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Abstract

With the emergence of powerful techniques for robotic egomotion estimation and
map building that follow the SLAM (Simultaneous Localization And Mapping)
paradigm, Place Recognition has become of fundamental importance for robotic
autonomy. Addressing Place Recognition by determining whether a robot returns
to a previously visited location, which is widely known as the Loop-closure Detec-
tion problem, is a key competence to enable the creation of accurate maps and even
recovery from complete localization failures, essentially opening up the way towards
long-term autonomous robot navigation. However, the deployment of robotic plat-
forms for long periods of time or for multiple missions taking place months or years
apart from each other, can pose major challenges in Place Recognition, due mainly
by the large appearance variability that a place may experience over time, such as
seasonal and lighting changes, weather conditions as well as human activity. Tra-
jectory and viewpoint variations are common even in shorter-term missions. The
views of a street from a car, for example, when it is navigating from the opposite
directions can be rather di�erent. Considering the navigation in a scene using an
Unmanned Aerial Vehicle (UAV), however, the viewpoint changes experienced are
far more challenging, and this is especially the case in �ights with rotorcraft UAVs,
which are able to move with great agility in 3D.
In this thesis, we address the problem of viewpoint-tolerant Place Recognition

for autonomous robot navigation. More speci�cally, we have focused our e�orts
on the development of approaches that are suitable for small UAVs with restricted
payload onboard and as a result, limited computational capabilities. Deep learning
approaches addressing Place Recognition have been demonstrated to perform very
well under isolated variations in appearance. The power of these methods, however,
stems from speci�c training on the expected scene variations and complex compu-
tational e�ort. This, in turn, imposes the need for extensive training datasets and
powerful Graphics Processing Units (GPUs), which are often unavailable onboard
small aircraft, rendering the use of such methods at least impractical in aerial nav-
igation. On the other hand, more a�ordable and scalable feature-based techniques
building on the e�cient Bag-of-Words (BoW) representation exist in the litera-
ture, however, these methods are known to fail dramatically in the presence of
large appearance and viewpoint changes. This is largely due to the fact that BoW
approaches discard all geometric information of the scene structure by design.
Inspired by the need for lightweight and e�ective techniques for Place Recogni-

tion onboard small aircraft, this thesis investigates ways to render feature-based
approaches capable of coping with the variability of places when experienced from
such small aircraft, while bounding the onboard computation e�ort for real-time
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Abstract

operation. As a result, this thesis describes a set of novel approaches for viewpoint-
tolerant Place Recognition progressively building on top of each other, achieving
unprecedented robustness with relation to the state-of-the-art. Assuming that a
nominal, keyframe- and vision-based SLAM framework is running onboard the
robot, this thesis advocates the power of exploiting both 2D visual information
inherent in images, as well as the often noisy estimates of the local 3D geome-
try captured by SLAM in deciding on whether the robot is in the presence of a
loop. Across all approaches proposed here, a BoW image representation is used
in combination with e�cient binary image features to enable fast image retrieval.
Any loop-closure candidates from the database of all robot's experiences matching
a query image is then subjected to geometric veri�cation. This entails a test for
matching constellations of the visible image features in an attempt to reject false
appearance matches returned by the image retrieval step. Along with investigating
e�cient and robust geometric tests to avoid false positive loop-closures, di�erent
image and scene representations have been investigated. Namely, the �rst approach
proposed, employs orthophotos to create a well-conditioned problem to address ori-
entation tolerance, demonstrating better recall than counterpart methods relying
on perspective images in urban environments, where the presence of large planar
structures can be assumed. Pushing for more general scenarios, and relaxing this
assumption, the second method for lightweight Place Recognition proposed in this
thesis is a new, carefully designed pipeline to support low-burden computation and
to take advantage of any scale and rotation invariance o�ered by binary descriptors
by using combined geometric checks that make use of both 2D and 3D informa-
tion. Tests in both hand-held and aerial datasets exhibiting large viewpoint and
appearance changes have revealed unprecedented recall for perfect precision for
this pipeline in comparison to the state of the art. However, it was only with the
extension of this pipeline with a scene-depth completion module to densify the map
of the local scene (i.e. "place"), described in the �nal method proposed here, that
indeed tolerance to extreme viewpoint changes of up to 45◦ was achieved. This
comprises a drastic improvement in viewpoint tolerance when compared with the
state of the art today, demonstrating that feature-based approaches still have a lot
to o�er in Place Recognition at extreme viewpoint changes.
Throughout the research conducted for this thesis, several synthetic and real

datasets, with both hand-held and aerial footage, were captured and made pub-
licly available. Inspired by the lack of such datasets in the literature and the need
to benchmark methods, these datasets were designed to present large appearance
changes and extreme viewpoint variations (0-45◦). In particular, our synthetic
datasets are, to the best of our knowledge, the �rst to isolate the problem of view-
point changes for Place Recognition, addressing a crucial gap in the literature.
Tackling real-time, viewpoint-tolerant Place Recognition for lightweight single- or
multi-robot applications, as well as releasing novel benchmarking datasets, the re-
search �ndings of this thesis push the boundaries of vision-based aerial navigation,
but also shed light to new research directions towards long-term robot autonomy
in real missions. The prospect of leveraging the bene�ts of both feature- and
learning-based approaches to go beyond viewpoint-tolerance and addressing the
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open problem of combined tolerance to common challenges, such as seasonal and
illumination changes as well as higher-level reasoning for perceptual aliasing, opens
up exciting opportunities for added robotic intelligence and autonomy.
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Riassunto

Con l'emergere di tecniche sempre più potenti per la stima del movimento di un
robot e la costruzione di mappe seguendo i paradigmi dello SLAM (Simultane-
ous Localization And Mapping), il problema del Place Recognition ha assunto
un'importanza fondamentale nell'attività di ricerca rivolta all'autonomia dei robot.
Cercare di determinare tramite tecniche di Place Recognition se un robot abbia
fatto ritorno in un luogo precedentemente visitato, problema conosciuto comune-
mente come Loop-closure Detection, è una capacità essenziale per permettere la
costruzione di mappe accurate e di recuperare la stima della posizione in caso di
errori nel processo di localizzazione, aprendo di fatto la via verso la navigazione
autonoma a lungo termine dei robot. Ciononostante, l'utilizzo di robot in missioni
che richiedono lunghi periodi di tempo o che sono da svolgersi a distanza di mesi
o anni tra di loro, può porre delle grandi di�coltà nel Place Recognition, princi-
palmente a causa della notevole variabilità a cui un luogo può essere soggetto nel
tempo, dovuta ad esempio a cambiamenti stagionali o delle condizioni di illumi-
nazione, alle condizioni meteo e all'attività umana. Le variazioni di traiettoria e
di punto di osservazione sono tuttavia comuni anche nelle missioni di breve pe-
riodo. Ad esempio, le esperienze visive di una strada vista da un'auto possono
essere notevolmente di�erenti a seconda della direzione di guida. Considerando la
navigazione di un Unmanned Aerial Vehicle (UAV), tuttavia, i cambiamenti del
punto di osservazione sono nettamente più di�coltosi, specialmente in caso di volo
di UAV multirotori, a causa della loro agilità nei movimenti in 3D.
In questa tesi, viene a�rontato il problema del Place Recognition robusto al

cambiamento del punto di osservazione della scena per la navigazione autonoma
dei robot. Più precisamente, abbiamo concentrato i nostri sforzi sullo sviluppo
di approcci che siano adatti a UAV di piccole dimensioni, con ridotta capacità
di carico utile e, di conseguenza, con potere computazionale limitato. È stato
dimostrato che gli approcci di Deep Learning che a�rontano il problema del Place
Recognition ottengono ottimi risultati in caso di variazioni isolate nell'aspetto dei
luoghi precedentemente visitati. La forza di questi metodi tuttavia deriva da un
training, o allenamento, speci�co sui cambiamenti attesi e da un notevole sforzo
computazionale. Queste caratteristiche impongono di conseguenza la necessità di
vasti dataset di allenamento e di potenti GPU (Graphics Processing Units), che
spesso non sono disponibili a bordo di veicoli di piccole dimensioni, rendendo l'uso
di tali metodologie non pratiche in caso di navigazione aerea. D'altra parte, in
letteratura esistono tecniche computazionalmente meno costose e meglio scalabili
basate sull'estrazione di features, come l'e�ciente Bag-of-Words (BoW). Tuttavia,
è noto che questi metodi falliscono in modo drastico in caso di grandi cambiamenti
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Riassunto

di aspetto e del punto di osservazione. Questo limite è dovuto al fatto che, per
scelte di progettazione, l'approccio del BoW scarta tutte le informazioni relative
alla struttura geometrica della scena.
Partendo dalla necessità di tecniche computazionalmente trattabili ed e�caci da

utilizzarsi a bordo di veicoli di dimensioni ridotte per il problema del Place Recog-
nition, questa tesi si concentra sugli approcci basati sull'estrazione di features al
�ne di renderli capaci di a�rontare i cambiamenti nell'aspetto dei luoghi quando
sperimentati da droni, cercando di limitare lo sforzo computazionale per permet-
tere operazioni in tempo reale. Come risultato, questa tesi introduce una serie di
nuove metodologie per Place Recognition robuste ai cambiamenti del punto di os-
servazione che si vanno a basare progressivamente l'una sull'altra, raggiungendo un
livello di robustezza senza precedenti nello stato dell'arte. Supponendo che un sis-
tema di SLAM, basato esclusivamente su fotocamere e sull'estrazione di keyframes,
sia operativo a bordo del robot, questa tesi sostiene l'importanza di sfruttare sia
le informazioni visive 2D inerenti alle immagini, sia le misure della geometria 3D
catturata dallo SLAM, seppur sottoposte a rumore, al �ne di decidere se un robot
sia in presenza di un luogo precedentemente visitato, o Loop-Closure. In tutti gli
approcci proposti, una rappresentazione basata su BoW è usata in combinazione
con features binarie estratte dall'immagine per consentire un rapido recupero delle
informazioni. Ogni candidato per un Loop-Closure, estratto dal database di tutte
le esperienze passate di un robot e corrispondente a una immagine di query, è
soggetto a una veri�ca di tipo geometrico. Ciò impone un test per veri�care la cor-
rispondenza delle costellazioni delle features visibili nelle immagini, nel tentativo di
ri�utare le corrispondenze errate ottenute nel passaggio di recupero dell'immagine
dal database. Oltre allo sviluppo di test geometrici e�cienti e robusti per evitare
falsi positivi nei Loop-Closures, sono state investigate diverse rappresentazioni delle
immagini e delle scene. Il primo approccio proposto utilizza ortofoto al �ne di
costruire un problema ben posto per migliorare la robustezza alla variazione di
orientazione del punto di vista, mostrando come in ambienti urbani, dove è pos-
sibile ipotizzare la presenza di grandi strutture piane, sia possibile ottenere un
miglior recall rispetto ad altri metodi basati su immagini proiettive. Muovendosi
verso scenari più generici e rilassando l'ipotesi di planarità, il secondo metodo per
Place Recognition proposto in questa tesi è un nuovo approccio attentamente pro-
gettato, in modo tale da essere caratterizzato da un basso carico computazionale
e dalla capacità di sfruttare l'invarianza alla scala e alla rotazione dei descrittori
binari, utilizzando una combinazione di controlli geometrici che impiegano sia le
informazioni 2D sia 3D. I test nei dataset, sia nei casi hand-held sia aerei, carat-
terizzati da grandi cambiamenti nella direzione di osservazione ed nell'aspetto dei
luoghi, mostrano, data una precisione perfetta, un recall senza precedenti nello
stato dell'arte. Tuttavia, solo con l'estensione dell'approccio con un modulo per il
calcolo della profondità della scena osservata, al �ne di densi�care la mappa locale
(i.e. il �luogo�), descritto nell'ultimo metodo qui introdotto, la tolleranza a cam-
biamenti estremi del punto di vista riesce a raggiungere i 45◦. Ciò ha portato ad
un miglioramento drastico rispetto allo stato dell'arte odierno della robustezza al
cambiamento della direzione di osservazione, mostrando come gli approcci basati
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sull'estrazione di features abbiano ancora molto da o�rire al problema del Place
Recognition soggetto a cambiamenti estremi del punto di vista.
Durante la ricerca condotta per questa tesi, diversi dataset, sia hand-held sia

arei, sono stati raccolti e resi pubblici. Ispirati dalla mancanza di tali dataset in
letteratura e dalla necessità di metodi per e�ettuare comparazioni dei risultati,
questi dati sono caratterizzati da grandi cambiamenti di aspetto e da variazioni
estreme del punto di osservazione (0-45◦). In particolare, i nostri dataset sintetici
sono, al meglio delle nostre conoscenze, i primi a isolare il problema delle variazioni
del punto di vista per il Place Recognition, colmando una lacuna cruciale presente
in letteratura. A�rontando il problema del Place Recognition robusto ai cambia-
menti dei punti di osservazione, utilizzabile in tempo reale in uno o più robot di
dimensioni ridotte, e allo stesso tempo pubblicando nuovi dataset per attività di
comparazione, i risultati di questa tesi non solo spingono i limiti della navigazione
aerea basata su sensori visivi, ma gettano luce anche su nuove direzioni di ricerca
verso l'uso di robot autonomi in missioni a lungo termine nel mondo reale. La
prospettiva di sfruttare i bene�ci dei metodi basati sia sull'estrazione di features
sia sul Deep Learning per a�rontare la tolleranza ai cambiamenti dei punti di os-
servazione e altri problemi comuni non ancora risolti, come cambiamenti stagionali
e di illuminazione, nonché il ragionamento ad alto livello per l'aliasing percettivo,
apre nuove eccitanti opportunità per lo sviluppo dell'intelligenza e dell'autonomia
dei robot.
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Preface

This is a cumulative doctoral thesis and as such, it comprises the most relevant
works published by the author during her doctoral studies. Chapter 1 introduces
the overall problem addressed in this thesis, Chapter 2 details the main contribu-
tions achieved, and Chapter 3 concludes this thesis by presenting a summary of
the main achievements and discussing future directions to address remaining open
problems in long-term Place Recognition for UAVs and other robots. All peer-
reviewed papers composing the main contributions of this thesis are attached at
the end of this document.
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Chapter1
Introduction

Recent years have been marked by a sharp growth of the UAV industry, with several
o�-the-shelf consumer UAVs appearing in the market and commercial solutions
that go beyond aerial photography and media coverage. With applications ranging
from digitization of archaeological sites to search-and-rescue, there are many tasks
where autonomous UAVs can make a real di�erence. Motivated by their potentially
great impact, booming research attention has been dedicated in automating the
navigation of UAVs driven by both Academia and Industry.
The ability of a mobile robot to navigate in the environment and reliably �nd

its way between known locations, while avoiding obstacles and unsafe conditions
is a key capability for realistic autonomy. While many competencies are required
by a robot to successfully navigate in its environment, accurate localization is a
fundamental requirement for navigational autonomy [100]. By determining its pose
in the environment, the robot can make decisions based on what it perceives, and
given this information, it can plan its future actions. While the use of external
guidance, such as beacons and GPS signals, are common ways to address local-
ization for robot navigation, such cues are not always available or reliable. For
example, while GPS signals can be partially occluded in the close vicinity of large
structures or even be entirely unavailable, such as indoors or underground, the
use of beacons requires modi�cations in the environment, which is not always pos-
sible. Consequently, for a robot to be truly autonomous it needs to rely on its
own sensor-suite in order to gain su�cient understanding of its surroundings to
determine its pose within the environment. Localization can be addressed with
Place Recognition, which formally, is the problem of determining whether a robot
is re-visiting an area, where it has been to before. This is typically addressed by
comparing the sensing cues (e.g. the current image) that the robot experiences at
its current location against all past sensing experiences that live in a database and
are associated to speci�c `places' in the world. A `place', in this context, can be a
location in a topographic map of the scene, or even refer to the pose of a robot in
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1 Introduction

a metric map. In some cases, such as in robot localization, the outcome of a Place
Recognition instance is not only a boolean decision on whether the robot has been
to the current place in the past, but also a pose transformation relating the two
places, the current and the matched one.
As Place Recognition addresses the comparison of the representation of di�erent

places in the world, di�erent sensing cues can be employed to this end. Laser- and
sonar-based approaches [30, 31], for example, compare local signatures of the scene
structure, however, it is now well understood that vision provides a very favourable
balance between richness of information encoded in images and the a�ordability,
portability and ubiquity of cameras. As a result, vision-based Place Recognition
as addressed in this thesis, is now the most common practice in the �eld.
Vision-based Place Recognition, however, is a challenging task due to the large

variability in a scene's appearance that can be observed in the real world, caused
by changes in the time of the day, weather or seasonal e�ects, human activities
and dynamic objects. Figure 1.1 illustrates some challenging recognition tasks due
to environmental changes. Conversely, di�erent locations can appear identical, as
shown in Figure 1.2. This so-called �perceptual aliasing� is a key problem in robotic
perception and Place Recognition, attracting great research interest. On top of all
these challenges that the research community has been trying to address over the
past years, tackling Place Recognition for a small UAV adds on to the challenge, as
the same scene can be experienced from drastically di�erent viewpoints, resulting
to very di�erent depictions of the same place. Figure 1.3 depicts some viewpoint
changes experienced by a UAV that pose major challenges when assessing image
similarity for Place Recognition. Moreover, if onboard computation is a require-
ment, the limited resources onboard a UAV have to be taken into account, driving
research towards lightweight solutions.
Inspired by the challenges of Place Recognition from aerial imagery and as aerial

vehicles are some of the most dynamic and challenging platforms for robotic per-
ception today, the focus of this thesis is on this problem as it promises great impact
to the Robotics community. By pushing the state-of-the-art in vision-based Place
Recognition, it is possible to enable longer-term autonomous operation of robotic
systems in real world scenarios, where major appearance and viewpoint changes
are usually present. As such, this thesis addresses vision-based Place Recognition
for a small UAV dealing not only with common appearance changes, but also under
usual to extreme viewpoint changes among captures. By focusing our research on
aerial robots, we believe that the portability of the theoretical and practical out-
comes of this thesis to other platforms (e.g. ground robots) with simpler motion
and computational constraints should be straightforward.

1.1 Motivation and Objectives

Over the last couple of decades, robots have been evolving quickly, from stationary
machines to powerful and sophisticated mobile platforms capable of performing
challenging tasks in a wide range of environments. While, in the past, the use of
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1.1 Motivation and Objectives

(a) Seasonal changes

(b) Illumination changes

(c) Physical changes in the environment

(d) Changes due to dynamic objects

Figure 1.1: Example challenges in vision-based Place Recognition illustrating the
di�culty in assessing image similarity in the presence of common appearance
changes that the same `place' can experience.
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Figure 1.2: Examples of a di�cult Place Recognition task, given the existence of
self-similar structures in the environment, a problem known as perceptual aliasing.
Despite the major similarities between each pair of images in each column, the
depicted buildings are in the reality located in di�erent physical locations. Such
problems could be addressed by extending the description of a place to incorporate
more views of each scene to provide extended context in the comparison.

mobile robots was restricted to controlled environments o�ering a certain level of
structure, rather expected variations, and often a known map, such as in factories
and warehouses, now their use is becoming a reality in more general environments.
From navigating hospital halls to deliver meals and medication [56] to performing
search-and-rescue missions [79], there are many applications, in which long-term
deployment of autonomous mobile robots in unknown and often unstructured en-
vironments is becoming increasingly important. In fact, to achieve autonomy in
such scenarios, mobile robots often need to be able to self-localize, even when faced
with dynamic and possibly self-similar environments.
In applications where the map of the environment is unknown and external guid-

ance (e.g. GPS) is not available, the robot needs to employ SLAM to incrementally
build a map of its workspace while keeping track of its pose within this map. To
this end, several approaches for SLAM have been proposed in the literature em-
ploying di�erent sensors, such as single cameras [34, 77, 90] or visual and inertial
cues [14, 61, 87], as this is the core ability of spatial understanding necessary for
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1.1 Motivation and Objectives

Figure 1.3: Example viewpoint changes experienced by a UAV. As illustrated
here, images from the same place can look very di�erent when captured from
di�erent viewpoints, posing major challenges when assessing images similarity.

autonomous robot navigation.
Clearly, the quality of the map and the accuracy of the localization estimates are

closely related to the sensors used to perceive the environment. However, sensor
readings are usually subject to noise and bias and it is inevitable that in all SLAM
approaches, small estimation errors accumulate over time. In e�ect, this means
that the robot's understanding of the world and its trajectory in it diverge from
reality, especially over long exploratory missions and as a result, both the map and
the robot's location can become inconsistent. Detecting when the robot returns to
a previously visited location to close a loop in its trajectory, can join corresponding
points of the map, reducing the drift of estimates, thus aiding the creation of more
accurate maps and improving localization accuracy. Similarly, Place Recognition
can be performed to enable relocalization in case of SLAM failure. In this case,
a new SLAM map is often triggered, while attempts to match the robot's current
surroundings to all past robot experiences are running in the background. As soon
as a match is identi�ed, the two maps can be merged and SLAM can continue on
the joint map.
With SLAM approaches reaching maturity, the deployment of multiple robotic

platforms to perform a task collaboratively has been attracting increasing atten-
tion from the Robotics community. Multi-robot systems o�er great promise in
a variety of applications, not only to speed up the execution of a task, but also
to perform tasks that would not be possible using a single robot (e.g. lift heavy
loads collaboratively). With each robot performing SLAM and building its own
map independently, a global map of the environment can be obtained by perform-
ing inter-map Place Recognition. By detecting when one robot returns to a place
already visited by another robot can form the basis of any collaboration among
them. In a search-and-rescue scenario, for example, where time is critical and the
environment can pose great hazards, the search area to be inspected can be split
among a team of heterogeneous robots [39], consisting of UAVs and ground robots,
to assist �rst responders by building a map of the environment. This can be used
to aid decision-making, minimizing the exposure of rescuers to unnecessary risks
to inspect the area manually. To this end, UAVs, for example, can provide the
overview of the scene, while ground robots can be used to explore occluded and
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con�ned spaces. However, in order to bring estimates together to build a joint map,
e�cient collaboration is necessary, which is only possible if the robots know where
they are with respect to each other. This highlights the challenge of viewpoint-
tolerant Place Recognition to identify loops across the trajectories of the di�erent
robots, experiencing the scene from such di�erent viewpoints.
Apart from multi-robot scenarios, another interesting application of Place Recog-

nition is the ability of performing localization in multi-mission scenarios from single
robots. A vacuum cleaner robot, for example, performs the same task in di�erent
occasions at di�erent times of the day over the same area. Assuming basic SLAM
functionality onboard, mapping of the environment can be performed during a
�rst exploratory mission. However, once a map of the environment is obtained,
the robot can use it to plan its path more e�ectively in subsequent missions. While
the scene can be largely expected to remain the same, some parts are due to change
(e.g. chairs can be moved), highlighting the need for Place Recognition to iden-
tify place matches against the previous acquired map. Place Recognition in such
scenarios can become particularly challenging as not only furniture that can be
frequently moved to another place, but also illumination conditions are constantly
changing throughout the day and night (e.g. the same scene can look very dif-
ferent in direct sunlight and when lit by a lamp in the evening). A projection of
similar challenges can be envisioned in street-level localization with Google Maps
AR, where the map is augmented with accurate navigation information to assist
humans while navigating in an environment. Building on the ideas of [114], GPS
information is �rstly used to recover Street View images from the person's nearby
area. Then, given an image of the person's current location, Place Recognition is
performed by matching the query image against all Street View images, enabling
more precise pose estimation. Robustness to common scene changes in the Place
Recognition pipeline employed, is imperative for smooth operation.
Overall, Place Recognition plays a key role in both (i) the longer-term auton-

omy of a robot triggering drift correction and relocalization, but also (ii) the co-
localization of robots in multi-robot setup, e�ectively enabling collaboration. Fol-
lowing the realization that vision-based approaches su�er from lack of robustness
and generality, the main goal in this thesis is to address Place Recognition under
extreme viewpoint changes, while maintaining robustness to common appearance
changes and a�ordable computation.

1.2 Related Work

Feature-based solutions using local feature detectors and descriptors, such as SURF
[12] and SIFT [66], have been widely applied in Place Recognition. However, iden-
tifying whether a robot is revisiting a place by directly matching a query image
against all images in a database is a very ine�cient process. To this end, a lot
of early research e�ort has been focusing on image retrieval techniques to e�-
ciently search a database containing all the previous experiences of the robot for
loop-closure candidates that are similar in appearance to a given query image. In-
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spired by text retrieval techniques, the pioneering work in [102] gave rise to what
is widely known as the Bag-of-Words (BoW) approach. This technique relies on
quantizing local feature descriptors generated using a set of training images to
build a dictionary of visual words and then representing new images as a set of
visual words it contains. The Bag-of-Words approach is usually combined with an
inverted-�le-index linking visual words to frames they appeared in for fast image
retrieval [27]. Several well-performing algorithms for Place Recognition using a
BoW representation were proposed in the literature. One of the most in�uential
works employing the BoW approach is the open-source FAB-MAP framework for
Place Recognition [27], which proposes a probabilistic model of place appearance
using a generative model of visual words observations and a sensor model that ex-
plains missed observations of visual words. While FAB-MAP discretizes a feature
space of SURF [12] descriptors, the work in [36] exploits the use of e�cient binary
features for Place Recognition and proposes a binary BoW representation. Moti-
vated by the need for lightweight solutions able to run onboard of robotic mobile
platforms, the works in [77] and [87] make use of this binary BoW representation
to perform loop-closure detection during SLAM. Although several well-performing
feature-based approaches have been proposed for Place Recognition, the extraction
of unique and repeatable features has been proven to be far from trivial [63], and
large appearance changes usually pose major challenges for feature-based methods.
Instead of using traditional feature-based representations, another popular ap-

proach to image representation is to consider whole-image descriptors, such as
GIST [83] and HOG [29], successfully employed for Place Recognition [65, 75, 78].
These methods are usually considered more robust to appearance changes than
feature-based approaches, which usually su�er from the lack of repeatability of local
descriptors when changes in appearance occur. However, whole-image approaches
often lack invariance to viewpoint changes as whole-image descriptor comparison
methods tend to assume that the images compared are captured from a similar
viewpoint. SeqSLAM [75], for example, makes use of whole-image descriptors and
proposes to address Place Recognition by matching image sequences instead of sin-
gle observations, achieving impressive recall rates on scenes with dramatic changes
in lighting (e.g. day/night). In robotics applications it is common to have access
to a sequence of images captured along the robot's trajectory rather than just
single-image observations of places. Therefore, matching image sequences instead
of individual images can o�er useful cues to increase the number of correct matches
and �lter out incorrect associations. Place Recognition approaches in general ben-
e�t from exploiting image sequences, especially during SLAM, where false positive
detections can cause large mapping errors.
In the last years, Convolutional Neural Networks (CNNs) have been successfully

employed to learn compact image representations suitable for Place Recognition [7]
or even to regress a 6-DoF (position and orientation) pose directly from an image
[51]. Motivated by their ability to learn generic features that can be deployed for a
variety of related, but di�erent visual tasks [84, 98], the work in [21] was the �rst to
exploit the utility of CNNs for Place Recognition. Giving an entire image as input
to a pre-trained network, whole-image descriptors were directly extracted from its
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activation layers and subsequently employed for image comparison. While several
approaches using pre-trained CNNs as whole-image feature extractors for Place
Recognition were proposed in the literature [8, 21, 104], these methods are quite
sensitive to changes in viewpoint and partial occlusions. More viewpoint-tolerant
representations were proposed combining traditional local feature extractors with
CNN descriptors to match image patches over large appearance and viewpoint
changes [48, 105]. However, these methods require to apply the pre-trained net-
work for every extracted region, resulting in high computational cost. Instead of
relying on external feature detectors, the work in [23] directly identi�es salient re-
gions from the CNN layer activations and only needs to run the network once for
each image, signi�cantly reducing the computational cost. On the other hand, sev-
eral approaches reported a gain in performance by training a CNN speci�cally for
the Place Recognition problem [7, 22]. While these methods usually perform well
under large appearance changes, the impact of extreme viewpoint changes remains
largely unexplored, as large datasets addressing both appearance and viewpoint
variations are very di�cult to obtain. More recently, absolute pose regression ap-
proaches have become popular [16, 50, 80, 95]. Given a set of training images
and their corresponding poses, these approaches train a CNN to regress the cam-
era pose directly from an image. Requiring only one forward pass through the
network, these methods are usually very e�cient. However, their performance is
still signi�cantly less accurate than feature-based approaches augmented with 3D
information, which was shown to achieve higher pose accuracy by explicitly es-
tablishing feature correspondences between 2D pixel positions and a 3D map of
the scene [15, 95, 97, 110]. While CNN-based features have demonstrated high
invariance to changes in the scene, deep learning techniques usually rely on pow-
erful GPUs, rendering them computationally too expensive to run onboard small
aircraft. Besides this, they most often rely on very extensive, annotated datasets
to cover all possible variations, which are very hard, if not impossible, to obtain.

1.3 Approach

Place Recognition onboard a small UAV is inherently rather di�erent from the
traditional Place Recognition problem for a car navigating in the streets of a city
as commonly addressed in the literature. While a multitude of powerful and heavy
sensors can be carried onboard a car, the limited payload of small UAVs needs to
be taken into account when choosing the best sensors for the task at hand. As
a result, this thesis tackles the problem of viewpoint-tolerant Place Recognition
using vision as the robot's main sensing modality as cameras o�er rich information
about the environment and are compact and lightweight to be carried onboard
small aircraft. As inertial sensors are commonly available onboard UAVs, in this
thesis, we make use of both visual cues from a single camera, as the single extero-
ceptive sensor employed onboard, and feeds from an inertial sensor (i.e. providing
acceleration and gyroscopic measurements, and in e�ect making scale observable),
which, together with cameras, comprise the most commonly used sensor setup for
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UAV navigation.
The dynamicity and agility of a small UAV (i.e. especially rotorcraft) means

that it is very likely to approach the same scene from a wide range of viewpoints,
which is by de�nition fatal for techniques employing whole-image representations,
while feature based approaches also struggle greatly. As a result, current feature-
based methods attempt to circumvent major changes in appearance by using high
quality feature detectors and descriptors, such as SIFT and SURF. These features,
however, are typically far too expensive to employ onboard a small UAV, which
renders most of these techniques unusable. With deep learning approaches usu-
ally demanding powerful GPUs that cannot be carried onboard small aircraft, and
considering the advantages and drawbacks of other solutions, the approaches pro-
posed throughout this thesis make use of a binary BoW approach (i.e. operating
on features with binary descriptors, such as BRISK [59] and ORB [92]) combined
with an inverted-�le-index linking visual words to frames they appeared in, for fast
image retrieval.
As SLAM is a prerequisite for autonomous robot navigation, the approaches for

Place Recognition proposed throughout this thesis are interfaced with a nominal
visual-inertial SLAM system employing the keyframes approximation, such as [61,
87]. On the quest, to build more robust Place Recognition solutions, we exploit
not only the 2D information inherent in images, but also a local 3D map of the
environment that is anyway computed by SLAM that is assumed to be running in
the background.
In summary, assuming a nominal, visual-inertial, keyframe-based SLAM system

running onboard the robot, in this thesis we make use of low cost binary features
that are computationally more suitable for UAV navigation, while exploiting both
2D and 3D information to improve feature-based image matching to enable accu-
rate Place Recognition at large viewpoint changes (i.e. up to 45◦). All the works
proposed in this thesis make use of a binary BoW approach to retrieve loop-closure
candidates from a large database of images containing all the previous locations
visited by the robot. The set of candidates is then reduced by �rst employing ap-
pearance checks, followed by geometric ones in order to decide whether the robot
is currently at a place experienced already (i.e. present in the database of places)
or a new place and also to compute an accurate pose of the robot.
To accomplish these objectives, we break the overall goal of this thesis down

to three main parts. First, we develop an approach for viewpoint-tolerant Place
Recognition speci�c to urban scenes. Assuming the existence of major planar
structures in the scene, the proposed approach transforms the current image into
an orthophoto [69], in an attempt to compensate for the camera rotation and
achieve a repeatable image representation. Using this method as a basis, the
approach in [107] performs drift correction and relocalization in order to enable
robust relative pose estimation between two UAVs. In an attempt to relax the
planarity assumption of [69], more generic scenarios are considered in [70] proposing
a new Place Recognition framework that puts the focus on robust geometric checks
to avoid false positive detections that often occur with appearance-only checks.
This framework is then extended in [71] to tackle more extreme viewpoints by
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improving feature-based image matching using a depth completion approach.
In order to evaluate the proposed approaches, several datasets, containing vi-

sual and inertial information, as well as ground-truth, were created throughout
this thesis. While datasets containing visual and inertial information, such as
KITTI [41], exist in the literature, most of the available sequences exhibit mainly
forward camera motion with a front-looking camera, rendering data labelling for
ground-truth very di�cult. For this reason, real outdoor sequences were recorded
especially for Place Recognition applications using �ying and hand-held setups
with a side-looking camera, permitting clear decisions on ground-truth labelling.
These sequences exhibit moderate appearance changes and large viewpoint vari-
ations. To isolate the problem of viewpoint changes in Place Recognition, while
keeping full control of the test conditions, photo-realistic synthetic datasets, ex-
hibiting extreme changes in viewpoint, were also produced. The synthetic datasets
were created using 3D models obtained by photogrammetric reconstruction and a
UAV physical simulator. These benchmarking datasets [70, 71] capture the same
area repeatedly, at di�erent times of the day and the year, and with di�erent plat-
forms, experiencing the scene from di�erent viewpoints. Some of these datasets
have already been used in [113], presenting an evaluation of visual Place Recogni-
tion techniques and advocating the particular di�culties when employed for aerial
navigation, resonating the arguments presented in this thesis.
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Chapter2
Contribution

This chapter presents the scienti�c contributions of this thesis. The overall context
and the main contributions of each of the main publications are summarized, and
the interrelation among them is discussed. Other related works, made in collabo-
ration with others throughout the course of this thesis, are also listed. The list of
students supervised by the author is provided at the end of this chapter.

2.1 Core Publications

Paper I

Fabiola Ma�ra, Lucas Teixeira, Zetao Chen, Margarita Chli, �Loop-Closure Detec-
tion in Urban Scenes for Autonomous Robot Navigation�. In International Con-
ference on 3D Vision (3DV), 2017.

Context

Place Recognition is commonly addressed as an image retrieval problem, and the
success of the BoW approach in searching for similar images in a database had led
to its wide use. This technique relies on building a dictionary of visual words by
clustering locally invariant feature descriptors appearing in a collection of model
images and then representing each new image as the set of visual words it con-
tains. A BoW approach combined with an inverted-�le-index is usually applied to
e�ciently search for loop-closure candidates in a database of images containing all
the previous experiences of the robot. While standard strategies store visual in-
formation captured by a perspective camera, some approaches rely on the creation
of orthophotos to enable much better condition when evaluating images similar-
ity. By detecting vanishing points and generating gravity-aligned orthophotos, the
approach in [10] corrects for the rotation of the camera when capturing a place,
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converting Place Recognition to a homothetic problem involving only scale and
an o�set in a 2D plane. In a similar spirit, the work in [20] demonstrates a gain
in performance by combining both unmodi�ed perspective images and their cor-
responding orthophotos for Place Recognition. However, both works assume the
existence of a prior 3D model of the environment, which is unrealistic in some
cases. Assuming a high-density of largely planar structures, common in man-made
environments, in this paper we propose a novel Place Recognition approach for
autonomous robot navigation in urban scenes. Generating a mesh of the robot's
local surroundings in real-time, the proposed approach estimates the most salient
plane in the current view to generate its corresponding orthophoto. Loosely inte-
grated with a keyframe-based SLAM, no previous knowledge of the environment
is required by the proposed system.

Contribution

This paper [69] has two main contributions. First, we propose a new approach to
perform loop-closure detection for robot navigation in urban scenarios that does not
require any previous knowledge of the environment nor does it impose unrealistic
assumptions (e.g. a Manhattan world). This approach was demonstrated to be
fast enough to run onboard a small UAV with limited computational capabilities.
Second, we create a new approach to generate orthophotos in real-time from sparse
features provided by a visual-inertial SLAM algorithm. Orthophotos are commonly
computed by extracting line segments in an image in order to detect its vanishing
points. Estimating vanishing points is usually an ill-conditioned problem given the
very small intersection angles among the lines, while deciding which line segment
is associated to which vanishing point present additional source of errors [47]. One
advantage of the proposed approach is that it does not rely on the estimation of
vanishing points, instead it estimates the most salient plane in the scene, using the
local 3D map provided by SLAM, to create its corresponding orthophoto.

Interrelations

The Place Recognition approach presented in this work generates a 3D mesh of
a location out of the 3D landmarks provided by a SLAM system. While in this
paper a mesh of the local scene is estimated to provide the basis to identify the most
prominent plane in the scene (which is later used to compute the corresponding
orthophoto), in Paper III, the estimated mesh is used to densify the 3D map
provided by the SLAM algorithm to enable feature-based matching between images
captured from very di�erent viewpoints.
The Place Recognition approach proposed in this paper was put to the test in

[107], in which we propose a collaborative pose estimation between two UAVs to
enable aerial manipulation and close-up inspection of structures of interest with
low or no texture. In this scenario, a master UAV carrying a known constellation
of LEDs (Light-Emitting Diodes) is equipped with the capability to run SLAM
onboard and is assumed to �y at a distance from a structure to be inspected
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(e.g. a wind turbine). Tracking the LEDs to estimate its relative distance to the
master, a slave UAV is employed to perform the close inspection of the structure,
as its �eld of view is then too limited to perform SLAM reliably, onboard. The
orthophoto-based Place Recognition is used in this setup to keep the drift of the
SLAM estimation bounded, as well as for relocalization in case of a SLAM failure.

Paper II

Fabiola Ma�ra, Zetao Chen, Margarita Chli, �Viewpoint-tolerant Place Recognition
combining 2D and 3D information for UAV navigation�. In IEEE International
Conference on Robotics and Automation (ICRA), 2018.

Context

Place Recognition onboard a small UAV is particularly challenging; the dynamicity
and agility of a small UAV means that it is very likely to approach the same scene
from a wide range of viewpoints, which is very problematic, at best, for feature-
based approaches and fatal for global image-representation techniques. Current
feature-based BoW approaches try to circumvent major changes in appearance by
using high-quality feature detectors and descriptors, such as SIFT [66] and SURF
[12]. These features, however, are typically far too expensive to employ onboard a
small UAV, which renders most of the existing Place Recognition techniques un-
usable. Interestingly, features with binary descriptors, such as ORB [14], BRISK
[15] and FREAK [16] promise similar matching performance to SIFT or SURF at
a dramatically low computation, however, it becomes far more di�cult to cluster
them into visual words in a BoW approach. The work in [17] was the �rst in the
literature to use binary features for Place Recognition, however, the precision-recall
characteristics of this method show that it is still very sensitive to noise. The BoW
approach discards all spatial information between visual words by de�nition, ac-
cepting as a match two images having the same words regardless of their geometric
constellation in the image space. While in ground robot navigation scenarios, where
the scene is expected to always be experienced up-right, this might be enough [4],
in UAV navigation, where very di�erent viewpoints are expected, geometric veri�-
cation of an appearance match is imperative. In this paper, we present a scalable
framework to identify loop-closures in a robot's trajectory using low cost, binary
features suitable for UAV navigation. While the �rst priority in Place Recognition
is to avoid false positive loop detections, false negatives become of particular in-
terest in viewpoint-challenging cases as they occur far more commonly than in any
other scenario, e�ectively limiting our ability to correct for accumulated drift. In
this spirit, here we propose to �rst use the 3D-3D Horn's geometric veri�cation [43]
and if this proves unsuccessful, a follow-up check for 2D-3D geometric consistency
using the method of [53] is performed. As the 3D map data is usually sparser than
the 2D image data, by expanding the set of correspondences to be considered the
proposed approach aims to increase the recall rates while still maintaining perfect
precision.
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Contribution

In this paper, we propose a novel pipeline for viewpoint-tolerant Place Recogni-
tion that makes use of promising leads from existing works, combining them in a
way that enables unprecedented robustness to a wide range of common challenges
(i.e. tolerance to viewpoint, illumination changes, occlusions, perceptual aliasing,
etc). The proposed pipeline was carefully designed to support low-burden compu-
tation and to take advantage of any scale and rotation invariance o�ered by the
BRISK features, using combined geometric checks that exploit not only the 2D in-
formation inherent in images, but also the 3D information provided by the SLAM
system that is assumed to be running in the background. Besides this, new datasets
with visual-inertial information and manually-annotated ground-truth were made
publicly available with this paper [70]. The new datasets exhibit viewpoint, illu-
mination and situational changes, suitable to test Place Recognition approaches.

Interrelations

The Place Recognition pipeline proposed in this paper served as a basis for the
Paper III. In Paper III, the pipeline of Paper II was augmented with a depth com-
pletion approach for map densi�cation, in order to improve the geometric checks
proposed here, enabling Place Recognition at more dramatic viewpoint changes.

Paper III

Fabiola Ma�ra, Lucas Teixeira, Zetao Chen, Margarita Chli, �Real-time Wide-
baseline Place Recognition using Depth Completion�. In IEEE Robotics and Au-
tomation Letters (RA-L), 2019.

Context

Extreme changes in appearance and viewpoint can pose a signi�cant challenge
for feature-based approaches. As a result, several approaches attempt to combine
both 2D information from images and 3D geometry of the scene, either by using
cameras and LIDAR sensors [99] or directly extracting 3D information from the
images using Structure-From-Motion [94] or SLAM [77]. Usually, these methods
rely on image retrieval techniques that make use of 2D information to recover loop-
closure candidates to a given query image, before testing for geometric consistency
using 3D information. In these cases, the scene is usually represented by a 3D
map, in which each 3D point is associated with one or more local descriptors in
the image space, and 3D correspondences between two places are usually obtained
via descriptors matching in the image space. However, under extreme viewpoint
changes, feature-based image matching is strongly a�ected by a�ne distortions and
occlusions, resulting in a reduced number of correspondences between the query's
and the candidate's keypoints. When only keypoints with 3D information are
considered in the geometric check, this problem gets even worse, especially when
relying on sparse 3D maps obtained by SLAM. As such, in this paper, we propose
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a new Place Recognition pipeline, building on the �ndings and the experience of
our previous works, that employs depth-completion on sparse feature maps ob-
tained during SLAM to perform map densi�cation in the hope of augmenting the
3D information available in the scene. While state-of-the-art algorithms in depth
completion make use of CNNs to accomplish impressive accuracy, such as [109] and
[88], these approaches require powerful GPUs that are not suitable for small air-
craft. Although some CPU-only approaches (e.g. [57]) can also achieve reasonable
accuracy, these methods usually rely on good quality and not very sparse depth
information as input in order to create a dense representation of the scene. In this
paper, we rely on an e�cient CPU-based approach tailored to SLAM input. De-
spite lower accuracy, this method can handle arbitrary sparse maps with a certain
amount of noise and compute a dense representation of the input image in about
7ms.

Contribution

In this paper, we propose a novel, real-time pipeline for loop-closure detection
that employs depth-completion to enable feature-based matching between images
captured from very di�erent viewpoints. This approach is shown to be capable of
addressing dramatic changes in viewpoint (of up to 45◦), demonstrating that wide-
baseline image matching is possible using feature-based approaches. In addition,
we released new photo-realistic datasets exhibiting dramatic viewpoint changes
in simulation that isolate for the �rst time the problem of viewpoint changes in
Place Recognition from other challenges, such as scale variance, dynamicity of the
scene, and illumination. Together with our synthetic datasets, we also published
real datasets capturing similarly large viewpoints using both aerial and ground
footage. In particular, the air-ground sequence is especially interesting to test
Place Recognition in scenarios exhibiting common appearance challenges, such as
illumination changes and perceptual aliasing.

Interrelations

Driven by the shortcomings of the approach in Paper II in addressing wide-baseline
viewpoint changes, this work builds on top of the pipeline of Paper II to enable
more robust geometric checks. In particular, here we propose an additional step to
perform depth completion for map densi�cation to improve the establishment of
3D correspondences enabling feature-based matching across images captured under
very wide baselines. The depth completion step relies in creating a mesh of the
robots' surrounding from the 3D landmarks estimated by a SLAM system, using
the same approach as Paper I.

2.2 List of Publications

In the context of the author's doctoral studies the following publications were
achieved.
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• F. Ma�ra, L.Teixeira, Z. Chen, and M. Chli. Loop-closure detection in
urban scenes for autonomous robot navigation. In 2017 International Con-
ference on 3D Vision (3DV), pages 356-364. IEEE, 2017

• F. Ma�ra, Z. Chen, and M. Chli. Viewpoint-tolerant Place Recognition
combining 2D and 3D information for UAV navigation. In 2018 International
Conference on Robotics and Automation (ICRA), pages 2542-2549. IEEE,
2018

• F. Ma�ra, L. Teixeira, Z. Chen, and M. Chli. Real-time Wide-baseline
Place Recognition using Depth Completion. IEEE Robotics and Automation
Letters (RAL), 4(2):1525-1532, 2019

• Z. Chen, F. Ma�ra, I. Sa, and M. Chli. Only look once, mining distinctive
landmarks from convnet for visual Place Recognition. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
9-16. IEEE, 2017

• M. Keller, Z. Chen, F. Ma�ra, P. Schmuck, and M. Chli. Learning deep
descriptors with scale-aware triplet networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2762-2770, 2018

• L. Teixeira, F. Ma�ra, M. Moos, and M. Chli. VI-RPE: Visual-Inertial
Relative Pose Estimation for Aerial Vehicles. IEEE Robotics and Automation
Letters (RAL), 3(4):2770-2777, 2018

2.3 List of Supervised Students

Throughout the author's doctoral studies, she has supervised students at the bache-
lor and master levels listed below, for their summer, semester, and master projects.
For projects that resulted in a publication, the relevant citation is given.

Master Theses

Master students, 6 months, full-time

• Marlin Strub (Fall 2017): �Exploring Continuous Representation of the World
for Place Recognition�

• Luca Bartolomei (Fall 2018): �3D Radiation Mapping using a small UAV�

• Michel Keller (Spring 2017): �On the Importance of Scale in Feature Descrip-
tor Learning� [49]
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Semester Theses

Master students, 3-4 months, part-time

• Marlin Strub (Spring 2016): �Towards E�cient Place Recognition for UAV
Navigation�

• Luca Bartolomei (Spring 2017): �Calibration and set-up of two independent
cameras mounted on servos for UAVs relative pose estimation�

• Josua Bögli (Spring 2017): �Content-aware Geometric Check Towards Robust
Place Recognition�

• Michael Reto (Spring 2017): �Investigating Feature Invariance for Long-Term
Place Recognition�

• Anna Dai (Spring 2018): �Deep Learning-based Semantic Segmentation for
3D mapping�

Summer Project

Bachelor student, 3 months, full-time

• Sining Qin (Summer 2018): �State-of-the-art Object Detection and Segmen-
tation on NVIDIA Jetson TX2�
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Chapter3
Conclusion and Outlook

This thesis addresses the problem of appearance-based Place Recognition by pri-
marily investigating the task of recognizing a place from very di�erent viewpoints.
With the aim of developing general and practical systems for autonomous UAV
navigation, the proposed methods use e�cient binary features that are suitable for
small aircraft restricted to small payload and limited computational capabilities.
A key contribution is that all methods proposed in this thesis make the most of the
SLAM estimation processes that are typically running onboard a robot attempt-
ing to navigate with autonomy of some degree. This work enables loop-closure
detection for drift correction in the SLAM estimation, relocalization in cases of
SLAM failures and/or map merging in multi-robot scenarios. Thus, these methods
exploit not only the 2D appearance information inherent in images, but also the
noisy estimates of the local 3D geometry provided by SLAM.
At �rst, a loop-closure detection framework for robot navigation in urban sce-

narios is proposed in Paper I [69], and orthophotos are generated out of sparse
features provided by SLAM to eliminate the e�ect of the rotation of the camera
from the Place Recognition problem, creating much better conditions to assess im-
age similarity. Orthophotos have shown to achieve consistently better performance
than their corresponding counterparts based on perspective images, in scenarios
where a major plane could be detected. This orthophoto-based Place Recognition
approach is used to perform drift correction and relocalization in a pipeline de-
veloped for collaborative pose estimation between two UAVs [107] for inspection
of a structure of interested. In this pipeline, global pose estimation is performed
from one of the UAVs, with errors in the order of 0.2m in the estimated distance to
the structure of interest (building facade), 0.5m in the tangent plane to the facade
and nearly zero in yaw. As these errors reveal, this orthophoto-based method for
Place Recognition can provide a reliable means to estimate a relative pose between
the UAVs, while keeping the drift in SLAM bounded and performing relocalization
when needed.
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Aiming for robot navigation in more general scenarios, in Paper II [70], we relax
the planarity assumption of the scene and propose a new pipeline, which makes
use of a database of perspective images. This was carefully designed to support
low-burden computation and to take advantage of any scale and rotation invari-
ance o�ered by the BRISK features. The proposed pipeline makes use of a binary
BoW approach followed by candidate �ltering and combined geometric checks to
enable robust loop-closure detection, achieving real-time performance and higher
recall, at perfect precision, than the state of the art in challenging, newly obtained
datasets. Finally, in Paper III [71] this work is further extended with a new scene
depth-completion approach to improve the establishment of 3D correspondences
during geometric checks. This approach was key to enable feature-based matching
across images captured from very wide baselines. Evaluation on synthetic and real
datasets with both hand-held and aerial footage, showed signi�cant improvement
in precision-recall rates in comparison to the state of the art, while keeping on-
board computation a�ordable for autonomous UAV navigation. In particular, the
method proposed in Paper III outperforms the approach proposed in Paper I even
for datasets that are commonly described as mostly planar when visualized from
a frontal view (e.g. L'Agout 0-45◦). The main reason is that 3D structures that
are not noticeable from a speci�c viewpoint (e.g. at 0◦), such as roofs, can become
largely visible at extreme viewpoint changes (i.e. at 45◦), causing major issues
when assessing image similarity. The results obtained throughout this thesis, es-
pecially in Paper III, demonstrate that feature-based techniques still have a lot
to o�er in Place Recognition at extreme viewpoint changes. The research in this
thesis, gave rise to several real [70, 71] and photo-realistic simulated [71] datasets
for Place Recognition with visual and inertial information, as well as ground-truth
whenever possible, which we made publicly available. In particular, our synthetic
datasets are, to the best of our knowledge, the �rst to isolate the challenge of
viewpoint changes for Place Recognition, addressing a crucial gap in the literature.
The rest of this chapter discusses some relevant aspects of the algorithms imple-

mented throughout this thesis and sketch possible ideas for extensions and improve-
ments to the proposed methods, for future research in Place Recognition towards
robust autonomous robot navigation.

Orthophotos

In Paper I [69], the image database used for Place Recognition consists of orthopho-
tos generated from perspective images captured using a traditional perspective
camera. After image retrieval, the set of loop-closure candidates proceeds to ge-
ometric veri�cation. To this end, in Paper I we followed a procedure similar to
the one proposed in [10], in which the authors exploit the fact that they are solv-
ing a homothetic problem and propose to replace a traditional RANSAC-based
geometric check by an e�cient 1D voting scheme. In this case, scale as well as a
horizontal and vertical displacement, are estimated separately. In our approach,
metric scale is obtained during the creation of each orthophoto (thanks to the
visual-inertial SLAM estimation), allowing us to rescale a query-candidate image
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pair to a common scale and then apply the 1D voting scheme to estimate only the
horizontal and vertical o�sets. However, an adaptation to vote for the scale as in
[10], could be very bene�cial to the system, as new features need to be computed
when resizing an image during the geometric veri�cation step, which is usually a
very expensive procedure for real-time applications. As such, the scale computed
during the creation of the orthophoto could be used to con�rm the correctness
of the scale estimated by the 1D voting scheme, increasing the robustness of the
method.

Image Retrieval

When the robot captures a new image from its current location, a BoW approach
is employed in order to search for loop-closure candidates in an image database
containing all places previously visited by the robot. The number of images re-
trieved from the database is pre-de�ned in all the approaches proposed throughout
this thesis, and it is usually set to retrieve the 50 most similar images to a given
query. However, the performance of the image retrieval employed in our pipelines
decreases under extreme viewpoint changes, and as a result the number of correct
candidates proceeding to geometric veri�cation also shrinks, as demonstrated in
Paper III [71]. This problem can be diminished by retrieving more images from
the database, but in this case, more images will need to be tested for geomet-
ric consistency, increasing the time required by the system to determine whether
the current image closes a loop with a previously visited location. Although the
BoW is considered state-of-the-art in feature-based Place Recognition, quite a few
techniques to boost its performance have already been proposed in the literature
[24, 44, 45, 86]. Among them is burstiness weighting [44] to suppress the satura-
tion of the BoW vectors in representing images by repetitive patterns and hamming
embedding [5, 45, 93] to a more precise representation of the descriptors. Any of
these techniques could be attempted in order to improve the proposed approaches
[69�71]. Moreover, besides to the BoW approach, other techniques for image re-
trieval, such as Locality Sensitive Hashing [58], exist in the literature. Analysing
the behaviour of such existing image retrieval techniques under extreme viewpoint
changes would be a promising topic of research.

Perceptual Aliasing

Although providing e�cient image retrieval, by design, the BoW approach discards
all spatial information when comparing sets of words, in e�ect, the discriminative
power of images is reduced and thus, renders loop-closure decisions more prone to
perceptual aliasing. For this reason, in all Place Recognition approaches proposed
in this thesis, geometric veri�cation of an appearance match between a query-
candidate image pair is performed by testing any appearance match for matches in
the relative con�guration of features, alleviating the problem of perceptual aliasing.
Another approach to better cope with this, as used in Paper II [70] and III [71],
is to impose a requirement on matching a sequence of images in appearance space
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3 Conclusion and Outlook

before allowing a loop-closure candidate to proceed to the geometric veri�cation
step. While this approach is usually enough for ground robots, which usually
revisit the same location following a very similar trajectory, either in the same
direction or not, for UAVs that typically follow very di�erent trajectories when
revisiting a place, more robust techniques might be required. A popular way to
address this problem is to consider the few last possible loop-closure detections
and the robot displacement between them. Then, the sequential check can be done
by verifying whether the current detection position less the displacement is equal
to the previous detection position. Although this can be done using all previous
detections, the higher the in�uence of the drift in SLAM, the lower should be the
number of previous frames taken into account. This idea is usually implemented
with more sophisticated methods, such as Markov localization [81] and Monte Carlo
localization [67].

Ultra-wide baseline feature-based matching

During the geometric checks in Paper II [70], the camera pose of the query image
is obtained by establishing 3D-3D or 3D-2D correspondences between a query-
candidate pair. By assuming that the scene is represented by a sparse 3D map
obtained from SLAM, and each 3D point is associated with one or more local
descriptors in the image space, 3D-3D and 3D-2D correspondences are obtained
via descriptor matching in the image space. Under extreme viewpoint changes,
feature-based image matching is strongly a�ected by a�ne distortions and occlu-
sions, resulting in a reduced number of correspondences between the query's and
the candidate's keypoints. This problem becomes even worse due to the fact that
only a reduced number of features can be tracked during SLAM in order to keep
its real-time performance. Moreover, only keypoints successfully tracked by SLAM
have a 3D landmark associated with them. While it is possible to extract all the
keypoints needed for Place Recognition during SLAM, only a small number of them
arrives at the geometric check carrying a 3D information, making it very di�cult to
establish enough correspondences for loop-closure detection between the query and
the candidate images. In Paper III [71], this was circumvented by using a depth-
completion approach to perform local map densi�cation, in which interpolated 3D
landmarks were estimated for the 2D keypoints that had no depth-estimates associ-
ated, improving the establishment of 3D-3D and 3D-2D correspondences for images
captured from very di�erent viewpoints. It must be noted that this approach is
restricted to the viewpoint-invariance o�ered by the local feature descriptor used
during geometric check, in this case BRISK [59]. To allow more drastic viewpoint
changes, higher quality feature detectors and descriptors, such as SURF [12] and
SIFT [66] can be used in the pipeline. However, the bigger accuracy comes at
the cost of longer run-times, when compared to BRISK, but real-time can still be
obtained if fewer keypoints are used during the geometric veri�cation step or fewer
images are selected from the image database.
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Place Recognition invariant to viewpoint and appearance changes

It is widely accepted in the research community that feature-based approaches
usually perform poorly in the presence of large changes in appearance, such as those
caused by weather conditions, seasonal and illumination changes (e.g. day/night).
The appearance variations of a particular place addressed in this thesis, as well
as the viewpoint changes in capturing the scene in an image (or a sequence of
images), are restricted to the invariance provided by the local feature detectors
and descriptors used in the pipeline. More dramatic changes in appearance usually
rely on the use of whole-image descriptors or in deep learning based techniques.
While deep learning approaches have been demonstrating impressive results under
extreme appearance changes, most of the methods proposed in the literature rely
on holistic image descriptors and usually, struggle greatly at extreme viewpoint
changes. In this thesis, we demonstrated that feature-based techniques still have
a lot to o�er in Place Recognition at extreme viewpoint changes. Combining
both deep learning approaches to tackle appearance changes and feature-based
approaches to handle viewpoint changes is probably a nice path to follow to drive
research forward towards Place Recognition with invariance to both common scene
changes and variations in the capture of the scene in images.

Semantic Place Recognition

While humans are capable of recognizing objects and places following a holistic
approach, feature-based Place Recognition focusses on a set of small regions of
interest in the image when assessing image similarity, disregarding the general
context of the scene, often resulting to greater ambiguity. For example, the corner
of a window on a building facade can be locally identical to the corner of any other
window in the building or even a window of a car. In this case, even state-of-the-
art algorithms in feature-based image matching are not able to distinguish between
two identical regions belonging to di�erent types of objects, rendering them more
prone to wrong associations.
Motivated by the remarkable progress that deep neural networks have been ex-

periencing towards semantic scene understanding [91], several approaches have at-
tempted to incorporate semantic knowledge to improve Place Recognition [37, 38]
and visual localization [97, 108]. A common strategy is to use semantic infor-
mation to improve image matching. While some approaches rely on augmenting
traditional feature descriptors with semantic information to improve the matching
step [6, 55, 101], others attempt to directly learn a descriptor by encoding se-
mantic knowledge within it [97]. By augmenting the appearance information of a
place with semantic labels (e.g. window, car, person), it would be straightforward
to adapt the proposed algorithms to use this additional information to improve
feature-based matching in a way that wrong associations between descriptors be-
longing to di�erent classes could be avoided by simply checking their associated se-
mantic label. Image retrieval could also bene�t from semantic information. Based
on the principle that semantics do not change in the presence of appearance and
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3 Conclusion and Outlook

viewpoint changes, loop-closure candidates could be selected based on their se-
mantic characteristics. In addition, when combined with creating a map, semantic
information can be used to improve SLAM. For example, by masking out both
moving structures (e.g. pedestrians and cars) and commonly occurring regions
(e.g. sky), while preserving more persistent and discriminative structures, such as
buildings, poles and road marks, tracking could be made more robust and more
useful features would be retained for long-term Place Recognition [13, 90].
In general, Place Recognition can also bene�t from research in object recognition

and scene classi�cation. Objects can o�er relevant cues about a location, especially
in indoor environments, where the function of a place, such as `kitchen' and `bed-
room', can be directly estimated by the objects contained within it [9, 26, 112]. In
addition, scene classi�cation can be used to narrow down the search space for Place
Recognition, ensuring scalability and opening the way to long-term deployment of
robotic platforms.
The main idea of augmenting Place Recognition with semantic information is

based on the fact that semantics are resilient to transient variations of the ap-
pearance of a place and the conditions of the scene when capturing it in an image
(e.g. viewpoint, illumination). However, deep neural networks speci�cally trained
for the task of Place Recognition are commonly trained on datasets depicting ap-
pearance changes, while viewpoint changes are usually not available. The lack of
large datasets in which both appearance and viewpoint changes are present would
pose the greatest obstacle to the use of semantic approaches in scenes where large
viewpoint changes occur, as these networks would probably not generalize well to
these conditions. As such, the use of semantic information using deep learning
approaches for Place Recognition under extreme viewpoint changes still an open
problem.

26



PaperI
Loop-Closure Detection in Urban Scenes for

Autonomous Robot Navigation

Fabiola Ma�ra, Lucas Teixeira, Zetao Chen, Margarita Chli

Abstract

Relocalization is a vital process for autonomous robot navigation, typi-
cally running in the background of sequential localization and mapping to
detect loops in the robot's trajectory. Such loop-closure detections enable
corrections for drift accumulated during the estimation processes and even
recovery from complete localization failures. In this work, we present a
novel approach loosely integrated with a keyframe-based SLAM system to
perform loop-closure detection in urban scenarios for autonomous robot
navigation. Generating a mesh of the current robot's surroundings in real-
time using monocular and inertial cues, the proposed method estimates
the most salient plane in the current view, enabling the creation of the
corresponding orthophoto for this plane. Evaluating image similarity on
orthophotos forms a much better conditioned problem for relocalization,
minimizing e�ects from viewpoint changes. Employing binary image de-
scriptors and tests on their relative constellation in the image, the proposed
approach exhibits robustness also to illumination and situational variations
common in real scenes, overall resulting to signi�cant improvement in loop-
closure detection performance in urban scenes with respect to the state of
the art.
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Paper I: Loop-Closure Detection in Urban Scenes for Autonomous Robot Navigation

1 Introduction

The emergence of powerful techniques for robotic egomotion estimation and map
building that follow the SLAM (Simultaneous Localization AndMapping) paradigm
has been drawing research and industrial interest in recent years, as this is the core
ability of spatial understanding for autonomous robot navigation. With the aim
of developing general and practical systems, the use of external tracking or un-
reliable positioning systems (e.g. GPS) is typically avoided, albeit restricting the
scalability of approaches for robot navigation as drift inevitably accumulates over
time during sequential processing (especially during exploratory trajectories). De-
tecting when a robot returns to a previously visited place has long been known to
o�er useful cues for diminishing the e�ects of drift and similarly, detecting when
one robot returns to a place already visited by another robot can also form the
basis of any collaboration amongst them [96]. In both cases, it is the problem of
Place Recognition that needs to be addressed, aka Loop-Closure detection. Fol-
lowing such a loop detection, new pose-to-pose and pose-to-features constraints are
established in the SLAM graph, subject to non-linear optimization, such that the
loop closure is enforced and the e�ects of the drift correction are propagated back
to the rest of the SLAM graph.
Primarily addressed using visual cues, place recognition is a challenging task,

due to the large appearance variations that the same physical place in the world
can exhibit. Illumination and situational variations in the scene's appearance be-
come an issue even at di�erent times of the same day and are certainly caused by
weather or seasonal changes, while viewpoint changes or dynamic objects add on
to the challenge of identifying place similarity. While impressive works exist in the
literature addressing some of these variations in isolation, it is still very challenging
to simultaneously address them all together, which is key in enabling robust robot
navigation in real tasks. In this spirit, this paper proposes a new orthophoto-based
approach for loop-closure detection in the presence of viewpoint, illumination and
situational variations. With the rationale that comparing orthophotos instead of
perspective images poses a far better conditioned query for place recognition, the
proposed approach achieves high recall, while �ltering out ill posed queries e�ec-
tively, and thus, minimizing the probability of false positives.
In this paper, we speci�cally study the problem of urban robot navigation with

the outlook of employing such a system for automating the navigation of small Un-
manned Aerial Vehicles (UAVs), which are restricted to small payload and limited
computational capacity. Moreover, exhibiting great agility, they highlight the need
for viewpoint tolerant place recognition techniques. In urban scenarios, we assume
the presence of a high density of structures that are largely planar and are common
in man-made environments. This assumption allows us to utilize a planarity prior
on the scene and harvest the robustness it can bring to place recognition in this
scenery. As a result, the main contribution of this work are:

• a new approach to generate orthophotos in nearly real-time from sparse fea-
tures provided by a SLAM algorithm, and
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2 Related Work

• a novel loop-closure detection framework for robot navigation in urban scenes,
which does not require any previous knowledge of the environment nor does
it impose unrealistic assumptions (e.g. Manhattan world).

Evaluated on challenging datasets, the proposed approach achieves higher precision
and recall with respect to the state of the art, exhibiting unprecedented robustness
to viewpoint, illumination and situational changes.

2 Related Work

Place recognition is most often addressed using appearance-based cues and as a re-
sult, draws inspiration from Image Retrieval from the Computer Vision literature.
Identifying whether a query image is present in the database (i.e. containing all
past experiences of the robot in the robot navigation paradigm) can be a very inef-
�cient process, so for this purpose, visual dictionaries have been devised to retrieve
matching images with high probability. Inspired by text retrieval techniques, the
pioneering work in [102] gave rise to what is widely known as the Bag Of Words
(BOW) approach. This technique relies on building a dictionary of visual words
by clustering locally invariant feature descriptors, such as SIFT [66], appearing in
a set of model images and then representing each image as the set of visual words
it contains. The use of this representation, permits the analogous application of
many theoretical developments such as TF-IDF (Term Frequency - Inverse Docu-
ment Frequency) and probabilistic naive Bayes [74] from the �elds of text retrieval
and classi�cation on images [27, 102]. Such techniques, naturally, apply well to
place recognition for mobile robots, and are generally well-established in the �eld,
including extended generative models for location observations [3, 28].
The success of BOW approaches in searching for similar images in a database

has led to their wide use, however, it was soon realised that their performance
decreases with the size of the vocabulary, not only a�ecting complexity, but also
encouraging misclassi�cation. The FABMAP framework [28], partially alleviating
the latter by learning the dependencies between visual words, is a framework that
is currently considered one of the highest performing pipelines for loop-closure
detection in robot navigation scenarios. Its reliance on computationally expensive
image features (i.e. SURF [12]) and intolerance to even small viewpoint changes
restricts the applicability of FABMAP to scenarios targeting ground robots with
large computational capabilities. As with FABMAP, a common source of error
in the vast majority of place recognition systems is that they discard most of
the geometric information in the image/scene when comparing feature sets. As a
consequence, the discriminative nature of the model is reduced, typically resulting
in either perceptual aliasing or reduced recall. Full feature-based comparisons can
be computationally expensive, and therefore most of the underlying structure and
geometry between features is generally ignored, such as in [27]. Following this
realization, a handful of works [36, 77] have investigated ways of incorporating
some geometric information into the location models. A common approach is to
perform RANSAC [33] to compute a transformation between a query and match
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candidate images [77].
Probably the most relevant work to this paper is the work in [36], who employ

the binary features ORB [92] in a BOW approach and demonstrate its successful
applicability to ground robot navigation. As binary features are computationally
drastically more e�cient than their �oating point counterparts (e.g. SURF), they
are most commonly used during SLAM [61, 77]. As a result, re-using them for place
recognition promises to eliminate unnecessary computational e�ort, however, the
robustness of place recognition systems based on binary features to common scene
variations is limited. Inspired by these limitations, in this work we propose to
make use of SLAM's 3D estimation to recover a mesh of the local workspace of the
robot, which in turn enables the estimation of an orthophoto of the current view.
By forming place recognition queries employing binary features in orthophotos, the
problem of assessing image similarity using binary descriptors is shown to become
more stable and achieve improved performance.
The underlying assumption of largely planar scenery made in this work has

also been used to generate orthomosaics from aerial imaging. Orthorecti�cation,
essentially facilitates the alignment of images taken from di�erent viewpoints to
form a larger mosaic, and as shown in Baatz et al [10] the overlapping part of two
orthophotos of the same place is typically very similar resulting to their straightfor-
ward alignment. Testing on imagery of buildings facades, [10] factorize the rotation
out of the recognition problem by generating gravity-aligned orthophotos outper-
forming purely 2D-based methods. In a similar spirit, Chen et al [20] demonstrate
a gain in place recognition by combining both unmodi�ed perspective images and
their corresponding orthophotos. However, both works assume the existence of a
prior 3D environment model, which can be unrealistic in some applications.
Inspired by [10], in this paper, instead of searching for a perfect alignment be-

tween images, we aim to verify whether the con�guration of features shared by
two orthophotos presents a consistent layout. This step is known as a geometrical
check in loop-closure algorithms. Moreover, in this work, the orthophoto plane
is directly extracted from the 3D landmarks used for the robot visual navigation
system without the need of computing lines and extracting vanishing points, as in
[10].

3 Methodology

As visual-inertial (VI) SLAM is typical in robot navigation, and UAV navigation
in particular, the proposed system is interfaced with a nominal VI SLAM system
processing cues from a single camera and an Inertial Measurement Unit (IMU).
The pipeline, however, is largely agnostic to the type of vision-based SLAM used,
with the only requirements of knowledge of the gravity direction and the metric
scale. Generating a mesh in 3D out of the local SLAM landmarks, the predominant
plane in the scene is identi�ed and the orthophoto corresponding to the current
view (i.e. Q in Fig. 4.1) is generated. Extracting binary features on this or-
thophoto, the pipeline queries the orthophotos database for an appearance based
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map identifying possible loop-closure candidates. These are then subjected to a
geometric check seeking candidates with matching relative constellation of features
in the orthophoto space. Considering the robot navigation paradigm, in the follow-
ing, we assume that the robotic platform at hand has a monocular-inertial sensor
suite onboard.

Figure 4.1: The proposed pipeline for place recognition employing mesh-based
orthophoto generation with appearance and geometric checks to determine whether
the current image Q forms a loop closure with an image in the database containing
past robot experiences.

3.1 Real-Time Visual-Inertial Scene Estimation

In this work, we use the open-source keyframe-based VI SLAM algorithm OKVIS
[61], which estimates the trajectory of the robot considering a limited window of
past poses, and as a result has no loop-closure detection or correction scheme.
OKVIS provides in real-time, the current robot pose P and a 3D map compris-
ing of the estimated locations of 3D visual landmarks extracted from the image
feed. These are fed into the open-source mesh generation pipeline of [106], which
was demonstrated to robustly compute the 3D mesh of the landmarks visible from
P in a computationally very lightweight manner, providing a denser scene rep-
resentation. Filtering out inconsistent landmark measurements from SLAM, the
mesh generation algorithm applies a local Laplace �lter, implicitly enforcing local
smoothness. This is crucial for robust orthophoto generation, as it has a direct
e�ect on the detection of the most salient plane in the scene.

3.2 Orthophotos Generation

An orthophoto of a largely planar scene is the orthogonal projection of this scene
onto the most dominant plane of the scene; so in essence, the orthophoto of a
perspective image corrects for the camera tilt and the terrain relief. Fig. 4.2
illustrates an example of an orthophoto generated by the algorithm from the Old
City dataset introduced in Section 4.1. Although the environment is usually not
planar in general, in urban scenes structures are largely planar and aligned to the
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gravity direction. In this work, we select the biggest gravity-aligned plane in the
image as the orthophoto plane. The rationale behind this is that when viewing
the same place at di�erent times, from di�erent viewpoints, most of times, the
same orthophoto-plane can be extracted, and as a result, place recognition can be
e�ectively performed.

Figure 4.2: An example of an orthophoto (on the right) generated automatically
by the proposed framework for the corresponding original image shown on the left,
by estimating a local mesh illustrated in Figure 4.3.

Figure 4.3: The mesh of the scene of Figure 4.3 in cyan and the main plane
extracted from it in grey. The side view can be seen on the left and the top view
on the right.

The generation of orthophotos �rst requires the estimation of the most predom-
inant plane in the image, that will serve as the orthophoto plane. This estimation
is facilitated by the 3D mesh provided by the VI-SLAM and the Mesh generation
module. Aligning the mesh's coordinate frame with gravity (OKVIS already pro-
vides a gravity aligned map), we project the 3D mesh to the 2D top view of the
scene. The longest line in this view corresponds to the largest vertical plane in the
3D scene. In order to recover this line, we use an iterative Huber M-Estimator to
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�t a line to the 2D SLAM points (i.e. the mesh's vertices) considering any point
within a pre-speci�ed distance to the estimated line (here 40cm) as inliers. Upon
discovering the longest line in the top view of the scene, we set the middle of it
to correspond to the center of the orthophoto-plane. The normal of this plane is
selected as the normal of the line that points to the direction of the camera in the
gravity aligned SLAM coordinate frame.
In order to project the current perspective image to the estimated orthophoto

plane, we �rst �nd where the four corners of the frustum of the camera intersects
with this plane (i.e. points P1, P2, P3 and P4 in Fig. 4.4). With this information,
we form a homography to transform this plane from image coordinates to metric
coordinates and use this to project the perspective image onto the orthophoto
plane, forming the orthophoto. In order to restrict the size of this orthophoto,
we rescale it to the maximum of twice of the original resolution. We impose this
restriction because robot cameras have very low resolution, in our case 752x480.
So a higher rescaling factor in addition with the orthogonalization of the image
creates a very distorted image.

Figure 4.4: The intersection of the camera frustum with the estimated
orthophoto-plane Θ to be used in order to form the homography to be applied
on the perspective image for the generation of the corresponding orthophoto.

3.3 Image Retrieval

In order to detect revisited places we make use of a hierarchical Bag of Binary
Words (BoBW) visual vocabulary, describing an image as a collection of visual
words combined with an inverted �le index. In this work, the visual database
consists of orthophotos generated from perspective images captured using a tradi-
tional perspective camera. Each entry in the database comprises an appearance
signature of the corresponding image, namely its BoBW descriptor. Following the
approach suggested by Galvez and Tardos [36], we adapt for the binary features
used in OKVIS, namely the BRISK features [59]. Namely, we build a visual vo-
cabulary by discretizing the 48-byte BRISK descriptors' space. In order to train
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this vocabulary, we used about 6000 images comprising both indoor and outdoor
environments, di�erent from the ones used for testing. The vocabulary tree built
has 10 branches and 6 depth levels, resulting to a vocabulary of one million visual
words.
In order to query the orthophoto of the current view Q for appearance matches in

the orthophotos database, BRISK features are detected and the BoBW descriptor
for Q is formed. The vocabulary tree is used to score the L1-distance of this de-
scriptor against the entries in the orthophotos database using a TF-IDF weighting
scheme [28] to suppress commonly occurring words and form the set of matching
image candidates.

3.4 Geometric Check

The BOW approach discards all spatial information of visual words by de�nition,
e�ectively accepting as any match two images having the similar visual features re-
gardless of their relative constellation in the image space. A geometric check based
on a RANSAC scheme is usually applied after appearance matching to improve loop
closure detection by verifying whether the con�guration of features belonging to
these two images presents a consistent layout. When matching gravity-compatible
orthophotos, Baatz et al [10] reduce the 6 DOF perspective recognition problem
to a homothetic problem involving only scale and a translation in a 2D plane. By
exploiting the fact that they are solving a homothetic problem, [10] suggests to
replace the computationally expensive RANSAC-based geometric check by an ef-
�cient 1D voting scheme, where scale as well as a horizontal and a vertical o�set
are estimated separately.
The proposed approach conducts geometric veri�cation to every query-candidate

orthophotos pair that is shortlisted by the image retrieval module. By making use
of the metric scale provided for each orthophoto during their creation, we �rst con-
vert both images to a common scale, which allows us to use the 1D voting scheme
for both horizontal and vertical displacement. With both the query and the candi-
date matching orthophotos in the same scale, we establish BRISK correspondences
across features detected in both images.
Following the approach of [10], we estimate the horizontal x and vertical y com-

ponents of the relative translation between the query Q and the candidate C,
independently. Every pair of corresponding points (xC , yC) and (xQ, yQ) con-
tributes with one vote for the x-displacement (x(i) = xC(i)− xQ(i)) and one vote
for the y-displacement (y(i) = yC(i) − yQ(i)). The global displacement of the x-
coordinate is determined by �tting a probabilistic density function to all the votes
computed along the axis x. To this end we use a Kernel density estimation (KDE)
supported by a Gaussian kernel, where each o�set in x contributes with a Gaussian
probability density function with mean centered at x(i) and a standard deviation
de�ned by a translation tolerance in meters. The probability density function is
then computed by summing up all these contributions and the global maximum
of this distribution is used as the global displacement in this direction. The cor-
responding points whose coordinate di�erences are within a certain distance from
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the global displacement in x are considered inliers. Since all the coordinates are
expressed in meters it is easy to de�ne a distance tolerance to compute the inliers
set. The same procedure is then applied to compute the displacement in y. The
intersection of the two resulting inlier sets constitutes the �nal inliers of the ge-
ometric check. The number of inliers is then used as a metric to decide whether
a candidate should be accepted as a loop closure to match the query image. The
di�erent thresholds applied are analysed in section 4 by means of precision-recall
curves.

4 Experiments and Results

While there do not exist directly comparable methods for place recognition using
orthophotos, as a baseline algorithm, we form a variant of the proposed pipeline
adapted to use perspective images as done traditionally in robot navigation sce-
narios, as the monocular-based ORB-SLAM [77]. This enables fairness of compar-
isons as we ensure that all tests use the same features and are subject to the same
quality of SLAM estimation. As the geometric veri�cation voting scheme is not
suitable when using perspective images for the variant pipeline that we refer to
as PerspFM , we implemented the strategy used in the BoBW approach in [36].
This consists in computing a spatial transformation between the matched images
by estimating the fundamental matrix using RANSAC for the variant algorithm.
The proposed method from here onwards is referred to as OrthoTR to denote the
use of Orthophotos with the voting scheme used to estimate translation.

4.1 Datasets

Existing place recognition datasets normally only contain visual information, how-
ever, in order to put our proposed approach to the test, we need visual and inertial
sensing information, as well as ground truth. Outdoor visual-inertial datasets, such
as KITTI [41] are designed for motion estimation and are not suited for testing
place recognition as they exhibit mainly forward camera motion with a front-
looking camera, rendering it very di�cult to label the images for ground truth in
loop closures.
All the datasets used in this paper were recorded using a visual-inertial sensor

[82] providing grayscale global-shutter images at 20 Hz synchronized with inertial
measurements. For our experiments, we use information from only one of the
two cameras of the sensor to conduct monocular-inertial estimation. The datasets
were recorded using a hand-held setup with the camera facing perpendicular to the
direction of motion (i.e. side-looking). All imagery was labelled for ground-truth
loop closures, by �rst using any priors on GPS information whenever available to
suggest potential loops and then manually correcting these suggestions. Below, we
describe in detail all the datasets used in this paper.
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(a)

(b)

Figure 4.5: Example loop-closuring pairs from the Old City dataset identi�ed
with the proposed approach. Each group of four images shows the original per-
spective views in the top row and the respective orthophotos in the bottom row.
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Shopping Street sequences 1 & 2

Two datasets were recorded when walking down a busy shopping street with many
pedestrians. Examples are shown in Figures 4.9 and 4.10. Shopping Street 1 was
recorded with the sensor held at eye-level height and exhibits loops with small view-
point changes, perceptual aliasing and changes in the scene appearance. Shopping
Street 2 was recorded along the same street a few months later with the sensor
mounted at the top of a 4m-long rod held vertically in order to capture the scenery
captured in Shopping Street 1, at least partially, but from di�erent viewpoints. By
combining these two sequences, a very challenging place recognition dataset is cre-
ated, where the scene is not only revisited from very di�erent viewpoints, but due
to the large time interval between recordings, strong appearance variations can
also be observed with most of the restaurants and shop windows in di�erent con-
�gurations; e.g. shutters closed, window displays and even store logos changed.
Moreover, parts of Shopping Street 2 exhibit large variance in illumination con-
ditions, making it hard even for humans to detect whether it is the same place
visited in the �rst sequence. These sequences have a total of approximately 1200
meters and 26 mins.

Old City sequences

Two sequences were recorded at the end of the day in an old city area, exhibiting
similar characteristics as the Shopping Street datasets, albeit with more challenging
viewpoint variations. This dataset comprises two traverses along the same route,
each one covering a distance of approximately 230 meters. In total, 10 minutes of
data were recorded for this dataset. Example images are shown in Figure 4.5.

4.2 Orthophotos versus Perspective Images

Aiming to verify whether using the orthophotos generated by OrthoTR can perform
better than their perspective counterparts in a place recognition, we test for loop
closures within Shopping Street 1, which comprises two di�erent traverses one the
same day, along the same route. Images from the �rst traverse are used to populate
the database of images, and using images from the second traverse this database is
queried for loop closures. Parts of these trajectories does not overlap and in that
case loop closures should not be detected.
Each of OrthoTR and PerspFM builds their own, separate database of im-

ages for retrieval; OrthoTR builds a database of orthophotos, while PerspFM 's
database comprises of the perspective images. It is important to note that only
the perspective images with more than 30% of inliers have their corresponding
orthophotos computed. If an image does not meet this requirement, it is is not
considered neither OrthoTR nor PerspFM during this test. For both pipelines the
image retrieval step considers the top 10 best images recovered from the database,
while the corresponding geometric check is run for every pair of query-candidate
images. Their performances are illustrated by the dashed lines plotted in Fig. 4.6,
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demonstrating that OrthoTR performs consistently better than PerspFM in this
scenario. This attests to our earlier claim that using orthophotos, place recognition
can be more robust and accurate, compared to employing perspective images for
the same tests. The performance of the two systems in a more general scenario
is recorded, in which all the images in the Shopping Street 1 sequence images are
considered, shown in the solid lines in Fig. 4.6. As expected, in this case the recall
for OrthoTR decreases, but still performs systematically better than PerspFM .

Figure 4.6: Precision-recall curves on Shopping Street 1 comparing the perfor-
mance of using orthophoto (green) and perspective (blue) images for place recog-
nition. The dashed lines indicate the respective performances when considering
only the images with enough inliers to generate orthophotos, while the solid lines
illustrate performances when all the images of the sequence are considered. The
reference and test traverses are collected at the same day along the same route,
with small viewpoint changes.

We also compute precision-recall curves for Shopping Street 1 + 2 and Old City
using both OrthoTR and PerspFM algorithms as can be seen in Fig. 4.7 and
Fig. 4.8, respectively. As previously done, the �rst sequence of each dataset is
inserted into the database of images, while the second one is used as image queries.
For Shopping Street 1 + 2, we insert the �rst loop of Shopping street 1 into the
database and use as query images the Shopping Street 2 sequence. OrthoTR is
evidently able to maintain higher precision than PerspFM , essentially attesting to
better consistency of performance, rendering it more trustworthy in closing loops
during autonomous robot navigation. Example loop closures for Shopping Street
1 + 2 and Old City are shown in Fig. 4.9 and Fig. 4.5, respectively.
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Figure 4.7: Precision-recall curves on the combined Shopping Street 1 + 2
dataset, comparing performances when using orthophoto (green) and the perspec-
tive (blue) images for place recognition. While the reference traverse in the same
as the one used in Fig. 4.6, the test traverse is collected at the same route after
four months, thus exhibiting much stronger condition variations.

Figure 4.8: Precision-recall curves on the Old City dataset comparing perfor-
mances of using orthophoto (green) or perspective (blue) images for place recog-
nition. It is clear that orthophoto-based place recognition achieves much higher
precision at the same recall rate.
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(a)

(b)

(c)

Figure 4.9: Example loop-closures from the combined Shopping Street 1 + 2
dataset shown in each row, as identi�ed by the proposed approach. In each group
of images, the top row illustrates to the original perspective images, while the re-
spective orthophotos are in the bottom row. In (a) and (b) we can observe large
viewpoint and situational changes, with pedestrians and a major occlusion by a
car, while (b) and (c) show di�cult lighting conditions.
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(a)

(b)

Figure 4.10: Example loop-closures from the Shopping Street 1 dataset tested
with the proposed approach and their respective orthophotos. The images show
that it is possible to compute the orthophotos if more than one plane is present in
the scene, even when the environment consists of di�erent depths.
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Figure 4.11: Example illustration two consecutive images for di�erent spacing
strategies. From top to bottom the �gure depicts no gap, 2 meters and 5 meters
between the images.

4.3 Viewpoint Changes and System Scalability

In order to test di�erent extents of viewpoint variations using both perspective
images and orthophotos, we implemented three di�erent spacing policies between
consecutive images when populating our database. In the �rst setting, all the
keyframes used by OKVIS are inserted into our database of images, resulting in a
big overlap between consecutive images in our sequence. In the second setting, an
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image is only inserted if it is at least 2 meters away from the previously inserted
image. In the last setting, a distance of 5 meters between consecutive images
is considered, leading to a much more challenging place recognition scenario as
illustrated in Fig. 4.11.
Both pipelines, OrthoTR and PerspFM , were tested using these three di�erent

policies. Using the same strategy as before, in a �rst step all relevant images from
the �rst traverse are used to populate the corresponding image database and then
all the images in the second traverse are used to query that database. Fig. 4.12
shows the respective precision-recall curves for each case. PerspFM presents a
sharp drop in precision-recall rates when the gap between images increases, while
OrthoTR is still able to maintain much better recall for perfect precision. This
illustrates that the orthophotos generated automatically are more robust against
viewpoint variations than the perspective images, as expected. Based on these
�ndings, it would be possible to augment the pipeline to select non-overlapping
images in order to build a less confusing database of images (i.e. places), while
making the place recognition problem more scalable.

Figure 4.12: Precision-recall curves on the Shopping Street 1 dataset, comparing
performances of using orthophoto (green) and perspective (blue) images for place
recognition with di�erent sampling spacings between consecutive images in the
reference traverse (solid lines: original spacing, dashed: 2m spacing, dotted: 5m
spacing across the camera's trajectory).
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5 Timings

Table 4.1 shows timings of each individual component in the proposed pipeline
averaged over all the runs in the experiments. As evident, the proposed approach
is about twice real-time, with the bottleneck on the feature detection and matching.
As loop-closure detection and correction usually runs on a background thread in
most SLAM systems, real-time is not a requirement. It is worth noting that an
adaptation to vote for the scale as in [10], the processing time can be reduced, as
it eliminates the need to rescale the image and recompute features in it.

Step Average time per image
Image Rescaling 5 ms
Features Detection 40 ms
Features Matching 21 ms
KDE 0.2 ms
Total 66.2 ms

Table 4.1: Average timings for the online component of OrthoTR.

6 Conclusion

This paper presents an e�cient and precise algorithm to tackle the loop-closure de-
tection problem based on orthophotos automatically generated online. Evaluation
against a baseline approach employing perspective images and combined appear-
ance and geometric checks, the proposed approach achieves consistently better
precision-recall characteristics in challenging datasets exhibiting viewpoint, illu-
mination and situation changes simultaneously. Tailored for robot navigation in
urban scenarios and aiming for low computational complexity, this approach makes
the most of a SLAM system that is typically already running in the background in
such scenarios.
Further directions include interfacing this pipeline with a global mapping algo-

rithm to enable loop-closure correction within SLAM and harvest the bene�ts of a
robust loop-closure detection pipeline in robot navigation.
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combining 2D and 3D information for UAV
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Abstract

The booming interest in Unmanned Aerial Vehicles (UAVs) is fed by their
potentially great impact, however progress is hindered by their limited
perception capabilities. While vision-based odometry was shown to run
successfully onboard UAVs, loop-closure detection to correct for drift or to
recover from tracking failures, has so far, proven particularly challenging
for UAVs. At the heart of this is the problem of viewpoint-tolerant place
recognition; in stark di�erence to ground robots, UAVs can revisit a scene
from very di�erent viewpoints. As a result, existing approaches struggle
greatly as the task at hand violates underlying assumptions in assessing
scene similarity. In this paper, we propose a place recognition framework,
which exploits both e�cient binary features and noisy estimates of the lo-
cal 3D geometry, which are anyway computed for visual-inertial odometry
onboard the UAV. Attaching both an appearance and a geometry signa-
ture to each `location', the proposed approach demonstrates unprecedented
recall for perfect precision as well as high quality loop-closing transforma-
tions on both �ying and hand-held datasets exhibiting large viewpoint and
appearance changes as well as perceptual aliasing. Upon acceptance, these
datasets will be made publicly available.
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1 Introduction

With small Unmanned Aerial Vehicles (UAVs) sparking great interest for a plethora
of potential applications ranging from digitization of archaeological sites to search-
and-rescue, there has been an increasing body of research dedicated in automating
their navigation. As Spatial understanding forms the basis of autonomous robot
navigation, a variety of techniques for robotic egomotion estimation and map build-
ing that perform SLAM (Simultaneous Localization and Mapping) have been pro-
posed in the literature. In addition, addressing place recognition by determining
whether a robot returns to a previously visited place is a key competence to enable
the creation of accurate maps, relocalization and even collaboration between dif-
ferent robots performing SLAM, essentially opening up the way towards long-term
operation of robotic platforms in real world scenarios. However, the agility and
portability of small aircraft comes at the cost of small payload and as a result,
limited computational capabilities. Current solutions involve restricting the on-
board memory of past experiences by limiting the size of the SLAM map (e.g. as
in [111]). As small estimation errors are usually accumulated over time, restricting
the estimation process to a limited window accentuates the problem of drift even
further, highlighting the need for suitable place recognition techniques. Moreover,
the agility and dynamicity of UAV manoeuvres pose particular challenges in place
recognition, as the same place needs to be estimated from very di�erent viewpoints.
Inspired by the challenges of place recognition from aerial imagery, in this paper,

we present a scalable framework to identify loop-closures in a robot's trajectory
using low cost, binary features suitable for UAV navigation. As UAV navigation is
one of the hardest scenarios for place recognition, the portability of the proposed
method to other platforms (e.g. a ground robot) with simpler motion and compu-
tational constraints should be straightforward. Moreover, while the vast majority
of works in this domain restrict their operation to a decision whether there has
been a loop closure or not, here, we go a step further to accurately estimate the
transformation between the matching robot poses, which can be directly used in
a subsequent optimization step. Designed to be interfaced with a keyframe- and
vision-based odometry system, the proposed pipeline is shown to outperform the
state of the art on both indoor, aerial sequences evaluated on ground-truth data
from a highly accurate tracking system (i.e. Vicon), as well as outdoor hand-held
and aerial urban sequences against GPS position information. To encourage further
research and benchmarking in viewpoint-tolerant place recognition our challeng-
ing datasets are being made publicly available. Fig. 5.1 illustrates an example of
a successful loop detected by the proposed approach designed to cope with large
viewpoint changes and perceptual aliasing. The main contributions of this work
are:

• a new, carefully designed place recognition pipeline especially developed for
robot navigation, which avoids false positive loop closures at all costs, ex-
hibiting robustness to viewpoint changes, and

• new datasets with visual-inertial information and manually-annotated ground-
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truth capturing viewpoint, illumination and situational changes, suitable to
test place recognition approaches.

Figure 5.1: A loop in the UAV dataset correctly detected by the proposed ap-
proach, despite the large viewpoint change and the mismatches caused by repetitive
scene structure. This challenging dataset was captured with the UAV in the inset
and it is being made publicly available.

2 Related Work

Place recognition, also referred to as loop closure detection, is usually addressed
using appearance-based cues. Typically, two main tasks must be accomplished to
address place recognition: (a) query a database of images to �nd possible similar
locations and then (b) determine which, if any, of these images represents the same
place as the query. Identifying whether a robot is revisiting a place by directly
matching a query image to all images into a database containing its previously
visited locations is very ine�cient. For this reason, either a Bag of Words approach
(BoW) approach [102] with an inverted �le index or a descriptor voting scheme [40]
are usually applied in the �rst task followed by a geometric consistency check in
the latter one. The widely known BoW approach relies on discretizing the space of
feature descriptors generated using a set of training images to build a dictionary of
visual words and then representing new images as a set of visual words it contains.
Several well-performing algorithms using a BoW representation were proposed in
the literature, with FABMAP [28] considered to be one of the most successful
pipeline for place recognition.
A less popular approach is to consider global image representations, instead of

traditional feature-based representations. In PTAM [52] for example, a smaller and
blurred version of the original keyframe image was used as a descriptor of a place,
which implies that for relocalization (i.e. loop-closure detection) an exhaustive
search across the entire database of images is necessary to identify a potential
correlation match. SeqSLAM [75] has demonstrated very impressive recall rates
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on scenes with dramatic changes in lighting (day/night), however, the method still
lacks invariance (e.g. in viewpoint) and relies on using long sequences of images
to tackle perceptual aliasing of the query location. Moreover, the scalability of
such methods is more limiting than with feature-based BOW approaches, where
indexing and searching for matches can be done more e�ciently.
More recently, Convolutional Neural Networks (CNNs) have been successfully

applied to solve the place recognition problem under extreme changes in appearance
(e.g. time of the day, weather, seasons as well as human activity and occlusions).
While [7] and [89] train a CNN to learn a compact image representation suitable
to place recognition, another common strategy cast the place recognition problem
as a classi�cation task [19, 42]. While impressive results have been obtained by
using deep learning techniques, this approach still very computational expensive.
While e�orts to reduce the computational complexity exist [23], place recognition
using deep learning remains unsuitable for real-time estimation onboard a small
UAV with small payload and limited computational capabilities.
Place recognition onboard a small UAV is a particularly challenging problem;

the dynamicity and agility of a small UAV means that it is very likely to approach
the same scene from a wide range of viewpoints, which is by de�nition fatal for
global image-representation techniques, while feature based BoW approaches also
struggle greatly. This is inherently a very di�erent problem from the traditional
place recognition on a car in the streets of a city as addressed in [28] and [75]. The
need for unique and repeatably recognizable features is all the more important in
order to allow viewpoint-invariant recognition. As a result, current methods choose
to work with the highest quality of feature detectors and descriptors, such as SIFT
[66] and SURF [12]. These features, however, are typically far too expensive to
employ onboard a small UAV, which renders most of the existing place recognition
techniques unusable.
Interestingly, features with binary descriptors, such as ORB [92], BRISK [59]

and FREAK [1] promise similar matching performance to SIFT or SURF at a
dramatically low computation, however, it becomes far more di�cult to cluster
them into visual words in a BoW approach. The work in [36] was the �rst in the
literature to use binary features for place recognition, however, the precision-recall
characteristics of this method still very sensitive to noise.
Another interesting line of research that has recently appeared makes use of

learning techniques to overcome the large viewpoint di�erences from ground to
aerial images. While these wide baselines are not usually addressed in place recog-
nition systems, novel algorithms to air-ground matching have been proposed in
complementary areas [2, 64, 72]. Despite the impressive aforementioned algorithms,
we still lack a robust solution that overcomes the large viewpoint di�erences be-
tween images captured from a UAV, while keeping onboard computation a�ordable
for a long-term place recognition system.
Finally, while most of the place recognition systems ignores the underlying struc-

ture and geometry between features when comparing features sets, a handful of
works have investigated how to incorporate some geometric information in their
location models, such as in [85], where locations are represented by both visual
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landmarks and a distribution of the distances between them in 3D coming from
range-�nders or stereo cameras. Instead of relying on additional sensors to obtain
3D landmark positions, in [103] landmarks are tracked between successive images
using a single camera, recording the binary covisibility between landmarks in a
graph-based map of the world. In the general case, the graph matching problem in
undirected graphs is an NP-hard problem. As a result, there are still open ques-
tions on how such techniques can be e�ciently and su�ciently approximated to
provide the robustness necessary for place recognition for a UAV.

3 Methodology

The proposed framework is designed to be employed within the loop of robot
navigation, so we assume that a vision-based SLAM/odometry system using a
keyframes paradigm runs on a separate thread. A hierarchical Bag of Binary Words
(BoBW) visual vocabulary is formed in binary descriptors' space with an inverted
�le index to e�ciently query at runtime, the database of keyframes captured during
the robot's trajectory for loop-closures. The work�ow comprises of two consecutive
checks as illustrated in Fig. 5.2; an Appearance Check making use of the keyframe-
covisibility information captured by SLAM re�nes and removes erroneous loop-
closure candidates suggested by the BoBW descriptors, before a Geometric Check
tests for matches in the con�guration of features (in 3D and in 2D) in the candidate
keyframe matches that survive the Appearance Check. A successful Geometric
Check denotes loop closure detection; in this case the system does not only provide
the matched keyframes, but also the best rigid transformation found between them.

3.1 Visual-Inertial Keyframe-based SLAM

With the ultimate goal of place recognition for a UAV, we assume that a nom-
inal monocular-inertial SLAM system is running in the background, as this is a
widely accepted sensor setup for small aircraft with limited payload [111], permit-
ting absolute scale estimation. The proposed system, however, is agnostic to the
keyframe- and vision-based SLAM system to be used (i.e. no inertial sensing is
necessary). In this work and throughout our experiments, we employ the open-
sourced OKVIS visual-inertial SLAM/odometry framework of [60, 61], while we
have developed a Covisibility Graph data-structure similarly to [77], where any
two keyframes (nodes) share an edge if they share enough 3D landmarks. This
approach is more adaptive than choosing a �xed number of consecutive images to
represent a location. As SLAM keyframes can provide both the detected features
(in this case BRISK [59]) in image space and the local 3D map, a new entry is
created in the Image Database for every new SLAM keyframe. Each such entry
comprises of an appearance signature of the corresponding keyframe, namely its
BoBW descriptor and a geometry signature that is the local, sparse 3D map of
keypoints that this keyframe has been associated with.
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3.2 Building the BoBW Visual Vocabulary

Opting for a hierarchical visual vocabulary [36], the proposed method describes
an image as a collection of words combined with an inverted �le index allowing
e�cient retrieval in a large database of images. While features, such as SURF [12]
and SIFT [66] are well-established and known to provide stable detection and high
quality description of corresponding image areas, their prohibitively high compu-
tational cost has been driving research in robotic visual perception towards the
computationally cheaper binary-descriptor alternatives, such as BRISK, ORB [92]
and BRIEF [18]. Clustering binary instead of �oating point descriptors, however,
to form visual words is still subject to research, as a bit �ip could potentially change
a descriptor's mapping to the words space, resulting to low word repeatability and
thus, violating one of the basic assumptions of the bag-of-words approach.
Following the approach suggested by Galvez and Tardos [36], we create a visual

vocabulary adapted to the binary features used by OKVIS, namely BRISK [59],
e�ectively reusing any features extracted in the loop of SLAM. The aim here is to
exploit any scale and rotation invariance o�ered by BRISK. It should be noted that
the descriptor size used within OKVIS consists of 48 bytes (instead of 64 as in the
original implementation) and the feature orientation is aligned with the gravity
since the inertial sensor provides this. To compute the BoBW vocabulary we
discretize the 48-byte BRISK descriptors' space using about 3500 training images
in total. These depict indoor and outdoor environments and are di�erent to the
ones used at runtime. The resulting vocabulary tree has 10 branches and 6 depth
levels resulting to a vocabulary of a million words.

3.3 Appearance Check

The �rst step to place recognition is to check the current query keyframe Q against
the Image Database for any entry with similar appearance. To this end, the BoBW
descriptor of Q is scored based on its L1-distance to Database entries, using a `term
frequency�inverse document frequency' (tf-idf) weighting scheme [27] to suppress
commonly occurring words to form the set S of matching keyframe candidates.
Following the approach of [77], the set NQ of immediate neighbours of Q in the
Covisibility Graph (i.e. depicting common scene structure) is formed, recording the
minimum similarity score smin between Q and any member of NQ computed as the
L1-distance between their BoBW descriptors. Any candidate matching keyframes
in S that score lower similarity to Q than smin or already belong to NQ are
removed from S. All remaining members of S undergo non-maximum suppression
within their immediate neighbourhood in the Covisibility Graph; all members of
such a covisibility group are scored for their similarity to Q and the corresponding
entry in S is replaced with the highest scoring keyframe in each group. If the sum
of the highest N scores in one such group does not reach at least 75% of the best
score across all groups, the corresponding entry in S is removed entirely. Finally,
every surviving candidate in S is checked for covisibility consistency with at least
3 candidate matches surviving the last Appearance Checks (i.e. corresponding to
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the two previous query keyframes). Two keyframes are de�ned to be covisibility-
consistent if their covisibility groups share at least one keyframe. This last step
aims to eliminate candidates in S that do not share similar appearance with the
previous query keyframes.

3.4 Geometric Check

The BoW approach discards all spatial information between visual words by de�-
nition, accepting as a match two di�erent images having the same words regardless
of their constellation. While in ground robot navigation scenarios this might be
enough [28], in UAV navigation, where very di�erent viewpoints are expected,
geometric veri�cation of an appearance match is imperative. Moreover, while tra-
ditionally, place recognition techniques stop short of estimating a relative transfor-
mation between the matching frames (e.g. this would be enough in image retrieval),
in robot navigation, this information constitutes very useful input to a subsequent
optimization step to enforce the loop closure that is detected and avoid local min-
ima. Realising this, [77] implement a geometrical validation step employing the
Horn method [43], which given two sets of 3D map points with known correspon-
dences, estimates a 3D rigid transformation between them if enough inliers are
found. However, for dynamic camera motion with large viewpoint changes, SLAM
systems struggle to �nd enough correct 3D map points needed for a successful Horn
test resulting to much fewer loops detected than actually experienced.
The �rst priority in place recognition is to avoid false positive loop detections,

however, false negatives become of particular interest in viewpoint-challenging
cases as they occur far more commonly than in any other scenario, e�ectively
limiting our ability to correct for accumulated drift. In this spirit, here we propose
to �rst use the 3D-3D Horn's geometric veri�cation and if this proves unsuccessful,
check for a 2D-3D geometric consistency using the method of [53]. This provides
a closed-form solution to the Perspective-Three-Point (P3P) problem for the full
transformation between two camera poses in the world reference frame using at
least three 2D-3D point correspondences.
For every keyframe candidate C (member of S) to match Q that reaches the

Geometric Check we compute the BRISK correspondences between them, limiting
the correspondence search only to the keypoints that have a 3D landmark associ-
ated with them. Erroneous correspondences are removed using a second Nearest
Neighbour (2nd NN) test [66], while we also apply bidirectional matching to dis-
card ambiguous matches. If enough 3D-3D correspondences are found, we attempt
to verify the 3D-3D geometry between Q and C by estimating their rigid trans-
formation TQC using Horn within a RANSAC scheme. However, if this approach
fails to estimate a transformation with at least N inliers the 2D-3D geometry ver-
i�cation is attempted. In order to expand the set of correspondences to consider,
the 2D keypoints in Q are tested for matches with the image projections of all 3D
landmarks present in C, following the strict biderectional and 2nd NN tests. If
enough 3D-2D correspondences are available we use the P3P method of [53] in a
RANSAC scheme to try to estimate TQC . If a transformation that satis�es a mini-
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mum threshold on the average reprojection error in pixels is found, C is accepted as
a loop closure for Q. After looping through all the candidates in S for a Geometric
Check, the proposed method returns the TQC with the highest number of inliers
(i.e. points with a reprojection error is smaller than a pre-de�ned threshold) and
the corresponding C. For our tests we usually de�ne this threshold to be smaller
than 2 pixels, the minimum number of matches as 12 and the number of inliers to
accept a loop as 8.

4 Datasets

While datasets containing outdoor visual and inertial information, such as KITTI
[41] exist, they are typically unsuitable to evaluate place recognition methods on.
In KITTI for example, most sequences exhibit mainly forward camera motion with
a front-looking camera, rendering it very di�cult to correctly label the images
for ground truth. For this reason, the datasets used in this work were recorded
especially for place recognition applications using both �ying and hand-held setups
in the city center of Zurich with a side-looking camera, permitting clear decisions on
ground truth labelling. These manually labelled datasets are being made publicly
available, given that there are no other public datasets suited to place recognition
providing ground truth, visual and inertial data as well as posing viewpoint and
situational challenges as described below.
While we use our recorded datasets to assess the quality of the proposed pipeline

in deciding whether the camera's trajectory experiences a loop closure, in order
to test the quality of the proposed transformation, we use the publicly available
EuRoC Micro Aerial Vehicle (MAV) dataset [17] providing indoor visual and in-
ertial data from a �ying UAV, which has its poses recorded by a Vicon external
tracking system, providing very accurate full pose information. All the datasets in
this work were recorded with a Visual-Inertial (VI) sensor [82] providing grayscale
global-shutter images at 20 Hz and synchronized inertial measurements. In our
tests, we perform monocular-inertial estimation by using only the information pro-
vided by one of the cameras of the sensor.

4.1 Shopping Street 1 and 2

These two datasets were recorded in a busy shopping street in the city center
of Zurich using two di�erent con�gurations. Shopping street 1 uses a hand-held
setup, while Shopping Street 2 was recorded months later in the same area using a
4m-long rod held vertically in order to capture the same scene from very di�erent
viewpoints. Shopping Street 1 consists of two traverses in the same street ex-
hibiting small viewpoint changes, perceptual aliasing and appearance changes. We
combine both sequences Shopping Street 1 and 2 obtaining a challenging dataset
for place recognition, with major changes in the scene appearance, challenging
lighting conditions and also strong viewpoint variations. Examples are shown in
Fig. 5.4. These sequences were already successfully applied in a place recognition

53



Paper II: Viewpoint-tolerant Place Recognition combining 2D and 3D information for

UAV navigation

scenario in our previous work [68].

4.2 UAV dataset

This sequence was recorded along a residential street using the VI sensor mounted
on the bottom of an AscTec Neo UAV (visible in the inset of Fig. 5.1) in a front-
looking con�guration, while performing lateral movements with the UAV in both
directions. This sequence exhibits perceptual aliasing as well as large variance in
viewpoints and di�cult lighting conditions as evident in Fig. 5.7 and Fig. 5.1.

5 Results

We evaluate the proposed approach on datasets labelled with ground truth as
described in Section 4 and compare to the state of the art by analyzing their
precision-recall characteristics. Moreover, as the proposed pipeline does not only
provide a yes-or-no decision, but goes on to suggest a transformation between the
matching keyframes to be used in a subsequent optimization step to enforce loop
closure, we also evaluate the quality of these estimates. We present quantitative
and qualitative evaluations on both hand-held and aerial scenarios.

5.1 Precision-Recall Characteristics

We record the precision-recall characteristics of the proposed method against FAB-
MAP 2.0 [28], which is considered as the most well-established place recognition
pipeline designed to combat perceptual aliasing. Moreover, as the method proposed
in this paper employs binary features and draws inspiration from the DBoW2 ap-
proach of [36] we also compare to its performance. These tests are conducted on
the Shopping Street 1 sequence. We test the proposed approach using a vocab-
ulary composed of outdoor images captured in Zurich di�erent to the ones used
for testing. FAB-MAP and DBoW2 are tested using their corresponding orig-
inal vocabularies. As evident in Fig. 5.3 (a), the proposed approach achieves
higher recall across all methods for perfect precision (i.e. equal to 1). The robust-
ness of the proposed method is illustrated qualitatively in Fig. 5.4. FAB-MAP
is particularly challenged as it employs appearance-only checks in deciding for a
loop-closure, while our approach and DBoW2 incorporate also geometric checks.
DBoW2 exhibits high recall for perfect precision in Shopping Street 1, however, our
improved geometric checks result to improved recall, which becomes particularly
evident when testing with Shopping Street 1 & 2, where the viewpoint and other
challenges are far greater. FAB-MAP precision-recall rates drop drastically (both
to less than 0.1) in this case and DBoW2 detects four loops only. Despite that all
of them are correct, they are far fewer than the total number of loop closures. The
yellow curve in Fig. 5.3(c) illustrates the recall reached by DBoW2 while varying
the reprojection error.
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(a) (b)

(c)

Figure 5.3: Precision & Recall analysis. Testing in Shopping Street 1, in (a) the
proposed method outperforms FAB-MAP 2.0 and DBoW2. Maintaining perfect
precision, in (b) and (c), recall is monitored for variable reprojection error thresh-
olds for the proposed method in full (i.e. using all geometric checks) and using
3D checks only. Accepted inliers are varied from 10 (very restrictive) to 5 (most
relaxed). Even in the more challenging dataset used in (c), the proposed method
outperforms the 3D only approach and DBoW2 by a large amount.

As the proposed pipeline aims at greater robustness to viewpoint changes as well
as to clean up false appearance matches, we employ both a 3D-3D geometric test
similarly to ORB-SLAM [77], as well as a 3D-2D geometric test. A comparison
on precision versus recall to ORB-SLAM would not be fair, however, as it was
designed to conduct loop-closure tests that are well spaced in time instead of testing
at every keyframe as in the proposed method. The type and quality of features
used as well as the estimation processes involved in ORB-SLAM in comparison to
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OKVIS have a direct impact on the quality of the performance of place recognition.
So, here we isolate the e�ect of the 3D-3D and the 3D-2D geometric tests of the
proposed pipeline to analyse the performance in both Shopping Street 1 alone and
the dataset comprised of both Shopping Street 1 and 2 as shown in Fig. 5.3 (b)
and (c), respectively.
Retaining perfect precision, we monitor the recall obtained for variable reprojec-

tion error dictating the number of inliers agreeing with the transformation proposed
using RANSAC. While one might expect that introducing the 3D-2D geometric
checks as a second chance for a candidate loop-closure following a failed 3D-3D
geometric check would have a negative impact on the precision-vs-recall trade-o�,
Fig. 5.3(b) shows that higher recall can be achieved for the combined tests while
retaining perfect precision. The added challenges in the Shopping Street 1 & 2
setup (greater changes in illumination, viewpoint and appearance as seen in Fig.
5.4), indeed causes lower overall recall in Fig. 5.3(c), but the combined 3D and
2D tests of the proposed approach still outperform the 3D only checks without
compromising precision.
Traditionally, the answer to the question posed by place recognition techniques

on whether we are re-visiting an already known place is binary (i.e. yes or no).
Since our aim is to employ viewpoint-tolerant place recognition to indicate loop
closures within SLAM, a �rst suggestion of the relative transformation between
the loop closing frames (de�ned as TQC) is not only very useful to a subsequent
optimization step, but also an indication of the quality of the geometric checks
used to decide for a loop closure in the �rst place. In the proposed scheme, the
estimation of TQC comes as a by-product of the Geometric Check step.
We use the EuRoC Vicon Room 2 03 sequence of the EuRoC MAV dataset,

which provides high-precision ground-truth poses for the UAV throughout this
sequence. Upon the detection of a loop closure, we evaluate the quality of TQC

against ground-truth testing for both the full pipeline described in Section 3 and
when using the 3D-3D geometric checks only. For both variants of our pipeline, we
accumulate the estimated translation error across 10 runs as illustrated in Fig. 5.5.
It should be noted that due to the randomised nature of RANSAC, some loops are
not detected in all runs. For completeness, we also analyse the translation error in
the loop-closing transformations estimated by ORB-SLAM in the same scenario,
seen on the right of Fig. 5.5. Relocalization was triggered many times due to ORB-
SLAM losing track, while di�erent keyframes are selected in each run, rendering
it harder to detect the same loops across di�erent runs than with OKVIS. Even
without considering the lower recall of ORB-SLAM, Fig. 5.6 illustrates that the
translation error in TQC is much larger than with the proposed approach.
As evident in Fig. 5.5, the inclusion of the 3D-2D geometric tests can sometimes

result to bigger translation error in the estimation of TQC , as expected. In fact,
loops 15 and 16 result to considerable error given the size of the room, where the
dataset was recorded. However, out of the 17 loops detected by the full pipeline,
only 4 have been detected when using the 3D checks only. It should be highlighted
that many of the loop-closing transformations estimated by the full approach were
still computed using Horn's 3D-3D method, since the covisibility consistency check
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did not fail (as in the 3D-only case); given that 3 consecutive consistent keyframe
matches are needed before accepting a loop closure, the additional loop detections
provided by the 3D-2D checks lead to correct detection of more true-positives. The
vast majority of the additional detections exhibit error of the same order as the
more restrictive 3D only checks (i.e. less than 50cm), in stark contrast to the much
larger error characteristics of ORB-SLAM in Fig. 5.6.
In conclusion, while the addition of inertial sensing can indeed result to better

quality maps in OKVIS in comparison to ORB-SLAM, even when isolating the 3D
only checks used in ORB-SLAM but using OKVIS maps, the proposed approach is
evidently boosting recall and achieves better quality of loop-closing transformations
TQC . While TQC is only a suggestion subject to further optimization in a bundle
adjustment or pose-graph optimization step, the closer the estimate is to reality, the
better the chances of subsequent convergence of the map to the global minimum.
As a result, while the proposed use of additional 3D-2D checks can result to noisier
transformations, these are still better than in ORB-SLAM and the sometimes
dramatic increase in recall is evidently bene�cial and can really make a di�erence
in viewpoint-challenging scenarios.

5.2 UAV Experiments

The proposed approach was tested using the UAV dataset, exhibiting the biggest
challenge for viewpoint-tolerant place recognition as visible in Fig. 5.7. Added
challenges, such as in illumination can cause false negatives as feature detection is
compromised. The loop-closures detected by our approach are visible (in green)
in Fig. 5.8. ORB-SLAM was also tested using this sequence, but no loops were
detected.

5.3 Computational Cost

Feature extraction is usually the bottleneck in place recognition systems. With this
in mind, the proposed method is re-using features extracted during the estimation
of SLAM, enabling loop-closure detection at frame rate (i.e. 20Hz) in all the
experiments presented in this paper. As the BRISK descriptor used within OKVIS
consists of 48 bytes only, this restricts its descriptability posing bigger problems in
loop detection, but makes descriptor comparisons even more e�cient. Moreover,
more relaxed conditions in the RANSAC scheme can be created in order to improve
even more the performance, but the quality of transformations can also be a�ected.

6 Conclusions

This paper proposes a novel pipeline for viewpoint-tolerant place recognition that
makes use of promising leads from existing works, combining them in a way that
enables unprecedented robustness to a wide range of common challenges (i.e. tol-
erance to viewpoint, lighting changes, occlusions, perceptual aliasing, etc). The
proposed pipeline was carefully designed to support low-burden computation and
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to take advantage of any scale and rotation invariance o�ered by BRISK using
combined geometric checks that exploit not only the 2D information inherent in
images but also the 3D information provided by a SLAM system.
Evaluation on newly recorded challenging outdoor datasets with both hand-

held and aerial footage demonstrates that the proposed pipeline achieves better,
or even drastically increased at times, recall in comparison to the state of the
art, while maintaining perfect precision. Since no other such dataset appears in
the literature, we make our testbed publicly available. Further evaluation on the
quality of the estimated loop-closure transformation on an existing, indoor aerial
dataset with pose ground truth reveals better quality of estimation than state of
the art. Future work will study more extreme viewpoint changes and their impact
on both similarity of appearance (e.g. consistency of word assignments) as well as
geometry estimated by SLAM.
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(a)

(b)

Figure 5.4: Example loop-closures from the Shopping Street dataset tested with
the proposed approach. The loop-closured in (a) demonstrate robustness of the
proposed approach to viewpoint changes and small motion blur (bottom left). In
(b), the top image is an example of a loop detected across the Shopping Street 1
and 2 sequences exhibiting big changes in viewpoint and scene appearance, while
the bottom image depicts a false negative, where the viewpoint and illumination
changes proved too large for a loop-closure match.
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Figure 5.7: Loop-closures in the UAV dataset tested with the proposed approach.
Large viewpoint changes are successfully handled (top two rows), while strong
lighting can wipe crucial features out resulting to false negatives (bottom).

Figure 5.8: Trajectory followed by the UAV in the UAV dataset. In blue/red are
the UAV trajectories when travelling in opposite directions and in green are the
loop-closures detected.
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Abstract

Place recognition is an essential capability for robotic autonomy. While
ground robots observe the world from generally similar viewpoints over
repeated visits, other robots, such as small aircraft, experience far more
di�erent viewpoints, requiring place recognition for images captured from
very wide baselines. While traditional feature-based methods fail dramat-
ically under extreme viewpoint changes, deep learning approaches demand
heavy runtime processing. Driven by the need for cheaper alternatives able
to run on computationally restricted platforms, such as small aircraft, this
work proposes a novel real-time pipeline employing depth-completion on
sparse feature maps that are anyway computed during robot localization
and mapping, to enable place recognition at extreme viewpoint changes.
The proposed approach demonstrates unprecedented precision-recall rates
on challenging benchmarking and own synthetic and real datasets with up
to 45◦ di�erence in viewpoints. In particular, our synthetic datasets are,
to the best of our knowledge, the �rst to isolate the challenge of viewpoint
changes for place recognition, addressing a crucial gap in the literature.
All of the new datasets are publicly available to aid benchmarking.
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1 Introduction

Simultaneous Localization And Mapping (SLAM) refers to the process of building
a map of the robot's workspace, while keeping track of its pose within it. In cases
where SLAM estimation fails or drifts, it is essential to determine whether the robot
has visited the current location in a previous occasion triggering relocalization.
While originating from the problem of loop-closure detection, Place Recognition is
also essential in multi-robot tasks, informing each robot where the others are. In
scenarios, where multiple robots work in collaboration to carry out a given task,
the scene is usually observed from very di�erent viewpoints and assessing scene
similarity from images captured under such wide baselines (e.g. ground to air) is
known to be a very challenging task.
Place Recognition is commonly addressed using visual cues. It was the advent

of real-time monocular systems for SLAM that paved the way towards the use of
SLAM onboard small UAVs (Unmanned Aerial Vehicles). While many successful
strategies for performing Place Recognition using range sensors have been proposed
in the literature [30], these sensors are usually heavy and power greedy, severely
reducing the endurance of small UAVs or even exceeding their payload capacity.
For UAVs restricted to small payloads and as a result, limited computational ca-
pabilities, the employment of vision-based approaches comes as a natural choice
for automating their navigation.
Motivated by the challenges of place recognition from aerial imagery, in this pa-

per we speci�cally study the problem of Place Recognition under extreme changes
in viewpoint. While still addressing common challenges in Place Recognition, such
as illumination and situational changes, here, we push our method to the limits by
testing on dramatic changes in viewpoint and showing that feature-based methods
can still play a key role, enabling practical use in many common scenarios, such
as 3D reconstruction of archaeological sites and collaborative multi-robot SLAM.
Fig.6.1 shows a successful loop-closure detected using the proposed approach de-
signed to address extreme changes in viewpoint.
The main contributions of this paper are:

• a novel real-time pipeline for loop-closure detection that employs depth-
completion to enable feature-based matching between images captured from
very di�erent viewpoints. As such, this paper advocates and demonstrates
that feature-based approaches are still useful for matching images across very
wide baselines, while maintaining computation a�ordable for autonomous
UAV navigation.

• new photo-realistic datasets exhibiting dramatic viewpoint changes in simu-
lation, isolating for the �rst time the problem of viewpoint changes in Place
Recognition from other challenges, such as scale variance, dynamicity of the
scene, and illumination. In addition to these synthetic datasets, we also
release real datasets capturing similarly large viewpoints using aerial and
ground footage.
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Figure 6.1: A loop in the synthetic Corvin dataset correctly detected by the pro-
posed approach, despite the large change in viewpoint (45◦).

2 Related Work

Most recent state-of-the-art SLAM systems, such as ORB-SLAM [77], employ im-
age retrieval techniques to enable large-scale place recognition. A Bag-of-Words
(BoW) approach combined with an inverted-�le-index [102] or its more compact
representations, such as Fisher Vectors [46] or Vectors of Locally Aggregated De-
scriptors (VLAD) [4] are usually applied to e�ciently search for loop-closure can-
didates in a database of images containing all previous experiences of the robot.
The widely known BoW approach relies on discretizing the feature-descriptors'
space to build a dictionary of visual words that are then used to describe new im-
ages by converting locally invariant feature-descriptors into a BoW representation.
Although several well-performing feature-based algorithms have been proposed for
place recognition [28, 36], the extraction of unique and repeatably recognizable fea-
tures has proven to be far from trivial [63]. In fact, extreme changes in appearance
can pose a signi�cant challenge for feature-based approaches. As a result, ap-
proaches using range sensors [30] or structural descriptors [25] have been proposed
exploiting the fact that geometry o�ers better invariance to viewpoint changes
when occlusion is not present.
Current feature-based BoW approaches try to circumvent major changes in ap-

pearance by using high-quality feature detectors and descriptors, such as SIFT [66]
and SURF [11]. However, these features still fail when large changes in viewpoint
occur, and are typically too expensive to be employed in real-time applications, for
example onboard a small UAV. A�ne SIFT features [76] handle large image dis-
tortions by generating multiple a�ne transformations of an image before applying
traditional SIFT. However, their increased invariance comes at a prohibitively high
computational cost of two orders of magnitude slower than SIFT. By generating a
mesh of the current robot's surroundings, the work in [69], makes use of a 3D map
provided by SLAM and identi�es the most prominent plane in each image com-
puting only one a�ne transformation, as orthophoto. This enables the creation of

65



Paper III: Real-time Wide-baseline Place Recognition using Depth Completion

a single view of the scene, while using a computationally cheap binary descriptor
and avoiding the need for computing multiple transformations of the same image.
While purely 2D image-based approaches can o�er the ability to localize images

even if local feature matching fails, these methods are usually considered unsuitable
for accurate visual localization. 3D structure-based approaches o�er more precise
pose estimation, becoming a natural choice for visual place recognition methods,
which require the recovery of the 6-DoF camera pose. Sattler et al. [94] combine
both methods by querying an image database to retrieve a set of related images
depicting the same place and performing a small-scale Structure From Motion
(SFM) to obtain a local 3D reconstruction around a query image. 3D structure-
based techniques assume that the scene is represented by a 3D model, usually
obtained from SFM [62] or SLAM [32], and the camera pose can be obtained using
a PnP solver [54] in a RANSAC scheme [33]. Another widely used approach is
to use LIDAR sensors to obtain the 3D structure of the environment in very �ne
resolution. SegMatch [30], for example, performs place recognition using 3D laser
data using the concept of segment matching. Despite the reduced amount of noise,
these maps are usually sparser than maps obtained using vision-based approaches,
and as already mentioned, range sensors are still too heavy and often too power-
consuming to be carried on a small UAV.
More recently, Convolutional Neural Networks (CNNs) have been successfully

demonstrated to extract robust feature descriptors for place recognition [7] or even
to regress a 6-DoF pose directly from images [51]. While shown to produce impres-
sive results even under extreme changes in appearance, deep learning techniques,
however, usually rely on powerful GPUs, rendering them too computationally ex-
pensive to run onboard a small aircraft. Besides this, they also rely on very large,
annotated datasets, which are very hard to obtain.

3 Methodology

In the proposed Place Recognition pipeline, illustrated in Fig. 6.2, we assume that
vision-based SLAM running onboard the robot provides, for each image entering
the pipeline, a sparse 3D map of the location and, optionally, its 2D features (i.e.
keypoints and descriptors). When a new image arrives, a map densi�cation step
generates a denser 3D map from the sparse 3D map provided by SLAM using a
depth completion approach. New image features can be detected for Place Recog-
nition if the user desires di�erent features from the ones used in SLAM. All features
get converted into a BoW representation in order to search for loop-closure candi-
dates that have similar appearance to the query image. A candidate �ltering step
re�nes and removes erroneous loop-closure candidates by exploiting covisibility in-
formation captured by SLAM. Any remaining loop-closure candidates proceed to
a geometric check, where geometric compatibility between the query and each can-
didate is evaluated by using all their 2D features and their denser 3D maps. If the
geometric check succeeds, a loop-closure is deemed as detected and the pipeline
returns the loop-closure match with the most keypoints in agreement with the
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query.
Sections 3.1, 3.2 and 3.4 describe brie�y the main steps of the pipeline already

introduced in [70], while Section 3.3 focuses on the main novelty of this paper,
the use of depth-completion to improve the establishment of 3D-3D and 3D-2D
correspondences during geometric checks, which is the key component enabling
feature-based matching across images of very di�erent viewpoints.

Figure 6.2: The proposed pipeline for Place Recognition employing depth com-
pletion with appearance and geometric checks to determine whether the current
image Q forms a loop closure with an image in the database containing past robot
experiences.

3.1 Loop-Closure Candidates Retrieval

Following the approach suggested by Galvez and Tardos [36], a hierarchical BoW
visual vocabulary is formed by discretizing the feature-descriptors' space into a set
of visual words. When a new query image arrives, local features, such as BRISK
or SURF, are extracted and converted to a BoW representation, used to retrieve a
set of database images similar to the current image. The BoW descriptor is scored
based on its distance to database entries, using a `term frequency-inverse document
frequency' (tf-idf) weighting scheme [28] to suppress commonly occurring words.
The decision of the feature detector and descriptor to be used is left open in

the proposed framework, as this decision a�ects the trade-o� between precision
and recall. While SIFT [66] and SURF [11] features can be used in the pipeline,
for example, their bigger accuracy comes at the cost of longer run-times, when
compared to binary features, such as BRISK [59] and ORB [92]. As BRISK features
require low computational cost, being more suitable for UAV navigation, here we
use BRISK for our experiments.

3.2 Candidate Filtering

As geometric checks are usually expensive, here covisibility information captured
by SLAM is �rstly used to re�ne and remove erroneous loop-closure candidates
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suggested by the BoW descriptors when querying the image database. Following
the same approach as in [77], the proposed pipeline implements a covisibility graph,
where each node is a frame and an edge between two nodes exists if they share
enough observations of the same 3D points in the SLAM map. As a simpli�cation,
in case of loop-closure detection the covisibility graph is not updated, keeping only
covisibility information at the frames' neighbourhood. At �rst, the minimum score
Smin between the query and its neighbours in the covisibility graph is recorded,
and any candidate which scores lower than 75% of Smin is excluded from the list
of candidates. While [77] removes all candidates lower than Smin avoiding false-
positive at all costs, here we employ a more permissive �lter in order to recover
candidate images taken from more distinct viewpoints subject to strict checks later
on. As many overlapping frames exist, when querying the database, many images
will exhibit a high score when compared to the query image. These overlapping
images are taken into account by summing up the scores of the images that are
neighbours in the covisibility graph. Any loop-closure candidate scoring higher
than 75% of the best score will proceed to the next step. A candidate loop image
is accepted if three consecutive loop candidates are consistent. Two frames are
de�ned to be covisibility-consistent if they share at least one frame among their
covisibility neighbours. More details about this approach can be found in [77].

3.3 Map Densi�cation using Depth Completion

During the geometric check, geometric consistency between the query and the can-
didate is evaluated by computing the query's pose in the candidate's coordinate
frame. This procedure requires the establishment of 3D-3D or 3D-2D correspon-
dences between the query-candidate pair. Assuming that the scene is represented
by a 3D map, and each 3D point is associated with one or more local descriptors
in the image space, 3D-3D and 3D-2D correspondences are obtained via descrip-
tors matching in the image space. However, under extreme viewpoint changes,
feature-based image matching is strongly a�ected by a�ne distortions and occlu-
sions, resulting in a reduced number of correspondences between the query's and
the candidate's keypoints. Besides this, it must be noted that only keypoints suc-
cessfully tracked by SLAM have a 3D landmark associated with them. As such,
only a small number of keypoints carrying 3D information arrives to the geomet-
ric check. By using a depth completion for map densi�cation, interpolated 3D
landmarks can be estimated for the 2D keypoints that have no depth-estimates
yet, improving the establishment of 3D-3D and 3D-2D correspondences for images
captured across very wide baselines.
Fig. 6.3 illustrates the map densi�cation pipeline, which consists of a depth com-

pletion step, shown in Figs. 6.3a-6.3b, followed by the creation of the interpolated
3D landmarks, illustrated in Fig. 6.3c. Our map-densi�cation algorithm, takes as
input the camera pose, the 3D landmarks visible by this camera (dark green) and
the 2D keypoints (red), for which we want to calculate an interpolated landmark.
A dense mesh of the 3D landmarks is �rst computed (in purple in Fig. 6.3a) using
the open-source mesh-generation pipeline of [106]. A depth image, of the same size
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as the camera image is obtained by rendering this mesh into the image plane and
extracting the depth-bu�er of the render engine, as shown in Fig. 6.3b, illustrating
the 2D keypoints in red and the projections of the 3D landmarks in the image
in green. Any 2D keypoints lying over a pixel with depth information, have their
corresponding 3D landmarks estimated, in camera coordinates, by using the pixel's
coordinates and the depth value on that pixel, using Equation (1). Any remaining
2D keypoints cannot have a 3D landmark established. Fig. 6.3c shows, in blue,
the new, interpolated 3D landmarks added to create a denser map of the scene.

Pc = (X,Y, Z) =

(
(u− u0) ∗ d

fu
,

(v − v0) ∗ d
fv

, d

)
, (1)

where (u, v) is the position of the detected keypoint, u0 and v0 are the pixel
coordinates of the camera's optical center, fu and fv are the focal length in u-
and v-direction, respectively, and d is the depth provided by the mesh at the pixel
(u, v).

(a) (b) (c)

Figure 6.3: The map-densi�cation process: the green 3D landmarks are used to
estimate the depth of the red 2D keypoints by creating a mesh (in purple) in (a),
and projecting it in a depth image visible in (b). This results to the additional
blue 3D landmarks in (c).

While it is possible to extract all the keypoints needed for Place Recognition dur-
ing SLAM, only a reduced number of them, represented in bright green in Fig. 6.3,
can be tracked in order to keep its real-time performance. With OKVIS [60] (the
SLAM system used in our experiments), for example, we can usually track about
400 landmarks while maintaining real-time performance, however, about 1000 key-
points were used here for Place Recognition. As such, the map-densi�cation ap-
proach focuses in estimating the 3D landmarks for the keypoints that were ignored
or not successfully tracked by SLAM. However, if the type of keypoints and descrip-
tors used for Place Recognition is di�erent from the one used during SLAM, new
features need to be detected. In this case, the map densi�cation will try to estimate
a 3D landmark for every newly detected keypoint. One advantage of the latter case
is a better decoupling between the SLAM method and Place Recognition.
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Another advantage of the proposed map-densi�cation approach is that it can
handle arbitrarily sparse maps, which can contain certain amount of noise, while
traditional depth-completion algorithms, such as [73], rely on good quality and not
very sparse depth images as input in order to create a dense depth image. Here,
we opted to use a mesh-based approach to create a dense depth image out of the
3D landmarks provided by SLAM. A higher quality representation of the scene is
then obtained using the mesh generation pipeline of [106], which applies a Delaunay
triangulation followed by an outlier removal to create a 3D triangle mesh out of the
3D landmarks provided by SLAM. Assuming local planarity among neighbouring
vertices of the mesh, outlier removal is performed by comparing the value of a vertex
with the centroid of the vertex's neighbourhood. In case of a large disagreement
the vertex is eliminated. This approach prioritizes high-quality depth estimations
instead of a full representation of the mesh, and holes can exist at points with a
high local depth uncertainty. While very e�cient in removing outliers, the use of a
sparse 3D map together with the local planarity assumption create a smooth mesh
of the environment, eliminating details in small areas with a large depth variation.
However, as demonstrated in [69] and [106], this approach was already proven to
work well in man-made environments, where locally planar structures are usually
present. Besides this, this mesh generation approach takes about 7 ms per frame
to create a 3D mesh out of the 3D landmarks, rendering it suitable for real-time
applications.

3.4 Geometric Check

The BoW approach does not use any geometric information for image retrieval,
accepting two images as a match if they present a similar collection of words. As
geometry was shown to play a key role in identifying true loop-closures, here we
employ the geometric checks proposed in our previous work [70]. Geometric consis-
tency between a query-candidate pair is evaluated by computing the query's pose
in the candidate's coordinate frame. If a pose PC

Q can be successfully estimated,
the candidate is accepted as a loop-closure for the query.
When testing for geometric consistency, we �rst search for feature correspon-

dences between the query Q and a candidate C using only keypoints with associated
3D landmarks. If enough 3D correspondences are found, we attempt to estimate a
similarity transformation (i.e. translation, rotation and scale) between the query
and the candidate using Horn's method [25] in a RANSAC scheme [18]. If a trans-
formation that satis�es a minimum threshold on the average reprojection error is
found, the candidate is accepted as a loop-closure for the query. In this case, PC

Q
can be easily recovered by multiplying the candidate's pose on his own coordinate
system by the similarity transformation. However, if a transformation cannot be
estimated or not enough 3D-3D matches can be found, the set of correspondences
to be considered is expanded by searching for feature correspondences between the
candidate's keypoints with 3D landmark associated and all the keypoints in the
query Q. If enough 3D-2D matches are found, we attempt to directly estimate the
pose PC

Q using the 3D-2D matches [17]. If this succeeds, a loop-closure is deemed
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as detected. We repeat this process to all loop-closure candidates and select the
candidate match with biggest number of inliers.

4 Datasets

In this work, two types of datasets are used to evaluate the proposed method.
To isolate the problem of viewpoint changes in place recognition, while keeping
full control of the test conditions, we set up a photo-realistic simulation. Finally,
tests are conducted also in real conditions, using datasets recorded with hand-held
cameras and aerial robots, exhibiting very di�erent viewpoints, such as air-ground
matching.

4.1 Photo-realistic Synthetic Datasets

Large scale outdoor experiments using real robots are the best way to validate a
place recognition algorithm. However, such data lacks not only the ground-truth of
the robot's poses but also the 3D model of the environment. Traditional methods of
constructing ground-truth poses, such as with GPS or laser tracking, estimate the
robot's position with an accuracy of several centimetres at best, but can also be up
to a few meters inaccurate. Even more problematic is the orientation estimation of
the camera that is usually unknown or only roughly estimated in post-processing.
In order to guarantee good ground-truth for the loop-closures, some datasets are
manually annotated, such as in [70]. By making use of synthetic datasets, ground-
truth information is easily obtained, allowing quantitative evaluation of the method
by automatically estimating the ground-truth.

Figure 6.4: The Left image shows the result of our simulation and the right is an
actual picture taken from the same place with a consumer camera.

In order to create our synthetic datasets, we use 3D models obtained by pho-
togrammetric reconstruction. We create UAV trajectories using the Rotors UAV
physical simulator [35] and the RGBD images are produced by the Blender render
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(a) L'Agout in Castres (b) 0◦ view (c) 15◦ view

(d) 30◦ view (e) 45◦ view

Figure 6.5: L'Agout dataset: 3D photometric reconstruction of medieval houses.
In (a), a picture of the location shows houses of about 15m height by 100m width
in total and a depth variation of 3m among the facades. In (b)-(e) are example
images from L'Agout dataset at 0◦, 15◦, 30◦ and 45◦, respectively.

engine. Fig. 6.4 shows that our simulation produces images that are very simi-
lar to the real ones. This approach on dataset generation produces visual-inertial
measurements that reproduce the Skybotix VI-Sensor with resolution of 752×480
pixels, the same resolution as in the outdoor real datasets. De�ning as loop a pair
of images with more than 50% of overlap and using the ground-truth poses pro-
vided by the physical simulator, we were able to easily distinguish (and annotate)
the image-pairs that constitute loops.
Namely, we construct the following datasets:
The L'Agout 0◦ & 15◦ & 30◦ & 45◦ dataset was produced using aerial

pictures of �Maisons sur l'Agout" visible in Fig. 6.5, depicting medieval houses
with balconies over the river Agout. We produce 4 sequences of 100 meters with
a laterally moving drone carrying a camera facing the houses at 0◦ (i.e. pointing
forwards), 15◦ from the horizon, 30◦, and 45◦ as shown in Fig. 6.6b. It is important
to highlight that the position of the drone was chosen in a way that the camera
frustum is completely �lled by the buildings in order to guarantee that the only
di�erence between these sequences happens in the viewpoint, without any changes
in scale.
The Corvin 0◦ & 30◦ & 45◦ dataset was produced using aerial footage of

the Corvin Castle visible in Figs. 6.4 and 6.6. We produced 3 sequences at 0◦, 30◦,
and 45◦, while doing a 300-meter circular �ight around the castle. These sequences
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(a) Corvin Castle

0°

15°

30°

45°

(b) angles side view

(c) 0◦ view (d) 30◦ view (e) 45◦ view

Figure 6.6: Corvin dataset: 3D photometric reconstruction of Corvin Castle (a).
In (b), the di�erent viewpoints used to record the synthetic datasets, and in (c),
(d) and (e), example images from Corvin dataset at 0◦, 30◦ and 45◦, respectively,
are shown.

capture a scene composed of a large range of di�erent depths.

4.2 Outdoor Real Datasets

While we focus our real world experiments on publicly available datasets, we also
construct a new air-ground dataset, which we make publicly available together with
the new synthetic datasets. All real datasets used in this paper were recorded using
a Skybotix VI-Sensor, using only one camera and one IMU in a hand-held setup
or mounted on an AscTec Hexacopter Neo for di�erent viewpoints. The datasets
are:
Shopping street 1 dataset [70] 7−→Ground-Ground is a hand-held dataset

with the camera revisiting the same location with very similar viewpoints in a busy
shopping street in Zurich.
OldCity dataset [69] 7−→ Ground-Ground consists of two walking sequences

of 230m in the old city of Zurich, presenting a more complex scenario due to the
presence of narrow passages in this area, providing wide range of viewpoints of the
same places.
Clausius street dataset [70] 7−→ Air-Air is a dataset recorded along a res-

idential street with the camera mounted on the UAV, facing the buildings of one
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street side, while performing lateral movements with the UAV in both directions.
The two air sequences exhibit large viewpoint changes, perceptual aliasing and
strong lighting changes.
Clausius street dataset 7−→ Air-Ground was recorded in the same street,

with the air sequence taken from the previous dataset, while a new hand-held
sequence was recorded on the same day. This is the most challenging real dataset
because of its extreme viewpoint changes.
We benchmark the proposed pipeline against three state of the art place recogni-

tion algorithms that are suitable for UAV navigation, referred to here as BoBW [36],
ORTHO [69] and VTPR, a modi�ed version of [21] for ease of comparisons. In par-
ticular, VTPR here, corresponds to the methodology of [21], albeit using the same
feature descriptors (i.e. BRISK instead of BRISK-48-bytes) as used in our method,
as well as small modi�cations in the candidate �ltering step. This strategy reveals
the true power of map densi�cation, which is also the main contribution of this
work. It should be noted, however, that with these modi�cations VTPR achieves
slightly better results than the original method of [21]. The use of BoBW with
ORB [92] features in [77], was shown to provide scale and rotation invariance,
while keeping real-time capabilities. ORTHO makes use of BRISK [59] features
and minimizes the e�ect of viewpoint changes by using a mesh-based approach to
create orthophotos projecting the image to the most salient plane in the scene.
Although the decision of the feature detector and descriptor to be used is left to

open in the proposed pipeline, here we choose to run our experiments using BRISK
features, which provide a good matching performance at a very low computational
cost. To build a visual vocabulary as in [36], we discretize a BRISK descriptors'
space using 6000 images, di�erent from the ones used for testing, depicting indoor
and outdoor environments. A vocabulary of 1 million words is generated by build-
ing a vocabulary tree with 10 branches and 6 depth levels. The same vocabulary is
used throughout all the experiments, demonstrating the robustness of the method.

4.3 Narrow viewpoint changes

We test the proposed pipeline and the selected algorithms on narrow baselines in
order to validate our algorithm on publicly available datasets against the state of
the art in conditions that existing algorithms are designed for.
First, we record the precision-recall curves for all algorithms on the Shopping

Street 1 dataset, which depicts a planar scene at small viewpoint changes. All the
algorithms perform well in this dataset, with the proposed method presenting the
highest recall (0.96) at precision 1, against 0.94 for both BoBW and VTPR, and
0.78 for ORTHO.
Precision-recall curves for the Old City dataset are visible in Fig. 6.7. This

dataset exhibits both small and challenging viewpoint changes. As such, all algo-
rithms can recover correct loops in areas with small changes in viewpoint, while
maintaining perfect precision. However, the proposed method can also recover
correct loops in areas with challenging viewpoint changes, achieving recall 0.79 at
precision 1 and outperforming all others algorithms Example loop-closure detec-
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tions using the proposed approach in the Shopping Street 1 and Old City datasets
are shown in Fig. 6.8a and 6.8b, respectively.
The methods were also tested in the Air-Air Clausius Street dataset. The loop-

closures detected by our approach and a correct match are illustrated in Fig. 6.9.
While the proposed approach detects one false positive loop, BoBW and ORTHO
detect only few correct matches and much more false positives in this dataset.
VTPR detects about half of the loops detected by the proposed approach, as can
be seen in comparison to the results in [70], however, without any false positive
detections.
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Figure 6.7: Precision-Recall Curves for the Old City dataset, showing that the
proposed approach outperforms BoBW and ORTHO in scenarios where these al-
gorithms are designed for, planar scenes (in the case of ORTHO) and narrow
viewpoint changes.

4.4 Image Retrieval and Candidate Filtering in wide viewpoint
changes

In our exploration towards robust loop-closure detection under large viewpoint
changes, the �rst step was to determine whether our image retrieval algorithm
works in these conditions and how many of the top candidates we need in order to
guarantee a good chance of having at least one correct candidate in the set passed
on to the geometric check. Fig. 6.10 shows the percentage of queries with at least
one correct candidate before and after the candidate-�ltering step, while varying
the number of images retrieved from the image database. Note that the candidate
�ltering step not only removes erroneous candidates, but also �lters out some
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(a) Shopping Street 1: small viewpoint changes

(b) Old City: more challenging viewpoints

Figure 6.8: Example loop-closures from the Shopping Street 1 and Old City
datasets.

correct loop-closure candidates. Empirically, retrieving the top 30 most similar
images to a query from the image database is enough to provide enough correct
candidates for the next steps of the pipeline. Despite the decrease from 97% (before
candidate �ltering) to about 88% (after candidate �ltering) in the percentage of
queries with at least one correct candidate in L'Agout 0◦-45◦ sequence matching,
most of the queries can still provide correct candidates for the geometric check,
without much compromise in performance.

4.5 Wide viewpoint changes

In order to evaluate how the proposed method performs with increasing changes
in viewpoint, we �rst test for loop-closures within the L'Agout dataset. We test
the sequence at 0◦ against all others (i.e. 15◦, 30◦ or 45◦). Except for the neigh-
bours of the current position, that depict the same place and cannot be detected,
no self-loops exist along a single sequence. However, as all images entering the
pipeline are tested for loop-closures before being inserted into the database of im-
ages, false positive detections are still possible inside one sequence. Fig. 6.11a
shows the precision-recall curves for L'Agout for all the algorithms. Although all
algorithms perform well at 15◦ of viewpoint changes (i.e. 0◦-15◦), both VTPR
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(a) Loop-closure in the Air-Air Clausius Street dataset

(b) UAV trajectories (in red and blue) and detected loops (in bright green)

Figure 6.9: Loop closures in the Air-Air Clausius Street dataset: in (a), is an ex-
ample loop-closure detected using the proposed method and in (b), the trajectories
followed by the UAV, and the loops correctly detected between them. A false loop
detection is shown in the dashed green line.

and the proposed method achieve the highest recall (0.97) for perfect precision.
At 30◦, both methods achieve a recall of 0.72 for perfect precision against 0.21 for
ORTHO, while BoBW fails to detect loop-closures. The robustness of the proposed
algorithm in viewpoint changes becomes evident at larger angles. At 45◦, the pro-
posed approach achieves recall of 0.54 for perfect precision against 0.38 for VTPR,
representing an improvement of 42% with relation to the latter one, while both
BoBW and ORTHO fail quickly. Fig. 6.14 shows a correct loop-closure detected
in the L'Agout 0◦-45◦ dataset, using the proposed approach.
We repeat the same experiment for the Corvin dataset, which captures a scene

with strong depth variations. We record precision-recall curves for the sequence
at 0◦ against the one at 30◦ and at 45◦. As evident in Fig. 6.11b, these datasets
present great challenges for all algorithms, with BoBW and ORTHO failing quickly.
While VTPR achieves, a recall of 0.5 at 30◦ and 0.04 at 45◦ viewpoint changes
for perfect precision, the proposed method achieves a recall of 0.71 at 30◦ and
0.14 at 45◦ for the same precision. This represents an improvement of 40% at
30◦ and 250% at 45◦ of viewpoint changes, when compared to VTPR. Fig. 6.13
depicts correct loop-closure detections, in the Corvin dataset, using the proposed
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approach.
The methods were also tested in the Air-Ground Clausius Street dataset. While

our approach detects one false positive loop and many correct loops, as shown in
Fig. 6.12, BoBW, ORTHO and VTPR detect only very few correct matches (less
than 5) and few more false positives.
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Figure 6.10: The percentage of queries with at least one correct loop-closure can-
didate to be passed on to the geometric check for di�erent viewpoint changes. We
provide curves both before and after the candidate-�ltering step used for e�ciency,
while varying the number of top images retrieved from the image database. The
higher the percentage achieved, the better the chance of discovering the correct
loop-closure after the geometric check.

5 Timings

As consecutive frames are usually very similar, loop-closure detection does not need
to be attempted at every frame, so in practice, runtime in the range of 1-5 Hz is
enough for real-life applications. In the worst-case scenario, where all candidates
entering the geometric check are tested for loop-closure, the proposed algorithm
runs at 5Hz on average on a single core Intel i7 2.8GHz, allowing real-time place
recognition within a SLAM system. Setting a maximum of 50 image-candidates
at the end of the image-retrieval step, we avoid compromising the timings in cases
of longer robot trajectories (resulting to larger image databases). In reality, even
faster performance is expected as the geometric check can abort as soon the �rst
suitable candidate is found.
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(a) L'Agout dataset
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(b) Corvin dataset

Figure 6.11: Precision-Recal Curves in the L'Agout dataset in (a) using di�erent
viewpoint variations (from 0◦ to 15◦, 30◦ and 45◦), and in the Corvin dataset in
(b) while varying the viewpoints from 0◦ to 30◦ and to 45◦.
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(a) Loop-Closure in the Air-Ground Clausius Street dataset

(b) UAV trajectory (in red and blue) and detected loops (in bright green)

Figure 6.12: Air-Ground Clausius Street dataset: In (a), example loop-closure
detected using the proposed method and in (b) the trajectory followed by the
UAV and by the hand-held setup, and the loops correctly detected between them.
A false loop detection in the dashed green line.

Figure 6.13: Example loop-closure detections in the Corvin dataset using the
proposed approach. A viewpoint change from 0◦ to 45◦ illustrates the extent of
the challenge in this dataset.
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Figure 6.14: An example loop-closure detection in the L'Agout dataset using the
proposed approach for a change in viewpoint from 0◦ to 45◦.

6 Conclusion

This paper proposes a new place recognition pipeline capable of addressing dra-
matic changes in viewpoint (of up to 45◦), while maintaining robustness at smaller
angles, from narrow baselines. It relies on a depth-completion approach to im-
prove the establishment of 3D correspondences during geometric checks, enabling
feature-based matching across images captured from very wide baselines.
Evaluation on synthetic and real datasets with both hand-held and aerial footage,

reveals that the proposed method achieves signi�cant improvement in precision and
recall in comparison to the state of the art, while keeping onboard computation
a�ordable for autonomous UAV navigation, demonstrating that feature-based tech-
niques still have a lot to o�er in place recognition at extreme viewpoint changes.
To the best of our knowledge, the new synthetic datasets presented here are the

�rst to completely isolate the problem of viewpoint changes for place recognition,
closing a crucial gap in the literature. To facilitate further research on this topic,
our datasets are publicly available.
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