for data-driven
applications that rely on high-throughput and low-latency data processing.
The data we want to process generally has varying and potentially unpre-

dictable performance characteristics. It is generated by external sources which

1

1 Introduction

can produce data at arbitrary times and often in bursts. For example, a large
transaction on the stock market can generate many more follow-up transactions,
or trending websites attract many users in short time. This leads to a workload
where bursts of data and long-lasting load variations are the norm rather than
the exception. A stream processing system has to handle such fluctuations
gracefully while continually providing its service.
Today’s stream processing solutions often fall short on providing continual

service while adhering to their expected latency performance. For example,
Spark Streaming’s computational structure requires a barrier between schedul-
ing operators, which causes periods of resource under-utilization because fast
workers have to wait for slow workers to complete their task. Situations occur
where a stream processor fails to achieve optimal resource utilization and is
unable to provide simultaneous low-latency and high-throughput processing.
The computation of results can be delayed if the amount of new data increases
too much. In the worst case, the system becomes unstable or has to drop data
to keep running. Both outcomes are not desirable because results could be
delayed, unreliable, or at worst incorrect.

The first step to determine the causes for such undesirable effects is to identify
where the problems occur. For this, it is necessary to have readily accessible
and easily understandable metrics at hand. The level of detail depends on what
problem needs to be analyzed and ranges from detailed operator scheduling
information and operator dependency information to specific aggregated met-
rics, for example, how much data is processed while an operator is running.
Current stream processors do not report metrics in a way that allows operators
to properly analyze and address unstable configurations. Metrics are often
dependent on a stream processor’s execution model and therefore require a
deep understanding of the system. Also, they are usually aggregated and lack
a precise description on how to interpret them. Even minor changes in the
definition and interpretation of reported metrics can give much better insight
into the reasons where and why stream processors fail to deliver their expected
performance.
Better metrics combined with system-level scheduling and dependency in-

formation enable us to better understand the interaction of the components in
stream processors. They help human operators to improve the configuration
parameters and permit automated controllers to generate better configurations
to tune performance characteristics. Additionally, they help programmers to
combine components in a more efficient manner, potentially improving process-
ing latency and throughput. Deriving good parameters for a stream processor

2

1.1 Structure of the dissertation

is a repeating task as workload performance characteristics change over time
and the stream processor may need to be reconfigured to match the workload.
Therefore, we need up-to-date metrics that reflect the current state of the pro-
cessor to be able to adapt its configuration to meet latency and throughput
targets even if the workload changes.

1.1 Structure of the dissertation
In this thesis, we introduce techniques to improve understandability and simplify
managing stream processors in an environment of volatile workloads without
introducing undesired latency problems.

• Firstly, we propose a method to utilize and refine information available
within the stream processing system and extend it with new information
to gain a better understanding of the system’s performance.

• Secondly, we use specific system-intrinsic measurements to implement
an automatic controller for scaling-out distributed stream processors.

• Thirdly, we study the problem of reconfiguring distributed stream pro-
cessors and develop a new mechanism to deploy configuration updates
with minimal latency impact.

It is our hypothesis that these methods and tools help to bring a stream proces-
sor’s capability closer to the needs of users. For these reasons, we will aim at
improving the state-of-the-art of stream processing from the following three
angles.

Gain better insight: Existing stream processors lack meaningful diagnostic
information to be able to determine root-causes for performance problems.
The first step toward a better understanding of stream processing systems is
to characterize precisely how their workload and queries interact. Especially
in long-running distributed systems end-to-end latency is caused by manifold
interactions between numerous components. In this thesis we analyze current
problems of distributed system performance debugging and introduce a new
technique to derive performance indicators allowing a precise breakdown of
factors affecting end-to-end latency. The technique combines an analysis of the
actual processing time with a component dependency evaluation using critical
path analysis. This dissertation introduces the critical-participation metric,
which adapts critical path analysis to long-running computations. The metric
gives analysts an unprecedented understanding of the latency hotspots within

3

1 Introduction

a stream processor and can be used for improving implementations, adjusting
query plans, and balancing resource assignments.

Automate control: Today’s stream processing systems expose various pa-
rameters to adjust their performance, for example the number of worker threads,
the operators assigned to workers or the sizes of queue buffers. Specifically,
they can distribute work across many machines and assign operators to remote
workers. Manually managing the distribution of a stream processor requires
a lot of knowledge and experience, and suffers from a slow reaction time.
Nevertheless, current stream processors have inadequate controllers to auto-
matically manage resources based on the workload properties and service-level
objectives. Existing techniques to automatically scale-out stream processors
across machines have a slow convergence, require many adjustments and are
often based on inadequate heuristics. We also found that scaling-out exist-
ing stream processors revealed high query latency due to the lack of efficient
reconfiguration mechanisms.
To address this problem, we present an automated controller to show that

a distributed stream processor can be automatically scaled-out based on ex-
ternal requirements, detailed internal measurements, and knowledge of the
computation’s structure.

Reconfigure seamlessly: The reconfigurationmechanisms offered by current
stream processors are not compatible with service-level objectives and cause a
significant latency increase while applying a new configuration. During scaling
or under volatile workloads, reconfigurations of stream processors ideally
should not affect query latency. Many current reconfiguration mechanisms
have a great latency impact or large resource requirements and thus are only
suitable for infrequent reconfigurations. Because of this, they tend to be used
as a last resort. It would be highly desirable to reconfigure stream processors
frequently and fluidly as their workload varies.
We propose a mechanism that handles configuration updates as data and

interleaves reconfigurations with computation by splitting the reconfigurations
into fine-grained updates. The mechanism avoids synchronization by building
on system-provided coordination primitives. This enables reconfigurations of
running stream processors delivering peak latencies that are orders ofmagnitude
smaller than existing techniques, permitting virtually seamless fine-grained
and frequent control over stream processing systems.

4

1.2 Notes on collaborative work

To begin, we introduce basic concepts and show a historic perspective
of stream processing systems, followed by an overview of related work, in
Chapter 2.
Then, we analyze the outlined problems in the order presented above. In

Chapter 3, we employ critical-path analysis to introduce a novel technique to
analyze latency bottlenecks in distributed stream processors. In Chapter 4, we
describe a controller for distributed stream processors which automatically de-
termines resource requirements to fulfill service-level objectives. In Chapter 5,
we present a mechanism to apply configuration updates on a stream processor
while maintaining minimal latency. Lastly, in Chapter 6, we conclude the thesis
with a discussion of learnings and future work.

1.2 Notes on collaborative work
This thesis includes results from collaborations with Zaheer Chothia, De-
sislava Dimitrova, Matthew Forshaw, Vasiliki Kalavri, Andrea Lattuada, John
Liagouris, Frank McSherry, Timothy Roscoe, and Sebastian Wicki. Chapter 3
is based on SnailTrail: Generalizing Critical Paths for Online Analysis of
Distributed Dataflows [Hof+18]. Chapter 4 is based on Three steps is all you
need: fast, accurate, automatic scaling decisions for distributed streaming
dataflows [Kal+18]. Chapter 5 is based on Megaphone: Latency-conscious
state migration for distributed streaming dataflows [Hof+19].

5

2
Background and motivation

To begin, we introduce some fundamental concepts for distributed stream
processing, which we will use throughout this thesis. Then, we take a step
back and present a critical history of stream processing systems. We show
the evolution of techniques and their improvements and shortcomings, thus
giving an overview of the context in which our work is placed. We highlight
the problems in existing systems to motivate the solutions we are presenting
in this thesis. Afterwards we give an overview of specific related work for
the individual problems discussed in this thesis. The texts of Cugola and
Margara [CM12] are excellent starting points for further reading on the history
and capabilities of stream processors.

2.1 Stream processing concepts
Informally speaking, a stream is a set of data that is only revealed over time.
To give some examples: A distributed sensor network might send a stream
of measurement values, users browse the Internet and generate a stream of
interactions, or users send tweets. Each measurement or interaction occurs
at a point in time and carries a measured value or other data, and the data is
made available over time. Also, the data is produced in a distributed fashion,
meaning there may not exist a sequential order of elements. Our definitions are
inspired by the formalism used by Stephens [Ste97].

Definition 1 (Stream). A stream s is a function from time T to sets of data D:

s : T → D

7

2 Background and motivation

We call two streams equal if and only if they yield the same data at equal
points of time. Let S and R be two streams, and a, b ∈ T . Then,

a = b→ S(a) = R(b).

We are interested in transforming streams to produce new insights and results.
For this reason, we introduce the concept of queries to describe the processing
of streams. A query is defined by a user and expresses how to transform data
from existing input streams to formulate new output streams. It is a standing
description of how data from input streams is converted into output streams. A
query can consume at least one input stream and produce at least one output
stream.
A simple example is a word-counting query. This query reads complete

sentences or pieces of text and outputs the number of word occurrences over
time. To produce this result, it needs to split text into words and then group
equal words to calculate the number of occurrences. Thus, the data domain of
its input stream are pieces of text and the output stream’s data consists of sets
of (word, count)-pairs. Word-count is a simple example for stream processing.
Of course, stream processing can be used for more complex queries, such as
incremental graph computations and incremental data management.

Definition 2 (Query). A query q is a function from m input streams to n output
streams. Each stream has its own data type. All streams have the same time
domain T .

q : (T → D1, . . . ,T → Dm) →
(
T → D′1, . . . ,T → D′n

)
.

• Sin = (T → D1, . . . ,T → Dm) is the ordered set of input streams.
• Sout =

(
T → D′1, . . . ,T → D′n

)
is the ordered set of output streams.

We observe the queries can be composed to bigger units if a query’s set
of output streams corresponds to another query’s set of input streams. This
property allows us to combine queries and decompose them into smaller units,
which we will explore in the next section. Due to the same reason, we use the
term operator as a synonym for query.

2.2 Expressing queries as dataflows
In this thesis, we build on existing stream processors that use a dataflow model
to implement queries. Examples of stream processors following this model

8

2.2 Expressing queries as dataflows

are Apache Flink [Car+15], Apache Heron [Heron], or Timely Dataflow [McS].
The dataflow abstraction uses a decomposition of queries into operators to
process data and streams to forward data between operators. The model has
several interesting properties, of which one is simple parallelization due to the
data parallel nature of operators.
A stream processor executes queries by mapping them to workers. In a

computer, a worker can be a CPU core, machine, or accelerator such as GPUs
and FPGAs. We assume a worker is an execution unit that executes operators
sequentially. Importantly, a worker does not offer parallel execution of operators
but can execute different operators sequentially. We assume that at any point
in time, a worker can only execute a single query. So, how can we parallelize
query processing?
To solve the problem of assigning a query to multiple parallel workers, a

common approach is to split the query into smaller queries. For this reason
we formalize a decomposition of queries into dataflows, which are a graph of
queries.

Definition 3 (Dataflow). A dataflow is a directed graph G = (Q,S) of queries
Q and streams S.

• Ssource ⊆ S is the set of source streams.
• Ssink ⊆ S is the set of sink streams.

The decomposition of a query q with input streams Sin and output streams
Sout has the property that the dataflow’s source and sink streams are equivalent
to the in- and out-streams of q: Sin ≡ Ssource and Sout ≡ Ssink.

The queries in a dataflow can be scheduled individually by the stream proces-
sor on several workers. Queries in a dataflow have well-defined dependencies
between each other in the form of streams. This allows for parallel processing
as we assume no other data is shared between operators.
Figure 2.1 illustrates a logical graph and its corresponding physical graph

for a dataflow with a source, a sink, and three operators. Operators a, b, and c
execute with two, one and three physical instances.

The dataflow model enables different models of parallelism. Independent
operators can be executed concurrently, which is commonly called task par-
allelism. Subsequent operators in the same dataflow graph can be executed
concurrently, called pipeline parallelism. The downstream operator can read
the upstream’s output while the upstream operator already computes new data.
Parallel instances of the same operator can compute results on shards of the

9

2 Background and motivation

sinkc

a

b

src

(a) Logical dataflow graph

sinkc2

c1

c3

a2

a1

b1

src

(b) Physical dataflow graph

Figure 2.1: Logical (a) and physical (b) dataflow graphs. The logical dataflow
has a source, a sink and three operators in between. The source
sends data to both a and b. Their results are combined by operator
c, which computes the final result. The gray boxes in (b) show an
example assignment of operators to workers.

input data, which is called data parallelism. These models of parallelism allow
stream processors to distribute computations over large clusters of machines,
laying the ground for low-latency and high-throughput query processing.
Decomposition of queries into dataflows fits well to today’s computer ar-

chitectures. Stonebraker [Sto86] introduced the term of a shared-nothing
architecture. In this architecture, databases are divided into independent
components that can only communicate with messages. No other form of
information sharing, for example using shared memory or disks, is permit-
ted. Today, this model can be expanded to distributed computer architectures,
such as clusters and rack-scale systems, where processing units are linked by
networks. The dataflow model naturally follows a similar goal. Queries are
divided into independent components with clear constraints for their execution.
All data is exchanged in the form of streams. The dataflow model obviously
finds its parallel in distributed shared-nothing architectures.

We formally introduced streams and queries, which are the foundation of
stream processing. Queries can be decomposed into dataflows, well-matched
to today’s distributed computer architectures and allowing different levels
of parallel execution. Modern stream processors use this to scale dataflow
computations to large clusters with many workers. Next, we analyze the history
of stream processing, leading to current state-of-the-art systems and techniques.

10

2.3 A critical history of stream processing

2.3 A critical history of stream processing
Computer systems have always been used to process large-scale inputs since
the beginning of the era.1 Initially, their use-cases were dealt with individually,
as the concept of data streams had not yet evolved, the volume of data was
relatively low, latency requirements were not strict, and computer systems
tended to run specialized software.
The idea to interpret data processing as a continuous stream of data has

been around since the 1960s [Ste97; Bur75]. The term stream processing saw
increasing use starting in the 1980s when new semantics for stream processing
were introduced, both as a way to express programs [Ste97; WA85] and to
process data, with computers becoming ever-more wide-spread, fueling the
need for generalized approaches to processing problems. General paradigms of
dealing with large amounts of data prevailing at the time began to be adapted
to stream-related problems. Relational databases were used for low-latency
queries on transactional data, and tape-oriented systems for large amounts of
data that had to be processed at a high throughput,

Around this time, many computer systems became networked, which instantly
increased both the amount of accessible data and the data generated by larger-
scale systems. These data needed to be processed, either to gain momentary
insights, or for storage and data retrieval, depending on each use case. The
growth of distributed resources also required new application architectures to
manage them.
Stream processing can be analyzed from various angles. Traditionally,

many use-cases requiring low-latency data processing relied on complex event
processing, which is a technique to identify relevant, user-defined patterns in
stream-like data. A parallel development is to apply techniques known from
relational databases on low-latency stream data processing. In the following
discussion we choose to analyze stream processing techniques from a database
perspective.

In the remainder of Section 2.3, we will present three generations of stream
processors and explain what use-cases they were designed for and what limi-
tations were imposed. The first generation of stream processors covers appli-
cations dealing with stream-like data, specialized for specific use-cases with
known properties. Such systems were good at what they were designed for
1Even one of the first practical applications of digital computing, the decryption of huge amounts
of German radio messages in the Colossus [Flo83] computers during World War II, can be
seen as an early case of stream processing.

11

2 Background and motivation

but offered little elasticity to accommodate changing requirements, such as
workload variations. Second generation stream processors aimed at provid-
ing generalized stream processing capabilities, combined with some elasticity.
Most research was motivated by applying techniques of relational databases to
streams. The generality improved adoption, but limited scalability was still an
issue and often solved by forcefully limiting the amount of data by dropping
records. Third generation systems aim at solving the latter problem: good
scalability can replace load-shedding mechanisms, but it comes at a price of
increased complexity.

2.3.1 First generation stream processors
First generation stream processors were designed as generic single-machine
applications tailored to their use-cases. Theywere used to compute queries with
a large amount of input data on machines with limited random-access memory
significantly smaller than the input data. For example, Tangram [JMC89]
explored the implications of logic programming for stream processing providing
a “database-flow” computation capability, suitable for both traditional database
queries as well as time-based (stream) data processing. Other systems like
Tribeca [Sul96] offered a restricted query interface for specialized applications
while still providing the functionality of a stream processor. Tribeca is a system
to analyze streams of network traces that do not fit in memory. Instead, data
can be played back from tapes for later analysis.
Problem sizes were not very big and hence stream processors were not

designed to be distributed across machines. Individual machines did not offer
large resources, which meant that latency was not too much of a concern.
First-generation stream processors did influence later stream processors for

their query language expressiveness and demonstrated the trade-offs between
query complexity and runtime resource requirements. While early stream
processors did solve problems for the use-cases they were designed for, they
did not gain wide adoption. They did, nevertheless, demonstrate that generic
solutions can efficiently solve specific problems.

2.3.2 Second generation stream processors
Research into stream processing systems gained momentum at the beginning
of the 2000s, when a variety of new systems appeared. Abadi et al. [Aba+03]
argued that traditional relational databases are not well-suited for a variety of

12

2.3 A critical history of stream processing

applications because they are designed around the data being at the center
of the system. The authors identified a trend from human-generated data
towards machine-generated data as the main motivation for a new generation
of stream processors. Database systems process queries as they arrive, trying
to answer them as soon as possible, but do not offer well-integrated means to
express standing queries where a client should be notified whenever a result
changes. Hence, handling real-time updates and associated actions is not well-
supported and requires a fundamentally different system architecture. By this
time, structured query language (SQL) had become the de-facto standard of
querying databases, but stream processing systems lacked a similar standardized
interface.
Second generation stream processing systems aimed at closing the gap be-

tween database semantics common to database management systems (DBMSs)
with stream-semantics, queries over a history of data, and better support for
triggering actions as data changed. In addition to this, new use-cases emerged.
Smaller and more energy-efficient computers enabled a wide deployment of
sensors for data collection. Also, stock markets became more-and-more com-
puterized, requiring more advanced computer systems to analyze data and
make decisions in short amounts of time.
To provide versatile semantics for advanced use-cases, second-generation

stream processors introduced the notion of temporal windows. Windows
provide an abstract to perform operations on input data and state based on
time. For example, data can be aggregated per window of a defined duration.
This enables different computations and also allows stream processors to safely
discard data after results have been computed and a window is over. Windowing
is discussed in further detail in Aurora [Aba+03].
Aurora [Aba+03] is a database with support for continuous queries on data

generated by machines in addition to human-initiated transactions. It supports
continuous queries where the input data is processed only once, database-style
queries that require persistence of data, and ad-hoc queries that can access a
limited amount of history data. In overload situations, it focuses on maintaining
the output of results by dropping data, but this potentially gives imprecise and
incorrect results and is generally undesirable in stream processing systems. It
trades-off correctness against resilience to workload fluctuations. Aurora has a
centralized storage manager and scheduler, both of which limit its scalability
to only scale-up within a single machine but prevents scale-out across multiple
machines. Its query language is similar to SQL, howeverwith adapted semantics.
For example, a join operator can only cover a limited amount of time, which

13

2 Background and motivation

does not represent general join processing. A reason is that converting queries
from a SQL-like language to actual dataflows requires an optimizer, which
did not yet exist at this time (and is currently not a fully solved problem).
Here, Aurora again trades off performance and liveness against generality of
streaming computations.

Aurora introduced a new approach for the semantics of a stream processing
system, but knowingly left many parts of the system design as future work. The
same authors presented Borealis [Aba+05] in 2005, which extends Aurora’s
model to a distributed stream processor to extend the model to scale-out. Also,
the authors recognized that data tends to arrive out-of-order and needs to be
either serialized before results can be computed, or results need to be changed
at a later point in time. Borealis uses a data model where data represents an
insertion (new data), a deletion, or a revision of some existing data and provides
operators that can handle each over a limited history. The key conflict is to
provide results as early as possible while still being able to change them as new
data arrives. Like Aurora, Borealis lacks an abstract notion of time to decouple
processing from event time.
TelegraphCQ [Cha+03] is another second-generation stream processing

system with a focus on query optimization for unpredictable workloads. It
uses the concept of an Eddy to dynamically switch between implementations
and decouples transient data storage from operators to ensure correctness.
TelegraphCQ’s implementation is based on Postgres, a relational database,
and the authors note that many components also apply to stream processors.
The authors point out that data exchanged between streaming operators are
handled as persistent but temporary relations, but they also note this introduces
a performance bottleneck and prevents scale-out.
At roughly the same time, STREAM [Ara+03] introduced the continuous

query language (CQL), a new query language to express standing queries on
streams. The language was aligned to SQL but added important constructs
to handle different kinds of streams, which are insertion streams, difference
streams or fully materialized result sets. The query language can describe
time-based queries, which is an important difference compared to existing SQL.
Like Aurora and TelegraphCQ, STREAM’s implementation lacks scale-out
functionality. STREAM uses load shedding to handle overload situations but
tries to approximate results based on statistical models if data is dropped. Its
scheduling policies are geared towards maintaining throughput and system
stability, potentially at the price of higher latency.

14

2.3 A critical history of stream processing

Second-generation stream processors offered better support for expressing
stream computations with a query language and optimizing query plans, while
focusing on maintaining throughput. Their processing latency was determined
by the complexity of their internal queuing networks. They showed a clear
improvement on expressing continuous queries but their architecture limited
system scalability, which nevertheless is required to gracefully handle workload
fluctuations. To overcome this limitation, systems had mechanisms to trade-off
availability versus correctness by dropping data under high load.

2.3.3 MapReduce: large-scale computations
In 2004, Google published MapReduce [DG04], a programming model for
processing large data sets on large clusters. Its core idea is to parallelize data
processing with a local map phase followed by a global shuffle and reduce
phase, with the shuffle phase serving as a global barrier. MapReduce had
a surprising effect on large-scale cluster computing because with little effort
large amounts of data could be processed, at a very high throughput. This also
lead to a third generation of stream processing systems. Although MapReduce
is not a stream processor, people started using its batch-processing semantics
to approximate stream processing over batches of data. The data has to be
stored on disk before it can be processed. This approach enabled systems
to provide a high throughput, although at the cost of high and unpredictable
latency. Hadoop [Hadoop] is an open-source implementation of MapReduce,
and offers stream processing in terms of batch processing.

MapReduce’s model significantly influenced the architecture of future stream
processing systems as it presented an approach for scale-out. However, its com-
putational model is too simple for any stream processing application. Queries
have to be in the form of a map-and-reduce phase but only have an implicit and
restricted notion of time (when a batch of data ends, some time has probably
elapsed). Computations are scheduled by a centralized controller, which is not
able to prioritize tasks based on their latency requirements, there is a global
barrier between subsequent data-dependent operations, and computations are
pre-planned and cannot contain data-dependent alternatives. To summarize,
MapReduce’s model is a good inspiration to distribute workloads across many
machines but is itself not suitable for low-latencyworkloads and data-dependent
computations. However, it demonstrated that data processing can be scaled out,
which opened a path forward for modern stream processing systems that adapt
to workload variations while processing all data to produce correct results.

15

2 Background and motivation

2.3.4 Third-generation stream processors

Third-generation stream processors combine stream processingwith large-scale
cluster computing and aim for correct and low-latency results. While previous
systems were able to deliver low-latency results, their limited scalability re-
quired mechanisms to control a stream processor’s workload. Commonly, this
was achieved by trading-off precision with latency, for example by dropping
data in overload situations. Combining stream-processing semantics with large
scale cluster computations and guarantees to process all data opened new inter-
esting problems, some of which are not yet completely solved. In this thesis,
we describe some problems in detail and explain our solutions. Before that, we
present third-generation stream processors and their properties.
DryadLINQ [Yu+08] is a system and programming model for large-scale

distributed programs. It compiles queries on large datasets into a dataflow
representation to enable efficient parallel execution. Queries can be expressed
in .NET and LINQ, a query language designed to to be integrated directly in
the source code of programs. The queries can be much more complex than
what MapReduce offers. The authors criticize limitations of SQL, such as
fixed data types and limited support for iterative computations. DryadLINQ
supports iterative computations on static data and claims to optimize queries
both statically and dynamically while the system is running.
Similarly, Spark [Zah+12] is a cluster-computing model that extends the

model of MapReduce to provide a common abstraction for different computa-
tions. In contrast to MapReduce, it does not require replication of intermediate
results but rather remembers how a result can be computed. In the event
of a fault Spark can determine which datasets need to be reconstructed and
schedules the required operators. Its programming abstractions are defined
in term of resilient distributed datasets. This abstraction helps to avoid some
latency overheads of MapReduce but still leads to a relatively high latency as
data between operators needs to be saved before a downstream operator can
be scheduled. Spark lacks an abstract notion of time and instead assumes that
processing of batches corresponds to advances of time. It therefore cannot
easily decouple processing time from event time. Like DryadLINQ, Spark
is designed to process existing and complete data. Spark has a centralized
scheduler which distributes work packages and awaits their completion. Its
fault-tolerance mechanism requires Spark’s scheduler to only schedule new
work once previous work has been fully completed. Work is parallelized across
partitions of data, but natural variations can cause partitions to be differently

16

2.3 A critical history of stream processing

sized and hence processing time can vary, which limits the scheduler’s ability
to assign new tasks to the processing latency of the slowest worker.2

Discretized streams [Zah+13] is a layer on Spark. It maps Spark’s execution
model to stream processing, including basic support for iterative computations.
It reduces the batch size so that each batch represents a time range of data of
configurable length. Its notion of time is thus tied to the availability of batches
of data, which limits the expressiveness.
SEEP [Fer+13] is a fault-tolerant stream processor supporting scale-out

based on its state-management technique. It shows that partitioning state and
co-locating it with upstream operators is beneficial for both fault-tolerance
as well as scaling-out. Compared to MapReduce, SEEP assigns operators to
specific workers and maintains the operator state locally on that worker. For
fault-tolerance, the state is periodically checkpointed to upstream operators.
This approach leads to good query latency because data access for stateful
operators is cheap. Latency increases, though, during checkpointing and scaling
operations because affected operators are momentarily unable to serve requests.
SEEP offers good latency during steady state but introduces momentarily high
latency during reconfigurations.
Storm [Tos+14] and its newer, API-compatible sibling Heron [Kul+15] are

stream processors that scale out to large clusters while providing high through-
put with good latency. They allow programmers to define queries as dataflow
graphs, which are mapped to physical resources using a cluster scheduler.
Fault-tolerance can be provided by specialized operator implementations that
can persist their state when the system decides to take a checkpoint. Both
implementations can only track progress based on system time and do not have
a notion of a different, possibly data-dependent, time domain. This can limit
compatible use-cases and strongly ties processing speed to a notion of time.
Later stream processing systems address this problem by separating the time
of processing of data from the time inherent to the data itself.

Third generation stream processors show how the dataflow and stream
processing paradigm can be mapped to scale-out architectures. A scale-out
architecture requires newapproaches for handling per-operator state as it implies
that query execution is distributed across machines. Due to the properties of
scale-out architectures, systems have to cope with fluctuations of processing
capacity and failures on top of the general stream processing workload.
2Spark’s authors are aware of the scheduling problem and published a solution with Driz-
zle [Ven+17], allowing the scheduler to distribute tasks eagerly.

17

2 Background and motivation

While these systems achieve good throughput, latency can be high. For
systems based on MapReduce, this applies during the whole execution. None
of the presented batch processing-based systems optimizes for lowquery latency.
This opened research on optimizing systems both for latency and throughput
while providing a rich set of operators.

The processing latency of a stream processor depends on three factors: the
latency of the operators, the length of the queues between operators and the
batching of data. MapReduce’s approach is to create large batches of data,
which are by default 64MiB. Processing large amounts of data in one operation
leads to very good throughput as data is readily available. However, to reduce
latency we are interested in processing data as soon as possible after it is
available. Waiting for larger batches of data leads to higher latency. The other
extreme, processing single data elements as they arrive, leads to good latency
but has very low throughput because the processing overhead is high. Instead,
many new systems adopt a micro-batching approach where small batches of
data are processed individually, typically based on how much data has arrived
since the last time the input was drained. Micro-batching can lead to both good
latency and high throughput.

Nephele [WK09] and its fork Apache Flink [Car+15] are distributed stream
processors that claim to provide both low-latency stream processing and batch
jobs using one model. They use micro-batching to increase throughput while
maintaining relatively low latency. In Flink, a computation is represented as a
directed acyclic graph. Still, its watermark-based progress tracking technique
permits a limited set of cyclic computations. Flink provides detailed aggregate
performance indicators. As we will show later, these indicators are useful
in diagnosing some performance problems but are not adequate for detecting
problems arising from the dependency graph of operators.
MillWheel [Aki+13] is a framework for a fault-tolerant stream processor. It

provides a low-watermark mechanism similar to Flink that allows operators
to determine if all data before a certain time has been received. MillWheel’s
fault-tolerance is achieved by externalizing all operator states to a fault-tolerant
storage system. The authors assume that computations can be large and span
many machines in a shared cloud-based configuration, which implies that
machines hosting operators can crash or be preempted. For this reason, a fast
restart mechanism can be achieved by externalizing all state such that a new
instance can start processing immediately after the old disappears. However,
such a setup suffers from relatively high processing latency as all state reads
and updates need to be committed to an external storage system.

18

2.3 A critical history of stream processing

Naiad [Mur+13] introduced a general-purpose dataflow system to provide
both low-latency stream processing and high-throughput batch processing
semantics. We use Naiad’s execution model timely dataflow as a basis for large
parts of this dissertation. It uses logical time to provide iterative computations
interleaved with processing of new data, and data is processed in the form
of micro-batches. Query dataflows are expressed as a directed graph that
can have cycles to support iterative computations while also processing new
data. To enable low-latency query processing the execution model is based on
fine-grained operator scheduling on top of operating system thread scheduling.
Also, by multiplexing operators on workers it achieves a better scalability with
large dataflows consisting of many operators. Nevertheless, this comes with a
price: fine-grained batching of data combinedwithmany operator instances and
custom scheduling increases the complexity of the system dramatically. From
our experience it takes a lot of knowledge and effort to precisely understand the
behavior of a computation and to derive actions from observations. Naiad’s
increased complexity demonstrates the need for powerful tools for operators
and developers to understand and manage the system well.

Newgeneration stream processors show that by better scheduling of operators
both throughput- and latency-critical query-processing can be provided inside
the same system. However, they do not yet provide the necessary structure and
tools to make full use of their capabilities.
This short overview of the different approaches to stream processing over

time and its current state demonstrates the need for better techniques to analyze
stream processors’ latency problems, mechanisms to update their configuration,
and controllers to determine resource requirements automatically. In this thesis,
we introduce approaches to fill these deficits.

Next, we give an overview of specific related work and techniques for the
individual chapters of this thesis. Many of this thesis’ contributions are imple-
mented and evaluated on Timely Dataflow. We briefly review these concepts in
Section 2.4 for completeness, as they are necessary to understand the following
sections. In Section 2.5, we present related work for analyzing system latency
bottlenecks, controllers for stream processors and reconfiguration mechanisms,
which is relevant for Chapter 3. In Section 2.6, we show work related to
scaling controllers for distributed dataflows, which is important for Chapter 4.
Afterwards in Section 2.7, we exhibit related material to reconfiguring stream
processors, which is required for Chapter 5.

19

2 Background and motivation

Logical graph A H(m) B C

Worker 0 A0 B0 C0

Worker 1 A1 B1 C1

Worker 2 A2 B2 C2

Worker 3 A3 B3 C3

>Pr
oc
es
s0

Pr
oc
es
s1

Figure 2.2: Timely Dataflow execution model

2.4 Timely dataflow concepts

A streaming computation in Naiad is expressed as a timely dataflow:3 a directed
(possibly cyclic) graph where nodes represent stateful operators and edges
represent data streams between operators. Each data record in a timely dataflow
bears a logical timestamp, and operators maintain or possibly advance the
timestamps of each record. Example timestamps include integers representing
milliseconds or transaction identifiers, but in general can be any set of opaque
values for which a partial order is defined. The Timely Dataflow system tracks
the existence of timestamps, and reports that processed timestamps no longer
exist in the dataflow, which indicates the forward progress of a streaming
computation.
A timely dataflow is executed by multiple workers (threads) belonging to

one or more OS processes, which may reside in one or more machines of
a networked cluster. Workers communicate with each other by exchanging
messages over data channels (shared-nothing paradigm) as shown in Figure 2.2.
Each worker has a local copy of the entire Timely Dataflow dataflow graph and
executes all operators in this graph on (disjoint) partitions of the dataflow’s
input data. Each worker repeatedly executes dataflow operators concurrent with
other workers, sending and receiving data across data exchange channels. Due
to this asynchronous execution model, the presence of concurrent “in-flight”
timestamps is the rule rather than the exception.

3Weuse timely dataflow to reference themodel andTimelyDataflow to describe the system [McS].

20

2.5 Related work: Distributed systems performance analysis

As Timely Dataflow workers execute, they communicate the numbers of
logical timestamps they produce and consume to all other workers. This
information allows each worker to determine the possibility that any dataflow
operator may yet see any given timestamp in its input. The Timely Dataflow
workers present this information to operators in the form of a frontier:

Definition 4 (Frontier). A frontier F is a set of logical timestamps such that
1. no element of F is strictly greater than another element of F,
2. all timestamps on messages that may still be received are greater than

or equal to some element of F.

In many simple settings a frontier is analogous to a low watermark in
streaming systems like Flink, which indicates the single smallest timestamp
that may still be received. In timely dataflow a frontier must be set-valued rather
than a single timestamp because timestamps may be only partially ordered.

Operators in timely dataflow may retain capabilities that allow the operator
to produce output records with a given timestamp. All received messages come
bearing such a capability for their timestamp. Each operator can choose to drop
capabilities, or downgrade them to later timestamps. The Timely Dataflow
system tracks capabilities held by operators, and only advances downstream
frontiers as these capabilities advance.

Timely dataflow frontiers are the main mechanism for coordination between
otherwise asynchronous workers. The frontiers indicate when we can be certain
that all messages of a certain timestamp have been received, and it is now safe
to take any action that needed to await their arrival. Importantly, frontier
information is entirely passive and does not interrupt the system execution; it is
up to operators to observe the frontier and determine if there is some work that
cannot yet be performed. This enables very fine-grained coordination, without
system-level intervention. Further technical details of progress tracking in
timely dataflow can be found in Naiad [Mur+13] and in the work of Abadi
et al. [Aba+13].

2.5 Related work: Distributed systems
performance analysis

A goal of this thesis is to improve the understanding of stream processors in
order to derive good metrics and trace performance problems to their cause.

21

2 Background and motivation

There exists abundant literature on performance analysis, characterization, and
debugging of distributed systems, and stream processors are a special instance
of distributed systems. We distinguish three main areas of related work.

Critical path analysis Critical path analysis (CPA) is a technique to find
the longest dependency path in an execution trace because this path will
determine the end-to-end latency and hence improving operations that are on
the critical path can result in performance improvements. Nevertheless, we
know of no prior work to perform online critical path analysis for long running
computations, or across a broad range of execution models. Yang et al. [YM88]
first applied CPA to distributed and parallel applications, defined the program
activity graph (PAG), gave a distributed algorithm for CPA, and showed its
benefits over traditional profiling. The PAG represents activations of operators
and messages between them as a graph over time. CPA and related techniques
have since been used to analyze distributed programs like message passing
interface (MPI) applications [Sch05; Böh+12] and web services [Cho+14], in
all cases using offline traces. Schulz [Sch05] proposes a tool that interceptsMPI
library calls, gathers traces on each worker locally during execution, combines
the traces after program termination to construct the program activity graph,
and computes and visualizes the critical path. The novelty of the approach
lies in the fact that each parallel process creates a local execution subgraph
during execution. These subgraphs are stored to disk after termination and
the PAG construction and CP computation are performed offline. The method
is not applicable to long-running jobs. The author presents results for up to
128 workers and 300 × 103 nodes (full)/1000 nodes (collapsed) but does not
mention how long the analysis takes.

Böhme et al. [Böh+12] combine critical path analysis with traditional perfor-
mance profiles to uncover load imbalance problems and characterize resource
consumption of MPI applications. Their work uses critical path profiles and
imbalance indicators to reveal imbalance problems. All analyses are performed
offline by replaying execution traces. The CPA is integrated as an extension
to an existing performance analysis tool. Böhme et al. not only compute the
critical path but also attempt to understand the impact of changes to the critical
path and to execution. They argue that the critical path is hard to obtain online
and that scalable extraction is challenging.
Chow et al. [Cho+14] present the Mystery Machine, an end-to-end perfor-

mance analysis tool for web services. The system uses log samples to generate

22

2.5 Related work: Distributed systems performance analysis

and validate a dependency graph model of execution segments among different
components of the Facebook service infrastructure stack. The goal of the
system is to determine the factors that affect end-to-end latency of requests
to Facebook servers and suggest optimizations that would possibly lower that
latency. The solution targets heterogeneous distributed systems with diverse
executable components and software stacks. A major goal is to use existing log-
ging infrastructure and automatically extract an execution model from already
available traces. The traces are gathered in a central location and the analysis
is performed offline as a parallel Hadoop job. The Mystery Machine uses
critical path analysis to find bottlenecks. It creates a dependency graph that
resembles the program activity graph. This graph is initially fully connected
and dependencies are gradually removed by using explicit information from
the traces. The system computes critical paths on the traces and aggregates the
results to find how often an activity is on the critical path or what percentage
of the critical path an activity type accounts for. The Mystery Machine also
calculates slack for each segment and identifies outlying requests.
Algorithms to compute the k longest (near-critical) paths in a computation

are given by Alexander et al. [Ale+98]. The authors also describe how to build
a PAG for operating system-level trace points.
The first online method for computing critical path profiles seems to have

been introduced by Hollingsworth [Hol96], where performance traces are
piggybacked on data messages exchanged by processes at runtime. How-
ever, the proposed algorithm is too expensive to construct the full PAG
and is thus limited to a small number of user-selected activities. A nice
feature of Hollingsworth’s [Hol96] work is combining online CPA with dy-
namic instrumentation to selectively enable trace points on demand. Saidi
et al. [Sai+08] extend the analysis of Hollingsworth [Hol96] to the full software
stack, and Dooley and Kalé [DK10] use this information for adaptive schedul-
ing. Sonata [Guo+13] pinpoints critical outliers using a correlation techniques.
It supports offline analysis of MapReduce jobs through identifying correlations
between tasks, resources and job phases but its approach only applies to batch
processors where the execution of tasks is synchronized between workers.

Dataflow performance analysis Ousterhout et al. [Ous+15] employ blocked
time analysis to dataflow, a “what-if” approach quantifying performance im-
provement assuming a resource is infinitely fast. They instrument Sparkworkers
to measure the time a thread is blocked on network or disk, and use this to

23

2 Background and motivation

diagnose stragglers and simulate the potential improvement from optimizing
I/O usage. Blocked time analysis is performed offline and assumes staged batch
execution. It can only identify bottlenecks due to network and disk i/o and does
not provide insights into the interdependence of parallel tasks and operators.
Bedini et al. [Bed+13] preset an alternative approach based on the actor model
rather than CPA for Storm [Tos+14]. HiTune [Dai+11] and Theia [Gar+12]
focus on Hadoop profiling; in particular, on cluster resource utilization and
task progress monitoring.

Distributed systems profiling A comprehensive overview of prior work in
distributed profiling is presented by Zhao et al. [Zha+16], which also introduces
Stitch, a tool for profilingmulti-level software stacks using traces. Stitch requires
no domain knowledge of the reference system, but its flow reconstruction
principle assumes logged events are sufficient to reconstruct the execution flow.
VScope [Wan+12] targets online anomaly detection and root-cause analysis in
large clusters and is designed to take advantage of the existing logging pipelines
in data centers. Finally, we note that capturing dependencies between activities
in dataflows is similar to causal profiling in Coz [CB15], which does not
focus on distributed dataflows. Coz determines dependencies non-intrusively
in existing binaries without instrumentation using repeated executions in a
sandboxed environment.

2.6 Related work: Scaling controllers for
distributed stream processors

A scaling controller makes two kinds of decisions. First, it detects symptoms
of over- or under-provisioning (for example backpressure) and decides whether
to make a change. Detection is often straightforward and addressed by con-
ventional monitoring tools. Second, the controller must identify the causes
of symptoms (e.g., a bottlenecked or idle operator) and propose a scaling ac-
tion. The second decision is challenging, involving performance analysis and
prediction. Streaming systems supporting a form of automatic dynamic scal-
ing (e.g., Google Cloud Dataflow [KD16; Aki+15], Heron [Kul+15; Flo+17],
Pravega [Des17], Spark Streaming [Zah+13], and IBM System S [Ged+14]) and
research prototypes (e.g., SEEP [Fer+13] and StreamCloud [Gul+12]) focus

24

2.6 Related work: Scaling controllers for distributed stream processors

on the first decision and either ignore the second or provide speculative, often
ad-hoc solutions for it.
A good scaling controller should provide the SASO properties [Hel+04]

familiar from control theory: stability (not oscillating between different config-
urations), accuracy (finding the optimal configuration for the given workload),
short settling times to reach the optimal configuration, and no overshoot.
Speculative scaling decisions that do not provide these properties can lead

to unstable configurations for streaming systems. They lead to temporary
over- or under-provisioning, and the resulting sub-optimal resource utilization
incurs unnecessary costs. Oscillations can in turn degrade performance due to
frequent scaling actions. Speculative scaling can be slow to converge, resulting
in service level objective (SLO) violations or load shedding. Instead, a scaling
controller should use a non-speculative approach to fulfill the SASO properties.
Designing a scaling controller with SASO properties is non-trivial, and

existing dynamic scaling techniques for stream processing do not achieve
SASO. Here, we summarize existing approaches, and then examine why they
frequently lead to inaccurate, unstable, and slow scaling decisions.
Many stream processors [Zah+13; Car+17; Tos+14; Kul+15; Aki+13;

WT15] have elastic runtimes and allow job reconfiguration by migrating or
externalizing state, but the majority relies entirely on manual intervention for
both symptom detection and scaling actions.
Table 2.1 summarizes those systems that do provide some form of auto-

matic scaling. For more details also see the work by Assunção, Veith, and
Buyya [AVB17]. We categorize them by the metrics used for symptom detec-
tion, the policy logic for deciding when to scale, the type of scaling action
which defines which operators to scale and by how much, and their optimiza-
tion objective (i.e. a latency or throughput SLO). The metrics column shows
different varieties of metrics the systems use to base their decisions on. We
distinguish between observed rates, which are simple aggregated rates, and
true rates, which can be correlated with other metrics. Both are explained in
more detail in Section 4.1. DS2, in the last row of the table, is our solution.
We identify two areas in which current systems fall short of the controller

properties we would like to see: first, the metrics used do not provide enough
information to make fast and accurate decisions as to how to rescale the system,
and second, the policies used for scaling (and the models they are based on)
are often simplistic and rule-based.

25

2 Background and motivation

Table
2.1:O

verview
ofautom

atic
scaling

policiesin
distributed

dataflow
system

s.

System
M
etrics

Policy
Scaling

A
ction

O
bjective

B
orealis[A

ba+05]
C
PU

,netw
ork

slack,queue
sizes

Rule-based
Load

shedding
Latency,
throughput

Stream
C
loud

[G
ul+12]

Average
C
PU

,observed
rates

Threshold-based
Speculative,m

ulti-operator
Throughput

SEEP
[Fer+13]

U
ser/system

C
PU

tim
e

Threshold-based
Speculative,single-operator

Latency,
throughput

IB
M

Stream
s

[G
ed+14]

C
ongestion,observed

rates
Threshold-based,
blacklisting

Speculative,single-operator
Throughput

FU
G
U
+
[H

ei+14a]
C
PU

,processing
tim

e
Threshold-based

Speculative,single-operator
Latency

N
ephele

[LJK
15]

M
ean

task
latency,service

tim
e,interarrivaltim

e,
channellatency

Q
ueuing

theory
m
odel

Predictive,m
ulti-operator

Latency

D
R
S
[Fu+17]

Service
tim

e,interarrival
tim

e
Q
ueuing

theory
m
odel

Predictive,m
ulti-operator

Latency

Stela
[X

PG
16]

O
bserved

rates
Threshold-based

Speculative,single-operator
Throughput

Spark
Stream

ing
[SparkD

y]
Pending

tasks
Threshold-based

Speculative,m
ulti-operator

Throughput

G
oogle

D
ataflow

[A
D
16]

C
PU

,backlog,observed
rates

H
euristics

Speculative,m
ulti-operator

Latency,
throughput

D
halion

[Flo+17]
B
ackpressure,queue

sizes,
observed

rates
Rule-based,
blacklisting

Speculative,single-operator
Throughput

Pravega
[D

es17]
O
bserved

rates
Rule-based

Speculative,single-operator
Throughput

D
S2

(C
hapter4)

True
processing

and
output

rates
D
ataflow

m
odel

Predictive,m
ulti-operator

Throughput

26

2.6 Related work: Scaling controllers for distributed stream processors

Limited metrics Most systems rely on coarse-grained externally observed
metrics to detect suboptimal scaling. These metrics include CPU utilization,
throughput measurements, queue sizes, and others. CPU and memory utiliza-
tion can be inadequate metrics for streaming applications, particularly in cloud
environments due to multi-tenancy and performance interference [Ram+16].
StreamCloud [Gul+12] and SEEP [Fer+13] try to mitigate the problem by
separating user time and system time, but preemption can make these met-
rics misleading: high CPU usage by a task running on the same physical
machine as a dataflow operator can trigger incorrect scale-ups (false positives)
or prevent correct scale-downs (false negatives), for example. Google Cloud
Dataflow [KD16] uses CPU utilization only for scale-down decisions but could
still suffer from false negatives. The CPU utilization is also unsuitable for
systems like Timely Dataflow [McS; Mur+13], which continuously check for
more work.
These metrics also imply continuous threshold tuning, a cumbersome

and error-prone process. Incorrect scaling decisions can often arise from
slightly misconfigured thresholds, even on fine-grained metrics [Flo+17].
Dhalion [Flo+17] and IBM System S [Ged+14] also use backpressure and
congestion to identify bottlenecks. These signals are only helpful where a
bottleneck exists. If the dataflow is using resources unnecessarily, such metrics
will not trigger reconfigurations. Moreover, in under-provisioned dataflows,
backpressure will only detect a single bottleneck; for this reason and to mini-
mize the effects of incorrect decisions [Sch+09; Flo+17], each scaling action
only configures one operator, which increases convergence time.

Simplistic performancemodels The scaling policy is generally expressed in
simple rules, using predefined thresholds and conditions, e.g., CPU utilization
> 80% and backpressure =⇒ scale up. This results in simplistic performance
models with poor predictive accuracy, which are unable to consider the structure
of the dataflow graph or computational dependencies among operators. We
note the exceptions of recent work by Lohrmann, Janacik, and Kao [LJK15]
based onNephele [WK09] andDRS [Fu+17], which use queuing theory models.
Nevertheless, both systems show poor prediction quality in some cases, while
Nephele also seems to suffer from temporary over-provisioning and slow
convergence.
Since the controller cannot accurately estimate how much to scale an oper-

ator, scaling actions are mostly speculative. The system applies pessimistic

27

2 Background and motivation

strategies which introduce only small changes to the number of provisioned
resources [Fer+13; Ged+14] and most policies configure a single operator at a
time. This delays convergence to a steady state significantly, as all steps of the
scaling process are repeated many times: SLO monitoring, decision making,
state migration, and redeployment. Floratou et al. [Flo+17] show that Heron
needs almost an hour to reach a steady state that can handle the input rate after
the first time backpressure is observed.
More aggressive strategies try to apply configurations and blacklist them if

they degrade performance. Schneider et al. [Sch+09] describe an approach that
allows arbitrary scaling steps but requires a user-defined function to calculate
the new number of instances, whereas Spark supports exponential increases
in resources [SparkDy]. StreamCloud [Gul+12] tries to estimate the optimal
number of virtual machines in a single step, but uses very coarse-grained
scaling on a subgraph of the dataflow topology. Google Cloud Dataflow is
the only system we know with fully automatic scaling per operator, although
details of the model used have not been disclosed.

2.7 Related work: Applying configuration updates
Distributed stream processing jobs are long-running dataflows that continually
ingest data from sources with dynamic rates and must produce timely results
under variable workload conditions [PokGO; Twi].
To satisfy latency and availability requirements, modern stream processors

support consistent online reconfiguration, in which they update parts of a
dataflow computation without disrupting its execution or affecting its correct-
ness. Such reconfiguration is required during rescaling to handle increased
input rates or reduce operational costs [Fer+13; Flo+17], to provide perfor-
mance isolation across different dataflows by dynamically scheduling queries
to available workers, to allow code updates to fix bugs or improve business
logic [Arm+18; Car+17], and to enable runtime optimizations like execution
plan switching [ZRH04] and straggler and skew mitigation [Fan+17].

Streaming dataflow operators are often stateful, partitioned across workers by
key, and their reconfiguration requires state migration: intermediate results and
data structures must be moved from one set of workers to another, often across
a network. Existing state migration mechanisms for stream processors either
pause and resume parts of the dataflow (as in Flink [Car+15], Dhalion [Flo+17],
and SEEP [Fer+13]) or launch new dataflows alongside the old configuration

28

2.7 Related work: Applying configuration updates

(as for example in ChronoStream [WT15] and Gloss [Raj+18]). In both cases
state moves “all-at-once”, with either high latency or resource usage during the
migration.
The topic of state migration has been extensively studied for distributed

databases [Bar+12; Das+11; Elm+11; Elm+15]. Notably, Squall [Elm+15]
uses transactions to multiplex fine-grained state migration with data processing.
These techniques are appealing in spirit, but use mechanisms (transactions,
locking) not available in high-throughput stream processors and are not directly
applicable without significant performance degradation.

A distributed dataflow computation runs as a physical execution plan which
maps operators to provisioned compute resources (or workers). The execution
plan is a directed graph whose vertices are operator instances (each on a
specific worker) and edges are data channels (within and across workers).
Operators can be stateless (e.g., filter, map) or stateful (e.g., windows, rolling
aggregates). State is commonly partitioned by key across operator instances so
that computations can be executed in a data-parallel manner. At each point in
time of a computation, each worker (with its associated operator instances) is
responsible for a set of keys and their associated state.

State migration is the process of changing the assignment of keys to workers
and redistributing the respective state accordingly. A good state migration
technique should be non-disruptive (minimal increase in response latency
during migration), short-lived (migration completes within a short period of
time), and resource-efficient (minimal additional resources required during the
migration).

We present an overview of existing state migration strategies in distributed
streaming systems and identify their limitations. We then review live state
migration methods adopted by database systems and provide an introduction
into Megaphone’s approach to bring such migration techniques to streaming
dataflows, which we present in Chapter 5.

2.7.1 State migration in streaming systems
Distributed stream processors, including research prototypes and production-
ready systems, use one of the following three state migration strategies.

Stop-and-restart A straightforward way to realize state migration is to tem-
porarily stop program execution, safely transfer state when no computation

29

2 Background and motivation

is being performed, and restart the job once state redistribution is complete.
This approach is most commonly enabled by leveraging existing fault-tolerance
mechanisms in the system, such as global state checkpoints. It is adopted
by Spark Streaming with Discretized streams [Zah+13], Structured Stream-
ing [Arm+18], and Apache Flink [Car+17].

Partial pause-and-resume In many reconfiguration scenarios only one or a
small number of operators need to migrate state, and halting the entire dataflow
is usually unnecessary. An optimization first introduced in Flux [Sha+02] and
later adopted in variations by SEEP [Fer+13], IBM Streams [IBMSt], Stream-
Cloud [Gul+12], Chi [Mai+18], andFUGU [Hei+14b], pauses the computation
only for the affected dataflow subgraph. Operators not participating in the mi-
gration continue without interruption. This approach can use fault-tolerance
checkpoints for state migration [Fer+13; Mai+18] or state can be directly
migrated between operators [Gul+12; Hei+14b].

Dataflow Replication To minimize performance penalties, some systems
replicate the whole dataflow or subgraphs of it and execute the old and new
configurations in parallel until migration is complete. ChronoStream [WT15]
concurrently executes two or more computation slices and can migrate an arbi-
trary set of keys between instances of a single dataflow operator. Gloss [Raj+18]
follows a similar approach and gathers operator state during a migration in a
centralized controller using an asynchronous protocol.

Current systems fall short of implementing statemigration in a non-disruptive
and cost-efficient manner. Existing stream processors migrate state all-at-once,
but differ in whether they pause the existing computation or start a concurrent
computation. Strategies that pause the computation can cause high latency
spikes, especially when the state to be moved is large. On the other hand,
dataflow replication techniques reduce the interruption, but at the cost of high
resource requirements and required support for input duplication and output
de-duplication. For example, for ChronoStream to move from a configuration
with x instances to a new one with y instances, x + y instances are required
during the migration.

30

2.7 Related work: Applying configuration updates

2.7.2 Live migration in database systems
Database systems have implemented optimizations that explicitly target limi-
tations we have identified in the previous section, namely unavailability and
resource requirements. Even though streaming dataflow systems differ signifi-
cantly from databases in terms of data organization, workload characteristics,
latency requirements, and runtime execution, the fundamental challenges of
state migration are common in both setups.

Albatross [Das+11] adopts virtual machine live migration techniques and is
further optimized by Barker et al. [Bar+12] with a dynamic throttling mech-
anism, which adapts the data transfer rate during migration so that tenants
in the source node can always meet their SLOs. ProRea [SCM13] combines
push-based migration of hot pages with pull-based migration of cold pages.
Zephyr [Elm+11] proposes a technique for live migration in shared-nothing
transactional databases which introduces no system downtime and does not
disrupt service for non-migrating tenants.

The most sophisticated approach for relational databases is Squall [Elm+15],
which interleaves state migration with transaction processing by partly using
transaction mechanisms to effect the migration. Squall introduces a number of
interesting optimizations, such as pre-fetching and splitting reconfigurations to
avoid contention on a single partition. In the course of a migration, if migrating
records are needed for processing but not yet available, Squall introduces a
transaction to acquire the records (completing their migration). This introduces
latency along the critical path, and the transaction locking mechanisms can
impede throughput, but the system is neither paused nor replicated.
To the best of our knowledge, no stream processor implements such a fine-

grained migration technique.

2.7.3 Live migration for streaming dataflows

Next, we present our solutions to the problems outlined previously. In the
following chapter, we introduce Snailtrail, a system to analyze distributed
systems for latency problems. In Chapter 4, we presentDS2, a scaling controller
that automatically and accurately determines the required level of parallelism
per dataflow to meet its SLOs. Lastly, in Chapter 5 we show how fine-grained
configuration updates can be interleaved with query processing to reduce the
latency impact of reconfigurations by orders of magnitude, using Megaphone.

31

3
Snailtrail: online critical path
analysis for distributed dataflows

This chapter is based on the paper SnailTrail: Generalizing Critical Paths for Online
Analysis of Distributed Dataflows [Hof+18].

Modern stream processors provide a complex execution environment for
distributed dataflows. They scale dataflows across many nodes and schedule
operators based on data availability and time constraints. The underlying execu-
tion environment, namely the operating system and networks, add complexity
which can manifest in hard-to-understand runtime behavior. Understanding the
runtime behavior is necessary, though, to achieve low-latency query processing.
To address the problem of system understandability we present a generaliza-
tion of critical path analysis (CPA) to online performance characterization of
long-running, distributed dataflow computations.
Existing tools which aggregate performance information from servers and

software components into visual analysis and statistics [Nag; Sac+03] can
be useful in showing what each part of the system is doing at any point
in time, but are less helpful in explaining which components in a complex
distributed system need improvement to reduce end-to-end latency. On the
other hand, tools which capture detailed individual traces through a system,
such as Splunk [Car12] and VMware vRealize Log Insight [LogI], can isolate
specific instances of performance loss, but lack a “big picture” view of what
really matters to performance over a long (possibly continuous) computation
on a varying workload.

In this chapter we show that the design space for useful performance analysis
of so-called “big data” systems is much richer than currently available tools
would suggest.

33

3 Snailtrail

Critical path analysis is a proven technique for gaining insight into the
performance of a set of interacting processes [YM88], and we review the basic
idea in Section 3.1. However, CPA is not directly applicable to long-running
and streaming computations for two reasons. Firstly, it requires a complete
execution trace to exist before analysis can start. In modern systems, such
a trace may be very large or, in the case of stream processing, unbounded.
Secondly, in a continuous computation, there exist many critical paths (as
we show later on), which also change over time, and there is no established
methodology for choosing one of them to gain an overall understanding of the
system. It is therefore important to aggregate the paths both spatially across the
distributed computation and temporally for an evolving picture of the system’s
performance.

According to prior work [ARH94; YDG89], the accuracy of CPA increases
with the number of critical paths considered. However, existing approaches
require full pathmaterialization in order to aggregate information frommultiple
critical paths. Thus, they restrict analysis to k critical paths, where k is much
smaller than the total number of paths in the trace. In open-ended computations
where analysis is performed on trace snapshots and all paths are of equal length,
materializing all paths is impractical, especially if the analysis needs to keep
up with real time. For instance, in our experiments, the number of paths in a
10 second snapshot of Spark traces is in the order of 1021.

This chapter’s first contributions in Section 3.2 are definitions of the transient
critical path, amodification of the classical critical path applicable to continuous
unbounded computations, and critical participation (CP), a metric which
captures the importance of an execution activity in the transient critical paths of
computation, and which can be used to generate new time-varying performance
summaries. The CP metric can be computed online and aggregates information
from all paths in a snapshot without the need to materialize any path.

Our next contribution in Section 3.3 is amodel for the execution of distributed
dataflow programs sufficiently general to capture the execution (and logging)
of commonly-used systems—Spark, Flink, TensorFlow, and Timely Dataflow—
and detailed enough for us to define transient critical paths and CP over each
of these.
We then show in Section 3.5 an algorithm to compute CP online, in real

time, and describe Snailtrail, a system built (itself as a Timely Dataflow
program) to do this on traces from the four dataflow systems listed above. In
Section 3.7 we evaluate Snailtrail’s performance, demonstrate online critical
path analysis using all four reference systems with a variety of applications and

34

0 50 100 150
Snapshot

0.0

0.1

0.2

0.3

0.4

0.5

C
P

0 50 100 150
Snapshot

%
w

ei
gh

t
Driver scheduling

Figure 3.1: CP-based (left) and conventional profiling (right) summaries of
Spark’s driver activity on BDB [bdb] from [Ous] for 64 s snap-
shots. Spikes indicate coordination between workers and the driver.
Conventional profiling fails to show that Spark’s driver is a latency
bottleneck whereas Snailtrail with its CP metric clearly indicates a
latency problem.

workloads, and show how CP is more informative than existing methods, such
as conventional profiling and single-path critical path analysis (Sections 3.7.4
and 3.7.5).
Figure 3.1 gives a flavor of how CP compares with conventional profiling

techniques. In Spark, a driver schedules the processing of batches of data to
individual workers. Only after all workers finished processing their assigned
batch, the driver will schedule a new round of work. This can cause high
latency if there is imbalance between the size and processing time of batches
or if the driver is slow determining a new set of batches to be processed. A
critical path in Spark could, for example, go through the driver’s scheduling
activity and the slowest of the workers in each round. The key difference in
the plot is that our approach highlights activities that contribute significantly
to the performance of the system, while discarding processing time that lies
outside the critical path.

35

3 Snailtrail

Table 3.1: Notation used throughout Chapter 3

Symbol Description

a : [start,end] Activity a with start and end timestamps
G Activity graph
G[ts ,te] Snapshot of activity graph G in the time interval [ts, te]∏te

ts
(e) Projection of edge e on the time interval [ts, te]

v[w] Worker id of vertex v

v[t] Timestamp t of vertex v

e[w] Weight w of edge e
e[p] Type p of edge e
‖p‖ Total weight of edges in path p
Ew Set of worker activities
Ec Set of communication activities
c(e) Transient path centrality of edge e
CPe Critical participation of edge e

We believe Snailtrail is the first system for online real-time critical path anal-
ysis of long-running and streaming computations. We also show in Section 3.7
the potential of such analysis for configuration tuning, straggler mitigation, and
online detection of communication imbalance.

3.1 Critical path analysis background
Critical path analysis (CPA) has been successfully applied to high-performance
parallel applications like MPI programs [CC15; Sch05], and the basic concepts
also apply to the distributed dataflow systems we target in this chapter. In this
section we review classical CPA applied to batch computations as a prelude
to our extension of CPA to online and continuous computations in the next
section. Table 3.1 summarizes the notation we use in this section and the rest
of this chapter.

We view distributed computation as executed by individual system workers
that perform activities (e.g., data transformations or communication). The
critical path is defined as the sequence of activities with the longest duration
throughout the execution.

36

3.1 Critical path analysis background

Definition 5 (Activity). A logical operation performed at any level of the
software stack, and associated with two timestamps [start,end], start ≤ end,
that denote the start and end of its execution with respect to a clock C.

An activity can be either an operation performed by a worker (worker
activity) or a message transfer between two workers (communication activity).
Typically, worker activities correspond to the execution of some code, but can
also be I/O operations performed by the worker (e.g., reads/writes to/from
disk). Communication activities correspond to worker interactions, e.g., data
exchange or control information.
Different systems have different abstractions corresponding to workers, for

example threads, processes and virtual machines. For consistency, we define a
worker as follows.

Definition 6 (Worker). A logical execution unit that performs an ordered
sequence of activities with respect to a clock C.

We require that no two activities ai andaj of the sameworkerai : [starti,endi]
and aj : [startj,endj] (where i , j) can overlap in time, i.e. either endi ≤ startj
or starti ≥ endj . In other words, a single worker can only execute one activity
at a time but is not able to execute activities in parallel.
Central to CPA is the program activity graph (PAG), which describes what

workers are doing. It is a graph representation of workers, the activities they
execute and communication between workers.

Definition 7 (Program activity graph). A PAG G = (V,E) is a connected
directed labeled acyclic graph.

• V is the set of vertices. A vertex v ∈ V represents an event corresponding
to the start or end of an activity. Each vertex v has a timestamp v[t] and
a worker id v[w].

• E ≡ Ew ∪ Ec ⊂ V × V , Ew ∩ Ec = ∅, is the set of directed edges
representing activities and communication between workers. An edge
e = (vi, vj) ∈ E represents an activity a : [start,end], where vi[t] = start
and vj[t] = end. An edge e has a type e[p] and a weight e[w] indicating
the activity duration in time units, so that e[w] = vj[t] − vi[t] = end −
start ≥ 0.

• An edge e ∈ Ew denotes a worker activity whereas an edge e ∈ Ec

denotes a communication activity.

The weight of a path in the PAG is the sum of the weights of the activities
on the path.

37

3 Snailtrail

Definition 8 (Path weight). For a path p, the weight ‖p‖ is the sum of the
weight of the components:

‖p‖ =
∑
e∈p

e[w].

The direction of an edge e = (v1, v2) ∈ E from node v1 ∈ V to node v2 ∈ V
denotes a happened-before relationship between the nodes [Lam78]. The
critical path is then defined as the longest path in the program activity graph.

Definition 9 (Critical path). For a program activity graph G = (V,E), the
critical path is a path p ∈ G such that �p′ ∈ G : ‖p′‖ > ‖p‖.

The number of critical paths in a PAG from a batch computation tends to be
small as all critical paths have to have maximal length. Due to this they might
only cover a small part of the activity graph.

3.2 Online critical path analysis
Offline processing in traditional CPA is not feasible for long-running or con-
tinuous computations like streaming applications or machine learning model
training. In these cases, neither the program activity graph nor the critical
path can be defined as in Section 3.1. Instead, we define online CPA on PAG
snapshots, performing it on user-defined time windows: slices of the PAG
that contain activities within a specified time interval. This enables not only
performance analysis of running applications, but also targeting specific parts
of the computation like the model training phase in a TensorFlow program or
a specific time window in a Flink stream. To achieve this, we show here how
to define a time-based program activity graph snapshot and a transient critical
path on this graph. We then define the critical participation performance
metric, and we provide the intuition behind it in Section 3.2.3.

3.2.1 Transient critical paths
To retrieve a snapshot of the PAG, we first assign activities to time windows.
For each edge in a graph, we call its corresponding edge in a snapshot an edge
projection. The edge projection ensures that all activities fit the snapshot’s time
window.

38

3.2 Online critical path analysis

W1

W2

W1

W2

ts tek k + 1

a b c d e

f g h i

b′ c′ d ′ e′

f ′ g′ h′ i′

(a) Program activity timelines of a distributed execution with two workers. The
vertical lines divide the timeline into intervals of one time unit. The critical
path is highlighted () in the top timeline. The bottom timeline shows
the PAG snapshot into the time interval [ts, te].

b′ c′ d ′ e′

f ′ g′ h′ i′

b′ c′ d ′ e′

f ′ g′ h′ i′

b′ c′ d ′ e′

f ′ g′ h′ i′

b′ c′ d ′ e′

f ′ g′ h′ i′

b′ c′ d ′ e′

f ′ g′ h′ i′

b′ c′ d ′ e′

f ′ g′ h′ i′

(b) All transient critical paths for the graph snapshot of (a).

Figure 3.2: A program activity graph, its snapshot in the interval [ts, te], and
its transient critical paths.

39

3 Snailtrail

Definition 10 (Edge projection). Let e = (vi, vj) be an edge of an activity
graph G = (V,E), where e ∈ E and vi, vj ∈ V . Let also [ts, te], ts ≤ te, be a
time interval with respect to a clock C. Let us be a copy of vi with us[t] = ts
and ue a copy of vj with ue[t] = te. The projection of e on [ts, te] is an edge
of the same type as e and is defined only whenever

[
vi[t], vj[t]

]
overlaps with

[ts, te] as follows:

te∏
ts

(e) =
(
arg max
[t]

(vi,us), arg min
[t]

(vj,ue)
)

Activities entirely within the time interval [ts, te] are unchanged by the
projection, whereas activities that straddle the boundaries are truncated to fit
the interval. We can now define a snapshot as follows.

Definition 11 (PAG snapshot). Let G = (V,E) be a PAG, and [ts, te], ts ≤ te,
be a time interval with respect to a clock C. The snapshot of G in [ts, te]
is a directed labeled acyclic graph G[ts ,te] = (V

′,E ′) that is constructed by
projecting all edges of G on [ts, te].

The snapshot G[ts ,te] is that part of the PAG which can be observed in the
time window [ts, te]. Figure 3.2a shows this applied to the activity timelines of
two worker threads, w1 and w2, with time flowing left to right. The complete
PAG is shown at the top with the critical path in red. Below is the projection
of the PAG into the interval [ts, te]. The activities straddling the window, e.g.,∏te

ts
((b,g)) = (b′,g′), are projected to fit in the snapshot.

The key observation is that we cannot define a single critical path in a PAG
snapshot since there exist multiple longest paths with the same total weight:
te − ts. All paths starting at ts and ending at te are potentially parts of the
evolving global critical path. For this reason, we define the notion of transient
critical path:

Definition 12 (Transient critical path). Let G[ts ,te] = (V,E) be the snapshot of
an activity graph G in the time interval [ts, te]. We define the set of paths P on
G[ts ,te] as

P ≡
{

p ⊆ E | �p′ : ‖p′‖ > ‖p‖
}
,

where p denotes a path in G[ts ,te], and ‖p‖ denotes the total weight of all edges
in p. Any path p ∈ P is a transient critical path of the activity graph G in the
time interval [ts, te].

40

3.2 Online critical path analysis

Figure 3.2b shows all six transient critical paths for the snapshot in Figure 3.2a.
Since each could potentially participate in the evolving global critical path, we
need a metric that can aggregate information from all paths and rank activities
according to their impact on the computation’s performance. In offline CPA
such a ranking is trivial because there is only one critical path for the entire
computation.

Since all transient paths can potentially be part of the evolving global critical
path, an activity that appears on many transient paths is more likely to be critical
and should be ranked high. In Figure 3.2b, the edge (d ′, i′) appears in two
paths, while the edge (g′, h′) belongs to all six critical paths. The performance
metric we define next incorporates this information and ranks activities based
on their potential contribution to the global critical path.

3.2.2 Critical participation (CP metric)
For an activity e on a critical path p, we define its participation qe as the ratio
of its duration e[w] and the total length ‖p‖ of the critical path p.

qe =
e[w]
‖p‖

, 0 ≤ qe ≤ 1 (3.1)

The participation can be computed for all activities in a single pass over p.
We correspondingly define the average CP of an activity e in a transient

critical path as the sum of its participation across all transient critical paths,
normalized with the number of transient critical paths.

CPe =
∑i=N

i=1 qi
e

N
, 0 ≤ CPe ≤ 1 (3.2)

where qi
e is the participation of e to the i-th transient critical path, as given by

Equation (3.1), and N is the total number of transient critical paths in the graph
snapshot.

A straightforward way to compute CPe is to materialize all N transient paths
and compute the participation of each activity in every path. However, path
materialization is not viable in an online setting because a single graph snapshot
might contain too many paths to maintain. Instead, we exploit the fact that the
CP of an activity actually depends on the total number of transient paths this
activity belongs to. Hence, we define the transient path centrality as follows.

41

3 Snailtrail

Definition 13 (Transient path centrality). Let P = {p1,p2, . . . ,pN } be the set
of N transient paths of snapshotG[ts ,te] with weight ‖p‖ = te− ts . The transient
path centrality of an edge e ∈ G[ts ,te] is defined as

c(e) =
N∑
i=1

ci(e), ci(e) =

{
0: e < pi

1: e ∈ pi .

Both Equation (3.2) and Definition 13 define the CP of an activity and the
following holds.

CPe =
∑i=N

i=1 qi
e

N
=

c(e)
N
·

e[w]
‖p‖

(3.3)

Proof. Recall that e is an activity edge in the PAG snapshot, N is the total
number of transient critical paths in the snapshot, qi

e is ratio of the activity’s
duration to the total duration of the ith transient critical path (the ratio is 0
if the activity edge is not part of the ith path), 0 ≤ c(e) ≤ N is the number
of transient critical paths the activity e belongs to, e[w] is the weight of the
activity e, i.e. its duration, and [ts, te] is the snapshot window size.

Without loss of generality, we assume that the transient critical paths pi the
activity edge e belongs to are numbered from i = 1 to i = c(e). Then:

CPe =
∑i=N

i=1 qi
e

N
=

∑i=N
i=1

e[w]
‖pi ‖

N
=

∑i=c(e)
i=1

e[w]
‖pi ‖

N
+ 0 =

∑i=c(e)
i=1

e[w]
‖pi ‖

N

All transient critical paths in the snapshot have the same duration ‖pi‖, which
is equal to the duration of the snapshot te − ts . Hence:

CPe =
∑i=c(e)

i=1
e[w]
te−ts

N
=

∑i=c(e)
i=1 e[w]

N · (te − ts)
=

c(e) · e[w]
N · (te − ts)

�

Equation (3.3) indicates that the computation of CPe can be reduced to
the computation of c(e), which requires no path materialization and can be
performed in parallel for all edges in G[ts ,te]. Section 3.5 provides an algorithm
for transient path centrality and CP without materialization. Note that we can
normalize by the number of paths N and their length ‖p‖ because Definition 12
guarantees that all paths have the same length.

42

3.2 Online critical path analysis

We can now compute the transient path centrality and critical participation
for the example in Figure 3.2. For instance, c(d ′, i′) = 2 and c(g′, h′) = 6.
Respectively, since te − ts = 5 and N = 6, CP(d′,i′) = 0.066 and CP(g′,h′) = 0.2.

The CP of Equation (3.2) can be generalized for activities of a specific type c.
Aggregating the CP by different activity types is key to produce meaningful
performance summaries. This is explained in more detail in Section 3.6.∑

∀e : e[p]=c
CPe (3.4)

Again, the sum over all activities and activity types is 1.∑
∀c∈G

∑
∀e : e[p]=c

CPe = 1 (3.5)

Intuitively, Equation (3.5) states that the estimated contribution of an activity
type, e.g., serialization, to the critical path of the computation is normalized
over the contribution of all other activity types in the same snapshot.

Proof. Recall that c denotes an activity type, e.g., serialization, and e[p] is the
type of the activity edge e in the snapshot G[ts ,te]. We have:∑

∀c∈G

∑
∀e : e[p]=c

CPe =
∑
∀e∈G

CPe =
∑
∀e∈G

∑i=N
i=1 qi

e

N

=
∑
∀e∈G

∑i=c(e)
i=1

e[w]
‖pi ‖
+ 0

N
=

∑
∀e∈G

∑i=c(e)
i=1

e[w]
‖pi ‖

N

=

∑
∀e∈G

∑i=c(e)
i=1

e[w]
te−ts

N
=

∑
∀e∈G

∑i=c(e)
i=1 e[w]

N · (te − ts)

=
N · (te − ts)
N · (te − ts)

= 1

This holds since
∑
∀e∈G

∑i=c(e)
i=1 e[w] denotes the sum of the weights (durations)

of all activity edges that comprise all N transient critical paths in the snapshot,
which is equal to N · (te − ts). �

43

3 Snailtrail

s1

s2

s3

e1

e2

e3

W1

W2

W3

ts tek k + 1

a

x

c

u

b

v z

d

3

3

3

0
3

6
3

0

9
3
6

3

3
3

3

Figure 3.3: A program activity graph snapshot with three workers from time ts
to te. The dashed vertical lines demonstrate an interval of one time
unit. A randomly chosen critical path is highlighted with dotted
edges (). Edge annotations correspond to the transient path
centrality (see Definition 13).

3.2.3 Comparison with existing methods
Figure 3.3 illustrates by example a comparison of CP-based performance
analysis with conventional profiling and traditional critical path analysis.
Conventional profiling summaries aggregate the activity duration by type

or by worker timeline. Such summaries provide information on how much
time a program spends on a certain activity type (e.g., serialization) or a
worker spends executing an activity type as compared to other workers. Since
conventional profiling summaries rely solely on activity duration and do not
capture execution dependencies, they cannot reveal bottlenecks and execution
barriers. Conventional profiling in the execution of Figure 3.3 would rank
activities (a, b) and (c, d) high since they both have a duration of 3 time units,
larger than all other activities. However, optimizing those activities cannot
produce a performance benefit for the parallel computation as both activities
are followed by a waiting state (denoted with a gap).

On the other hand, CPA captures execution dependencies and can accurately
pinpoint activities that influence performance. However, traditional CPA is
not directly applicable in a continuous computation as the critical path is not
known by just inspecting a snapshot of the execution traces. In a snapshot like
the one of Figure 3.3, all paths starting at si and finishing at ei have equal length
in time units, thus traditional CPA would choose one of them at random. We
have highlighted such a path in Figure 3.3. Although this randomly selected

44

3.3 Applicability to dataflow systems

path does not contain the activities (a, b) and (c, d), whose optimization would
certainly not improve the latency of the computation, it misses several important
activities, such as (x,u) and (v, z), whose optimization would do so.

The CP metric overcomes the limitations of both conventional profiling and
traditional CPA by ranking activities based on their potential contribution to
the evolving critical path of the computation, which in turn reflects potential
benefits from optimization.

Given a snapshot and no knowledge of the execution timelines outside of it,
any path between the si and ei points in Figure 3.3 is equally probable to be
part of the critical path. CP is a fairer metric compared to existing methods in
that it aggregates an activity’s contribution over all transient critical paths and
normalizes by the number of paths and the activity’s duration. The more paths
an activity contributes to, the higher the probability it is a part of the evolving
critical path and, hence, the higher its CP metric is. In Figure 3.3, activities
(a, b) and (c, d) do not contribute to any path and thus have zero transient path
centrality and CP values. On the other hand, activities (x,u), (u, v), and (v, z)
will be ranked as top-three by CP, since they participate in six, nine, and six
transient critical paths respectively.

In Section 3.7.4 we empirically compare CP-based performance summaries
to conventional profiling and traditional CPA, and demonstrate how the results
of the latter can be misleading. Further, in Section 3.7.5, we show how CP
can detect and help optimize execution bottlenecks like the one represented
by activity (u, v) in Figure 3.3, which is executed by a single worker (W2) and
belongs to all nine transient critical paths.

3.3 Applicability to dataflow systems
Here we show the applicability of Snailtrail to a range of modern dataflow
systems. Additionally we provide details on the model assumptions and the
instrumentation requirements.
Spark, Flink, TensorFlow, and Timely Dataflow are superficially different,

but actually similar with regard to CPA: they all execute dataflow programs
expressed as directed graphs whose vertices are operators (e.g., map, reduce)
andwhose edges denote data dependencies. During runtime, a physical dataflow
graph is executed by one or more workers, which can be threads or processes in
a machine or a cluster. Each worker executes its assigned part of the physical
graph and processes partitions of the input data in parallel with other workers.

45

3 Snailtrail

3.3.1 Activity types

We define a small set of activity types we use to classify both the activity of a
worker at any given point in time, and communication of data between workers
and operators. We consider the following types of worker activities:
Data Processing The worker is processing data in an operator. Often the

data has a unique identifier. We interpret low-level (de)compression
operations as data processing.

Scheduling Decidingwhich operator aworkerwill execute. In Spark andFlink,
scheduling is done by special workers (the Driver and the JobManager).

Barrier Processing The worker is processing information which coordinates
the computation (e.g., distributed progress tracking in Timely Dataflow
or watermarks in Flink).

Buffer Management The worker is managing buffers between operators (e.g.,
Flink’s FIFO queues) or buffering data moving to/from disk (e.g., Spark).
The activity may include copying data into/out of buffers, locking,
recycling buffers (e.g., Flink) and dynamically allocating them (e.g.,
Timely Dataflow).

Serialization Data is converted to a serial format, an operation common to
all dataflow systems when messages are sent between processes and
machines, and require a different representation than in memory.

Waiting Theworker is waiting on somemessage (data or control) from another
worker, and is therefore either spinning (as in Timely Dataflow) or
blocked on an RPC (as in TensorFlow). Waiting in our model is always
a consequence of other, concurrent, activities, and so is a key element
of critical path analysis: a worker does not produce anything useful
while waiting, and so waiting activities can never be on the critical path.
We will explain the construction of waiting activities in Section 3.4 in
situations when the system cannot reliably determine them.

I/O Theworker is waiting on an external (uninstrumented) system, for example
Spark waiting for HDFS, or Flink spilling a large state to disk. I/O
activities have no special meaning, but capture cases where performance
of the reference system is limited by an external system.

Unknown Anything else: gaps in trace records and any worker activity not
captured by the instrumentation. A large number of unknown activities
usually indicates inadequate instrumentation.

In contrast to worker-local activities, interactions between workers are mod-
eled as communication activities, which capture either application data ex-

46

3.3 Applicability to dataflow systems

change over communication channels, or control messages conveying metadata
about worker state or progress. Control messages can be exchanged between
pairs of workers as in Timely Dataflow, or through a master as in Spark and
Flink.

3.3.2 Instrumenting specific systems
We applied our approach to Spark, TensorFlow, Flink, and Timely Dataflow,
mapping each to our taxonomy of activities. In some cases we used existing
instrumentation, whereas in others we added our own.

Timely Dataflow [Mur+13; McS] required us to add explicit instrumentation,
and was the first system we addressed (in part because Snailtrail is written
as a Timely Dataflow computation.) Timely Dataflow’s progress tracking
corresponds to our “barrier” activity, discrete (de-)serialization is performed
on both data records and control messages, and Timely Dataflow’s cooperative
scheduling means that any otherwise unclassified worker activity corresponds
to “scheduling”.
Apache Flink [Car+15] adopts (unlike Timely Dataflow) a master-slave ar-

chitecture for coordination. We treat Flink’s JobManager, TaskManagers,
and Tasks all as workers, and Flink’s runtime has clear activities correspond-
ing to buffer management and serialization. Scheduling is performed in the
JobManager, barrier processing corresponds to the watermark mechanism,
and control messages correspond to communication between the JobManager
and TaskManagers. Data message activities are non-trivial to identify in Flink,
since data records are batched and exchanged between TaskManagers not Tasks.
We added our own instrumentation to record send and receive events as occuring
“end-to-end”, i.e. when Tasks place messages into or remove messages from
buffers. This does not accurately represent the performance of the underlying
network, but does mean that data message edges reflect the time between a
record being produced and consumed by workers.
TensorFlow [Aba+16] has its own instrumentation based on “Timeline”

objects, which we reuse unchanged. While enough to generate meaningful
results, it also shows how even a well-considered logging system can easily
omit information vital for sophisticated performance analysis.
Spark [Zah+12] also has its native instrumentation which we use to model

both the Spark driver and executors as workers. The logs provide information
on the lineage of resilient distributed datasets (RDDs) facilitating construction
of the PAG. Since executor scheduling is not instrumented, we assume greedily

47

3 Snailtrail

that a task is started on the most recently used thread, which aligns with Spark’s
observed behavior.

Many systems provide an interface to publish and extractmetrics information.
Snailtrail requires a specific set of information to construct the PAG, and if
the native instrumentation has sufficient detail, a simple translation of the
data format will suffice. Otherwise, the same mechanism can be used to
extract additional information by introducing additional trace points, or a new
mechanism is required. From our experience, many systems aggregate their
performance metrics, which is not compatible with Snailtrail’s approach and
requires modifications of the system-under-test.

3.3.3 Model assumptions
We support both synchronous and asynchronous execution in shared-nothing
and shared-memory architectures. Most dataflow systems use asynchronous
computations on shared-nothing clusters, but sometimes synchronous compu-
tation is supported (e.g., in TensorFlow), and system workers can share state
(e.g., in Timely Dataflow). Specifically, our model is consistent with respect to
critical path analysis under two assumptions.

Assumption 1 (Message-based interaction). Every interaction between opera-
tors in the dataflow must occur via message exchange, even if executed by the
same worker.

Note this assumption does not preclude shared-memory systems. Operators
in the reference dataflowmay share state as long as anymodification to this state
is appropriately instrumented to trigger a ‘virtual’ message exchange between
the workers sharing that state. We use this approach in instrumenting shared
state in Timely Dataflow, for example. From the perspective of Snailtrail, a
message can serve both as data exchange and activation.

Assumption 2 (Waiting state termination). Every waiting activity in a worker’s
timeline is terminated by an incoming message, either from the same or a
different worker.

In other words, a worker in a waiting state cannot start performing activities
unprompted without receiving a message. In the activity graph, a waiting
edge’s end node must correspond to that of a communication activity, i.e. a
receive event.

48

3.3 Applicability to dataflow systems

3.3.4 Instrumentation requirements

An activity may consist of sub-operations spanning multiple levels of the stack
from user code to operating system and network protocols. A given system can
be instrumented at different levels of granularity, depending on the use-case:
a multi-layered activity tracking approach enables more detailed performance
analysis but introduces higher overhead.
We allow this choice, but require that any instrumentation of the reference

system satisfy two properties, without which the transient critical paths are
ill-defined. The first states that any event having prior events must be caused
by an activity earlier in time, i.e. any unexpected event in (ts, te] indicates
insufficient instrumentation:

Property 1 (Minimum in-degree). Let G[ts ,te] = (V,E) be the snapshot of
activity graph G in time interval [ts, te]. Additionally let

Vs ≡
{
v ∈ V | �v′ ∈ V : v′[t] < v[t]

}
be a set of vertices in G[ts ,te]. A vertex v ∈ V \Vs has in-degree of at least one.

The second states that at no point do all system workers perform waiting
activities while no communication activity is occurring. Such behavior would
imply deadlock, and so any such points in the activity graph of a non-blocked
computation indicates insufficient instrumentation.

Property 2 (Communication existence). Let G[ts ,te] = (V,E) be the snapshot
of an activity graph G in [ts, te], and τ ∈ [ts, te] be a point in time. Let

S ≡
{

e = (vi, vj) ∈ Ew ⊆ E | e[p] = Waiting, vi[t] ≤ τ ≤ vj[t]
}
.

If |S | = Nτ , where Nτ is the number of active workers of the reference system
at time τ, then ∃e′ = (vk, vm) ∈ Ec ⊆ E for which vk[t] ≤ τ ≤ vm[t].

These two properties can also checked efficiently online to inform users
when the ingested activity logs are incomplete. For example, instrumentation
(or associated log preprocessing) can guarantee that no waiting activities are
created as long as the corresponding communication activity that caused the
waiting activity to end has not been observed.

49

3 Snailtrail

3.4 Program activity graph construction

A full setup of Snailtrail consists of a system under test, a log data preprocessor
and the analytical components of Snailtrail. Here, we describe the assumptions
Snailtrail makes on the raw input trace to convert it into an activity graph.
A raw event is produced by the log preprocessor, which is specific to each

system under test. The raw event has a type (start/end, send/receive), a
timestamp, a worker identifier, an optional remote worker identifier if it is a
communication event, a correlation identifier that is used to correlate messages
logged by sender and receiver workers as well as an activity and operator type.
Each such raw event corresponds to a node in the program activity graph. The
node is identified by a worker and a timestamp. Edges are constructed between
the nodes using the meta information in the raw events (e.g., activity type) and
the assumptions we describe in this section.
The PAG construction is performed in two phases. First, we generate the

nodes that correspond to activities logged by each worker, which results in a
different timeline per worker. Then, communication activities between worker
activities are added. To generate a connected PAG, Snailtrail fills in any
gaps that are not identified as waiting state in a worker’s timeline by aligning
neighboring activities or adding unknown activities.

Unknown activities are especially useful in practical deployments where log
data is also missing due to insufficient instrumentation, transient failures in
the upstream logging pipeline, or network delays preventing data for a graph
snapshot reaching Snailtrail before it calculates the CP. However, adding
unknown activities can introduce significant overhead since such activities can
explode the number of activities in the activity graph. Consequently, we instead
collapse any gaps smaller than a user-defined threshold (in the experiments
of this paper, 100ms) and create unknown activities for the remaining ones.
Nevertheless, it is important to distinguish waiting and unknown activities
because the former determine what parts of the PAG can be on a critical path.

The heuristics we apply are shown in Table 3.2. These heuristics are used to
determine if a gap between events is to be classified as an unknown or waiting
activity. It provides a case distinction based on the duration of the gap and
the events before and after the gap. We use a threshold h to determine how to
handle gaps of different duration. The result is the PAG that Snailtrail uses to
compute the CP metric.

50

3.4 Program activity graph construction

Table 3.2: PAG construction rules in Snailtrail. Gaps smaller than the threshold
h are closed by aligning the two sides of the gap. If either of
them indicates a message send or receive event, the other is moved.
Consecutive messages are either bridged with a waiting activity if a
message send is followed by a receive event, or an unknown activity.

Threshold Input Trace PAG

|(A,B)| ≥ h A B A B

Unknown

|(A,B)| < h A B A/B

|(A,B)| ≥ h A B A B

Waiting

|(A,B)| < h A B A|B

|(A,B)| ≥ h A B A B

Unknown

|(A,B)| < h A B A|B

|(A,B)| ≥ h A B A B

Unknown

|(A,B)| < h A B A|B

|(A,B)| ≥ h A B A B

Unknown

|(A,B)| < h A B A|B

Not applicable A B A B

Unknown

A B A B

Unknown

A B A B

Unknown

A B A B

Waiting

51

3 Snailtrail

The thresholding of adjacent events depends on the kind of activities. If
a gap occurs between a worker-local activity and a message and this gap is
smaller than the threshold h, we always shift the worker-local activity and leave
the node representing a message send or receive as-is. In case there is a gap
between two messages we never merge the nodes, i.e. the threshold does not
apply here. Instead, we always add either an unknown or a waiting edge.

Dealing with incomplete instrumentation in Spark and TensorFlow In
TensorFlow, data communication activities take place between data processing
activities on different threads and we recover them the same way Timeline does
by using input dependencies to identify communicating parties. Communi-
cation duration is computed as the time interval between the source activity
ending and the destination activity starting, but note that this masks the effect
of buffer management and results in overestimates for message transfer time.
We see many cases in TensorFlow consisting of a message send, followed

by a subsequent, later receive on the same worker. TensorFlow supplies no
information about what activity was happening between these two events.
Initially, we classified this activity as “unknown,” but this led to an explosion
in the number of potentially critical paths in the system. Instead, we assume
that the worker has to be in a waiting activity just before the receive, which
means that this interval cannot be part of any critical path, and so we classify
the entire interval as “waiting”. Inspection of the code suggests this is always
the case, but it is possible for code to process data while periodically polling
for new messages. Yet there are still many gaps in worker timelines which we
classify as edges of unknown type. More detailed instrumentation would avoid
this problem.
In Spark we infer waiting activities between tasks being sent by Spark’s

driver to an executor and the executor dispatching them. As with TensorFlow,
more careful instrumentation would obviate the need for this, but the result is
still completely accurate for critical path determination.
In the case of all-to-all shuffles, Spark’s centralized task allocation by the

driver allows us to infer control messages and buffering activity surrounding
the all-to-all message exchange, which means we can even analyze published
Spark traces which lack RDD lineage information, such as the ones published
by Ousterhout [Ous].

52

3.5 Snailtrail system implementation

Figure 3.4: Snailtrail system overview. Snailtrail ingests a trace stream from a
reference application, constructs the PAG, and computes the critical
participation. It outputs CP-based performance summaries.

3.5 Snailtrail system implementation
The CP-computation is implemented in Snailtrail, itself a data-parallel stream-
ing application written in Rust using Timely Dataflow. Figure 3.4 shows an
overview of the system. It reads streams of activity traces via sockets, files,
or message queues from a reference application and outputs a stream of per-
formance summaries. Snailtrail operates in four pipeline stages: it ingests
logs, slices the stream(s) into windows [ts, te] and constructs PAG snapshots,
computes the CP of the snapshots, and finally outputs the summaries we show
in Section 3.6.

Traces are sent to Snailtrail which ingests a stream S of performance events
corresponding to vertices in the activity graph. The snapshots are constructed
using Algorithm 1, which we will describe now.

First, Snailtrail extracts from S the events in the time window [ts, te] (line 1).
These are then grouped by the worker that recorded them (line 2). Each group
corresponds to a worker timeline in Figure 3.2a. Then Snailtrail sorts the
events in each timeline by time (line 6), and scans each timeline in turn to
create the set of edges Ew (line 8) that correspond to typed worker activities as
described in Section 3.3.1. Meanwhile, communication activities are partially

53

3 Snailtrail

initialized based on a send- and receive-end at each worker (line 9). Then in
line 10 partial edges are grouped by the attributes (wsrc

id ,w
dst
id , cid); note that w

src
id

is the sender worker id, wdst
id is receiver id, and cid is generated to uniquely

identify a message. These pairs of partial edges are concatenated to create
the final communication edges in Ec , and the output is the union of sets Ew

and Ec (line 11). Messages activities that span the snapshot interval miss a
corresponding send or receive event. For these message we insert an artificial
send/receive node at the corresponding worker to still be able to reason about
them. Note that both send and receive events carry enough information to
determine all information required for the activity to be constructed.

Input :A stream S of logs and a window [ts, te];
Output :The graph snapshot G[ts ,te];

1 Let S[ts ,te] be the logged events from S in [ts, te];
2 Group events in S[ts ,te] by worker;
3 Let Ew = ∅ be a set of worker-local activities;
4 Let Eh = ∅ be a set of communication half edges;
5 for each worker timeline Sw in S[ts ,te] in parallel do
6 Sort Sw by time;
7 for each event e in Sw do
8 Ew = Ew ∪ e if e is a worker-local activity;
9 Eh = Eh ∪ e if e is a send or receive event;

10 Group half edges in Eh by
(
wsrc
id ,w

dst
id , cid

)
;

11 Create the set Ec of edges for communication activities based on
grouped half edges;

12 return Ew ∪ Ec

Algorithm 1: Graph snapshot construction

Algorithm 1 requires two shuffles of the incoming log stream: one on worker
id (before line 2), and a second on the triple

(
wsrc
id ,w

dst
id , cid

)
(before line 10). The

most expensive step is sorting the timeline (line 6), requiring O (|T | · log |T |)
time, where |T | is the number of events in the timeline. Parallelism is limited
by the number of workers in the reference system, which are usually many
more than assigned to Snailtrail and the density of the graph. We emphasize
that edges in the PAG represent real happened-before dependencies given by
the instrumentation.

54

3.5 Snailtrail system implementation

Input :An activity graph snapshot G[ts ,te] = (V,E);
Output :A set S =

{
(e,CP) | e ∈ G[ts ,te]

}
of CP values;

1 Let Vs ≡
{
v ∈ V | �v′ ∈ V : v′[t] < v[t]

}
; // start nodes

2 Let Ve ≡
{
v ∈ V | �v′ ∈ V : v′[t] > v[t]

}
; // end nodes

// Perform both traversals in parallel
3 Traverse G[ts ,te] starting from Vs , and count the total number of times

each edge is visited, let c1;
4 Traverse G[ts ,te] backwards, starting from Ve, and count the total

number of times each edge is visited, let c2;
5 S = ∅;
6 for each edge e ∈ E do
7

S = S ∪
{ (

e,
c1 · c2 · e[w]
N · (te − ts)

) }
8 return S

Algorithm 2: Critical participation (CP metric)

For each graph snapshot, the CP-metric is computed using Algorithm 2.
Snailtrail collects ‘start’ and ‘end’ nodes (lines 1–2) as seeds to traverse
G[ts ,te]. Vs (resp. Ve) includes the node(s) with the minimum (resp. maximum)
timestamp v[t] in G[ts ,te]. Typically, |Vs | = |Ve | = `, where ` is the number
of timelines, and so all nodes in Vs have timestamp ts whereas all nodes in Ve

have timestamp te.
Algorithm 2 computes the transient path centrality c(e) of Equation (3.3)

for all edges in G[ts ,te]. Observe that c(e) = c1 · c2, where c1 is the number of
paths from the source of e to any node in Vs , and c2 is the number of paths from
the destination of e to any node in Ve. The algorithm thus performs two simple
traversals of G[ts ,te] in parallel, computing c1 and c2 for each edge (lines 3–4).
Each traversal outputs pairs (e, ci) and these are finally grouped by e to give
CP values (lines 6–7).
Note that, while traversing G[ts ,te], we visit each edge in G[ts ,te] only once

by propagating the final value c1 (resp. c2) from each edge to all its adjacent
edges. This reduces the intermediate results of the computation significantly.
We compute the CP according to Equation (3.3), which does not require path
materialization.

55

3 Snailtrail

Algorithm 2 requires two partitions of G[ts ,te]: one on source, and one on
destination identifiers. Worst-case time complexity is O(d), where d is the
diameter of G[ts ,te] in number of edges, i.e. the maximum number of edges in
any transient critical path.
Performance summaries are constructed by user-defined groupings on the

edge attributes and summing CP values over each group.
Snailtrail’s accuracy depends on the quality of the instrumentation. A more

complete set of dependencies increases the accuracy of the CP metric. It
is especially important to correctly instrument messages and—if possible—
already provide information about waiting workers as part of the event stream.

3.6 CP-based performance summaries
The CP metric provides an indication of an activity’s contribution to the
evolving critical path. Snailtrail can be configured to generate different types
of performance summaries using the CP metric. Each summary type targets
a specific aspect of an application’s performance and is designed to reveal a
certain type of bottleneck. In particular, Snailtrail provides four performance
summaries which can answer four types of questions:

1. Which activity type is on the critical path? (Activity summary)
2. Is there data skew? (Straggler summary)
3. Is there computation skew? (Operator summary)
4. Is there communication skew? (Communication summary)

The performance summaries not only indicate potential bottlenecks, but also
provide immediate actionable feedback on which activities to optimize, which
workers are overloaded, which dataflow operator to re-scale, and how to mini-
mize network communication.

Figure 3.5 shows examples of the four summary types for the Dhalion word-
count benchmark [Flo+17] on Flink with 1 second snapshots. In the rest of this
section, we describe each summary type in detail and we discuss how to use
them in practical scenarios to improve an application’s performance.

Activity summary Is the fault-tolerance mechanism in the critical path
when taking frequent checkpoints? Is coordination among parallel workers an
overhead when increasing the application’s parallelism? An activity summary
can answer this sort of questions about an application’s performance. This
summary plots the proportional CP value of selected activity types with respect

56

3.6 CP-based performance summaries

0 5 10 15
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

DataMessage
Unknown
Buffer

Deserialization
Serialization
Processing

(a) Activity

0 5 10 15
Snapshot

0.00

0.05

0.10

0.15

C
P

(b) Straggler, lines indicate distinct
workers

0 5 10 15
Snapshot

0.00

0.02

0.04

0.06

C
P

Flatmap Count

(c) Operator

0 1 2 3 4 5 6 7 8 9 10 11 12
Worker

0
1
2
3
4
5
6
7
8
9

10
11
12

W
or

ke
r

(d) Communication, lighter colors indi-
cate higher CP

Figure 3.5: Examples of Snailtrail summary types for the Dhalion [Flo+17]
benchmark on Flink with 1 s snapshots. Figure (a) shows a per-
formance summary aggregated by activity type. In Figure (b) we
show a performance summary aggregated by worker to highlight
stragglers. In Figure (c) we show a CP-based comparison between
two operators, aggregated over all instances. Figure (d) shows a
heatmap of the communication criticality, i.e. which worker com-
munication appears to be on the critical path.

57

3 Snailtrail

to the other activity types in a given snapshot. Activity reveal bottlenecks
inherent to the system or its configuration. Having a ranking of activity types
based on their critical participation essentially gives us an indication on which
activities have the higher potential for optimization benefit. For example, if we
find that serialization is on the critical path, we might want to try a different
serialization library. The activity summary ranking can also help us choose
good configurations for our application, like how to adjust the checkpoint
interval or the parallelism. The activity summary of Figure 3.5 shows that
serialization and processing have the higher potential for optimization. Activity
summaries can be configured to plot selected activities only, as in Figure 3.1
where we only show the Spark driver’s scheduling.

Straggler summary Is there data skew? If so, which worker is the straggler?
Snailtrail can answer these questions with a straggler summary, which plots the
critical participation of a worker’s timeline in a certain snapshot. The straggler
summary relies on the observation that if a worker is a straggler then many
transient critical paths pass through its timeline. Hence, we can compare how
how critical a worker’s activities are as compared to the other workers in the
computation and reveal computation imbalance. This ranking can serve as
input to a work-stealing algorithm or guide a data re-distribution technique.
The straggler summary of Figure 3.5 clearly shows one straggler worker in the
Flink job. In Section 3.7.5, we look closer into detecting skew with Snailtrail.

Operator summary Will re-scaling my dataflow improve performance? And
if yes, which operator in the dataflow to re-scale? An operator summary plots
the critical participation of each operator’s processing activity in a snapshot,
normalized by the number of parallel workers executing the operator. This sum-
mary reveals bottlenecks in the dataflow caused by resource underprovisioning
and serves as a good indicator for scaling decisions. Traditional profiling meth-
ods fail to detect that an operator might be limiting the end-to-end throughput
of a dataflow even if its parallel tasks are perfectly balanced. Such bottlenecks
are hard to detect by looking at traditional metrics such as queue sizes, through-
put, and backpressure. The operator summary of Figure 3.5 shows that both
operators have similar critical participation, thus the parallelism of the job is
properly configured. In Section 3.7.5, we present a detailed use-case where
operator summaries guide scaling decisions for streaming applications.

58

3.7 Evaluation

Communication summary Is there communication skew? And if yes, which
communication channels to optimize? A communication summary plots the
critical participation of communication activities between each pair of workers
within a given snapshot. Contrary to traditional communication summaries,
this CP-based summary does not rely on communication frequency or absolute
message sizes. Instead, it ranks communication edges by their critical impor-
tance: the more often a communication edge belongs to a transient critical path,
the higher it will be ranked by the summary. Communication summaries can
be used to minimize network delays and optimize distributed task placement. If
we find that a pair of workers’ communication is commonly on the critical path,
it is probably a good idea to physically deploy these two workers on the same
machine. For example, the communication summary of Figure 3.5 indicates
that co-locating worker 5 with workers 11–13 could benefit performance.

In our experience, the CP requires a sampling interval that is large enough
to capture recurring patterns in the computational structure of the analyzed
system. We observe stable results with a sufficiently large window size.

3.7 Evaluation
To show generality, we evaluate Snailtrail on four reference systems: Timely
Dataflow 0.3.0, Apache Flink 1.2.0, Apache Spark 2.1.0, and TensorFlow 1.0.1.
Our evaluation is divided into four categories. First, in Section 3.7.2 we show
the instrumentation Snailtrail needs does not cause significant impact on the
performance of reference systems. Second, in Section 3.7.3 we investigate
Snailtrail’s performance and show it can deliver results in real time with high
throughput and low latency. Third, we compare the quality of Snailtrail’s
analysis and the utility of the CP metric with both conventional profiling and
traditional critical path analysis (Section 3.7.4). Finally, we present use cases for
Snailtrail with analysis results from using Snailtrail in practice in Section 3.7.5.

3.7.1 Experimental setting
Snailtrail uses Timely Dataflow [McS] 0.3.0 compiled with Rust 1.17.0. In
all experiments, Snailtrail ran on an Intel Xeon E5-4640 2.40GHz machine
with 32 cores (64 threads) and 512GiB RAM running Debian 7.8 (“wheezy”),
and was configured to produce results by ingesting execution traces from a
reference system on a different cluster.

59

3 Snailtrail

Base-
line

INFO
log

Instru-
mented

0

1

2

3

4

5

P
ro

ce
ss

in
g

la
te

nc
y

[s
]

(a) Overhead for Flink 1.2

Base-
line

Instru-
mented

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

(b) Overhead for Timely Dataflow.

Figure 3.6: Latency with and without instrumentation in seconds.

We compare Snailtrail to existing approaches with several traces generated
by Flink, Spark, and TensorFlow using the following benchmarks. For Flink,
we use the Yahoo streaming benchmark (YSB) [Chi+16] and the word-count
benchmark of Dhalion [Flo+17]. For Spark, we use YSB and, for TensorFlow,
we use the AlexNet [KSH12] program on ImageNet [Rus+15]. To evaluate
Snailtrail performance we use Flink (configured with 48 parallel tasks) running
a real-world sessionization program on a 10 minute window of operational
logs from a large industrial datacenter. This generates a trace with a median
number of 30 thousand events per second (around 7.5 million events for a 256 s
snapshot, the largest we used). We also show the instrumentation overhead in
Flink, with the same sessionization experiment, and Timely Dataflow, using a
page-rank computation with 16 parallel workers on a random graph.

3.7.2 Instrumentation overhead
Snailtrail relies on tracing functionality in the reference system, and this incurs
performance overhead. To evaluate the overhead of the instrumentation we
added, we implemented a streaming analytic job, sessionization, in Flink and
an iterative graph computation, page rank, in Timely Dataflow, and measured
performance with tracing enabled and disabled. For TensorFlow and Spark we
use their existing, and somewhat incomplete, tracing facilities.

60

3.7 Evaluation

Table 3.3: Snailtrail’s median latency per snapshot in seconds for the online
analysis of different snapshot intervals in seconds. The latency is
given in seconds. The last row shows the median number of million
events per snapshot.

Interval 1 2 4 8 16 32 64 128 256

Latency 0.06 0.14 0.29 0.62 1.40 2.93 5.91 13.16 24.84
Events 0.03 0.06 0.12 0.24 0.48 0.94 1.91 3.76 7.50

Figure 3.6 shows box-and-whisker plots of processing latency for Flink and
Timely Dataflow implementations. Individual bars correspond to the cases
where logging is completely turned off (baseline), the default logging level
(info), and our detailed tracing (instrumented).

Flink shows a statistically significant difference of 9.7% (±1.43%) additional
mean latency, or 203ms (±29.9 µs) in absolute terms, at 95% confidence. This
overhead is negligible, given that Flink typically runs with logging enabled in
production deployments.
Timely includes a minimal logger which encodes log records in a compact

binary format and writes them to stable storage in small batches. For Timely
Dataflow, there is a statistically significant difference of 13.9% (±5.5%) in-
crease in the mean latency, or 319 µs (±126.2 µs) in absolute terms, at 95%
confidence.

Experiments with Spark and TensorFlow showed no discernible overhead for
collecting the traces required by Snailtrail. Overall, we argue that performance
penalties around 10% are an acceptable trade-off for greater insight, and could
be additionally amortized in some cases.

3.7.3 Snailtrail performance
We evaluate Snailtrail’s performance to demonstrate that (i) it always operates
online and thus provides feedback to the running reference applications in real-
time and (ii) its analysis scales to large deployments of reference applications
without violating this online requirement.

Latency We require Snailtrail to be capable of constructing the PAG and
computing the CP-metric for a snapshot of size x seconds in less than x seconds.
The number of events in a snapshot depends on (i) the snapshot duration and (ii)

61

3 Snailtrail

Table 3.4: Snailtrail’s maximum achieved throughput (millions of processed
events per second) and corresponding latency per snapshot in sec-
onds for the online analysis of different snapshot intervals (length
in seconds).

Interval 1 2 4 8 16 32 64 128 256

Throughput 1.2 1.2 1.2 1.1 1.1 1.0 0.8 0.5 0.4
Latency 0.7 1.4 3.2 7.1 10.1 10.2 16.8 24.9 30.8

the instrumentation granularity of the reference system. For this experiment,
we vary the number of events in the snapshot by increasing its duration from
1 second to 256 seconds (in powers of 2) and we run Snailtrail on the Flink
sessionization job trace, which is the densest one we have. Note that the public
Spark traces from real-world cloud deployments [Ous] are not as dense as the
ones generated by the Flink streaming computations we run.
We show median latency and number of events per snapshot in Table 3.3;

Snailtrail is always capable of operating online and its latency increases almost
linearly with the snapshot duration. Specifically, it can process 1 second of
input logs in 6ms and 256 s of input logs in under 25 s.

Throughput To evaluate Snailtrail’s throughput, we interleave the processing
of multiple snapshots to increase the number of events sent to the system.
Table 3.4 shows themaximum achieved throughput (number of processed events
per second) while respecting the online requirement and the corresponding
latency for processing an input snapshot, including PAG construction and CP
computation. For 1 second snapshots, Snailtrail can process 1.2 × 106 events
per second; a throughput two orders of magnitude larger than the event rate
we observed in all log files we have, including the Spark traces from Spark
Performance Analysis [Ous]. Snailtrail keeps up with all tested workloads:
the time to process a snapshot is always smaller than the snapshot’s duration.
Throughput decreases with larger snapshot sizes since the PAG gets bigger.

3.7.4 Comparison with existing methods
We examine how useful the CP-based summaries produced by Snailtrail are in
practice, as compared to the weight-based summaries produced by conventional
profiling, where activities are simply ranked by their total duration, and the

62

3.7 Evaluation

0 100 200
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

0 100 200
Snapshot

Si
ng

le
pa

th
C

P

ControlMessage
Scheduling
DataMessage
BarrierProcessing

Input
Deserialization
Unknown

Buffer
Processing
Serialization

Figure 3.7: CP-based (left) and single-path (right) summaries for Flink on YSB
(1 second snapshots).

single-path summaries, where CP is computed on a single transient critical
path (in this experiment selected at random). We show examples of such
summaries in Figures 3.7 to 3.9 for Flink, Spark, and TensorFlow, along with
the configuration of each system.

First note that single-path summaries correspond to a straightforward appli-
cation of traditional CPA on trace snapshots where only a single path is chosen
at random. The plot on the right of Figure 3.7 exhibits high variation because
different transient critical paths may consist of completely different activities,
even within the same graph snapshot. In contrast, CP is a fairer metric that
avoids this misleading critical activity “switching” by aggregating information
from all transient critical paths in a snapshot.

Conventional profiling summaries do not account for overlapping activities,
in contrast to CP-based summaries. They overestimate the participation of
activities in the critical path (e.g., the processing activity in the right plot
of Figure 3.8), resulting in activity durations that may even exceed the total
duration of the snapshot. The CP-based summary of Figure 3.8 overcomes
this problem and highlights the overhead of global coordination in micro-batch
systems, a known result also pointed out in Drizzle [Ven+17].

63

3 Snailtrail

0 5 10 15
Snapshot

0.0

0.2

0.4

0.6

0.8

C
P

0 5 10 15
Snapshot

%
w

ei
gh

t

Processing Scheduling

Figure 3.8: CP-based (left) and conventional profiling (right) summaries for
Spark on YSB [Chi+16] (8 second snapshots). The CP-based
summary clearly highlights the barrier role of Spark’s driver.

Snailtrail is also different to traditional profiling in its ability to focus on
different parts of a long-running computation. This feature is particularly
useful in machine learning, where program phases have diverse performance
characteristics. As an example, Figure 3.9 shows CP-based and conventional
summaries for the accuracy phase of the AlexNet image processing application
on TensorFlow with 16 workers. We plot processing and communication as
separate bars for convenience and we further break down processing into the
different operators appearing in this computation phase. The conventional sum-
mary overestimates the participation of communication and underestimates the
importance of the Conv2D operator, which is the most critical one according to
the CP-based summary. Processing in the conventional summary is dominated
by the unknown activity type due to limited instrumentation in TensorFlow.

3.7.5 Snailtrail in practice

We select Apache Flink as the representative streaming system and demonstrate
Snailtrail in action. We describe two use-cases and give examples of how
the CP-based summaries can be used to understand and improve application
performance of long-running computations.

64

3.7 Evaluation

Processing Communication
0.0

0.2

0.4

0.6

0.8

1.0

C
P

Processing Communication

%
w

ei
gh

t

Conv2D
LRN
Unknown

Mul
SquaredDifference
MatMul

Accumulated
DataMessage

Figure 3.9: CP-based (left) and conventional profiling (right) summaries for
the accuracy phase of AlexNet on TensorFlow (16 threads).

Detecting skew To demonstrate straggler summaries in action, we use the
benchmark of Dhalion [Flo+17]. The benchmark contains a word-count ap-
plication and a data generator. The data generator can be configured with a
skewness percentage. We experiment with 30%, 50%, and 80% skewness. We
configure the parallelism to be equal to four for all operators and we generate
straggler summaries and conventional summaries shown in Figure 3.10. For
small skew percentage, the conventional summaries fail to detect any imbal-
ance and essentially indicate uniform load across workers. For higher skew
percentages (50–80%) they indeed reveal a skew problem, yet they are unable
to indicate a single worker as the straggler. Instead, they attribute the imbal-
ance problem to several workers. On the other hand, the CP-based straggler
summaries consistently and accurately detect the straggler worker, even for low
skew percentage.

Optimizing operator parallelism We now demonstrate how Snailtrail can
guide scaling decisions for streaming applications. We use Dhalion’s [Flo+17]
word-count benchmark again and initially under-provision the flatmap stage.
We configure four parallel workers for the source, two parallel workers for the
flatmap, and four parallel workers for the count operator.

65

3 Snailtrail

0 20 40
Snapshot

0.00

0.05

0.10

0.15

C
P

0 20 40
Snapshot

%
w

ei
gh

t

(a) 30% skew

0 20 40
Snapshot

0.0

0.1

0.2

0.3

C
P

0 20 40
Snapshot

%
w

ei
gh

t

(b) 50% skew

0 10 20 30
Snapshot

0.00

0.05

0.10

0.15

0.20

C
P

0 10 20 30
Snapshot

%
w

ei
gh

t

(c) 80% skew

Figure 3.10: Straggler and conventional profiling summaries for the benchmark
of Dhalion [Flo+17] on Flink and different skewness percentage.
The data generator has been configured with 30% (a), 50% (b),
and 80% (c) skewness.

66

3.7 Evaluation

0 20 40
Snapshot

0.000

0.025

0.050

0.075

0.100

0.125

C
P

0 20 40
Snapshot

%
w

ei
gh

t

Count Flatmap

(a) 4/2/4

0 20 40
Snapshot

0.000

0.025

0.050

0.075

0.100

0.125

C
P

0 20 40
Snapshot

%
w

ei
gh

t

Count Flatmap

(b) 1/2/4

0 20 40
Snapshot

0.00

0.02

0.04

0.06

C
P

0 20 40
Snapshot

%
w

ei
gh

t

Count Flatmap

(c) 4/4/4

Figure 3.11: Operator and conventional profiling summaries for the benchmark
of Dhalion [Flo+17] on Flink and different configurations of
operator parallelism. The source, flatmap, and count operators
are configured with parallelism 4/2/4 (a), 1/2/4 (b), and 4/4/4 (c).

67

3 Snailtrail

Figure 3.11a shows the operator and conventional profiling summaries for
this configuration. We see that the operator summary detects that the flatmap
workers are bottlenecks. On the other hand, the conventional summary shows
a negligible difference between the parallel workers’ processing. In addition,
we gather metrics from Flink’s web interface. Using those, we can observe
backpressure, yet we have no indication of the cause. We next decrease
the source’s input rate, by changing its parallelism to one worker. Note
that slowing down the source is a common system reaction to backpressure.
Figure 3.11b shows the operator and conventional profiling summaries after this
change. Notice how slowing down the source does not solve the problem and
how the operator summary still provides more accurate information than the
conventional one. The operator summary essentially indicates that the flatmap
operator has a high CP value and needs to be re-scaled. Figure 3.11c shows
the summaries after applying a parallelism of four to all operators. Checking
Flink’s web interface again we see that the backpressure disappears.

3.8 Critical participation: conclusion
Online critical path analysis represents a new level of sophistication for perfor-
mance analysis of distributed systems, and Snailtrail shows its applicability to
a range of different engines and applications. Looking ahead, Snailtrail’s on-
line operation suggests uses beyond providing real-time information to system
administrators: Snailtrail’s performance summaries could serve as immediate
feedback for applications to perform automatic reconfiguration, dynamic scal-
ing, or adaptive scheduling. The source code of Snailtrail has been released as
open source.1

1https://github.com/strymon-system/snailtrail

68

https://github.com/strymon-system/snailtrail

4
DS2: Controlling distributed
streaming dataflows

This chapter is based on the paper Three steps is all you need: fast, accurate, automatic
scaling decisions for distributed streaming dataflows [Kal+18].

We present DS2, a low-latency, robust controller for dynamic scaling of
streaming analytics applications. DS2 can vary the resources available to a
computation so as to handle variable workloads quickly and efficiently.
Static provisioning is a poor fit for continuous, long-running streaming

applications. It forces users to choose a single point on the spectrum between
allocating resources forworst-case, peak load (which is inefficient) and suffering
degraded performance during load spikes. Fixing resources a priori almost
inevitably leads to a system which is either over- or under-provisioned for much
of its execution.

The solution is to dynamically scale the system in response to load, an idea
used extensively in cloud environments [LML14; MS14]. This requires both a
mechanism for scaling the computation, and a scaling controller which decides
when and how to scale. This work focuses on the latter; DS2 is designed
to be mechanism-agnostic. We will discuss an efficient mechanism to scale
distributed stream processors in Chapter 5. DS2 can serve as a policy-based
controller for the mechanism we present.
Figure 4.1 illustrates the problems discussed in Section 2.6 of the state-

of-the-art Dhalion controller [Flo+17] of Heron, using the same word count
dataflow as in the original paper. The dashed line shows the target throughput
(source output rate), while the solid line tracks the achieved throughput, which
varies due to backpressure and reconfiguration steps as Dhalion changes the
computation scale. Dhalion performs six scaling decisions, taking more than
30 minutes to converge.

69

4 DS2: Controlling distributed streaming dataflows

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0 500 1000 1500 2000 2500 3000 3500

O
ut

pu
t r

at
e

[r
ec

or
ds

 p
er

 s
ec

on
d]

Time [s]

Source rate
Target rate

Figure 4.1: Effect of Dhalion’s scaling decisions on the source rate when trying
to match the target throughput of an under-provisioned word count
dataflow. The dashed line shows target throughput, the solid line
shows actual throughput over time.

We make the following contributions in this chapter. We review how existing
dynamic scaling techniques can lead to inaccurate, unstable, or slow provision-
ing decisions. Specifically, we identify the causes of these effects in Section 4.1,
which we attribute to the lack of a comprehensive performance model, depen-
dence on heuristics, and use of coarse-grained, externally-observed execution
metrics. We propose DS2, a general model and controller for automatic scaling
of distributed streaming dataflows in Section 4.2. DS2 can accurately estimate
parallelism for all dataflow operators within a single scaling decision, and
operates reactively online. As a result, DS2 eliminates oscillation and over-
provisioning when making scaling decisions. DS2 bases scaling decisions on
real-time performance traces, and is general. It relies neither on specific signals
like backpressure, such as Dhalion [Flo+17], nor simplistic assumptions like
one-to-one operator selectivity, as in the work by Tu et al. [Tu+06].
DS2 gives leverage on existing state-of-the-art approaches: when used in

Heron, it identifies the optimal backpressure-free configuration in a few seconds
and one step, while Dhalion performs six steps to reach an over-provisioned
configuration in the same scenario (Section 4.4.2). We apply DS2 on Apache
Flink (Section 4.4.3) and demonstrate fully-automatic scaling of streaming
dataflows under dynamic workload.

70

4.1 Background and motivation

Finally, we show that DS2 is accurate and converges quickly for both Apache
Flink and Timely Dataflow (Section 4.4.4 and Section 4.4.5).

4.1 Background and motivation
We identified that current systems fall short in two controller properties in
Section 2.6. Firstly, they provide limited metrics which are not enough to make
fast and accurate scaling decisions. Secondly, their policies are often simplistic
and rule-based, leading to violations of the SASO properties.

A better approach Amore promising approach for making scaling decisions
would take into account both each operator’s true processing and output capa-
bilities, regardless of backpressure or other effects, and the dataflow topology
and how scaling each operator will affect downstream operators.

Figure 4.2: An under-provisioned dataflow and the execution timelines of its
operators. Target throughput is 40 records per second, but o1 is a
bottleneck creating backpressure and limiting the observed source
rate to 10 records per second.

Figure 4.2 gives an intuition of how this works. It shows the execution
timelines of operator instances in a simple dataflow. Solid lines show useful
work performed by an instance (e.g., record processing) while dotted lines show
it waiting for input or output. Edges across timelines represent data transfer.
In this example, o1 is a bottleneck slowing down both the source and o2 by

pausing their execution. Backpressure means that an external observer sees o1

71

4 DS2: Controlling distributed streaming dataflows

processing 10 records per second and o2 processing 100 records per second.
Based on this, a policy might provision three additional instances for o1 to
reach a target of 40 records per second, but it could not accurately estimate
how much to scale o2 and would need to make a speculative decision or apply
an extra reconfiguration step.
A better approach would measure the useful time of an operator’s timeline

and would determine the true rate of o1 as 10 records per second and that of
o2 as 200 records per second, inferring that when increasing the parallelism of
o1 to 4, it also needs to double the parallelism of o2 to keep up with the output
rate. Note this can be calculated globally, i.e. for all operators in the dataflow,
in a single step.
DS2 does precisely this, obtaining rate measurements of each operator

by lightweight instrumentation, which is already present in many streaming
systems. In the rest of the chapter we define this notion, extend it to more
complex dataflow graphs withmultiple sources, and show howDS2 implements
it to provide fast, accurate, and stable reconfiguration of streaming dataflows.

4.2 The DS2 model

DS2 identifies the optimal level of parallelism for each operator in the dataflow
while the computation executes, based on real-time performance traces. It
maintains a changing provisioning plan, which captures the numberof resources
allocated to each operator. It therefore works online and in a reactive setting.

Note that we do not target offline computation of an initial resource provision-
ing plan, as proposed by Bilal and Canini [BC17]. Such initial configurations
quickly become sub-optimal in a live system where workloads and internal op-
erator states change continuously. However, for static workloads known a priori,
DS2 could use historical performance metrics and offline micro-benchmarks
(as in [HDB11; Her+11; Gou+17]) to estimate the optimal levels of parallelism
before deployment.
In this section, we define the scaling problem (Section 4.2.1), describe the

DS2 model (Section 4.2.2), and discuss the model assumptions (Section 4.2.3)
and properties (Section 4.2.4).

72

4.2 The DS2 model

4.2.1 Problem definition
We target distributed streaming dataflow systems like Apache Flink [Car+15]
andHeron [Kul+15] that execute data-parallel computations on shared-nothing
clusters. Such a computation can be represented as a logical directed acyclic
graph G = (V,E), where vertices in V denote operators and edges in E are
streams encoding data dependencies between the operators. A vertex with
no incoming edges (no upstream operators) is a source and a vertex with no
outgoing edges (no downstream operators) is a sink.
A dataflow computation runs as a physical execution plan which maps

dataflow operators to provisioned compute resources (or workers). Let the
graph G′ = (V ′,E ′) represent the execution plan. Vertices in V ′ are operator
instances of a corresponding vertex inV and edges are streams. The assignment
of operators to workers is system-specific. We show in Section 4.4 that DS2’s
scaling policy is independent of this assignment.

Problem 1 (Scaling problem). For a given logical dataflow with input streams
S1, . . . ,Sn and rates λ1, . . . , λn, identify the minimum parallelism πi per opera-
tor such that the physical dataflow can sustain all current source rates.

Source operators generate records at a rate λs, defined by application data
sources, for example sensors and stock market feeds. To maximize system
throughput and not buffering data on the inputs while limiting processing
latency, the execution plan has to have the required scale to sustain the full
source rate at any point in time. This means that each operator must be able to
process data without stalling its upstream operators from producing output.
Like any controller, DS2 targets workload changes on a timescale greater

than its convergence time, and reacting to spikes or other changes on a shorter
timescale than the convergence time would cause inefficient fluctuations. In
these latter cases, the use of backpressure, buffering, or load shedding leads to
more stable results than dynamic scaling at the cost of increased latency or lost
data. This behavior can also be explained by the Nyquist–Shannon sampling
theorem [Sha49], which states that to observe a signal at a frequency f , it must
be sampled at at least the double frequency 2 f .

4.2.2 Performance model
We consider operator instances as repeatedly performing three activities in
sequence: deserialization, processing, and serialization. This fits all types of

73

4 DS2: Controlling distributed streaming dataflows

operators in most modern streaming dataflow systems, including Heron, Flink,
and Timely Dataflow. When an operator instance is scheduled for execution,
it pulls records from its input, deserializes them, applies its processing logic,
and serializes the results (if any), which are pushed to the output. Serialization
and deserialization are optional and happen only when data is moved between
operator instances executed within different OS processes, otherwise data is
usually exchanged via shared memory.
The model is based on the concept of useful time, which we define for an

operator instance as follows:

Definition 14 (Useful time). The time spent by an operator instance in deseri-
alization, processing, and serialization activities.

The useful time excludes time spent waiting on input or output. Such waiting
does occur in practice, for different reasons depending on the design of the
reference system. In Flink, an operator instance may block on input when
the input buffers are empty, or on output when there is no free space in the
(bounded) output buffers. In Heron, instances may be forced to wait due to a
backpressure signal from a slow downstream operator.
In all cases, the useful time amounts to the time an operator instance runs

for if executed in an ideal setting where it never has to wait to obtain input or
push output. In general, useful time differs from the total observed time the
instance needs to process and output records, and plays a key role in solving
Problem 1.
Based on this distinction, we define the true processing and output rate of

an operator instance as follows:

Definition 15 (True rates). The true processing (or output) rate corresponds
to how many records an operator instance can process (or output) per unit of
useful time.

The true rates denote the capacity of the operator instance, i.e. the maximum
processing and output rate the instance could sustain for the current workload.
In contrast to the true rates, the observed rates are those measured by simply
counting the number of records processed and output by the instance over a
unit of elapsed time, which might include waiting time.

Definition 16 (Observed rates). The observed processing (or output) rate
corresponds to how many records an operator instance processes (or outputs)
per unit of observed time.

74

4.2 The DS2 model

The observed rates are more sensitive to changing workloads, because they
depend on the total amount of time an operatorwas active during the observation
window. Asmore work is available, the active time goes up and the waiting time
decreases. The true rates typically have lower variance, especially within short
time periods (e.g., a few seconds of execution) as they are based the average
“cost” to process and output a single record. This cost naturally can depend
on factors like the size of the record, its content, and the state maintained by
the operator instance. The average cost can be estimated using appropriate
instrumentation of the operatorwithout needing to saturate it. Also, the advance
of time can trigger larger computations, for example on window boundaries.
Here we assume that these spikes are short-lived and only slightly disturb the
average computation time per record.
We define all rates in our model relative to windows of size W seconds of

observed time. We denote the useful time for an operator instance Wu , where
0 ≤ Wu ≤ W . More precisely:

λp =
Rprc

Wu
(true processing rate) (4.1)

λo =
Rpsd

Wu
(true output rate) (4.2)

λ̂p =
Rprc

W
(observed processing rate) (4.3)

λ̂o =
Rpsd

W
(observed output rate) (4.4)

where λp and λo are the true processing and output rate. It is undefined when
Wu = 0. λ̂p and λ̂o are the observed processing and output rates (also undefined
when W = 0), and Rprc (resp. Rpsd) is the total number of records the instance
processed (resp. pushed) in W . For a specific operator instance and a window
W , the following inequalities hold: 0 ≤ λ̂p ≤ λp and 0 ≤ λ̂o ≤ λo, since
0 ≤ Wu ≤ W . In general, the less an operator instance waits on its input and
output the smaller the difference between the observed and true rates. Table 4.1
summarizes the notation.
We instantiate the model with the logical dataflow graph G, the output rate

of each data source, and the true processing and output rates (λp and λo) of
each operator instance. G is static and known at compile time and does not
change during execution, since the logical dataflow is unaffected by the scaling

75

4 DS2: Controlling distributed streaming dataflows

decisions. The output rates of the data sources are continuously monitored
outside the reference system, and the true rates of the operator instances are
computed based on system-generated traces, as we explain in Section 4.3.1.
The output of DS2 is an estimation of the optimal parallelism, i.e. the number
of instances, for each logical operator in the graph G, subject to the constraints
of the problem in Section 4.2.1.

Applicable operators and limitations We assume that the output rate of an
operator corresponds with the input rate, specifically that changing the paral-
lelism does not change the aggregate output rate over all instances of a specific
operator. There are many operators that fall into this category, for example
simple map and filter operators or keyed aggregation operators. However, there
are notable exceptions. Many computations use a pre-aggregation step to limit
the amount of data exchanged between remote operators. In this step, each
operator instance computes a partial aggregation of the data it has available
locally. The operator then sends a partially-aggregated result to a downstream
operator, whose input is partitioned based on the data. This reduces the amount
of data from the total amount of records to the total amount of groups in the data.
In the worst case, every operator instance outputs the same number of records
as each operator could see all groups. Then, the aggregate output rate scales
linearly with the number of operator instances. Another example is a flat-map
operator that divides input records into smaller records, for example splitting a
sentence into words. Its input-to-output rate highly depends on the structure of
the data and the model does not capture this part of the computation.
While the model does not cover these cases, it can still converge to a good

solution in several iterations as it discovers new aggregate rates each time and
does not remember old measurements. Still, it is not guaranteed to converge to
a solution in this case. In our evaluation we demonstrate that DS2 converges
to stable configurations for dataflows with operators that theoretically violate
the discussed requirements.

The calculation of the level of parallelism proceeds as follows. Let A be the
adjacency matrix of G. An entry Ai j = 1 iff the i-th operator outputs to the j-th
operator, otherwise Ai j = 0. We consider operators numbered in topological
order from i = 0 to i = m − 1, where m is the total number of operators in G.
This means that if oi outputs to oj and, hence, Ai j = 1, then 0 ≤ i < j < m.
There is a topological ordering of the nodes in G and it can be computed in
linear time since G is an acyclic graph as defined in Section 4.2.1.

76

4.2 The DS2 model

Table 4.1: Notation used throughout Chapter 4

Symbol Description

G A logical dataflow graph
m Number of operators in G, m > 1
n Number of source operators in G, 0 < n < m
W Size of a window in time units (observed time)
Wu Useful time for an operator instance in W
Rprc Number of records pulled from the input in W
Rpsd Number of records pushed to the output in W
λ̂p Observed processing rate of an operator instance
λ̂o Observed output rate of an operator instance
λp True processing rate of an operator instance
λo True output rate of an operator instance
oi i-th operator in G in topological order
pi Number of instances of the i-th operator
oi[λp] Aggregated true processing rate of the i-th operator
oi[λo] Aggregated true output rate of the i-th operator
πi Optimal number of instances for the i-th operator

77

4 DS2: Controlling distributed streaming dataflows

For a time window W and operator oi with pi instances, pi ≥ 1, we define
the aggregated true processing and output rates oi[λp] and oi[λo] as:

oi[λp] =
k=pi∑
k=1

λkp (aggregated true processing rate)

oi[λo] =
k=pi∑
k=1

λko (aggregated true output rate)

where λkp and λko are the true processing and output rates of the k-th instance
of oi , as given by Equation (4.1) and Equation (4.2).

The optimal level of parallelism πi for an operator oi is now computed using
the ratio of the aggregated true output rate of its upstream operators (when they
keep up with their inputs) to the average true processing rate per instance of oi .
More formally:

πi =

∑
∀j : j<i

Aji · oj [λo]
∗ ·

(
oi

[
λp

]
pi

)−1 , n ≤ i < m (4.5)

where m is the total number of operators in G, and n is the number of source
operators in G, and 0 < n < m.

oj[λo]
∗ denotes the aggregated true output rate of an operator oj , when oj

itself and all operators before it (in topological order) are deployed with their
optimal parallelism to keep up with their inputs. It is recursively computed
using the following formula.

oj [λo]
∗ =

oj [λo] = λ

j
src, 0 ≤ j < n

oj [λo]

oj

[
λp

] · ∑
∀u:u< j

Auj · ou[λo]∗, n ≤ j < m
(4.6)

where λ j
src is the output rate of the j-th source operator, 0 ≤ j < n.

Note that oj[λo]
∗ depends on the ratio o j [λo]

o j [λp]
, which denotes the selectivity

of oj , and the estimated true output rate of the upstream operators (∀u : u < j in
the summation). The latter implies that oj[λo]

∗ and, hence, πi can be efficiently

78

4.2 The DS2 model

computed for all operators in the dataflow with a single traversal of G, starting
from the sources. This property is important in practice, as it allows us to
estimate the required number of instances for all operators in the dataflow in
the same scaling decision.

4.2.3 Assumptions
DS2 makes the following assumptions about the dataflow system it is control-
ling.

Data-parallel operators An operator’s output can be produced by partition-
ing its input on a key and applying the operator logic separately to each partition.
Other than this, the operator’s internal logic can be any user-defined function.
Data-parallelism is essential for effective scaling decisions: executing multiple
operator instances entails partitioning its state into chunks of data processed
in parallel. In contrast, non-data-parallel operators do not benefit from scaling.
System users could tag such operators for DS2 to ignore, or their lack of paral-
lelism could be identified online by comparing input and output rates before
and after scaling. As with existing systems, we leave the integration of such
operators for future work.

No data or computation imbalance Our scaling model addresses neither
data skew across operator instances nor computational stragglers. Both these
types of imbalance can trigger backpressure which cannot be tackled by chang-
ing the degree of parallelism of one or more operators. Several robust solutions
to the skew and straggler problems exist and have been incorporated into
real systems. Techniques such as partial key grouping [Nas+15] introduced
in Storm [Nas+16] and further evaluated by Katsipoulakis, Labrinidis, and
Chrysanthis [KLC17], and work-stealing for straggler mitigation in MapRe-
duce [Kwo+12] and Google Dataflow [KD16] are complementary to DS2. In
Section 4.3.2 we describe how DS2 could be integrated in a general controller
for streaming applications which would not only handle dynamic scaling but
also include skew and straggler handling components.

Stable workloads during scaling Like existing scaling mechanisms, DS2
operates with the understanding that workload characteristics remain stable
between a scaling decision being made and the new parallelism configuration

79

4 DS2: Controlling distributed streaming dataflows

being deployed. This window is the time taken for DS2 to make a decision
(whichwe evaluate in Section 4.4) plus the time to deploy the new configuration,
which depends on the dataflow system in use. In practice, we find this timescale
is dominated by the latter in current systems.

4.2.4 Properties

DS2 estimates the optimal parallelism for each operator assuming perfect
scaling, that is, the true processing and output rates change linearly with
the number of instances. In general, however, true rates are described by
non-linear, most commonly sub-linear functions. Super-linear speedups are
possible [Gou+17] (e.g., when state fits in cache after a scale-up) but are rare in
practice. When this “perfect scaling” assumption holds, DS2 estimations based
on Equation (4.5) correspond to bounds, and the model enjoys the following
two properties:

Property 3 (No overshoot). A scale-up decision will not result in over-provi-
sioning. The estimated optimal number of instances πi for an under-provisioned
operator is always less than or equal to the minimum required to keep up with
the target rate rt =

∑
∀j:j<i Aji · oj[λo]

∗ in Equation (4.5).

Property 4 (No undershoot). A scale-down decision will not result in under-
provisioning (and, hence, backpressure). The estimated optimal number of
instances πi for an over-provisioned operator is always greater than or equal to
the minimum needed to keep up with the target rate rt =

∑
∀j:j<i Aji · oj[λo]

∗

in Equation (4.5).

Figure 4.3 shows hypothetical scale-up and scale-down scenarios, each
during two consecutive time windows, W and Wnext. Consider an operator
initially configured with parallelism p and aggregated processing rate λ < rt ,
where rt is the target rate, as shown in Figure 4.3a. Assuming linear scaling,
our model assigns π instances to reach the target rate rt . Property 3 states that
there exists no π′ < π such that π′ matches rt . Indeed such a π′ can only exist
in Wnext if the aggregated processing rate scales super-linearly, as shown in
Figure 4.3a.
Similarly, if an operator is initially configured with parallelism p and ag-

gregated processing rate λ > rt , as in Figure 4.3b, our model assigns π < p
instances to scale down to rt . Property 4 states that there exists no π′ > π such

80

4.2 The DS2 model

rt

λ

p π

W

p π’

Wnext

rt

π
parallelism

pr
oc

es
si

ng
 ra

te

parallelism
pr

oc
es

si
ng

 ra
te

(a) No overshoot when scaling up

Wnext

rt

λ

π p

W

rt

π pπ’
parallelism

pr
oc

es
si

ng
 ra

te

parallelism

pr
oc

es
si

ng
 ra

te

(b) No undershoot when scaling down

Figure 4.3: Given a target rate rt and aggregated true processing rate λ
which does not scale super-linearly, our model guarantees no over-
provisioning when scaling up and no under-provisioning when
scaling down.

81

4 DS2: Controlling distributed streaming dataflows

that π′ matches the target rt . As shown in Figure 4.3b, such a π′ would violate
the assumption of non-superlinear aggregated true processing rate.
Together, these properties imply that repetitive applications of DS2 do not

oscillate: they will monotonically converge to the target rate from below or
above. This ensures stability without the need to blacklist previous decisions,
and simplifies the scaling mechanism significantly.

When true rates are linear and the target rate rt is accurately estimated for each
operator, DS2 converges in at most one step. When one of these two conditions
does not hold, for example, true rates do not scale well due to other overheads
(e.g., worker coordination) or dataflow operators have data-dependent output
rates, DS2 needs more steps to converge to a stable configuration. In each
of these steps, DS2 tries to minimize the error of its previous decision to get
closer to the target, as any typical controller does.

4.3 Implementation and deployment
The DS2 controller consists of about 1500 lines of Rust running as a standalone
process. Here we describe the instrumentation requirements it imposes and dis-
cuss the issues encountered integrating it with three different stream processing
engines: Flink, Timely Dataflow, and Heron.

4.3.1 Instrumentation requirements
DS2 requires a subset of the instrumentation required by bottleneck detection
tools for stream processors like Snailtrail (Chapter 3). The stream processor
must periodically collect and report records processed, records produced, and
useful time (serialization, deserialization, processing) or waiting time per
operator instance. Some stream processors already provide enough information
to derive the metrics required by DS2. For example, Apache Heron [Heron]
provides sufficient metrics. Other systems, such as Flink and Timely Dataflow
require additional instrumentation, which we discuss next.
Flink gathers some of the metrics required by DS2 (e.g., records read and

produced) by default but we extended its runtime so that each operator instance
maintains local counters for (de-)serialization and processing duration as well
as for buffer wait time, reporting them to DS2 in configurable intervals. For
record-at-a-time systems like Flink, tracking and emitting metrics for every
record might incur significant overhead. Instead, we aggregate measurements

82

4.3 Implementation and deployment

per input buffer for all operators, except for sources where we aggregate per
output buffer. Specifically, we have implemented a MetricsManager module
which is responsible for gathering, aggregating, and reporting policy metrics.
We assign one MetricsManager instance per parallel thread executing operator
logic. Each thread maintains local counters for records read, records produced,
(de-)serialization duration, processing duration, and waiting for input and
output buffers. Source operator instances send their current local counters to
the MetricsManager every time an output buffer gets full and regular operator
instances send their local counters every time they receive a new input buffer for
processing. The MetricsManager maintains a data structure with the current
aggregate metrics of its operator instance and reports them to the outside world
in configurable intervals.
Timely Dataflow [McS] outputs raw tracing information, which we aggre-

gate in configurable intervals to produce metrics for DS2. We use a similar
MetricsManager as in Flink, which receives streams of logged events coming
from Timely Dataflow workers and aggregates them on the fly. Each Timely
Dataflowworker logs individual events of different types, such as scheduling an
operator or sending amessage over a data channel, alongwith their timestamp in
nanoseconds. Recall that operator instances in Timely Dataflow are not blocked
on their input or output queues; instead, they are continuously spinning, i.e.
they are scheduled for execution based on progress-tracking, potentially even
if there are no data records to process. Spinning results in a large amount of
scheduling event logs, which quickly saturate the MetricsManager, although
most of these log records are not needed for computing the true rates. To
tackle this problem, we modified Timely Dataflow’s logger to trace and send
to the MetricsManager only the “useful” scheduling events, i.e. those that
correspond to an operator instance doing some “useful work” for the actual
computation.

Apache Heron [Heron] also by default outputs detailed, aggregated metrics,
which are periodically collected and fed into DS2. The aggregation window
depends on how frequently Heron samples its metrics and can be configured.

4.3.2 Integration with stream processors
DS2 is mechanism-agnostic and can be integrated with any stream processor
capable of dynamically varying resources andmigrating state. Figure 4.4 shows
the high-level architecture of such an integration. Instrumented streaming jobs
periodically report metrics to a repository. DS2 consists of a Scaling Policy

83

4 DS2: Controlling distributed streaming dataflows

invoke
Scaling

Streaming
system

re-scale
job

report
metrics

monitor
pull
metrics

decision

DS2

Metrics
repo

Skew

Straggler

M
an
ag
er

Scaling

Skew

Straggler

Po
lic
y

4

1

2

3

5

6

Figure 4.4: DS2 integration with streaming systems

component implementing the model of Section 4.2.2, and a Scaling Manager
monitoring the repository, invoking the policy when new metrics are available,
and sending scaling commands to the stream processor.
While DS2 currently only offers scaling functionality, it could be extended

with skew and straggler mitigation techniques as shown in Figure 4.4. In
this case, the system would consist of multi-purpose Manager and Policy
components, where the first detects the problem type (e.g., presence of skew)
and the latter invokes the appropriate policy.

We have integrated DS2 with Apache Flink, which employs a simple scaling
mechanism: when instructed, Flink takes a savepoint, a consistent snapshot
of the job state, halts the computation, and redeploys it with the updated
parallelism [Hue16]. We demonstrate this integration in action and evaluate it
under a dynamic source rate in Section 4.4.3.

Scalingmanager Operational issues in real deployments that are not captured
by the model must be handled by the implementation instead. To deal with
factors that might affect scaling decisions in practice, the Scaling Manager
provides the following configuration parameters:
The policy interval defines the frequency with which metrics are gathered

and the policy invoked. Tuning the policy interval allows the scaling manager
to aggregate metrics meaningfully, e.g., to ensure enough data is available to

84

4.3 Implementation and deployment

compute averages for processing and output rates. Long intervals give stable
metrics but also increase reaction time. The interval must also be tuned based
on the reconfiguration mechanism of the reference system. In our experiments,
we found 5–30 second intervals reasonable for Flink and Timely Dataflow. For
Heron, we found the default 60 s suitable.
The warm-up time is the number of consecutive policy intervals ignored

after a scaling action, since rate measurements can be unstable at the start of a
computation or before backpressure builds up.
The activation time specifies when DS2 applies a scaling decision, as the

number of consecutive policy decisions considered by the scaling manager
before issuing a scaling command. Activation time plus an appropriate policy
interval mitigates the effects of irregularities in some streaming computations,
such as non-incremental tumbling windows or data-dependent operators. For
instance, consider naïvely-implemented window operators that buffer records
and only apply the computation logic after the window fires. As long as input is
simply assigned to a window, the operator’s processing rate will appear high but
once the window fires and the actual computation is performed the processing
rate will suddenly drop. DS2 can consider several consecutive policy decisions
and, for example, compute the maximum ormedian parallelism across intervals
before applying a scaling action.
The target rate ratio defines a maximum allowed difference between the

observed source rate achieved by the policy and the target rate, addressing the
practical issue that processing and output rates might be affected by overheads
not captured by instrumentation. For instance, adding workers to a distributed
computationmight incurhighercoordination, channel selection cost, or resource
contention, and so a computation might need more resources to achieve the
target rate than the policy indicates. DS2 estimates the additional resources
required by computing the ratio between the currently achieved rate and the
target rate.

Practical considerations DS2 also ignores minor changes (e.g., changing an
operator’s parallelism by one or two), which can be triggered by noisy metrics.
External disruptions, such as garbage-collection in Java-based systems or disk
I/O, can also influence rates measurements. For example, when integrating DS2
with Flink, we took care to properly configure task managers, heap memory,
and network buffers. We are also aware that system performance might degrade
after a scaling action (though we have not observed this in practice). If this were

85

4 DS2: Controlling distributed streaming dataflows

to happen, DS2 rolls back to the previous configuration. Similarly, consecutive
decisions resulting in very small improvements indicate a performance issue
(e.g., data skew, stragglers) that cannot be improved by scaling. DS2 can limit
the number of decisions to prevent further reconfiguration.

DS2 in the presence of skew Even though the scaling model assumes no
data imbalance and the current implementation of DS2 does not offer skew
mitigation functionality, it is worth discussing how the system behaves if skew
actually appears in a streaming application it is controlling. In such a case,
the system makes a scaling decision assuming data balance (Section 4.2.3) by
averaging true processing and output rates. Thus, DS2 proposes a configuration
which might not meet the target throughput but at the same time will not over-
provision the system. Further, due to DS2’s ability to limit the number of
decisions (Section 4.3.2), the policy is guaranteed to converge. We have verified
the above behavior experimentally on Flink varying the skew parameter in the
Dhalion benchmark from 20% to 50% and 70%. In all cases, DS2 converged
after two steps to the configuration which would be optimal if there was no
skew, but which in this experiment did not meet the target throughput.

4.3.3 DS2 and execution models

DS2’s policy can be applied on many streaming systems. In Flink and Heron
each dataflow operator is assigned a number of worker threads that define its
level of parallelism, i.e. the number of parallel instances executing the operator’s
logic. In this case, Equation (4.5) can be directly used to configure operator
parallelism independently. In Timely Dataflow, on the other hand, parallelism
is configured globally for the whole dataflow. Each worker runs every operator
in the dataflow graph according to a scheduling strategy based on progress
tracking.
Many computations for Timely Dataflow are implemented in an open-loop

setting. This means that the computation can self-adapt to the available work by
varying the batching. Less work leads to smaller batches while more available
work increases the batch size. Additionally, a computation can control the
amount of outstanding data by only feeding new data at specific points in
time. For this reason, determining an adequate level of parallelism depends
on a target processing latency, which is directly influenced by the amount of
unprocessed state in the computation. DS2 optimizes for a throughput target

86

4.4 Experimental evaluation

and to apply it on Timely Dataflow we fix the batch size to prevent this form of
self-adaptation.
For Timely Dataflow, DS2 estimates the optimal number of total workers

by summing up the optimal level of parallelism, as given by Equation (4.5),
for all operators in the dataflow. The intuition here is simple: an operator that
needs πi instances to keep up with its input actually needs πi · 100% computing
power per unit of time. In an execution model like Timely Dataflow’s where
operators share computing resources (worker threads), the total computing
power needed so that the system can keep up with its input is

∑
∀i πi · 100%.

We experimentally validate the accuracy of DS2 decisions on Timely Dataflow
in Section 4.4.5.

4.4 Experimental evaluation
Our evaluation covers DS2 in use with three different streaming systems: Heron,
Flink, and TimelyDataflow. We start our evaluation by comparing DS2with the
state-of-the-art Dhalion scaling controller used in Heron, with the benchmark
in the original Dhalion publication [Flo+17]. We then demonstrate DS2 in
action through end-to-end, dynamic scaling experiments with Flink, followed
by measurements of DS2 convergence and accuracy in using both Flink and
Timely Dataflow. Finally, we evaluate the overhead of the instrumentation used
by DS2.

4.4.1 Setup
We run all Flink and Timely Dataflow experiments on up to four machines,
each with 16 Intel Xeon E5-2650 @2.00GHz cores and 64GiB of RAM,
running Debian GNU/Linux 9.4. We use Apache Flink 1.4.1 configured with
12 task managers, each with 3 slots (maximum parallelism per operator is 36),
and Timely Dataflow 0.5.0 compiled with Rust 1.24.0. For the comparison
experiment, we run Heron 0.17.8 on a four socket-machine equipped with
AMD Opteron 6276, with 64 threads in total and 256GiB of memory.

To demonstrate generality across diverse computations and streaming opera-
tors, we selected six queries from the Nexmark benchmarking suite of Apache
Beam [Tuc+02; NexB; NEX]. Specifically, we test the policy with queries
1–3, 5, 8, and 11, which contain various representative streaming operators:
stateless streaming transformations, i.e. map and filter in Q1 and Q2, and a

87

4 DS2: Controlling distributed streaming dataflows

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000

In
st

an
ce

s

Time [s]
Flat map (Dhalion)

Count (Dhalion)
Flat map (DS2)

Count (DS2)

Figure 4.5: Comparison of DS2 vs. Dhalion on Heron using the word count
dataflow of Dhalion [Flo+17].

stateful record-at-a-time two-input operator (incremental join) in Q3. It also
contains various window operators: sliding window in Q5, tumbling window
join in Q8, and session window in Q11. These queries specify computations
both in processing and event time domains [Aki+15].
We use the wordcount dataflow as specified by Floratou et al. [Flo+17] for

the comparison with Dhalion (Section 4.4.2) and the end-to-end experiment
on Flink (Section 4.4.3).

4.4.2 DS2 compared to Dhalion on Heron
We compare the accuracy and convergence steps of DS2 with Dhalion, recre-
ating the benchmark in Dhalion [Flo+17]. We run Heron with Dhalion and
its dynamic resource allocation policy enabled. The source operator of the
three-stage wordcount topology (Source, FlatMap, Count) produces sentences
at a fixed rate of 1 × 106 per minute. The FlatMap and Count operators are
rate-limited to simulate bottlenecks: each FlatMap instance splits at most
100 × 103 sentences per minute, and each Count instance counts up to 1 × 106
words per minute, which are the ratios presented in Dhalion paper. We start
under-provisioned with one instance per operator and let Heron stabilize until
backpressure is absent.
We have already seen how the source rate evolves to match the target

throughput in this experiment in Figure 4.1. Figure 4.5 shows the parallelism

88

4.4 Experimental evaluation

of the FlatMap and Count operators over time, from the start until convergence.
Dhalion makes six scale-up decisions (each involving a single operator) and
reaches a stable configurationwith 22 FlatMap instances and 30Count instances
after 2000 seconds.
We then apply DS2 on the same initial under-provisioned configuration

using a 60 s decision interval, no warm-up, one interval activation time, and
1.0 target ratio (cf. Section 4.3). DS2 indicates a required parallelism of 10 for
FlatMap and 20 for Count, which indeed is the minimum configuration that
handles one million sentences per minute. Note that DS2 correctly estimates
the optimal parallelism in a single step, after only one minute of collecting the
default Heron performance metrics.
Dhalion requires several re-configuration steps, each affecting a single op-

erator, and reaches a final configuration that is significantly over-provisioned,
even in this simple wordcount dataflow. In contrast, DS2 correctly identifies
the optimal configuration in a single step and two orders of magnitude less
time than Dhalion.

Besides those discussed in Section 4.1, another reason Dhalion takes so long
to reach a backpressure-free configuration is that its reaction time depends on
the size of the operator queues. By default, Heron has a 100MiB buffer per
operator queue, which may take some time to fill (depending on the workload)
before backpressure kicks in and Dhalion can react. In contrast, DS2 only
depends on the decision interval where metrics are aggregated, arbitrarily
specified by the user and typically much smaller.

4.4.3 DS2 on Flink
We now show DS2 driving Apache Flink, in order to demonstrate the benefits
of DS2 when combined with a fast re-configuration mechanism such as that in
Flink. Here, DS2 uses a 10 s decision interval, 30 s warm-up time, one interval
activation time, and 1.0 target ratio. DS2 hence ignores the first three decisions
after re-configuration, applying a decision immediately after.
We use the same wordcount dataflow as before, this time with two phases

corresponding to scale-up and scale-down scenarios respectively. In the first
phase, the source rate is 2 million sentences per second and Flink starts under-
provisioned with 10 FlatMap instances and 5 Count instances. In this state, the
FlatMap operators can not keep up with the source rate, neither can the Count
operators handle FlatMap’s output rate. Once Flink has reached a backpressure-
free configuration, we keep the source rate stable for 10 minutes. During the

89

4 DS2: Controlling distributed streaming dataflows

 0

 0.5

 1

 1.5

 2

M
ill

io
n

re
co

rd
s/

s

Source rate
Target rate

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200 1400

In
st

an
ce

s

Time [s]

Flat map
Count

Figure 4.6: Dynamic scaling experiment with Flink using DS2 on the word
count dataflow of [Flo+17].

second phase, we decrease the source rate to one million sentences per second
and keep it stable for another 10 minutes.

Figure 4.6 shows observed source rate and operator parallelism over time.
DS2 applies two scale-up actions. First, at 40 s it re-deploys the dataflow with
14 FlatMap instances and 7 Count instances. This happens right after the warm-
up and activation time, and Flink takes around 30 s to snapshot state and restart
from the savepoint [Hue16]. At 150 s DS2 acts again to increase FlatMap to
19 and Count to 11 instances. This time Flink takes about 50 s to redeploy
the backpressure-free configuration at 200 s. At 803 s (3 s into the second
phase) DS2 reacts to the reduced source rate by reducing the configuration to
7 FlatMap and 4 Count instances at 845 s. At 900 s it makes a final decision to
increase Count parallelism by one, and Flink successfully applies the change
at 930 s, reaching the new optimal configuration.

This shows that DS2 plus an efficient re-configuration mechanism can offer
robust dynamic scaling for streaming dataflows, allowing the reference system
to react to changes in its workload in just a few seconds, which is significantly
faster than any other systems we are aware of.

90

4.4 Experimental evaluation

Table 4.2: Target source rate (records per second) configuration for the NEX-
Mark queries on Apache Flink and Timely Dataflow.

Bids Auctions Persons
Flink Timely Flink Timely Flink Timely

Q1 4M 5M — —
Q2 4M 5M — —
Q3 — 500K 3M 100K 800K
Q5 500K 2M — —
Q8 — 420K 4M 120K 4M
Q11 1M 9M — —

Table 4.3: DS2 convergence steps for Nexmark queries on Flink. Values are
the level of parallelism of the main operator of each query. Leftmost
column shows initial parallelism (from8 to 28 instances); subsequent
columns show optimal level of parallelism as estimated by DS2 in
each step. Final decisions converged to by DS2 are highlighted.

Init Q1 Q2 Q3 Q5 Q8 Q11

8 12→16 11→13→14 16→20 14→15→16 10 12→22→28
12 16 14 18→20 16 10 22→28
16 16 12→14 20 16 8→10 26→28
20 16 13→14 20 14→16 8→10 28
24 16 14 20 14→16 8→10 28
28 16 14 20 13→16 8→10 28

4.4.4 Convergence

We now show DS2 convergence from both over- and under-provisioned states
on more complex dataflows. We use the same Flink configuration as before,
and execute each query with fixed source rates and initial configurations of
varying parallelism. The source rates for each query are specified in Table 4.2.
We run each query-configuration combination for 5 minutes and evaluate
DS2 with 30 s decision interval, 30 s warm-up time, 1.0 target ratio, and five
intervals activation. We consider the policy to have converged if the decision
is unchanged over 5 consecutive intervals.

91

4 DS2: Controlling distributed streaming dataflows

Table 4.3 shows the indicated parallelism per decision step for the main
operator of each query on Flink. Note that queries Q3, Q5, Q8, and Q11
include many operators, but we show results for the main operator of each for
simplicity. DS2 converges in one step for simple queries and initial configura-
tions close to optimal (e.g., Q1 with parallelism 12), and in at most three steps
for complex queries and initial configurations far from optimal (e.g., Q5 with
initial parallelism 8).

In all cases, DS2 takes at most three steps to converge. It needed three steps
in 3 experiments (with Q2, Q5, and Q11), two steps in 14 experiments, and
a single step in 19 out of 36 total experiments. We also ran the same queries
using Timely Dataflow and the results were similar.

This shows that DS2 provides two important SASO properties: stability and
short settling time.
Intuitively, one DS2 step moves close to optimal by estimating ideal linear

scaling (Section 4.2.4). For far-from-optimal initial configurations, the second
step “refines” this decision with a more accurate measurement, and the third
step compensates for uncaptured overheads.

4.4.5 Accuracy

We next show accuracy: DS2 converges to configurations that exhibit no
backpressure (and thus keep upwith the source rates)whileminimizing resource
usage. In particular, we show that for a given dataflow, fixed input rate, and initial
configuration, DS2 identifies the optimal parallelism regardless of whether the
job is initially under- or over-provisioned. We further show that there exists
no other backpressure-free configuration with lower parallelism than the one
DS2 computes. Finally, we show that this configuration gives low latency by
minimizing waiting time per operator instance.

We set source rates as in Table 4.2 and parallelism given by the convergence
experiment. Figures 4.7 and 4.8 plot observed source rates (left) and per-record
latency (right) for the main operator of each Nexmark query on Flink with
different configurations. For queries with two sources, Q3 in Figure 4.7c and
Q8 in Figure 4.8b, we show results for the higher-rate source (results for the
low-rate sources are similar). In all cases, DS2 successfully identifies the
lowest parallelism that can keep up with the source rate. Further increasing the
parallelism does not significantly improve latency and would waste resources,
while lower parallelism would cause backpressure.

92

4.4 Experimental evaluation

Timely Dataflow does not have a backpressure mechanism so data sources
are never delayed and the observed source rates are always equal to the initial
fixed rate (instead, queues growwhen the system cannot keep up). We therefore
simply show complementary cumulative distribution functions (CCDFs) of
per-epoch latencies with different configurations for Timely. Figure 4.9 shows
these for Q3, Q5, and Q11; results are similar for other queries. Each epoch
in the CCDFs corresponds to 1 second of data, which must be processed in
less than 1 second. The optimal parallelism indicated by DS2 is four in all
queries, regardless of the starting configuration. For Q3 (left) and Q11 (right),
a parallelism of four is clearly the configuration that can keep up with the
1-second target (vertical line in the plots) using minimum required resources.
For Q5, 18% of the epochs are above the target by up to 0.5 seconds. Here,
the larger percentage of epochs that cannot keep up is because of the window
operator, which stashes data and then forwards it at certain time points. This
manifests as load spikes, which require additional resources for the system to
keep up. Longer decision intervals smooth out the spikes but tend to affect
policy decisions towards higher optimal configurations, which is why DS2
indicated a parallelism of four (cf. Section 4.3.2).
In summary, DS2 identified optimal configurations in all experiments and

never overshot (provisioned more resources than needed), thereby exhibiting
the remaining two SASO properties: accuracy and no overshoot.

4.4.6 Instrumentation overhead
Finally, we evaluate instrumentation overhead. We run the Nexmark queries
for 5 minutes with source rates from Table 4.2 and a 10 s decision interval—the
smallest we use in this work, which results in the most frequently aggregated
logs and has the highest potential overhead on the system performance.
We measure per-record latency in Flink using its built-in metric and per-

epoch latency in Timely Dataflow using 1 s event-time epochs. Figure 4.10
shows boxplots for both systems. Individual columns show latencywith logging
completely off (vanilla) and instrumentation activated (instr). Overheads are
small: at most 13% on Flink (40ms absolute difference) and at most 20% on
Timely Dataflow (5ms absolute difference) across all queries. Performance
penalties are an acceptable trade-off for a good scaling policy, and could be
further reduced with a larger decision interval and pre-aggregation of metrics.
Note that Heron incurs no overhead since it gathers the required metrics by
default.

93

4 DS2: Controlling distributed streaming dataflows

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 5 10 15 20 25 30

M
il

li
on

 r
ec

or
ds

/s

Interval

10-3

10-2

10-1

100

 0.01 0.1 1 10

C
C

D
F

Latency [s]

p=8
p=12
p=14
p=16
p=18
p=20
p=24

(a) [Q1] Indicated parallelism: 16

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 5 10 15 20 25 30

M
il

li
on

 r
ec

or
ds

/s

Interval

10-3

10-2

10-1

100

 0.01 0.1 1 10

C
C

D
F

Latency [s]

p=4
p=8

p=12
p=16
p=20
p=24

(b) [Q2] Indicated parallelism: 14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

M
il

li
on

 r
ec

or
ds

/s

Interval

10-3

10-2

10-1

100

 0.01 0.1 1 10

C
C

D
F

Latency [s]

p=4
p=8

p=12
p=16
p=20
p=24

(c) [Q3] Indicated parallelism: 20

Figure 4.7: Observed source output rates and per-record latency CCDFs for dif-
ferent configurations of the Nexmark operators Q1–Q3 on Apache
Flink.

94

4.4 Experimental evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

M
il

li
on

 r
ec

or
ds

/s

Interval

10-3

10-2

10-1

100

 0.01 0.1 1 10

C
C

D
F

Latency [s]

p=8
p=12
p=16
p=20
p=24
p=28

(a) [Q5] Indicated parallelism: 16

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 5 10 15 20 25 30

M
il

li
on

 r
ec

or
ds

/s

Interval

10-3

10-2

10-1

100

 0.01 0.1 1 10

C
C

D
F

Latency [s]

p=4
p=8

p=10
p=12
p=16
p=20

(b) [Q8] Indicated parallelism: 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

M
il

li
on

 r
ec

or
ds

/s

Interval

10-3

10-2

10-1

100

 0.01 0.1 1 10

C
C

D
F

Latency [s]

p=12
p=16
p=20
p=24
p=28
p=32

(c) [Q11] Indicated parallelism: 28

Figure 4.8: Observed source output rates and per-record latency CCDFs for
different configurations of the Nexmark operators Q1, Q8 and Q11
on Apache Flink.

95

4 DS2: Controlling distributed streaming dataflows

10-3

10-2

10-1

100

10-1 100 101

C
C

D
F

Q3 p=1
p=2
p=3
p=4
p=8

10-1 100 101

Latency [s]

Q5

10-1 100 101

Q11

Figure 4.9: CCDFs of per-epoch latencies for different configurations of the
Nexmark operators on Timely Dataflow. All queries have an indi-
cated parallelism of 4.

100

101

102

103

104

105

Q
1-

va
ni

ll
a

Q
1-

in
st

r
Q

2-
va

ni
ll

a
Q

2-
in

st
r

Q
3-

va
ni

ll
a

Q
3-

in
st

r
Q

5-
va

ni
ll

a
Q

5-
in

st
r

Q
8-

va
ni

ll
a

Q
8-

in
st

r
Q

11
-v

an
il

la
Q

11
-i

ns
tr

L
at

en
cy

 [
m

s]

(a) Flink instrumentation overhead

10-2

10-1

100

101

Q
1-

va
ni

ll
a

Q
1-

in
st

r
Q

2-
va

ni
ll

a
Q

2-
in

st
r

Q
3-

va
ni

ll
a

Q
3-

in
st

r
Q

5-
va

ni
ll

a
Q

5-
in

st
r

Q
8-

va
ni

ll
a

Q
8-

in
st

r
Q

11
-v

an
il

la
Q

11
-i

ns
tr

L
at

en
cy

 [
m

s]

(b) Timely Dataflow instrumentation over-
head

Figure 4.10: Policy instrumentation overhead for the Nexmark queries of Ta-
ble 4.2 with instrumentation disabled (vanilla) and enabled (instr)
for both Flink (a) and Timely Dataflow (b). Note the different
scale of the y-axis.

96

4.5 DS2: conclusion

4.5 DS2: conclusion
In this chapter we have described and evaluated DS2, a novel automatic scal-
ing controller for distributed streaming dataflows. Unlike existing scaling
approaches, which rely on coarse-grained metrics and simplistic models, DS2
leverages knowledge of the dataflow graph, the computational dependencies
among operators, and estimates the operators’ true processing and output rates.
DS2 uses a general performance model that is mechanism-agnostic and

broadly applicable to a range of streaming systems. We have implemented DS2
on different stream processing engines: Apache Flink, Timely Dataflow, and
Apache Heron, and showed that it is capable of accurate scaling decisions with
fast convergence, while incurring negligible instrumentation overheads.

An interesting question for future work is what kind of scaling and adaptation
mechanisms are a goodmatch for a controller like DS2. The efficiency of DS2’s
model means that responsiveness is often limited by the latency of the scaling
mechanism of the stream processor (when it is not determined by the granularity
of measurement). All the stream processors we test against implement scaling
actions by checkpointing the dataflow, redeploying, and restoring from the
checkpoint. A faster, more dynamic reconfiguration mechanism might allow
DS2 to operate on shorter timescales than the tens of seconds it allows in
current systems. We present a reconfiguration mechanism with low latency
impact in Chapter 5. DS2 is open source, together with all code and data used
to produce the results in this chapter.1

1https://github.com/strymon-system/ds2

97

https://github.com/strymon-system/ds2

5
Megaphone: Latency-conscious
state migration for distributed
streaming dataflows

This chapter is based on the paper Megaphone: Latency-conscious state mi-
gration for distributed streaming dataflows [Hof+19].

In this chapter we presentMegaphone, a technique for fine-grainedmigration
in a stream processor which delivers maximum latencies orders of magnitude
lower than existing techniques, based on the observation that a stream proces-
sor’s structured computation and logical timestamps allow the system to plan
fine-grained migrations. Megaphone can specify migrations on a key-by-key
basis, and then optimizes this by batching at varying granularities; as Figure 5.1
shows, the improvement over all-at-once migration can be dramatic.
Applying existing fine-grained live migration techniques to a streaming

engine is non-trivial. While systems like Squall target online transaction
processing (OLTP) workloads with short-lived transactions, streaming jobs are
long-running. In such a setting, Squall’s approach to acquire a global lock
during initialization is not a viable solution. Furthermore, many of Squall’s
remedies are reactive rather than proactive (because it has to support general
transactions whose data needs are hard to anticipate), which can introduce
significant latency on the critical path.

The core idea behind Megaphone’s migration mechanism is to multiplex
fine-grained state migration with actual data processing, coordinated using
logical timestamps common in stream processors. This is a proactive approach
to migration that relies on the prescribed structure of streaming computations,
and the ability of stream processors to coordinate with high frequency using

99

5 Megaphone

logical timestamps. Such systems, including Megaphone, avoid the need for
system-wide locks by pre-planning the rendezvous of data at specific workers.
Our main contribution is fluid migration for stateful streaming dataflows:

a state migration technique that enables consistent online reconfiguration of
streaming dataflows and smoothens latency spikes without using additional
resources (Section 5.1) by employing fine-grained planning and coordination
through logical timestamps. Additionally, we design and implement an API for
reconfigurable stateful timely dataflow dataflow operators that enables fluid mi-
gration to be controlled simply through additional dataflow streams rather than
through changes to the dataflow runtime itself (Section 5.2). Finally, we show
that Megaphone has negligible steady-state overhead and enables fast direct
state movement using the NEXMark benchmarks suite and microbenchmarks
(Section 5.3).

Megaphone is built on Timely Dataflow [McS], and is implemented purely
in library code, requiring no modifications to the underlying system. We
first review existing state migration techniques in streaming systems, which
either cause performance degradation or require resource overprovisioning. We
also review live migration in DBMSs and identify the technical challenges to
implement similar methods in distributed stream processors (Section 2.7).

100

101

102

103

104

105

 780 800 820 840

L
at

en
cy

 [
m

s]

Time [s]

All-at-once (prior work)

max p: 0.99 p: 0.5 p: 0.25

 780 800 820 840

Time [s]

Megaphone (fluid)

 780 800 820 840

Time [s]

Megaphone (optimized)

Figure 5.1: A comparison of service latencies in prior coarse-grainedmigration
strategies (all-at-once) with two of Megaphone’s fine-grained mi-
gration strategies (fluid and optimized), for a workload thatmigrates
one billion keys consisting of 8GB of data.

100

5.1 State migration design

Table 5.1: Notation used throughout Chapter 5

Symbol Description

operatorkey User-supplied operator function definition
configuration Function assigning keys to workers based on time
update Changes to the configuration function
F Operator managing routing and state locality
S Operator hosting a user-supplied operator
P(t) The state associated with a specific key at time t
Sa An operator instance named a
C A configuration at a specific point in time

5.1 State migration design
Megaphone’s features rely on core streaming dataflow concepts such as log-
ical time, progress tracking, data-parallel operators, and state management.
Basic implementations of these concepts are present in all modern stream
processors, such as Apache Flink [Car+15], Millwheel [Aki+13], and Google
Dataflow [Aki+15]. In the following, we rely on the Naiad [Mur+13] timely
dataflow model as the basis to describe the Megaphone migration mechanism.
Timely dataflow natively supports a superset of dataflow features found in other
systems in their most general form.

5.1.1 Migration formalism and guarantees
We will use timely dataflow frontiers to separate migrations into independent
arbitrarily fine-grained timestamps and logically coordinate data movement
without using coarse-grained pause-and-resume for parts of the dataflow.

To frame the mechanism we introduce for live migration in streaming
dataflows, we first lay out some formal properties that define correct and live
migration. In the interest of clarity we keep the descriptions casual, but each
can be formalized.

We consider stateful dataflow operators that are data-parallel and functional.
Specifically, an operator acts on input data that are structured as (key,val)
pairs, each bearing a logical timestamp. The input is partitioned by its key
and the operator acts independently on each input partition by sequentially
applying each val to its state in timestamp order. For each key, for each val in

101

5 Megaphone

timestamp order, the operator may change its per-key state arbitrarily, produce
arbitrary outputs as a result, and it may schedule further per-key changes at
future timestamps (in effect sending itself a new, post-dated val for this key).

operatorkey : (state, val) → (state′, [outputs], [(vals, times)]) (5.1)

The output triples are the new state, the outputs to produce, and future changes
that should be presented to the operator.

For a specific operator, we can describe the correctness of an implementation.
We introduce the notation of in advance of as follows.

Definition 17 (in advance of). A timestamp t is in advance of
1. a timestamp t ′ if t is greater than or equal to t ′;
2. a frontier F if t is greater than or equal to an element of F.

In-advance-of corresponds to the less-or-equal relation for partially ordered
sets. For example, a time 6 is in advance of 5.

Property 5 (Correctness). The correct outputs through time are the time-
stamped outputs that result from each key from the timestamp-ordered appli-
cation of input and post-dated records bearing timestamps not in advance of
time.

For each migrateable operator, we also consider a configuration function,
which for each timestamp assigns each key to a specific worker.

configuration : (time, key) → worker (5.2)

With a specific configuration, we can describe the correctness of a migrating
implementation.

Property 6 (Migration). A computation is migrated according to configu-
ration if all updates to key with timestamp time are performed at worker
configuration(time, key).

A configuration function can be represented in many ways, which we will
discuss further. In our context we will communicate any changes using a timely
dataflow stream, in which configuration changes bear the logical timestamp
of their migration. This choice allows us to use timely dataflow’s frontier
mechanisms to coordinate migrations, and to characterize liveness.

102

5.1 State migration design

Property 7 (Completion (liveness)). A migrating computation is completing
if, once the frontiers of both the data input stream and configuration update
stream reach F, then (with no further requirements of the input) the output
frontier of the computation will eventually reach F.

Our goal is to produce a mechanism that satisfies each of these three proper-
ties: Correctness, Migration, and Completion.

5.1.2 Configuration updates
State migration is driven by updates to the configuration function (Equa-
tion (5.2)) introduced in Section 5.1.1. In Megaphone these updates are
supplied as data along a timely dataflow stream, each bearing the logical time-
stamp at which they should take effect. Informally, configuration updates have
the form

update : (time, key, worker) (5.3)

indicating that as of time the state and values associated with keywill be located
at worker, and that this will hold until a new update to key is observed with a
greater timestamp. For example, an update could have the form of (time: 16,
key: a, worker: 0), which would define the configuration function for times of
16 and beyond.

As configuration updates are simply data, the user has the ability to drive
a migration process by introducing updates as they see fit. In particular, they
have the flexibility to break down a large migration into a sequence of smaller
migrations, each of which have lower duration and between which the system
can process data records. For example, to migrate from one configuration C1 to
another C2, a user can use different migration strategies to reveal the changes
from C1 to C2:
All-at-once migration To simultaneously migrate all keys from C1 to C2,

a user could supply all changed (time, key, worker) triples with one
common time. This is essentially an implementation of the partial
pause-and-restart migration strategy of existing streaming systems as
described in Section 2.7.1.

Fluid migration To smoothly migrate keys from C1 to C2, a user could re-
peatedly choose one key changed from C1 to C2, introduce the new
(time, key, worker) triple with the current time, and await the migration’s
completion before choosing the next key.

103

5 Megaphone

L
(time, key, value)

(a) Original L-operator in a dataflow.

F

S

L

re-configuration

(time, key, value)

Output
Probe

state

routing table

data

(b) Megaphone’s operator structure in a dataflow.

Figure 5.2: Overview of Megaphone’s migration mechanism. The solid lines
indicate regular streams. The dotted lines indicate information
sharing for the state, and progress information obtained from the
probe.

Batched migration To trade off low latency against high throughput, a user can
produce batches of changed (time, key, worker) triples with a common
time, awaiting the completion of the batch before introducing the next
batch of changes.

We believe that this approach to reconfiguration, as user-supplied data, opens
a substantial design space. Not only can users perform fine-grained migration,
they can prepare future migrations at specific times, and drive migrations based
on timely dataflow computations applied to system measurements. Most users
will certainly need assistance in performing effective migration, and we will
evaluate several specific instances of the above strategies.

5.1.3 Megaphone’s mechanism
We now describe how to create a migrateable version of an operator L by imple-
menting a deterministic, data-parallel operator as described in Section 5.1.1.
A non-migrateable implementation would have a single dataflow operator with
a single input dataflow stream of (key, val) pairs, exchanged by key before they
arrive at the operator.

104

5.1 State migration design

Instead, we create two operators F and S. F takes the data stream as input
and as an additional input the stream of configuration updates and produces
data pairs and migrating state as outputs. S takes as inputs exchanged data
pairs and exchanged migrating state, and applies them to a hosted instance of
L, which implements operator and maintains both state and pending records
for each key. Figure 5.2b presents a schematic overview of the construction.
Recall that in timely dataflow instances of all operators in the dataflow are
multiplexed on each worker (thread). The F and S on the same worker share
access to L’s state.
This construction can be repeated for all the operators in the dataflow that

need support for migration. Separate operators can be migrated independently
(via separate configuration update streams), or in a coordinated manner by
re-using the same configuration update stream. Operators with multiple data
inputs can be treated like single-input operators where themigrationmechanism
acts on both data inputs at the same time.

Operator F Operator F routes (key, val) pairs according to the configuration
at their associated time, buffering pairs if time is in advance of the frontier of the
configuration input. For times in advance of this frontier, the configuration is not
yet certain as further configuration updates could still arrive. The configuration
at times not in advance of this frontier can no longer be updated. As the data
frontier advances, configurations can be retired.

Operator F is also responsible for initiating state migrations. For a configu-
ration update (time, key, worker), F must not initiate a migration for key until
its state has absorbed all updates at times strictly less than time. F initiates a
migration once time is present in the output frontier of S, as this implies that
there exist no records at timestamps less than time, as otherwise they would be
present in the frontier in place of time.

Operator F initiates a migration by uninstalling the current state for key from
its current location in operator S, and transmitting it bearing timestamp time
to the instance of operator S on worker. The state includes both the state for
operator, as well as the list of pending (val, time) records produced by operator
for future times.

Operator S Operator S receives exchanged (key, val) pairs and exchanged
state as the result of migrations initiated by F. S immediately installs any
received state. S applies received and pending (key, val) pairs in timestamp

105

5 Megaphone

order using operator once their timestamp is not in advance of either the data
or state inputs.
We provide details of Megaphone’s implementation of this mechanism in

Section 5.2.

Proof sketch For each key, the function operatorkey from Equation (5.1)
defines a timeline corresponding to a single-threaded execution, which assigns
to each time a pair (state, [(val, time)]) of state and pending records just before
the application of input records at that time. Let P(t) denote the function from
times to these pairs for key.
For each key, the configuration function from Equation (5.2) partitions this

timeline into disjoint intervals, [ta, tb), each ofwhich is assigned to one operator
instance Sa.

Claim: F migrates exactly P(ta) to Sa.
First, F always routes input records at time to Sa, and so routes all input

records in [ta, tb) to Sa. If F also presents Sa with P(ta), it has sufficient input
to produce P(tb). More precisely,

1. because F maintains its output frontier at tb , in anticipation of the need
to migrate P(tb), Sa will apply no input records in advance of tb. And
so, it applies exactly the records in [ta, tb).

2. Until Sa transitions to P(tb), its output frontier will be strictly less than
tb , and so F will not migrate anything other than P(tb).

3. Because F maintains its output frontier at tb , and Sa is able to advance
its output frontier to tb, the time tb will eventually be in the output
frontier of S.

5.1.4 Example
Figure 5.3 presents three snapshots of a migrating streaming word-count
dataflow. The figure depicts operator instances F0 and F1 of the upstream
routing operator, and operator instances S0 and S1 of the operator instances
hosting the word-count state and update logic. The F operators maintain input
queues of received but not yet routable input data, and an input stream of
logically timestamped configuration updates. Although each F maintains its
own routing table, which may temporarily differ from others, we present one
for clarity. Input frontiers are represented by boxed numbers, and indicate
timestamps that may still arrive on that input.

106

5.1 State migration design

(44, a, 3)

c: 3
d: 9

a: 7
b: 14

F0

F1

S0

S1

a,b→1
c,d→2

input queue

Routing table: State:

control input

asdf
44

44

42

42
43

(43, c, 5)

42

42

(a) Before migrating

(46, c, 8)

c: 8
d: 9

a: 10
b: 14

F0

F1

S0

S1

a,b→1
c,d→2

(45, b, 2)

asdf
44

50

45

45
50

(45, b, 5)

45

45

(b) Receiving a configuration update

(55, a, 6)

b:19
c: 16
d: 9

a: 10

F0

F1

S0

S1

a→1
b,c,d→2

asdf
44

56

55

55
53

53

53

(c) After migration

Figure 5.3: A migrating word-count dataflow executed by two workers. The
example is explained in more detail in Section 5.1.4

107

5 Megaphone

In Figure 5.3a, F0 has enqueued the record (44, a, 3) and F1 has enqueued
the record (43, c, 5), both because their control input frontier has only reached
42 and so the destination workers at their associated timestamps have not
yet been determined. Generally, F instances will only enqueue records with
timestamps in advance of the control input frontier, and the output frontiers of
the S instances can reach the minimum of the data and control input frontiers.

In Figure 5.3b, both control inputs have progressed to 45. The buffered
records (44, a, 3) and (43, c, 5) have been forwarded to S1 and S2, and the
count operator instances apply the state updates accordingly, shown in bold.
Additionally, both operators have received a configuration update for the key
b at time 45. Should the configuration input frontier advance beyond 45, both
F0 and F1 can integrate the configuration change, and then react. Operator
F0 would observe that the output frontier of S0 reaches 45, and initiate a state
migration. Operator F1 would route its buffered input at time 45, to S1 rather
than S0.

In Figure 5.3c the migration has completed. Although the configuration
frontier has advanced to 55, the output frontiers are held back by the data input
frontier of F1 at 53. According to Definition 4, the frontier guarantees that no
record with a time earlier than 53 will appear at the input. If the configuration
frontier advances past 55 then operator F0 could route its queued record, but
neither S operator could apply it until they are certain that there are no other
data records that could come before the record at 55.

5.2 Implementation

Megaphone is an implementation of the migration mechanism described in
Section 5.1. In this section, we detail specific choices made in Megaphone’s
implementation, including the interfaces used by the application programmer,
Megaphone’s specific choices for the grouping and organization of per-key
state, and how we implemented Megaphone’s operators in Timely Dataflow.
We conclude with some discussion of how one might implement Megaphone in
other stream processing systems, as well as alternate implementation choices
one could consider.

108

5.2 Implementation

5.2.1 Megaphone’s operator interface

Megaphone presents users with an operator interface that closely resembles
the operator interfaces Timely Dataflow presents. In several cases, users can
use the same operator interface extended only with an additional input stream
for configuration updates. More generally, we introduce a new structure to
help users isolate and surface all information that must be migrated (state, but
also pending future records). These additions are implemented strictly above
Timely Dataflow, but their structure is helpful and they may have value in
Timely Dataflow proper.

The simplest stateful operator interface in Megaphone and Timely Dataflow
is the state_machine operator, which takes one input structured as pairs
(key, val) and a state update function which can produce arbitrary output as
it changes per-key state in response to keys and values. In Megaphone, there
is an additional input for configuration updates, but the operator signature is
otherwise identical.
More generally, Timely Dataflow supports operators of arbitrary numbers

and types of inputs, containing arbitrary user logic, and maintaining arbitrary
state. In each case a user must specify a function from input records to integer
keys, and the only guarantee Timely Dataflow provides is that records with
the same key are routed to the same worker. Operator execution and state are
partitioned by worker, but not necessarily by key.
For Megaphone to isolate and migrate state and pending work we must

encourage users to yield some of the generality Timely Dataflow provides.
However, Timely Dataflow has already required the user to program partitioned
operators, each capable of hosting multiple keys, and we can lean on these
idioms to instantiatemore fine-grained operators, partitioned not only byworker
but further into finer-grained bins of keys. Routing functions for each input are
already required by Timely Dataflow, and Megaphone interposes to allow the
function to change according to reconfiguration. Timely Dataflow per-worker
state is defined implicitly by the state captured by the operator closure, and
Megaphone onlymakes it more explicit. The use of a helper to enqueue pending
work is borrowed from an existing Timely Dataflow idiom (the Notificator).
While Megaphone’s general API is not identical to that of Timely Dataflow, it
is a similar framing of the same idioms. From our experience, a programmer
familiar with Timely Dataflow can adapt to Megaphone’s API in little time.
Listing 5.1 shows how Megaphone’s operator interface is structured. The

interface declares unary and binary stateful operators for single input or dual

109

5 Megaphone

input operators as well as a state-machine operator. The logic for the state-
machine operator has to be encoded in the fold-function. Megaphone presents
data in timestamp order with a corresponding state and notificator object. Here,
migration is transparent and performedwithout special handling by the operator
implementation.

Example Listing 5.2 shows an example of a statefulword-count dataflowwith
a single data input and an additional control input. The stateful_unary
operator receives the control input, the state type, and a key extraction
function as parameters. The control input carries information about where data
is to be routed as discussed in the previous section. During migration, the
state object is converted into a stream of serialized tuples, which are used to
reconstruct the object on the receiving worker. State is managed in groups of
keys, i.e. many keys of input data will be mapped to the same state object. The
key extraction function defines how this key can be extracted from the input
records.

5.2.2 State organization
State migration as defined in Section 5.1.1 is defined on a per-key granularity.
In a typical streaming dataflow, the number of keys can be large in the order of
million or billions of keys. Managing each key individually can be costly and
thus we selected to group keys into bins and adapt the configuration function
from Equation (5.2) as follows:

configuration : (time, bin) → worker.

Additionally, each key is statically assigned to one equivalence class that
identifies the bin it belongs to.

In Megaphone, the number of bins is configurable in powers of two at startup
but cannot be changed during run-time. A stateful operator gets to see a bin
that holds data for the equivalence class of keys for the current input. Bins are
simply identified by a number, wich corresponds to the most significant bits of
the exchange function specified on the operator.1

1Otherwise, keys with similar least-significant bits are mapped to the same bin; Rust’s HashMap-
implementation suffers from collisions for keys with similar least-significant bits.

110

5.2 Implementation

fn state_machine(
control: Stream<ControlInstr>,
input: Stream<(K, V)>,
exchange: K -> Integer
fold: |Key, Val, State| -> List<Output>,
) -> Stream<Output>;

fn unary(
control: Stream<ControlInstr>,
input: Stream<Data>,
exchange: Data -> Integer,
fold: |Time, Data, State, Notificator| -> List<Output>,
) -> Stream<Output>;

fn binary(
control: Stream<ControlInstr>,
input1: Stream<Data1>,
input2: Stream<Data2>,
exchange1: Data1 -> Integer,
exchange2: Data2 -> Integer,
fold: |Time, Data1, Data2, State, Notificator1, Notificator2|

-> List<Output>,
) -> Stream<Output>;

Listing 5.1: Abstract definition of the Megaphone operator interfaces.
Arguments State and Notificator are provided as mutable
references which can be operated upon. Parameters in angle
brackets indicate generic parameters, such as the data type of a
stream. Function types are declared with the -> operator, with
parameters on the left and return type on the right.

111

5 Megaphone

worker.dataflow(|scope| {

// Introduce configuration and input streams.
let conf = conf_input.to_stream(scope);
let text = text_input.to_stream(scope);

// Update per-word accumulate counts.
let count_stream = megaphone::unary(
conf,
text,
|(word, diff)| hash(word),
|time, data, state, notificator| {
// map each (word, diff) pair to the accumulation.
data.map(|(word, diff)| {
let mut count = state.entry(word).or_insert(0);
*count += diff;
(word, count)
})
}
);
});

Listing 5.2: A stateful word-count operator. The operator reads (word, diff)-
pairs and outputs the accumulated count of each encountered
word. For clarity, the example suppresses details related to Rust’s
data ownership model. The complete example is available in
Megaphone’s source release.

112

5.2 Implementation

Megaphone’s mechanism requires two distinct operators, F and S. The
operator S maintains the bins local to a worker and passes references to the user
logic L. Nevertheless, the S-operator does not have a direct channel to its peers.
For this reason, F can obtain a reference to bins by means of a shared pointer.
During a migration, F serializes the state obtained via the shared pointer and
sends it to the new owning S-operator via a regular Timely Dataflow channel.
Note that sharing a pointer between two operators requires the operators to be
executed by the same process (or thread to avoid synchronization), which is the
case for Timely Dataflow.

5.2.3 Timely Dataflow instantiation
In Timely Dataflow, data is exchanged according to an exchange function,
which takes some data and computes an integer representative value:

exchange : data→ Integer.

Timely dataflow uses this value to decide where to send tuples. In Megaphone,
instead of assigning data to a worker based on the exchange function, we
introduce an indirection layer where bins are assigned to workers. That way,
the exchange function for the channels from F to S is by a specific worker
identifier.

5.2.3.1 Monitoring output frontiers

Megaphone ties migrations to logical time and a computation’s progress. A
reconfiguration at a specific time is only to be applied to the system once all data
up to that time has been processed. The F operators access this information by
monitoring the output frontier of the S operators. Specifically, Timely Dataflow
supports probes as a mechanism to observe progress on arbitrary dataflow
edges. Each worker attaches a probe to the output stream of the S operators,
and provides the probe to its F operator instance.

5.2.3.2 Capturing Timely Dataflow idioms

For Megaphone to migrate state, it requires clear isolation of per-key state
and pending records. Although Timely Dataflow operators require users to
write operators that can be partitioned across workers, they do not require the
state and pending records to be explicitly identified. To simplify programming

113

5 Megaphone

migrateable operators, we encapsulate several Timely Dataflow idioms in a
helper structure that both manages state and pending records for the user, and
surfaces them for migration.

Timely Dataflow has a Notificator type that allows an operator to indicate
future times at which the operator may produce output, but without encapsu-
lating the keys, states, or records it might use. We implemented an extended
notificator that buffers future triples (time, key, val) and can replay subsets for
times not in advance of an input frontier. Internally the triples are managed
in a priority queue, unlike in Timely Dataflow, which allows Megaphone to
efficiently maintain large numbers of future triples. By associating data (keys,
values) with the times, we relieve the user from maintaining this information on
the side. As we will see, Megaphone’s notificator can result in a net reduction
in implementation complexity, despite eliciting more information from the
user.

5.2.4 Discussion

Up to now, we explained how to map the abstract model of Megaphone to an
implementation. The model leaves many details to the implementation, several
ofwhich have a large effect on an implementation’s run-time performance. Here,
we want to point out how they interact with other features of the underlying
system, what possible alternatives are and how to integrate Megaphone into a
larger, controller-based system.

Other systems We implemented Megaphone in Timely Dataflow, but the
mechanisms could be implemented in any sufficiently expressive stream pro-
cessor with support for event time, progress tracking, and state management.
Specifically, Megaphone relies on the ability of F operators to 1. observe
timestamp progress at other locations in the dataflow, and 2. to extract state
from downstream S operators for migration. With regard to the first require-
ment, systems with out-of-band progress tracking like MillWheel [Aki+13]
and Google Dataflow [Aki+15] also provide the capability to observe dataflow
progress externally, while systems with in-band watermarks like Flink would
need to provide an additional mechanism. Extracting state from downstream
operators is straightforward in Timely Dataflow where workers manage mul-
tiple operators. In systems where each thread of control manages a single

114

5.2 Implementation

operator, external coordination mechanisms could be used to effect the same
behavior.

Fault tolerance Megaphone is a library built onTimelyDataflowabstractions,
and inherits fault-tolerance guarantees from the system. For example, the Naiad
implementation of timely dataflow provides system-wide consistent snapshots,
and a Megaphone implementation on Naiad would inherit fault tolerance.
At the same time, Megaphone’s migration mechanisms effectively provide
programmable snapshots on finer granularities, which could feed back into
finer-grained fault-tolerance mechanisms.
Reconfiguration with stateful operators and fault-tolerance both require

operators to expose their internal state. The system hosting the operators can
decide when to persist an operator’s state or migrate an operator instance to
another physical worker. The main difference between a mechanism for fault-
tolerance and state-migration is that the former should be done asynchronously
to limit the impact on steady-state latency while the latter is likely on the
critical path and thus needs to be engineered to have a low latency impact in
the computation’s performance.

Alternatives to binning Megaphone’s implementation uses binning to re-
duce the complexity of the configuration function. An alternative to a static
mapping of keys to bins could be achieved by the means of a prefix tree (e.g., a
longest-prefix match as in Internet routing tables). Extending the functionality
of bins to split bins into smaller sets or merge smaller sets into larger bins
would allow run-time reconfiguration of the actual binning strategy rather than
setting it up during initialization without the option to change it later on.

Migration controller We implementedMegaphone as a system that provides
an input for configuration updates to be supplied by an external controller. The
only requirement Megaphone places on the controller is to adhere to the control
command format as described in Section 5.1.2. A controller could observe the
performance characteristics of a computation on a per-key level and correlate
this with the input workload. For example, the DS2 system presented in
Chapter 4 automatically measures and re-scales streaming systems to meet
throughput targets.

Independently, we have observed and implemented several details for effec-
tive migration. Specifically, we can use bipartite matching to group migrations

115

5 Megaphone

that do not interfere with each other, reducing the number of migration steps
without much increasing the maximum latency. We can also insert a gap
between migrations to allow the system to immediately drain enqueued records,
rather than during the next migration, which reduces the maximum latency
from two migration durations to just one.

5.3 Evaluation
We present a tripartite evaluation ofMegaphone. We are interested in particular
in the latency of streaming queries, and how they are affected by Megaphone
both in a steady state (where no migration is occuring) and during a migration
operation.
First, in Section 5.3.1 we use the NEXMark benchmarking suite [NEX;

Tuc+02] to compare Megaphone with prior techniques under a realistic work-
load. NEXMark consists of queries covering a variety of operators and window-
ing behaviors. Next, in Section 5.3.2 we look at the overhead of Megaphone
when no migration occurs: this is the cost of providing migration functionality
in stateful dataflow operators, versus using optimized operators which cannot
migrate state. Finally, in Section 5.3.3 we use a microbenchmark to investigate
how parameters like the number of bins and size of the state affect migration
performance.
We run all experiments on a cluster of four machines, each with four Intel

Xeon E5-4650 v2 @2.40GHz CPUs (each 10 cores with hyperthreading) and
512GiB of RAM, running Ubuntu 18.04. For each experiment, we pin a
Timely Dataflow process with four2 workers to a single CPU socket. Our
open-loop testing harness supplies the input at a specified rate, even if the
system itself becomes less responsive (e.g., during a migration). We record the
observed latency every 250ms, in units of nanoseconds, which are recorded in
a histogram of logarithmically-sized bins.

Unless otherwise specified, we migrate the state of the main operator of each
dataflow. We initially migrate half of the keys on half of the workers to the other
half of the workers (25% of the total state), which results in an imbalanced
assignment. We then perform and report the details of a second migration back
to the balanced configuration.
2Timely Dataflow’s progress tracking protocol did not scale well to configurations with large
number of workers at the time of writing this chapter. Thus, we limited our evaluation to four
machines and four Timely Dataflow workers.

116

5.3 Evaluation

Table 5.2: Lines of code in NEXMark query implementations. The native im-
plementation is based on unmodified Timely Dataflow and includes
manual optimizations.

Implementation Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Native 12 14 58 128 73 130 55 58
Megaphone 16 18 41 74 46 74 54 29

5.3.1 NEXMark benchmark

The NEXMark suite models an auction site in which a high-volume stream
of users, auctions, and bids arrive, and eight standing queries are maintained
reflecting a variety of relational queries including stateless streaming trans-
formations (e.g., map and filter in Q1 and Q2 respectively), a stateful record-
at-a-time two-input operator (incremental join in Q3), and various window
operators (e.g., sliding window in Q5, tumbling window join in Q8), and
complex multi-operator dataflows with shared components (Q4 and Q6).

We have implemented all eight of theNEXMark queries in both native Timely
Dataflow and using Megaphone. Table 5.2 lists the lines of code for queries
1–8. Native is a hand-tuned implementation,Megaphone is implemented using
the stateful operator interface. Note that the implementation complexity for the
native implementation is higher in most cases as we include optimizations from
Section 5.2 which are not offered by the system but need to be implemented
for each operator by hand.
To test our hypothesis that Megaphone supports efficient migration on re-

alistic workloads, we run each NEXMark query under high load and migrate
the state of each query without interrupting the query processing itself. Our
test harness uses a reference input data generator and increases its rate. The
data generator can be played at a higher rate but this does not change certain
intrinsic properties. For example, the number of active auctions is static, and
so increasing the event rate decreases auction duration. For this reason, we
present time-dilated variants of queries Q5 and Q8 containing large time-based
windows (up to 12 hours). We run all queries with 4 × 106 updates per second.
For stateful queries, we perform a firstmigration at 400 s and perform and report
a second re-balancing migration at 800 s. We compare all-at-once, which is
essentially equivalent to the partial pause-and-restart strategy adopted by exist-
ing systems, and batched, Megaphone’s optimized migration strategy, which

117

5 Megaphone

strikes a balance between migration latency and duration. We use 212 bins for
Megaphone’s migration; in Section 5.3.2 we study Megaphone’s sensitivity to
the bin count.

Figure 5.6 through 5.11 show timelines for the second migration of stateful
queries Q3 through Q8. Generally, the all-at-once migrations experience
maximum latencies proportional to the amount of state maintained, whereas
the latencies of Megaphone’s batched migration are substantially lower when
the amount of state is large. The maximum latencies directly correspond to the
latency observed by clients when applying a configuration update.

100

101

102

103

104

 0 10 20

L
at

en
cy

 [
m

s]

Time [s]

max p: 0.99 p: 0.5 p: 0.25

Figure 5.4: NEXMark query latency for Q1, 4 × 106 requests per second, re-
configuration at 10 s and 20 s. No latency spike occurs during
migration as the query does not accumulate state.

Query 1 and Query 2 maintain no state. Q1 transforms the stream of bids
to use a different currency, while Q2 filters bids by their auction identifiers.
Despite the fact that both queries do not accumulate state to migrate, we
demonstrate their behavior to establish a baseline for Megaphone and our test
harness. Figures 5.4 and 5.5 show query latency during two migrations where
no state is thus transferred; any impact is dominated by system noise.

118

5.3 Evaluation

100

101

102

103

104

 0 10 20

L
at

en
cy

 [
m

s]

Time [s]

max p: 0.99 p: 0.5 p: 0.25

Figure 5.5: NEXMark query latency for Q2, 4 × 106 requests per second, re-
configuration at 10 s and 20 s. No latency spike occurs during
migration as the query does not accumulate state.

Query 3 joins auctions andpeople to recommend local auctions to individuals.
The join operator maintains the auctions and people relations, using the seller
and person as the keys, respectively. This state grows without bound as the
computation runs. Figure 5.6 shows the query latency for both Megaphone,
and the native Timely Dataflow implementation. We note that while the native
Timely Dataflow implementation has some spikes, they are more pronounced
in Megaphone, whose tail latency we investigate further in Section 5.3.2.

Query 4 reports the average closing prices of auctions in a category relying
on a stream of closed auctions, derived from the streams of bids and auctions,
which we compute and maintain, and contains one operator keyed by auction
id which accumulates relevant bids until the auction closes, at which point
the auction is reported and removed. The NEXMark generator is designed to
have a fixed number of auctions at a time, and so the state remains bounded.
Figure 5.7 shows the latency timeline during the second migration. The all-
at-once migration strategy causes a latency spike of more than two seconds
whereas the batched migration strategy only shows an increase in latency of up
to 100ms.

119

5 Megaphone

100

101

102

103

104

 780 800 820 840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780 800 820 840

Time [s]

Megaphone (batched)

(a) Query 3 implemented with Megaphone.

100

101

102

103

104

 780 800 820 840

L
at

en
cy

 [
m

s]

Time [s]

p: 1 p: 0.99 p: 0.5 p: 0.25

(b) Query 3 native implementation.

Figure 5.6: NEXMark query latency for Q3. A small latency spike can be ob-
served at 800 s for both all-at-once and batchedmigration strategies,
reaching more than 100ms for all-at-once and 10ms for batched
migration. Although the state for query 3 grows without bounds,
this did not bear significance after 800 s.

120

5.3 Evaluation

100

101

102

103

104

 780 800 820 840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780 800 820 840

Time [s]

Megaphone (batched)

Figure 5.7: NEXMark query latency for Q4, 4 × 106 requests per second, re-
configuration at 800 s.

100

101

102

103

104

 780 800 820 840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780 800 820 840

Time [s]

Megaphone (batched)

Figure 5.8: NEXMark query latency for Q5, 4 × 106 requests per second, re-
configuration at 800 s with time dilation.

121

5 Megaphone

Query 5 reports, each minute, the auctions with the highest number of bids
taken over the previous sixty minutes. It maintains up to sixty counts for each
auction, so that it can both report and retract counts as time advances. To
elicit more regular behavior, our implementation reports every second over the
previous minute, effectively dilating time by a factor of 60. Figure 5.8 shows
the latency timeline for the second migration; the all-at-once migration is an
order of magnitude larger than the per-second events, whereas Megaphone’s
batched migration is not distinguishable.

100

101

102

103

104

 780 800 820 840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780 800 820 840

Time [s]

Megaphone (batched)

Figure 5.9: NEXMark query latency for Q6, 4 × 106 requests per second, re-
configuration at 800 s.

Query 6 reports the average closing price for the last ten auctions of each
seller. This operator is keyed by auction seller, and maintains a list of up
to ten prices. As the computation proceeds, the set of sellers, and so the
associated state, grows without bound. Figure 5.9 shows the timeline at the
second migration. The result is similar to query 4 because both have a large
fraction of the query plan in common.

Query 7 reports the highest bid each minute, and the results are shown in
Figure 5.10. To elicit more regular behavior, our implementation reports every
ten seconds, effectively dilating time by a factor of 6. The query shows regular

122

5.3 Evaluation

100

101

102

103

104

 780 800 820 840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780 800 820 840

Time [s]

Megaphone (batched)

Figure 5.10: NEXMark query latency for Q7, 4 × 106 requests per second,
reconfiguration at 800 s.

spikes every ten seconds, which happenwhen the output for completedwindows
is computed. This query has minimal state (one value) but does require a data
exchange to collect worker-local aggregations to produce a computation-wide
aggregate. Because the state is so small, there is no distinction between
all-at-once and Megaphone’s batched migration.

Query 8 reports a twelve-hour windowed join between new people and new
auction sellers. This query has the potential to maintain a massive amount of
state, as twelve hours of auction and people data is substantial. Once reached,
the peak size of state is maintained. To show the effect of twelve-hour windows,
we dilate the internal time by a factor of 79. The reconfiguration time of 800 s
corresponds to approximately 17.5 h of event time. Despite this, as Figure 5.11
shows, very little latency is introduced into the result stream as a result of the
migration at 800 seconds.

These results show that for NEXMark queries maintaining large amounts
of state, all-at-once migration can introduce significant disruption, which
Megaphone’s batched migration can mitigate. In principle, the latency could
be reduced still further with the fluid migration strategy, which we evaluate
in Section 5.3.3. Some queries collect state over time, which they reduce at

123

5 Megaphone

100

101

102

103

104

 780 800 820 840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780 800 820 840

Time [s]

Megaphone (batched)

Figure 5.11: NEXMark query latency for Q8, 4 × 106 requests per second,
reconfiguration at 800 s with time dilation.

regular intervals. A migration can benefit from migrating such queries after
they reduce their temporary state to limit the mount of data transferred between
operators.

5.3.2 Overhead of the interface

Wenowuse a countingmicrobenchmark tomeasure the overheadofMegaphone,
from which one can determine an appropriate trade-off between migration
granularity and this overhead. We compare Megaphone to native Timely
Dataflow implementations, as we vary the number of bins that Megaphone uses
for state. We anticipate that this overhead will increase with the number of bins,
as Megaphone must consult a larger routing table. For all experiments, we
define the throughput and measure the latency at which results are produced.
The workload uses a stream of randomly selected 64-bit integer identifiers,

drawn uniformly from a domain defined per experiment. The query reports the
cumulative counts of the number of times each identifier has occurred. In these
workloads, the state is the per-identifier count, intentionally small and simple so
that we can see the effect of migration rather than associated computation. We
consider two variants, an implementation that uses hashmaps for bins (“hash

124

5.3 Evaluation

count”), and an optimized implementation that uses dense arrays to remove
hashmap computation (“key count”).
Both query variants use a similar dataflow. It consists of the driver logic to

produce data, and the counting operator. The input to the counting operator is
partitioned so that equal keys will be routed to the same operator instance. The
native implementation uses one operator, the query implementedonMegaphone
has the additional F operator in its dataflow.
Each experiment is parameterized by a domain size (the number of distinct

keys) and an input rate (in records per second), for which we then vary the
number of bins used by Megaphone. Each experiment pre-loads one instance
of each key to avoid measuring latency due to state re-allocation at runtime.
We report the latency results using CCDFs, which show latency on the x-axis
and the density on the y-axis.

Figure 5.12 shows the CCDF of per-record latency for the hash-count exper-
iment with 256 × 106 distinct keys and a rate of 4 × 106 updates per second.
Figure 5.13 shows the CCDF of per-record latency for the key-count experi-
ment with 256 × 106 distinct keys and a rate of 4 × 106 updates per second.
Figure 5.14 shows the CCDF of per-record latency for the key-count experiment
with 8192 × 106 distinct keys and a rate of 4 × 106 updates per second. Each
figure reports measurements for a native Timely Dataflow implementation, and
for Megaphone with geometrically increasing numbers of bins.
For small bin counts, the latencies remain a small constant factor larger

than the native implementation, but this increases noticeably once we reach
216 bins. We conclude that while a performance penalty exists, it can be an
acceptable trade-off for flexible stateful dataflow reconfiguration. A bin-count
parameter of up to 212 leads to largely indistinguishable results, and we will
use this number when we need to hold the bin count constant in the rest of the
evaluation.

5.3.3 Migration micro-benchmarks
We now use the counting benchmark from the previous section to analyze how
various parameters influence the maximum latency and duration ofMegaphone
during a migration. Specifically:

1. In Section 5.3.3.1 we evaluate the maximum latency and duration of
migration strategies as the number of bins increases. We expect
Megaphone’s maximum latencies to decrease with more bins, without
affecting duration.

125

5 Megaphone

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

C
C

D
F

Latency [ms]

4
6
8

10
12
14
16
18
20

Native

(a) CCDF of per-record latencies

Experiment 90% 99% 99.99% max

4 4.46 7.60 18.87 25.17
6 4.46 6.55 13.11 26.21
8 4.46 6.03 9.96 16.78
10 4.19 6.82 16.25 23.07
12 4.98 7.08 19.92 24.12
14 8.13 11.53 23.07 30.41
16 20.97 27.26 60.82 83.89
18 159.38 192.94 209.72 226.49
20 1140.85 1409.29 1476.40 1543.50
Native 1.64 2.88 12.06 19.92

(b) Selected percentiles and their latency in ms

Figure 5.12: Hash-count overhead experiment with 256 × 106 unique keys and
an update rate of 4 × 106 per second. Experiment numbers in (a)
and (b) indicate log bin count.

126

5.3 Evaluation

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

C
C

D
F

Latency [ms]

4
6
8

10
12
14
16
18
20

Native

(a) CCDF of per-record latencies

Experiment 90% 99% 99.99% max

4 1.64 3.67 12.58 19.92
6 1.64 2.75 11.01 20.97
8 1.70 2.49 9.44 19.92
10 1.70 2.36 7.08 15.20
12 1.77 2.88 9.96 20.97
14 2.49 4.46 7.86 19.92
16 22.02 26.21 32.51 46.14
18 234.88 268.44 301.99 335.54
20 838.86 1610.61 1879.05 1946.16
Native 1.51 1.70 4.46 14.16

(b) Selected percentiles and their latency in ms

Figure 5.13: Key-count overhead experiment with 256 × 106 unique keys and
an update rate of 4 × 106 per second. Experiment numbers in (a)
and (b) indicate log bin count.

127

5 Megaphone

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

C
C

D
F

Latency [ms]

4
6
8

10
12
14
16
18
20

Native

(a) CCDF of per-record latencies

Experiment 90% 99% 99.99% max

4 1.90 3.28 4.72 7.34
6 1.84 3.28 6.03 18.87
8 1.84 3.54 5.24 12.58
10 1.84 3.28 5.77 13.11
12 1.90 3.67 5.24 9.44
14 7.34 16.78 75.50 100.66
16 30.41 35.65 41.94 50.33
18 268.44 318.77 335.54 385.88
20 1006.63 1610.61 1811.94 1879.05
Native 1.57 2.36 4.98 14.68

(b) Selected percentiles and their latency in ms

Figure 5.14: Key-count overhead experiment with 8192 × 106 unique keys and
an update rate of 4 × 106 per second. Experiment numbers in (a)
and (b) indicate log bin count.

128

5.3 Evaluation

2. In Section 5.3.3.2 we evaluate the maximum latency and duration of
migration strategies as the number of distinct keys increases. We
expect all maximum latencies and durations to increase linearly with
the amount of maintained state.

3. In Section 5.3.3.3 we evaluate the maximum latency and duration of
migration strategies as the number of distinct keys and bins increase
proportionally. We expect that with a constant per-bin state size Mega-
phone will maintain a fixed maximum latency while the duration in-
creases.

4. In Section 5.3.3.4 we evaluate the latency under load during migration
and steady-state to estimate the potential throughput. We expect a
smaller maximum latency for Megaphone migrations.

5. In Section 5.3.3.5 we evaluate the memory consumption during migra-
tion. We expect a smaller memory footprint for Megaphone migrations.

Each of our migration experiments largely resembles the shapes seen in
Figure 5.1, where each migration strategy has a well defined duration and
maximum latency. For example, the all-at-once migration strategy has a
relatively short duration with a large maximum latency, whereas the bin-at-
a-time (fluid) migration strategy has a longer duration and lower maximum
latency, and the batched migration strategy lies between the two. In these
experiments we summarize each migration by the duration of the migration,
and the maximum latency observed during the migration.

5.3.3.1 Number of bins vary

We now evaluate the behavior of different migration strategies for varying
numbers of bins. As we increase the number of bins we expect to see fluid
and batched migration achieve lower maximum latencies, though ideally with
relatively unchanged durations. We do not expect to see all-at-once migration
behave differently as a function of the number of bins, as it conducts all of its
migrations simultaneously.

Holding the rates and bin counts fixed, we will vary the number of bins from
24 up to 214 by factors of four. For each configuration, we run for one minute
to establish a steady state, and then initiate a migration and continue for one
another minute. During this whole time the rate of input records continues
uninterrupted.
Figure 5.15 reports the latency-vs-duration trade-off of the three migration

strategies as we vary the number of bins. The connected lines each describe

129

5 Megaphone

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000

M
ax

 la
te

nc
y

[s
]

Duration [s]

bins
16
64

256
1024
4096

16384

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000

migration
batched

fluid
all-at-once

Figure 5.15: Key-count migration latency vs. duration, varying bin count for
a fixed domain of 4096 × 106 keys. The vertical lines indicate
that increasing the granularity of migration can reduce maximum
latency for fluid and batched migrations without increasing the
duration. The all-at-once migration datapoints remain in a cluster
independent of the migration granularity.

130

5.3 Evaluation

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000

M
ax

 la
te

nc
y

[s
]

Duration [s]

domain
256M
512M

1024M
2048M
4096M
8192M

16384M
32768M

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000

migration
batched

fluid
all-at-once

Figure 5.16: Key-count migration latency vs. duration, varying domain for a
fixed rate of 4 × 106. As the domain size increases the migration
granularity increases, and the duration and maximum latencies
increase proportionally.

one strategy, and the common shapes describe a common number of bins. We
see that all all-at-once migration experiments are in a low duration high latency
cluster. Both fluid and batched migration achieve lower maximum latency as
we increase the number of bins, without negatively impacting the duration.

5.3.3.2 Number of keys vary

We now evaluate the behavior of different migration strategies for varying
domain sizes. Holding the rates and bin counts fixed, wewill vary the number of
keys from 256 × 106 up to 8192 × 106 by factors of two. For each configuration,
we run for one minute to establish a steady state, and then initiate a migration
and continue for one another minute. During this whole time the rate of input
records continues uninterrupted.
Figure 5.16 reports the latency-vs-duration trade-off of the three migration

strategies as we vary the number of distinct keys. The connected lines each

131

5 Megaphone

describe one strategy, and the common shapes describe a common number of
distinct keys. We see that for any experiment, all-at-once migration has the
highest latency and lowest duration, fluid migration has a lower latency and
higher duration, and batched migration often has the best qualities of both.

5.3.3.3 Number of keys and bins vary proportionally

In the previous experiments, we either fixed the number of bins or the number
of keys while varying the other parameter. In this experiment, we vary both bins
and keys together such that the total amount of data per bin stays constant. This
maintains a fixed migration granularity, which should have a fixed maximum
latency even as the number of keys (and total state) increases. We run the
key count experiment and fix the number of keys per bin to 4 × 106. We then
increase the domain in steps of powers of two starting at 256 × 106 and increase
the number of bins such that the keys per bin stays constant. The maximum
domain is 32 × 109 keys.

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000

M
ax

 la
te

nc
y

[s
]

Duration [s]

bins
64

128
256
512

1024
2048
4096
8192

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000

migration
batched

fluid
all-at-once

Figure 5.17: Latency and duration of key-count migrations for fixed state per
bin. By holding the granularity of migration fixed, the maximum
latencies of fluid and batched migration remain fixed even as the
durations of all strategies increase.

132

5.3 Evaluation

Figure 5.17 reports the latency-versus-duration trade-off for the three mi-
gration strategies as we increase domain and number of bins while keeping
the state per bin constant. The lines describe one migration strategy and the
points describe a different configuration. We can observe that for fluid and
batched migration the latency stays constant while only the duration increases
as we increase the domain. For all-at-once migration, both latency and duration
increase.

We conclude that fluid and batchedmigration offer a way to bound the latency
impact on a computation during a migration while increasing the migration
duration, whereas all-at-once migration does not.

5.3.3.4 Throughput versus processing latency

In this experiment, we evaluate what throughput Megaphone can sustain for
specific latency targets. As we increase the offered load, we expect the steady-
state and migration latency to increase. For a specific throughput target, we
expect the all-at-once migration strategy to show a higher latency than batched,
which itself is expected to be higher than fluid.

To analyze the latency, we keep the number of keys and bins constant, at
16’384 × 106 and 4096, and vary the offered load from 250 × 103 to 32 × 106
in powers of two. We measure the maximum latency observed during both
steady-state and migration for each of the three migration strategies described
earlier.

Figure 5.18 shows maximum latency observed when the system is sustaining
a certain throughput. All three migration strategies and non-migrating show a
similar pattern: Up to 16 × 106 records per second they do not show a significant
increase in latency. At 32 × 106, the latency increases significantly, indicating
that the system is now overloaded.
We conclude that the system’s latency is mostly throughput-invariant until

the system saturates and eventually fails to keep up with its input. Both fluid
and batched migration sustain a throughput of up to 4 × 106 per second for
a latency target of 1 s: Megaphone’s migration strategies can satisfy latency
targets 10-100x lower than all-at-once migration with similar throughput.

5.3.3.5 Memory consumption during migration

In Section 5.3.3.3 we analyzed the behavior of different migration strategies
when increasing the total amount of state in the system while leaving the state

133

5 Megaphone

 0.01

 0.1

 1

 10

 100

 1000

 0.25 0.5 1 2 4 8 16 32

M
ax

 la
te

nc
y

[s
]

Throughput [million records/s]

batched
fluid

all-at-once
non-migrating

Figure 5.18: Offered load versus max latency for different migration strategies
for key-count. The migration is invariant of the rate up to 16
million records per second.

per bin constant. Our expectation was that the all-at-once migration strategy
would always offer the lowest duration when compared to batched and fluid
migrations. Nevertheless, we observe for large amounts of data being migrated
the duration for a all-at-once migration is longer than for batched migration.

To analyze the cause for this behaviorwe compared thememory consumption
for the three migration strategies over time. We run the key count dataflow with
16 × 109 keys and 4096 bins. We record the resident set size (RSS) as reported
by Linux over time per process.

Figure 5.19 shows the RSS reported by the first Timely Dataflow process for
each migration strategy. Batched and fluid migration show a similar memory
consumption of 35GiB in steady state and do not expose a large variance during
migration at times 400 s and 800 s. In contrast to that, all-at-once migration
shows significant allocations of approximately additional 30GiB during the
migrations.

The experiment gives us evidence that a all-at-once migration causes signif-
icant memory spikes in addition to latency spikes. The reason for this is that
during a all-at-once migration, each worker extracts and serializes the data to be
migrated and enqueues it for the network threads to send. The network thread’s
send capacity is limited by the network throughput, limiting the throughput at
which data can be transferred to the remote host. Batched and fluid migration

134

5.3 Evaluation

0.0 B

10.0GB

20.0GB

30.0GB

40.0GB

50.0GB

60.0GB

70.0GB

80.0GB

90.0GB

 0 200 400 600 800 1000 1200

R
S

S

Time [s]

batched
fluid

all-at-once

Figure 5.19: Memory consumption of key-count per process over time for
different migration strategies. The fluid and batched strategies
require less additional memory in each migration step than the
all-at-once migration, which migrates all state at once.

135

5 Megaphone

patterns only perform another migration once the previous is complete and
thus provide a simple form of flow-control effectively limiting the amount of
temporary state.

5.4 Megaphone: conclusion
We presented the design and implementation of Megaphone, which provides
efficient, minimally disruptive migration for stream processing systems. Mega-
phone plans fine-grained migrations using the logical timestamps of the stream
processor, and interleaves the migrations with regular streaming dataflow pro-
cessing. Our evaluation under realistic workloads shows that migration disrup-
tion was significantly lower than with prior all-at-once migration strategies.
We implemented Megaphone in Timely Dataflow, without any changes to

the host dataflow system. Megaphone demonstrates that dataflow coordination
mechanisms (timestamp frontiers) and dataflow channels themselves are suffi-
cient to implement minimally disruptive migration. Megaphone is available as
open source.3

3https://github.com/strymon-system/megaphone

136

https://github.com/strymon-system/megaphone

I don’t believe in infinity,
I think there’s an end

(NOFX: I Believe in Goddess)6
Conclusions

Stream processors have evolved significantly during the last decades. First
generation stream processors were tailored to special use cases. Most were
limited to single machines without support for scaling to multiple computers.
A significant technology jump occurred with the first scale-out architectures,
whichwere designed to cope with an ever-increasing amount of data that needed
to be processed. A scale-out architecture increases the processing and storage
resources available to a stream processor and can enable higher throughput
with more complex queries. Still, the systems lacked properties which we
consider crucial: they had limited elasticity, meaning that in overload situations
data would be dropped, and they did not support generalized stream processing,
allowing only specific join operations and lacking a well-defined notion of
time.

Independent of stream processing, new technologies were needed to process
large amounts of data distributed across many machines. Google’s MapReduce
filled this gap and demonstrated how computations can be scaled to hundreds
of machines. The stream processing community applied similar approaches
to stream processing, leading to a new generation of stream processors that
enabled better scalability. Nevertheless, many newer systems, although offering
a high throughput, did not have adequate query latency.
Modern stream processors aim at optimizing both latency and throughput.

They exploit different levels of parallelism, having a notion of time independent
of system time, and reducing data batch sizes for lower latency. Such optimiza-
tion comes with the price of increased system complexity. Therefore, to realize
the full potential, additional features, tools and mechanisms are required to
help both programmers and operators.
At the beginning of this thesis we identified a gap between the capabilities

of current stream processors and the tools available to programmers and

137

6 Conclusions

operators to fully utilize them. Specifically, we observed that existing tracing
infrastructure fordistributed streamprocessors did not enable debugging latency
problems, which we think is a common task in the scope of time-critical stream
processing. We noted that stream processors lacked manageability tools to
automate configuration parameter tuning, such as setting the level of parallelism
for dataflows. Also, the trace data they supplied did not necessarily help to
pinpoint problems as the data was pre-aggregated, or simply measured the
wrong indicators.

In this thesis, we presented techniques to enable programmers, users and op-
erators to close the gap between the theoretical capabilities of stream processors
and deployments in practice.
In Chapter 3, we discussed the problem of how to derive and present a

performance breakdown of factors effecting processing latency. We presented
Snailtrail, a system to generate latency traces on-line, using the critical par-
ticipation metric. This metric, based on critical path analysis, but adapted to
long-running computations, allows to generate a detailed real-time breakdown
of factors that contribute to processing latency. Our evaluation showed that
critical participation greatly improves analyzing latency problems in distributed
stream processors. We were able to identify problems previously discussed
by other authors fully automatically. Snailtrail solves the problem of debug-
ging stream processors and gives precise and helpful diagnostics about their
computational structure.
In Chapter 4, we analyzed the problem of automatically controlling a dis-

tributed stream processor. We presented DS2, a controller that is able to
configure a stream processor’s parallelism fast and accurately, using a fine-
grained performance model. The performance model captures dependencies
between operators in a dataflow and allows for global reconfigurations in a
single step. It is based on the knowledge of the dataflow structure combined
with detailed internal measurements, and external requirements in the form of
SLOs. Our evaluation showed that DS2 needs very few steps to reach a stable
configuration and has a fast reaction time. The evaluation also revealed that
many stream processors suffer from substantially increased query latency while
applying a reconfiguration.
Lastly, in Chapter 5, we presented a reconfiguration mechanism for stream

processors that is designed to minimize the latency impact on a running
computation. Megaphone is based on the idea of interleaving configuration
updates with query processing by slicing these updates into small units, thus
reducing the latency impact on query processing. Our evaluation showed that

138

6.1 Requirements for efficient stream processing

Megaphone reduces the maximum latency by orders of magnitude compared
to a state-of-the-art stop-and-restart approach. This enables frequent and fine-
grained configuration updates to adjust resource utilization to match SLOs and
fast reactions to workload fluctuations.

All our contributions are purely generic, either implemented as stand-alone
systemswithwell-defined interfaces or as libraries on top of unmodified existing
stream processing systems. Also, while each one works independently of the
other, they show clear benefits when combined.

Wepresented systems and techniques to address the twomost urgent problems
identified in the introduction: Stream processors need to provide debugging
mechanisms as well as manageability and understandability features to enable
low-latency query processing. In this thesis, we presented Snailtrail to address
debuggability and understandability, as well as DS2 andMegaphone to simplify
managing a stream processor.

6.1 Requirements for efficient stream processing

Throughout this dissertation, the discussion of existing stream processors re-
vealed various architectural problems and recurring patterns, affecting both
performance and expressiveness. In our studies, we encountered some cru-
cial factors governing performance and efficiency of stream processing. We
conclude this thesis with a set of requirements that we think are important for
efficient stream processing.

Stream processing systems constitute a category of distributed systems, with
special properties imposed by their use-cases. Stream processing systems can
be expected to be long-running with queries aggregating over long periods
of time. Queries can be deployed for weeks, months or even years and the
system should provide the necessary infrastructure for such queries to execute
correctly. This includes graceful handling of workload and processing fluc-
tuations, proper maintenance of intermediate state, and some form of fault
tolerance. Additionally, the definitions for queries might be updated while they
are executing, either manually or when a query optimizer generates a new plan,
which requires the system to adapt to new or changed queries. For these reasons,
a stream processor should honor the following requirements for efficient stream
processing.

139

6 Conclusions

Understandability Stream processors should give detailed information about
the execution performance of the queries they are maintaining. This
information should be interpretable by users in order to understand and
optimize their queries.

Manageability Additionally, stream processors should support reconfigura-
tion of all important system properties, such as updating queries or
adding and removing resources. While a new configuration is applied,
it should still honor the other properties outlined here.

Liveness Stream processors should provide answers to queries over time based
on incoming data. Eventually, a stream processor has to produce a result
for a query.

Correctness A stream processor should produce correct results based on the
installed queries and the data it received. Problems originating from
inside the system should not have an effect on results.

Query latency A stream processor should try to provide answers to queries
with low latency with respect to maintaining system stability, i.e. the
delay between observing incoming data and providing an updated query
result should be minimized.

Elasticity The rate at which input data arrives can vary over time. A stream
processor has to gracefully adapt to changes in the arrival rate.

Generality The query language or interface should be general, allowing to
express arbitrary queries with their own constraints, e.g., processing of
joins and time-based window semantics.

Abstract time Due to the nature of how data is processed, stream processing
systems need an abstract notion of time that allows to relate results with
input data independent of when a computation was performed. Data
from external sources can suffer from delay, which can result in data
arriving out of order. To tolerate time fluctuations on the input and
during processing, query evaluation must be independent of the system
time.

Expressiveness The stream processor should provide a set of general operators
to be recombined for specific queries and it should permit the user to
add other operators.

140

6.1 Requirements for efficient stream processing

Continuity Queries on streams can be defined on arbitrarily-sized time- and
data-based windows. The stream processor should offer the necessary
infrastructure to host such queries over a long time periodwhile ensuring
the other properties outlined here.

Scalability Stream processors should support both scale-up by better utilizing
additional resources within the same machine as well as scale-out to add
additional resources connected from other machines.

Debuggability Many stream processors are inherently distributed. To aid
the user, they should provide means to debug operators, even when
executing in a distributed cluster. A stream processor should be able to
debug user code that it executes and report sufficient metrics about its
internal state. Both help to track performance anomalies back to their
roots.

Stonebraker, Çetintemel, and Zdonik [SÇZ05] in 2005 presented a list of
eight requirements for stream processing, some of which are similar to ours.
Most importantly, they identify the need for low latency as the primary objective
for stream processing.
Most of the items on this list are actually covered by many current stream

processing systems. Hence, it is more interesting to determine which require-
ments they do not support. None of the stream processors mentioned in this
thesis did have an adequate debugging infrastructure, or met our goal of being
understandable and manageable, which is why this thesis aims at solving these
problems. We note that many current stream processors support liveness and
correctness, but fail to optimize explicitly for low-latency query processing,
with Timely Dataflow being a notable exception. Elasticity and scalability are
supported, at least as a basic mechanism. Most stream processors allow for
some form of continuity, but there is no agreed notion on how it should be
achieved andwhat the desired granularity is. We observe that stream processors
have gained many features and currently there exist many maintained solutions,
both academic and commercial, to choose from. However, we are not aware of
any stream processor fulfilling all the requirements outlined in this section.

141

6 Conclusions

6.2 Directions for future work
This dissertation opens up several interesting perspectives for future research
topics on stream processors and distributed systems. In this part, we want to
highlight some of them.

WithMegaphone we demonstrate that fine-grained configuration updates can
limit a reconfiguration’s latency impact on query performance. This enables
moving the configuration between workers in the stream processor. However,
it does not solve the problem of attaching or detaching physical workers to
a running system. We believe that this is an interesting and challenging
coordination problem by itself.

The controller presented in Chapter 4 estimates the parallelism for a compu-
tation to meet its throughput SLO. It solves the problem of backpressure in a
stream processor. In reality, other problems can cause a stream processor to
miss its targets. DS2 cannot address data skew where one worker has signifi-
cantly more work than others and cannot keep up with it. To address data skew,
a controller needs to have an understanding how the processing characteristics
vary between shards of data, for example by tracking “hot” keys in the stream.
In addition to that, a controller has to make correct decisions to move shards
of data and processing to specific workers. Megaphone has a configuration
interface that is broad enough for a controller to supply reconfigurations for
mitigation of both stragglers and skew.
The controller currently optimizes a stream processor to keep up with its

throughput SLO. An interesting research question is how to build a similar
controller that optimizes a stream processor’s configuration to meet latency
SLOs. This involves different metrics to observe where processing time is spent
in addition to the dependency information from the dataflow and processing
as provided by Snailtrail. A result could be a controller that trades off latency
versus throughput to create a well-balanced configuration.

Megaphone’s current implementation assumes a partitioning of the data fixed
at compile time. This limits the reconfiguration granularity at runtime. The
evaluation demonstrates that a veryfine-grainedpartitioning ofdata has negative
effects on processing latency. To enable adaptive partitioning at runtime, a
different, non-prepartitioned approach would need to be implemented. This
would allow a controller to specify configurations down to the key-level where
currently only groups of keys can be configured.
Many stream processors offer continuity in the form of fault tolerance. For

example, Apache Flink [Car+15] uses periodic snapshots based on barriers

142

6.2 Directions for future work

interleaved with the stream of records. Its implementation is limited to acyclic
computations and incurs latency spikes whenever a snapshot is generated
because data needs to be written to an external system. We think a better
fault-tolerance mechanism can both avoid latency spikes as well as support
cyclic computations. An interesting direction would be improving on the
fault-tolerance support mentioned in Naiad [Mur+13] and implementing it on
Timely Dataflow [McS].

143

List of Tables

2.1 Automatic scaling policies 26

3.1 Notation used throughout Chapter 3 36
3.2 PAG construction rules in Snailtrail 51
3.3 Snailtrail’s latency . 61
3.4 Snailtrail’s throughput . 62

4.1 Notation used throughout Chapter 4 77
4.2 Target source rate for NEXMark 91
4.3 DS2 convergence steps for NEXMark 91

5.1 Notation used throughout Chapter 5 101
5.2 Lines of code in NEXMark query implementations. 117

145

List of Figures

2.1 Logical and physical dataflow graphs 10
2.2 Timely Dataflow execution model 20

3.1 CP compared to conventional profiling on Spark 35
3.2 Program activity graph (PAG) 39
3.3 Program activity graph (PAG) with a critical path 44
3.4 Snailtrail system overview. 53
3.5 Examples of Snailtrail summary types 57
3.6 Snailtrail instrumentation overhead 60
3.7 CP vs. single-path summaries (YSB) 63
3.8 CP vs. conventional profiling (YSB) 64
3.9 CP vs. conventional profiling (AlexNet) 65
3.10 Straggler summaries . 66
3.11 Operator summaries . 67

4.1 Dhalion scaling decisions . 70
4.2 Under-provisioned dataflow example 71
4.3 DS2 scaling actions . 81
4.4 DS2 integration with streaming systems 84
4.5 Comparison of DS2 vs. Dhalion 88
4.6 DS2 on Flink . 90
4.7 Rates and latencies for Nexmark on Flink, Q1–Q3 94
4.8 Rates and latencies for Nexmark on Flink, Q5, Q8, and Q11 . . 95
4.9 CCDFs for Nexmark on Timely Dataflow 96
4.10 Policy instrumentation overhead 96

5.1 Latencies for all-at-once and Megaphone’s migration strategies 100
5.2 Overview of Megaphone’s migration mechanism 104

147

List of Figures

5.3 Migrating word-count example 107
5.4 NEXMark query 1 . 118
5.5 NEXMark query 2 . 119
5.6 NEXMark query 3 . 120
5.7 NEXMark query 4 . 121
5.8 NEXMark query 5 . 121
5.9 NEXMark query 6 . 122
5.10 NEXMark query 7 . 123
5.11 NEXMark query 8 . 124
5.12 Hash-count overhead, 256 × 106 unique keys 126
5.13 Key-count overhead, 256 × 106 unique keys 127
5.14 Key-count overhead, 8192 × 106 unique keys 128
5.15 Latency and duration of key-count for varying bin count 130
5.16 Latency and duration of key-count for varying domain 131
5.17 Latency and duration of key-count migrations, fixed state per bin132
5.18 Latency for different offered rates. 134
5.19 Key-count memory consumption 135

148

Glossary

CCDF complementary cumulative distribution function. 93–96, 125

CP critical participation. 34, 35, 41–45, 50, 53, 55–57, 59, 61–65, 68

CPA critical path analysis. 22–24, 33, 34, 36–38, 41, 44, 45, 63

CQL continuous query language. 14

DBMS database management system. 13

MPI message passing interface. 22, 36

OLTP online transaction processing. 99

PAG program activity graph. 22, 23, 37–40, 42, 47, 48, 50, 51, 53, 54, 61, 62

RDD resilient distributed dataset. 47, 52

RSS resident set size. 134

SLO service level objective. 25, 31, 138, 139, 142

SQL structured query language. 13, 14, 16

YSB Yahoo streaming benchmark. 60

149

Bibliography

[Aba+03] Daniel J. Abadi et al. “Aurora: a new model and architecture for
data streammanagement”. In: VLDB J. 12.2 (2003), pp. 120–139.
doi: 10.1007/s00778-003-0095-z (cit. on pp. 12, 13).

[Aba+05] Daniel J. Abadi et al. “The Design of the Borealis Stream Process-
ing Engine”. In: CIDR 2005, Second Biennial Conference on In-
novativeData Systems Research, Asilomar, CA, USA, January 4-7,
2005, Online Proceedings. www.cidrdb.org, 2005, pp. 277–289.
url: http://cidrdb.org/cidr2005/papers/P23.pdf
(cit. on pp. 14, 26).

[Aba+13] Martín Abadi et al. “Formal Analysis of a Distributed Algo-
rithm for Tracking Progress”. In: Formal Techniques for Dis-
tributed Systems - Joint IFIP WG 6.1 International Conference,
FMOODS/FORTE 2013, Held as Part of the 8th International
Federated Conference on Distributed Computing Techniques, Dis-
CoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings. Ed. by
Dirk Beyer and Michele Boreale. Vol. 7892. Lecture Notes in
Computer Science. Springer, 2013, pp. 5–19. isbn: 978-3-642-
38591-9. doi: 10.1007/978-3-642-38592-6_2 (cit. on
p. 21).

[Aba+16] Martín Abadi et al. “TensorFlow: A System for Large-Scale
Machine Learning”. In: 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA,
USA, November 2-4, 2016. Ed. by Kimberly Keeton and Timothy
Roscoe. USENIX Association, 2016, pp. 265–283. url: https:
//www.usenix.org/conference/osdi16/technical-ses
sions/presentation/abadi (cit. on p. 47).

151

https://doi.org/10.1007/s00778-003-0095-z
http://cidrdb.org/cidr2005/papers/P23.pdf
https://doi.org/10.1007/978-3-642-38592-6_2
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

Bibliography

[AD16] Eric Anderson and Marian Dvorsky. Comparing Cloud Dataflow
autoscaling to Spark and Hadoop. 2016. url: https://cloud.
google.com/blog/big-data/2016/03/comparing-cloud-
dataflow-autoscaling-to-spark-and-hadoop (cit. on
p. 26).

[Aki+13] Tyler Akidau et al. “MillWheel: Fault-Tolerant Stream Processing
at Internet Scale”. In: Proceedings of the VLDB Endowment 6.11
(2013), pp. 1033–1044 (cit. on pp. 18, 25, 101, 114).

[Aki+15] Tyler Akidau et al. “The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-scale,
Unbounded, Out-of-order Data Processing”. In: Proc. VLDB
Endow. 8.12 (Aug. 2015), pp. 1792–1803. issn: 2150-8097.
doi: 10.14778/2824032.2824076 (cit. on pp. 24, 88, 101,
114).

[Ale+98] Cedell A. Alexander et al. “Near-Critical Path Analysis: A Tool
for Parallel Program Optimization”. In: Southern Symposium on
Computing. 1998 (cit. on p. 23).

[Ara+03] Arvind Arasu et al. STREAM: The Stanford Stream Data Man-
ager. Tech. rep. 1. 2003, pp. 19–26. url: http://sites.
computer.org/debull/A03mar/paper.ps (cit. on p. 14).

[ARH94] Cedell Alexander, Donna Reese, and James C. Harden. “Near-
Critical Path Analysis of Program Activity Graphs”. In: Inter-
national Workshop on Modeling, Analysis, and Simulation On
Computer and Telecommunication Systems. 1994 (cit. on p. 34).

[Arm+18] Michael Armbrust et al. “Structured Streaming: A Declarative
API for Real-Time Applications in Apache Spark”. In: Proceed-
ings of the 2018 International Conference on Management of
Data. SIGMOD ’18. Houston, TX, USA, 2018, pp. 601–613.
isbn: 978-1-4503-4703-7 (cit. on pp. 28, 30).

[AVB17] Marcos Dias de Assunção, Alexandre Da Silva Veith, and Ra-
jkumar Buyya. “Resource Elasticity for Distributed Data Stream
Processing: A Survey and Future Directions”. In: CoRR abs/
1709.01363 (2017). arXiv: 1709.01363 (cit. on p. 25).

152

https://cloud.google.com/blog/big-data/2016/03/comparing-cloud-dataflow-autoscaling-to-spark-and-hadoop
https://cloud.google.com/blog/big-data/2016/03/comparing-cloud-dataflow-autoscaling-to-spark-and-hadoop
https://cloud.google.com/blog/big-data/2016/03/comparing-cloud-dataflow-autoscaling-to-spark-and-hadoop
https://doi.org/10.14778/2824032.2824076
http://sites.computer.org/debull/A03mar/paper.ps
http://sites.computer.org/debull/A03mar/paper.ps
https://arxiv.org/abs/1709.01363

Bibliography

[Bar+12] Sean Barker et al. “"Cut Me Some Slack": Latency-aware Live
Migration for Databases”. In: Proceedings of the 15th Interna-
tional Conference on Extending Database Technology. EDBT
’12. Berlin, Germany: ACM, 2012, pp. 432–443. isbn: 978-1-
4503-0790-1 (cit. on pp. 29, 31).

[BC17] Muhammad Bilal and Marco Canini. “Towards automatic param-
eter tuning of stream processing systems”. In: Proceedings of
the 2017 Symposium on Cloud Computing, SoCC 2017, Santa
Clara, CA, USA, September 24–27, 2017. 2017, pp. 189–200.
doi: 10.1145/3127479.3127492 (cit. on p. 72).

[bdb] BigData Benchmark. url: https://amplab.cs.berkeley.
edu/benchmark/ (visited on 09/2017) (cit. on p. 35).

[Bed+13] Ivan Bedini et al. “Modeling performance of a parallel stream-
ing engine: bridging theory and costs”. In: ACM/SPEC In-
ternational Conference on Performance Engineering, ICPE’13,
Prague, Czech Republic - April 21 - 24, 2013. Ed. by Seetharami
Seelam et al. ACM, 2013, pp. 173–184. isbn: 978-1-4503-1636-
1. doi: 10.1145/2479871.2479895. url: http://dl.acm.
org/citation.cfm?id=2479871 (cit. on p. 24).

[Böh+12] David Böhme et al. “Scalable Critical-Path Based Performance
Analysis”. In: 26th IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2012, Shanghai, China, May 21-
25, 2012. IEEE Computer Society, 2012, pp. 1330–1340. isbn:
978-1-4673-0975-2. doi: 10.1109/IPDPS.2012.120. url:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=6266782 (cit. on p. 22).

[Bur75] W. H. Burge. “Stream Processing Functions”. In: IBM Journal
of Research and Development 19.1 (Jan. 1975), pp. 12–25. issn:
0018-8646 (print), 2151-8556 (electronic) (cit. on p. 11).

[Car+15] Paris Carbone et al. “Apache Flink: Stream and batch processing
in a single engine”. In: Data Engineering 38.4 (2015) (cit. on
pp. 9, 18, 28, 47, 73, 101, 142).

[Car+17] Paris Carbone et al. “State Management in Apache Flink: Con-
sistent Stateful Distributed Stream Processing”. In: Proc. VLDB
Endow. 10.12 (Aug. 2017), pp. 1718–1729. issn: 2150-8097
(cit. on pp. 25, 28, 30).

153

https://doi.org/10.1145/3127479.3127492
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://doi.org/10.1145/2479871.2479895
http://dl.acm.org/citation.cfm?id=2479871
http://dl.acm.org/citation.cfm?id=2479871
https://doi.org/10.1109/IPDPS.2012.120
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6266782
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6266782

Bibliography

[Car12] David Carasso. Exploring Splunk. Evolved Technologist Press,
2012 (cit. on p. 33).

[CB15] Charlie Curtsinger and Emery D. Berger. “Coz: Finding Code
That Counts with Causal Profiling”. In: Proceedings of the
25th Symposium on Operating Systems Principles. SOSP ’15.
Monterey, California: ACM, 2015, pp. 184–197. isbn: 978-1-
4503-3834-9. doi: 10.1145/2815400.2815409 (cit. on p. 24).

[CC15] Jian Chen and Russell M. Clapp. “Critical-path candidates: scal-
able performance modeling for MPI workloads”. In: IEEE In-
ternational Symposium on Performance Analysis of Systems and
Software. 2015 (cit. on p. 36).

[Cha+03] Sirish Chandrasekaran et al. “TelegraphCQ: Continuous Data-
flow Processing”. In: Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data. SIGMOD
’03. San Diego, California: ACM, 2003, pp. 668–668. isbn:
1-58113-634-X. doi: 10.1145/872757.872857 (cit. on p. 14).

[Chi+16] Sanket Chintapalli et al. “Benchmarking Streaming Computation
Engines: Storm, Flink and Spark Streaming”. In: 2016 IEEE
International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May
23-27, 2016. 2016, pp. 1789–1792. doi: 10.1109/IPDPSW.
2016.138 (cit. on pp. 60, 64).

[Cho+14] Michael Chow et al. “The Mystery Machine: End-to-end Perfor-
mance Analysis of Large-scale Internet Services”. In: Proceed-
ings of the 11th USENIX Conference on Operating Systems De-
sign and Implementation. OSDI’14. Broomfield, CO: USENIX
Association, 2014, pp. 217–231. isbn: 978-1-931971-16-4.
url: http://dl.acm.org/citation.cfm?id=2685048.
2685066 (cit. on p. 22).

[CM12] Gianpaolo Cugola and Alessandro Margara. “Processing Flows
of Information: FromData Stream to Complex Event Processing”.
In: ACM Comput. Surv. 44.3 (June 2012), 15:1–15:62. issn:
0360-0300. doi: 10.1145/2187671.2187677 (cit. on p. 7).

154

https://doi.org/10.1145/2815400.2815409
https://doi.org/10.1145/872757.872857
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.1109/IPDPSW.2016.138
http://dl.acm.org/citation.cfm?id=2685048.2685066
http://dl.acm.org/citation.cfm?id=2685048.2685066
https://doi.org/10.1145/2187671.2187677

Bibliography

[Dai+11] Jinquan Dai et al. “HiTune: Dataflow-based Performance Anal-
ysis for Big Data Cloud”. In: Proceedings of the 3rd USENIX
Conference on Hot Topics in Cloud Computing. HotCloud’11.
2011, p. 24 (cit. on p. 24).

[Das+11] Sudipto Das et al. “Albatross: Lightweight Elasticity in Shared
Storage Databases for the Cloud Using Live Data Migration”.
In: Proc. VLDB Endow. 4.8 (May 2011), pp. 494–505. issn:
2150-8097. doi: 10.14778/2002974.2002977 (cit. on pp. 29,
31).

[Des17] Salvatore Desimone. Storage reimagined for a streaming world.
2017. url: http://blog.pravega.io/2017/04/09/
storage-reimagined-for-a-streaming-world/ (cit. on
pp. 24, 26).

[DG04] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters”. In: OSDI’04: Sixth Sym-
posium on Operating System Design and Implementation. San
Francisco, CA, 2004, pp. 137–150 (cit. on p. 15).

[DK10] Isaac Dooley and Laxmikant V. Kalé. “Detecting and using
critical paths at runtime in message driven parallel programs”.
In: IEEE International Symposium on Parallel and Distributed
Processing. 2010 (cit. on p. 23).

[Elm+11] Aaron J. Elmore et al. “Zephyr: LiveMigration in SharedNothing
Databases for Elastic Cloud Platforms”. In: Proceedings of the
2011 ACMSIGMOD International Conference onManagement of
Data. SIGMOD ’11. Athens, Greece: ACM, 2011, pp. 301–312.
isbn: 978-1-4503-0661-4. doi: 10.1145/1989323.1989356
(cit. on pp. 29, 31).

[Elm+15] Aaron J. Elmore et al. “Squall: Fine-Grained Live Reconfigu-
ration for Partitioned Main Memory Databases”. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’15. Melbourne, Victoria, Aus-
tralia: ACM, 2015, pp. 299–313. isbn: 978-1-4503-2758-9.
doi: 10.1145/2723372.2723726 (cit. on pp. 29, 31).

155

https://doi.org/10.14778/2002974.2002977
http://blog.pravega.io/2017/04/09/storage-reimagined-for-a-streaming-world/
http://blog.pravega.io/2017/04/09/storage-reimagined-for-a-streaming-world/
https://doi.org/10.1145/1989323.1989356
https://doi.org/10.1145/2723372.2723726

Bibliography

[Fan+17] Junhua Fang et al. “Parallel Stream Processing Against Workload
Skewness and Variance”. In: Proceedings of the 26th Interna-
tional Symposium on High-Performance Parallel and Distributed
Computing. HPDC ’17. Washington, DC, USA, 2017, pp. 15–26.
isbn: 978-1-4503-4699-3 (cit. on p. 28).

[Fer+13] Raul Castro Fernandez et al. “Integrating Scale Out and Fault
Tolerance in Stream Processing using Operator State Manage-
ment”. In: Proceedings of the 2013 ACM SIGMOD international
conference on Management of data. 2013, pp. 725–736. doi:
10.1145/2463676.2465282 (cit. on pp. 17, 24, 26–28, 30).

[Flo+17] Avrilia Floratou et al. “Dhalion: Self-regulating Stream Process-
ing in Heron”. In: Proc. VLDB Endow. 10.12 (Aug. 2017),
pp. 1825–1836. issn: 2150-8097. doi: 10.14778/3137765.
3137786 (cit. on pp. 24, 26–28, 56, 57, 60, 65–67, 69, 70, 87, 88,
90).

[Flo83] Thomas H. Flowers. “The Design of Colossus (foreword by
Howard Campaigne)”. In: IEEE Annals of the History of Comput-
ing 5.3 (1983), pp. 239–252. doi: 10.1109/MAHC.1983.10079
(cit. on p. 11).

[Fu+17] Tom Z. J. Fu et al. “DRS: Auto-Scaling for Real-Time Stream
Analytics”. In: IEEE/ACM Trans. Netw. 25.6 (2017), pp. 3338–
3352. doi: 10.1109/TNET.2017.2741969 (cit. on pp. 26, 27).

[Gar+12] Elmer Garduno et al. “Theia: Visual Signatures for Problem
Diagnosis in Large Hadoop Clusters”. In: Proceedings of the
26th International Conference on Large Installation System Ad-
ministration: Strategies, Tools, and Techniques. lisa’12. San
Diego, CA: USENIX Association, 2012, pp. 33–42. url: http:
//dl.acm.org/citation.cfm?id=2432523.2432526 (cit.
on p. 24).

[Ged+14] Buğra Gedik et al. “Elastic Scaling for Data Stream Processing”.
In: IEEE Transactions on Parallel and Distributed Systems 25.6
(June 2014), pp. 1447–1463. issn: 1045-9219. doi: 10.1109/
TPDS.2013.295 (cit. on pp. 24, 26–28).

156

https://doi.org/10.1145/2463676.2465282
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.1109/MAHC.1983.10079
https://doi.org/10.1109/TNET.2017.2741969
http://dl.acm.org/citation.cfm?id=2432523.2432526
http://dl.acm.org/citation.cfm?id=2432523.2432526
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1109/TPDS.2013.295

Bibliography

[Gou+17] Anastasios Gounaris et al. “Dynamic Configuration of Partition-
ing in Spark Applications”. In: IEEE Trans. Parallel Distrib.
Syst. 28.7 (2017), pp. 1891–1904. doi: 10.1109/TPDS.2017.
2647939 (cit. on pp. 72, 80).

[Gul+12] Vincenzo Gulisano et al. “StreamCloud: An elastic and scalable
data streaming system”. In: IEEE Transactions on Parallel and
Distributed Systems (2012). issn: 10459219. doi: 10.1109/
TPDS.2012.24 (cit. on pp. 24, 26–28, 30).

[Guo+13] Qi Guo et al. “Correlation-based performance analysis for full-
system MapReduce optimization”. In: Proceedings of the 2013
IEEE International Conference on Big Data, 6-9 October 2013,
Santa Clara, CA, USA. 2013, pp. 753–761. doi: 10.1109/
BigData.2013.6691648 (cit. on p. 23).

[Hadoop] Apache Hadoop. url: https://hadoop.apache.org/ (vis-
ited on 01/2019) (cit. on p. 15).

[HDB11] Herodotos Herodotou, Fei Dong, and Shivnath Babu. “No
One (Cluster) Size Fits All: Automatic Cluster Sizing for Data-
intensive Analytics”. In: Proceedings of the 2Nd ACM Sympo-
sium on Cloud Computing. SOCC ’11. Cascais, Portugal: ACM,
2011, 18:1–18:14. isbn: 978-1-4503-0976-9. doi: 10.1145/
2038916.2038934 (cit. on p. 72).

[Hei+14a] Thomas Heinze et al. “Latency-aware Elastic Scaling for Dis-
tributedData Stream Processing Systems”. In: Proceedings of the
8th ACM International Conference on Distributed Event-Based
Systems. DEBS ’14. Mumbai, India: ACM, 2014, pp. 13–22.
isbn: 978-1-4503-2737-4. doi: 10.1145/2611286.2611294
(cit. on p. 26).

[Hei+14b] Thomas Heinze et al. “Latency-aware Elastic Scaling for Dis-
tributedData Stream Processing Systems”. In: Proceedings of the
8th ACM International Conference on Distributed Event-Based
Systems. DEBS ’14. Mumbai, India: ACM, 2014, pp. 13–22.
isbn: 978-1-4503-2737-4. doi: 10.1145/2611286.2611294
(cit. on p. 30).

[Hel+04] Joseph L. Hellerstein et al. Feedback Control of Computing
Systems. John Wiley & Sons, 2004. isbn: 047126637X (cit. on
p. 25).

157

https://doi.org/10.1109/TPDS.2017.2647939
https://doi.org/10.1109/TPDS.2017.2647939
https://doi.org/10.1109/TPDS.2012.24
https://doi.org/10.1109/TPDS.2012.24
https://doi.org/10.1109/BigData.2013.6691648
https://doi.org/10.1109/BigData.2013.6691648
https://hadoop.apache.org/
https://doi.org/10.1145/2038916.2038934
https://doi.org/10.1145/2038916.2038934
https://doi.org/10.1145/2611286.2611294
https://doi.org/10.1145/2611286.2611294

Bibliography

[Her+11] Herodotos Herodotou et al. “Starfish: A Self-tuning System for
Big Data Analytics”. In: CIDR 2011, Fifth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, Jan-
uary 9-12, 2011, Online Proceedings. www.cidrdb.org, 2011,
pp. 261–272. url: http://cidrdb.org/cidr2011/Papers/
CIDR11%5C_Paper36.pdf (cit. on p. 72).

[Heron] Apache Heron. url: https://apache.github.io/incubat
or-heron (visited on 02/2019) (cit. on pp. 9, 82, 83).

[Hof+18] Moritz Hoffmann et al. “SnailTrail: Generalizing Critical Paths
for Online Analysis of Distributed Dataflows”. In: 15th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 18). Renton, WA: USENIX Association, 2018, pp. 95–
110. isbn: 978-1-931971-43-0. url: https://www.usenix.
org/conference/nsdi18/presentation/hoffmann (cit. on
pp. 5, 33).

[Hof+19] Moritz Hoffmann et al. “Megaphone: Latency-conscious state
migration for distributed streaming dataflows”. In: PVLDB 12.9
(2019). doi: 10.14778/3329772.3329777 (cit. on pp. 5, 99).

[Hol96] Jeffrey K. Hollingsworth. “An Online Computation of Critical
Path Profiling”. In: Proceedings of the SIGMETRICS Symposium
on Parallel and Distributed Tools. SPDT ’96. Philadelphia,
Pennsylvania, USA: ACM, 1996, pp. 11–20. isbn: 0-89791-846-
0. doi: 10.1145/238020.238024 (cit. on p. 23).

[Hue16] Fabian Hueske. Savepoints: Turning Back Time. 2016. url:
https://data-artisans.com/blog/turning-back-time
-savepoints (cit. on pp. 84, 90).

[IBMSt] IBM Streams. url: https://www.ibm.com/ch-en/marketp
lace/stream-computing (visited on 11/2017) (cit. on p. 30).

[JMC89] Douglas Stott Parker Jr., Richard R. Muntz, and H. Lewis Chau.
“The Tangram Stream Query Processing System”. In: Proceed-
ings of the Fifth International Conference on Data Engineering,
February 6-10, 1989, Los Angeles, California, USA. IEEE Com-
puter Society, 1989, pp. 556–563. isbn: 0-8186-1915-5. doi:
10.1109/ICDE.1989.47262 (cit. on p. 12).

158

http://cidrdb.org/cidr2011/Papers/CIDR11%5C_Paper36.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11%5C_Paper36.pdf
https://apache.github.io/incubator-heron
https://apache.github.io/incubator-heron
https://www.usenix.org/conference/nsdi18/presentation/hoffmann
https://www.usenix.org/conference/nsdi18/presentation/hoffmann
https://doi.org/10.14778/3329772.3329777
https://doi.org/10.1145/238020.238024
https://data-artisans.com/blog/turning-back-time-savepoints
https://data-artisans.com/blog/turning-back-time-savepoints
https://www.ibm.com/ch-en/marketplace/stream-computing
https://www.ibm.com/ch-en/marketplace/stream-computing
https://doi.org/10.1109/ICDE.1989.47262

Bibliography

[Kal+18] Vasiliki Kalavri et al. “Three steps is all you need: fast, accurate,
automatic scaling decisions for distributed streaming dataflows”.
In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). 2018, pp. 783–798 (cit. on pp. 5, 69).

[KD16] Eugene Kirpichov and Malo Denielou. No shard left behind:
dynamicwork rebalancing in Google CloudDataflow. 2016. url:
https://cloud.google.com/blog/products/gcp/no-
shard-left-behind-dynamic-work-rebalancing-in-
google-cloud-dataflow (visited on 01/2019) (cit. on pp. 24,
27, 79).

[KLC17] Nikos R. Katsipoulakis, Alexandros Labrinidis, and Panos K.
Chrysanthis. “A holistic view of stream partitioning costs”. In:
PVLDB 10.11 (2017), pp. 1286–1297. url: http://www.vldb.
org / pvldb / vol10 / p1286 - katsipoulakis . pdf (cit. on
p. 79).

[KR16] Kimberly Keeton and Timothy Roscoe, eds. 12th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November2-4, 2016. USENIXAssoci-
ation, 2016. url: https://www.usenix.org/conference/
osdi16.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
geNet Classification with Deep Convolutional Neural Networks”.
In: Advances in Neural Information Processing Systems 25. Ed.
by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–1105.
url: http://papers.nips.cc/paper/4824-imagenet-
classification - with - deep - convolutional - neural -
networks.pdf (cit. on p. 60).

[Kul+15] Sanjeev Kulkarni et al. “Twitter Heron: Stream Processing at
Scale”. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’15. Melbourne,
Victoria, Australia: ACM, 2015, pp. 239–250. isbn: 978-1-
4503-2758-9. doi: 10.1145/2723372.2742788 (cit. on pp. 17,
24, 25, 73).

[Kwo+12] YongChul Kwon et al. “SkewTune: Mitigating Skew in Mapre-
duce Applications”. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. SIGMOD

159

https://cloud.google.com/blog/products/gcp/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
https://cloud.google.com/blog/products/gcp/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
https://cloud.google.com/blog/products/gcp/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
http://www.vldb.org/pvldb/vol10/p1286-katsipoulakis.pdf
http://www.vldb.org/pvldb/vol10/p1286-katsipoulakis.pdf
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1145/2723372.2742788

Bibliography

’12. Scottsdale, Arizona, USA: ACM, 2012, pp. 25–36. isbn:
978-1-4503-1247-9. doi: 10.1145/2213836.2213840 (cit. on
p. 79).

[Lam78] Leslie Lamport. “Time, Clocks, and the Ordering of Events in
a Distributed System”. In: Commun. ACM 21.7 (July 1978),
pp. 558–565. issn: 0001-0782. doi: 10 . 1145 / 359545 .
359563 (cit. on p. 38).

[LJK15] Bjorn Lohrmann, Peter Janacik, and Odej Kao. “Elastic Stream
Processing with Latency Guarantees”. In: Proceedings - Inter-
national Conference on Distributed Computing Systems. 2015.
isbn: 9781467372145. doi: 10.1109/ICDCS.2015.48 (cit.
on pp. 26, 27).

[LML14] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano.
“A Review of Auto-scaling Techniques for Elastic Applications
in Cloud Environments”. In: J. Grid Comput. 12.4 (Dec. 2014),
pp. 559–592. issn: 1570-7873. doi: 10.1007/s10723-014-
9314-7 (cit. on p. 69).

[LogI] VMware vRealize Log Insight. url: http://www.vmware.
com/products/vrealize-log-insight.html (visited on
01/2019) (cit. on p. 33).

[Mai+18] Luo Mai et al. “Chi: a scalable and programmable control plane
for distributed stream processing systems”. In: Proceedings of the
VLDB Endowment 11.10 (2018), pp. 1303–1316 (cit. on p. 30).

[McS] FrankMcSherry. Amodular implementation of timely dataflow in
Rust. url: https://github.com/frankmcsherry/timely-
dataflow (visited on 01/2019) (cit. on pp. 9, 20, 27, 47, 59, 83,
100, 143).

[MS14] Sunilkumar S. Manvi and Gopal Krishna Shyam. “Resource
management for Infrastructure as a Service (IaaS) in cloud com-
puting: A survey”. In: Journal of Network and Computer
Applications 41 (2014), pp. 424–440. issn: 1084-8045. doi:
https://doi.org/10.1016/j.jnca.2013.10.004. url:
http://www.sciencedirect.com/science/article/pii/
S1084804513002099 (cit. on p. 69).

160

https://doi.org/10.1145/2213836.2213840
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/ICDCS.2015.48
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
http://www.vmware.com/products/vrealize-log-insight.html
http://www.vmware.com/products/vrealize-log-insight.html
https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/timely-dataflow
https://doi.org/https://doi.org/10.1016/j.jnca.2013.10.004
http://www.sciencedirect.com/science/article/pii/S1084804513002099
http://www.sciencedirect.com/science/article/pii/S1084804513002099

Bibliography

[Mur+13] Derek Gordon Murray et al. “Naiad: a timely dataflow system”.
In: ACM SIGOPS 24th Symposium on Operating Systems Princi-
ples, SOSP ’13, Farmington, PA, USA, November 3-6, 2013. Ed.
byMichaelKaminsky andMikeDahlin. ACM, 2013, pp. 439–455.
isbn: 978-1-4503-2388-8. doi: 10.1145/2517349.2522738.
url: http://dl.acm.org/citation.cfm?id=2517349
(cit. on pp. 19, 21, 27, 47, 101, 143).

[Nag] Nagios. url: https://www.nagios.org (visited on 09/2017)
(cit. on p. 33).

[Nas+15] Muhammad Anis Uddin Nasir et al. “The power of both choices:
Practical load balancing for distributed stream processing en-
gines”. In: 31st IEEE International Conference on Data En-
gineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015.
2015, pp. 137–148. doi: 10.1109/ICDE.2015.7113279 (cit.
on p. 79).

[Nas+16] Muhammad Anis Uddin Nasir et al. “When two choices are not
enough: Balancing at scale in Distributed Stream Processing”. In:
32nd IEEE International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, May 16-20, 2016. 2016, pp. 589–600.
doi: 10.1109/ICDE.2016.7498273 (cit. on p. 79).

[NEX] NEXMark benchmark. url: http://datalab.cs.pdx.edu/
niagaraST/NEXMark (visited on 01/2019) (cit. on pp. 87, 116).

[NexB] Apache Beam Nexmark benchmark suite. url: https://beam.
apache.org/documentation/sdks/java/testing/nexma
rk (visited on 02/2019) (cit. on p. 87).

[Ous] Kay Ousterhout. Spark Performance Analysis. url: https:
//kayousterhout.github.io/trace-analysis/ (visited
on 04/2017) (cit. on pp. 35, 52, 62).

[Ous+15] Kay Ousterhout et al. “Making Sense of Performance in Data
Analytics Frameworks”. In: 12th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 15, Oak-
land, CA, USA, May 4-6, 2015. USENIX Association, 2015,
pp. 293–307. isbn: 978-1-931971-218. url: https://www.
usenix.org/conference/nsdi15/technical-sessions/
presentation/ousterhout (cit. on p. 23).

161

https://doi.org/10.1145/2517349.2522738
http://dl.acm.org/citation.cfm?id=2517349
https://www.nagios.org
https://doi.org/10.1109/ICDE.2015.7113279
https://doi.org/10.1109/ICDE.2016.7498273
http://datalab.cs.pdx.edu/niagaraST/NEXMark
http://datalab.cs.pdx.edu/niagaraST/NEXMark
https://beam.apache.org/documentation/sdks/java/testing/nexmark
https://beam.apache.org/documentation/sdks/java/testing/nexmark
https://beam.apache.org/documentation/sdks/java/testing/nexmark
https://kayousterhout.github.io/trace-analysis/
https://kayousterhout.github.io/trace-analysis/
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout

Bibliography

[PokGO] Bringing Pokemon GO to life on Google Cloud. url: https:
//cloudplatform.googleblog.com/2016/09/bringing-
Pokemon-GO-to-life-on-Google-Cloud.html (visited on
06/2018) (cit. on p. 28).

[Raj+18] Sumanaruban Rajadurai et al. “Gloss: Seamless Live Reconfigu-
ration and Reoptimization of Stream Programs”. In: Proceedings
of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems.
ASPLOS ’18. Williamsburg, VA, USA, 2018, pp. 98–112. isbn:
978-1-4503-4911-6 (cit. on pp. 29, 30).

[Ram+16] Navaneeth Rameshan et al. “Hubbub-Scale: Towards Reliable
Elastic Scaling under Multi-Tenancy”. In: Cluster, Cloud and
Grid Computing (CCGrid), 2016 16th IEEE/ACM International
Symposium on. IEEE. 2016, pp. 233–244. doi: 10.1109/
CCGrid.2016.71 (cit. on p. 27).

[Rus+15] Olga Russakovsky et al. “ImageNet Large Scale Visual Recogni-
tion Challenge”. In: International Journal of Computer Vision
(IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-
015-0816-y (cit. on p. 60).

[Sac+03] Federico D. Sacerdoti et al. “Wide Area Cluster Monitoring with
Ganglia”. In: 2003 IEEE International Conference on Cluster
Computing (CLUSTER 2003), 1-4 December 2003, Kowloon,
Hong Kong, China. IEEE Computer Society, 2003, p. 289. isbn:
0-7695-2066-9. doi: 10.1109/CLUSTR.2003.1253327 (cit.
on p. 33).

[Sai+08] Ali G Saidi et al. “Full-System Critical Path Analysis”. In: IEEE
International Symposium on Performance Analysis of Systems
and Software. 2008 (cit. on p. 23).

[Sch+09] Scott Schneider et al. “Elastic scaling of data parallel operators
in stream processing”. In: IPDPS 2009 - Proceedings of the
2009 IEEE International Parallel and Distributed Processing
Symposium. 2009. isbn: 9781424437504. doi: 10.1109/
IPDPS.2009.5161036 (cit. on pp. 27, 28).

[Sch05] M. Schulz. “Extracting Critical Path Graphs from MPI Applica-
tions”. In: IEEE International Conference on Cluster Computing
(2005) (cit. on pp. 22, 36).

162

https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html
https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html
https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html
https://doi.org/10.1109/CCGrid.2016.71
https://doi.org/10.1109/CCGrid.2016.71
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CLUSTR.2003.1253327
https://doi.org/10.1109/IPDPS.2009.5161036
https://doi.org/10.1109/IPDPS.2009.5161036

Bibliography

[SCM13] Oliver Schiller, Nazario Cipriani, and Bernhard Mitschang. “Pro-
Rea: Live Database Migration for Multi-tenant RDBMS with
Snapshot Isolation”. In: Proceedings of the 16th International
Conference on Extending Database Technology. EDBT ’13.
Genoa, Italy: ACM, 2013, pp. 53–64. isbn: 978-1-4503-1597-5.
doi: 10.1145/2452376.2452384 (cit. on p. 31).

[SÇZ05] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. “The
8 Requirements of Real-time Stream Processing”. In: SIGMOD
Rec. 34.4 (Dec. 2005), pp. 42–47. issn: 0163-5808. doi:
10.1145/1107499.1107504 (cit. on p. 141).

[Sha+02] Mehul A. Shah et al. “Flux: An Adaptive Partitioning Operator
for Continuous Query Systems”. In: In ICDE. 2002, pp. 25–36
(cit. on p. 30).

[Sha49] C. E. Shannon. “Communication in the Presence of Noise”. In:
Proceedings of the IRE 37.1 (Jan. 1949), pp. 10–21. issn: 0096-
8390. doi: 10.1109/JRPROC.1949.232969 (cit. on p. 73).

[SparkDy] Dynamic Resource Allocation in Spark. url: https://spark.
apache.org/docs/latest/job-scheduling.html#dynam
ic-resource-allocation (visited on 01/2019) (cit. on pp. 26,
28).

[Ste97] Robert Stephens. “A Survey of Stream Processing”. In: Acta
Informatica 34.7 (July 1997), pp. 491–541. issn: 0001-5903
(print), 1432-0525 (electronic). url: http://link.springer-
ny.com/link/service/journals/00236/bibs/7034007/
70340491.htm (cit. on pp. 7, 11).

[Sto86] Michael Stonebraker. “The case for shared nothing”. In: IEEE
Database Eng. Bull. 9.1 (1986), pp. 4–9 (cit. on p. 10).

[Sul96] Mark Sullivan. “Tribeca: A Stream Database Manager for Net-
work Traffic Analysis”. In: Proceedings of the 22th International
Conference on Very Large Data Bases. VLDB ’96. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1996, pp. 594–.
isbn: 1-55860-382-4. url: http://dl.acm.org/citation.
cfm?id=645922.673489 (cit. on p. 12).

163

https://doi.org/10.1145/2452376.2452384
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1109/JRPROC.1949.232969
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://link.springer-ny.com/link/service/journals/00236/bibs/7034007/70340491.htm
http://link.springer-ny.com/link/service/journals/00236/bibs/7034007/70340491.htm
http://link.springer-ny.com/link/service/journals/00236/bibs/7034007/70340491.htm
http://dl.acm.org/citation.cfm?id=645922.673489
http://dl.acm.org/citation.cfm?id=645922.673489

Bibliography

[Tos+14] Ankit Toshniwal et al. “Storm@Twitter”. In: Proceedings of
the 2014 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’14. Snowbird, Utah, USA: ACM,
2014, pp. 147–156. isbn: 978-1-4503-2376-5. doi: 10.1145/
2588555.2595641 (cit. on pp. 17, 24, 25).

[Tu+06] Yi-Cheng Tu et al. “Load Shedding in Stream Databases: A
Control-based Approach”. In: Proceedings of the 32nd Interna-
tional Conference on Very Large Data Bases. VLDB ’06. Seoul,
Korea: VLDB Endowment, 2006, pp. 787–798. url: http:
//dl.acm.org/citation.cfm?id=1182635.1164195 (cit.
on p. 70).

[Tuc+02] Pete Tucker et al. NEXMark—A Benchmark for Queries over
Data Streams DRAFT. Tech. rep. OGI School of Science &
Engineering at OHSU, 2002 (cit. on pp. 87, 116).

[Twi] New Tweets per second record, and how! url: https://blog.
twitter.com/engineering/en_us/a/2013/new-tweets-
per-second-record-and-how.html (visited on 06/2018)
(cit. on p. 28).

[Ven+17] S. Venkataraman et al. “Drizzle: Fast and Adaptable Stream
Processing at Scale”. In: Proceedings of the 26th Symposium on
Operating Systems Principles. 2017 (cit. on pp. 17, 63).

[WA85] William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow
Programming Language. Vol. 303. Academic Press London,
1985 (cit. on p. 11).

[Wan+12] ChengweiWang et al. “VScope: Middleware for Troubleshooting
Time-sensitive Data Center Applications”. In: Proceedings of
the 13th International Middleware Conference. Middleware ’12.
ontreal, Quebec, Canada: Springer-Verlag New York, Inc., 2012,
pp. 121–141. isbn: 978-3-642-35169-3. url: http://dl.acm.
org/citation.cfm?id=2442626.2442635 (cit. on p. 24).

[WK09] Daniel Warneke and Odej Kao. “Nephele: Efficient Parallel Data
Processing in the Cloud”. In: Proceedings of the 2Nd Workshop
onMany-TaskComputing onGrids andSupercomputers. MTAGS
’09. Portland, Oregon: ACM, 2009, 8:1–8:10. isbn: 978-1-
60558-714-1. doi: 10.1145/1646468.1646476 (cit. on pp. 18,
27).

164

https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2588555.2595641
http://dl.acm.org/citation.cfm?id=1182635.1164195
http://dl.acm.org/citation.cfm?id=1182635.1164195
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
http://dl.acm.org/citation.cfm?id=2442626.2442635
http://dl.acm.org/citation.cfm?id=2442626.2442635
https://doi.org/10.1145/1646468.1646476

Bibliography

[WT15] Yingjun Wu and Kian-Lee Tan. “ChronoStream: Elastic stateful
stream computation in the cloud”. In: 31st IEEE International
Conference onData Engineering, ICDE2015, Seoul, SouthKorea,
April 13-17, 2015. Ed. by Johannes Gehrke et al. IEEE Computer
Society, 2015, pp. 723–734. isbn: 978-1-4799-7964-6. doi: 10.
1109/ICDE.2015.7113328. url: http://ieeexplore.i
eee.org/xpl/mostRecentIssue.jsp?punumber=7109453
(cit. on pp. 25, 29, 30).

[XPG16] LeXu, Boyang Peng, and Indranil Gupta. “Stela: Enabling Stream
Processing Systems to Scale-in and Scale-out On-demand”. In:
2016 IEEE InternationalConference onCloudEngineering, IC2E
2016, Berlin, Germany, April 4-8, 2016. 2016, pp. 22–31. doi:
10.1109/IC2E.2016.38 (cit. on p. 26).

[YDG89] S. H. Yen, D. H. Du, and S. Ghanta. “Efficient Algorithms for
Extracting the KMost Critical Paths in Timing Analysis”. In: Pro-
ceedings of the 26th ACM/IEEE Design Automation Conference.
DAC ’89. 1989, pp. 649–654 (cit. on p. 34).

[YM88] Cui-Qing Yang and Barton P Miller. “Critical Path Analysis for
the Execution of Parallel and Distributed Programs”. In: IEEE In-
ternational Conference on Distributed Computing Systems. 1988
(cit. on pp. 22, 34).

[Yu+08] Yuan Yu et al. “DryadLINQ: A System for General-Purpose Dis-
tributed Data-Parallel Computing Using a High-Level Language”.
In: 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings. Ed. by Richard Draves and Rob-
bert van Renesse. USENIX Association, 2008, pp. 1–14. isbn:
978-1-931971-65-2 (cit. on p. 16).

[Zah+12] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing”. In:
Proceedings of the 9thUSENIX Symposium onNetworked Systems
Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012. Ed. by Steven D. Gribble and Dina Katabi.
USENIX Association, 2012, pp. 15–28. url: https://www.
usenix.org/conference/nsdi12/technical-sessions/
presentation/zaharia (cit. on pp. 16, 47).

165

https://doi.org/10.1109/ICDE.2015.7113328
https://doi.org/10.1109/ICDE.2015.7113328
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7109453
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7109453
https://doi.org/10.1109/IC2E.2016.38
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

Bibliography

[Zah+13] Matei Zaharia et al. “Discretized streams: Fault-tolerant stream-
ing computation at scale”. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM. 2013,
pp. 423–438 (cit. on pp. 17, 24, 25, 30).

[Zha+16] Xu Zhao et al. “Non-Intrusive Performance Profiling for Entire
Software Stacks Based on the Flow Reconstruction Principle”.
In: 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016. Ed. by Kimberly Keeton and Timothy Roscoe. USENIX
Association, 2016, pp. 603–618. url: https://www.usenix.
org/conference/osdi16/technical-sessions/present
ation/zhao (cit. on p. 24).

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. “Dy-
namic PlanMigration for Continuous Queries over Data Streams”.
In: Proceedings of the 2004 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’04. Paris, France,
2004, pp. 431–442. isbn: 1-58113-859-8 (cit. on p. 28).

166

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Introduction
	Structure of the dissertation
	Notes on collaborative work

	Background and motivation
	Stream processing concepts
	Expressing queries as dataflows
	A critical history of stream processing
	First generation stream processors
	Second generation stream processors
	MapReduce: large-scale computations
	Third-generation stream processors

	Timely dataflow concepts
	Related work: Distributed systems performance analysis
	Related work: Scaling controllers for distributed stream processors
	Related work: Applying configuration updates
	State migration in streaming systems
	Live migration in database systems
	Live migration for streaming dataflows

	Snailtrail
	Critical path analysis background
	Online critical path analysis
	Transient critical paths
	Critical participation (CP metric)
	Comparison with existing methods

	Applicability to dataflow systems
	Activity types
	Instrumenting specific systems
	Model assumptions
	Instrumentation requirements

	Program activity graph construction
	Snailtrail system implementation
	CP-based performance summaries
	Evaluation
	Experimental setting
	Instrumentation overhead
	Snailtrail performance
	Comparison with existing methods
	Snailtrail in practice

	Critical participation: conclusion

	DS2: Controlling distributed streaming dataflows
	Background and motivation
	The DS2 model
	Problem definition
	Performance model
	Assumptions
	Properties

	Implementation and deployment
	Instrumentation requirements
	Integration with stream processors
	DS2 and execution models

	Experimental evaluation
	Setup
	DS2 compared to Dhalion on Heron
	DS2 on Flink
	Convergence
	Accuracy
	Instrumentation overhead

	DS2: conclusion

	Megaphone
	State migration design
	Migration formalism and guarantees
	Configuration updates
	Megaphone's mechanism
	Example

	Implementation
	Megaphone's operator interface
	State organization
	Timely Dataflow instantiation
	Monitoring output frontiers
	Capturing Timely Dataflow idioms

	Discussion

	Evaluation
	NEXMark benchmark
	Overhead of the interface
	Migration micro-benchmarks
	Number of bins vary
	Number of keys vary
	Number of keys and bins vary proportionally
	Throughput versus processing latency
	Memory consumption during migration

	Megaphone: conclusion

	Conclusions
	Requirements for efficient stream processing
	Directions for future work

	List of Tables
	List of Figures
	Bibliography

