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Asynchronous Multi-Hypothesis Tracking of Features with Event Cameras

Ignacio Alzugaray and Margarita Chli
Vision for Robotics Lab, ETH Zürich

www.v4rl.ethz.ch

Abstract

With the emergence of event cameras, increasing re-
search effort has been focusing on processing the asyn-
chronous stream of events. With each event encoding a
discrete intensity change at a particular pixel, uniquely
time-stamped with high accuracy, this sensing informa-
tion is so fundamentally different to the data provided by
traditional frame-based cameras that most of the well-
established vision algorithms are not applicable. Inspired
by the need of effective event-based tracking, this paper ad-
dresses the tracking of generic patch features relying solely
on events, while exploiting their asynchronicity and high-
temporal resolution. The proposed approach outperforms
the state-of-the-art in event-based feature tracking on well-
established event camera datasets, retrieving longer and
more accurate feature tracks at higher a frequency. Consid-
ering tracking as an optimization problem of matching the
current view to a feature template, the proposed method im-
plements a simple and efficient technique that only requires
the evaluation of a discrete set of tracking hypotheses.

Video – https://youtu.be/eguV_AIbteU

1. Introduction
Event cameras [15, 21, 3] are bio-inspired visual sensors

gaining popularity in Computer Vision and Robotics. In-
dividual pixels of an event camera react independently and
asynchronously to intensity changes, generating a so-called
‘event’ when the change is beyond a predefined thresh-
old. A single event e = {t, x, y, p} is defined by the x
and y pixel location and a unique timestamp t registering
where and when the intensity changed in the image array,
as well as the binary polarity p indicating whether the inten-
sity has increased or decreased. Such events get accurately
timestamped with microsecond resolution and are mostly
unaffected by motion blur, rendering them particularly ap-
pealing in scenarios with fast dynamics, such as unmanned
aircraft navigation and tracking of head-mounted displays.
Since each pixel is able to generate events independently,
these cameras are able to perform even in scenes with High

Time Time

Figure 1: Set of tracked features in a HDR environment
(boxes HDR from [20]), displaying their traces over the
last 40ms in the image space (top) and superimposed to the
corresponding gray-scale image (not used in our algorithm).
Our method operates directly in the event stream (bottom
left, color encodes polarity), that accumulate for such short
time-interval over 100k events, and is able to retrieve high
quality tracks with high temporal resolution (bottom right).

Dynamic Range (HDR) of illumination (e.g. see Figure 1).
In this way, event cameras produce an asynchronous stream
of events that encode all the visual experience of the cam-
era as discretized and incremental intensity changes. This
event stream is inherently very different from the concept
of frames in traditional vision, where the pixels of a image
frame (or image line in a rolling shutter camera) are read at
the same time instant and register absolute intensity values.
Such drastic differences between frame- and event-based
sensing modalities renders, in most of the cases, the ap-
plication of well-established algorithms to the event stream
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largely impossible. As a result, this encourages the devel-
opment of novel approaches aiming to exploit the power of
the asynchronous event-vision paradigm.

In this paper, we address feature tracking for event cam-
eras, which is a key component of most visual Simultaneous
Localization And Mapping (SLAM) and Visual Odometry
(VO) pipelines. Our approach solely relies on events and
exploits the fine time-discretization provided by each event,
assuming that no information is lost due to fast dynamics
when employing event cameras (whereas traditional frame-
based sensors are likely to experience motion-blur). Explor-
ing this idea, here we propose a generic approach that is able
to transform an underlying optimization-based formulation
for feature tracking (e.g. the KLT tracker [16] for frame-
based cameras), into a simpler and more efficient evalua-
tion of likely tracking hypotheses. We believe that such an
approach may find applications to other event-based prob-
lems (e.g. camera pose estimation) and thus, we first de-
scribe it in generic terms in Section 3.1. Based on such a
formulation, we propose a powerful method to track tem-
plates of features described in Section 3.2, which operates
asynchronously on an event-by-event basis. Our evaluation
demonstrates better performance than the state-of-the-art in
well-established datasets with realistic scenes [20], retriev-
ing longer and more accurate feature tracks at a significantly
higher frequency rate.

2. Related work
Feature tracking is one of the core components of vi-

sual SLAM [22] and VO [14], and several methods have
been developed over the past decades for frame-based cam-
eras. As a result, they are, in most of the cases, not able
to cope or exploit asynchronous data streams, such as the
event stream. In the early years of development of event
cameras, research focused on tracking of known patterns in
simplified scenarios. For instance, Censi et al. [5] tracked a
rigid structure detecting the position high-frequency blink-
ing LEDs. Tracking a known simple planar shape, Mueg-
gler et al. [19] achieved 6-Degrees-of-Freedom (DoF) cam-
era pose tracking during aggressive motion, while Glover et
al. [10] were able to detect and track a moving, single ball-
shape in the scene. Event vision research quickly converged
to tracking more generic features as in the work of Lagorce
et al. [13] that addressed the tracking of distinctive shapes
using a set of predefined kernels.

Some approaches have proposed the use of both frame-
and event-based vision, for instance in [12] and [25], which
characterized the features detected on intensity frames to
later track them using solely events. A more advanced ap-
proach exploiting the combination of both sensing modali-
ties can be found in [9].

Relying solely on events, Zhu et al. [28], proposed to
apply an Expectation-Maximization (EM) algorithm to op-

timize for the location of the events in the image plane ac-
cording to an estimate of the local optical flow, usually re-
ferred to as motion-compensation of events. The motion-
compensated events are used to define the templates of the
tracked feature on-the-fly and employed to track them as
new events are generated. This method was successfully ex-
tended to consider cues from an Inertial Measurement Unit
(IMU) and integrated into a VO pipeline in [27]. In a similar
fashion, Rebecq et al. [24] proposed a tracking method that
first compensates for the motion of the events using IMU
and generates image-like patches that are later tracked us-
ing traditional KLT [16].

Both [24] and [28] integrate information over a fixed
number of events or within a time-window in between track-
ing iterations, effectively defining ‘frames’ from events and
partially defying the natural asynchronicity of the event
stream. There is, however, an emerging trend in the de-
velopment of algorithms that operate on an event-by-event
basis, i.e. without artificially accumulating events and pro-
cessing them as soon as they get captured instead, for which
we can distinguish the efforts in asynchronous feature de-
tection of corners [6, 26, 18, 2] or lines [4]. Establishing
correspondence between such feature detections is not triv-
ial in generic cases using an event-by-event strategy. For
instance, Cladys et al. [7] matched asynchronously detected
corners based on motion models. Alzugaray and Chli [2],
and later Manderscheid et al. in the evaluation of [17],
established local correspondence of corners based on the
proximity of the detections. Using a more complex strategy,
the work in [1] retrieved feature tracks considering a set of
multiple hypotheses per each asynchronously detected cor-
ner in the event stream.

In this paper, we propose a method able to track generic
patch features employing solely events as in [28]. However,
instead of artificially accumulating events between tracking
iterations, we implement an event-by-event approach that is
able to process each event asynchronously. The method is
inspired by [1] in the way that we explore different hypothe-
ses per feature, but does not require from the detection of
corners events and is able to process the raw event stream.

3. Methodology
3.1. Asynchronous Hypotheses Evaluation

Let us describe a generic optimization problem using
event-data of the non-linear function f that depends on a
state x(t) ∈ X (e.g. pose of the camera, feature position)
and a set of events z(t). At a given t instant, we aim to
optimize for the state, x∗(t), that fits best the events gen-
erated up to that instant, z(t), according to the function f .
Formally,

x∗(t) = argmax
x(t)∈X

f(x(t), z(t)) (1)



Assume that a given instant tk the optimal solution
x∗(tk) is known, for instance, at initialization (e.g. the ori-
gin frame for a camera pose or the detected pixel position
of a visual feature). New events that arrive after tk would
necessarily modify z(t) and thus, potentially, the optimal
solution. However, the amount of information encoded in a
single event is, in most of the cases, negligible and so are
the changes that it may induce in the optimum of f . Several
event-based methods exploit this fact and aggregate multi-
ple events (e.g. a fixed number of them [23, 8, 24] or within
a time window [28]) before re-optimizing Eq. (1).

Eq. (1) is usually optimized with iterative algorithms that
require a good initialization point, typically seeded from
the previous optimum state. However, if a large number of
events gets aggregated before re-optimizing, the previous
optimum might be too far from the new optimum state and
thus the optimization is likely to fail. Analogously, in tradi-
tional frame-based cameras, the KLT tracker [16] is likely
to fail if a feature exhibits significant displacement be-
tween consecutive frames. Conversely, our approach aims
to leverage the information encoded in each single event as
soon as it is captured, following an event-by-event process-
ing strategy.

Let us define a small connected set of states S ⊆ X , that
encloses the previous optimum state x∗(tk) ∈ S , and its
boundary ∂S. Assuming a fine enough time discretization
of the visual experience to be encoded in the event stream
(i.e. there is no missing data as in the kidnapped robot
problem), we expect the optimum x∗(t) of f to transition
smoothly in X as new events get generated. Let us also de-
fine a discrete set of states lying in the boundary x∂S ∈ ∂S
that, jointly with the previous optimum x∗(tk), define the
set of hypotheses xh ∈ H(x∗(tk)) = {x∗(tk),x∂S}. Note
that we explicitly indicate the set of hypotheses H(x) as a
function to emphasize that S, and therefore x∂S , is defined
to enclose a given state x (the previous optimum x∗(tk) in
this case). While the optimum x∗(t) lies within S we could
approximate the optimization in Eq. (1) with the following
expression,

x∗(tk+1) = argmax
xh∈H(x∗(tk))

s(xh) (2)

where s(xh) = f(xh, z), namely the hypothesis score func-
tion. Note that we drop z from the notation as all the hy-
potheses will always consider all the captured events at the
moment they are evaluated. In our approach, the evolu-
tion of the score per hypothesis is tracked over time as new
events are generated. Initially, the previous optimum x∗k
would be the best hypothesis (i.e. the null hypothesis) for a
subsequent set of new events. However, as more events are
captured, a different hypothesis will eventually score higher
than the null one, becoming itself the new optimum state

x∗(tk+1), spawning a new set of hypothesis H(x∗(tk+1)).
This procedure allows us to track the global optimum of f
as new events get generated.

Note that the region S is to be defined small enough ac-
cording to the problem specification (e.g. in the order of
centimeters for camera position estimation or pixels for fea-
ture tracking). Additionally, the hypotheses are required to
be well distributed in the boundary ∂S so that optimum
x∗(t) cannot cross it without influencing any of them. In
Section 3.2, we apply these concepts of the asynchronous
hypotheses evaluation to the particular case of feature track-
ing employing solely events.

3.2. Asynchronous Event Tracker

The state of a feature is defined by the tuple xf =
{xf , yf , θ} ∈ R3, indicating its pixel position pf =
{xf , yf} and rotation θf in the image plane. Given the state
of the feature xf we define an n× n neighborhood N (pf )
centered at the feature location pf . Associated to each fea-
ture we define a template patch T ∈ Rn×n that, centered at
the feature position pf and aligned according to the orien-
tation θf , indicates how likely it is that events get generated
in neighboring locations. Details regarding the initialization
and refinement of T are discussed in Section 3.2.1.

Each feature also keeps track of the last events E that
have been generated in its neighborhood N . Note N de-
fines an image region that moves with the instantaneous fea-
ture position. For practical reasons, we assume than only m
events are enough to determine the state of the tracker at
any moment, so E = {e0, e1, . . . , em} is the ordered set
that considers only the latest events (em indicating the old-
est one).

As soon as a new event is detected in a neighboring pixel
location pe of the feature xf , i.e. pe ∈ N (pf ), it replaces
the oldest event in E , as in a fixed-size circular buffer. Each
event in the window ei ∈ E , originally detected at the po-
sition pi, is remapped to a new position p′i relative to the
feature state as follows,

p′i(xf ) = RT (θf )pi − pf , R(θ) ∈ SO(2) (3)

We evaluate how likely is the event ei to be generated
in such relative location p′i by sampling the value of the
template T (which is centered and aligned to the feature
state xf ) at such location, defining the score function s, as:

s(ei,xf ) = T (p′i(xf )) (4)

In fact, we are not only interested in how likely an event
is to be triggered in a particular location, but also how likely
it is that all the events in E fit the template T according to the
current feature state xf . We assign a relative importance to
each of them events in E depending on their order of arrival,



so that the ith latest event in E is assigned a Gaussian-like
weight wi = exp(− 1

2 ((i−
m
2 )/

m
6 )

2). The total score given
a feature state xf is then computed as follows,

s(xf ) =

m∑
i=0

wi s(ei,xf ), ei ∈ E (5)

Note that Eq. (5) can be used to optimize for the best
state as x∗f = argmax s(x) at any time based on the events
in E ; this approach would be equivalent to the formulation
in Eq. (1), albeit prohibitively expensive to be applied each
time a new event is detected.

To avoid full optimization of the expression in Eq. (5),
we consider instead evaluating the score function Eq. (5)
not only at the current feature state xf , but also at a
set of hypothetical feature states xh ∈ H(xf ) defined
by small perturbations δxh ∈ δXh, i.e. xh = xf +
δxh. Given a set of perturbations δXh, we can define
the set of hypothetical states H(xf ) as described in Sec-
tion 3.1 (including the null hypothesis, δxh = 0, so that
xh = xf ). In practical terms, for the feature tracking
problem, we define the set of perturbations as δXh =
{0, (±xth, 0, 0), (0,±yth, 0), (0, 0,±θth)}, where xth, yth
and θth are small thresholds. This defined set represents
the simplest and minimum set of disentangled perturbations
(i.e. each perturbation only disturbs the feature state in a
single dimension), although more complex ones could be
employed.

The tracking method, as summarized in Algorithm 1,
starts a new iteration each time a new event is integrated
into E , forcing the re-computation of the score s(xh) for
each hypothesis xh. Following the formulation of Eq. (2),
as soon as the best scoring hypothesis is different than the
null hypothesis, x∗h 6= xf , it becomes the new feature state,
xf ← x∗h, consequently spawning a new set of hypothe-
ses H(xf ). Note that, due to to the bell-like shape of the
weighting scheme wi, the score s is mostly dominated by
the events in the middle of the event window E . There-
fore, we assume that the transition from one hypothesis to
another happens at the same instant as the middle event
em/2 ∈ E . The tracking of the feature is abandoned the
moment it leaves the field of view or if the feature state is
not updated within a small time-window (50ms in this pa-
per), as we assume the camera is always in motion.

Intuitively, our method is able to perform and transition
to a correct hypothesis each time due to the consensus of all
the events in E with respect to the template T . Such consen-
sus can be maintained over a sequence of different discrete
hypotheses (through the evaluation of their respective score)
because, exploiting the highly discretized temporal resolu-
tion of the event stream, no feature would possibly experi-
ence sudden jumps in the image plane, nor in translation or
in rotation.

Algorithm 1 Tracking with Asynchronous Hypotheses

Input: Feature state xf , event window E , template T .
1: New event e is generated at location pe

2: if ( pe ∈ N (xf )) then
3: Update E : replace the oldest event with e
4: for each hypothesis xh ∈ H(xf ) do
5: Evaluate score s(xh) with Eq. (5)
6: end for
7: Select best hypothesis: x∗h = argmaxxh∈H s(xh)
8: Update tracker state: xf ← x∗h
9: Refine template T (Section 3.2.1)

10: end if

Section 4 reports state-of-the-art performance for this
simple but effective algorithm, despite the coarse set of dis-
crete hypotheses determined by the thresholds xth = yth =
0.5px and θth = 4◦. We also acknowledge the importance
of the parameterm that defines the size of the event window
E , defined proportionally to the patch area with the param-
eter β, i.e. m = βn2, which should be tuned accordingly to
the texture of the tracked patch. However, we have observed
that our smooth weighting scheme allows the application of
reasonable values of β in a variety of scenarios with very
different texture levels, as we will demonstrate fixing the
parameter β = 0.2 for the patch size n = 25 for all the
experiments, without further fine tuning.

3.2.1 Feature template

The use of templates is common in event-based feature
tracking, and they usually represent high-gradient regions
in a location of interest. They are most reliably obtained
from traditional intensity images [12, 9] that, provided they
are well-conditioned (e.g. no motion blur, good illumina-
tion), capture an accurate snapshot of the scene invariant to
the camera motion in contrast to the event stream. However,
such templates can also be computed directly from event
data to avoid relying on the quality intensity image snap-
shot, as done for example using the motion-compensated
events approach of [28].

We propose initializing template T with a simple strat-
egy where, given an initial feature state xf , we gather the
latest m/2 events that got generated in the neighborhood
N (xf ) and wait until the next m/2 are collected to initial-
ize event window E . All the events in E are projected to the
template T using the current feature state as described in Eq.
(3), creating a density map in which each event contributes
according to its weight wi to the corresponding projected
location in the template.

In general, the initial template T would not accurately
represent the high-gradient regions of the feature patch, as β
is not finely adjusted to the texture of each scene. However,



as the tracking progresses, we refine the template T in an
event-by-event fashion. As soon as a new event is included
in E , the event in the center of the event window em/2 is
projected to the template T according to the current feature
state xf , updating the value of the corresponding location
as T (p′m/2(xf )) ← T (p′m/2(xf )) + αwm/2, with α =
0.1. In the future, we will explore different strategies to
automatically set β per feature as the template is refined.

4. Experimental Evaluation
4.1. Dataset and State-of-the-Art

We evaluate our algorithm in the Event Camera Dataset
[20], that includes several scenes recorded with a DAVIS
camera [3], a 240 × 180 pixel sensor able to capture both
events and images, although we only use the latter for visu-
alization. We select three, hand-held recorded, static indoor
scenes; namely shapes, poster and boxes, posing in-
creasing complexity. Each of these scenes is recorded un-
der pure translational movements (trans.), pure rotations
(rot.) or both (6dof.). Additionally, we include in our
evaluation the scenes poster and boxes recorded under
HDR illumination. All the experiments last up to one minute
and are recorded with increasing speed of camera motions,
up to the point that the image frames exhibit significant mo-
tion blur. In all the experiments the ground-truth 6-DoF
pose of the camera is available, captured from an external
positioning system.

We compare our tracker to the method proposed by Zhu
et al. [28], which is also tracks patch features relying solely
on raw events. We employ the authors’ open-source imple-
mentation1 using the default parameters, only adapting the
patch size. Their method also implements a simple strategy
to detect features and initialize their tracker based on detect-
ing Harris corners [11] on image of integrated events. For
the sake of fairness, we initialize our features on the same
initial feature positions such that we have a one-to-one cor-
respondence per track with each method.

4.2. Benchmarking of Event-based Trackers

Benchmarking event-based tracking algorithms is, in
general, a particularly challenging task as ground-truth is
only available in simulation. For this reason, some works
such as [2] and [9] compare their event-based tracks against
the ones retrieved by the KLT tracker [16] applied to image
frames. However, under fast dynamics or poor illumina-
tion conditions (as for most part of the experiments selected
for evaluation in this paper) the KLT tracker consistently
fails. Other works, such as [7] attempt to manually label
the correct tracks, but this approach does not scale well as
the scenes become more complex. An alternative would be
to benchmark different tacking algorithms inspecting how

1github.com/daniilidis-group/event_feature_tracking

they perform in a generic VO pipeline able to process event-
data, e.g. [27]. However, to the best of our knowledge, there
exists no open-source implementation of any event-based
VO system at submission time.

In this work, we use all the registered pixel locations
of the feature track to triangulate its 3D position using the
known camera poses (which are available as ground-truth in
the chosen dataset). We project the triangulated 3D feature
in the image plane and compare its location to the position
of the feature track at each instant, defining the error of each
such observation. Note that this approach does not necessar-
ily imply that the 3D location of the triangulated feature is
accurate (e.g. it will not be accurate regardless of the qual-
ity of the tracker if there is no parallax), but will evaluate
whether the feature track position evolves consistently with
the motion of the camera. This metric necessarily relies on
the quality of the ground-truth poses and their alignment in
time with the event stream, which are synchronized in the
chosen dataset. This evaluation strategy is inspired by the
one proposed originally in [1], and also later used in the
evaluation of the method from [17].

For a each track, we define the reprojection error as the
mean of distance of the reprojected 3D point to its feature
track observations in the image plane. The defined error
should not be inspected in isolation since, in general, shorter
tracks should incur in a comparatively smaller parallax and
proportionally smaller error. Ideally, tracks would be long
and accurate and thus, we also consider the feature lifetime
in our analysis. Therefore, in contrast to [1], here we define
the error as a function of the track lifetime (unless otherwise
stated), i.e. given a specific lifetime value, we triangulate
the corresponding 3D position considering all the feature
track observations until the selected lifetime value to obtain
the average reprojection error.

All feature trackers are prone to failure of some of the
individual tracks. However, this does not prevent their ap-
plication to VO and SLAM system, as such pipelines are
usually able to remove erroneous tracks if they do not match
the general consensus. In our analysis, we distinguish be-
tween the tracks that have a reprojection error at a given
lifetime below a threshold rth = 5px (as in [1] and [17]),
and consider them as inliers. The reported metrics only con-
sider the inlier tracks for all the methods unless otherwise
stated.

4.3. Quality of the Feature Tracks

Figure 3 depicts the mean error of the inlier tracks as a
function of their lifetime per experiment, as well as a shaded
area indicating the number of surviving inliers. In general,
our algorithm performs comparably to the baseline method
of [28] in terms fo mean reprojection error of the inlier fea-
ture tracks in most of the experiments.

It is important to note that this reprojection error analysis

github.com/daniilidis-group/event_feature_tracking


(a) shapes 6dof (b) poster rot. (c) boxes trans. (d) poster HDR

Figure 2: Example of event-based tracks asynchronously retrieved with the proposed method in different scenes of the dataset
[20]. Each presented feature (color encodes different features) show its track aggregating the last 40ms, superimposed on
the corresponding gray-scale image (not used in our algorithm). Note that the selected snapshots are purposely taken during
high-speed camera motion, when the gray-scale images exhibit significant motion blur.

(a) shapes rot. (b) shapes trans. (c) shapes 6dof.

Zhu et al. ICRA'17

Ours

(d) poster rot. (e) poster trans. (f) poster 6dof. (g) poster HDR

(h) boxes rot. (i) boxes trans. (j) boxes 6dof. (k) boxes HDR

Figure 3: Rows indicate the scene and columns the motion or HDR illumination. The solid lines indicate the mean error of
the inlier tracks for each method and the width of the corresponding shading area is proportional to the number of lasting
inliers as a function of their lifetime. Note that, in most experiments, most of the inliers have a smaller lifetime than 3s.

is only valid when considering features with a short track-
length. When considering longer track-lengths, we observe
that our method performs equally or better than the baseline
in most scenarios. For a clearer insight, we refer the reader
to Figure 4, where the number of inlier tracks is depicted
relatively to their lifetime. Although both methods exhibit
a quick decay of the number of inlier tracks, in our method

the number of long lifetime features is always better than
for the baseline method. As a result, the mean lifetime of
our inlier tracks is always greater than those of the base-
line. In particular, for shapes, where our method in some
cases underperforms in terms of error, we can observe a sig-
nificant improvement in the number of long lasting feature
tracks with respect to the baseline.



(a) shapes rot. (b) shapes trans. (c) shapes 6dof.

Zhu et al. ICRA'17

Ours

(d) poster rot. (e) poster trans. (f) poster 6dof. (g) poster HDR

(h) boxes rot. (i) boxes trans. (j) boxes 6dof. (k) boxes HDR

Figure 4: Rows indicate the scene and columns indicate the motion or HDR illumination. Each line represents the absolute
number of inlier tracks as a function of their lifetime per method. Note that both method have the same number of initial
features and they are initialized at the same pixel location.

Figure 3 and 4 illustrate quantitative results for both
methods as when they would generate a set of completely
independent tracks. Note, however, that in this evaluation
our method is forced to employ the same feature detections
as the baseline and thus direct one-to-one track correspon-
dences can be established for both methods. For this reason,
we also report the quality of each feature tracked with our
algorithm for as long as the baseline method did (which is
generally for a shorter time, as depicted in Figure 4); that
is, setting the same lifetime value independently for each
feature track. We present the results in Table 1 indicating
the number of inlier tracks as a percentage over the initial
number of tracks and their mean reprojection error under
this constraint. We observe that, although the percentage
of inliers is similar for both methods, given the same life-
time when comparing the same feature our method always
obtains a lower reprojection error.

For qualitative examples of the feature tracks retrieved
with the proposed method, we refer the reader to Figure 1
and Figure 2, where we have purposely chosen to illustrate

Num. Inlier [%] Error [px]
Experiment [28] Ours [28] Ours
shapes rot. 65 70 2.04 1.84

shapes trans. 90 89 1.78 1.10
shapes 6dof. 82 85 1.97 1.52
poster rot. 55 54 2.38 2.11

poster trans. 71 79 2.41 1.81
poster 6dof. 75 69 2.43 2.11
poster HDR 84 76 2.22 1.79
boxes rot. 36 51 2.30 2.09

boxes trans. 84 80 1.87 1.39
boxes 6dof. 83 76 1.98 1.64
boxes HDR 84 73 2.06 1.68

Table 1: Mean reprojection error and percentage of inliers
when tracking each feature up to the same lifetime with both
methods.

the feature tracks captured under high-speed camera motion
and when motion blur exists in the frame-based images.
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Figure 5: Same set of features tracked with the baseline [28]
(left) and the proposed approach (right). Note the difference
in the number of observations (dots) per each of the tracks

4.4. High Frequency Tracking

One of the fundamental differences between the baseline
method used here [28] and our approach is how the fea-
ture tracks get updated. The baseline method establishes
different instants of time at which all the features are syn-
chronously updated, which we refer to as tracking itera-
tions. In each iteration, the next tracking iteration gets
scheduled as a function of how fast the event stream is
changing which, under high-speed camera motion, yields
a higher rate of updates per feature track than we could pos-
sibly achieve with a regular frame-based camera.

However, imposing synchronous updates in the feature
tracks defines artificial discretizations in the event stream,
equivalent to conventional “frames”, essentially neglecting
the asynchronous nature of the event cameras. Our ap-
proach fully exploits the asynchronicity of the events and
allows each feature track to be updated as soon as new
events are generated, following the event-by-event process-
ing paradigm. Therefore, our approach is able to update
asynchronously and independently each track at significant
higher rate than the baseline method.

Figure 5 depicts a clear example (using the same scene
and time interval as in Figure 3a) of the difference of the
feature update rates for each method. We can observe that
the baseline updates all the features at a given set of discrete
times, retrieving only a small number of observations for
each of them over time. Conversely, our method retrieves
significantly more observations per track in the same time
period. As a reference, the feature tracks are updated with
our method at a mean rate of 13 kHz, whereas the baseline
method only updates them at a mean rate of 145 Hz (aver-
aging over all the experiments), i.e. more than an order of
magnitude of difference.

4.5. Computational Performance

Event cameras do not produce a fixed-rate output as con-
ventional frame-based cameras, but instead they generate

events at different rates depending on the relative camera
motion and the scene’s texture. Therefore, there is no gen-
eral metric to indicate whether an algorithm would perform
well in real-time in all scenarios. Instead, we analyze the
maximum rate of events that an event-based algorithm can
process per second, in order to determine its applicability to
high-speed applications.

Our algorithm is able to process each event generated
in the neighborhood of a feature track as fast as 80µs per
event, which is equivalent a maximum rate of 12500 events
per second. This limit is computed using an unoptimized
C++ single-threaded implementation, running in a Xeon
E3-1505M CPU with 2.80GHz, 16GB of RAM, without
GPU acceleration. In the selected experiments the rate of
generated events spans from 0.3 to 3.1 millions of events
per second, in shapes trans. and boxes rot., re-
spectively. Note, however, that such rates are a relative to
the whole field of view, whereas our algorithm only pro-
cesses events in the neighborhood of feature locations.

It is not possible to establish a fair comparison in terms
of computational performance with the baseline method
[28], as its open-source code is implemented in MATLAB.
Such implementation may take up to hours to process a sin-
gle experiment using CPU parallelization with 4 threads.
For more insights on the baseline’s computational perfor-
mance, we refer to the authors’ work [27], where a version
of such algorithm using IMU cues is able to perform in real-
time using a C++ implementation, but only under moderate
optical flow and tracking only up to 15 features.

5. Conclusions

This paper presents an effective and novel event-based
tracker for generic patch features that operates directly on
the raw event stream, allowing its application under high-
speed camera motion or poor illumination conditions. The
method follows an event-by-event processing strategy and
updates each of the feature tracks asynchronously and in-
dependently as soon as new events get generated. We de-
veloped the proposed algorithm based on a more generic
multi-hypothesis framework that may find application to
other event-based related problems. The presented evalu-
ation reveals that the proposed method is able to retrieve, in
general, longer and more accurate tracks than the state-of-
the-art at a significantly higher frequency.

We believe that the proposed method opens up new re-
search directions in the event-based community. In particu-
lar, future work will extend the proposed method to imple-
ment a full SLAM pipeline able to perform following the
event-by-event paradigm.
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