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ABSTRACT

Transport microsimulations are stochastic. Randomness is, for example, introduced by the1

error terms of discrete choice models, a common component in utility-based microsimulations.2

This leads to random variability in results at all resolution levels. This paper’s objectives is an3

analysis of this variability. As a very common and important aggregate measure in transport4

planning network link volumes are analyzed, based on MATSim simulation experiments.5

Constrained by modeling and simulation costs, recent large-scale, high-resolution microsim-6

ulations are cross-sectional models. When looking at aggregate levels relevant to planning, for7

common statistics there is relatively little variability over multiple simulation runs. However,8

these models do not properly account for temporal variability. This is problematic because9

temporal variability measured in reality is substantial. Thus, considering extension of these10

cross-sectional microsimulation models to longitudinal models will be necessary in the near11

future. To support this, the paper also documents first insights about temporal variability and12

temporal correlations in microsimulations.13



Horni, A., Charypar, D. and Axhausen, K.W. 2

PROBLEM DESCRIPTION AND RESEARCH GOAL

Variability Analysis1

Many transport microsimulations are based on utility maximization implemented by econometric2

discrete choice models (1). These models contain systematic and random parts to reproduce3

observations, i.e, measured population choice distributions. In addition to other randomness4

sources, clearly, these random parts could potentially introduce substantial randomness, making5

variability analyses for microsimulations necessary.6

Until recently, the utility function of MATSim was deterministic, i.e., it did not contain7

random error terms. Nevertheless, some randomness was introduced by the co-evolutionary8

algorithm and the mobility simulation, as described later. Now, as part of the recent destination9

choice integration for discretionary activities, the random error terms have been added, finally10

making MATSim fully compatible with discrete choice theory. Variability issues must now, at11

latest, be investigated for MATSim as for any other travel demand simulation.12

The main objective of this paper is, on one side, a general analysis of variability in transport13

microsimulations, with emphasis on theoretical background. On the other side, random vari-14

ability over multiple simulation runs of agents’ utilities and simulated network link volumes15

is analyzed for MATSim in the Zurich scenario, a frequently used and well calibrated model16

implementation. This illustrates theoretical considerations, but is interesting in its own right as17

well, as link volumes are also a very common and important measure of model validation and18

policy evaluation. Thus, the results are also relevant for simulation practice.19

The goal of this paper is well summarized by (2): "It would be useful to conduct analyses20

similar to those presented here with other model systems, both to examine the transferability of21

the conclusions and to provide analysis specific to those models for future reference as they are22

used in application."23

Temporal Variability: Toward a Longitudinal Model24

Most recent large-scale transport microsimulations are cross-sectional models. They are primar-25

ily designed to capture inter-personal variability and some of them intra-day dynamics as well.26

But intra-personal (i.e., temporal) variability beyond a single day is missing in these models.27

Travel demand, however, also features substantial mid- to long-term intra-personal variability28

(see e.g., (3, 4)). Its sources are manifold and cannot be recapped in this paper.29

Clearly, to model both inter-personal and intra-personal variability, a longitudinal model is30

optimal. The main reason, why todays large-scale transport microsimulations are designed as31

cross-sectional and not as a longitudinal model, are probably the very high computation costs al-32

ready incured by cross-sectional modeling. With MATSim, for example, simulating Switzerland33

(7 million person days) takes several days, even on large high performance computers (5, 6).34

The simulation of this paper’s 30 runs took 30 runs × 4 days/run = 120 days of runtime, where35

30 runs are the minimum statistically. Other reasons might include very high modeling costs36

and gaps in research for longitudinal microsimulation models.37

But with ever-increasing computer power, it will be feasible to run longitudinal models in38

the near future. Thus, while looking at model variability, this paper’s secondary goal is assessing39

strategies to extend MATSim and other microsimulations by multi-day dynamics.40
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RANDOM VARIABILITY IN MICROSIMULATIONS

There are different types of variability in microsimulations. In this section random variability is1

investigated. Other types of variability are detailed in a later section. The stochastic nature of2

microsimulations demands that results are given based on multiple runs performed with varying3

random seeds. The fluctuations between these runs form the random variability. To report mi-4

crosimulation results, ordinary statistical measures like standard deviation, sampling error level,5

or even, better confidence intervals should be applied (Section Random Variability, Sampling6

Error and Confidence Interval). Important when dealing with variability is its dependency on7

the aggregation level as shown in Section Random Variability and Aggregation. This section8

here concludes by scrutinizing handling of random variability in microsimulation practice, in9

previous work and in this paper.10

Random Variability and Sampling: Microsimulation as Sampling Tool11

Not all measured behavioral variability is systematic and not all systematic variability can12

be identified, or observed, as such. Some decisions are inherently random, meaning they are13

performed purely by chance; for other decisions, the modeler just lacks knowledge about decision14

makers’ idiosyncratic rationales. Thus, as mentioned above, discrete choice models usually15

contain a systematic and a random part (1). The models’ application is based on randomly16

drawing from random error distributions.17

Thus, results based on discrete choice models are essentially random variables. Parameters18

of their distributions (such as mean or standard deviation) are usually estimated based on random19

sampling. Most utility-based microsimulations are based on discrete choice models. This means20

that microsimulation results, e.g., link volumes, are also random variables, and, as expressed by21

(7), microsimulations are "fundamentally an exercise in sampling". For microsimulations, the22

population is the set of all possible microsimulation runs, applying different random seeds. This23

set is infinite. A random sample, accordingly, is a random sub-set of runs. One run represents24

one realization of a random variable.25

Random Variability, Sampling Error and Confidence Interval26

Parameter estimates (population statistics), generated by random sampling, are subject to a27

sampling error, also known as standard error. The sampling error depends on sample size and28

population variability. While the modeler specifies sample size, population variability needs29

to be estimated. Finding a reference point on this variability using MATSim is the goal of this30

paper.31

Confidence intervals, i.e., interval estimates, are the preferred means to report statistical32

estimates. Sampling error—and thus variability—also plays a central role in the confidence33

interval. This is described in detail below, as this paper is also intended to be a general basis34

for further variability analyses. For the sake of illustration, the mean is chosen as an example35

parameter. Similar applies for other parameters.36

Sampling Error37

Assuming a probability distribution given by the density function f (x) with finite mean µ and38

finite variance σ2, the standard error or sampling error σs for the mean of f (x) is given as (see39
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also Figure 1):1

σs =
σ̂
√

n

where σ̂ is estimated sample standard deviation of f (x) and n is sample size. Sampling error is2

the standard deviation of the sampling distribution. Sampling distribution fs(x̄) is a theoretical3

construct generated by the individual means of infinitely many samples of size n drawn from4

f (x). According to the central limit theorem, fs(x̄) is Gaussian for all f (x) with finite variance.5

Derivation of the above formula is given in (8) and repeated here, as it is a central concept in6

microsimulations. Assuming that sample means are independent realizations of the random7

variable M, standard error is the standard deviation of M:8

M =
1
n

(X0 + X1 + X2 + ... + Xn)

after rearranging:9

M =
X1

n
+

X1

n
+ ... +

Xn

n

M has variance:10

VarM = Var
(X0

n
+

X1

n
+ ... +

Xn

n

)
with Var(X +Y) = Var(X)+Var(Y)+2Cov(X,Y), where Cov(X,Y) = 0 for independent variables:11

VarM = Var
(X0

n

)
+ Var

(X1

n

)
+ ... + Var

(Xn

n

)
with Var(aX) = a2Var(X):12

VarM =
1
n2 Var(X0) +

1
n2 Var(X1) + ... +

1
n2 Var(Xn)

Applying Var(Xi) = σ̂2 and rearranging gives:13

VarM =
1
n2 (σ̂2 + σ̂2 + ... + σ̂2)

VarM =
1
n2 nσ̂2

Standard deviation of M, i.e., the standard error of the sampling distribution is:14

σs =
√

VarM =

√( 1
n2 nσ̂2

)
=

σ̂
√

n

As mentioned above, sampling error is dependent on sample size
√

n and population variability15

σ̂ investigated in this paper.16
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FIGURE 1 Sampling Distribution, Sampling Error, and Confidence Interval
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Confidence Interval1

The confidence interval CI for the parameter θ of f (x) is usually given as:2

CI = [θ̂ ± ψ]

where θ̂ is an estimate of θ and ψ is the margin of error. In our case θ := µ.3

The margin of error ψ is given as:4

ψ = q(α)
σ̂
√

n

where 1 − α is the confidence level, q(α) is the α-quantile of f (x), n is sample size and σ̂ is the5

sample standard deviation, which quantifies variability present in the sample. For large n (> 30),6

q(α) can be approximated by the quantile of the standard normal distribution z(α), according to7

the central limit theorem.8

It is now apparent why sampling error appears in the confidence interval CI. Both the9

confidence interval and the sampling distribution make a statement about the estimated parameter10

θ̂. Sampling error simply transforms the quantiles of standard normal distribution z(α) to the11

respective quantiles of the sampling distribution qs(α).12

Ideally, microsimulation results should be accompanied by a confidence interval. For a13

given error level, the required number of runs n can be derived. This is straight-forward at high14

aggregation levels. At low levels, however, this is non-trivial. For example, the investigation in15

this paper encompasses 123 links, each with 24 hourly volumes. Every hour on every link has its16

own variability and averaging does not necessarily lead to a meaningful statement. Essentially,17
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for every link and every hour, a confidence interval should be given. Furthermore, it is not1

yet clear which of these interval defines the required number of runs n. Methods to analyze,2

summarize and present large number of confidence intervals for the microsimulation context3

need to be developed in the future. In this work, the coefficient of variation (as defined later) is4

used to report results variability.5

Random Variability and Aggregation6

Random variability is dependent on aggregation level. Acknowledging this is important for the7

variability assessment and the choice of a resolution level in policy studies. As link volumes8

are an aggregate, influence of aggregation on variability is also directly relevant for this paper’s9

results.10

The confidence interval increases with the specific attribute’s random variability. For11

behavioral models, individual variability at the person level is usually large, stemming from a12

large decision space for every decision-maker spanned by the choice dimensions: time, route,13

mode, destination, and more recently, activity chain choice. With increasing aggregate size,14

variability decreases in relative terms; i.e., absolute variability grows, but, relative variability (in15

relation to the estimate parameter) decreases. In general, the higher the aggregation level, the16

fewer runs are required, as shown by a generic example:17

Let us assume that decision makers face two alternatives. The choice of person i for one18

of these alternatives can be described with a Bernoulli variable Xi which takes the values 1 for19

one alternative and 0 for the other alternative. The choice probability for the first alternative20

shall be p, for the other alternative 1 − p. The mean is µi = p and the standard deviation is21

σi =
√

p(1 − p).22

For an aggregate of ñ decision-makers, each described by Xi the following holds.23

Mean of an Aggregate24

The mean of this aggregate is a random variable Xavg with µavg = 1
ñ ñp = p and standard deviation25

σavg =

√√
Var

(
1
ñ

ñ∑
i=0

Xi

)
Assuming independent choices with Cov(X,Y) = 0 this gives:26

σavg =

√√
1
ñ2

ñ∑
i=0

Var(Xi)

σavg =

√
1
ñ2 ñVar(Xi)

σavg =

√
1
ñ2 ñp(1 − p)

σavg =

√
p(1 − p)
√

ñ
=

σi
√

ñ

The standard deviation of a single person’s decision is σi. The standard deviation of an27
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aggregate of decisions is smaller by ñ, i.e., variability decreases with aggregates’ size, meaning1

that fewer random runs n are required to reach a given error level for the aggregate than for an2

individual person.3

Sum of an Aggregate4

The sum of an aggregate is a random variable Xsum with µsum = ñp and standard deviation5

σsum =

√√
Var

( ñ∑
i=0

Xi

)
=

√
ñp(1 − p)

A sum of Bernoulli trials is described by the Binomial distribution. Showing that the required6

number of runs is reduced with larger aggregates for sums is more complicated than for ag-7

gregates’ averages. The variance of the sum grows linearly with ñ. The standard deviation of8

this sum grows with
√

ñ. However, standard deviation can be normalized with the estimated9

parameter using the following argument. When defining a confidence interval for a population10

statistic, the margin of error ψ is reasonably chosen relative to the this statistic. In other words,11

the margin of error is given as a relative percentage of the estimate.12

Here, normalizing the standard deviation by the mean gives:13

σsum,normalized =
σsum

µsum
=

√
ñp(1 − p)

ñp
=

√
1 − p

ñp
(1)

The normalization for an individual decision described by Xi gives:14

σi,normalized =
σi

µi
=

√
1 − p

p

Joining the last two equations gives:15

σsum,normalized =
σi,normalized
√

ñ

It can be seen that, with respect to the mean, relative normalized standard deviation σsum,normalized16

decreases for the aggregates compared to individual decisions described by σi,normalized. Thus,17

required number of runs n decreases with increasing aggregate size for both the average and18

the sum. Note, that here, the variability itself (quantified by the standard deviation), and not19

only the standard error is reduced. Clearly, the applicability of these statements is perfect for20

independent variables and looses validity with increasing correlation between the observations.21

Handling Random Variability: State of Practice and Previous Work22

Large-scale microsimulation results are often given on the basis of one single run (9), due to23

very high computation costs. Strictly speaking, this does not represent a valid point estimate let24

alone an interval estimate. Nevertheless, the procedure is productive, as policy decisions based25

on a single microsimulation run are preferable to those lacking this information.26

Furthermore, relying on a single simulation run is defensible as long as results are given27

at the appropriate aggregation level. As shown earlier, aggregation generally reduces variabil-28
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ity, meaning that even for results based on one single run, aggregation helps reduce implied1

confidence intervals such that they might be acceptably small.2

However, using a single simulation run and relying exclusively on aggregation to control3

sampling error is problematic, especially in the context of spatial correlations. Doing aggregation4

over, e.g., an area including both rural and urban sub-areas with very different infrastructure5

levels is not productive. Increasing the aggregate’s size (to reduce sampling error), simultane-6

ously introduces variability, necessitating even larger aggregates. This can be a problem, as7

aggregation reduces model resolution. Many current planning questions (e. g. road pricing)8

require a certain model resolution. Concluding, this means that relying on a single simulation9

run definitely has its limits.10

For a few microsimulations, variability issues have been investigated or discussed (10, 11,11

12, 2, 13, 14, 15, 16). The investigations focus on the required number of microsimulation runs12

to reach "stable results". Random seeds are mutated where inputs are held constant. The papers13

conclude that sampling error is essentially a non-issue for these simulators and the investigated14

resolution levels, i.e., only a relatively small number of simulation runs are required for reliable15

results.16

Random Variability in this Paper17

This paper investigates whether or not previous studies’ general findings can be confirmed.18

Amount of variability introduced by the random term at a person level is controlled by19

estimation procedure and is relatively large. At the population level, amount of variability is20

expected to be relatively small, according to the Random Variability and Aggregation section. In21

general, the amount of variability "transferred" from the individual level to aggregate levels (such22

as link volumes) decreases. However, microsimulations contain many non-linear components23

such that small changes at one level may have very large effects on a different level. Additionally,24

applied aggregations are spatially heterogeneous because they are usually done on a network.25

Thus, the resulting amount of variability on an aggregate level cannot be estimated in a deductive26

manner, i.e., it is not known a priori. In the example above, even the probability p is unknown.27

Instead, experiments are required for quantification, achieved in this paper by running multiple28

simulation runs with different random seeds and constant inputs.29

FURTHER TYPES OF VARIABILITY IN MICROSIMULATIONS

Previous sections focused on inter-run variability (random variability) of microsimulation results.30

There are, however, also other variability types, incorporated in microsimulations by mechanisms31

other than random sampling. Apart from the temporal variability, these types are not the main32

focus of this work. They are described briefly here, for a comprehensive overview and because33

they are important for the overall understanding of microsimulation variability issues.34

Systematic Variability35

It is essential to note the systematic variability between decision makers (inter-personal variabil-36

ity). Systematic differences in choice making are usually modeled by using socio-demographics37

as explanatory variables. They are observed by the models in contrast to random variability,38

which is unobserved (but measured) variability. For variability analyses, it is important to note39

that systematic variability does not contribute to the inter-run variability handled by sampling.40
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Temporal Variability1

Another potentially important component of variability is temporal variability (intra-personal2

variability). While the intra-day dynamics are modeled in recent microsimulations, mid- to3

long-term variability is missing. Temporal variability can be seen as the result of temporal4

changes in the choice situation and persons’ inherent motivations, as detailed later.5

In terms of modeling it remains to investigate whether temporal variability is substantial,6

or choices are stable (i.e., repetitive). At a disaggregate level, it is already clear that temporal7

variability is substantial (see references above). To contribute in answering this question at a8

an aggregate level, hourly Swiss traffic count data are analyzed in this paper. It is shown that9

temporal variability is substantial and should be taken into account when modeling variability.10

The next question is, how to model temporal variability. The optimal model clearly is11

longitudinal. This, however, incurs very high modeling and simulation costs.12

Aiming for small modeling costs, the next logical step toward a longitudinal model could13

be simulation of multiple cross-sectional model runs with fixed inputs and varying random14

seeds. Temporal variability could thus be included in individual random error terms, as temporal15

variability is unobserved in cross-sectional models. However, this approach has two serious16

drawbacks.17

First, any cross-sectional model estimated using data from one specific day actually includes18

a certain amount of temporal variability because persons’ decisions are not perfectly synchro-19

nized. However, people behave differently in winter than in summer, for example; to capture20

individual temporal variability, one would also need to collect data for different periods of the21

year, quite similar as with a longitudinal model.22

Second, people not only behave differently over time, but behavior is also influenced by23

general rhythms of life according to different seasons, the global economic situation, weather,24

etc. In a more abstract sense, this can be interpreted as temporal correlations between persons.25

These correlations substantially influence aggregate results’ variability. In mathematical terms,26

this reads as follows. Given, for example, two random variables X0 and X1 representing an27

arbitrary time-dependent decision of individual 0 and individual 1, i.e., X0 = f0(t) and X1 = f1(t),28

the variance of two random variables is Var(X0 + X1) = Var(X0) + Var(X1) + 2Cov(X0, X1). The29

covariance is non-zero for correlated variables; the covariance is greater than zero if variables30

are equidirectional. There are many transport-related decisions where individuals tend to have a31

positive correlation, i.e., Cov(X0, X1) > 0. This is caused by general life rhythms. There are also32

decisions where correlation is negative i.e, Cov(X0, X1) < 0. An example might be the avoidance33

of demand peaks, such as not visiting certain skiing resorts during school holidays. By analyzing34

the count data, shown later, it can be seen that the positive correlation predominates, increasing35

temporal aggregates’ variability.36

To summarize, cross-sectional models cannot adequately capture temporal variability. Ex-37

actly as it needs a network model to capture spatial correlations correctly, it needs model38

components reproducing general life rhythms to capture temporal correlations correctly. In other39

words, a longitudinal model is inevitable.40

This conclusion also helps resolve the following controversy. For cross-sectional microsim-41

ulations, the simulated day can be interpreted in different ways, which is also an issue for42

MATSim developers. Some modelers interpret outcomes as just an arbitrary working day when43

data was collected. Others think, that outcomes represent the average working day and argue that44

typically the model inputs represent averages over a longer time period and that the incorporated45
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choice models are estimated on data, not being truly longitudinal but still being collected at1

different days over a longer time period.2

However, in a non-linear context, as given for microsimulations, one must adequately3

accounted for temporal variability; it is not the same if inputs or outputs are averaged, i.e,4

¯f (x) , f (x̄). In light of the problems with cross-sectional models formulated above, the authors5

prefer the first interpretation.6

Endogenous and Exogenous Variability7

In modeling, the distinction between endogenous and exogenous variability is very important.8

A comprehensive "world-model" has only endogenous variability. Clearly, no model can be9

comprehensive from its inception. At early stages of model development, some components10

must thus to be given exogenously. The goal is to successively incorporate them into the model.11

Model output variability is the product of input variability and model variability. Analyzing12

exogenous and endogenous variability gives the modeler a first idea how much variability to13

expect at the output. Cross-sectional microsimulation models, for example, clearly produce less14

variability than longitudinal models if inputs are held stable.15

Variability of the Choice Situation16

This section is not directly relevant for modeling, but it completes the variability analysis and17

may facilitate the further development of microsimulations.18

Above, choice situation dynamics are mentioned. Choice situation is dependent on the19

decision maker’s internal state and the state of the choice environment. This distinction is20

natural and common, although, strictly speaking, persons are also an inherent part of choice21

environment.22

Following these logic, an active (person) and a passive component (environment) are present23

in the decision-making process. The decision-maker perceives the environment and makes a24

choice. The choice process is thus always composed of an action according to the person state25

and a "re-action" to the environment state. Whether all actions are also re-actions in the long26

run, i.e., whether the environment triggers all actions, is a philosophical question and will not be27

further discussed here.28

Accordingly, behavioral variability is the result of variability of the person state and the29

environment. Person state variability is induced by personal motivations changing over time,30

such as needs, preferences or also personal experience. Environment variability is made up of31

temporal changes and spatial heterogeneity, including feedback from other transport system32

participants. As far as choice situation variability is systematic (observed), it does not contribute33

to inter-run variability.34

VARIABILITY IN MATSIM

MATSim—In Brief35

Before MATSim’s variability is analyzed in detail below, a short introduction to the simulation36

framework is given.37

MATSim is an activity-based, extendable, open source, multi-agent simulation toolkit38

implemented in JAVA and designed for large-scale scenarios and is a co-evolutionary model. A39

good overview of MATSim is given in (17). In competition for space-time slots on transportation40
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infrastructure with all other agents, every agent iteratively optimizes its daily activity chain by1

trial and error. Every agent possesses a fixed amount of day plans memory, where each plan2

is composed of a daily activity chain and an associated utility value (in MATSim, called plan3

score).4

Before plans are executed on the infrastructure in the network loading simulation (e. g., 18),5

a certain share of agents (here 20%) is allowed to select and clone a plan and to subsequently6

modify this cloned plan.7

If an agent ends up with too many plans (here set to “5 plans per agent”), the plan with the8

lowest score (configurable) is removed from the agent’s memory. One iteration is completed by9

evaluating the agent’s day described by the selected day plans.10

If an agent has obtained a new plan, as described above, then that plan is selected for11

execution in the subsequent network loading. If the agent has not obtained a new plan, then12

the agent selects from existing plans. The selection model is configurable. In many MATSim13

investigations, a model generating a logit distribution is used. However, for this paper, agents14

will select the plan with the highest score.15

Computation of plan score is compatible with micro-economic foundations. The basic16

MATSim utility function was formulated in (19) from the Vickrey model for road congestion as17

described in (20) and (21). Utility of a plan described in detail in (19) is computed as the sum of18

all activity utilities plus the sum of all travel (dis)utilities.19

Endogenous Variability20

Endogenous choice dimensions currently consist of time (22), route (23) and destination choice21

for discretionary activities (24). Usually, these choices are modeled by drawing from a choice22

model composed of a systematic and a random part. In MATSim, the utility function for23

destination choice contains explicit random error terms. This introduces random variability24

as described above. The utility function for route and time choice does not (yet) contain a25

random error term. Nevertheless, the mobility simulation implicitly introduces randomness.26

Furthermore, a certain amount of randomness (i.e., unobserved heterogeneity) implicitly enters27

the model as algorithmic variability as follows. The co-evolutionary algorithm implemented in28

MATSim introduces random variability in two ways. The first source is algorithmic difficulties.29

For large-scale systems, finding the global optimum is not trivial. Starting from different initial30

points given by different random seeds, one might get stuck in local optima. Second, the31

co-evolutionary algorithm essentially assigns limited resources to persons in a random manner.32

This means, for example, that two identical persons with the same start and end location may33

end up with different routes or start times, according to the random order in which they undergo34

the replanning. Essentially, this means that a random term is added implicitly to the choices.35

The meaning of this variability is not yet fully understood in MATSim.36

Further variability could possibly be introduced by infrastructure constraints. In MATSim,37

opening times are taken into account.38

Exogenous Variability39

Day chain structures and individual desired activity durations are exogenously assigned. They40

are derived—in an ad-hoc manner—from a PUS (see e.g., Balmer et al. (6)), here the National41

Travel Survey for the years 2000 and 2005 (25). Spatial distribution of the populations’ home42

and work locations are also given exogenously by the Swiss Census of Population 2000 (26).43
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Constraints are taken into account when generating input; e.g., chains containing work activities1

are not assigned to children. However, apart from that, person attributes, such as household2

type or income are not yet taken into account. In other words, little variability is introduced by3

socio-demographics.4

In MATSim, except for constraints and network, environment has no influence on choices;5

there is, for example, no weather or season modeled.6

As it was done in previous studies, in this paper, as a first step, it is investigated how much7

endogenous variability is present. In other words, inputs are held constant while the random8

seeds are varied. Random seeds in this work influence time and route choice (both implicit) and9

destination choice (explicit). All simulation random seeds are varied simultaneously.10

METHOD

Model variability is examined using the Zurich simulation scenario. The (aggregate) temporal11

variability measured in the real transport system is assessed and compared to simulation results12

using the annual Swiss road count data.13

Real-world Scenario: Zurich Scenario14

The Zurich scenario is frequently used in MATSim development, as well as in projects in Swiss15

planning practice (e.g., 6, 27). Simulation scenario demand is derived from the Swiss Census16

of Population 2000 (26) and the National Travel Survey for the years 2000 and 2005 (25). A17

10% sample of car traffic (including cross-border traffic) crossing the area delineated by a 3018

km circle around Bellevue, a central location in Zurich is drawn, resulting in almost 68’00019

simulated agents. Work now in progress will look at different sampling rates.20

The activity location data set, comprising more than 106 home, work, education, shopping21

and leisure locations, is based on the Federal Enterprise Census 2001 (28) and the Swiss Census22

of Population 2000. The network from the Swiss National Transport Model (29) is used, which23

consists of 60’492 directed links and 24’180 nodes. A single day is simulated with 3.35 average24

number of trips per agent. In total, 25’896 shopping activities and 40’971 leisure activities25

are performed. The choice setting comprises the three dimensions, time, route and destination26

choice for discretionary activities.27

30 simulation runs of the Zurich scenario are performed with identical input, but varying28

random seeds, corresponding to the method of replication as described in (30).29

In this paper, the relative sample standard deviation expressed as a percentage is used.30

Except for the agents’ utilities this is identical with the coefficient of variation (CV) mainly31

used in previous studies. The relative sample standard deviation is applied to not underestimate32

variability of the utilities, which can be negative.33

Road Count Data34

MATSim focuses on "regular" workdays. Thus, the count data are prepared as follows. A35

couple of filtering steps are applied (see also (6)): only Tuesdays, Wednesdays and Thursdays36

are included, while any public holidays are excluded. The days between Christmas and New37

Year are also filtered out and finally, only count values greater than zero are included. 60038

unidirectional links are measured for Switzerland and 123 for the center of Zurich (defined here39

as the area within a 12 km radius around the Bellevue).40
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RESULTS

Cross-Sectional Random Variability at Different Aggregation Levels1

Utilities2

At person level, the average CV of the agents’ executed plan utilities is approximately 3%. At3

population level, as expected, there is little variability between simulation results; mean utility4

(averaged over agents) of all executed plans of the final iteration 200 has a CV of 0.087 %. This5

shows empirically that aggregation actually reduces variability, as derived earlier.6

Link Volumes7

For this analysis, the 123 links with count stations are used. As mentioned earlier, link volumes8

are used here as they are a very important measure in transport planning. Link volumes represent9

an aggregate where the sum of the aggregate is computed. Thus, the conclusions of Section10

Random Variability and Aggregation are applicable.11

The CV for the volumes (identical with relative sample standard deviation), is plotted as12

percentage per link. To clarify, a single point in the box plot represents the random variability of13

a single network link, meaning, that, to compute the relative standard deviations, every link is14

compared only with itself. In the scatter plots, daily and hourly link volumes are also plotted for15

every link compared with itself. The abscissa represents the average value over multiple runs or16

multiple iterations, where the ordinate represents the individual values.17

Variability of daily volumes is shown in Figures 2(a) and 3(a). Consistent with previous18

work, relatively little variability exists at this resolution level. The simulated variability is19

smaller than the measured variability shown in Figure 3(b). One reason for that might be the20

missing temporal variability as discussed earlier.21

Variability for hourly volumes is shown in Figures 2(b) and 3(c). One—respectively three—22

different hours are included, but values for other hours are very similar. In Figure 3(c), most23

variability is present for the time slot between 11-12. This is plausible as during this time period,24

share of discretionary activities is higher than for the other two hours and because in this paper,25

destination choice is performed only for discretionary activities.26

In the hourly resolution, relatively high variability is observed. Initially, this is surprising,27

as previous studies conclude that the sampling error is a non-issue. A direct comparison with28

previous studies, however, is difficult. Random variability depends on the spatial and temporal29

resolution and the choice dimensions included in the model. For example, taking only route30

choice and daily volumes into account strongly reduces the degrees of freedom in the model,31

while every degree of freedom usually introduces randomness. The microsimulator also normally32

introduces randomness, but this is true for all models. In (12, 11, 2) only daily measures are33

investigated. Furthermore, in (11), while including many choice dimensions, only population34

level is researched. In (10, 15) while evaluating hourly measures, only route choice is applied.35

Hackney (page 128ff 13) applied only time and route choice and results are given for daily36

measures.37

In conclusion, future research is needed along the following lines. Clearly, the first is38

verification of the newly implemented destination choice module. Also analyses incorporating39

only one single choice dimension should be done with MATSim. Additionally, the effect of40

running sample populations must be investigated. When calculating the CV of a certain measure,41

any scaling factor γ cancels out because γ is applied to both numerator (σ̂) and denominator42
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(µ̂). However, the fact that one agent decides for multiple persons is still true and represents1

a discretization error. Its effect on variability should be analyzed. Figure 2(b) shows that2

low-volume links tend to have larger relative inter-run variability. Thus, investigation is needed3

to ascertain whether an additional weighting by the absolute link volumes would be appropriate,4

especially when simulating population samples where one agent represents many persons.5

Another potential source for the substantial inter-run variability is the substantial intra-run6

variability in Figures 2(c), 2(d), and 3(d). A large intra-run variability could indicate that the7

system has reached a utility plateau with many user equilibria close to each other, or that it8

has not yet reached equilibrium although the score is stable. Intra-run variability might also9

be created by the replanning modules based on random mutation. Note that to accelerate10

convergence of the destination choice module, the replanning share is comparatively large here11

(20% compared to 10% used earlier).12

In addition to potential influence on inter-run variability, a large intra-run variability raises13

several problems for future work in its own right. For MATSim, strategies to reduce the14

replanning share or range when approaching equilibrium should be researched. Methods to15

assess the distance to an equilibrium state, which are being developed for MATSim, should be16

applied and further researched. Finally, further research on the existence and uniqueness of user17

equilibria in large-scale microsimulations is important to understand microsimulation variability18

better.19

Temporal Variability and Temporal Correlations20

In Figure 4, analysis of measured (i.e., counted) link volumes is given for both the whole year21

and single months. As above, sample standard deviation is plotted per link. I.e, a single point in22

the box plot represents temporal variability of a single network link, either for the whole year, or23

for a specific month. The hours 11-12 and 17-18 are shown as examples; similar patterns can be24

observed for all hours. Daily volumes are also reported.25

The plots show that temporal variability in reality is substantial. It can also be seen that26

temporal correlations actually have a substantial influence on link volume variability as derived27

earlier. Yearly values show a larger variability than monthly values, meaning that a general28

rhythm of life (guided by, for example, the seasons) introduces substantial variability and should29

be taken into account explicitly in the model.30

CONCLUSIONS AND OUTLOOK

This paper contributes to the ongoing research on microsimulation variability. The focus is on31

random variability and on temporal variability but other variability types are also discussed.32

Results of this investigation are in line with previous work. Daily link volumes and agents’33

utilities show little variability such that actually few runs are necessary to achieve stable results.34

However, hourly volumes show substantial variability. This is initially surprising but not35

implausible. The resolution is higher and/or there are more degrees of freedom in this experiment36

than in previous studies, suggesting that a higher variability must be expected. Nevertheless,37

verification work should be done in the future.38

General, but also MATSim-specific, future research problems are identified, concerning39

primarily the population sampling rate and the MATSim intra-run variability.40

Finally, the knowledge base for the improvement of normally cross-sectional large-scale41
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FIGURE 2 Simulated Link Volumes

(a) Daily Volumes: : Inter-run Variability (b) Hourly Volumes, Hour 17-18: : Inter-run Variability

(c) Daily Volumes: Intra-run Variability (d) Hourly Volumes, Hour 17-18: Intra-run Variability

transport microsimulations toward longitudinal models is extended to eventually facilitate1

temporal variability modeling.2
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FIGURE 3 Simulated and Measured Link Volumes

(a) Simulated Daily Volumes: Inter-run Vari-
ability, Runs 0-29, Iteration 200
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(b) Measured Daily Volumes: Temporal Vari-
ability Over One Year in the Region of
Zurich.
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(c) Simulated Hourly Volumes: Inter-run Vari-
ability, Runs 0-29, Iteration 200
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(d) Simulated Hourly Volumes: Intra-run Vari-
ability (Run 20, Iterations 191-200)
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FIGURE 4 Measured Volumes

(a) Daily Volumes
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(b) 11:00-12:00
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(c) 17:00-18:00
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