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Abstract

As the capabilities of robots and their control systems improve, applications involving the
use of large robot swarms in semi-structured environments become increasingly viable.
Such applications include the progressive automation of warehouses, factories, mine sites
and hospitals. Despite differences in context and application, these problems all require
accurate localization and timely coordination of large fleets of robots.

In outdoor applications, satellite-based localization (e.g. GPS) is a core technology
driving the development of autonomous vehicles and facilitating the progressive roboti-
zation of industries such as agriculture, mining, inspection and freight. Satellite-based
localization enables such applications by providing robots with the ability to quickly and
independently measure their absolute position. In indoor environments, satellite-based
localization is unavailable, making absolute positioning in such environments challeng-
ing.

The first contribution of this thesis is the development of a scalable, “indoor GPS-like
system using ultra-wideband radio technology. The topology of this system is similar to
that of GPS: fixed-position radio modules installed in the environment regularly transmit
radio signals, fulfilling a similar role to that of GPS satellites; while mobile robots move
within the coverage area and localize themselves based on the received signals. Much like
GPS, the system therefore scales to support an unlimited number of robots. Theoretical
developments presented in this thesis are supported by experimental results, including
a demonstration of the system’s functionality, in which multiple nano-quadcopters are
flown simultaneously within a space.

Generating collision-free trajectories for large swarms of robots operating in close
proximity is a similarly challenging problem, since robot trajectories are coupled through
collision avoidance constraints, making the problem computationally expensive and time
consuming to solve using classical optimization techniques. The second contribution of
this thesis is a method to quickly generate such trajectories by leveraging the parallel-
computation architecture of modern graphics processing units. The effectiveness and scal-
ability of this method is demonstrated in two simulation-based case studies: a benchmark
problem requiring a swarm of 200 quadcopters to traverse a maze; and an example in
which a fleet of 100 robots with bicycle dynamics must change their formation. In both
cases, the method easily handles nonlinear dynamics and constraints, and generates fea-
sible, collision-free trajectories for the entire swarm in a matter of seconds.

The developments and contributions presented in this thesis provide a pathway to-
wards the application of these technologies to the localization and coordination of large
robot swarms in indoor environments.



Zusammenfassung

Die Weiterentwicklung von Robotern und ihren Steuerungssystemen erméglicht die An-
wendung grofer Roboterschwérme in semi-strukturierten Umgebungen. Zu diesen An-
wendungen gehort die fortschreitende Automatisierung von Lagerhallen, Fabriken, Berg-
werken und Krankenhdusern. Trotz der unterschiedlichen Einsatzgebieten erfordern all
diese Anwendungen genaue Lokalisierung und Koordination grofter Roboterflotten.

In Aufenanwendungen ist die satellitengestiitzte Lokalisierung (z.B. GPS) eine Kern-
technologie, welche die Entwicklung autonomer Fahrzeuge vorantreibt und die fortschrei-
tende Robotisierung von Industrien wie Landwirtschaft, Bergbau, Inspektion und Fracht
ermoglicht. Solche Anwendungen werden durch die Fahigkeit der Roboter ermdéglicht, ihre
absolute Positionen schnell und unabhéngig voneinander zu messen. In Innenrdumen ist
eine satellitengestiitzte Ortung nicht moglich, was eine absolute Positionierung in solchen
Situationen erschwert.

Der erste Beitrag dieser Arbeit ist die Entwicklung eines, “indoor GPS”-dhnlichen Sy-
stems mit Hilfe der Ultrabreitband-Funktechnologie. Die Funktionsweise dieses Systems
dhnelt jener eines GPS: In der Umgebung installierte Funkmodule mit fester Position sen-
den regelméfig Funksignale und erfiillen eine dhnliche Rolle wie GPS-Satelliten; Roboter
konnen sich innerhalb des Versorgungsgebiets bewegen und sich anhand der empfangenen
Signale lokalisieren. Ahnlich wie bei einem GPS kann das System eine unbegrenzte An-
zahl von Robotern unterstiitzen. Theoretische Resultate, die in dieser Arbeit vorgestellt
werden, werden durch experimentelle Ergebnisse unterstiitzt, einschliefslich einer Demon-
stration der Funktionalitdt des Systems, bei der mehrere Nanoquadrokopter gleichzeitig
in einem Raum geflogen werden.

Die Planung kollisionsfreier Trajektorien fiir grofse Roboterschwirme ist ebenfalls ein
herausforderndes Problem. Um Kollisionen zu vermeiden, miissen die Trajektorien ge-
meinsam optimiert werden. Dies ist unter der Verwendung klassischer Optimierungstech-
niken rechnerisch aufwendig und zeitintensiv. Der zweite Beitrag dieser Arbeit ist eine
Methode zur schnellen Planung solcher Trajektorien durch die Nutzung der Parallelbe-
rechnungsarchitektur moderner Grafikprozessoren. Die Effizienz und Skalierbarkeit die-
ser Methode wird in zwei simulationsbasierten Fallstudien demonstriert: ein Benchmark-
Problem, bei dem ein Schwarm von 200 Quadrokopter ein Labyrinth durchqueren muss;
und ein Beispiel, bei dem eine Flotte von 100 Fahrradrobotern ihre Formation d&ndern
muss. In beiden Féllen geht die Methode problemlos mit nichtlinearer Dynamik und Be-
dingungen um und ist fahig in wenigen Sekunden realisierbare, kollisionsfreie Trajektorien
fiir den gesamten Schwarm zu planen.

Die Arbeit zeigt Losungen auf, wie Roboterschwirme in Innenrdumen lokalisiert und
koordiniert werden konnen.
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Foreword

This thesis documents the research carried out by the author during his doctoral stud-
ies under the supervision of Professor Raffaello D’Andrea at the Institute for Dynamic
Systems and Control at ETH Zurich between October 2013 and February 2019.

This thesis is divided into two stand-alone parts, focused on the localization (Part Al
and the coordination of robot swarms . This thesis presents a mix of theoret-
ical and practical results that progress the state-of-the-art research in these two fields.
The work presented in this thesis is based on material published by the author in two
peer-reviewed journal papers, three peer-reviewed conference papers, co-authored in two
additional peer-reviewed publications, and investigated through 13 student projects su-
pervised during his doctoral studies.

These two thesis parts are put into context by two introductory chapters, Chapter [[,
which introduces and motivates this work; and Chapter [[I, which outlines the key contri-
butions made by the author during his doctoral studies. Being stand-alone, each thesis
part provides a more thorough introduction to the topic and a review of related research,
and is concluded by a technical discussion of open questions and future research direc-
tions. The thesis is concluded by Chapter [[IT which provides an overview of the major
thesis contributions, and a general outlook on future research.






Introduction

Improvements in the capabilities of robots and their control systems have allowed robots
to operate in increasingly cluttered environments and in increasingly close proximity to
each other. Recent examples of such applications include the automation of warehouse
logistics using fleets of mobile robots [1]; the use of service robots for goods transport in
hospitals |2], [3]; the robotization of cleaning tasks (e.g. in households, supermarkets); and
the progressive automation of mining sites and agriculture. Despite differences in context
and scale, many of these examples share a requirement for accurate localization in semi-
structured environments, and rely on the coordination of fleets of robots to achieve a
higher-level goal.

This thesis addresses these requirements in two related, yet stand-alone parts.
of the thesis presents the development of an ultra-wideband (UWB) radio localization
system, which allows a theoretically unlimited number of robots to localize within an
environment that has been outfitted with a small number of fixed-position modules.
[Part Bl of the thesis addresses computational challenges in generating trajectories for
robot swarms and proposes a method of solving such problems using parallel computation,
which can be scaled to swarms of hundreds to thousands of robots. Each thesis part
begins with a technical introduction to the topic and a review of related research, and is
concluded by an outlook on future research directions. A general overview of each thesis
part follows.

Localization of Robot Swarms

Satellite-based localization systems (e.g. GPS) have revolutionized modern industry and
have become ubiquitous in our personal lives. This technology is a core enabler of au-
tonomous vehicles (e.g. cars, boats, planes), and is instrumental to the increasing roboti-
zation and automation of the agriculture, mining, freight and transportation industries,
to name just a few. The success of GPS technology is largely due to its scalability: an un-
limited number of devices can receive GPS signals and each device can use these signals to
compute its position relative to the satellite coordinate system. Since it is a satellite-based
localization system, the application of GPS technology is limited to outdoor applications
in which signals sent by satellites travel in a direct path to each receiving device.



Chapter 1. Introduction

[Part A of the thesis is based on the author’s publications [1], [5], [6] (see Chapter
and presents the development of a localization system for indoor application, which shares
many similarities with GPS. The proposed system is based on UWB radio technology,
which has been used in communication and radar applications since the 1960’s [4] due to
its ability to accurately timestamp the transmission and reception of radio pulses. The
use of UWB as a means of localization is a much newer field, driven by its legalization [5]
and standardization [6], |7] in the early 2000s, and by the advent of small, low-power
UWB radio transceivers such as the Decawave DW1000 [8] used in this thesis.

In the proposed system, an indoor environment is outfitted with a number of station-
ary radio transceivers, which play a similar role to the satellites in GPS. Devices (in the
case of this thesis, robots) within the coverage area can localize themselves based only on
received signals. Much like GPS, this allows the system to support an unlimited number
of robots. Furthermore, the stationary radio transceivers require no physical connection
for synchronization and initially no knowledge of their position, since both are measured
and refined during operation. This makes the proposed system easy to deploy, maintain
and extend.

Furthermore, since each robot is able to directly measure its position within the en-
vironment, sensors mounted on the robot such as inertial measurement units, wheel en-
coders, or cameras, can be used to improve the robot’s state estimate and increase its
awareness of the local environment. This is akin to the approach taken by autonomous
vehicles (e.g. self-driving cars), in which GPS position measurements are augmented with
cameras, LIDARs, wheel encoders and other sensory capabilities to allow the vehicle to
navigate in its local environment. Much like GPS, the localization technology proposed
in [Part A is therefore viewed as complementary to other technologies, and allows an un-
limited number of robots to localize themselves within a semi-structured environment at
low cost and with low hardware and computational complexity.

begins with a more thorough overview of UWB technology (Chapters [1|and
and a review of relevant literature (Chapter , before presenting a systems-based ap-
proach to the development of the UWB localization system (Chapters and associ-
ated robot state estimation framework (Chapter [7). An alternative method of coordi-
nating transmissions is presented in Chapter [§] which allows the system to scale to a
large number of stationary transceivers, while maintaining its scalability to an unlimited
number of robots. Results presented in are interspersed with the presentation
of pertinent experimental results, with the functionality of the system demonstrated by
multiple nano-quadcopters localizing and flying simultaneously within a space. [Part A is
concluded by a discussion of future research directions in Chapter [9]



Coordination of Robot Swarms

Coordination of Robot Swarms

Having developed a system that enables robot swarms to localize within a semi-structured
environment, the focus in [Part Bl of the thesis is turned to the coordination of such
swarms through the time-efficient generation of feasible, collision-free trajectories that
transition a swarm of robots from an initial state to a defined goal state. Such problems
have historically proven difficult to solve in a time-efficient manner, since the requirement
for collision avoidance introduces a non-convex coupling between robot trajectories and
requires trajectories to be optimized jointly. Classic optimization approaches such as
mixed integer linear optimization (e.g. |9]) or sequential convex optimization (e.g. [10])
scale poorly to such high-dimensional problems.

[Part B of the thesis is based on [2] and presents a novel method to quickly generate
collision-free trajectories for swarms of hundreds of robots through cluttered environ-
ments. As introduced in Part B, Chapter |3 the proposed method leverages existing
trajectory generation methods to initialize individual robot trajectories without consid-
ering collisions, and then uses back-propagation and gradient descent to optimize these
trajectories until feasibility, when collision constraints are considered. This formulation
of the problem can be efficiently parallelized and can thus be solved quickly on a ten-
sor or graphics processing unit (GPU). Furthermore, the method is straightforward to
express using tensor computation frameworks and can leverage advances in computation
and computational methods, driven by the machine-learning community.

The effectiveness of this method is demonstrated in two simulation-based case studies,
presented in Chapter 4} a benchmark problem involving a swarm of 200 quadcopters
traversing a maze, and a fleet of 100 bicycle robots (a common benchmark for non-
holonomic systems) changing their formation. In both cases, the method requires seconds
to generate feasible, collision-free trajectories for the entire swarm. These case studies
are used to demonstrate the method’s application to nonlinear systems; to discuss the
implementation of various state and input constraints; and to address various performance
caveats and methods of increasing the method’s convergence speed. The source code for
these case studies has been published in [11]. concludes with discussion of future
research directions in Chapter
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Open-source involvement

Publications

Full source code for the two case studies presented in of the thesis has been made
available at https://github.com/mikehamer/swarm-trajectories/.
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During the course of the author’s doctoral research, numerous major contributions were
made to the Crazyflie open-source nano-quadcopter firmware, which is based on the
FreeRTOS real-time operating system. These contributions facilitated the development
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form that it is today. These contributions were committed via pull-request to the main
Crazyflie repository at https://github.com/bitcraze/crazyflie-firmware, and are
listed below in chronological order with a reference to the relevant commit hash and a
brief description of the contribution.

Commit Contribution

[663e7£8] Critical Bug Fix: 12C contention & timeouts cause the system to hang
when under load.

[£364475] Critical Bug Fix: Syslink unhandled interrupt causes the system to hang
when under load.

[1bc21ff] Critical Bug Fix: Radio link drops packets at high rates.
[cb07ba6] Critical Bug Fix: Radio link crash when missing communications link.

[93203d8] Critical Bug Fix: [12C incorrect delays & 12C underflow cause the system
to hang when under load.

[c2c¢5137] Enhancement: Improved EXTI handling to support more complicated ex-
pansion boards (such as the UWB board).

[882bc96] Critical Bug Fix: Incorrect semaphore logic in Syslink results in a race
condition with interrupts on a warm restart of the system, which can result
in dereferencing a null pointer.

[c8a372f] Enhancement: Convert expansion board SPI driver to use DMA. Required
for UWB expansion board.

[97a54d2] Enhancement: Rewrite IMU driver to use interrupts rather than polling.

[fc88c6al Major Contribution: Kalman filter, as described in Part A, Chapter
The linked contribution is the first in a series that add onboard state es-
timation to the Crazyflie platform. The contributed Kalman filter is now
a core part of the firmware and is fundamental to all recent hardware and
software developments on the Crazyflie.
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1

Overview

The first part of this thesis presents the development of a localization system that per-
mits an unlimited number of robots to localize themselves simultaneously within a given
area that has been outfitted with a network of stationary ultra-wideband radio (UWB)
modules, herein known as anchors. This part begins with an introduction to UWB tech-
nology in Chapter [2] within which the focus is primarily on the aspects of the technology
that make it suitable for radio-based localization. This chapter is largely based on the
author’s research, development, understanding and thought processes, and covers what
is now considered to be background knowledge to the understanding of research in this

field.

After establishing an understanding of UWB technology and its application to local-
ization systems, a review of the current state of research is presented in Chapter [3| within
which a particular focus is placed on research and developments related and relevant to
this thesis.

Chapters contain the novel and unique contributions of this thesis. In Chapter
a systems-based approach is used to model the inter-module clock behavior and to then
derive a clock synchronization scheme for pairs of UWDB modules.

Chapter [5| shows how pairwise clock synchronization of UWB modules can be com-
bined to allow a network of UWB anchors to wirelessly synchronize to a network logical
clock and to coordinate their transmissions according to a time-division (TDMA) sched-
ule.

Chapter [6] shows how UWB anchors can measure distances between each other and
use these (biased and noisy) distance measurements to initialize their positions within
a pre-defined coordinate system. It is then demonstrated how each anchor can improve
its position estimate using distributed gradient descent on global positioning error. The
ability of the UWB anchor network to self-localize enables it to be set up quickly and
dynamically, since anchor positions are computed as a by-product of operation and do
not need to be manually measured or otherwise known beforehand.

Having shown how a network of UWB anchors can synchronize and construct a coor-
dinate system, Chapter [7| demonstrates how robots can use measurements of packet re-
ception times to localize themselves within the network’s coordinate system. Since robots
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Chapter 1.  Qverview

are passive receivers in this system and are able to compute their position based only on
received and local information, a theoretically unlimited number of robots can operate
simultaneously and without the need for central coordination or centralized localization

infrastructure.

The system presented in Chapters relies on anchors coordinating their transmis-
sions according to a predefined TDMA schedule. Chapter 8| presents initial results and
discussion as to how similar results can be achieved by anchors randomly transmitting
messages, a method that significantly reduces software complexity and allows trivial scal-
ing to large, partially-connected networks.

This part of the thesis is concluded in Chapter [9] within which the current limitations
of the system are discussed and directions for future research are proposed.

All chapters are interspersed with the presentation of pertinent experimental results
based on a network of eight UWB anchors (with hardware detailed in Chapter , sup-
porting the operation of a fleet of Crazyflie 2.0 nano-quadcopters [1]| (with hardware
detailed in Chapter [7)). This setup is depicted in Fig. .

Q@)

Anchor

Q@)

Anchors communicate to synchronize
Anchor

and localize themselves

.
w2 T
e ’
: I
o
Robots passively receive
inter-anchor communication

<((| ))) and use this to localize (((‘))

Anchor Anchor

Figure 1.1: This figure shows the problem addressed in this part of the thesis. A network
of stationary UWB anchors communicate, allowing them to synchronize their clocks,
measure their pairwise distances, and construct a coordinate system. Through passive
reception of these communications, a theoretically unlimited number of robots are able
to localize themselves within the space. The topology of this system is akin to that of an
“indoor-GPS” system.
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2

Localization using Ultra-wideband
Radio

2.1 Ultra-wideband radio

The basic theory and technology underpinning modern UWB radio systems (originally
known as impulse radio) has been in development since the late 1960’s [2]. This tech-
nology is based on the transmission of impulses of radio energy that, being so short in
duration, have a wide bandwidth [3|. This wide bandwidth enables low energy operation
and robustness to interference, while the short duration of a pulse allows its reception
to be accurately timestamped and multi-path components to be filtered [4], [5]. Owing
to these benefits, ultra-wideband radio has seen historical application as both a com-
munication system [6] and as a form of radar [7]. More recently, UWB radio has found
application in the context of indoor localization systems, driven by the legalization of
its unlicensed usage by the U.S. Federal Communications Commission in 2002 [8], the
development of a communication and localization standard by the IEEE [9], |10] and the
advent of small, low-power UWB radio transceivers, such as the Decawave DW1000 [11]
used in this thesis.

This section provides a brief overview of UWB technology, with particular focus on
aspects of its operation that make it suitable for radio-based localization. Readers are
referred to [3] and [12]| for an in-depth discussion of UWB technology, and to [13] for an
in-depth review of UWB localization strategies. Experiments in this thesis were conducted
using the Decawave DWM1000 UWB module and readers are referred to |11, Appendix 1],
[14, Chapter 4] and [15], Section 2| for details on how the DW1000 implements the UWB
radio technology discussed herein. An overview of the DW1000 configuration used in this
thesis is given in Section [2.1.4.
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Chapter 2. Localization using Ultra-wideband Radio

2.1.1 Communication

UWB radio communication is based on the transmission of short duration pulses based
on, for example, a Gaussian mono-cycle waveform (e.g. [6]), a damped sinusoid |12, Chap-
ter 2|, or on a raised cosine pulse as reported to be used in the DW1000 [14], [16]. These
pulses are generated in the UWB module’s baseband frequency and modulated by the
carrier frequency, as depicted in Fig. [2.1] By transmitting a pulse and modulating its
polarity a single bit of information can be transmitted.

Polarity Baseband Pulse (499.6 MHz) Carrier Pulse (e.g. 3494.4 MHz)

AV
-

Figure 2.1: This figure shows an example of the UWB pulse shape used by the DW1000.
This pulse is generated in the DW1000’s baseband frequency (499.2 MHz), and is modu-
lated by the desired channel center frequency (in this example, 3494.4 MHz). By modu-
lating the pulse’s polarity, a single bit of information can be encoded in each pulse. This
figure has been adapted from [14].

In order to communicate data, multiple pulses are transmitted in sequence with spac-
ing determined by the predefined pulse repetition frequency. Transmission of equally-
spaced pulses introduces undesirable harmonics in the frequency domain |12, Chapter 1].
The magnitude of these harmonics can be reduced by offsetting the transmission time of
each pulse slightly, such that pulses are not equally spaced. In addition to whitening the
frequency spectrum, this offsetting allows additional information to be encoded by the
offsets of pulses in the pulse train, a technique known as pulse position modulation [12|
Chapter 1]. This allows a single pulse to encode two bits of information (based on its
polarity, and its offset), as shown in Fig. . In the DW1000, these additional bits are
used for forward error correction to improve robustness to noise [14, Chapter 4], |15
Section 2|.

2.1.2 CIR estimation

By transmitting a known pulse sequence and observing how the sequence is affected by
the transmission channel (including both transmission and reception antennas), a receiver
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T'symbol

Data | To | T
00 + 0
01 0 +
10 - 0
11 0 —

Figure 2.2: A simplified representation of two-bit data transmission by modulating the
polarity and position of a transmitted pulse. The pulse train is divided into segments of
width Tiymbor, €ach of which is subdivided into two possible pulse locations. A 4 indicates
that a positive pulse is sent; a — indicates that a negative pulse is sent; and a 0 indicates
that no pulse is sent. To further smooth the frequency spectrum, the positioning of pulses
within the respective pulse location is additionally shifted by a pseudo-random offset |11].

can estimate the channel’s impulse response (CIR). The DW1000 refers to this known
sequence as the “preamble” sequence, and it is selected to have minimal cross-correlation
in order to facilitate accurate synchronization between receiver and transmitter, and
allow estimation of the CIR. Fig. shows examples of the estimated CIR magnitude
envelope, generated upon reception of a UWB packet from a stationary transmitter.
Three individual estimates are shown in the figure in red, yellow and cyan. The CIR
would ideally be a single peak, indicative of a single, direct transmission path to the
receiver. Multiple peaks in the CIR indicate that the signal has taken multiple paths to
reach the receiver due to reflections off objects in the environment [17], [18]. In addition,
the CIR estimate is affected by background noise, interference with other radio systems
and by the frequency responses of the transmitting and receiving electronics [19]. These
effects are further discussed in Section

2.1.3 Packet timestamping

As shown in Fig.[2.4] a DW1000 UWB packet is separated into three portions: the synchro-
nization header, beginning with the preamble and terminated by a start frame delimiter
(SED) sequence; the physical header (PHY), including instructions about the length and
datarate of the following data; and the data itself, including a two-byte Reed-Solomon
error-correction code enabling an additional layer of error detection and correction [14].

The application of UWB radio to localization is facilitated by the ability to accurately
schedule packet transmission, and accurately timestamp packet reception. The DW1000
defines a transmission timestamp as the time at which the PHY sequence begins transmis-
sion, and a reception timestamp as the time at which reception of this sequence begins.
On the DW1000, transmissions can be scheduled to occur at an exact timestamp, and the
reception timestamp is estimated using a proprietary thresholding approach to compute
the time at which the CIR magnitude exceeds a certain threshold [11].
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2.5

Normalized CIR Magnitude

il N b B i
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Delay from first path (ns)

Figure 2.3: This figure shows measurements of the channel impulse response (CIR)
magnitude, generated upon reception of a UWB packet. The plot is aligned to the first
path occurring at ¢t = 0, as measured by Decawave’s proprietary algorithm. This plot
is composed of hundreds of individual samples of the CIR, three of which are shown
in red, yellow and cyan. Ideally, the CIR would be a single peak, however reflections
of the transmitted signal off objects in the environment can be observed in the CIR
as secondary peaks. Additionally, measurements of the CIR are affected by background
noise, attenuation due to propagation distance, and by the frequency response of the
transmitting and receiving antennas.

Preamble SFD | PHY Data

Figure 2.4: A DW1000 UWB packet is separated into three portions: 1. The synchroniza-
tion header, consisting of preamble and start frame delimiter (SFD) sequences, enables
receiving modules to synchronize to the transmission; 2. The physical header (PHY) is
used to transmit the packet’s length and datarate, and is additionally used to mark the
transmission and reception timestamps; and 3. the packet data, which additionally in-
cludes a two-byte Reed-Solomon error-correction code. Further information is available
in [11].
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2.1 Ultra-wideband radio

2.1.4 Hardware overview of the ultra-wideband modules

Experiments in this thesis were conducted using the Decawave DWM1000 UWB module,
which consists of a Decawave DW1000 UWB radio connected to a Patron UWB surface-
mount antenna. This UWB module was connected via SPI to an STM32F4 microprocessor
(32-bit, 168MHz, single-precision floating-point unit, based on the ARM Cortex M4F),
as shown in Fig. [2.5]

The DWM1000 UWB module has a timestamping precision of 15.65ps, in which
time a radio pulse propagates 4.7 mm in air. These timestamps are generated based on
ticks from a 63.898 GHz clock signal, which is derived from a 38.4 MHz quartz crystal
oscillator . As will be later discussed, the accuracy of localization is directly related
to the frequency stability of the clocks.

Each UWB module was configured as shown in Table [2.1] resulting in a 0-byte packet
air time of approximately 98 ns with an additional 1.18 ps per byte of payload data .

A\

Figure 2.5: Each UWB module consists of an STM32F4 microprocessor (32-bit, 168MHz,
single-precision floating-point unit, based on the ARM Cortex M4F) connected to a De-
cawave DWM1000 UWB radio module.
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22

Table 2.1: DW1000 settings used for UWB experiments.

Parameter Value
DW1000 Channel A7

e Center Frequency 6489.6 MHz
e Nominal Bandwidth 1081.6 MHz
e Effective Rx Bandwidth ~ 900 MHz
DW1000 Preamble Code H17

Pulse Repetition Frequency 64 MHz
Preamble Length 64 symbols

Start Frame Delimiter

Data Rate

8 symbols (non-standard SFD)
6.8 Mbits™*



2.2 Distance measurement using UWB radio

2.2 Distance measurement using UWB radio

Having introduced the technology underpinning UWB radio, the technology’s applicabil-
ity to localization now becomes the focus. For the remainder of this thesis, the underlying
technology is abstracted and UWB radio is simply treated as a mechanism for transmit-
ting messages at an exact and predefined time instant and for timestamping the arrival
of these messages at a receiving antenna. Using this abstraction, the remainder of this
chapter progressively introduces the concepts required to understand both the applica-
tion of UWB radio to localization, as well as the inherent difficulties, uncertainties, and
inaccuracies involved.

2.2.1 Distance measurement with synchronized clocks

The discussion of UWB localization begins with the ideal case, in which the clocks of
all UWB modules are synchronized and run at real-time speed, and in which reception
timestamps are noiseless. This scenario is depicted in Fig. [2.6], in which modules A and B
are separated by a distance of dyg = dga meters, corresponding to a propagation delay
of 0o = dpa seconds.

In this setup, a UWB packet is transmitted from Module A at the predefined time ¢*
(with superscript T used to denote a transmission timestamp), and is received at Mod-
ule B at time t* (with a superscript R used to denote a reception timestamp). Under the
assumption of real-time clocks and a noiseless reception timestamp, and assuming that
packet transmission times are communicated as part of the packet data, the distance
between the two UWB modules can be calculated as

dBA:C'dBA:C-@R—tT), (2.1)
where ¢ denotes the speed of light in air. Calculation of distance in this way is only possible

if the timestamps generated by each module’s clock are synchronized to the same time
reference and can thus be directly compared.

<<(|)>> dpa =c-0pga = c- (* —¢7) ((('»)
Al 4T

t* B

Figure 2.6: A UWB packet is transmitted from Module A at time ¢* and received at
Module B at time t®. Under the assumption of synchronized, real-time clocks and a
noiseless reception timestamp, the distance dga between the two UWB modules is simple
to calculate.
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2.2.2 Non-ideal clock behavior

In practice, each module’s clock will begin counting at a different time instant, resulting
in an offset between the modules’ clocks; and, each module’s clock, being based on a
physical process (e.g. the frequency of a crystal’s oscillations), will run at a slightly
different and non real-time rate. The major influences on oscillator frequency are oscillator
age, temperature, and voltage. Since timestamps are scaled by the speed of light when
used to calculate distance, clock non-idealities have a significant effect on the accuracy
and precision of distance measurements. The frequency stability of the chosen physical
oscillator, whether a crystal oscillator, temperature-compensated crystal oscillator, oven-
controlled crystal oscillator, or a chip-scale atomic oscillator, is therefore decisive for the
achievable accuracy of the localization system.

With reference to the UWB modules used in this research, it was assumed that each
UWB module was equipped with a hardware clock of sufficient stability; that each UWB
module could read the value of its clock exactly; could schedule the transmission of a
packet to occur at an exact time; and could timestamp the reception of a packet.

The measurement of Module A’s hardware clock at real-time ¢ is denoted ha(t). A
packet sent from a module is denoted by the transmitting module’s lowercased 1D, with
a subscript used to denote the packet’s index; for example, a; denotes the kth packet
transmitted from Module A. Please note that if it is clear from context, this subscript
will be omitted when referring to the most recent packet.

The transmission or reception of a packet is referred to as an event and, as previously
introduced, transmission and reception events are denoted by a superscript T or R, re-
spectively. Using this notation, aj, refers to the transmission of packet a; from Module A,
and a” to the most recent transmission event from Module A.

For future notational simplicity, f[e] :== f(t.) is defined to be a sample of the continuous-
time process f(-) at the real-time instant corresponding to the occurrence of the discrete
event €. Using this notation, hg[a?] is the value of Module B’s clock at the real-time instant
at which the most recent packet transmitted by Module A was received at Module B.

2.2.3 Distance measurement with unknown clock offsets

Returning to the case presented in Fig. it is assumed that the hardware clocks of
modules A and B run at a real-time rate, but with an offset to real-time, denoted by 6

ha(t) ==t + 04 (2.2)
hB<t> =1t+ 0]3.

Recalling (2.1), it is noted that this offset causes a bias in distance measurement, pro-
portional to the relative offset of the two clocks Ogp = 05 — 04
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2.2 Distance measurement using UWB radio

C- (hB[aR] — hA[aT]) =cC- (taR + 0 — t,r — 0A>
:C'5BA+C'(QB—9A). (23)

If communication is unidirectional and clocks are unsynchronized, a clock offset or a
measurement bias is indistinguishable from the inter-module distance, and only their
addition is observable. Section [2.3] addresses this statement in the context of localization.

Consider now the two-way communication shown in Fig. and note that Module A
can calculate the inter-module distance as

dAB =cC- 6AB = g(hA[bR] — hA[CLT] — AA) (24)
Unfortunately, Module A cannot directly measure A,; however, under the assumption

that the rates of Module A’s clock and Module B’s clock are equal, Ay = Ag, which
allows dag to be calculated as

dAB = %(hA[bR] — hA[CLT] — AA)
= 5(ha[b"] = hala"] — Ap)
= 5 ((ha[6] = hala’]) — (he[b"] — hula™)). (2.5)

However, the assumption of negligible rate difference is unrealistic when considering that
non-atomic oscillators are typically used in such applications.

|M0dule A Module B |

L 7} ______
:AA AB:
2 I |y 0]
zlé[l_)R}_ -‘Z(S_ _/
I I

Figure 2.7: In the case when hardware clocks have a relative offset of 0z, a distance
measurement in a single direction will be biased by +c¢ - fga meters. Two-directional
communication renders this bias observable and enables accurate distance measurement.
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2.2.4 Distance measurement with unknown clock rates

As shown in Fig. [2.8] differing clock rates can be compensated for algorithmically. By
scheduling two replies, each spaced by Ag seconds, Module B enables Module A to mea-
sure the equivalent delay A, in its own clock, and thus calculate the inter-module distance
as

dag = 5(ha[bf] — halag) — Aa)
S((halbg] — halag]) — (halb}] — Ra[b)))- (2.6)

Furthermore, Module A can estimate its relative clock rate ¢p as

o Da _ halbi] — halb]
bap ~ FN i ) s (2.7)

Hereinafter, this algorithm is referred to as the “two-way ranging” algorithm.

In reality, since the rates of Module A’s clock and Module B’s clock are time vary-
ing, these calculations are only accurate to first order, and only to within the accuracy
permitted by measurement noise on the reception timestamps. These uncertainties are
further investigated in Section 2.4 Despite these uncertainties, this algorithm is suffi-
ciently accurate to enable the localization and control of a quadcopter using UWB radio,
as we showed in [P.4].

Module A Module B

Figure 2.8: The two-way ranging algorithm. By scheduling replies by and b; with trans-
mission times hp[bj] and hg[b]] spaced by Ap seconds, Module B enables Module A to
measure the equivalent delay in its own clock and calculate the inter-module distance.
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2.2.5 Distance measurement using pseudo two-way ranging

In Fig. it is demonstrated how receiving a repeated reply from Module B allowed
Module A to measure its relative clock rate ¢ag, and thus estimate the inter-module
distance. This concept is extended in Fig. 2.9 in which both Module A and Module B
transmit packets at arbitrary times. By treating any two replies (e.g. by and b;) as the
“repeated reply” in the two-way ranging algorithm, Module A can estimate its relative
clock rate as in ([2.7)), and estimate the inter-module distance as

(ha[bg] — halag) — Aa,)
(ha[bp] — halag]) — ¢aBAs,)

dap =

A
mm—m%r—ﬁ%Q

% ( AB1
R T ha[bT] — ha[bg T R

= 5 (alt] = ] — 2= ) ale) )

= £ (halb§] — halag) — an(hslby] — hslag))) - (2.8)
Module A Module B

alaol |

46 \ hB[a%]
R
:AAU ABU:
! L hp(bp)
: ABli
A l
I ! hB[b-ﬂ
I I

Figure 2.9: Module A records the transmission and reception timestamps of any two
packets sent by Module B. Once its relative rate is known, Module A can use two-way
ranging to compute its distance from Module B. This algorithm is referred to as the
pseudo two-way ranging algorithm.
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2.3 Localization using UWB radio

Consider the two dimensional environment depicted in Fig. in which a fleet of mo-
bile robots moves within a space surrounded by three fixed-position modules hereinafter
referred to as anchors. Given known anchor positions (za, ya), (B, ys), and (z¢, yc),
each robot desires to compute its position within the space.

() ¢

o

Figure 2.10: A fleet of mobile robots moves within a space, surrounded by three fixed-
position UWB anchors. Given known anchor positions, each robot desires to localize itself
within the space.

2.3.1 Trilateration using two-way ranging

The first and arguably most well known method of localization is trilateration, whereby
each robot calculates its distance to each anchor using, for example, the pseudo two-way
ranging algorithm presented in Section [2.2.5.

As shown in Fig. the distance between the robot and each anchor defines a set of
circles centered at each anchor’s known location and with radius equal to the respective
robot-anchor distance

(zr — 2a)> + (yr — ya)* = dfia (2.9)
(zr —zB)* + (yr — yB)* = ditp (2.10)
(zr — zc)” + (Yr — yo)* = dic, (2.11)
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where dgra, drg and drc are computed using pseudo two-way ranging (Section [2.2.5). By
computing the intersection of these circles, the robot’s position can be calculated.

Although this method is accurate and robust to noise [P.3], it requires each robot
to actively communicate with each of the anchors, and therefore does not scale to large
fleets of robots.

G o

o

Figure 2.11: A mobile robot measures its distance to each anchor using two-way ranging.
The robot’s position is calculated as the intersection of circles centered at each anchor’s
known position, and with radius equal to the robot-anchor distance. Although accurate
and robust to noise, this method does not scale to a large number of robots, since each
robot is required to actively communicate.

2.3.2 Localization using one-way communication

The problem of scaling can be solved by robots localizing themselves based only on
received information, since in such a situation, robots are not required to be active in the
communication process. As mentioned in Section 2.2.3, if communication is unidirectional
and clocks unsynchronized, a clock offset or a measurement bias is indistinguishable from
the inter-module distance, and some form of clock synchronization is therefore required
to enable localization. To this end, a system logical clock S is introduced, to which each
clock in the system should synchronize. Such a situation is depicted in Fig. [2.12] in
which a set of synchronized anchors broadcast messages, and robots “eavesdrop” on this
communication.
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Anchor A Robot Anchor B Anchor C

________ \*’\)“ ’LR[ag}

}LR[b%] ./ ________

A [ef] | o=

Figure 2.12: The difference between two reception timestamps is related to the difference
in the robot’s distance to the two transmitting anchors, and the robot can therefore use
this information to localize itself. Since the robot is not active in the communication,
multiple robots can localize themselves simultaneously, and the system can therefore
support a theoretically unlimited number of robots.

Let the clock of an arbitrary UWB module I be related to the system logical clock at

real-time t as
hs(t) = ¢s1(t) - hi(t) + Os1(t), (2.12)

where ¢s1(t) and fOgi(t) are respectively the time-varying rate and offset of Module I’s
clock with respect to the logical clock. Using this relation, the robot’s distance to anchors
A, B, and C is given by

dra = ¢ - ((¢srlap] - hrlag] + Osrlab)) — hslag))

= c- ((¢srlag] - hrlag] + Osrlag]) — (¢salag) - haag] + Osalag))) (2.13)
drp = ¢+ ((#sr[05] - Pr[0f] + Osr[bG]) — hs[bp])

= ¢ ((¢sr[b)] - hr[bg] + Osr[bG]) — (¢sBlby] - kb + Ossb))) (2.14)
dre = ¢+ ((dsr[cg) - hrlcg] + Osrlc]) — hs[cg))

= c- ((¢srlch] - hrleh] + Osrlcg]) — (¢scleg] - holeg] + Oscleg))) - (2.15)
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2.3  Localization using UWB radio

In the (unrealistic) case of perfect clock synchronization, that is if ¢gy(¢) and 0g;(t) are
known exactly for all ¢ and all modules I, the above distances can be calculated exactly
and the robot’s position can be solved via trilateration as in Section [2.3.1.

If packets are transmitted at a high-enough frequency, robot motion and clock drift
can be considered to be negligible between two subsequent packets. It is therefore as-

sumed that @sr[al] ~ dsr[bE] ~ dsr[ch] ~ dsr and Osgr[al] =~ Osr[bE] ~ Osr|ch] ~ Osgr.

Subtracting (2.13)) from (2.14)) and (2.14)) from (2.15)) yields the equalities

drp — dra = ¢+ ((¢sr - hr[bf] + Osr) — (dsr - hrlaf] + Osr) — (hs[by] — hslag)))

= ¢+ (dsr(hn[by] — hrlaf]) — (hs[bg] — hsag))) , and (2.16)
drc — dre = ¢ ((¢sr - hr[cf] + Osr) — (dsr - hr[b]] + Osr) — (hs[cg] — hs[bp)))

= ¢+ (¢sr(hr[cg] — hr[by]) — (hsleg] — hs[b))) - (2.17)

Knowing the anchors’ positions, the difference in packet transmission times, and having
an estimate for the relative rate of the robot’s clock ¢ggr, each of the above equalities is
satisfied by the robot’s position lying on a hyperboloid, defined by a constant difference in

GO )

B

)

C

Figure 2.13: A mobile robot localizes itself using time-difference of arrival localization.
The robot’s position is calculated as the intersection of hyperboloids. Compared with
trilateration using two-way ranging, this method is less accurate and more sensitive to
noise, however scales to a large number of robots, since robots are not required to actively
communicate.
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Chapter 2. Localization using Ultra-wideband Radio

distance between the two anchors. By computing the intersection of these hyperboloids,
as shown in Fig. [2.13] the robot can be localized. Note that for completeness, the hyper-
boloid given by the subtraction of packets ¢y and ag is also shown; however, as a linear
combination of the other two measurements, this does not contribute additional infor-
mation. This approach to localization is known as multilateration, or time-difference of

arrival (TDOA) localization.

In order to localize in this manner, transmission timestamps need to be synchronized,
and the robot’s relative clock rate estimated. A first attempt to address these synchro-
nization requirements was published by the author in [P.3| and is shown in Fig. [2.14
This scheme relies on a double transmission from Anchor A to enable other anchors to
synchronize their transmissions as

hs[ag] = halag]

= hala™,] + As (2.18)
hs[bo] = hslag] + As
hi[bp] = halag] + Ap

= (hglag] — dpa) + (hslag] — hs[a2y]) (2.19)
hs[co] = hs[ag] +2As
hebg] = helag] + 2Ac

= (hclag] — dca) + 2(helag] — hela®y]), (2.20)

where anchor locations (and thus inter-anchor propagation times §) are known.

Given synchronized transmissions and a measurement of the transmission spacing Ag

in its own clock Ag, the robot can compute (2.16)) and - as

dRB - dRA =cC- (2; (hR[bR] hR[ag]) — As) (221)
~ C ( hR bO hR CLD]) — AR) , and (222)
dRC — dRB =C- (% hR CO R[b ]) - As) (223)
~ ¢ ((hg[c] [B6]) — AR) . (2.24)

Note that the relative clock rate ﬁ—ls‘ is typically within the range of 1 + 1 x 10~ for a
simple crystal oscillator, and its effect on distance difference can therefore be neglected.

As we show in [P.3], the above messaging sequence is sufficient for a quadcopter to
estimate and maintain a position in space. However, this sequence is highly affected by
noise in the reception timestamps, and if no additional filtering is performed, requires
that all modules receive both packets a_; and ay.
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2.3  Localization using UWB radio

Robot

Anchor B

Anchor C

Figure 2.14: By transmitting two packets at the start of each messaging sequence, An-
chor A defines the timing of the sequence. Assuming anchor positions are known, anchors
can synchronize their transmission times to be evenly spaced, and each robot can localize
itself based on the difference in packet arrival time.
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2.3.3 Centralized vs Decentralized localization

In the previous discussion, algorithms are presented in the context of “decentralized lo-
calization”, a situation in which a robot must determine its own position. This is ad-
vantageous if the robot requires low-latency, high-frequency knowledge of its position,
for example for state estimation and/or control. In such cases, if a centralized system
would need to know the robots position (for example to implement higher level task or
trajectory planning, or facilitate collision avoidance), the robot can transmit its position
estimate at a lower rate over a high-bandwidth, higher latency wireless communications
channel, such as 802.11 WiFi.

Use cases such as asset tracking are an example of “centralized localization”. In such
cases, the position of modules must be known centrally and individual modules do not
need to know their position. Although it is not discussed in detail and will not be further
covered in this thesis, all algorithms shown thus far can be applied to this use case.

2.3.4 Closed-form vs Recursive localization

In the previous discussion, as an introduction to the topic and for purposes of clarity,
the focus has been on computing the location of a UWB module directly and in closed
form. In the context of dynamical systems, it may however be advantageous to recursively
estimate the position of a module by using individual measurement equations to update
the state of a Bayesian filter (e.g. a Kalman filter). This approach additionally allows
module dynamics and other sensor measurements to contribute to the accurate estimation
of the module’s position. This was the approach taken by the author in [P.1], [P.3], [P.4],
and is discussed in more detail in Chapter

2.3.5 Model-based clock synchronization & localization

In addition to recursively estimating the position of a UWB module using Bayesian
filtering, the relative behavior of two UWB clocks can be estimated in a similar fashion,
treating transmission and reception timestamps as noisy measurements of an underlying
clock process. This approach was published by the author in [P.1] and is discussed in
more detail in Chapter [4]
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2.4 Localization uncertainties

2.4 Localization uncertainties

In this section, experiments are performed to demonstrate the effects of uncertainties and
non-idealities on localization performance. Experiments were performed for two different
anchor pairings, with anchors placed at a distance of 5 meters and instructed to range
using the pseudo two-way ranging algorithm presented in Section [2.2.5.

2.4.1 Measurement noise

Packet transmission can be scheduled exactly, and transmission timestamps are as such
noiseless; however, the estimation of packet reception time is affected by the quality of
the CIR estimate. In Section [2.1] the CIR is investigated with discussion as to how the
signal’s “first path” reception time can be identified using methods such as thresholding.
In the (realistic) case in which background noise affects the signal during propagation, an
appropriate noise signal could positively interfere, and cause this threshold to be reached
earlier; or can negatively interfere, and delay this threshold being reached. Thus, this
noise directly affects the measured reception timestamps, as shown in Fig. This
measurement noise is investigated in greater detail in Section [4.2]

5.05

4.95

o
©

distance measurement (m)

4.85

4.8

200 300 400
time (s)

Figure 2.15: Two modules were placed 5 meters apart and the distance between each was
calculated using pseudo two-way ranging. This experiment was repeated for two different
anchor pairs, with results shown in blue and red. Anchors were given 200 seconds to reach
a steady-state temperature before recording started. These results show the measurement
noise present when reading reception timestamps, as well as the module-dependent bias.
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2.4.2 Clock variation

As described in previous sections, the relative rate of a pair of UWB modules results in
the same time period being measured differently by each module. Scaled by the speed
of light, a small difference in these measurements can result in a large error in distance.
Taking the experiment of Fig. as an example, if the inter-module distance were to
be computed without compensating for the relative clock rate ¢ap as

dap = & ((halBf] — halal])) — (he[td) — halad))) (2.25)

Module A would calculate its average distance to Module B to be 2.26 m, and Module B
would calculate its average distance to Module A to be 7.56 m. Both the bias compared
to the average rate-adjusted measurement (4.94m in both directions), as well as the
discrepancy between these two measurements depend on the relative steady-state clock
rates of the two modules. It is therefore very important to consider and compensate for
relative clock rates, either algorithmically through a repeated message or by tracking
clock rates using a clock model, as will be discussed in Chapter

Compensation for differing clock rates using a repeated message assumes that clock
rates remain constant between the reception of the first and second replies. This as-
sumption is reasonable during steady-state operation; however, during the first minutes
of operation when modules are still warming, their clock rates can change significantly
between messages. This effect is shown in Fig. [2.16] and motivates the use of a state
estimator and identified clock dynamics (in Chapter [4)) to track not only clock rate, but
also clock acceleration.

2.4.3 Measurement bias & environmental effects

An example of the module-dependent measurement bias is shown in Fig. [2.15] The differ-
ence between modules is caused by slight manufacturing differences interacting with each
module’s timestamping process, resulting in a systematic bias in the reception timestamps
generated by each module.

In particular, each module’s antenna transfer function has a noticeable effect on the
measured distance [19]. The antennas used in this thesis are omnidirectional, and ideally
should have a constant transfer function for all orientations. Fig. and Fig. show
the case in which the antenna of one UWB module is rotated around its vertical, and its
forward-facing axis. These figures demonstrate the effect of non-idealities in the antenna
transfer function on the pairwise distance measurement, and suggest that measurement
biases are a function of the relative orientation of the pair of UWB modules, and vary
significantly throughout the range of possible orientations.

The interaction of environmental reflections with the shape of the CIR has an addi-
tional influence on measured distance. As shown in Fig. signal reflections from objects
in the environment can be observed in the measured CIR. If these reflections occur too
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Figure 2.16: This figure shows the first minutes of ranging operation over a distance of
5m. During these first minutes, changes in the modules’ temperatures affect their relative
clock rates, as seen in subfigure (a). Although the two-way ranging algorithm compensates
for differing clock rates to first order, changes in module clock rates between reception
of the two replies introduce second order effects, which are noticeable during this period
of warming, as shown in subfigure (b). After approximately the first three minutes of
operation, modules reach a steady-state and behave as previously shown in Fig. .

closely to the main lobe they will affect the accuracy of the timestamping process and
result in a systematic measurement bias. This implies that the measurement bias is not
only dependent on the relative orientation a pair of UWB modules, but also on their
placement within the environment.

This section has presented a series of simple experiments that exemplify the uncer-
tainties and non-idealities present in an UWB localization system. Many of these non-
idealities are unobservable during ranging operation and are therefore difficult to com-
pensate for. Chapter [7| presents results showing the effect that these non-idealities have
on a quadcopter flying within a space. In particular, the results in Chapter |7| show how
these systematic measurement biases vary throughout the space and result in systematic,
position-dependent estimation errors.
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Figure 2.17: In this experiment, Module B was placed 5 meters from Module A, and
Module A was rotated around its vertical axis as shown. The position of Module B relative
to Module A is expressed in Module A’s body coordinate system, giving the effect of
rotating Module B around Module A. In this figure, systematic variations in measured
distance are observed to be a function of the relative orientation of the two modules, an
effect caused by interactions between background noise and the timestamping process,
coupled with a sub-optimal, angle-dependent antenna transfer function.
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Figure 2.18: The experiment of Fig. was repeated with rotation around Module A’s
forward-facing axis, as shown. The position of Module B relative to Module A is expressed
in Module A’s body coordinate system, giving the effect of rotating Module B around
Module A. This figure shows a different axis of rotation, and further exemplifies the
angle-dependent transfer function. Distortions around 6 = 0 and § = £x correspond to
regions of low antenna gain.
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3

Literature Review

Having introduced the background knowledge required to understand research in the field
of UWB localization, this chapter provides an overview of the field’s state at the time
of writing. Particular focus is placed on research relevant to the contributions of this
thesis, which is found at the intersection of two broad research fields: clock modeling and
synchronization in wireless networks; and UWB-radio-based localization. Although many
of the concepts presented in this thesis are related to ideas found in existing literature,
the core and novel contribution of this thesis to existing knowledge lies in the adaptation
and combination of these areas for usage in UWB localization.

3.1 Clock synchronization

Clock synchronization of networked devices is a thoroughly-studied problem and many
robust algorithms have been proposed. The Network Time Protocol 20|, for example, is
deployed world-wide and has proven robust in the context of synchronizing devices across
the internet. Synchronization of wireless sensors can pose additional difficulties such as
limited bandwidth, energy, memory, and computation; potential motion of the sensors;
and signal interference or multi-path problems. Tailored approaches to the synchroniza-
tion of wireless sensor networks have therefore been a target of more recent research, with
early results summarized, for example, in the review papers [21] and [22].

Of particular relevance to UWB localization is research focused on the gradient clock
synchronization property. This property was proposed in 23| and requires that the logical
clock skew between two nodes in a network be bounded by a non-decreasing function of
their distance; that is, closer nodes are more closely synchronized. This is in contrast
to standard clock synchronization algorithms, which aim to minimize global skew and
thus often require maintaining or optimizing global state, rather than relying only on
local information. Algorithms addressing the gradient clock synchronization property have
been suggested in, for example, [24]-[27]. In [25] it is shown that a simple approach based
on distributed averaging performs well in the context of gradient clock synchronization,
while requiring minimal computation and storage, and remaining robust to changes in
network topology. These properties make the approach of [25] ideal for application to
clock synchronization in UWB localization networks. This is demonstrated in Chapter
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within which a similar method is used to synchronize a network of UWB anchors.

This approach to network synchronization relies on accurate pairwise clock synchro-
nization. Within this thesis, this pairwise clock behavior is tracked using a Kalman filter,
an approach similar to, for example [28]-[30], as well as similar to [31], who additionally
note the effectiveness of a Kalman filter at compensating for packet loss. Similar to [31],
this thesis uses a clock model based on a system identification of the pairwise clock be-
havior; however, the implementation in this thesis differs in that system identification is
used to determine parameters for a continuous-time clock model and exact discretization
is used to arrive at the discrete time dynamics and process noise covariance. This allows
the model to correctly handle varying reception periods, as is encountered during clock
synchronization or due to packet loss.

3.2 UWB-based robot localization

Early results using a UWB radio network as a means of robot localization include [32],
who use centralized TDOA to localize a transmitting agent; with [33] suggesting the use
of a particle filter to combine a dynamics model, IMU measurements, and UWB range
measurements in order to facilitate agent tracking; and [34], who extend this particle-filter
based approach to the case of mobile-robot tracking, while also presenting an analysis of
tracking performance in line-of-sight (LOS) and non-line-of-sight (NLOS) environments.

A similar analysis of UWB performance in NLOS environments is presented in [35],
and is further expanded upon in the subsequent work [36]-[38]. In these works, small
robots use UWB to localize themselves within an area. Accurate localization is facilitated
by a UWB measurement model incorporating the probability of both LOS and NLOS
measurements, as well as by robots measuring and sharing their pairwise distances and
bearings.

Many of these early results employ custom electronics to transmit and receive UWB
signals. Further examples of early UWB localization systems can be found in, for exam-
ple [39], who demonstrate that robots receiving measurements from externally-synchronized,
actively-transmitting anchors are able to self-localize using a TDOA approach; and [40],
who demonstrate the feasibility of the inverse approach (active robots, passive anchors),
while also analyzing the importance of anchor placement for TDOA-localization.

In more recent years, the development of small, low-power UWB ICs (for example,
the Decawave DW1000 [41], as used in this thesis) has simplified the integration of UWB
localization with more-standard robotic systems. Combined with increases in the per-
formance of embedded processors, UWB localization has become a promising solution
for real-time, on-board localization and control. We demonstrated this in |P.4] by out-
fitting a standard quadcopter with a UWB module and demonstrating that by using
two-way ranging (Fig. for range measurement and an extended Kalman filter for
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state estimation, the quadcopter was able to fly a predefined trajectory using only on-
board measurements and control. A similar approach was used by [42] who demonstrated
controlled trajectory tracking in a multitude of indoor and outdoor environments; and
by [43] who demonstrated the flight of multiple quadcopters by coordinating their rang-
ing requests using TDMA. We demonstrated similar results using TDOA localization
in |P.3], using the scheme of Fig. to enable a quadcopter to localize itself based on
passive observation of anchor transmissions. In [44] the inverse problem is addressed, and
an actively-transmitting ground robot is centrally localized using a passive network of
anchors.

One of the largest issues with UWB localization, as identified by many of the aforemen-
tioned papers and briefly discussed in Section are time-stamping inaccuracies leading
to biased, noisy, or incorrect range measurements. Recent work in [45], [46] suggests that
multiplexing antennas (each mounted in a different orientation) and transmission channels
can be used to generate a diversity of ranging measurements and improve measurement
accuracy and precision. Related work in [47] considers a frequency-domain band-stitching
approach to improve the accuracy of timestamping. In |R.2| and |R.4| an angle-dependent
model of antenna biases is used to compensate for timestamping inaccuracies.

The fusion of UWB localization with other sensors has also been investigated as a way
to mitigate UWB biases. In particular, vision sensors have received significant attention.
In |R.3|, we show that by augmenting UWB localization with visual odometry, local
maneuver accuracy can be improved. The inverse problem is tackled in [48|, where a
visual SLAM system is augmented with UWB localization to reduce the computational
overhead of vision-based localization, assist with visual loop closure, and to mitigate
problems with visual localization in feature-sparse environments or environments with
many specular reflections.

In the following chapters of this thesis the existing literature in the space of UWB-
based localization is extended by:

1. developing a synchronization algorithm for wireless, stationary UWB anchors, al-
lowing them to synchronize with enough accuracy to facilitate accurate distance
measurement;

2. leveraging this synchronization to allow anchors to localize themselves and construct
a coordinate system; and

3. enabling robots to localize themselves within the space based only on passive recep-
tion of the anchors’ communications, thus allowing a theoretically unlimited number
of robots to localize simultaneously.

As has been presented in this chapter, existing research has tackled each one of these
points to some extent; the novel contribution of this thesis lies in the adaptation, exten-
sion, and combination of these into a scalable indoor localization system for large robot
swarms.
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4

Pairwise Clock Modeling & Tracking

As discussed in Chapter , pairwise clock synchronization is required for distances (or
differences in distances) to be accurately measured. In this chapter pairwise clock behavior
is modeled using a systems-based approach and, using this model, a time-varying Kalman
filter is developed to track this relative clock behavior. This pairwise synchronization is
later leveraged for network self-localization and by robots to localize themselves within
the anchor network.

4.1 Notation

A connected network of anchors is denoted by A. For purposes of explanation and without
loss of generality, anchors IDs are denoted by capital letters, with I and J used to refer
to arbitrary anchors within A. Full-connectivity of the network is not required, and A is
used to denote the set of anchors capable of bi-directional communication with Anchor I.
Recall from Chapter [2| that diy = dj; denotes the distance between two anchors I and J,
and that d;; = 051 denotes the equivalent propagation delay.

Recall that each UWB anchor J € A possesses a hardware clock, whose value at real-
time ¢ is denoted using hj(t) and whose value at the discrete transmission or reception
event € is denoted hyle]. This notation is extended to clock rates and accelerations and
thus

, dh
hyle] = d_;

[€] (4.1)
defines the real-time clock rate of Anchor J’s clock at the occurrence of event €. Since
there is no real-time reference in the system, this rate cannot be measured; however, for
purposes of synchronization only relative rates must be tracked, for example the rate of
Anchor J’s clock relative to the rate of Anchor I's clock

by by dhy

/5 = G (42)
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For future notational simplicity, this relative rate is denoted by

. dh
or. . J
— e 4.
ile) = Gl (13)
It follows that
. d?h;
hle] = a2 ], and (4.4)
d3h
7y . J

respectively denote the relative acceleration and jerk of Anchor J’s clock with respect to
Anchor I’s clock.

4.2 Modeling and tracking relative clock behavior

Fig. shows the case in which Anchor I transmits packet ¢ at its hardware clock time
hi[iz], and Anchor J receives this packet at time hj[i}], measured in its hardware clock.
Recall that, in the case of uni-directional communication, propagation delay d;; cannot
be distinguished from the relative clock offset ;. As such, the inter-anchor synchroniza-
tion implicitly includes this delay, which is then compensated for once two-directional
communication has begun.

The behavior of Anchor J’s clock is modeled with respect to Anchor I's clock as a
third-order linear system driven by noise

ny(t) =v(t), (4.6)

where v(t) ~ N(0,0?) is the continuous-time process noise driving the inter-clock rela-
tionship. This third-order model assumption allows the value, relative rate and relative
acceleration of Anchor J’s clock with respect to Anchor I's clock to be tracked. Tracking
relative acceleration is particularly important in the first few minutes of network opera-
tion as the clocks of both radios warm from room temperature to a more steady state,
causing significant changes in the clocks’ rates, as shown in Fig.

Since exact transmission scheduling allows the transmission timestamp hg[iz] to be
known exactly, and since noise only enters the system through the reception timestamp
hj[i}], the above system is a standard third-order linear system with Anchor I's clock
forming the time-basis of the system and measurements h;[i}] being corrupted by noise.
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Figure 4.1: In order for Anchor J to synchronize to Anchor I, it timestamps the arrival of
packets from Anchor I. By assuming the inter-clock behavior has third-order dynamics,
a Kalman filter was developed and tuned to allow Anchor J to track the value, rate and
acceleration of its clock relative to the clock of Anchor I. Synchronizing each pair of clocks
is the first step towards achieving network synchronization.

Since measurements hj[if] only occur at the reception of a packet, an exact dis-
cretization of (4.6)) is computed at the reception of packet iy, for the sampling time
A = haig] — haliy_y].

Letting
MR R1 7, (D[R] LR !
gy [ix] = halig)  hy'lig] R[] (4.7)
this exact discretization results in the discrete-time state-space model

qy i) = F q[iz ] + wliy] (4.8)
zlix] = H q[ix] + €[ix].

with
1 A LA?
F=101 A ,H:[l 00], (4.9)
00 1

where z;[i}] is a measurement of Anchor J’s clock at the reception of packet ix; where
&[] ~ N(0,6?) is additive measurement noise, which corrupts reception timestamps; and
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where w[-] ~ N (0, X) is the discretized process noise driving the system and has covariance

LAS LAt 1A0
Soo?|1a1 1A 182 (4.10)
IAB IA2 A

Modeling the inter-clock behavior in continuous-time and discretizing upon packet
reception allows the synchronization algorithm to implicitly and correctly account for
packet loss; for variation in hardware clock rates (e.g. due to temperature changes); and
for varying transmission periods.

Since the inter-clock behavior has been modeled using a linear system with the as-
sumption of white Gaussian noise, Anchor J implements a discrete-time Kalman filter to
track its hardware clock relative to the hardware clock of Anchor I using the standard
equations for an autonomous linear system with Gaussian noises:

Prediction Step:

g5, [ik] = F(A) qPylik1] (4.11)
PR = F(A) PR ] FT(A) + S(A)

Measurement Update:
KV[% = PO R HT (H PO R HT +¢2) (4.12)
PR = (1% — K[i%) H)P [if]
¢l = g [ + KPR (2% — H ¢ [%]) -

Note that the dependence of the discrete-time model on the sampling period A allows
the Kalman filter to correctly handle packets arriving at a non-constant rate. The reader
is referred to, for example, [49] for further background on the Kalman filter.

4.3 Tuning for the experimental system
Since the behavior of a Kalman filter is determined by the ratio of the process and

measurement noise, tuning the filter for a real system requires determining the standard
deviation of the process noise o, and the standard deviation of the measurement noise .
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This was achieved experimentally by mounting a pair of anchors in positions repre-
sentative of the localization system’s setup (5m distance between anchors, with anchors
mounted approximately 15 cm from the floor or walls), and instructing one anchor of the
pair to transmit at random intervals, while the other anchor recorded receptions. Mea-
surements were then used to update the Kalman filter as in . Since it is the ratio
of o and ¢ that determines the Kalman filter’s behavior, o was fixed at 1, and ¢ was
adjusted such that the resulting measurement noise was maximally white. Finally, from
the standard deviation of the resulting white measurement noise, the real value of ¢ could
be determined and the real value of o derived.

On the experimental platform, this tuning resulted in a measurement noise with stan-
dard deviation ¢ = 0.13ns (equivalent to a distance measurement error of 40mm), as

shown in Fig. [4.2] and a process noise with standard deviation of o = 5Inss™.
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Figure 4.2: Anchor I tracks its clock relative to the clock of Anchor J using a Kalman
filter, based on the assumption of third-order random-walk clock dynamics. The Kalman
filter’s noise characteristics were tuned to maximize the whiteness of the measurement
noise after filtering, resulting in measurement noise with a standard deviation of 0.13ns
(equivalent to a distance measurement error of 40mm).
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TDMA Transmission Scheduling

Having discussed how pairs of anchors can synchronize their clocks, this chapter will
discuss how anchors can synchronize to a network logical clock and coordinate their
transmissions according to a predefined time-division multiple-access (TDMA) schedule.

In order to coordinate transmissions according to a TDMA schedule and avoid packet
collisions, the clocks of every UWB module in the network must be synchronized to a
common timescale. Synchronization in the proposed network architecture follows four
distinct phases:

1. Upon startup, an anchor listens for incoming packets. If no packets are received
within a specified time-interval, the anchor will begin transmitting. If packets are
received, the anchor first synchronizes individually to each transmitting anchor, as
described in Chapter [4]

2. Once the receiving anchor is synchronized with each transmitting anchor, it then
synchronizes to the network’s consensus-based logical clock, as described in Sec-
tion [B.11

3. Once synchronized to the network’s logical clock, the receiving anchor begins trans-
mitting in accordance with the network’s TDMA schedule. Other anchors in the
network then begin synchronizing to the newly transmitting anchor and incorpo-
rating its clock rate into the network’s consensus-based logical clock.

4. Finally, the network synchronization can be improved by each anchor sharing the
times at which it has received packets from other anchors, allowing the packet
propagation time between pairs of anchors to be measured and accounted for in the
synchronization, as discussed in Section [5.2]

After the network is synchronized and all anchors are transmitting in accordance with
the TDMA schedule, anchors are able to self-localize within the network (Chapter [6]),
and robots are able to localize themselves based on TDOA measurements (Chapter [7)).

5.1 Network clock synchronization

For purposes of example and without loss of generality, consider a network of four an-
chors labeled A, B, C and D, and consider the case in which anchors A, B and C are
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Chapter 5. TDMA Transmission Scheduling

synchronized and transmitting, and Anchor D wishes to begin transmitting, needing first
to synchronize itself to the network. The first step in the synchronization process is An-
chor D synchronizing individually to each anchor in Ap using the method discussed in
Chapter

After synchronizing to each anchor individually, Anchor D is now able to synchronize
to the network’s logical clock. This is accomplished using a consensus-based approach and
in a manner similar to the gradient clock synchronization algorithm presented in |25].

Each anchor I € A models its relationship to the network’s logical clock (denoted
S(t)) as an affine function with parameters ¢; and 6y, such that at a given time instant ¢,
the network’s logical clock can be expressed as a function of the anchor’s hardware clock
as

S(t) = du(Iu(t) + 6y). (5.1)

Synchronization with the network’s logical clock at time ¢ is therefore achieved by calcu-
lating an appropriate ¢; and 6, herein referred to as synchronization parameters.

Considering the case of Anchor D synchronizing to the network’s logical clock, let

| Anchor A | Anchor B Anchor C | | Anchor D |

Fu— L - -
}LA[CL ] §5AD
"< hpla?]
c-- -~ Bl
6AD$
hald®] =7
_____ | |

Figure 5.1: After synchronizing to the network’s logical clock, anchors are able to trans-
mit in accordance with a known TDMA schedule. Propagation delays between anchors
are made observable by each anchor communicating packet reception times. The dashed
red transmissions exemplify this: by Anchor D communicating the reception timestamp
hpa?] and transmission timestamp hp[d], Anchor A is able to compute dp. By knowing
the propagation delays between anchors, network synchronization can be improved and
the distance between anchors can be estimated, allowing for network self-localization.
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5.1 Network clock synchronization

hp[p?] be the timestamp of the most recently received packet p from any other anchor.
Upon reception of p, Anchor D predicts its synchronization to each anchor I € Ap
forward to the time of the most recent reception event hp[p*]. Referring to , this is
accomplished by solving

ho[p] = hpli*] + G [F) A+ LA [F A (5.2)

for Ap, the time progression of Anchor I's clock corresponding to a progression of An-
chor D’s clock by hp[p?] — hp[i*]. Finally Anchor D computes

R[] = AB [ + Ah i, (5.3)

to arrive at the relative rate of the two clocks at the current time.

Having predicted the synchronization of its neighbors forward using the clock model of
Chapter |4, Anchor D can update its synchronization parameters using a consensus-based
approach. For purposes of consensus, the synchronization parameters of an arbitrary
Anchor I must be converted into Anchor D’s hardware clock, firstly by equating the rates

¢p(hp[p"] +0p — 0mp) = ¢1(h1[ "+ )
a= ¢ (hp[p*] + 0p — dip) = g1 or(ha[p®] + 1)
ép SR [PY) = 15t 7]
éph B[P = ¢1
¢p = = o ) (5-4)
0
and then by equating the offsets
oo (hp[pY] + b — 6ip) = d1(hp®] + 61)
ho[p*] +0p — 0 = ;51 (ha[p™] + 1)
QD = h%)[p ](hl[pR] + 01) — hD[pR] + 51]:). (55)

Note that although this synchronization compensates for the propagation time dp
between anchors, this value is not observable until Anchor D has begun transmitting.
Due to the relatively small magnitude of this value in comparison to the network’s trans-
mission period (nanoseconds compared with milliseconds), Anchor D computes an initial
synchronization under the assumption that d;p = 0 for all I € Ap, such that it can begin
transmitting, thus rendering the true value of d;p observable.
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Chapter 5. TDMA Transmission Scheduling

Consensus is achieved by averaging the synchronization parameters of all anchors

. ¢
¢p = ﬁ <¢D + Z h%)[IpR]> , and (5.6)

Ie Ap

05 = ﬁ <9D + Z (h%) [P*](ha[p*] + 01) — ho[p"] + 5ID>> ; (5.7)

Ie Ap

where ¢; and 6; are communicated to Anchor D by Anchor I in the contents of each
packet. This update rule resembles the gradient clock synchronization update from [25],
which was shown to provide accurate clock synchronization between neighboring anchors;
to scale to connected networks without requiring complete connectivity; and to converge.
Convergence was shown by noting the row-stochasticity of the update matrix.

5.2 Synchronization refinement

After Anchor D has computed an initial synchronization, it is able to begin transmit-
ting in accordance with the predefined TDMA schedule. In this thesis, a round-robin
TDMA scheme is implemented, in which anchors are allocated a predefined time-slice for
transmission of width 1.25 ms.

After Anchor D begins transmitting, propagation times between each anchor become
observable if transmission and reception timestamps are shared in the contents of each
packet. Consider the red, dashed transmissions shown in Fig. [5.1} by Anchor D commu-
nicating the reception time hp[a?] and transmission time hp[d*] to Anchor A, Anchor A
is able to estimate the propagation time dap from a single pair of measurements as

20ap = (hald®] = hala”]) = & (R[] + i P [a"]) (hld"] = hola¥) . (5.8)

where the relative clock rate 2 (t) is tracked by Anchor A as discussed in Chapter
After computing the propagation delay to each anchor, Anchor A incorporates these
delays into the network synchronization (Section . Since anchors are known to be
stationary, measurements of propagation delay can be low-pass filtered to reduce noise.

On the experimental system, the performance of the network synchronization is judged
by Anchor A estimating the reception time of the next packet based on its current syn-
chronization parameters and the known TDMA schedule. Upon arrival of the packet,
Anchor A computes the error between the actual and the expected reception time, which
was found to be normally distributed with a mean of 0.77ps (0.23 mm) and standard
deviation of 50 ps (15mm). This is shown in Fig.

o4



5.2 Synchronization refinement

2
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Figure 5.2: Anchor A estimates the reception time of the next packet, based on its
synchronization to the network’s logical clock. Upon reception of the packet, Anchor A
computes the error between actual and estimated arrival time, which is normally dis-
tributed with a mean of 0.77 ps (0.23 mm) and standard deviation of 50 ps (15 mm). This
provides a metric to assess the quality of network synchronization.
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6

Network Self-Localization

As shown in Chapter [5 by synchronizing clocks and sharing reception and transmission
timestamps, each anchor can measure the propagation delay to every other anchor with
which it can directly communicate. This chapter describes how, having measured these
propagation delays, anchors can localize themselves within the anchor network, and how
this localization can be refined in a distributed manner to minimize the global localization
error. The ability of the anchor network to self-localize enables it to be setup quickly and
easily, since anchor positions are computed as a by-product of operation and do not need
to be manually measured or otherwise known beforehand.

6.1 Relating distance to propagation delay

As shown in Section [2.4] the measurement of propagation delay between two UWB mod-
ules is affected by both noise and by a systematic bias. This bias is a function of the
environment and of the relative pose of the antenna pair, as was previously shown in

Fig. and Fig. [2.18] If the bias was known, the distance between UWB modules I

and J could be estimated as

diy = o1y — Pu, (6.1)

where [1; is the known measurement bias. Unfortunately, this bias is not observable, given
the measurements available from the localization network [50], since a change in bias is
indistinguishable from a change in distance between the anchors. Therefore, a simplifying
assumption is that

dy = ¢dyy — B, for all anchors I, J € A (6.2)

where c¢ is the speed of light and /3 is the pre-calibrated average bias encountered when
processing and timestamping the reception of a packet. Despite accounting for the average
measurement bias, measurement biases remain within the range of £300mm, as can be

seen in Table [6.1] at the end of this chapter.
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Chapter 6. Network Self-Localization

6.2 Estimating anchor positions from inter-anchor distances

In order for anchors to localize themselves within the localization network, a coordinate
system must be defined. This can be achieved by manually setting the positions of four
anchors, or by constraining their placement such that their locations may be inferred
from the available localization data.

In this thesis, the anchor coordinate system is defined to have Anchor A positioned at
the origin, Anchor B along the positive z-axis, Anchor C in the positive y-direction, and
Anchor D in the positive z-direction. All other anchors can be placed arbitrarily within
the space. These assumptions define the coordinate system of the network and allow the
positions of anchors in the network to be determined by minimizing the global positioning
error

J = Z Z (diy — [Ipr — pall2)?, (6.3)

Ie A JeA;

where p; = (x1, y1, 21) is the position of Anchor I. Global positioning error is minimized
using a distributed and iterative approach, rather than a centralized global optimization.
This approach is computationally lightweight and scales well to large anchor networks.

Self-localization begins by initializing the position of anchors A, B and C as

(xA7 Ya, ZA) - (O, 0, 0) (64)
(xB7 YB, ZB) = (dBA7 07 O)

2 d2 _ d2
(zc, yo, 2c) = (xB+ 2(23 OB "\ Jdi, — 2, 0) . (6.6)

The position of each other anchor can then be initialized with respect to these anchors as

2 P 9
_ dip — djp + 73

21’]3

(6.7)

X1

dfy — dic + 22 + v zcm
yr = -
2yc Yo

b=y — o — g, (6.9

noting that Anchor D is constrained to have zp > 0, and where the z-ambiguity of other
anchors is resolved by observation of their distance to Anchor D.

(6.8)

After initialization, this position estimate is further refined using distributed gradient

descent, whereby each anchor updates its position in an iterative manner by calculating
(NN
Oz’ Oyr’

periodically to all other anchors in the network, facilitating the minimization of (6.3) in
a distributed fashion.

and descending the cost gradients and g—fl. Each anchor communicates its position
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6.3 FExperimental validation

It should be noted that the above method of initialization is dependent on each anchor
being able to communicate with (and thus measure distance to) anchors A, B, C and D.
Furthermore, since the initial positions are computed in closed-form from the locations of
anchors A, B and C, the initialization is both heavily affected by errors in these positions
and is sensitive to their placement. This sensitivity is investigated using the Cramér-Rao
lower bound in, for example |P.3], [51], [52]. To mitigate both these issues, initialization
can be computed based on three neighboring anchors, selected such that the available
Fisher information is maximized.

Further improvements on the above algorithm are possible by exploiting known struc-
ture in anchor placement. In many situations, anchor placement may be semi-structured;
for example, it may be known that a subset of anchors share the same z, y or z coordinate,
perhaps being placed along a wall or ceiling; as a further example, it might be known
that a subset of anchors lie within a specific half-space. The presented formulation allows
anchor positions to be constrained to known coordinates, or for additional penalties to
be included in the cost function to model inequality or equality constraints on anchor
coordinates or inter-anchor distances.

6.3 Experimental validation

In the experimental setup, eight anchors were placed in an approximately rectangular
setup with side-dimensions of approximately 6m x 7m x 3.5m. The ground-truth position
of each anchor was measured by hand. The anchor network was reinitialized ten times, and
positions resulting from self-localization were recorded. Across all ten trials, the presented
synchronization and anchor localization algorithms enabled anchors within the network to
self-localize with a position root mean squared error of 97mm, resulting from an z-position
error of —30+ 54mm, y-position error of 19 4+46mm, and z-position error of —34 +45mm:;
and an inter-anchor distance estimation error of —12 + 76mm. Note that these errors are
within the tolerances of manually measuring the anchor’s actual positions, and are far
less than the inter-anchor distance measurement bias of £300 mm. Given the structured
placement of anchors it was possible to further constrain the anchor coordinates that
are known to be equal. Given the already accurate localization, no additional constraints
were imposed on anchor positions, with the exception of Anchor E, which was placed on
the floor and thus constrained to have z = 0.

Table presents a summary of range measurements upon which the self-localization
is based, while Table presents the results of the self-localization procedure discussed in
this section. Comparing measured and estimated distances gives an idea of the influence
and variation of measurement bias within the space, and of the potential bias influencing
measurements received by a robot.
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Chapter 6. Network Self-Localization

Table 6.1: Distance measurement and estimation errors relative to Anchor C. Anchor
positions were measured by hand and a ground truth Euclidean distance between each
pair of anchors was calculated. The network was reinitialized ten times and the results of
distance measurement and estimation were recorded. Measurement errors are calculated
as the difference between the ground truth distance to Anchor C and the pairwise distance
measurement, as derived from the time-of-flight measurement . Estimation errors
are calculated based on the difference between the ground truth distance to Anchor C
and the FEuclidean distance between the anchors’ estimated positions. Errors are shown
as meantstandard deviation, with mean and standard deviation computed across the
ten trials. Note that the DWM1000 is able to measure distances with a precision of
4.7mm [11].

ID Measurement Error (mm) Estimation Error (mm)

A —89.08 4.3 —2.48£3.6

B 205.46 £ 4.7 33.66 £4.2

C * *

D —34.30 £ 3.7 35.90 £4.6

E —217.87£4.8 —61.07+3.4
F 29.52£7.3 7792+ 5.5

G 55.52 + 5.6 53.42+ 3.2

H 153.87 £ 6.0 44.27+£4.9

Table 6.2: Position errors after network self localization. A network of eight anchors were
placed in an approximately rectangular setup with positions measured by hand. The net-
work was reinitialized ten times and the results of self-localization were recorded. Errors
were calculated as the difference between the hand-measured position and the estimated
position. Errors are shown as mean-+standard deviation, with mean and standard devia-
tion computed across the ten trials. Constrained positions are denoted by a *. Note that
anchors D, F, G and H were placed on the ceiling, making hand measurement of their
absolute positions difficult; this is reflected in their relatively high errors. Since Anchor E
was placed on the floor, it was constrained to have z = 0.

ID =z error (mm) y error (mm) z error (mm)

A * * *
B 54.94 +£9.79 * *
C 2.23£0.00 —2.48 £3.63 *
D 66.36 + 8.87 21.51 +=4.47 99.11 +4.13
E —58.83 £ 3.44 22.06 £4.97 *
F 133.68 £ 5.23 —80.94 +4.68 25.51 £4.65
G 11.75 £ 8.76 —7.05£4.38 119.52 4+ 2.46
H 31.14 £ 5.52 —110.87 £ 4.62 35.18 + 3.33
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7

(Multi-)Robot Localization

Having now synchronized and self-localized, the anchor network can support the operation
of a theoretically unlimited number of robots within the space. By passively listening to
the network traffic (Fig. and recording the reception time of measurements, a robot
is able to compute the difference in packet time of flight between pairs of anchors. This
time difference is proportional to the difference in the robot’s distance to the transmitting
anchors. By collecting multiple measurements from multiple pairs of anchors, a robot is
able to localize itself.

7.1 Robot localization using time-difference-of-arrival

measurements

With reference to Fig. 5.1} let hg[a®] and hg[d*] be the times at which the robot receives
the latest packets from anchors A and D respectively. It is assumed that each packet
contains both the position of its transmitting anchor and its transmission time expressed
in the network’s logical clock. This additionally provides the robot with times S[a’] and
S[d"], as well as the positions of both anchors involved in the communication. Letting ¢r
denote the robot’s UWB clock rate relative to the anchor network’s logical clock rate,
and x = (z,y, z) its position within the anchor coordinate system

Sla'] + dar = ¢r(hr[a*] 4 Or), and
S[d"] + opr = ¢r(hr[d*] + OR).

Computing the time difference of arrival of the above packets yields

d'] — S[a']) + (Opr — dar) = Pr(hr[d"] — hgr[a"])
[d"] = S[a’]) = c- ¢r(hr[d"] — hrla"]) = (dpr — dar)
hela*]) + [|pa — |2 — [[pp — |2, (7.1)

n w

(
c(Sld"] = S[a’]) = ¢~ ¢r(hr[d"] —

[a

which relate the TDOA measurements to the position of the robot . By gathering
multiple such measurements, a robot can localize itself by either solving for its position
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Chapter 7. (Multi- ) Robot Localization

directly (using, for example, nonlinear least squares); or can use individual measurements
to update a state estimator. In both these cases ¢g, the relative rate of the robot’s clock
to the system clock, must be estimated or tracked (for example by including it as an
additional state in the state estimator and tracking its value over time).

7.2 Quadcopter experimental system

For these experiments, a Bitcraze Crazyflie 2.0 nano-quadcopter [1] (shown in Fig. [7.1])
was flown within the eight-anchor setup described in Section[6.3]and with anchor positions
given in Table The presented method of localization is, however, applicable to any
number of robots operating within a 3D space spanned by at least four anchors. This
minimum of four being required to define the three-dimensional coordinate system. Due
to the sensitivity of the time difference of arrival localization method to noise |P.3], it is
recommended that robots operate within the convex hull of the anchors.

This section details the quadcopter’s control and estimation software, which run on
its 168 MHz, ARM Cortex-M4F microprocessor (STM32F405, single-precision floating
point unit, 196 kB RAM, 1 MB flash). Localization was enabled by connecting a Decawave
DWM1000 UWB radio module to the quadcopter’s microprocessor via SPI, allowing it
to receive UWB packets sent by the anchors. State estimates were sent at 30 Hz from
the robot to a laptop computer for logging purposes only. The laptop did not communi-
cate with the quadcopters, nor was it required for their flight, since trajectory planning,
control, localization, and state estimation were all performed onboard.

Figure 7.1: One of the Crazyflie nano-quadcopters used for these experiments. A De-
cawave DWM1000 UWB radio is mounted on the quadcopter, allowing it to eavesdrop
on UWB communications between anchors.
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7.2 Quadcopter experimental system

7.2.1 Quadcopter model

The quadcopter is modeled as a rigid body with mass m, whose motion is governed by the
Newton-Euler equations (see e.g. [53]). The orientation of the quadcopter with respect
to the inertial frame is denoted by the rotation matrix R € SO(3), and recall that the
quadcopter’s position in the inertial frame is denoted by the vector & € R3.

The cumulative thrust produced by the four propellers is denoted f, and is always
positive and aligned to the quadcopter’s body z-axis. With e3 := (0,0,1)" the thrust
vector in the quadcopter’s body frame is therefore f := fes . The magnitude of gravi-
tational acceleration is denoted by ¢ and the vector of gravitational acceleration in the

inertial frame by g := —ges. A quadcopter’s dynamics are therefore described by
m& =R f+mg (7.2)
R =R [wx], (7.3)

where w = (wy,ws,ws ) is the angular velocity of the quadcopter expressed in its body
frame and measured by its rate gyroscope, and where [wx] denotes the matrix form of
the cross product given by

0 —Ws3 Wa
[[QJX]] = w3 0 —wq | - (74)
—W9 w1 0

Note that for simplicity and since flight is relatively slow, aerodynamic effects such as
body drag and blade flapping are ignored in the above model [54].

The angular acceleration of the quadcopter evolves as a function of its current angular
velocity, its inertia, and of the torques generated by its propellors. As these equations
are not required for the estimator design, they will not be repeated here and instead
the reader is directed to [54] for further information on the modeling of multirotor aerial
vehicles.

7.2.2 Quadcopter state estimation

7.2.2.1 Overview 'To control a quadcopter accurately within the space, an estimate of
its position, velocity, orientation and angular velocity is required. The quadcopter’s rate
gyroscope is assumed to be calibrated and to have zero bias, and gyroscope measurements
Zgyro are assumed to be affected by additive, white measurement noise. Akin to [P.4], the
rate gyroscope measurements are used directly as the estimate of the quadcopter’s angular
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velocity, giving
W = Zgyro, (7.5)

in which a caret is used to indicate a state estimate, and in which the covariance of w is
equal to the covariance of the gyroscope measurements.

An extended Kalman filter using the attitude-error formulation of [P.4] is used to esti-
mate the quadcopter’s position, velocity, and orientation. The estimator’s nine-dimensional
stochastic state & is therefore

£ =(xz,v,0). (7.6)

where  and v are respectively the quadcopter’s position and velocity expressed in the
inertial coordinate system and & is a three-dimensional attitude error representation,
which encodes uncertainty about the quadcopter’s orientation. The quadcopter’s orienta-
tion R, is tracked separately. After each prediction step and measurement update of the
state estimator, the newly-estimated attitude error & is used to update the quadcopter’s
orientation reference as detailed in Section [7.2.2.4, before being reset to zero.

This attitude error formulation allows the quadcopter’s attitude to be estimated within
a standard Kalman filter framework, without issues of singularities in the attitude rep-
resentation (e.g. as would be the case for a representation using Euler angles [55]), and
without requiring constraints to be placed on the attitude representation (e.g. as would
be required for representation of the attitude as a quaternion or rotation matrix). Readers
are referred to, for example [56] and [57] for further information on this formulation.

7.2.2.2 Prediction step During the prediction step of the Kalman filter, the esti-
mated states are updated according to

x =b (7.7)
B :%Rref 1+[5x]) f+g (7.8)
5= (T+116x]) @ (7.9)

As previously noted, measurements from the quadcopter’s angular rate gyroscope are
treated as an input in , with the zero-mean noise on the rate gyroscope encoded
as process noise using the standard extended Kalman filter formulation [49]. Note that a
first-order approximation is used for the evolution of & due to the expected low body-rates
of the quadcopter and regularity with which attitude resets are performed [58].

By linearizing the above equations around the current estimate é , the Jacobian nec-
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7.2 Quadcopter experimental system

essary for the Kalman filter’s covariance prediction step can be computed.

After the prediction step has been completed, the attitude reset step is performed
(Section [7.2.2.4) in order to update the estimate of the quadcopter’s orientation.

7.2.2.3 UWB measurement update In order to update the quadcopter’s state es-
timate using TDOA measurements , the behavior of the quadcopter’s UWB clock
with respect to the UWB network’s logical clock must be tracked. Assuming that the
UWB clock behavior is uncorrelated with the quadcopter’s other states and that the
quadcopter’s displacement between packet receptions is negligible, this can be tracked
with a separate Kalman filter as discussed in Chapter

Both the estimated UWB clock behavior and the estimate of the quadcopter’s physical
states are updated using TDOA measurements by linearizing about the quadcopter’s
current state and updating the extended Kalman filter as per the standard framework [49).
Due to the unobservable measurement bias in each measurement, the measurement noise
standard deviation was set to 200 mm rather than 40 mm (as suggested by Fig. .

Measurement outliers were detected and rejected by tracking the mean and stan-
dard deviation of the measurement history from each anchor individually, and rejecting
measurements more than three standard deviations from the mean.

After measurement updates have been completed, the attitude reset step is performed
in order to update the estimate of the quadcopter’s orientation.

7.2.2.4 Attitude error reset After both prediction and measurement update steps,
the quadcopter’s estimated attitude R, is updated according to [57] as

Ryt ¢ Rt (T4 [6x] ) (7.10)

and the covariance of the attitude error as
. « « « T
Var[d] (1 - %[[5><]]> Var[] (1 - %[[5><]]> . (7.11)
The covariance of the attitude error thus evolves over time to encode the uncertainty
about the quadcopter’s attitude. Finally, the estimated attitude error & is reset to zero.

7.2.3 Quadcopter control

Since quadcopter control is not a focus of this thesis and since control performance is not
critical to the experimental results presented in this chapter, this section gives a brief
overview of the control implementation, and the reader is directed to the cited papers for
further information.

The quadcopter is controlled using the cascaded control approach from [59]. At the
highest level, the quadcopter is supplied with a reference position trajectory. In the case
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of these experiments, this reference trajectory was generated onboard. Tracking this refer-
ence trajectory is achieved using the high-level control strategy from [59)], which generates
a desired thrust vector for the attitude controller.

Since a quadcopter can only produce thrust along its body’s z axis, the direction of the
acceleration vector computed by the high-level controller defines the quadcopter’s desired
pitch and roll, with the quadcopter’s yaw—the rotation around its body z axis—being a
free variable. The attitude controller generates a desired body rate through a comparison
of the desired attitude with the estimated attitude. The work of [60] was adapted for this
purpose.

At the lowest level, the desired body rates are mapped to the desired body torque
through the quadcopter’s known inertia |A.3] and finally, this desired body torque along
with the desired cumulative thrust can be mapped to the desired motor forces [59).

7.3 Experimental results

7.3.1 Single Quadcopter

To verify the performance of the system, a quadcopter was commanded to fly a circle of
radius 7 = 1 m with a period of T' = 4s (corresponding to the quadcopter flying with a
linear velocity of 2% ~ 1.57ms™1). The quadcopter flew the circle 20 times in succession
before landing. The error between the quadcopter’s estimated and actual position (as
measured by a Vicon motion capture system with sub-millimeter positioning accuracy)
was calculated for each location on the circle (parameterized using the angle ) and error
statistics were calculated over the 20 runs. In order to investigate the variation of these
statistics over time, this experiment was repeated on a different day, with a reinitialized
localization network. Fig. shows the estimation error mean and standard deviation
(shaded region) for both trials. This analysis shows that estimation error appears to
contain position-dependent effects on the order of £100 mm, and that these effects are
relatively constant in the short-term (as indicated by the standard deviation) as well as
over the longer-term (as indicated by a comparison of the two trials).

Both the magnitude of these effects and their position dependence corroborate the
observations of |P.3| and [P.4], and can be explained by UWB measurement biases being
affected by the quadcopter’s position and orientation relative to each anchor’s antenna.
Variation in these biases observed between trials is likely due to slight variation in the
placement and orientation of the anchors, and variation in their calculated positions (on
the order of 240 mm per axis for each anchor, see Section . The offset in the z-axis
can be explained by accelerometer biases and discrepancies between expected and actual
thrust, whose effects on the state estimate are amplified by the artificially-high TDOA
measurement noise.
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Figure 7.2: This figure shows two trials of an experiment in which a quadcopter flew a
circle 20 times before landing. Trials were performed a day apart, and the anchor network
reset before each trial. The error between the actual and estimated x, y and z positions
were calculated as function of the quadcopter’s location on the circle. These plots show
the mean and standard deviation (shaded region) of these errors. Note that errors vary
with the quadcopter’s position, and are repeatable. This variation as a function of position
is likely caused by UWB measurement biases varying throughout the space.

7.3.2 Multiple Quadcopters

Since quadcopters localize themselves based only on received UWB signals the network
supports the simultaneous operation of many quadcopters. To demonstrate this, the pre-
vious experiment was repeated using three quadcopters flying the same circle simulta-
neously. Since the anchor network maintains a network time, and since each quadcopter
knows its ID, quadcopters were able to compute their reference position as a function of
network time and thus avoid collisions with other quadcopters. A video of this experiment
can be viewed at http://mikehamer.info/uwb-system.

As in the previous experiment, errors between each quadcopter’s actual and estimated
position were computed as a function of its position on the circle. The mean and standard
deviation of these errors are shown in Fig. As previously discussed, these estimation
errors exhibit a dependence on the quadcopter’s position; furthermore, similarities can
be seen between the quadcopters.
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Figure 7.3: To demonstrate the system’s ability to support the operation of multiple
robots, three quadcopters were commanded to simultaneously fly a circle. Estimation
errors were calculated as a function of each quadcopter’s position on the circle. These
errors show a dependence on position, and display similarities between quadcopters.
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3

ALOHA Localization

The previous chapters discussed how anchors can coordinate their transmissions to a
TDMA schedule by first synchronizing to each other, and then synchronizing to a network
logical clock, and how transmissions made according to this TDMA schedule can be used
for TDOA localization. Having anchors synchronize to a TDMA schedule is advantageous
since interference between transmissions is avoided, thus allowing network throughput to
be maximized. However, increases in transmission rate require increased processing on
receivers while yielding diminishing returns in terms of localization accuracy. In the case
of a TDMA schedule, increased throughput and the avoidance of packet collisions comes
at the cost of increased implementation complexity, and decreased system flexibility.

A method of anchor self-localization using pseudo two-way ranging was proposed in
Chapter [6] and a method of robot localization using TDOA measurements in Chapter
Note that both these methods require only synchronization of the timestamps involved in
each calculation and as such only pairwise synchronization of the anchors is required. The
additional algorithmic complexity of anchors maintaining synchronization to a network
logical clock and coordinating to a TDMA schedule is therefore not inherently required
for network self-localization or for robot localization.

A potential direction for future research is ALOHA-style localization, in which anchors
randomly transmit packets rather than adhering to a TDMA schedule, similar to the
ALOHA networking protocol [61]. Such an approach would greatly simplify the anchor
network’s logic, and increase robustness to packet interference. Furthermore, a protocol
relying on random transmissions allows the system to easily handle the dynamic addition
or removal of anchors, and thus to easily scale to large networks and to partially connected
networks with overlapping areas of coverage. In contrast, if a TDMA-based schedule
were employed, the negotiation and coordination of TDMA slots would add significant
algorithmic complexity.
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8.1 Random transmission scheme

Consider the case shown in Fig. in which an anchor transmits packets of length A at
random intervals. The random delay between packet transmissions is a random variable D
distributed uniformly on [L, H]:

H-L (8.1)

1 L<d<H
pp(d) = UNIFORM[y, g)(d) = '
0 otherwise

where L is the minimum delay between packet transmissions, and where H > L is the
maximum delay between packet transmissions. Note that the delay is measured from the
beginning of the transmission, and as such includes the time required to transmit the
packet. It follows that L > A. By tuning H and L, the average transmission rate of each
anchor can be adjusted, which in turn affects the probability of packets from different
anchors colliding. The average throughput of the network can therefore be controlled by
adjusting these parameters, as discussed in the next sections.

S Ang At =d,
<« — L — 1
At = d, /{ .
o At = H
____________ - —g-ft--—=----"
At— H

Figure 8.1: This figure depicts packet transmissions (gray squares) from a single anchor.
Packets are transmitted at least L seconds and at most H seconds after the transmission of
the previous packet begins. This range is shaded in blue. The transmission delay between
packets is selected uniformly from this range.

8.1.1 Distribution of anchor time

Each anchor transmits a series of packets as shown in Fig. Packet transmissions
are separated by delays d, which are sampled uniformly from [L, H]. If a second anchor
attempts to transmit a packet at time ¢, the probability of a packet collision is much higher
if this transmission occurs during a shorter delay (e.g. dy), than if it occurs during a longer
delay (e.g. d3). It is therefore important to model how an anchor’s time is distributed,
and how this distribution informs the probability of a packet collision occurring.
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do dy da ds dy ds dg dr

t

Figure 8.2: A series of packets is transmitted, with transmissions separated by delays d.
A second anchor transmits at time t. The probability of a packet collision is higher if the
transmission occurs during a shorter delay (e.g. dy) than during a longer delay (e.g. d3).

Let [dy, ..., dy] be a sequence of M independently sampled delays (e.g. as shown in
Fig. , and let

T=> dn (8.2)

m=1

be the duration of the sequence. By the law of large numbers

_H+L
)

—=1 5 B[D] (8.3)

as M — oo, where E[-| denotes expectation.

Let a packet from a second anchor be transmitted at time ¢, and let ¢ be uniformly
distributed on [0, T]. Let d; denote the first anchor’s delay at time ¢. Then for L < d < H

e M0
2
2d
= dd 8.5
(H—-L)(H+L) (8:5)

as M — oo, where Pr(-) is used to denote probability. The numerator of is the
expected amount of time the anchor spends in delays within the range d < d; < d + dd,
and the denominator is the expected duration of the delay sequence. It follows that for
an infinite length sequence

2 L<d<H
pm(d)=={(H‘L“H+L) (8.6)

0 otherwise

is the probability density function of an anchor finding itself in a delay of duration d.
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I
A d—24 A

x v i

Figure 8.3: This figure shows transmissions from two anchors, and depicts the range of
possible transmission times that will not result in a collision between the two anchors’
packets. This figure shows that within a cycle of length d, there is a period of length 24
within which a second anchor cannot transmit without causing a collision.

8.1.2 Probability of packet collision

Let a first anchor be in a delay of duration d, which begins at time t. Let a second anchor
begin transmission at time ¢. As depicted in Fig. [8.3] since the first A seconds of a delay
cycle are spent transmitting and since a subsequent cycle begins with a transmission, a
collision will result if t <tqg+ Aort >ty +d— A.

It follows that the conditional probability of a collision, given that the first anchor is

in a cycle of delay d is
2A

Pr(collision | d) = K (8.7)
The probability of a packet collision Pr(collision) can be computed by marginalizing

out the delay length d via pg,:

Pr(collision) = / Pr(collision | d)py, (d) dd
124 2
- / 2 d dd
, d(H-—L)H+L)
4A
“ oI (8.8)

8.1.3 Maximizing network throughput

Given a network of N anchors, the probability of a successful transmission is the proba-
bility that no collision occurs with any other anchor:

Pr(success) = (1 — Pr(collision))V~*
44\ N1
(- ) 69

Given a selection of H and L, the average rate at which any given anchor attempts to
transmit is F' = HLJFL packets per second, and the average success rate of a single anchor’s
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transmissions S is therefore

S = F - Pr(success)

N-1
_w(1_ 4A
H+ L
= F(1-24AF)"! (8.10)
which has extrema when
ds v
ﬁ: (1 -2AF) (1-2ANF)=0. (8.11)

This is satisfied for ' = (2A)~!, which yields 0 throughput; and for F' = (2AN)~!, which
yields maximum throughput. Since F' = HLJFL, it follows that to maximize throughput,
anchors should select a combination of H and L such that H + L = 4AN, where N is

the number of transmitting anchors.

8.1.4 Minimizing repeated collisions

Assuming that H and L are selected to maximize throughput, consider now the probabil-
ity of a repeated packet collision occurring. Not all combinations of H and L are equal in
this regard, as can be seen by considering the extreme case, in which H = L (i.e. there is
no randomness in an anchor’s delay between cycles). In this situation, if the transmissions
of two anchors collide, their next transmissions are also guaranteed to collide, since both
anchors delay by an equal amount.

t[ tr + dI

i3 ty+L  ty+d; t;+H

Figure 8.4: This figure shows the case in which a transmission from Anchor I beginning
at time t¢; collides with a transmission from Anchor J beginning at time ¢;. Assuming
Anchor I transmits a second packet after a delay of dj, this figure shows the region of
possible transmission delays d; which will (shaded red) and will not (shaded green) result
in a repeated collision. By selecting H — L to be as large as possible, the probability of
a repeated collision is minimized.
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Consider the case depicted in Fig.[8.4] in which Anchor I’s transmission, beginning at
time ¢y, results in a collision with Anchor J’s packet, whose transmission must therefore
begin at some time within the time period t; € [t; — A, t; 4+ A]. Given that Anchor I finds
itself in a cycle of delay dy, the probability of its next packet succeeding is the probability
that the next transmission from Anchor J does not cause a collision; that is, that

ty+dy & ti+di— A, ty+ di + A]. (8.12)

As depicted graphically in Fig. [8.4] the range of allowable transmission times is shown
in green, and the total range of possible transmission times has width H — L. The ratio
of these, and thus the probability of a successful transmission given a previous collision,
is given by

Pr(success | collision) = Pr(ty +dy < ti+di — A) + Pr(ty +dy > t1 + di + A)

1
= 7 wax(0, (ty + H) = (i + di + A)) + max(0, (b +di = A) = (& + L))
> (b + H) = (i di + A) + (+ di = A) = (8 + 1))
24
T T H-L (8.13)

This lower bound, and therefore the probability of a success following a collision, is
maximized by maximizing H — L.

8.1.5 Optimal parameter selection

The above results provide a simple approach to handle the dynamic addition or removal
of anchors from the network while maintaining high throughput and a low occurrence of
repeated collisions: when a change in the number of transmitting anchors N is detected,
anchors should select H and L such that

1. H+ L =4AN to maximize throughput;

2. H — L is as large as possible in order to maximize the probability of a success
following a collision; and

3. constraints on H and L are fulfilled.

Since H is unconstrained from above, these criteria are satisfied by selecting L to be
as small as possible given the constraints, and selecting H = 4AN — L. This simple
adaptation scheme could be extended to the case of partially-connected networks with
overlapping regions of coverage by having anchors adjust their transmission rate based
on their “1-hop” network size.
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8.2 Investigation of random transmission throughput

8.2 Investigation of random transmission throughput

The random transmission scheme is evaluated using a network of N = 2, N = 6 and
N = 12 anchors with anchor hardware and settings as described in Section [2.1.4. Each
packet included a 1 byte anchor ID and an 8 byte timestamp, giving a total packet air
time of A = 108.6 pus. A minimum delay of L = 250 ps was required between transmission
times to account for transmission of the previous packet, time spent processing on the
microprocessor, and scheduling of the next packet. L was held constant for all exper-
iments. The average single-anchor transmission rate F' = HLJFL was varied by selecting
appropriate values of H.

Fig.|8.5|shows the measured single anchor throughput S for N =2, N =6 and N = 12
anchors, as the average transmission rate F' is varied. This figure provides a comparison
of measured data with theoretical values given by (8.10). The difference between the

2,000
—— 2 Anchors (measured) —— 12 Anchors (measured)
R - (theoretical) --- (theoretical) L —
= —— 6 Anchors (measured)
S 1,500
g --- (theoretical)
{
n
5
L] - -
g
& 1,000 s
o0 s R
g “4,,,// //
e 500 —
ﬁ ,,////
0 e e e el S
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Transmission rate (packets/second)

Figure 8.5: This figure shows the single-anchor throughput S for N = 2 (green), N =6
(red) and N = 12 (black) transmitting anchors, as the average transmission rate F' is
varied. Total network throughput can be calculated by multiplying each curve by the
respective number of anchors. Dashed lines show the theoretical throughput according
to , while a solid line shows the measured throughput. If packet collisions did not
occur, the throughput would be equal to the transmission rate; however, a comparison
indicates that many packets are lost due to packet collisions, particularly as the average
transmission rate increases. The discrepancy between the measured (solid line) and theo-
retical results (dashed line) indicates, however, that many packets are received correctly
despite collisions occurring. This is likely due to the forward error correction employed

by the DW1000 (see Section .
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theoretical throughput and measured throughput for high transmission rates implies that
some packets are received despite packet collisions occurring. Since UWB technology
employs multiple layers of forward error correction, not every symbol must be received
correctly in order to synchronize and communicate. It is therefore hypothesized that a
packet collision might affect the quality of synchronization but not necessarily prevent
packet reception. If this hypothesis is correct, a decrease in synchronization quality should
be observed as packet collisions increase in likelihood (with increasing F).

One measure of synchronization quality is the number of preamble symbols accumu-
lated during the synchronization phase, a measure investigated in Fig. This investiga-
tion confirms the hypothesis that an increase in F' (and thus an increase in the probability
of packet collisions) results in a decrease in synchronization quality.

This reduction in synchronization quality can further be observed in Fig.[8.7] in which
the estimated CIR magnitude is compared for various transmission rates. In this figure,
a decrease in CIR quality can be observed to occur with increases in transmission rate
(indicated by an increase in the 5th and 95th percentile envelope). This decrease in CIR
quality will result in less accurate reception timestamps, despite the packet data being
correctly received.

Considering the single-anchor results shown in Fig. in the ideal case with no packet
collisions (i.e. using one anchor) at least 52 preamble symbols are used for synchronization.
As the probability of packet collisions increases (with increasing frequency), the probabil-
ity of packets having fewer than 52 symbols used for synchronization also increases. Based
on this, results of the previous throughput experiments (Fig. are filtered, discarding

measurements if fewer than 52 symbols were used in the synchronization. These results
are shown in Fig.

8.3 Method benefits and drawbacks

Based on these initial findings, the application of random transmission to UWB localiza-
tion networks appears to be a promising research direction that could significantly reduce
the complexity and increase the robustness of localization networks. By varying H and L,
a desired network throughput can be achieved, allowing anchors to easily adjust to the
dynamic addition and removal of anchors from the network. Despite these advantages,
an appropriate mechanism of filtering correctly received but poorly timestamped packets
is crucial for the method’s success in the context of localization.
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(c) Average transmission rate of F' = 2800 packets/second

Figure 8.6: These figures show the degradation in synchronization quality occurring as
the probability of packet collisions increases with increasing transmission rate. Since a
single anchor transmitting (shown in blue) is not affected by packet collisions, a high level
of synchronization quality is achieved for all average transmission rates F. Comparing
this to the case when N = 6 (red) and N = 12 (black) anchors transmit randomly,
a decrease in synchronization quality can be observed as the average transmission rate
increases. This is indicated by an increased probability of packets being received with
fewer preamble symbols.
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Figure 8.7: Six anchors transmitted randomly, with average transmission rates of
F =700, F = 1400, and F' = 2800 packets/second. Measurements of the channel impulse
response (CIR) magnitude were collected upon reception of a packet from the first of the
six anchors. These scatter plots are composed of many individual samples of the CIR to
the same anchor (black dots), with the region shaded in translucent red indicating the
5th and 95th percentile bounds of these measurements. The median CIR measurement is
denoted with a thick red line. A comparison of the three plots shows that measurements
of the CIR become increasingly noisy and inaccurate as the average transmission rate
increases. This is in line with the expectation of synchronization quality decreasing as
transmission rate is increased. This plot should be compared with Fig. in which only
a single anchor transmits and thus packet collisions do not occur.
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Figure 8.8: This figure presents results from the experiment of Fig. with an additional
series (thick line) showing the results of filtering packets based on synchronization quality.
Based on the single-anchor results of Fig. [8.6] received packets were discarded if fewer

than 52 preambles were

used in the synchronization.
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9

Future Work

9.1 Compensation for systematic biases

The experimental results presented in Chapter [7| demonstrate that multiple robots are
capable of operating simultaneously within a space. These results also show that each
robot is similarly affected by a systematic bias, resulting in a position-dependent offset
between the robot’s estimated and actual position. Reduction of these systematic biases
is an important next step in improving the accuracy of UWB localization. As discussed
in Chapter [4, UWB range measurements are affected by a white measurement noise with
standard deviation 40 mm. However, since multiple UWB range measurements are re-
quired to localize and since each of these measurements has a different measurement bias,
smooth trajectory tracking was only achieved if the robot’s Kalman filter was detuned
to treat each UWB range measurement as having a measurement noise with standard
deviation 200 mm. If the magnitude of these measurement biases could be decreased, the
robot’s localization system would not need to be as drastically detuned.

Since these measurement biases are systematic, it should be possible to compensate
at least partially for their influence. Possible approaches include:

1. Quantification of these biases through comparison with ground truth data, and
modeling measurement bias as a function of a receiving module’s pose relative to
a transmitting module. In addition to pose data, this model may include signal
characteristics such as received signal strength or measurements of the CIR. Initial
results [R.2] suggest that this is a promising direction of research, and that learned
models are general enough to be applied to localization networks in which ground-
truth data is not available.

2. Using other sensors (e.g. an IMU, an optical flow sensor, or visual odometry) to
provide additional information to the state estimate and applying techniques simi-
lar to iterative learning control to facilitate on-line learning of position-dependent
biases. Initial results in [R.3| suggest this approach to be powerful, particularly
when combined with visual odometry as a source of ground-truth data.
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9.2 ALOHA Localization

Based on the findings presented in Chapter |8 the application of random transmission to
UWRB localization networks appears to be a promising research direction that could signif-
icantly reduce the complexity and increase the robustness and scalability of localization
networks.

Ironically, the robustness of UWB radio as method of communication, owing to its
multiple layers of forward error correction, also presents one of the largest challenges in
implementing this localization scheme. As shown in Fig. and Fig. due to this
robustness to interference, packet collisions can result in poor synchronization quality
rather than a complete loss of the packet and thus, correct reception of a packet does not
imply a collision-free transmission.

Although data communication in this setting is more robust than predicted, reduced
synchronization quality leads to a reduction in the accuracy of reception timestamps,
which can affect localization accuracy. One measure that could be used to determine
reception quality is the number of preamble symbols used during the synchronization
process. Results shown in Fig. indicate that this is a promising first step in rejecting
poor measurements, however, that it does not fully capture the problem. One poten-
tial focus of future research is on further quantifying the effects of packet collisions on
timestamp quality, and therefore the effects on clock tracking and localization accuracy.

82



Bibliography: Part A

13l
4]
5]
(6]

Bitcraze AB, (2018). Crazyflie 2.0, [Online|. Available: https://www.bitcraze.
io/crazyflie-2/.

Barrett, T. W., “History of ultrawideband (UWB) radar & communications: Pi-
oneers and innovators”, in Proc. Progress in Electromagnetics Symposium, 2000,
pp. 1-42.

Sachs, J., Handbook of ultra-wideband short-range sensing: theory, sensors, ap-
plications. John Wiley & Sons, 2013.

Bennett, C. L., Ross, G. F., “Time-domain electromagnetics and its applica-
tions”, Proceedings of the IEEFE, vol. 66, no. 3, pp. 299-318, 1978.

Win, M. Z., Scholtz, R. A., “Impulse radio: How it works”, IEEE Communica-
tions letters, vol. 2, no. 2, pp. 3638, 1998.

Withington, P., Fullerton, L. W., “An impulse radio communications system”,
in Ultra- Wideband, Short-Pulse Electromagnetics, H. L. Bertoni, L. Carin, and
L. B. Felsen, Eds. Boston, MA: Springer US, 1993, pp. 113-120.

Taylor, J. D., Introduction to ultra-wideband radar systems. CRC press, 1994.
Federal Communications Commission, First Report and Order 02-48, Apr. 2002.
IEEE Standard for information Technology, IEEE Std 802.15.4a, 2007.

Sahinoglu, Z., Gezici, S., “Ranging in the IEEE 802.15. 4a standard”, in Wireless
and Microwave Technology Conference, 2006, pp. 1-5.

Decawave, (2019). DW1000 UWB radio IC: User manual, [Online|. Available:
https://www.decawave.com/wp-content/uploads/2019/04/DW1000-User-
Manual.pdf (visited on Apr. 1, 2019).

Ghavami, M., Michael, L., Kohno, R., Ultra wideband signals and systems in

communication engineering. John Wiley & Sons, 2007.

Etzlinger, B., Wymeersch, H., Synchronization and Localization in Wireless Net-
works, 1. Now Publishers, Inc., 2018, vol. 12, pp. 1-106.

Decawave, (2018). APS010 application note: Wireless sensor networks and the
DW1000, [Online|. Available: https : / / www . decawave . com/ wp - content /
uploads/2018/10/APS010_DW1000-and-Wireless-Sensor-Networks_v1.1.
pdf (visited on Oct. 1, 2018).

83


https://www.bitcraze.io/crazyflie-2/
https://www.bitcraze.io/crazyflie-2/
https://www.decawave.com/wp-content/uploads/2019/04/DW1000-User-Manual.pdf
https://www.decawave.com/wp-content/uploads/2019/04/DW1000-User-Manual.pdf
https://www.decawave.com/wp-content/uploads/2018/10/APS010_DW1000-and-Wireless-Sensor-Networks_v1.1.pdf
https://www.decawave.com/wp-content/uploads/2018/10/APS010_DW1000-and-Wireless-Sensor-Networks_v1.1.pdf
https://www.decawave.com/wp-content/uploads/2018/10/APS010_DW1000-and-Wireless-Sensor-Networks_v1.1.pdf

Bibliography: Part A

84

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

27]

McElroy, C., Neirynck, D., McLaughlin, M., “Comparison of wireless clock syn-
chronization algorithms for indoor location systems”, in 2014 IEEFE International
Conference on Communications Workshops (ICC), IEEE, 2014, pp. 157-162.

Kulmer, J., Hinteregger, S., Grokwindhager, B., Rath, M., Bakr, M. S., Leitinger,
E., Witrisal, K., “Using Decawave UWB transceivers for high-accuracy multipath-

assisted indoor positioning”, in 2017 IEEE International Conference on Com-
munications Workshops (ICC Workshops), IEEE, 2017, pp. 1239-1245.

Cramer, R. J.-M., Win, M. Z., Scholtz, R. A., “Impulse radio multipath char-
acteristics and diversity reception”, in IEEFE International Conference on Com-
munications, INSTITUTE OF ELECTRICAL ENGINEERS INC (IEE), vol. 3,
1998, pp. 1650-1654.

Cramer, R. J.-M., Win, M. Z., Scholtz, R. A., “Evaluation of the multipath char-
acteristics of the impulse radio channel”, in Ninth IEEE International Sympo-
sium on Personal, Indoor and Mobile Radio Communications (Cat. No. 98TH8361),
[EEE, vol. 2, 1998, pp. 864-868.

Sipal, V., John, M., Neirynck, D., McLaughlin, M., Ammann, M., “Advent of
practical UWB localization: (R)Evolution in UWB antenna research”, in The
8th European Conference on Antennas and Propagation (EuCAP 2014), IEEE,
2014, pp. 1561-1565.

Mills, D. L., “Internet time synchronization: The network time protocol”, IEFEFE
Transactions on Communications, vol. 39, no. 10, pp. 1482-1493, Oct. 1991.

Elson, J., Romer, K., “Wireless Sensor Networks: A New Regime for Time Syn-
chronization”, SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pp. 149-154,
Jan. 2003.

Sivrikaya, F., Yener, B., “Time synchronization in sensor networks: A survey”,
IEEFE Network, vol. 18, no. 4, pp. 45-50, Jul. 2004.

Fan, R., Lynch, N., “Gradient clock synchronization”, in In Proceedings of the
23rd Annual ACM Symposium on Principles of Distributed Computing (PODC).
ACM, 2004.

Locher, T., Wattenhofer, R., “Oblivious Gradient Clock Synchronization”, in
In Proc. 20th International Symposium on Distributed Computing (DISC, 2006,
pp. 520-533.

Sommer, P., Wattenhofer, R., “Gradient clock synchronization in wireless sensor
networks”, in Proceedings of the 2009 International Conference on Information
Processing in Sensor Networks, IEEE Computer Society, 2009, pp. 37-48.

Lenzen, C., Locher, T., Wattenhofer, R., “Tight Bounds for Clock Synchroniza-
tion”, J. ACM, vol. 57, no. 2, 8:1-8:42, Feb. 2010.

Kuhn, F., Locher, T., Oshman, R., “Gradient Clock Synchronization in Dynamic
Networks”, Theory of Computing Systems, vol. 49, no. 4, pp. 781-816, Nov. 2011.



28]

[29]

[30]

[35]

[36]

[37]

[38]

Giorgi, G., Narduzzi, C., “Performance analysis of Kalman filter-based clock
synchronization in IEEE 1588 networks”, in Control and Communication 2009
International Symposium on Precision Clock Synchronization for Measurement,
Oct. 2009, pp. 1-6.

Kirsch, F., Vossiek, M., “Distributed Kalman filter for precise and robust clock
synchronization in wireless networks”, in IEEFE Radio and Wireless Symposium,
2009. RWS 09, Jan. 2009, pp. 482-485.

Hamilton, B. R., Ma, X., Zhao, Q., Xu, J., “ACES: Adaptive Clock Estimation
and Synchronization Using Kalman Filtering”, in Proceedings of the 14th ACM

International Conference on Mobile Computing and Networking, ser. MobiCom
'08, New York, NY, USA: ACM, 2008, pp. 152-162.

Abubakari, H., Sastry, S., “IEEE 1588 style synchronization over wireless link”, in
Control and Communication 2008 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Sep. 2008, pp. 127-130.

Schroeder, J., Galler, S., Kyamakya, K., “A low-cost experimental ultra-wideband
positioning system”, in 2005 IEEFE International Conference on Ultra- Wideband,
Sep. 2005, pp. 632-637.

Jourdan, D. B., Deyst, J. J., Win, M. Z., Roy, N., “Monte Carlo localization in
dense multipath environments using UWB ranging”, in 2005 IEEE International
Conference on Ultra- Wideband, Sep. 2005, pp. 314-319.

Gonzalez, J., Blanco, J. L., Galindo, C., Ortiz-de-Galisteo, A., Fernandez-Madrigal,
J. A., Moreno, F. A., Martinez, J. L., “Mobile robot localization based on Ultra-
Wide-Band ranging: A particle filter approach”, Robotics and Autonomous Sys-
tems, vol. 57, no. 5, pp. 496-507, May 2009.

Prorok, A., Arfire, A., Bahr, A., Farserotu, J., Martinoli, A., “Indoor navigation
research with the Khepera III mobile robot: An experimental baseline with a

case-study on ultra-wideband positioning”, in 2010 International Conference on
Indoor Positioning and Indoor Navigation (IPIN), Sep. 2010, pp. 1-9.

Prorok, A., Tomé, P., Martinoli, A., “Accommodation of NLOS for ultra-wideband
TDOA localization in single-and multi-robot systems”, in Indoor Positioning

and Indoor Navigation (IPIN), 2011 International Conference On, IEEE, 2011,

pp- 1-9.

Prorok, A., Gonon, L., Martinoli, A., “Online model estimation of ultra-wideband

TDOA measurements for mobile robot localization”, in Robotics and Automation
(ICRA), 2012 IEEE International Conference On, IEEE, 2012, pp. 807-814.

Prorok, A., Martinoli, A., “Accurate indoor localization with ultra-wideband
using spatial models and collaboration”, The International Journal of Robotics
Research, pp. 547-568, Nov. 2013.

85



Bibliography: Part A

86

[39]

|40]

[41]

|44]

[45]

48]

[49]

Segura, M., Hashemi, H., Sisterna, C., Mut, V., “Experimental demonstration of
self-localized Ultra Wideband indoor mobile robot navigation system”, in 2010
International Conference on Indoor Positioning and Indoor Navigation (IPIN),
Sep. 2010, pp. 1-9.

Zwirello, L., Schipper, T., Harter, M., Zwick, T., “UWB Localization System for
Indoor Applications: Concept, Realization and Analysis”, Journal of FElectrical
and Computer Engineering, vol. 2012, 849638, May 2012.

Ye, T., Walsh, M., Haigh, P., Barton, J., O’Flynn, B., “Experimental impulse
radio IEEE 802.15. 4a UWB based wireless sensor localization technology: Char-
acterization, reliability and ranging”, in ISSC 2011, 22nd IET Irish Signals and
Systems Conference, Dublin, Ireland. 23-24 Jun 2011, Insitution of Engineering
and Technology, 2011.

Guo, K., Qiu, Z., Miao, C., Zaini, A. H., Chen, C.-L., Meng, W., Xie, L., “Ultra-
Wideband-Based Localization for Quadcopter Navigation”, Unmanned Systems,
vol. 04, no. 01, pp. 23-34, Jan. 2016.

Nguyen, T. M., Zaini, A. H., Guo, K., Xie, L., “An Ultra-Wideband-based Multi-
UAV Localization System in GPS-denied environments”, in International Micro
Air Vehicle Conference and Competition 2016, 2016.

Tiemann, J., Eckermann, F., Wietfeld, C., “ATLAS - an open-source TDOA-
based Ultra-wideband localization system”, in 2016 International Conference on
Indoor Positioning and Indoor Navigation (IPIN), Oct. 2016, pp. 1-6.

Kempke, B., Pannuto, P., Dutta, P., “PolyPoint: Guiding Indoor Quadrotors
with Ultra-Wideband Localization”, in Proceedings of the 2nd International
Workshop on Hot Topics in Wireless, New York, NY, USA: ACM, 2015, pp. 16—
20.

Kempke, B., Pannuto, P., Campbell, B., Dutta, P., “SurePoint: Exploiting Ultra
Wideband Flooding and Diversity to Provide Robust, Scalable, High-Fidelity
Indoor Localization”, in Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems CD-ROM, ser. SenSys ’16, Stanford, CA, USA: ACM,
2016, pp. 137-149.

Kempke, B., Pannuto, P., Dutta, P., “Harmonium: Asymmetric, bandstitched
UWB for fast, accurate, and robust indoor localization”, in Proceedings of the
15th International Conference on Information Processing in Sensor Networks,
IEEE Press, 2016, p. 15.

Wang, C., Zhang, H., Nguyen, T.-M., Xie, L., “Ultra-Wideband Aided Fast
Localization and Mapping System”, arXiv:1710.00156 [cs/, Sep. 2017. arXiv:
1710.00156 [cs].

Bar-Shalom, Y., Li, X.-R., Kirubarajan, T., Estimation with applications to
tracking and navigation: theory algorithms and software. John Wiley & Sons,

2001.


https://arxiv.org/abs/1710.00156

[50]

[51]

[52]

[53]

[54]

[55]

[58]

[59]

Freris, N. M., Graham, S. R., Kumar, P. R., “Fundamental Limits on Synchroniz-
ing Clocks Over Networks”, IEEE Transactions on Automatic Control, vol. 56,
no. 6, pp. 1352-1364, Jun. 2011.

Gezici, S., Tian, Z., Giannakis, G., Kobayashi, H., Molisch, A., Poor, H., Sahinoglu,
7., “Localization via ultra-wideband radios: A look at positioning aspects for fu-

ture sensor networks”, IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 70—
84, Jul. 2005.

Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., Correal,
N. S., “Locating the nodes: Cooperative localization in wireless sensor networks”,
Signal Processing Magazine, IEFE, vol. 22, no. 4, pp. 54-69, 2005.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics Second
Edition. ATAA, 2007.

Mahony, R., Kumar, V., Corke, P., “Multirotor Aerial Vehicles: Modeling, Es-
timation, and Control of Quadrotor”, IEEE Robotics Automation Magazine,
vol. 19, no. 3, pp. 20-32, Sep. 2012.

Stuelpnagel, J., “On the parametrization of the three-dimensional rotation group”,

SIAM review, vol. 6, no. 4, pp. 422-430, 1964.

Markley, F. L., “Attitude error representations for Kalman filtering”, Journal of
gquidance, control, and dynamics, vol. 26, no. 2, pp. 311-317, 2003.

Mueller, M. W., Hehn, M., D’Andrea, R., “Covariance correction step for kalman
filtering with an attitude”, Journal of Guidance, Control, and Dynamics, vol. 40,
no. 9, pp. 2301-2306, 2016.

Shuster, M. D., “A survey of attitude representations”, Navigation, vol. 8, no. 9,
pp. 439-517, 1993.

Lupashin, S., Hehn, M., Mueller, M. W., Schoellig, A. P., Sherback, M., D’Andrea,
R., “A platform for aerial robotics research and demonstration: The Flying Ma-
chine Arena”, Mechatronics, vol. 24, no. 1, pp. 41-54, Feb. 2014.

Brescianini, D., Hehn, M., D’Andrea, R., “Nonlinear quadrocopter attitude con-
trol”, ETH Zurich, Tech. Rep., 2013.

Abramson, N., “The ALOHA system: Another alternative for computer com-
munications”, in Proceedings of the November 17-19, 1970, fall joint computer
conference, ACM, 1970, pp. 281-285.

87






Part B
COORDINATION OF ROBOT SWARMS

This thesis part is based on material published in
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1

Overview

Improvements in the capabilities of robots and their control systems have allowed robots
to operate in increasingly cluttered environments and in close proximity to each other.
In such scenarios, trajectories for individual robots can be computed quickly using exist-
ing methods; however, the requirement for collision avoidance introduces a non-convex
coupling between robot trajectories making the trajectory generation problem difficult to
solve in a time-efficient manner.

This thesis addresses the swarm state-transition problem, in which each robot in the
swarm is tasked with transitioning from a given initial state to a given goal state without
colliding and while satisfying other constraints placed on the trajectories. This thesis
proposes a parallelizable formulation of such problems, as well as a method for solving
such problems efficiently on modern tensor or graphics processing units (GPUs). Trajec-
tories for each robot are initialized independently using existing methods and without
considering inter-robot collisions. This initialization is then iteratively improved using
momentum-based gradient descent of a given loss function until feasibility. Given the
non-convexity of the problem and the usage of gradient descent, the proposed method
yields solutions in the local neighborhood of the initialization, and while not guaranteed
to find an optimal solution, the focus of this thesis is on generating feasible and objec-
tively “good” trajectories in a time-efficient manner, which is itself not an easy task given
the number of robots interacting.

This thesis part begins with a review of related literature in Chapter [2] A general
formulation of the proposed method is then presented in Chapter [3| Two simulation-
based case studies are presented in Chapter [4

1. the “Sort 200” quadcopter maze-traversal benchmark problem |[1]| (Fig. is ad-
dressed in Section and

2. a ground robot transition problem using a fleet of heterogeneous ground robots with
bicycle dynamics (Fig. is presented in Section . Such robots are often used
as benchmarks for non-holonomic systems.

These case studies are used to demonstrate the method’s application to nonlinear systems;
to discuss the implementation of various state and input constraints; and to address
various performance caveats and methods of increasing the method’s convergence speed.
In both cases, the method generates feasible, collision-free trajectories for the entire swarm
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in seconds. These trajectories are fully-defined state and input trajectories, which can then
be provided as reference to a trajectory-tracking controller on each robot.

Chapter [5| concludes this thesis part with a discussion of the proposed method’s lim-
itations and possibilities for future research.

AA\AAAAAAAA
A

Figure 1.1: An example of the type of problem addressed by this method. In this bench-
mark example, 200 quadcopters are tasked with finding their way out of a maze without
colliding with each other or with the maze. The proposed method takes approximately
2.3 seconds to generate feasible, collision-free trajectories for all 200 quadcopters. Further
details are presented in Section
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Figure 1.2: A further example of the type of problem addressed by this method. In this
example, 100 robots with bicycle dynamics (e.g. cars, warehouse robots, etc.) are tasked
with exchanging positions in a “smiley face” formation without colliding. To exemplify the
application of the proposed method to heterogeneous fleets of robots, the steering angle
of 50 robots (colored black) is constrained to 20°, and the steering angle of the other 50
robots (colored orange) to 70°. As elaborated upon in Section , the proposed method
takes approximately 1.6 seconds to generate feasible, collision-free trajectories for the 100
robots.
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2

Literature Review

2.1 Robot trajectory generation

Trajectory generation for individual robots is a well established field of research, with
high-performance algorithms existing for most classes of robots. Many methods of trajec-
tory generation express trajectories as the piecewise connection of basis functions. In |2,
for example, trajectories are described using a piecewise constant jerk and generated for
time-optimality using a bang-bang approach. In [3]-|6], trajectories are represented as
polynomials generated to yield minimum jerk or minimum snap motions.

In cluttered environments, collisions with obstacles often prevent the direct appli-
cation of the above methods. In such situations, graph-search methods can be used to
plan trajectories in a discretized state- or action-space |7], [8]; or sampling based meth-
ods, for example Rapidly-exploring Random Trees (RRT) [9], RRT* [10] or Probabilistic
Roadmaps (PRM) |11], can be used to find a feasible path through a continuous space.

Such search-based methods scale poorly with the dimensionality of the space and are
thus often used to find feasible paths through a lower-dimensional space, before smooth-
ing trajectories (e.g. piecewise polynomials or splines) are fit through the sequence of
waypoints that define the path [12]. These search based approaches are very effective at
generating feasible paths and trajectories for individual robots; however, as the number
of robots in a swarm increases, so does the dimensionality of the search space and these
methods again run into issues with scaling.

2.2 Swarm trajectory generation & collision avoidance

Generating collision-free trajectories for robot swarms has historically proven to be a
highly combinatorial and high dimensional problem. Previous approaches have used con-
vex approximations or reformulations of the problem to improve computational tractabil-
ity. Examples of such approaches include 13|, who solve the problem by iteratively solv-
ing mixed-integer linear programs; [14|]-[18|, who employ sequential convex programming
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to iteratively refine the solution towards feasibility; [19], who formulate and solve the
problem as a mixed-integer quadratic program; and [20|, who solve the problem using a
variation of the alternating direction method of multipliers.

The application of these aforementioned methods to large swarms is limited by their
computational complexity. This is addressed in [21], who demonstrate that a significant
increase in computation speed can be achieved by only including collision constraints for
pairs of robots in each other’s vicinity, and by formulating the problem such that robot
trajectories can be optimized in parallel.

A further improvement in computational speed can be achieved by optimizing both
trajectory and robot assignment in parallel, leveraging the fact that an optimal assign-
ment of robots to goals will generally require shorter trajectories, and fewer collisions
to be avoided, than a non-optimal assignment. This property is exploited by [22], who
reformulate the optimization problem to be solved as a linear sum assignment problem
and apply their method to swarms of hundreds of robots; and by [1], |23], [24], who
iterate a search-based roadmap planner with a trajectory smoothing step until feasible
robot trajectories are found, and who demonstrate their method by planning collision-free
trajectories for hundreds of robots through densely cluttered environments. The recent
tendency towards solving such problems in parallel, suggests that the application of GPUs
to such optimization problems warrants investigation.

2.3 GPU-based trajectory generation

Accelerating computation using the parallel-processing architecture of GPUs is common-
place in many fields; however, the potential application of GPUs to robot trajectory
generation problems remains largely unexplored.

The majority of papers to date use the GPU to parallelize the search for feasible
trajectories for a single robot. Approaches include, for example, variations of genetic
algorithms [25]-[29]; parallel implementations of PRM [30], [31]; and a parallel imple-
mentation of R* search [32], [33].

More in line with the approach of this thesis are 34|, [35|, within which the GPU
is used to parallelize the evaluation of dynamics and collision constraints. Both papers,
however, only deal with trajectories for a single robot. The non-convex trajectory gen-
eration problem is solved in [34] directly; however in this case the GPU is used only for
parallel constraint evaluation, with results then transferred to a CPU-based solver.
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Problem Formulation

The work presented in this part of the thesis advances the current research and literature
in both the intended problem domain: swarms of hundreds to thousands of robots; and in
the approach: standard methods are used to generate feasible initializations for individual
robot trajectories, and the GPU is then used both to evaluate constraints in parallel and
to solve the non-convex trajectory generation problem, allowing the proposed method to
leverage the computational power of modern GPUs to solve the problem quickly.

The proposed method addresses the generation of feasible, collision-free trajectories
for robots operating simultaneously and in close proximity. Each robot’s trajectory is
initialized independently without considering inter-robot collisions, and constraints on
the trajectories (e.g. state and collision constraints) are modeled as soft constraints and
included in an objective function to be minimized. Momentum-based gradient descent is
then employed to iteratively improve robot trajectories until all constraints are satisfied.
Given the non-convexity of the problem and the usage of gradient descent, the proposed
method is not guaranteed to find an optimal solution, rather yielding feasible solutions
in the local neighborhood of the initialization.

This section formalizes the above problem, introduces notation, outlines assumptions
and requirements, and presents the method formally in Algorithm [I]

3.1 Robot states and inputs

Consider a swarm of R robots, in which robots are numbered sequentially from 1 to
R and where indices ¢ and j are used to refer to arbitrary robots within the swarm.
For simplicity of the following explanation, all robots in the swarm are assumed to be
identical; however, this method can be trivially extended for swarms of different robots,
an example of which is shown in the case study presented in Section [4.2]

Let each of the R robots have an input space of dimension M, and a state space of
dimension . Inputs are issued to each robot at discrete times k =0,..., K—1, and are
held constant between time instants. Robot i’s input trajectory is denoted by U; € REXM
and its state trajectory by S; € RN Each robot’s initial state S;[0] and desired goal

state G; € RY are assumed known and feasible. The proposed method generates a feasible
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and collision-free trajectory for each robot, which transitions it from its initial state to
within a defined threshold of its goal state (e.g. a 5cm final position tolerance is used in
the case studies in Chapter [4)).

3.2 Robot dynamics

Robot i’s input trajectory is mapped to its state trajectory through its known dynamics
f('> ) as

Iterating f across the entire input trajectory,

expresses the relationship between robot i’s input and state trajectory.

For notational simplicity, the input and state trajectories of all robots are stacked into
the tensors U € REXM*E apnd § € RUKFIXNXE rogpectively. This is not always possible in
the case of heterogenous swarms; however, in such cases, operations can be performed on
trajectories individually, while incurring minimal computational overhead. This stacking
is therefore without loss of generality. Overloading notation, the relationship between the
input and state trajectories of the swarm is written as

S = F(U, S|0)), (3.3)

noting that S is a function of both the robots’ initial states S[0] and the robots’ input
trajectories U. Hidden behind this notation are a number of performance caveats, which
are discussed in Section [3.6]

3.3 Constraints & optimization objective

The robots’ input and state trajectories are subject to constraints, which can include
inter-robot and environmental collision constraints; constraints on the final state (e.g. goal
constraints); bounds on the state trajectory (e.g. minimum and maximum velocity); as
well as actuator limits (e.g. minimum and maximum input). This general formulation
also allows for coupled input and state constraints (e.g. state-dependent input bounds),
or for constraints which are only active on specific robots.
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3.4 Optimization

These constraints are modeled as soft constraints and % is used to denote the set of
all constraints. Each constraint ¢ € % is modeled to consist of two components:

1. aloss function £.(U, S), which is included in the optimization objective function
(detailed below) and whose negative gradient provides a direction towards a feasible
solution; and

2. a satisfaction function S.(U, S), whose boolean output indicates whether the con-
straint ¢ is satisfied. If S.(U, S) is true for all ¢ € ¥, trajectories are deemed
feasible and the optimization terminates.

Weighting each loss by a parameter w,, the optimization objective is to minimize

=> wL(U, S) (3.4)

cEC

with respect to the input trajectories U. This is achieved by descending the loss gradient

L 0L 08
VuL(U, 8): ch< )(U, S), (3.5)
— S oU

recalling that S is a function of U. This gradient calculation and back-propagation can be
automated using the auto-differentiation functionality of tensor arithmetic libraries such
as Tensorflow [36], PyTorch [37] or MXNet [38], or can be computed manually. Examples
of a number of common constraints are presented in the case studies of Chapter

3.4 Optimization

Since the proposed method uses gradient descent, the speed of the algorithm and quality
of the solution are highly dependent on the quality of the initialization. Robot input
trajectories should therefore be initialized to transition the robot from its initial state
to its goal state, while satisfying individual robot constraints, and in a manner that is
appropriate for the problem (e.g. time optimal, minimum jerk, etc.). This initialization
is performed for each robot independently and without considering inter-robot collisions.

The requirement for collision-avoidance between robots introduces a coupling between
the trajectories of individual robots and makes the problem non-trivial to solve. Using
a gradient descent optimizer, for example Adam |39, the proposed method iteratively
improves the input tensor U by descending the loss function’s gradient . When
trajectories are found to satisfy all constraints (i.e. S.(U, S) is true for all ¢ € %) the
algorithm terminates. This optimization procedure is formalized in Algorithm
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Algorithm 1 The proposed method uses momentum-based gradient descent to itera-
tively improve robot input trajectories U until the corresponding state trajectories S are
collision-free and feasible with respect to the given constraints.

Require:

Initialization of robot input trajectories U, which are feasible for individual robots if
robot collisions are ignored

Initial state of each robot S0

Robot dynamics F (-, -) which maps the robots’ inputs and initial states to their state
trajectories as in ((3.3))

Set of constraints €', where each constraint ¢ € € is defined by a loss function L.(-, -)
and satisfaction check S.(-, )

Weighting parameter w, for each constraint ¢ € ¢

Gradient descent optimizer OPT(:,-|7n), parameterized by a given learning rate 7
and which takes a gradient and momentum state, and returns a step and updated

momentum.

Optimization Procedure:

1: Reset optimizer momentum p
2: loop
Calculate robot state trajectories as in
32 S« F(U,SI0))
Calculate loss gradient as in
b Vol Sou (% + %5 (U, S)
Check constraint satisfaction
5. if S.(U, S) is false for any ¢ € € then
Run optimizer
6: AU, p + OPT(VuL, p|n)
Update robot input trajectories
7 U+U+AU
8 else
9: return U, S
10:  end if
11: end loop
Returns:

Input trajectories U that are feasible with respect to all input constraints

Collision-free state trajectories S that are feasible with respect to all state constraints

100



3.5 Hyperparameter tuning

3.5 Hyperparameter tuning

With respect to , observe that the gradient and therefore the direction and size of
the gradient descent update are dependent on the set of constraint weighting factors
{w.|c € €}. In addition, the size of each update step is proportional to the so-called
“learning rate” of the gradient descent optimizer. The learning rate, together with the
constraint weights are the hyperparameters of the proposed method.

The selection of appropriate hyperparameters is specific to the class of problem being
addressed. Selecting appropriate hyperparameters is critical to achieving fast convergence
to reasonable results. Hyperparameters should be chosen such that the number of col-
lisions is quickly reduced, while ensuring that other constraints which may be violated
during the optimization process are quickly reoptimized to feasibility. An automated
hyperparameter search [40] was used to select hyperparameters for the problem classes
presented in Chapter [4 This search involves running hundreds of thousands of simula-
tions with different hyperparameter values, and selecting the hyperparameter set that
minimizes the 90th-percentile convergence speed of the algorithm.

The effects of hyperparameter tuning are investigated in more detail in Section [4.2.5.

3.6 Performance considerations

The speed of the proposed method comes from the ability to parallelize many of the
algorithm’s steps and thus leverage the computational power of a modern GPU. With
reference to Algorithm (1] the two major steps of the algorithm are the calculation of state
trajectory (line|3]), and the calculation of a loss gradient (line . It is important to ensure
that these steps are implemented in such a way as to enable their effective parallelization.

3.6.1 Calculation of state trajectory

When computing the state trajectory of each robot from its input trajectory, it is impor-
tant to note that the dynamics F(U, S[0]) are defined to operate on the input trajectory
as a whole, rather than iterating the dynamics across time (as in (3.1)).

Significant performance gains can be realized when the dynamics are implemented
using cumulative sums or cumulative products, since these cumulative operations can
be efficiently parallelized to run in logarithmic time [41]. The case studies presented in
Chapter [4] show two examples of how robot dynamics expressed as standard difference
equations can be implemented using cumulative sums.

3.6.2 Calculation of loss gradient

Losses are typically independent across time and across robots, and can be effectively
implemented using tensor operations, for example as provided by libraries such as Ten-
sorflow [36], PyTorch [37] or MXNet [38|. Tensor operations are inherently parallelizable
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and thus enable the evaluation of losses in parallel. Likewise, the evaluation of the loss
gradient follows through back-propagation, which is based on tensor multiplications and
additions and is thus also inherently parallelizable.

A significant bottleneck when calculating loss gradient is the computation of inter-
robot collisions. This operation requires naively O(R?) comparisons if all robots are com-
pared with all other robots. Although each comparison is independent, the sheer number
of comparisons for large swarms quickly exhausts the GPU’s ability to process these in
parallel. In Section [4.1.4 an alternative approach is introduced, which leverages parallel
sorting to reduce the time complexity of this step to O(log R) [41], [42].

102



4

Example Case Studies

This chapter demonstrates the application of the proposed method to two different sce-
narios.

1. Section implements the “Sort 200” quadcopter maze-traversal benchmark prob-
lem, first proposed in [1] (see Fig.

2. Section implements a ground robot transition problem using a fleet of hetero-
geneous ground robots with bicycle dynamics (see Fig. .

An example implementation of each scenario is available at [43].

Results presented in this section were generated using an Nvidia GeForce GTX 1080 Ti
GPU, a widely-available consumer GPU costing approximately $700 at the time of
writing. Implementations were programmed using Python 3.6, PyTorch version 0.4.1,
CUDA version 9.2.148 and cuDNN version 7.1.4. Tensor arithmetic was performed using
32-bit floating point. GPU utilization was between 20% and 40% in all scenarios, implying
that further performance may be achievable through a more optimized implementation.
Using a more advanced GPU than was available at the time of writing, further perfor-
mance improvements could be achieved by using 16-bit floating point operations, which
ideally yield twice the throughput compared with 32-bit floating point operations.

4.1 “Sort200” quadcopter maze benchmark

In the “Sort 200” benchmark scenario, proposed in |1], 200 quadcopter robots begin at
random (z, y) locations within a maze and must fly to a goal location outside the maze
without colliding. Initial and goal positions all lie on the z = 0 plane. As in the original
benchmark scenario, quadcopters are allowed to move in the z dimension if required to
avoid collisions.

An example of the Sort 200 scenario is shown in Fig. which shows the initial and
final positions of 200 quadcopters connected by their collision-free trajectories.
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4.1.1 Robot modeling

The dynamic model of a quadcopter is differentially flat [44], a property which is often
exploited to allow trajectories to be planned in each of the inertial axes independently
(see, e.g. [2]-[5]). A similar approach is taken in this case study, and jerk trajectories are
planned for each quadcopter in each axis independently. These trajectories can at a later
stage be converted to nominal thrust and body-rate inputs, or could be provided to a
trajectory-tracking controller.

Denoting the three inertial axes with subscripts x, y and z, the position, velocity,
acceleration and jerk of the quadcopter in the inertial frame are respectively denoted by

The M = 3 dimensional input space of a quadcopter is defined as

U= (i Jye 32 (45)

and the quadcopter’s N = 9 dimensional state is defined as
S = (Pgs Pys Pas Vo, Vyy Vi 8g, Ay, 85 ) . (4.6)

Discretizing using the Euler forward method for a sampling period of T'= 50 ms, the
quadcopter’s state in the inertial frame evolves as

alk+1] = alk] + T j[k] (4.7)
vk+1] = v[k] + T a[k] + 1 T°j[K]
pll-+1] = pli] + T v[k] + 172[k] + LT[ (49)

where it is assumed that the input j[k] is held constant during timestep k. These recursive
difference equations can be rewritten to express the state at time k + 1 in terms of the
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4.1 “Sort200” quadcopter maze benchmark

input and state history:

alk+1] =al0] + T _jx] (4.10)
vik+1] =v[0] + T als] + 37°> j[x] (4.11)
plk+1] =pl0] + T Y v[s] + 47 als] + :17%) jlx]. (4.12)

Lifting the above in time, observe that the state trajectory can be computed using cu-
mulative summation (denoted CS):

a[l: K] = a[0] + T-CS(j) (4.13)
v[1: K] = v[0] + T-CS(al0: K —1]) 4+ $7*-CS(j)
p[l: K] =p[0] + T-CS(v[0: K —1]) + 3T2-CS(al0: K —1]) + :T°-CS(j).

This implementation can be effectively parallelized to run in logarithmic time, which
in this case-study executes an order of magnitude faster than the linear-time, recursive
implementation.

4.1.2 Assignment of robots to goals

Prior to trajectory generation, the 200 quadcopters must be assigned one of 200 goal
positions located on the perimeter of the maze. To this end, the given 2D magze is trans-
formed into a graph representation by discretizing the graph coordinates and connecting
points with an unobstructed line of sight using an edge with weight equal to the points’
Euclidean distance. The path length between all (discretized) positions within the maze
can then be computed using Dijkstra’s algorithm [45]. This step is only required if the
maze changes.

Using these computed path lengths and the known initial quadcopter positions, the
Hungarian method [46] is then used to compute an allocation of quadcopters to goal
positions that minimizes the sum of squared distance travelled by the swarm.

4.1.3 Initialization of individual trajectories

Once the allocation of initial positions to goal positions is known, splines can be fitted to
the shortest path connecting these positions (computed as a result of Dijkstra’s algorithm
in the previous step). As in the original benchmark problem, quadcopters are given 10
seconds to exit the maze. Splines are scaled in time to have this duration, and then
sampled at the desired rate (in this case, 20 Hz) to yield the initial trajectories for each
quadcopter.
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The results of this stage are 200 jerk trajectories in x and y, which quickly and
smoothly transition robots from their initial positions within the maze to their goal
positions at its perimeter. The z component of each trajectory is initialized to zero. At
this stage, quadcopters are treated independently and as such the initial trajectories
result in collisions between quadcopters. This and the previous step are computed on the
CPU due to the availability of fast centralized solvers for Dijkstra’s algorithm and the
Hungarian method.

4.1.4 Constraints

The constraint set consists of constraints based on the quadcopters’ physical capabili-
ties, constraints on quadcopter collisions with each other and with the maze walls, and
constraints on the final state of each quadcopter. Based on these constraints, the loss
function is defined as

L(U,S) = Winrust Linrust (U, S) + (4.14)
Whody-rate Lbody-rate(U, S) +
wquad-couision quad- 00111s10n< ) )
Winaze-collision Lmaze-coltision (U ; S) +

Wgoal-pos /v‘goal—pos(U7 S) +
Wgoal-vel ‘Cgoal—vel(Ua S) :

The following defines and discusses the implementation of these constraints and their
respective loss functions.

Dynamics constraints In line with [1], the quadcopter dynamic limits are set based

on a Crazyflie 2.0 quadcopter [47]. These limits include the minimum and maximum

2 2

mass-normalized thrusts f,;, = 5ms ™~ and f,.« = 15ms~

body-rate wma., = 30rads™ [A.3].

, and the maximum tilting

Letting g denote the vector of gravitational acceleration, quadcopter i’s thrust at time
step k£ is
fi[k] = [Jas[k] — gll2, (4.15)

which is constrained to the feasible range using the loss function

Lipwust (U, S) ZZmaX{O £[k] — fmaxt + (4.16)
k=1 i=1
K R
D) max {0, fum — filk]} .
k=1 =1
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4.1 “Sort200” quadcopter maze benchmark

As shown in [5], the magnitude of quadcopter ¢’s tilting body-rates w, ;[k] and w;;[k]
at timestep k can be upper-bounded by a function of its jerk and thrust as:

VWil + wy [k < E[k] | (4.17)

This upper bound is used to constrain the quadcopters’ tilting body-rates using the loss

Loiye(U.5) = 373 e { lialklz } (4.15)
body-rate [k‘] Wmax ¢ - .

k=0 =1

function

A quadcopter’s thrust and body-rates are defined to satisfy their respective constraints
if the associated loss function is zero.

Quadcopter collision constraints Two quadcopters are assumed to collide if their
(x, y, z) centers are within a certain distance D, referred to as the collision distance and
defined as D := 0.25m in line with |1]. The collision loss function is

R

Leonision(U,8) =Y "> " 2-max {0, D — dy;[k]}, (4.19)

k=1 i=1 j=i+1

where di;[k] == ||p;[k] — p;[K]||2 is the center-to-center distance between quadcopters i
and j at timestep k. Note that due to the pairwise nature of collisions, only quadcopters
with a higher index must be checked, and the collision loss is therefore doubled.

Checking for robot-robot collisions is one of the most time consuming steps in the
optimization pipeline. Directly computing the above loss requires that for each step in
time, the positions of all robots are checked against the positions of all other robots to
determine whether the robots collide, naively requiring O(R?) comparisons. As noted
in [21], the time required for this step can be significantly reduced if pairs of quadcopters
are only checked for a collision if they are closer than a given threshold.

A similar approach is taken in Algorithm [2] which uses a parallel argsort to sort robots
according to their position p,; in the axis a € {z, y, z}. Tt is then possible to compare
each robot only with those robots having similar a coordinates. By choosing a to be an
axis with a large position variance (e.g. in this case study = or y are good choices), the
number of checks required can be reduced to a small, approximately constant value, and
as such the time complexity of this approach is dominated by the O(log R) complexity
of parallel sort [41], [42].

Maze collision constraints The maze collision loss function is implemented as a
two-dimensional lookup. For every quadcopter and at every timestep the quadcopter’s x
and y position are checked for a collision with the maze boundaries. If a collision is found
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Algorithm 2 This algorithm drastically improves the speed of collision checks by lever-
aging the efficiency of parallel sorting algorithms. Robot positions are sorted along an
axis o with high position variance, thus enabling collision checks to be performed in the
robot’s local neighborhood rather than across all robots in the swarm. This algorithm
implements the loss function given in .

Require:

e Robot positions p{k] = (py. [k} py.[k]. p..[k])

o Axis a € {x, y, 2z} with large position variance

e Minimum allowed center-to-center distance D
Robot collision detection procedure:

1: for k € [1, K| in parallel do

Order robots at time k by their position in azris o
Idx[k, :] < ParallelArgsort({p, ;[k] |4 € [1, R]})
3: end parallel for

2

In parallel, check collisions for all robots at all timesteps

4: for i € [1, R] and k € [1, K] in parallel do
Sequentially (to allow early stopping), check collisions with the current robot i

5. for j € [i + 1, R| sequentially do

Indexes of robot pair
6: r  ldx[k, i]; r; + Idx[k, j]
7 if po,,[k] — Pa,,[k] > D then

Since o, k] = po K], stop early

8: break
9: end if

Compute pairwise distance
10: d < ||y, = Pp,[I2

Compute loss and loss gradients
11: if d < D then
12: atomic { Leotision < Leollision + 2+ (D —d) }
13: atomic { Vp, LV, L+ (p,,—p,,)/d }
14: atomic { Vij/j — VijL —(p,—py,)/d }
15: end if

16:  end sequential for
17: end parallel for
18: return Leonision, {Vp, £ |7 € [1, R}

Returns:
o Collision loss Lonision

e Collision loss gradient V, £ for each robot ¢
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4.1 “Sort200” quadcopter maze benchmark

to occur, that is if the quadcopter’s position is closer to a maze wall than its collision
distance allows, a loss with a gradient normal to the boundary is added to the global loss.

It is useful to distinguish between the case of a quadcopter’s trajectory traveling too
close to a wall, and the case of the trajectory moving into a wall. During the optimization
process, quadcopter state trajectories are perturbed in order to avoid collisions and to
satisfy other constraints. This is an iterative process, and satisfying one constraint may
require temporarily violating another constraint during an intermediate iteration of the
optimization. Such temporary constraint violations are resolved in later iterations. As an
example, it is often unavoidable that in trying to avoid a collision with another quad-
copter, a quadcopter’s trajectory is temporarily perturbed to travel too close to a wall.
This situation can be resolved in later iterations; however, if a quadcopter’s trajectory
is perturbed so significantly as to enter a wall, it is possible that the gradient descent
optimization will force the trajectory through the wall, and will thus optimize towards
an inescapable and infeasible local minimum. For this reason, being too close to a wall
is penalized lightly, while significantly more penalty is applied to trajectory steps that
enter a wall.

Goal constraints As previously mentioned, during individual iterations of the op-
timization, satisfying one constraint might require temporarily violating another. As a
further example of this, perturbing trajectories to avoid collisions often results in trajec-
tories that no longer end at the desired goal state. In order to ensure the final feasibility
of the trajectories, the deviation of the final state from the goal state must be penalized.
In this case study, the squared deviation of the final position and final velocity from the
desired values (G},; and 0 respectively) are penalized using the loss functions

Lgoal-pos = Z I [K] — Gl (4.20)
goal vel - Z HV’L H27 (421)

while final acceleration is not penalized.

Robot i’s final state constraints are satisfied if

|Ipz[K] - Gp,i||2 S Dgoal—posa and (422)

”Vi [K} ||2 S Dgoal-vel

where Dgoalpos and Dygoalvel define an acceptable deviation of the final position and velocity
around the desired goal states. In this case study Dgoalpos = 0.05 m and Dggalvel = 0.05m s—h
deviations which are well within the ability of a hover controller to stabilize.
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4.1.5 Optimization & Results

The Adam gradient descent method [39] was used to minimize the loss function (4.14)).
An automatic hyperparameter search [40] yielded the hyperparameter values shown in

Table l4.1].

Fig. shows a histogram of the time required to generate feasible, collision-free
trajectories for 200 quadcopters exiting the maze. These results are based on 1000 random
initializations of this case study. These results show that 50% of initializations were solved
in under 2.28 seconds, and 90% of initializations in under 3.38 seconds.

Table 4.1: Hyperparameters for the “Sort 200” case study, as optimized by a hyperpa-
rameter search aiming to minimize the algorithm’s 90th-percentile convergence time.

learning-rate 1.46 x 1073
Wquad-collision 1.16 x 104
Wmaze-collision 2.71 x 102

5
Wmaze-wall-entry 2.71 x 10

Weoal-pos 1.86 x 104
Wgoal-vel 2.11 x 104
Wehrust 1x10°
Whody-rate 1% 10°
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Figure 4.1: A histogram showing the time required for the generation of feasible, collision-
free trajectories for a swarm of 200 quadcopters. This histogram summarizes the results of
1000 trials. The median calculation time of 2.28 seconds is shown as a solid line. The 10th
and 90th percentiles (1.52 and 3.38 seconds respectively) are shown as dotted lines, and
the 25th and 75th percentiles (1.83 and 3.03 seconds respectively) are shown as dashed
lines.
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4.2 Ground robot transitions

4.2 Ground robot transitions

In this scenario, a fleet of 100 ground robots with front-steer bicycle dynamics is tasked
with changing its formation. The front-steer bicycle model is a common choice for model-
ing front-steer vehicles, for example cars. Robots begin and end at rest and are required
to arrive at their goal positions at the same time. As an example of the proposed method’s
applicability to heterogenous swarms, 50 of the 100 robots are chosen at random to have
a maximum steering angle of 20°, and the other 50 robots to have a maximum steering
angle of 70°. An example initialization of this problem is shown in Fig. where each
robot in the fleet changes its position within a “smiley face” formation.

4.2.1 Robot modeling

Each ground robot is modeled using the kinematic model of a bicycle [48]. Dynamics
not modeled by the kinematic model (e.g. inertia) are assumed to be compensated for
by a controller able to track the state and input trajectories generated by the proposed
method.

With reference to Fig. each robot is modeled as a bicycle with a fixed rear wheel
located [, = 0.5m from its center and a steerable front wheel located {; = 0.5m from
its center. The angle of its front wheel with respect to its longitudinal axis is denoted 9.
The location of each robot’s center in the two-dimensional inertial frame is denoted by p,
and p,, the angle of its longitudinal axis relative to the inertial frame by ¢, its forward
velocity and acceleration by v, and a;, and the angle of its forward velocity relative to

Figure 4.2: An illustration of a robot with bicycle dynamics. Such robots have a steerable
front wheel and a fixed rear wheel located at distances [y and [, from the robot’s center.
The steering angle of the front wheel is denoted by ¢, the angle of the robot with respect
to the inertial frame by ¢, and the angle of the robot’s velocity v, with respect to its
longitudinal axis by 3. The location of the robot in the inertial frame is denoted by p,
and p,. Figured adapted from [48].
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its longitudinal axis by . The continuous-time kinematics of a bicycle robot are then

B, = Vo cos(p + ) (4.23)
B, = vpsin(p + f) (4.24)
b= sin(f) (4.25)
Vy = ap, (4.26)

where

B = tan"! ( b tan(5)> . (4.27)

lf—l-lr

The above is discretized using the Euler forward method with a sampling period of
T = 50ms to arrive at the discrete-time model

Py lk+1] = p,[k] + T vy [k] cos(e[k] + B[K]) (4.28)
Py [k+1] = py[k] + T v [k] sin(o[k] + B[K]) (4.29)
olk+1] = k] + T VbEk] sin(8[k]) (4.30)
Vb[k+1] = Vb[/{?] + Tab[k;] (431)
where
Blk] = tan™" (lf :i I tan(d[k])) : (4.32)

Based on the above model, the N = 4 dimensional state space of a robot is

S = (p,, Py, Vi, ) € REXN 4.33
s Py

As in the previous case study, these recursive difference equations can be implemented
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using cumulative summation:

Bl0: K—1] = tan™! <lf 2 tan(é[O:K—l])) (4.34)

vp[1: K] = vp[0] + T-CS(ap[0: K —1])
vp[0: K —1]

o[1: K] = ©[0] + T-CS < a

sin(ﬁ[O:K—l]))

vp[0: K—1] = v [0: K —1] cos(¢[0: K —1] 4+ B[0: K —1])
vyl0: K —1] = v[0: K —1]sin(p[0: K —1] + 5[0: K —1])
p,[1: K] = p,[0] + T-CS(v,[0: K—1])
p,[1: K] = p,[0] +T-CS(v,[0: K —1]),

where the ordering of equations indicates the necessary order of calculation.

4.2.2 Initial and final conditions

Robot 7 is assumed to begin at the known position

p;[0] = (pm,i [0], Py.i [O]) ) (4.35)

and at standstill, such that
v,i[0] = 0. (4.36)

Robot i is randomly assigned the goal location
Gpi = (G Gyi), (4.37)
and it is assumed that the robot begins facing this goal
©;[0] = arctan2 (pm — Glyis Py — Gm) ) (4.38)

Robot 7 is required to finish at its goal and at rest, that is

D, K] = Gay (4.39)
py,i [K] ~ Gyvi
vpi[K] =~ 0,

with tolerances around the goal state as defined in Section 4.2.4. The robot’s final orien-
tation ¢;[K] is left unconstrained.
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4.2.3 Initialization of individual trajectories

Since each robot begins facing its goal, the trajectory generation problem is reduced to a
one-dimensional problem of generating a straight-line trajectory, which is feasible under
the dynamic constraints (discussed below). The position trajectory is parameterized using
a fifth-order polynomial optimized to minimize trajectory jerk [5]. Trajectory duration is
calculated such that the robot with the furthest distance to travel will reach its goal as
quickly as is allowed by its acceleration limits and by the trajectory parameterization.
The polynomial corresponding to each robot’s acceleration trajectory is sampled at the
desired rate (in this case, 20 Hz) to yield the robot’s initial acceleration trajectory. Each

robot’s steering trajectory is initialized to zero. This stage can be computed entirely on
the GPU.

4.2.4 Constraints

The constraint set consists of constraints on the robots’ accelerations and steering angles,
constraints prohibiting robot collisions, and constraints on the final state of each robot.

Input constraints In this case-study, robot i’s acceleration is constrained to

api € (—amax, Amax); (4.40)
where amax = 2ms~2, and its steering angle is constrained to

0; € (—0imax> %imax); (4.41)

where 9; max = 20° if 7 < 50 or otherwise 70°.

As demonstrated in the previous case-study, constraints can be implemented using
loss functions added to the objective function. Although input constraints can also be
modeled in this way, it is often easier to enforce simple input constraints directly by
expressing a robot’s constrained input as a function of an unconstrained optimization
variable. In this case study, the tanh(-) function is used to map an input on the domain
of (—o0, 00) to an output on the range (—1, 1). The input constraints can then be directly
expressed as

Api = Amax tanh(ay ;) (4.42)

51‘ = 6i,max tanh(csi), (443)

where a; ; and 9; are the unconstrained targets of the optimization routine. The robot state
update equations (4.34) are amended with the above transformations, and the M = 2 di-
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mensional input space of each robot then defined as
Ui = (@, 6;) (4.44)
from which the actual, constrained robot inputs a;,; and d; can later be recovered.

Robot collision constraints In this case study robots are modeled as circles and
require a minimum center-to-center distance of D := 1.0 m. Algorithm [2|is again used to
compute the corresponding collision loss (4.19) and associated gradients.

Goal constraints The deviation from the desired goal position and velocity is penal-
ized as in ([4.20), with Dgoalpos == 0.05m and Dgoalver == 0.05ms™ 1.

Table 4.2: Hyperparameter values for the ground robot transition case study, as deter-
mined by a hyperparameter search [40] aiming to minimize the algorithm’s 90th percentile
convergence time.

learning-rate  6.94 x 1073
Weollision 2.14 x 103
Whinal-pos 2.07 x 10*

Whnal-vel 5.95 x 103
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Figure 4.3: A histogram showing the time required for the generation of feasible, collision-
free trajectories for a fleet of 100 ground robots. This histogram summarizes the results of
1000 trials. The median calculation time of 1.6 seconds is shown as a solid line. The 10th
and 90th percentiles (0.88 and 3.34 seconds respectively) are shown as dotted lines, and
the 25th and 75th percentiles (1.18 and 2.22 seconds respectively) are shown as dashed
lines.
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4.2.5 Optimization & Results

The Adam gradient descent method [39] was used to minimize the global loss. An auto-
matic hyperparameter search [40] yielded the hyperparameter values shown in Table

Fig. presents a histogram of the time required to generate feasible, collision-free
trajectories for 100 ground robots based on 1000 random initializations of this case study.
These results show that 50% of initializations were completed in under 1.6 seconds, and
90% of initializations in under 3.34 seconds.

As discussed in Section the hyperparameter values (loss weights, as well as the
learning rate of the optimizer) play an important role in determining the speed of conver-
gence. The effects of hyperparameter tuning are investigated in Fig. by plotting the
number of collisions (orange) and the root-mean-squared distance violation of the final
position constraint (black), against the optimization iteration. Each plot begins from an
identical initial state, thus allowing the effects of hyperparameter variation on convergence
speed to be directly compared.

The center plots of Fig. show the convergence toward feasibility when using the
optimal hyperparameters (Table , which strike a balance between quickly decreasing
the number of collisions, while keeping the final positions close to their goals. Observe
in Fig. 4.4{(a)(i) that by reducing weonision, the number of collisions is not reduced as
quickly, however the final positions remain closer to their goals. By increasing weonision in
Fig. 4.4{(a)(iii) the opposite can be observed: the number of collisions is quickly reduced
(by drastically perturbing robot trajectories), thus causing an increase in the violation
of the final position constraint. In Fig. 4.4{b)(i) the effect of a low learning rate, which
causes a slow convergence to feasibility, is contrasted against the optimal learning rate in
Fig. 4.4b)(ii), and against a high learning rate in Fig. |4.4{(b)(iii), which fails to converge.
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Figure 4.4: These figures exemplify the effects of hyperparameter tuning by plotting
the root-mean-squared distance violation of the final position constraint (black) and the
number of collisions (orange) against the optimization iteration. Each plot begins from
an identical initial state, thus demonstrating how variations in hyperparameter values
affect convergence. These plots exemplify the importance of hyperparameter selection
and demonstrate how the optimal selection of hyperparameters strikes a careful balance
between quickly decreasing the number of collisions and ensuring that other constraints
are not too drastically violated.
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Future Work

This thesis introduces a method for quickly generating feasible, collision-free trajectories
for robot swarms. The proposed method leverages the computational power of modern
GPUs to directly solve the non-convex optimization problem using gradient descent. As
experimentally shown in the case-studies of Chapter [4] the proposed method is capable
of generating feasible, collision-free trajectories for swarms of hundreds of robots in sec-
onds, and can easily be extended to heterogenous swarms as shown in the case study of
Section Given the parallel nature of the problem, it is expected that the proposed
method’s performance will increase with progressive advances in GPU processing power.

5.1 Real-time, model predictive control

Although not touched upon in this thesis, the speed with which the proposed method
can generate trajectories for large swarms of robots suggests a possible application to
real-time reference generation. Warm starting the algorithm should reduce the number
of iterations required for feasibility and allow for trajectories to be quickly replanned to
account for situational changes and compensate for unmodeled effects.

5.2 Factorization into local policies

The centralized method presented in this thesis is efficient at computing trajectories,
but communication bottlenecks may limit its application to large swarms if trajectories
need to be communicated or updated in real time. Despite the complexity of the swarm
trajectory generation problem, once a feasible solution is found, the collision avoidance
behaviors demonstrated by individual robots are largely predictable (e.g if a robot is
blocking the direction of travel, slow down). This suggests that such behavior could be
encoded in a local policy and run on each robot independently.

The student project [SP.4] shows promising results on a small fleet of holonomic
ground robots. In this project, robots transition from a start to goal state while avoiding
collisions by using a neural-network-based policy, which was trained based on the solutions
of the centralized planner presented in this thesis. Similar research is the topic of [49]-[52],
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who show the effectiveness of training distributed collision avoidance and control policies
based on the results of centralized solvers.

5.3 Improved convergence speed using hyperparameter scheduling

The convergence speeds presented in this thesis are highly dependent on the selection
of hyperparameters (see Section . In the presented case-studies, a single set of hy-
perparameters was chosen for each case-study, which struck a balance between quickly
reducing collisions and remaining close to a feasible solution with respect to other con-
straints. While this set of hyperparameters worked well for many initializations of the
same problem, outliers suggest that it is may not be the optimal choice for all initial-
izations; furthermore, as iterations progress closer to feasibility, a different selection of
hyperparameters may result in improved convergence. Convergence speed is a very cur-
rent topic of research in the field of deep learning, with recent results in, for example
[53]-56], showing that convergence speed can be improved by varying hyperparameters
(such as learning rate) during training.

5.4 Alternative trajectory parameterizations

In the presented case studies, trajectories were sampled at discrete points in time, and
each trajectory sample was treated as an optimization variable. The methods presented
in this thesis can be extended to alternative trajectory parameterizations, such as poly-
nomial or spline-based parameterizations, as long as a gradient can be calculated between
the various constraint losses and the trajectory parameters. Alternative parameterizations
can be used to reduce the computation time of trajectory integration; may allow for the
simplification of constraint functions (e.g. as demonstrated in the trajectory feasibility
check of [5]); and, due to having significantly fewer parameters than a sampling-based
parameterization, might result in faster optimization. The downside of such parameteri-
zations is a reduction in the size of the solution space, and the optimization problem may
therefore be more difficult to solve.
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[11

Outlook

This thesis presented scalable methods for the localization and coordination of robot
swarms, as developed during the doctoral research and published in the peer-reviewed
papers |[P.1], [P.2], [P.3] and [P.4].

A localization system based on UWB radio was presented in [Part A and a method of
quickly generating collision-free trajectories for robot swarms was presented in
Each of these thesis parts concluded with a technical outlook with suggested directions
for future research (in Part A, Chapter [J] and Part B, Chapter [5). In the following, the
research contributions are summarized and placed in the broader context.

As shown in UWRB radio is a promising technology for localization in indoor
environments. Owing to their impulse-like nature, the transmission and reception time of
UWRB signals can be accurately measured (Part A, Section . The communication of
these timestamps to other modules enables distance measurement (Part A, Section ;
clock synchronization (Part A, Chapter [4)); and localization, both of the anchors them-
selves (Part A, Chapter @ and of robots operating in the space (Part A, Chapter [7)).

The topology and purpose of the system in[Part A is best described as an “indoor GPS”
system. Radio transceivers are placed at fixed positions within the environment and rou-
tinely transmit UWB signals, fulfilling a similar function to GPS satellites; while robots
move within the environment, and receive transmissions from the stationary transceivers.
Robots can localize themselves based only on received and local information, and much
like GPS, the system therefore scales to support an unlimited number of robots. However,
the use of UWB technology does present some inherent challenges.

As experimentally demonstrated in Part A, Section measurements of a UWB
signal’s reception time are affected by systematic biases that depend on the relative ori-
entation and distance of the transmitter and receiver. As a robot moves within the space,
its relative position and orientation to each anchor changes, resulting in a change in its
bias to each anchor. This results in an ever-changing offset between the robot’s estimated
and actual position. Results in Part A, Chapter [7|show that when moving within a space
of size 6m x 7m x 3.5m, a robot’s estimated position is affected by a position-dependent
systematic bias within the range of £100 mm. Preliminary research supported by the re-
sults of this thesis suggests that the magnitude of systematic measurement biases can be
reduced by using machine-learning to learn a compensation model [R.2|, |[R.4]. Despite
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Chapter III.  Outlook

these systematic biases, the system allows robots to localize themselves with sufficient
accuracy to operate autonomously. However, as is also the case for outdoor GPS local-
ization, the ability to localize within an environment does not imply awareness of the
environment. It is therefore suggested that robots employ additional sensors, for exam-
ple LIDAR or vision sensors, to provide awareness of and allow navigation relative to
the robot’s surroundings. Although this is not a focus of the thesis, preliminary results
supported by the UWB developments in [Part A highlight the potential of such an ap-
proach [R.3].

Having developed a localization system capable of supporting the simultaneous op-
eration of a swarm of robots, of the thesis addressed one possible method of
coordinating such a swarm. This work was published in [P.2]| and focuses on the problem
of quickly generating collision-free trajectories for large robot swarms. By reformulating
the trajectory generation problem as described in Part B, Chapter [3] the computational
power of a modern GPU was leveraged to optimize robot trajectories using gradient
descent. The method was applied to a swarm of 200 quadcopter robots operating in a
cluttered maze environment (Part B, Section ; and to a heterogenous swarm of 100
bicycle robots, a common benchmark used for non-holonomic planning problems (Part B,
Section . In both cases, the method handled nonlinear dynamics and various state
and input constraints with ease, and generated feasible, collision-free trajectories for the
swarm within seconds.

The method presented in [Part B proved to be effective at quickly generating trajecto-
ries for large robot swarms. These trajectories are generated in a central location and are
assumed to be tracked by a controller on each robot. In many applications, centralized
coordination of robots is required; for example, to manage task or resource allocation;
to optimize a global performance metric; or to enable long-term, multi-robot planning.
In such situations, the proposed method of centralized trajectory generation has many
advantages. In other situations, a more distributed approach may be desired, in which
robots are allocated tasks centrally, but plan and navigate independently to their goals.
In these situations, centralized planning may not be the best solution. As suggested in
Part B, Chapter [5], the proposed method of centralized trajectory generation could be
used to train a distributed control strategy using a supervised learning approach.

The suggested research directions presented in this outlook extend the contributions

of|[Part A and|Part B| and provide a pathway towards the application of these technologies

to the localization and coordination of large robot swarms in indoor environments.
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