Änderungen der Intensitäten im Arbeitspendlerverkehr von 1970 bis 2000

Author(s):
Fröhlich, Philipp

Publication Date:
2008

Permanent Link:
https://doi.org/10.3929/ethz-a-005712409

Rights / License:
In Copyright - Non-Commercial Use Permitted
Änderungen der Intensitäten
im Arbeitspendlerverkehr von 1970 bis 2000

ABHANDLUNG
zur Erlangung des Titels
DOKTOR DER WISSENSCHAFTEN
der
ETH ZÜRICH

vorgelegt von
PHILIPP FRÖHLICH
Dipl.-Ing., TU Wien

geboren am 21. März 1973
Österreichischer Staatsbürger

Angenommen auf Antrag von
Prof. Dr. Kay W. Axhausen
Prof. Dr. Michael G. H. Bell

2008
Leitung:
Prof. Dr. Kay W. Axhausen
Institut für Verkehrsplanung und Transportsysteme (IVT)
ETH Zürich
8093 Zürich
Schweiz

Begleitung:
Prof. Dr. Michael G. H. Bell
Department of Civil and Environmental Engineering
Imperial College London
London SW7 2BU
Grossbritannien
Dank

Mein grosser Dank gilt Prof. Kay Axhausen. Er hat mich für die Arbeit motiviert, in die Arbeitsmethodik der empirischen Forschung eingeführt und hatte immer ein offenes Ohr für Probleme, die im Zuge der Bearbeitung des Themas aufgetaucht sind. Prof. Mike Bell möchte ich für die Übernahme des Ko-Referates und die hilfreichen Anmerkungen danken.

Zusätzlich danke ich meinen Kollegen am Institut für Verkehrsplanung und Transportsysteme (IVT) an der ETH Zürich für das fruchtbare, anregende und kollegiale Arbeitsklima. Insbesondere möchte ich Martin Tschopp, Matthias Kowald, Martin Frick, Michael Löchl, Milenko Vrtic und Michael Bernhard für die geleistete Unterstützung und verschiedene Anregungen zur vorliegenden Arbeit danken. Frau Maurer habe ich für das Korrekturlesen der Arbeit zu danken.

Mein Dank gilt auch John Rose (University of Sydney), der mir bei Fragen zu den diskreten Entscheidungsmodellen immer mit verständlichen Antworten weitergeholfen hat. Prof. Orlando Strambi hat meinen Aufenthalt an der Escola Politécnica da Universidade de São Paulo organisiert, wofür ich mich herzlich bedanken möchte.

Zu guter Letzt gilt mein grosser Dank meinen Eltern und meiner Familie für den Rückhalt und die Unterstützung während meines Studiums.
Inhaltsverzeichnis

Zusammenfassung ... XI
Summary... XIII

1 Einleitung ...1
 1.1 Motivation ... 5
 1.2 Fragestellung .. 6
 1.3 Aufbau der Arbeit.. 7

2 Literaturanalyse ...8

3 Hypothesenbildung ..21

4 Diskrete Entscheidungsmodelle ..23
 4.1 Multinominales Logit-Modell ... 23
 4.2 Nested-Logit-Modell... 26
 4.3 Bestimmung der Modelqualität von diskreten Entscheidungsmodellen 32
 4.4 Interpretation der Resultate .. 36
 4.5 Revealed Preference versus Stated Preference Daten 39

5 Datengrundlagen ...41
 5.1 Aufbau der Netzmodelle für den ÖV und MIV ... 42
 5.2 MIV-Fahrpreis .. 54
 5.3 PW-Besetungsgrad .. 55
 5.4 Qualitätsadjustierte PW-Besitzkosten ... 57
 5.5 Personenwagen pro Führerausweisbesitzer ... 58
 5.6 ÖV-Fahrpreis ... 60
 5.7 Einkommen .. 61
 5.8 Bildungsdaten .. 65
 5.9 Erwerbstätige und Beschäftigte ... 66
 5.10 ARE-Gemeindetypen ... 66
 5.11 Pendlererhebung ... 67
Änderungen der Intensitäten im Arbeitspendlerverkehr von 1970 bis 2000
November 2008

6 Deskriptive Analyse der Pendlererhebung .. 70
7 Entwicklung gewichteter Variablenmittelwerte der Modelle 78
8 Modellstruktur .. 83
9 Ergebnisse der Modellschätzungen .. 86
 9.1 Verkehrsmittelwahl ... 86
 9.2 Zielwahl .. 104
 9.3 Schätzung des Auspendleranteils ... 106
10 Schlussfolgerungen ... 117
 10.1 Deskriptive Beschreibung der Veränderungen im Arbeitspendler 118
 10.2 Überprüfung der Hypothesen ... 120
 10.3 Die Resultate im gesellschaftlichen Kontext .. 121
 10.4 Weiterer Forschungsbedarf ... 123
11 Literatur ... 124

Anhänge .. 130
Tabellenverzeichnis

Tabelle 1 Wichtige Eisenbahnprojekte von 1970-2000 (Auswahl)4
Tabelle 2 Übersicht: Effekte induzierter Verkehr..10
Tabelle 3 Übersicht Gebietsanalysen basierend auf Näherungswerten: Schüsselvariablen und Datenspezifikation...18
Tabelle 4 Übersicht Gebietsanalysen basierend auf Näherungswerten: Resultate ...19
Tabelle 5 Beispiel Prognosemass anhand der Verkehrsmittelwahl 200033
Tabelle 6 Chi-Quadrat-Tabelle ..35
Tabelle 7 Vergleich Dummy- und Effekt-Kodierung einer Kategorievariable39
Tabelle 8 Anzahl der Strecken im Strassennetzmodell Schweiz43
Tabelle 9 Vergleich der Erreichbarkeitswerte im MIV und ÖV46
Tabelle 10 Anzahl ÖV-Kurse pro Tag und die bedienten Haltestellen nach Jahr48
Tabelle 11 Anbindungstypen im ÖV-Netz ...49
Tabelle 12 Entwicklung Treibstoffpreis und MIV-Fahrpreis..................................55
Tabelle 13 Verwendeter PW-Besetzungsgrad für den Fahrzweck Arbeit57
Tabelle 14 Nominale PW-Besitzkosten und reale qualitätsadjustiert PW-Besitzkosten ...58
Tabelle 15 Führerausweisbesitzraten über die Zeit ...59
Tabelle 16 ÖV Fahrpreis-Entwicklung..60
Tabelle 17 Beschreibung ARE-Gemeindetypen..67
Tabelle 18 Verkehrsmittel in der Pendlererhebung und ihre Aggregierung69
Tabelle 19 Übersicht: Anzahl Gesamtwege, interzonale und intrazionale Wege70
Tabelle 20 MIV: Anzahl Gesamtwege, interzonale und intrazionale Wege71
Tabelle 21 ÖV: Anzahl Gesamtwege, interzonale und intrazionale Wege.............71
Tabelle 22 LIV: Anzahl Gesamtwege, interzionale und intrazionale Wege72
Tabelle 24 Pendlererhebung 1970-2000: Anzahl der besetzten Quelle-Ziel-Beziehungen..73
Tabelle 25 Reiseweite, -zeit und -geschwindigkeit für MIV und ÖV............................75
Tabelle 26 Resultate Verkehrsmittelwahl 1970..87
Tabelle 27 Resultate Verkehrsmittelwahl 1980..88
Tabelle 28 Resultate Verkehrsmittelwahl 1990..89
Tabelle 29 Resultate Verkehrsmittelwahl 2000..90
Tabelle 30 Verkehrsmittelwahl: Erklärungskraft der Modelle91
Tabelle 31 ÖV: Relativer Nutzenbeitrag der Attribute 1970 – 2000...............................93
Tabelle 33 Value of Travel Time Savings 1970 - 2000..95
Tabelle 34 Wochenarbeitszeit nach Sektor und Anteil Teilzeitbeschäftigung 1970 - 2000..97
Tabelle 35 Verkehrsmittelwahl 1970 Elastizität (PWSE)..98
Tabelle 36 Verkehrsmittelwahl 1980 Elastizität (PWSE)..99
Tabelle 37 Verkehrsmittelwahl 1990 Elastizität (PWSE)..99
Tabelle 38 Verkehrsmittelwahl 2000 Elastizität (PWSE)..100
Tabelle 39 Verkehrsmittelwahl 2000 Elastizität mit Resultaten ICN-Studie..................102
Tabelle 40 Resultate Zielwahl 1970-2000...105
Tabelle 42 Resultate Auspendleranteil 1970-2000: Relative Lineare Regression114
Tabelle 43 Resultate Auspendleranteil 1970-2000: Absolute Lineare Regression115
Abbildungsverzeichnis

Abbildung 1 Verhältnis der Infrastrukturinvestitionen Strasse/Schiene von 1950 bis 2000...2

Abbildung 2 Logarithmierte Fremderreichbarkeit MIV und ÖV 1850-2000.........5

Abbildung 3 Struktur Verkehrsmittelwahl: MNL und NL ..28

Abbildung 4 Beispiel für eine zweidimensionale Alternativenmenge...............................29

Abbildung 5 Veränderung der Konsumentenrente ..31

Abbildung 6 Verteilung der geschätzten durchschnittlichen Streckengeschwindigkeiten in der Schweiz nach Jahrzehnt auf Autobahn und Hauptstrasse ...45

Abbildung 7 Verhältnis der MIV-Erreichbarkeit des nationalen Personenverkehrsmodells 2000 zum Modell 2000.................................47

Abbildung 8 Erreichbarkeit MIV Schweiz 1970-2000 ..51

Abbildung 9 Erreichbarkeit ÖV Schweiz 1970-2000..52

Abbildung 10 Zeitkarten MIV Schweiz 1970-2000...53

Abbildung 11 Zeitkarten ÖV Schweiz 1970-2000..54

Abbildung 12 Entwicklung PW-Besetzungsgrad für den Fahrzweck Arbeitspendler..56

Abbildung 13 Nominales Reineinkommen 1970 pro Beitragspflichtigen.........................62

Abbildung 14 Nominales Reineinkommen 1980 pro Beitragspflichtigen.........................63

Abbildung 15 Nominales Reineinkommen 1990 pro Beitragspflichtigen.........................63

Abbildung 16 Nominales Reineinkommen 2000 pro Beitragspflichtigen.........................64

Abbildung 17 Reineinkommen 2000 im Verhältnis zu Reineinkommen 197064

Abbildung 18 Einzugsgebiet und Haupteinfallsrichtung von zehn Kantonshauptorten74

Abbildung 19 Kumulierte Verteilung der Reiseweite MIV und ÖV: 1970-2000.........75
Abbildung 21 Kumulierte Verteilung der Reisegeschwindigkeit MIV und ÖV: 1970-
2000... 77
Abbildung 22 MIV Verkehrsmittelwahl: Gewichteter Mittelwert der Variablen 1970-
2000... 79
Abbildung 23 ÖV Verkehrsmittelwahl: Gewichteter Mittelwert der Variablen 1970-
2000... 80
Abbildung 26 Modellstruktur ... 83
Abbildung 27 VTTS für den MIV und ÖV sowie realer Stundenlohn von 1970 bis 2000
.. 95
Abbildung 28 Beziehungsparameter 1970-2000 .. 103
Abbildung 29 Auspendleranteil Fehlerrate Probit-Modell 1970 111
Abbildung 30 Auspendleranteil Fehlerrate Probit-Modell 1980 111
Abbildung 31 Auspendleranteil Fehlerrate Probit-Modell 1990 112
Abbildung 32 Auspendleranteil Fehlerrate Probit-Modell 2000 112
Abkürzungen

2SLS Two-Stage-Least-Squares-Verfahren
3SLS Three-Stage-Least-Squares-Verfahren
ARE Bundesamt für Raumentwicklung
ASC Alternative-specific constant
ASTRA Bundesamt für Strassen
β Parameter
BFS Bundesamt für Statistik
BIP Bruttoinlandsprodukt
CNL Cross Nested Logit-Modell
DL Distributed-lag-Modell
E Elastizität
EMU Expected maximum utility
ε unbeobachtete, stochastische Nutzenkomponente
ESTV Eidgenössische Steuerverwaltung
FDF First difference form
Fz-km Fahrzeug-Kilometer
GVK Gesamtverkehrskonzeption
IIA Independence of irrelevant alternatives
IID Independent and identically distributed
IV Instrumental-Variable
J Anzahl der Alternativen
k Attribut
LIK Landesindex Konsumentenpreis
LIV Langsamer Individualverkehr
LM Lane miles
MEAP Mittlere erweiterte Anpassungszeit
MIV Motorisierter Individualverkehr
MNL Multinominales Logit-Modell
MNP Multinominales Probit-Modell
μ Skalierungsparameter
NHT Neue Haupttransversalen
NL Nested Logit-Modell
NPTS Nationwide Personal Transportation Survey
OLS Ordinary Least Squares-Verfahren
ÖV Öffentlicher Verkehr
P Auswahlwahrscheinlichkeit
p.c. per capita
PAM Partial-adjustment Modell
PDL polynomial Distributed-lag-Modell
P-km Personen-Kilometer
PW Personenwagen
P-W Prais-Winsten-Methode
PWSE Probability weighted sample enumeration
R² Bestimmtheitsmass
RP Revealed Preference
SACTRA Standing Advisory Committee on Trunk Road Assessment
SBB Schweizerische Bundesbahnen
SEM Spatial Error Modell
SP Stated Preference
SURE Seemingly Unrelated Regression Estimation
TCS Touring Club Schweiz
U Gesamtnutzen
V beobachtete, deterministische Nutzenkomponente
VMT Vehicle miles travelled
VTTS Value of Travel Time Savings
VZ Volkszählung
WTP Willingsness to Pay
x Variablenwert
ZMB Zweckmässigkeitsbeurteilung
Zusammenfassung

Investitionen in die Verkehrsinfrastruktur haben eine sehr lange Nutzungsdauer, einen hohen Finanzbedarf und können sowohl das Verkehrsverhalten als auch die Raumnutzung beeinflussen. Ihre Nutzungsdauer ist relativ gut prognostizierbar. Der genaue Finanzbedarf ist meist erst nach Fertigstellung exakt berechenbar. In Bezug auf die kurz- und langfristigen Änderungen beim Verkehrsverhalten und der Raumnutzung sind jedoch nur wenige Wirkungsmechanismen bekannt.

- Wie lassen sich die Veränderung des Verkehrsangebots für den MIV und ÖV für den Zeitraum modellmäßig abbilden und die Ergebnisse deskriptiv beschreiben?
- Wie wirken die unterschiedlichen verkehrlichen und sozioökonomischen Variablen bei der Verkehrsmittelwahl, Zielwahl und beim Anteil der Auspendler in den verschiedenen Jahren?

Die wichtigsten Resultate lassen sich folgendermassen zusammenfassen:

1. Die Anzahl der Auspendler an allen Erwerbstätigen reagiert positiv elastisch auf Erreichbarkeit. Dies bedeutet: Je mehr gut erreichbare Arbeitsplätze außerhalb einer Zone vorhanden sind, um so eher verlassen die Erwerbstätigen ihre Wohnzone zum

Summary

Investments in transport infrastructure have a very long service life, a high finance requirement and can change travel behavior and land use over time. The service life is good predictable. The exact financial requirements can be calculated exactly after their completion. About the short and long term changes of travel behavior and land use, only a few effects are known.

One goal of the research is to model changes in private (PrT) and public transport (PuT) between 1970 and 2000. A second goal is to analyze long term travel behavior of commuters with respect to mode and destination choice as well as interzonal trip generation.

The study uses aggregated commuter data sets at the municipal level from the Swiss census for the years 1970, 1980, 1990 and 2000. These commuter data are linked to socio-demographic and transport supply data to estimate sequential discrete choice models for mode, destination and interzonal trip generation over the study time period of 30 years. The following questions are addressed:

- How can the changes in the private and public transport be modeled and the results descriptively qualified?
- What are the impacts of the different transport and socioeconomic variables on the mode choice, destination choice and on the share of the interzonal work trips in the study time period?

The model has a sequential hierarchical structure. It starts by calculating the expected maximum utility (EMU) using a multinomial logit (MNL) model for the mode choice process. The expected maximum utility is then used in the utility function of the MNL model for the destination choice. The calculated EMU of the destination choice model contains the utility of the destinations and of the transport system, and can be interpreted as accessibility. The same process is followed to estimate a multinomial probit (MNP) model of the share of out commuters to show how the different attributes affect the number of work trips leaving the origin zone (interzonal trips) as an observed frequency of the total work trips.

The main findings are:

1) The share of out commuters reacts positive elastic on accessibility. This means, if there are better accessible jobs outside the zone of residence the more likely people leave the zone for work. However the impact of accessibility decreases over time. In 1970, the demand, measured as the share of out commuters, reacted more strongly to
accessibility than in 1990 or 2000. Therefore, the marginal utility of investments in transport infrastructure in terms of accessibility improvements decreased between 1970 and 2000.

2) In the mode choice model, the influence of car ownership increased over time. The parameter as well as its associated elasticity value show a stronger positive influence on the choice probability of the alternative PrT. The value of travel time savings (VTTS) for PrT and PuT increase strongly over time because of the declining price parameter, whereas the VTTS for PrT is always stronger than for PuT.

3) The results for the destination choice show a relatively constant weight of the expected maximum utility of the mode choice in the utility function. The attraction of jobs in the 2nd sector (industry) decreases, and for jobs in the 3rd sector (service) increases.
1 Einleitung

Investitionen in die Verkehrsanlagen haben eine sehr lange Nutzungsdauer, einen hohen
Finanzbedarf und können sowohl das Verkehrsverhalten als auch die Raumnutzung beeinflus-
sen. Ihre Nutzungsdauer ist relativ gut prognostizierbar. Der genaue Finanzbedarf ist meist
erst nach Fertigstellung (Flyvbjerg, Bruzelius und Rothengatter, 2003) exakt berechenbar. In
Bezug auf die kurz- und langfristigen Änderungen beim Verkehrsverhalten und der Raumnut-
zung sind jedoch nur wenige Wirkungsmechanismen empirisch belegt. Diese sind meist im
Zusammenhang mit dem Thema „angebotsinduzierter Verkehr“ untersucht worden. Ein The-
ma, das in der Verkehrsplanung seit etwa 60 Jahren behandelt wird.

Ab Mitte der 90er Jahre wurde das Thema „angebotsinduzierter Verkehr“ verstärkt von Ver-
kehrsforshern im angloamerikanischen Raum bearbeitet. Gründe dafür waren unter anderem
der Intermodal Surface Efficiency Act (ISTEA) im Jahr 1991 in den USA und der SACTRA-
Report im Jahr 1994 in Grossbritannien (Noland und Lem, 2002). In den darauf folgenden
Jahren wurden grosse Fortschritte bezüglich der Untersuchungsmethodiken, insbesondere bei
der Anwendung von statistischen Schätzverfahren, gemacht. Dieses Thema wird in Kapitel 2
ausführlich behandelt.

Im deutschsprachigen Raum kreisen die Diskussionen seit Jahrzehnten um den Themenge-
bereich. Empirische Untersuchungen sind dagegen kaum durchgeführt worden. Eine Ausnahme
angebotsinduzierten Verkehr darauf hin, dass eine Investition in Verkehrsprojekte sich am
großten sozialen und ökonomischen Nutzen orientieren sollte. Die reine Konzentration auf
die Frage des induzierten Verkehrs führt an der Aufgabenstellung vorbei. Wichtig ist aber,
dass der induzierte Verkehr in den Kosten-Nutzen-Analysen wensengerecht berücksichtigt
wird, da sonst der Nutzen durch MIV-Ausbauten unkorrekt ermittelt wird.

Die Schweizer Verkehrspolitik findet auf drei Ebenen, Gemeinde, Kanton und Bund, statt.
Der Bund hat sich aus der Sicht der letzten Jahrzehnte vornehmlich auf Verkehrssfragen aus
der nationalen Perspektive fokussiert. Erst im neuen Jahrtausend, beim bundesrätlichen Ge-
genvorschlag zur Avanti-Initiative, wurde mit dem sogenannten Agglomerationsprogramm
auch Bundesgelder für lokale bzw. regionale Projekte zur Verfügung gestellt, die bisher aus-
schliesslich mit den Finanzmitteln des jeweiligen Kantons bzw. jeweiligen Gemeinde finan-
ziert werden mussten.

Abbildung 1 Verhältnis der Infrastrukturinvestitionen Strasse/Schiene von 1950 bis 2000

Quelle: LITRA, 2002

Dabei muss aber beachtet werden, dass bei den Strasseninvestitionen auch die Investitionen der Gemeinden berücksichtigt sind, von denen auch der strassenseitige ÖV, Fussgänger und Velofahrer profitieren. Andererseits sind bei der Schiene nicht die Investitionen in den städtischen Nahverkehr bzw. die Verlustabdeckung und die Leistungsaufträge der Bahnunternehmungen aufgeführt.

1.1 Motivation

Die Motivation der vorliegenden Arbeit ist die Verbindung von mesoskopischen Nachfragedaten mit den relevanten Verkehrsangebots- und soziodemografischen Daten, um die langfris-

1.2 Fragestellung

Aufgrund der beschriebenen Motivation, den Themenbereich mit wissenschaftlichen Methoden zu bearbeiten, ergeben sich für die Arbeit folgende Zielsetzungen und Fragestellungen:

Dabei stehen folgende Fragen im Vordergrund:

- Wie lässt sich die Veränderung des Verkehrsangebots für den MIV und ÖV für den Zeitraum modellmässig abbilden und wie lassen sich die Ergebnisse deskriptiv beschreiben?
- Wie wirken die unterschiedlichen verkehrlichen und sozioökonomischen Variablen bei der Verkehrsmittelwahl, Zielwahl und beim Anteil der Auspendler in den verschiedenen Jahren?
- Welche Schlussfolgerungen sind aus der zeitlichen Entwicklung der Modellresultate zu ziehen?

1.3 Aufbau der Arbeit

Die Arbeit gliedert sich in drei Teile:

3) Modellstruktur, Modellresultate und Konklusion: Hier wird die Struktur der Modelle für die Verkehrsmittelwahl, Zielwahl und den Anteil der Auspendler beschrieben. Danach folgt das Kapitel mit den Resultaten der Modelle sowie deren Interpretation. Im Anschluss werden die Hypothesen in Bezug auf die Resultate geprüft und im gesellschaftlichen Kontext eingeordnet. Ein Ausblick auf weiteren Forschungsbedarf rundet die Arbeit ab.
2 Literaturanalyse

Die Diskussion in der Literatur zum Thema induzierter Verkehr ist kontrovers und verworren, da auch unterschiedliche Begriffe und Definitionen verwendet werden. Im Folgenden soll ein kurzer Abriss darüber gegeben werden, was induzierter Verkehr ist, welche Effekte kurzfristig und langfristig vorkommen können und wie die Unterscheidung nach exogenen und endogenen Einflüssen möglich ist. Unter dem Begriff Verkehr wird die Verkehrsleistung, gemessen in Fahrzeug-Kilometer (Fz-km) bzw. Personen-Kilometer (P-km), verstanden. Die Begrifflichkeit wurde von Cervero (2003a) übernommen.

Die Diskussion bezieht sich international fast ausschließlich auf den MIV. Induzierter Verkehr beim ÖV wird kaum diskutiert, wird aber im Gegensatz zum MIV durchaus als wünschenswert betrachtet. Nachfolgend wird bei der Beschreibung der Effekte, die zu induziertem Verkehr führen können, an Hand von Beispielen auf die klassische Fragestellung in der Literatur (wie angebotsinduzierter Verkehr beim MIV durch Attraktionserhöhung infolge Strassenausbau bzw. Strassenneubau) entstehen kann, Bezug genommen. Zusätzliche Strassenbauten, also zusätzliche Kapazität, beeinflussen nicht das Verkehrsverhalten; die Veränderung der generalisierten Kosten durch zusätzliche Kapazität infolge von Strassenausbauten kann das Verkehrsverhalten ändern. Natürlich gelten die getroffenen Aussagen und Definitionen auch im umgekehrten Fall von Attraktionsbeschränkung im MIV bzw. bei Attraktivierung des ÖV.

Definition: Induzierter Verkehr

Angebotsinduzierter Verkehr ist jener Verkehr (für den MIV gemessen in Fz-km), welcher ohne die Massnahme beim betreffenden Verkehrsträger im System nicht stattgefunden hätte.

Die Änderung der Wahl der Abfahrtszeit trägt üblicherweise nicht zum induzierten Verkehr, also zu zusätzlichen Fz-km, bei. Die Verschiebung der Abfahrtszeit wird aber aufgrund ihres wichtigen Einflusses auf die Angebotsverhältnisse über den Tag, insbesondere in den Spitzenstunden, zu den Effekten gezählt (Cervero, 2003a).

Zusätzlich kann mit den geringeren generalisierten Kosten die Zielwahl beeinflusst werden, da nun weiter entfernt liegende Ziele an Attraktivität gewinnen, und sich somit längere Fahrten ergeben können. Alle diese Gründe für induzierten Verkehr auf einer neuen bzw. ausgebauten Verkehrsinfrastruktur können als endogen im Verkehrswesen, also durch die Massnahme bewirkt, aufgefasst werden.

Unter langfristigen (> 1 Jahr), auch als sekundäre bezeichnete, Effekten werden strukturelle Veränderungen, wie z.B. Veränderung der Standorte der Bevölkerung und Unternehmen, verstanden. Bei den langfristigen Effekten spielen neben den endogenen Einflüssen (hervorgerufen durch die Massnahme) auch exogene Einflüsse (die Rahmenbedingungen) eine Rolle. Laut Köhler und Zumkeller (2001) können folgende exogene Einflüsse wirken:

- Veränderungen der soziodemografischen Struktur
- Veränderungen der Wirtschaftsprozesse
- Veränderungen der Verkehrstechnologie im weitesten Sinn
- Veränderung der Kostenstruktur

Tabelle 2 fasst die kurz- und langfristigen Effekte zusammen.
Tabelle 2 Übersicht: Effekte induzierter Verkehr

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Effekt</th>
<th>endogen</th>
<th>exogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kurzfristig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Wahl der Abfahrtszeit</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Routenwahl</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Verkehrsmittelwahl</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Zielwahl</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Latente Nachfrage</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Wegekettenänderung</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langfristig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Zielwahländerung aufgrund Raumnutzungsänderung</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>PW-Besetzungsgrad bzw. PW-Besitz</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Verkehrsmittelwahl aufgrund Veränderung ÖV-Angebot</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Verschiedene Autoren definieren die Begriffe induzierter Verkehr, induzierte Nachfrage und Neuverkehr unterschiedlich, wobei der Begriff Neuverkehr im Englischen nicht verwendet wird.

Cervero und Hansen, 2002:
- Induzierter Verkehr: Effekte 1 bis 9
- Induzierte Nachfrage: Effekte 3 bis 9

Cerwenka und Hauger, 1996:
- Neuverkehr: Effekte 4 bis 6 (wobei Effekt 6 nicht explizit genannt wird, sich aber aus der Logik der Erklärungen ergibt)

Meier, 1989:
- Neuverkehr: Effekte 3 bis 9 (mit Unterscheidung kurzfristig und mittel- bis langfristig)

Köhler und Zumkeller, 2001:
- Induzierter Verkehr: Effekte 2 bis 9
- Neuverkehr: Effekte 5 und 6

Bonsall, 1996:
- Induzierter Verkehr: Effekte 1 bis 8 (wobei Effekt 7 und 8 nicht explizit genannt werden, sich aber aus der Logik der Erklärungen ergeben)
Untersuchungsmethoden

Die Debatte zum induzierten Verkehr ist teilweise schwierig, weil die empirischen Belege meist von aggregierten Daten abgeleitet sind, welche besser zum Begründen von Korrelations- nen als von Kausalitäten geeignet sind. Verschiedene Untersuchungsmethoden wurden ange- wendet. Die hier verwendete Klassifizierung der Untersuchungsmethoden geht auf Cervero (2003a) zurück:

1) Korridoruntersuchungen
 a) Vorher-Nachher-Untersuchungen
 b) Quasi-experimentelle Vergleiche
 c) Regressionsanalysen
2) Anwendung von Verkehrsmodellen
3) Gebietsanalysen basierend auf Näherungswerten
 a) Einseitige Wirkungsrichtung
 i) Regressionsmodell
 ii) Fixed-effects-Modell
 iii) Lag-Modell
 b) Zweiseitige Wirkungsrichtung
 i) Simultane Gleichungsmodelle
 ii) Granger-Test
4) Gebietsanalysen basierend auf Teilwerten
5) Modelle mit disaggregierten Verhaltensdaten

1) Korridoruntersuchungen

1 a) Vorher-Nachher-Untersuchungen
vergllichen, auch solche, bei denen Verkehrsbelastungen mit Verkehrsmodell errechnet wur-
den.

Cohen (1995) meint zu SACTRA, dass Vorher-Nachher-Untersuchungen das Wachstum der
Verkehrsbelastungen auf neue Infrastruktur zeigen, welche grösser sind, als die Reduktion auf
den Parallelrouten. Aber solche Studien sind nicht geeignet, um die Gründe für das Wachstum
to separieren. Bei Prognosen mit Verkehrsmodellen für Projekte im städtischen Gebiet zeigt
sich, dass der Anteil des induzierten Verkehrs im gesamten Modellgebiet klein, aber an der
Projektmaßnahme gross ist, also eine Abhängigkeit zur Größe des Untersuchungsgebiets
besteht. SACTRA zeigt folgende Umstände auf, wenn der induzierte Verkehr einen grossen
Anteil am Verkehrswachstum hat:

a) Wenn das Strassennetz nahe an der Kapazitätsgrenze ist,
b) wo die Elastizität der Nachfrage bezüglich Reisekosten hoch ist,
c) wo das Projekt grössere Veränderungen in den generalisierten Kosten hervorruft.

Bonsall (1996) diskutiert mögliche Zeitpunkte und Kosten für verschiedene Vorher-Nachher-
Untersuchungsmethoden. Er kommt zum Schluss, dass die Veränderungen in der Wahl der
Abfahrtszeit und Routenwahl kostengünstig und präzise ermittelt werden können. Bei der
Verkehrsmittelwahl ist ein grösserer Aufwand notwendig, es können aber durchaus Rück-
schlüsse gezogen werden. Für die Effekte Zielwahl, latente Fahrten und Raumnutzungsände-
rungen sind sehr umfangreiche Befragungen notwendig, wobei insbesondere ein ausreichender
Stichprobenumfang Grundvoraussetzung ist. Die Resultate solcher Studien waren aber
bisher nicht vielversprechend.

Da die Referenzgröße der Angebotsverbesserung (z.B. Reisezeitänderungen und Fahrstre-
ifen-km) bei Vorher-Nachher-Untersuchungen fehlt, versucht man das Verkehrswachstum zu
separieren und den Anteil des induzierten Verkehrs zu isolieren.
1b) Quasi-Experimentelle Vergleiche
Eine Verbesserung gegenüber den Vorher-Nachher-Untersuchungen stellt der Quasi-
experimentelle Ansatz (Matching Pair) dar, bei dem versucht wird, die allgemeine Verkehrs-
entwicklung in einem grösseren Untersuchungsgebiet um den Ausbau eines Strassenab-
schnitts mit anderen Strassenabschnitten zu vergleichen und damit zu kontrollieren. Holder
und Stover (1972) setzten diesen Ansatz schon relativ früh ein.

Cervero (2003a) meint zu diesem Ansatz, dass er zwar eine gute Zuordnung von Verkehrs-
wickstum zum Strassenausbau bietet, dass aber die Aussage für die unterschiedlichen Effekte
gering ist. Dies ist auch eine Frage der Grösse des Untersuchungsgebiets.

Goodwin, Haas-Klau und Cairns (1998) haben den Ansatz auch für den konträren Fall des
reduzierten MIV-Verkehrs angewendet. Dabei wurden bei der Einführung von Fussgängerzo-
nen, Brückensperrungen und Strassenkapazitätsverringerungen infolge Einführung von Bus-
spuren die Auswirkungen auf die Verkehrsbelastungen von Alternativrouten untersucht. Die
Resultate zeigen eine Reduzierung des Strassenverkehrs über alle relevanten Querschnitte in-
folge der Kapazitätsminderung, also negativ induzierten Verkehr. Dabei wurden mit Befra-
gungen Verhaltensanpassungen aufgrund der veränderten Verkehrszustände auf aggregierter
Ebene festgestellt, wobei sich auf der Ebene Individuum eine sehr hohe Variabilität zeigte.

1c) Regressionsanalysen
Regressionsmodelle mit Zeitreihendaten für verschiedene Strassenabschnitte wurden aufgrund
der hohen Datenanforderungen bisher selten durchgeführt. Hansen, Gillen, Dobbins, Huang,
und Puvathingal (1993) haben eine solche durchgeführt, wobei die Verkehrsbelastung für ei-
nen möglichst langen Zeitraum vor und nach der Massnahme, die Kapazitätsänderung infolge
der Massnahme, das allgemeine Verkehrswachstum in der Region und die Entwicklung über
die Zeit berücksichtigt werden. Bei solchen Regressionsanalysen ist die Ableitung von kurz-
und langfristigen Elastizitätswerten für Kapazitätsausbauten möglich. Doch können solche
Untersuchungen keine Kausalitäten belegen (Cervero, 2003a).

2) Anwendung von Verkehrsmodellen
Die Anwendung von Verkehrsmodellen für die Untersuchung des induzierten Verkehrs ist
eine bisher eher selten angewendete Methode. In TRB (1995) wurde die US-Praxis von Mo-
dellen untersucht und festgestellt, dass der damalige Stand der Technik in den USA nicht in
der Lage war, alle relevanten Effekte, die zum induzierten Verkehr gehören, abzubilden.

Hunt (2002) gibt einen umfassenden Überblick über die verschiedenen Modellansätze und
fasst die Forschungsresultate zusammen.
Bei den Modellansätzen sind zu unterscheiden:

a) Aggregiertes Vier-Stufen-Modell inkl. Erweiterung
b) Agentenbasierte Simulationen
c) Aggregierte Raumnutzungsmodelle (z.B. Meplan, Tranus)
d) Eclectic-Spatial-Economic-System-Simulationen

Die erste Modellmethode stellt den Stand der Technik dar und wird von vielen Verwaltungen und Ingenieurbüros weltweit eingesetzt. Die Ansätze b bis d sind meist noch im Forschungsstadium, wobei bei c) schon einige vielversprechende Arbeiten zum Thema publiziert wurden (siehe z.B. Rodier, 2001). Darin wird von einer langfristigen Nachfrageelastizität bezüglich Fahrstreifen-km von 0.8 bis 1.1 berichtet.

• Stundenfeine Angebots- und Nachfrage-Daten
• Berechnung des Anteils der interzonalen Wege an den Gesamtwegen aufgrund von Erreichbarkeitsveränderungen
• Rückkopplung mit vereinfachten Raumnutzungsmodellen, wie z.B. Gregor (2007)
• Externe Prognose des Besitzes von Mobilitätswerkzeugen und PW-Besetzungsgrad

Damit könnten mit vernünftigem Aufwand auch die heute in der Praxis verwendeten Modellansätze erweitert werden, praktische Anwendungen in der Schweiz fehlen aber bisher.
3) Gebietsanalysen basierend auf Näherungswerten

Der direkte Nutzen eines Strassenausbaues für die Verkehrsteilnehmer ist die Veränderung der generalisierten Kosten. Da für die Ermittlung der generalisierten Kosten genaue Verkehrsmodelle notwendig sind, welche, je nach Größe des Untersuchungsgebiets, natürlich sehr aufwändig zu erstellen sind, und zusätzlich noch die zeitliche Entwicklung der Verkehrsinfrastruktur nachvollzogen werden muss, wurden in verschiedenen amerikanischen Studien (z.B. Hansen und Huang, 1997; Noland und Cowart, 2000; Fulton, Meszler, Noland und Thomas, 2000; Noland, 2001, Cervero und Hansen, 2002; Cervero, 2003b) die Fahrstreifen-km (lane miles) als Proxy für die generalisierten Kosten im MIV verwendet. Dies wurde auch häufig kritisiert (Cohen, 1995), da zusätzliche Fahrstreifen-km unterschiedlich auf die Fahrgeschwindigkeit wirken, je nachdem, ob ein Strassenabschnitt vor der Massnahme überlastet war oder nicht. Auch kann bei der Angabe von Fahrstreifen-km nicht unterschieden werden, ob ein 10 km langer Strassenabschnitt von einem auf vier Fahrstreifen je Richtung ausgebaut oder ein neuer Abschnitt mit 30 km Länge mit einem Fahrstreifen je Richtung gebaut wird, die Wirkungen sollten jedoch sehr unterschiedlich sein. Der ÖV wurde bei diesen Studien nicht berücksichtigt. Des Weiteren können praxisübliche Verkehrsmodelle meist nur die tagesdurchschnittliche Fahrzeit abbilden und die Fahrzeitvariation über den Tag und über das Jahr fehlt (Cervero, 2003a).

3a) Einseitige Wirkungsrichtung

Mit der Einführung von Fixed-effects-Variblen je Gebiet und Jahr, erstmals bei Hansen und Huang (1997), wurde für die spezifischen Eigenschaften je Gebiet in den statistischen Modellen kontrolliert.

Ein häufiges Problem bei Zeitreihendaten ist die Autokorrelation, d.h., wenn die Fehlerterm Trends aufweisen. Dieses Problem kann mit der Prais-Winsten-Methode (P-W) gelöst wer-

3b) Zweiseitige Wirkungsrichtung

Cervero und Hansen (2002) erhalten einen stärkeren Elastizitätswert für induzierten Verkehr infolge Kapazitätsgewinn als vice versa, aber die Werte für beide Wirkungsrichtungen sind signifikant und positiv, was diesen Untersuchungsansatz bestätigt.

Die Kausalität zwischen einer Ursache und einem Effekt kann mit dem Granger-Test (Granger, 1969) überprüft werden. Die Ursache für einen Effekt muss (zeitlich) vor dem Effekt auf-

- Einseitige Kausalität X→Y
- Einseitige Kausalität Y→X
- Zweiseitige Kausalität Y↔X
- Unabhängigkeit

Tabelle 3 und Tabelle 4 geben einen Überblick über die Modellspezifikationen und Resultate der wichtigsten Arbeiten zu Gebietsanalysen basierend auf Näherungswerten mit ein- und zweiseitiger Wirkungsrichtung.
Änderungen der Intensitäten im Arbeitspendlerverkehr von 1970 bis 2000

November 2008

Tabelle 3 Übersicht Gebietsanalysen basierend auf Näherungswerten: Schüsselvariablen und Datenspezifikation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1973-1990</td>
<td>CA Metropolitan areas</td>
<td>14</td>
<td>LM</td>
<td>VMT</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fulton et al. (2000)</td>
<td>1970-1996</td>
<td>County level</td>
<td>220</td>
<td>LM</td>
<td>VMT</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Hinweise: LM bedeutet Lane-Miles (Fahrstreifenkilometer), VMT bedeutet Vehicle Miles Travelled (Fahrzeugkilometer), p.c. per capita (pro Einwohner)

Quelle: Hansen und Huang (1997); Noland und Cowart (2000); Fulton et al. (2000); Noland (2001); Cervero und Hansen (2002); Cervero (2003b)
Tabelle 4 Übersicht Gebietsanalysen basierend auf Näherungswerten: Resultate

<table>
<thead>
<tr>
<th>Studie</th>
<th>Methode</th>
<th>Nachfraged -</th>
<th>Angebots-</th>
<th>Bevölkerung</th>
<th>Bevölkerungs-</th>
<th>Einkommen</th>
<th>Beschäftigtendichtedichte</th>
<th>Benzinpreis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen und Huang (1997)</td>
<td>P-W<sup>1</sup></td>
<td>0.37</td>
<td></td>
<td>0.41</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-W<sup>2</sup></td>
<td>0.53</td>
<td></td>
<td>0.47</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDL<sup>1</sup></td>
<td>0.62 (l)<sup>5</sup></td>
<td></td>
<td>0.46</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDL<sup>2</sup></td>
<td>0.94 (l)</td>
<td></td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fulton et al. (2000)</td>
<td>OLS</td>
<td>0.33 – 0.59</td>
<td></td>
<td>0.50 – 0.66</td>
<td>0.03 – 0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDF</td>
<td>0.15 – 0.61</td>
<td></td>
<td>0.07 – 0.38</td>
<td>0.02 – 0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV2</td>
<td>0.51</td>
<td></td>
<td>0.03</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV3</td>
<td>0.46</td>
<td></td>
<td>0.03</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noland und Cowart (2000)</td>
<td>OLS</td>
<td>0.65</td>
<td></td>
<td>-0.17</td>
<td>0.37</td>
<td></td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>0.76</td>
<td></td>
<td>-0.16</td>
<td>0.34</td>
<td></td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAM</td>
<td>0.28 (k)<sup>3</sup></td>
<td></td>
<td>-0.08 (s)</td>
<td>0.09 (k)</td>
<td></td>
<td>-0.03 (k)</td>
<td>-0.08 (l)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.90 (l)</td>
<td></td>
<td>-0.25 (l)</td>
<td>0.29 (l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noland (2001)</td>
<td>PAM</td>
<td>0.12 (k)</td>
<td></td>
<td>0.30 (k)</td>
<td>0.38 (k)</td>
<td></td>
<td>-0.05 (k)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.37 (l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.58 – 0.78</td>
<td></td>
<td>0.20 – 0.92</td>
<td>0.20 – 1.12</td>
<td></td>
<td>0.00 – 0.04</td>
<td></td>
</tr>
<tr>
<td>Cervero und Hansen (2002)</td>
<td>3SLS</td>
<td>0.59</td>
<td>0.33</td>
<td>0.69</td>
<td>0.29</td>
<td></td>
<td>-0.08</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>PDL</td>
<td>0.20 (k)</td>
<td></td>
<td>0.52</td>
<td>0.29</td>
<td></td>
<td>-0.32</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.79 (l)</td>
<td></td>
<td>0.7</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15(k)</td>
<td></td>
<td>0.61</td>
<td></td>
<td></td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.73(l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervero (2003b)</td>
<td>2SLS</td>
<td>0.24 (k)</td>
<td></td>
<td>0.83</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.64 (l)</td>
<td></td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Hansen und Huang (1997); Noland und Cowart (2000); Fulton et al. (2000); Noland (2001); Cervero und Hansen (2002); Cervero (2003b);

Fussnote: ¹ county level ² metropolitan level ³ Werte der städtischen Sammelstrasse weggelassen ⁴ kurzfristig ⁵ langfristig
4) Gebietsanalysen basierend auf Teilwerten

Bei den Gebietsanalysen basierend auf Teilwerten wird die Zunahme der Verkehrsbelastung infolge Zeiteinsparungen durch Ausbaumassnahmen untersucht. Hier steht nicht mehr der Umweg über Näherungswerte im Vordergrund, sondern der direkte Nutzen für die Verkehrsteilnehmer.

DeCorla-Souca und Cohen (1999) zeigen den Effekt von induziertem Verkehr mit Verkehrsmodellen, zwei verschiedenen Reisezeitelastizitäten (-0.5 und -1.0) und drei unterschiedlichen Auslastungsgraden der Strassen vor der Massnahme. Bei hoher Auslastung ergibt sich für Autobahnen bei einer Kapazitätsauswertung von 50% (z.B. von zwei auf drei Fahrstreifen) eine Elastizität von 0.8 bis 1.0, bei niedriger Auslastung im Vorher-Fall eine Elastizität von 0.6 bis 0.75. Bei den untergeordneten Strassen kommt es durch die Kapazität je nach Streckentyp zu Zu- oder Abnahmen.

5) Modelle mit disaggregierten Verhaltensdaten

3 Hypothesenbildung

Aufbauend auf der Literaturanalyse werden in diesem Kapitel die Hypothesen formuliert. Wie auch im Kapitel 1.2 „Fragestellung“ beschrieben, wird hier mit disaggregierten Nachfrage- und Angebotsdaten aus Verkehrsmodellen gearbeitet, um die Fragestellungen zu beantworten. Im Gegensatz zur Beschreibung in der Literaturanalyse geht es jedoch nicht um die Abschätzung der Größenordnung des induzierten Verkehrs.

Die Grundhypothese lautet, dass die interzionale Nachfrage, gemessen an der Anzahl der Auspendler mit MIV und ÖV aller Erwerbstätigen, positiv elastisch auf Erreichbarkeit reagiert, über die Zeit aber mit abnehmender Tendenz.

Die Teilhypotesen lauten:

1) Die Parameter und Elastizitäten der Verkehrsmittelwahl verändern sich im betrachteten Zeitraum, wobei die Gewichtung bzw. Elastizität der monetären Variablen abnimmt.

Die Prüfung der Hypothesen soll mithilfe verschiedener Untersuchungsmethodiken geschehen. Die Grundfragestellung ist, ob die Verbesserung des Verkehrsangebots und somit der Erreich-
Änderungen der Intensitäten im Arbeitspendlerverkehr von 1970 bis 2000

Bei der Verkehrsmittelwahl können die Gewichtung (Parameter) und Elastizitäten der verschiedenen verkehrlichen und sozioökonomischen Variablen untersucht werden. Also, ob sich die Fahrzeit im Verhältnis zu den Fahrpreis stärker verändert hat oder ob der Einfluss von soziodemografischen Variablen, wie z.B. Einkommen oder PW-Besitz, steigt oder fällt. Bei der Zielwahl steht die Frage, warum die Erwerbstätigen den Arbeitsort X gegenüber einem anderen Arbeitsort Y bevorzugen und wie sich die Eigenschaften der Ziele auf die Wahl auswirken, im Vordergrund.

Bei der Schätzung des Auspendleranteils wird der Einfluss der Erreichbarkeit zusammen mit anderen Variablen, wie der soziodemografischen (z.B. Bildung, Anteil Frauen an den Erwerbstätigen etc.) und räumlichen Eigenschaften der Zone, abgebildet. Dabei stellen sich die Fragen, ob die Erreichbarkeit einen signifikanten Einfluss auf den Auspendleranteil hat ob dieser positiv oder negativ ist und ob sich die Grösse über die Zeit verändert hat.
4 Diskrete Entscheidungsmodelle

Das Konzept des Zufallsnutzens kommt aus der Psychologie (Thurston, 1927). In der mathematischen Psychologie wurden grosse Fortschritte zum Entscheidungsverhalten Anfang der 60er Jahre gemacht (z.B. Luce, 1959, Marschak, 1960). Im Verkehrswesen wurden binäre diskrete Entscheidungsmodelle für die Verkehrsmittelwahl ab Mitte der 60er Jahre verwendet (siehe z.B. Stopher, 1969), ohne die genauen ökonomischen Zusammenhänge zu kennen.

4.1 Multinominales Logit-Modell

Dabei ist

\[U_i = V_i + \varepsilon_i \]

wobei \(V_i \) die systematische, deterministische Nutzenkomponente darstellt, welche in den Attributen abgebildet wird, und \(\varepsilon_i \) die stochastische Nutzenkomponente ist. Aus diesen beiden unabhängigen und additiven Komponenten setzt sich der gesamte Nutzen (\(U_i \)) einer Alternative i zusammen.

MNL ist ein disaggregatorer Modellansatz, der auf der Theorie des individuellen Verhaltens basiert. Betrachtet werden die Wahlentscheidungen bei sich wechselseitig beeinflussenden Al-
ternativen. Für die individuellen Entscheidungen wird unter Annahme der Nutzenmaximierung eine bestimmte Wahrscheinlichkeit berechnet. Dabei wird für jede Alternative ein bestimmter Nutzen \(V_i \) berechnet. Durch den berechneten Nutzen (oder die negativen generalisierten Kosten) kann die Auswahlwahrscheinlichkeit \(P_i \) für die Auswahl der Alternative \(i \) mit dem multinomialen Logit-Ansatz ermittelt werden.

Die funktionale Form der Attribute bzw. Variablen kann linear oder nichtlinear sein, wobei für letzteres die logarithmierte, die quadrierte oder die Interaktions-Form häufig anzutreffen sind. Die Parameter bezüglich der Attribute sind in linearer Funktion abgebildet.

\[
V_i = \beta_{0i} + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{K_i} x_{Ki} = \beta_{0i} + \sum_{k=1}^{K_i} \beta_{ki} x_{ki}
\]

Die alternativen- und attributsspezifischen Parameter \(\beta_{ki} \) gewichten die jeweiligen Attribute \(k \) der Alternative \(i \) und bilden somit den Grenznutzen des Attributes ab. \(\beta_{0i} \) ist die alternativen-spezifische Konstante (in Englisch: ASC, *alternative-specific constant*), wobei die maximale Anzahl solcher Konstanten bei der Schätzung \(J-1 \) beträgt. \(J \) gibt die Anzahl der Alternativen im Alternativensatz an.

Wenn ein Individuum \(n \) seine Alternativen und deren Eigenschaften in der Alternativenmenge \(J_n \) kennt, wird es sie untereinander vergleichen und jene Alternative wählen, die ihm den höchsten Nutzen ermöglicht., Dies ist die bekannte Annahme der Nutzenmaximierung (Ben-Akiva und Lerman, 1985).

\[
P_n(i) = \text{Prob}[(U_{in} \geq U_{jn}) \quad \forall j \in J_n]
\]

Die Wahrscheinlichkeit, dass das Individuum \(n \) die Alternative \(i \) wählt, ist gleich jener, dass der Gesamtnutzen der Alternative \(i \) (\(U_i \)) grösser als oder gleich dem Nutzen der anderen Alternativen \(j=1,2,\ldots,J \) im Alternativensatz ist. Wenn der Nutzen in die beobachteten und unbeobachteten Komponenten aufgespaltet wird, dann ist die Wahrscheinlichkeitsfunktion

\[
P_n(i) = \text{Prob}[(V_{in} + \varepsilon_{in}) \geq (V_{jn} + \varepsilon_{jn}) \quad \forall j \in J_n]
\]

Oder anders formuliert:

\[
P_n(i) = \text{Prob}[(V_{in} - V_{jn}) \geq (\varepsilon_{jn} - \varepsilon_{in}) \quad \forall j \in J_n]
\]

Die Gleichung zeigt, dass die Nutzendifferenzen für die Entscheidung von Bedeutung sind und dass nicht alle Informationen in den beobachteten Nutzenkomponenten enthalten sind und da-
her die Regel der Nutzenmaximierung des Entscheidungsträgers eigentlich eine Maximierung des zufälligen Nutzen ist.

Die Wahrscheinlichkeit, dass ein Individuum n die Alternative i wählt, ist gleich der Wahrscheinlichkeit, dass die Nutzendifferenz der unbeobachteten Nutzenkomponente zwischen Alternative j und Alternative i kleiner (oder gleich) der Nutzendifferenz der beobachteten Nutzenkomponente der Alternative i und Alternative j ist.

Unter der Voraussetzung, dass die zufälligen Nutzenkomponenten unabhängig und identisch verteilt sind (independently and identically distributed, IID condition), ergibt sich die Auswahlwahrscheinlichkeit von Individuum n der Alternative i aus der Menge J mit

\[P_n(i) = \frac{\exp(V_{in})}{\sum_j \exp(V_{jn})} \]

4.2 Nested-Logit-Modell

4.2.1 Geschichte des Nested-Logit-Modells

Das Nested-Logit-Modell (NL) stellt zusammen mit dem MNL das populärste und am häufigsten angewandte Modell der Logitfamilie dar. Die ersten praktischen Anwendungen von aggregierten sequentiellen Entscheidungsmodellen fanden in den 60er Jahren statt – jedoch ohne dass es eine eindeutige Formulierung oder einen einheitlichen Theorierahmen gegeben hätte.

4.2.2 IIA-Eigenschaft des Logit-Modells

Die Independence-of-Irrelevant-Alternatives-Eigenschaft (IIA) des MNL-Modells ist, dass das Verhältnis der Auswahlwahrscheinlichkeiten zweier diskreter Alternativen unabhängig ist von der Anwesenheit zusätzlicher Alternativen bzw. deren Charakteristiken. Die Gültigkeit dieser Eigenschaft lässt sich für das MNL-Modell folgendermassen zeigen:
Das Verhältnis der Auswahlwahrscheinlichkeit zweier Alternativen leitet sich ausschließlich aus der Nutzendifferenz ab und ist unabhängig vom Vorhandensein weiterer Alternativen.

Um die strengen Vorgaben des MNL zu lockern, erlaubt das NL die Möglichkeit, dass jede Alternative Information im unbeobachteten Nutzenterm (ε_i) besitzt, welche Auswirkungen auf das Auswahlverhalten der Alternativen hat. Das kann heissen, unterschiedliche Varianzen der unbeobachteten Nutzenterme oder korrelierende unbeobachtete Nutzenterme der Alternativen. In diesen Fällen eignet sich das NL-Modell, welches Korrelationen innerhalb eines Nestes zulässt, nicht aber zwischen Nestern.

Abbildung 3 zeigt die Struktur eines MNL und eines NL am Beispiel der Verkehrsmittelwahl, wobei die zwei elementaren Alternativen Bus und Bahn zu einem Nest-ÖV zusammengefasst werden. Wie in der Abbildung ersichtlich, kann ein NL-Modell als hierarchisch verbundene MNL-Modelle gesehen werden.

4.2.3 Herleitung Nested-Logit-Ansatz

Der Fall einer mehrdimensionalen Alternativenmenge ist in Abbildung 4 dargestellt, wo auf der oberen Ebene das Ziel (D für destination) einer Fahrt ausgewählt wird und auf der unteren Ebene die Entscheidung bezüglich des Verkehrsmittels (M für mode) fällt.
Abbildung 4 Beispiel für eine zweidimensionale Alternativenmenge

Daraus ergeben sich alle Kombinationen, wobei nur die sinnvollen weiterverwendet werden.

\[J = D \times M - J^* \]

mit:

\[J \quad \text{Alternativenmenge} \]

\[J^* \quad \text{Unrealistische Kombinationen von } d \text{ und } m \]

Der Gesamtnutzen für die multidimensionale Alternativenmenge lässt sich aufteilen (Varianzkomponentenzerlegung) in:

\[U_{dm} = V_d + V_m + V_{dm} + \varepsilon_d + \varepsilon_m + \varepsilon_{dm} \]

Der Ansatz des NL-Modells verlangt nun, dass entweder die Varianz von \(\varepsilon_d \) oder \(\varepsilon_m \) sehr klein relativ zu den anderen unbeobachteten Nutzenkomponenten ist und damit vernachlässigt werden kann. Hier wird nun angenommen, dass \(\varepsilon_d \) klein genug ist, um ignoriert werden zu können.

\[U_{dm} = V_d + V_m + V_{dm} + \varepsilon_m + \varepsilon_{dm} \]

Die Auswahlwahrscheinlichkeit der sinnvollen Kombinationen von \(d \) und \(m \), \(P_{dm} \), kann nun aufgeteilt werden in eine bedingte Entscheidung \(P(m|d) \) darüber, welches Verkehrsmittel gewählt wird, wenn das Ziel vorgegeben ist, sowie in eine marginale Entscheidung \(P(d) \). Damit gilt

\[P_{dm} = P_{m|d} P_d \]

Die bedingte Wahrscheinlichkeit wird bestimmt mit
Die marginale Wahrscheinlichkeit wird bestimmt mit

\[p_d = \frac{\exp(\mu_d \text{EMU}_d)}{\sum_{d'} \exp(\mu_{d'} \text{EMU}_{d'})} \]

\[\text{EMU}_d = E(\text{max } U_d') \]

Der erwartete maximale Nutzen ist nun der erwartete maximale systematische Nutzen aller Alternativen in einer Alternativenmenge oder einem Nest mit dem Skalierungsparameter \(\mu_m \).

\[\text{EMU}_d = \frac{1}{\mu_m} \ln \sum \mu_m \exp(V_{dm}) \]

Aus der Formel ist ersichtlich, dass der erwartete maximale Nutzen ansteigt, wenn sich der systematische Nutzen einer Alternative erhöht. Dies ist gegeben, weil sowohl die Log- als auch die Exponential-Funktion monoton steigend sind. Auch kann die Exponential-Funktion nicht negativ werden, weshalb der erwartete maximale Nutzen mit zunehmender Alternativenanzahl ansteigt (Cascetta, 2001).

Erwarteter maximaler Nutzen in der Wohlstandstheorie

Eine Veränderung der Charakteristiken des Angebots durch politische oder technische Massnahmen, wie z.B. Roadpricing oder Fahrverbote, verändert auch die Konsumentenrente (siehe Abbildung 5).
Eine Verringerung oder Vergrößerung der Fläche der Konsumentenrente (dunkelgrünes Trapez) kann gleichgesetzt werden mit der erwarteten Kompensation, die notwendig ist, damit ein Individuum oder eine Untergruppe genauso gut gestellt ist wie vor der Massnahme. Diese Argumentation geht zurück auf das Hicks-Kriterium (Feess, 2000), welches besagt: Eine Massnahme soll nur dann durchgeführt werden, wenn aus den Überschüssen der Gewinner den Verlierern ein Ausgleich bezahlt werden kann und noch ein Überschuss bestehen bleibt.

Für die theoretische Herleitung der Entscheidungsmodelle zur Wohlfahrtslehre sei auf Small und Rosen (1981) verwiesen. Darin wird die Kompensation (Ausgleichszahlung) für MNL-Modelle wie folgt formuliert:

$$
\Delta CV = \left(\frac{1}{\lambda} \right) \int_{V_{1}}^{V_{2}} \ln \sum_{k=1}^{k} e^{V_{k}} dV
$$

mit:
- ΔCV: Kompensation in Geldwert
- λ: Grenznutzen des Einkommens
- V: Systematischer Nutzen
- k: Kombination (z. B. Ziel- und Verkehrsmittelwahl)
- V_{1}: Systematischer Nutzen für Szenario 1
- V_{2}: Systematischer Nutzen für Szenario 2

Da das Resultat in Geldwert ausgedrückt wird, ist es auch möglich, verschiedene Modelle (Varianten) zu vergleichen. Die Kompensation gibt den maximalen Geldbetrag an, der von einer Person (bzw. einem Haushalt) weggelassen werden kann, wobei diese so wohlhabend belas-

4.2.4 Multinomiales Probit-Modell

Die Auswahlwahrscheinlichkeit berechnet sich folgendermassen, wobei Z_i die Nutzenfunktion der Alternative i und Φ die Normalverteilungsfunktion ist:

$$P_i = \phi(Z_i) = \int_{-\infty}^{Z_i} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} t^2 \right) dt$$

Die geschätzten Probit-Parameter sind unterschiedlich zu den MNL-Parametern, da eine unterschiedliche Normalisierung verwendet wird. Daher sind die Probit-Parameter 1.6 bis 1.7 mal grösser als die MNL-Parameter (Ben-Akiva und Lerman, 1985).

4.3 Bestimmung der Modellqualität von diskreten Entscheidungsmodellen

Um die Modellqualität zu beurteilen (Goodness of fitting, Determin model fit), wird in Anlehnung zum Bestimmtheitsmass R^2 bei der linearen Regression das Pseudo-R^2 berechnet und interpretiert, wobei ein grosser Unterschied zwischen der linearen Regression und dem MNL dahingehend besteht, dass das MNL zwar eine lineare Nutzenfunktion, aber im Gegensatz zur linearen Regression eine nichtlineare Entscheidungsfunktion besitzt.
Das Pseudo-R² errechnet sich folgendermassen:

\[
Pseudo-R^2 = 1 - \frac{LL(\beta)}{LL(0)}
\]

\(LL(\beta)\) Loglikelihood-Wert geschätztes Modell
\(LL(0)\) Loglikelihood-Wert Basismodell (no information)

Das adjusted Pseudo-R² berücksichtigt auch die Anzahl der geschätzten Parameter im Modell und lautet:

\[
adjusted Pseudo-R^2 = 1 - \frac{LL(\beta) - K}{LL(0)}
\]

\(LL(\beta)\) Loglikelihood-Wert geschätztes Modell
\(LL(0)\) Loglikelihood-Wert Basismodell (no information)
\(K\) Anzahl geschätzter Parameter

Gemäss Louviere, Hensher und Swait (2000) lässt sich das R² aus der linearen Regression und das Pseudo-R² des MNL aus einem direkten empirischen Verhältnis ableiten. Ein MNL-Modell mit einem Pseudo-R² von 0.2 bis 0.4 stellt schon einen guten Modellfit dar und entspricht einem R² von 0.7 bis 0.9 bei der linearen Regression.

<table>
<thead>
<tr>
<th>Tabelle 5</th>
<th>Beispiel Prognosemass anhand der Verkehrsmittelwahl 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV</td>
<td>ÖV</td>
</tr>
<tr>
<td>802’931</td>
<td>322’522</td>
</tr>
<tr>
<td>322’522</td>
<td>292’353</td>
</tr>
<tr>
<td>1’125’453</td>
<td>614’875</td>
</tr>
</tbody>
</table>
Es zeigt sich, dass 71.34% der MIV-Fahrten und 47.55% der ÖV-Fahrten aufgrund der vorliegenden Informationen im Datensatz korrekt prognostiziert wurden. Bei den gesamten Fahrten ergibt sich ein Wert von 62.94%, dieser wird auch bei den Resultaten der Modellschätzungen angegeben.

Der Loglikelihood-Ratio-Test lautet:

$$-2(\text{LL}(0) - \text{LL}(\beta)) = \chi^2_{(\text{Anzahl Zusätzliche Parameter im LL(\beta) gegenüber LL(0)})}$$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL(\beta)</td>
<td>Loglikelihood-Wert geschätztes Modell</td>
</tr>
<tr>
<td>LL(0)</td>
<td>Loglikelihood-Wert Basismodell (no Information)</td>
</tr>
<tr>
<td>χ^2</td>
<td>Chi-Quadrat-Verteilung</td>
</tr>
</tbody>
</table>

Wenn der LR-Wert den χ^2-Wert übertrifft, kann die Nullhypothese abgelehnt werden. Für Vergleichszwecke sind nachfolgend in Tabelle 6 die Chi-Quadrat-Werte aus Sachs (1999) für das weniger strenge 90%-Konfidenzintervall ($\alpha = 0.10$), für das üblicherweise verwendete 95%-Konfidenzintervall ($\alpha = 0.05$) und auch für das strengere 99%-Konfidenzintervall ($\alpha = 0.01$) aufgeführt:
Die statistische Signifikanz der Parameter gibt an, ob ein Parameter signifikant unterschiedlich von Null ist und somit die Nullhypothese abgelehnt werden kann. Dabei wird der Parameterwert durch den Standardfehler dividiert und mit dem Wert aus der t-Statistik, welcher für das 95%-Konfidenzintervall ($\alpha = 0.05$) und grosse Stichproben 1.96 beträgt, verglichen. Übersteigt der Wert des Quotienten den Wert aus der t-Statistik, gilt der geschätzte Parameter als signifikant. Durch die asymptotischen Eigenschaften von Maximum-Likelihood-Schätzungen ist die t-Statistik und ihre Interpretation wie in der Linearen Regression bei grossen Stichproben gültig. Manchmal wird in der Literatur auch der Begriff Wald-Statistik verwendet (Hensher, Rose und Greene, 2005).
4.4 Interpretation der Resultate

Aufgrund der Log-Transformation beim MNL besteht keine einfache Verhaltensinterpretation der geschätzten Parameter. Was mit den Parametern ausgesagt werden kann, statistische Signifikanz vorausgesetzt, ist

1. Das Vorzeichen eines Parameters gibt an, ob das zugehörige Attribut einen positiven oder negativen Effekt auf die Nutzenfunktion bzw. auf die Auswahlwahrscheinlichkeit der Alternative hat (Hensher, Rose und Greene, 2005).

Die Parameter des Logit-Modells sind also nur eingeschränkt zur Interpretation der Resultate geeignet. Besser geeignet sind die Elastizitätswerte und die Zahlungsbereitschaft (Willingness to Pay, WTP) bzw. Zeitwerte (Value of Travel Time Savings, VTTS).

Die Elastizität gibt die Reaktion der relativen Marktanteile auf die relativen Änderungen eines Attributes an. Bei kleinen Attributsveränderungen wird dafür die Methode der Punktelastizität zur Berechnung verwendet (sie wird auch bei den meisten Softwarepaketen, wie z.B. NLOGIT, standardmäßig verwendet). Es wird weiter unterschieden zwischen der direkten Elastizität und der Kreuzelastizität.

Die direkte Elastizität misst die relative Veränderung in Prozenten der Auswahlwahrscheinlichkeit einer bestimmten Alternative in Bezug auf die relative Veränderung eines Attributes derselben Alternative. Die Kreuzelastizität misst die relative Veränderung in Prozenten der Auswahlwahrscheinlichkeit einer bestimmten Alternative in Bezug auf die relative Veränderung eines Attributes einer konkurrierenden Alternative. Die direkte Elastizität $E_{x_{ik}}^{P(i)}$ für ein MNL-Modell für die Auswahlwahrscheinlichkeit P der Alternative i in Bezug auf die Variable k für das Individuum n leitet sich wie folgt her:

\[
E_{x_{ik}}^{P(i)} = \frac{P_{n}(i) - P_{n}(i)^0}{P_{n}(i)^0} \left[\frac{x_{ikn} - x_{ikn}^0}{x_{ikn}^0} \right] = \frac{\partial P_{n}(i)}{\partial x_{ikn}} \left[x_{ikn} - x_{ikn}^0 \right] = \frac{\partial \ln P_{n}(i)}{\partial x_{ikn}} \left[x_{ikn} - x_{ikn}^0 \right] = \frac{\partial \ln P_{n}(i)}{\partial \ln x_{ikn}} \left[x_{ikn} - x_{ikn}^0 \right] = \frac{\partial \ln P_{n}(i)}{\partial x_{ikn}} \left[\beta_k x_{ikn} - \ln \left(\sum_j e^{\theta_j x_{ij}} \right) \right] = \frac{\partial}{\partial x_{ikn}} \left[\beta_k x_{ikn} - \ln \left(\sum_j e^{\theta_j x_{ij}} \right) \right] = \beta_k \left[1 - \sum_j e^{\theta_j x_{ij}} \right] = x_{ik} \beta_k \left[1 - \sum_j e^{\theta_j x_{ij}} \right] = x_{ik} \beta_k \left[1 - P_{n}(i) \right]
\]
Die Kreuzelastizität erhält man gleichartig mit

\[
E_{x_{jk}}^{P_i(i)} = \frac{P_i(i)^0 - P_n(i)^0}{P_n(i)^0} \left(\frac{x_{jk}^1 - x_{jk}^0}{x_{jk}^0} \right) = \frac{\partial P_i(i)}{\partial \bar{x}_{jk}} \frac{x_{jk}^1}{x_{jk}^0} = \frac{\partial P_i(i)}{\partial \bar{x}_{jk}} \frac{x_{jk}^1}{x_{jk}^0} = -x_{jk} \beta_{i} P_n(i)
\]

Der Index 0 bezeichnet den Vorher- und der Index 1 den Nachher-Zustand.

Die Elastizitätsberechnung wird nur für kontinuierliche Attribute durchgeführt, da für Attribute als Kategorievariablen keine sinnvolle Interpretation möglich ist. Für sehr grosse Veränderungen der Attribute (z.B. 100% oder 200%) muss die Elastizität mit der Methode der Bogenelastizität berechnet werden.

Es werden drei verschiedene Methoden zur Aggregierung der Elastizität verwendet:

1. Berechnung mit dem Durchschnittswert des Attributes und der durchschnittlichen Auswahlwahrscheinlichkeit der Stichprobe
2. PWSE: Die Elastizität wird pro Individuum berechnet und gewichtet jeden Elastizitätswert mit der Auswahlwahrscheinlichkeit des Individuums. Bei der sogenannten Probability Weighted Sample Enumeration (PWSE) wird die aggregierte Elastizität folgendermassen berechnet:

\[
E_{x_{jk}}^{P(i)} = \left(\sum_N \hat{P}_{in} E_{x_{jk}}^{P_i(i)} \right) \sum_N \hat{P}_{in}(i)
\]

mit \(\hat{P}_i \) für die aggregierte Auswahlwahrscheinlichkeit der Alternative i und mit \(\hat{P}_{in} \) für die geschätzte Auswahlwahrscheinlichkeit der Alternative i des Individuums n.

Value of Travel Time Savings

Im Verkehrswesen wird der Begriff Value of Travel Time Savings (VTTS) als Messgröße der Zahlungsbereitschaft der Verkehrsteilnehmer verwendet (Ortuzar und Willumsen (2001) verwenden dafür Subjective Value of Time Saving, SVT). Zur Ermittlung dieser VTTS-Werte werden seit Jahrzehnten diskrete Entscheidungsmodelle verwendet. Unter VTTS versteht man den Geldbetrag, den ein Individuum zu zahlen bereit ist, um eine Zeiteinheit (normalerweise eine

Um den VTTS zu berechnen, muss die Abwägung (trade-off) der Individuen zwischen Reisezeit und Fahrpreis in der Stichprobe repräsentativ vorhanden sein bzw. entsprechend der Grundgesamtheit gewichtet werden. Der VTTS entspricht dem Grenznutzen der Substitution zwischen Reisezeit und Fahrpreis und errechnet sich aus der partiellen Ableitung der Nutzenfunktion V des Verkehrsmittels i nach der Reisezeit (\(t_i \)), gebrochen durch die partielle Ableitung der Nutzenfunktion V des Verkehrsmittels i nach den Fahrpreis (\(c_i \)).

\[
VTTS = \frac{\partial V_i}{\partial t_i} = \frac{\partial t_i}{\partial V_i} \frac{\beta_{Reisezeit}}{\beta_{Fahrpreis}}
\]

Dummy- versus Effekt-Kodierung

Falls auch eine Konstante mitgeschätzt wird, so wird in ihr der systematische Nutzen, welcher nicht in der restlichen Nutzenfunktion abgebildet wird, berücksichtigt und daher korreliert die Konstante mit der weggelassenen Dummy-Variable. Die geschätzten Dummy-Parameter werden dann als zusätzlicher negativer oder positiver Nutzen des Attributes relativ mit dem Nutzen

38
Änderungen der Intensitäten im Arbeitspendlerverkehr von 1970 bis 2000

November 2008

Wenn keine Konstante mitgeschätzt wird, ist das weggelassene Attribut als Null gesetzt und die geschätzten Dummies zeigen den zusätzlichen negativen oder positiven Nutzen relativ zum weggelassenen Attribut, welches den Nutzen Null hat (Bech und Gyrd-Hansen, 2005).

Die Effekt-Kodierung ist eine Alternative zur Dummy-Kodierung, bei welchem die Effekte unkorreliert mit der Konstante sind. Hier wird das Referenzniveau mit dem Wert -1 festgelegt. Die effektkodierte Variable für das qualitative Niveau wird auf 1 gesetzt, wenn das qualitative Niveau vorhanden ist, auf -1, wenn das N-te Niveau vorhanden ist, und auf Null für die anderen Fälle (siehe auch Tabelle 7 mit einem Vergleich der beiden Kodierungsarten).

Tabelle 7 Vergleich Dummy- und Effekt-Kodierung einer Kategorievariablen

<table>
<thead>
<tr>
<th>Niveau</th>
<th>Dummy Code 1</th>
<th>Dummy Code 2</th>
<th>Effects Code 1</th>
<th>Effects Code 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Der Referenzpunkt ist definiert als die negative Summe der geschätzten Parameter. Der Nutzen des weggelassenen Attributs ist dann

\[\beta_1 \cdot (-1) + \beta_2 \cdot (-1) + \ldots + \beta_{N-1} \cdot (-1) = \beta_N \]

Das heisst, dass der Referenzpunkt nun in der Parameterschätzung der effektkodierten Attributen verinnerlicht ist.

4.5 Revealed Preference versus Stated Preference Daten

Die Stated-Preference-Daten (SP) haben den Vorteil, unter „Laborbedingungen“, als sogenanntes Experiment, erhoben zu werden. Dabei werden den Befragten hypothetische Situationen vorgelegt. Damit ist natürlich eine größere Variation der Angebotsvariablen möglich. Im Versuchsplan können sowohl der Wertebereich der Attribute als auch die interessanten Wechselwirkungen zwischen Attributen festgelegt werden. Somit sind die umweltseitigen und technologischen Beschränkungen und auch die individuellen Sachzwänge gering, was bei RP-Daten vorteilhaft und bei SP-Daten nachteilig ist.

5 Datengrundlagen

Durch die Aggregation von Daten, und damit Informationen, werden Teile der für die Wirkungsmechanismen relevanten Elemente weggenommen. Mit der Aggregation wird effektiv ein Durchschnittswert und eine Streuung um den Durchschnittswert gebildet, und bei Berücksichtigung in der Nutzenfunktion wird die Streuung um den Durchschnittswert auf den unbeobachteten Teil der Nutzenfunktion (Störterm) übertragen. Als Messfehler ist die Streuung vermengt mit anderen unbeobachteten aber relevanten Informationen in der Verteilung der unbeobachteten Nutzenkomponenten angesiedelt. Darum ist ein möglichst disaggregiertes Niveau der Daten wünschenswert (Hensher, Rose und Greene, 2005).

Auch in der vorliegenden Arbeit stellte die Datenlage bei den Angebots- und soziodemografischen Variablen eine grosse Herausforderung dar. Die möglichen Probleme längerer Datenreihen können die folgenden umfassen:

- Die Erhebungsmethodik wurde im Laufe der Zeit geändert und eine konsistente Datenreihe ist im Nachhinein nicht mehr ableitbar.
- Nur aggregierte Veränderungen werden erfasst und lassen sich nicht mehr auf die Teilelemente rückverfolgen.
- Die Erhebungsschwelle, ab wann etwas erfasst wird, ändert sich oder ist nicht konsistent.
- Die geografischen Einheiten ändern sich, z.B. fusionieren die Gemeinden oder teilen sich im Untersuchungszeitraum.
- Zusätzlich können natürlich auch allgemeine Erhebungsfehler auftreten.

5.1 Aufbau der Netzmodelle für den ÖV und MIV

Als Teil der Netzmodellierung müssen die folgenden Elemente festgelegt werden, welche im Folgenden im Detail diskutiert werden:

- Räumliche Auflösung
- MIV-Netz
- ÖV-Netz

5.1.1 Die räumliche Auflösung

Die verschiedenen Standorte innerhalb einer Zone werden zu einer Einheit aggregiert, welche durch einen zugehörigen (bevölkerungsgewichteten) Schwerpunkt abgebildet wird. Diese Einheit repräsentiert alle Aktivitätsmöglichkeiten einer Zone als Punkt und ist damit auch die Quelle bzw. das Ziel für alle aus- und einströmenden Fahrten.

In der vorliegenden Arbeit werden alle Gemeinden außer den Grossstädten (Zürich, Genf, Basel, Bern und Lausanne) als je eine Zone behandelt. Die Grossstädte sind in 6 bis 12 Zonen entsprechend der politisch-administrativen Aufteilung der Städte disaggregiert.
5.1.2 MIV-Netzmodell

Tabelle 8 Anzahl der Strecken im Strassennetzmodell Schweiz

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Modifizierte Strecken</th>
<th>Nicht modifizierte Strecken</th>
<th>Total Strecken</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>4’147</td>
<td>14’171</td>
<td>18’318</td>
</tr>
<tr>
<td>1980</td>
<td>4’810</td>
<td>14’171</td>
<td>18’981</td>
</tr>
<tr>
<td>1990</td>
<td>5’215</td>
<td>14’171</td>
<td>19’386</td>
</tr>
<tr>
<td>2000</td>
<td>5’529</td>
<td>14’171</td>
<td>19’700</td>
</tr>
</tbody>
</table>

Der Schwerpunkt einer Schweizer Zone hat Anbindungen an das Strassenetz mit einer Geschwindigkeit von 15 km/h. Die Koordinaten der bevölkerungsgewichteten Schwerpunkte der Zonen wurden vom Bundesamt für Raumentwicklung (ARE) bereitgestellt. Die Länge der Anbindungen ergibt sich aus der Luftdistanz zwischen Schwerpunkt und den Knoten, an welchen die Anbindungen ans Strassennetz erfolgen.

In einem Netzmodell werden die Strecken mit ihrer Länge, freien Geschwindigkeit, Kapazität und ihren Parametern der Widerstands-Funktion (Capacity Restraint Function) beschrieben, welche die Abhängigkeit der gefahrenen Geschwindigkeit vom Auslastungsgrad abbilden. Eine

Abbildung 6 Verteilung der geschätzten durchschnittlichen Streckengeschwindigkeiten in der Schweiz nach Jahrzehnt auf Autobahn und Hauptstrasse

Zweistreifige Autobahn Hauptstrasse

Anmerkung: Man beachte die unterschiedlichen Skalen der beiden Abbildungen.

Tabelle 9 Vergleich der Erreichbarkeitswerte im MIV und ÖV

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Erreichbarkeit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>9.120</td>
<td>9.223</td>
<td>1.011</td>
</tr>
<tr>
<td>Median</td>
<td>9.302</td>
<td>9.387</td>
<td>1.007</td>
</tr>
<tr>
<td>Standard-Abweichung</td>
<td>0.993</td>
<td>1.043</td>
<td>0.019</td>
</tr>
<tr>
<td>25% - Perzentil</td>
<td>8.659</td>
<td>8.733</td>
<td>1.001</td>
</tr>
<tr>
<td>75% - Perzentil</td>
<td>9.798</td>
<td>9.932</td>
<td>1.017</td>
</tr>
</tbody>
</table>

Abbildung 7 Verhältnis der MIV-Erreichbarkeit des nationalen Personenverkehrsmodells 2000 zum Modell 2000

Kennzahlen: Min = 0.969; -0.5 Std. Abw. = 1.001; Median = 1.007; Mittelwert = 1.011; +0.5 Std. Abw. = 1.021; Max = 1.202
5.1.3 ÖV-Netzmodell

Ausgehend vom Schienennetz für das Jahr 2000 wurde die Entwicklung der Strecken (rund 5’500) und der Knoten (rund 2’700) verfolgt (siehe auch Fröhlich et al., 2003). Im Gegensatz zum Strassenverkehr, bei dem der Konsument die Infrastruktur als Angebot selbst nutzen kann, stellen im ÖV der Fahrplan das Angebot für den Nutzer dar, und nicht die Infrastruktur an sich. Für die vier Untersuchungszeitpunkte wurden alle werktäglichen und ganzjährigen in der Schweiz verkehrenden Züge sowie einige interregionale Buslinien erfasst. Einige Touristenbahnen, die keine Gemeinden erschliessen, wurden weggelassen. In Tabelle 10 sind die Anzahl der erfassten Kurse pro Tag sowie die bedienten Haltestellen aufgeführt.

Die Anbindungen vom Zonenschwerpunkt zur nächsten Haltestelle bilden die Zeit ab, die der Passagier bis zur Haltestelle benötigt. In den letzten 30 Jahren wurden einige Schienenstrecken bzw. der Personenverkehr auf einigen Strecken eingestellt und daher wurden die zugehörigen Haltestellen geschlossen. Auch diese Entwicklung musste bei den Anbindungen der verschiedenen Untersuchungszeitpunkte berücksichtigt werden. Die Anbindungen sind klassifiziert nach Zonentyp, Entfernung und danach, ob die Zone eine eigene Haltstelle besitzt (siehe Tabelle 11).

<table>
<thead>
<tr>
<th>Jahr</th>
<th>ÖV-Kurse pro Tag</th>
<th>Bediente Haltestellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>7’317</td>
<td>1’776</td>
</tr>
<tr>
<td>1980</td>
<td>9’342</td>
<td>1’832</td>
</tr>
<tr>
<td>1990</td>
<td>11’473</td>
<td>1’949</td>
</tr>
<tr>
<td>2000</td>
<td>11’227</td>
<td>1’904</td>
</tr>
</tbody>
</table>
Tabelle 11 Anbindungstypen im ÖV-Netz

<table>
<thead>
<tr>
<th>Zonentyp</th>
<th>Längenbereich</th>
<th>Distanzart</th>
<th>Geschwindigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonen mit eigenem Bahnhof</td>
<td></td>
<td>Luftliniendistanz</td>
<td>6 km/h</td>
</tr>
<tr>
<td>Zonen ohne eigene Haltestelle</td>
<td>0-10 km</td>
<td>Strassendistanz</td>
<td>Bis 1 km 6 km/h, dann linear ansteigend bis 20 km/h bei 10 km</td>
</tr>
<tr>
<td>Zonen ohne eigene Haltestelle</td>
<td>>10 km</td>
<td>Strassendistanz</td>
<td>20 km/h</td>
</tr>
<tr>
<td>Zonen in Grossstädten</td>
<td>0-1 km</td>
<td>Strassendistanz</td>
<td>6 km/h</td>
</tr>
<tr>
<td>Zonen in Grossstädten</td>
<td>>1 km</td>
<td>Strassendistanz</td>
<td>10 km/h</td>
</tr>
</tbody>
</table>

5.1.4 Darstellung Erreichbarkeit und Zeitkarten

Es ergibt sich damit für die Erreichbarkeit:

\[E_i = \ln \sum_{j \in I} X_j e^{-k_{ij} \beta} \]

mit

- \(E_i \) Erreichbarkeit der Zone i
- \(X_j \) Anzahl der Gelegenheiten (hier Einwohner) in Zone j
- \(k_{ij} \) Generalisierte Kosten zwischen Zone i und j
- \(\beta \) Gewichtungsfaktor (hier als 0.2 gewählt)

Erreichbarkeit ist also proportional zur Menge der Gelegenheiten und umgekehrt proportional zu den generalisierten Kosten. Dieses qualitative Argument für diese Berechnung der Erreichbarkeit kann durch eine formale Herleitung aus einem ökonomischen Modell der Zielwahl ersetzt werden. Williams, 1977 zeigt, dass diese Formulierung die Konsumentenrente aller Reisenden misst. Sie ist also ein wohlfahrtsrechnerisch sauberes Mass der Nutzen aller Ziele in einer Region für eine gegebene Leistungsfähigkeit der Verkehrsnetze.

In den nachfolgenden Abbildungen wird die Anzahl der Einwohner als Mass der Gelegenheiten und vereinfachend die Reisezeiten im MIV und im ÖV als generalisierten Kosten verwendet. Auf die Skalierung mit dem natürlichen Logarithmus wurde aus Darstellungsgründen verzichtet.
Unter reisezeitskalierten Karten, auch Zeitkarten genannt, versteht man Karten, in denen der Abstand zwischen Punkten nicht proportional zur räumlichen Distanz dargestellt ist, sondern der Abstand proportional zur Reisezeit zwischen den Punkten skaliert ist. Der Kartenmassstab ist daher nicht eine Raumeinheit, sondern eine Zeiteinheit.

Abbildung 8 und Abbildung 9 zeigen die nicht logarithmierte Erreichbarkeit der Schweizer Gemeinden im MIV bzw. ÖV. In Abbildung 10 und Abbildung 11 sind die korrespondierenden Zeitkarten abgebildet.

Abbildung 8 Erreichbarkeit MIV Schweiz 1970-2000

Quelle: Fröhlich, Tschopp und Axhausen, 2006
Abbildung 9 Erreichbarkeit ÖV Schweiz 1970-2000

Quelle: Fröhlich, Tschopp und Axhausen, 2006

1970

1980

1990

2000

5.2 MIV-Fahrpreis

Der Touringclub Schweiz (TCS) stellt für das Jahr 2004 fest (TCS, 2005), dass für ein soge- nanntes Musterauto die Gesamtkosten je km mit ca. 73 Rp. angenommen werden müssen, wobei davon 62% Fixkosten und 38% variable Kosten sind. Die 38% variablen Kosten ergeben sich aus 9% Wertverminderung, 15% Treibstoffkosten, 8.6% Service und Reparaturen und 4.9% Reifenkosten. Mit 73 Rp. Gesamtkosten pro Fz-km ergeben sich 28 Rp. variable Kosten. Für die Berechnung der MIV-Fahrpreis als Inputvariable im Verkehrsmittelwahlmodell sollten als MIV-Fahrpreis pro Fz-km diejenigen angesetzt werden, welche die Personen bei der Entscheidung des Verkehrsmittels berücksichtigen.

Der Ansatz des TCS, 28 Rp. pro Fz-km, berücksichtigt alle variablen Kosten, wie z.B. Service und Reparatur. Unter der Annahme, dass der Entscheider nur den Preis für Treibstoff und die übrigen variablen Kosten untergeordnet (Wertverlust, Reifen, etc.) berücksichtigt, wird für das Jahr 2000 mit Fahrpreis von 15 Rp. pro Fz-km gerechnet, was 20% der Gesamtkosten laut TCS

Zusätzlich muss berücksichtigt werden, dass der Treibstoffverbrauch der Fahrzeuge abgenommen hat. Der TCS geht von rund 20% und Frei (2004) von einer 25.6% Reduzierung in den letzten 30 Jahren aus. Auch zeigt Frei, dass der Verlauf der Entwicklung bezogen auf PS von 0.14 l/PS auf 100 km auf 0.07 l/PS pro 100 km annähernd gleichmässig verlaufen ist. Daher wird hier eine 25%-Reduktion des Treibstoffverbrauchs mit linearer Verlauf angenommen.

Tabelle 12 Entwicklung Treibstoffpreis und MIV-Fahrpreis

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Preisindex Treibstoffe</th>
<th>Treibstoffverbrauchindex</th>
<th>Fahrpreis/Fz-km in Rp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>84.7</td>
<td>125</td>
<td>7.7</td>
</tr>
<tr>
<td>1972</td>
<td>102.0</td>
<td>116.6</td>
<td>14.4</td>
</tr>
<tr>
<td>1980</td>
<td>171.0</td>
<td>108.3</td>
<td>12.5</td>
</tr>
<tr>
<td>1990</td>
<td>159.0</td>
<td>100.0</td>
<td>15.0</td>
</tr>
<tr>
<td>1999</td>
<td>185.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>206.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3 PW-Besetzungsgrad

Der PW-Besetzungsgrad gibt an, wie viele Personen sich für die jeweilige Fahrt im PW befinden. Diese Information ist notwendig, um die variablen MIV-Fahrpreis pro Fz-km auf pro P-km umzurechnen.

Aus diesen Gründen kann der PW-Besetzungsgrad nicht für alle Untersuchungsjahre direkt aus den Erhebungsdaten ermittelt werden und es wurde daher folgendes Vorgehen gewählt: Für die Jahre 1994 und 2000, wo sowohl die Angaben zu Selbst- bzw. Mitfahrern als auch die Angaben zur Anzahl Insassen im Fahrzeug vorhanden sind, wurde die Anzahl Insassen für Selbst- und

Abbildung 12 Entwicklung PW-Besetzungsgrad für den Fahrzweck Arbeitspendler

In Tabelle 13 sind die verwendeten PW-Besetzungsgrade für den Fahrzweck Arbeit aufgeführt, welche zur Berechnung der MIV-Fahrpreis je Pkm verwendet wurden. Die PW-Besetzungsgrade für die vier Untersuchungszeitpunkte wurden aus der vorangegangenen Abbildung graphisch ermittelt.
Tabelle 13 Verwendeter PW-Besetzungsgrad für den Fahrzweck Arbeit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Besetzungsgrad</td>
<td>1.60</td>
<td>1.55</td>
<td>1.30</td>
<td>1.23</td>
</tr>
</tbody>
</table>

5.4 Qualitätsadjustierte PW-Besitzkosten

Der Touringclub Schweiz (TCS, 2005) geht für das Jahr 2004 für ein sogenanntes Musterauto mit 15'000 km Jahresfahrleistung und einem Neupreis von CHF 32'000 von folgender Kostenstruktur aus:
- 62% feste Kosten entsprechen CHF 6’700 pro Jahr.
- 38% bewegliche Kosten entsprechen CHF 4’000 pro Jahr.

In Tabelle 14 sind die Zahlenreihen aufgeführt.
Tabelle 14 Nominale PW-Besitzkosten und reale qualitätsadjustiert PW-Besitzkosten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quelle</td>
<td>LIK’66</td>
<td>Abay</td>
<td>Abay</td>
<td>Abay</td>
<td>Abay</td>
<td>LIK’00</td>
<td>LIK’00</td>
</tr>
<tr>
<td>Nominale Jahreskosten (CHF)</td>
<td>3’367</td>
<td>3’729</td>
<td>5’347</td>
<td>6’760</td>
<td>7’770</td>
<td>7’865</td>
<td>8’132</td>
</tr>
<tr>
<td>Reale (Jahr 2000) qualitätsadjustierte PW-Besitzkosten pro Jahr (CHF)</td>
<td>5’888</td>
<td>7’082</td>
<td>8’190</td>
<td>7’864</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die räumliche Variation der PW-Besitzkosten innerhalb der Schweiz wurde nicht berücksichtigt, da dafür eine entsprechende Datenreihe fehlt. Dafür müssten eigene statistische Modelle mit Einkommen, PW-Besitz pro Haushalt, Haushaltscharakteristika etc. geschätzt werden (siehe z.B. de Jong, Fox, Daly, Pieters und Smit, 2004), was im Rahmen der vorliegenden Arbeit nicht möglich war.

5.5 Personenwagen pro Führerausweisbesitzer

Tabelle 15 Führerausweisbesitzraten über die Zeit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Männer</td>
<td>20-65 Jahre</td>
<td>81.1%</td>
<td>84.0%</td>
<td>85.2%</td>
<td>93.1%</td>
</tr>
<tr>
<td></td>
<td>über 65 Jahre</td>
<td>30.6%</td>
<td>39.5%</td>
<td>65.2%</td>
<td>77.1%</td>
</tr>
<tr>
<td>Frauen</td>
<td>20-65 Jahre</td>
<td>50.2%</td>
<td>56.9%</td>
<td>69.4%</td>
<td>82.5%</td>
</tr>
<tr>
<td></td>
<td>über 65 Jahre</td>
<td>4.1%</td>
<td>9.3%</td>
<td>26.0%</td>
<td>35.6%</td>
</tr>
</tbody>
</table>

Quelle: Berechnet mit Daten aus Axhausen et al. (2003)

5.6 ÖV-Fahrpreis

Die Tarifstruktur im ÖV ist insbesondere im Nahverkehr sehr komplex und hat sich im betrachteten Zeitraum durch die Einführung von Verkehrsverbünden ab Mitte der 80er Jahre substanziell geändert. Leider ist keine Studie bekannt, welche den Strukturwandel der Tarife im ÖV in der Schweiz über diesen langen Zeitraum für den Berufspendlerverkehr analysiert.

Tabelle 16 ÖV Fahrpreis-Entwicklung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preisindex ÖV</td>
<td>88.0</td>
<td>101.0</td>
<td>133.7</td>
<td>181.3</td>
<td>259.1</td>
<td>259.1</td>
</tr>
<tr>
<td>Vollpreisbillett Rp./km</td>
<td>9.2</td>
<td>13.9</td>
<td>18.9</td>
<td>27.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billett Halbtax Rp./km</td>
<td>4.9</td>
<td>7.5</td>
<td>10.2</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streckenabo Rp./km</td>
<td>3.4</td>
<td>5.2</td>
<td>7.0</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA Rp./km</td>
<td>2.2</td>
<td>3.4</td>
<td>4.6</td>
<td>6.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Abay (2000), BFS (2006b)

Es wird von folgenden Annahmen bei der ÖV-Preisstruktur ausgegangen: Der Kurzstreckenbereich bis 3 km wird konstant mit 81 Rp. (3 km x 27 Rp./km) angenommen. Danach folgt ein Fahrpreis für 3 bis 7 km mit linear abnehmendem Verlauf bis auf das Niveau des Halbtax (14.5Rp./km). Danach bis 15 km auf das Niveau des Streckenabos (10Rp./km), und anschließend bis zu einer Fahrweite von 30 km auf das GA-Niveau (6.5 Rp./km). Bei Fahrten länger als 30 km bleibt der Preis pro km auf dem GA-Niveau.

Danach wird der Preis je Kilometer mit der Reiseweite multipliziert, wobei in der Reiseweite auch die Zugangs- und Abgangsweite enthalten sind, welche üblicherweise den Fussweg zur
Haltestelle abbilden (vergleiche Kapitel 5.1.3). In der vorliegenden Arbeit wurden die Zu- und Abgangswege auch zur Abbildung des Busnetzes verwendet, wo auch ein Fahrpreis zu entrichten ist. Da für Ausserortsbusse im Allgemeinen ein höherer km-Preis als am Bahnnetz zu entrichten ist, sollten sich die Ungenauigkeiten gegenseitig aufheben.

5.7 Einkommen

Abbildung 13 Nominales Reineinkommen 1970 pro Beitragspflichtigen

Quelle: ESTV; Anmerkung: Mittelwert CHF 23'905
Abbildung 14 Nominales Reineinkommen 1980 pro Beitragspflichtigen

Quelle: ESTV; Anmerkung: Mittelwert CHF 37'059

Abbildung 15 Nominales Reineinkommen 1990 pro Beitragspflichtigen

Quelle: ESTV; Anmerkung: Mittelwert CHF 53'835
Änderungen der Intensitäten im Arbeitspendlerverkehr von 1970 bis 2000

November 2008

Abbildung 16 Nominales Reineinkommen 2000 pro Beitragpflichtigen

[Diagramm]

Quelle: ESTV; Anmerkung: Mittelwert CHF 61'591

Abbildung 17 Reineinkommen 2000 im Verhältnis zu Reineinkommen 1970

[Diagramm]

5.8 Bildungsdaten

Im Rahmen der Volkszählung wird auch der Ausbildungsstand der Wohnbevölkerung erhoben, wobei die höchste abgeschlossene Stufe massgebend ist. Die Bildungshoheit obliegt in der Schweiz den Kantonen, daher gibt es regionale Unterschiede im Bildungssystem. In den letzten Jahren ist aber eine Tendenz zur Vereinheitlichung festzustellen. Folgende Kategorien werden bei der Volkszählung verwendet:

- Sekundarstufe I: Obligatorische Schulpflicht von ca. 9 Jahren absolviert.
- Sekundarstufe II: Berufsfachschule, Vollzeiterberufsschule, Diplommittelschule oder Maturität abgeschlossen. Die Ausbildungen dauern in der Regel 3 bis 4 Jahre zusätzlich zur obligatorischen Schulpflicht.
• Tertiärstufe: Höhere Berufsausbildung (insgesamt über 800 verschiedene Ausbildungswеge, wie z.B. höhere Fachschule und Technikerschule) und universitäre Ausbildung abgeschlossen.

• Für unter 15 jährige: Andere Ausbildung, keine Ausbildung und keine Angaben.

Um die relative Verteilung auf Sekundarstufe I, Sekundarstufe II und Tertiärstufe der Bewohner in den Gemeinden abzubilden, wurden die drei Stufen im Verhältnis zu den Einwohnern abzüglich den unter 15-jährigen gesetzt.

5.9 Erwerbstätige und Beschäftigte

5.10 ARE-Gemeindetypen

Im Bundesamt für Raumentwicklung (ARE) wurde eine Typisierung der Schweizer Gemeinden entwickelt (ARE, 2005), welche die Charakteristiken der Gemeinden widerspiegelt und auf Grundlage von Strukturdaten aus den 90er-Jahren erfolgte. In Tabelle 17 sind die 13 ARE-Gemeindetypen aufgeführt, wobei für die Verwendung derselben in den Verkehrsmittelwahlmodellen eine Aggregierung zu vier Klassen vorgenommen wurde, um die Quelle-Ziel-Beziehung nach dann 16 Klassen beurteilen zu können. Die Typisierung wurde für die gesamte Untersuchungsperiode konstant gehalten.
Tabelle 17 Beschreibung ARE-Gemeindetypen

<table>
<thead>
<tr>
<th>Gemeindetyp</th>
<th>Beschreibung</th>
<th>Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grosszentren</td>
<td>Kernstädte von Agglomerationen mit mehr als 100'000 Einwohnern und 50'000 Arbeitsplätzen</td>
<td>1</td>
</tr>
<tr>
<td>2. Nebenzentren der Grosszentren</td>
<td>Gemeinden innerhalb der Agglomerationen der Grosszentren mit mehr als 10'000 Einwohnern und 5'000 Arbeitsplätzen</td>
<td>2</td>
</tr>
<tr>
<td>3. Suburbane Gemeinden der Grosszentren</td>
<td>Arbeitsplatzgemeinden, suburbane Wohngemeinden und (semi-) touristische Gemeinden grosszentraler Regionen</td>
<td>2</td>
</tr>
<tr>
<td>4. Periurbane Gemeinden der Grosszentren</td>
<td>Periurbane Gemeinden grosszentraler Regionen</td>
<td>2</td>
</tr>
<tr>
<td>5. Mittelzentren</td>
<td>Kernstädte der weiteren Agglomerationen z.B. Aarau, Biel oder Montreux</td>
<td>3</td>
</tr>
<tr>
<td>6. Suburbane Gemeinden der Mittelzentren</td>
<td>Arbeitsplatzgemeinden, suburbane Wohngemeinden und (semi-) touristische Gemeinden nicht grosszentraler Regionen</td>
<td>3</td>
</tr>
<tr>
<td>7. Periurbane Gemeinden der Mittelzentren</td>
<td>Periurbane Gemeinden und (semi-) touristische Gemeinden nicht grosszentraler Regionen</td>
<td>3</td>
</tr>
<tr>
<td>8. Kleinzentren</td>
<td>Restliche Klein- und Peripheriegemeinden (inkl. isolierte Städte): Einwohnerzahl zwischen 2'000 und 10'000</td>
<td>3</td>
</tr>
<tr>
<td>9. Nicht städtische Wegpendlergemeinden</td>
<td>Zuzügergemeinden mit mässigem Wegpendleranteil, einheimische Gemeinden mit mässigem oder hohem Wegpendleranteil</td>
<td>4</td>
</tr>
<tr>
<td>10. Industrielle und tertiäre Gemeinden</td>
<td>Heim- und Anstaltgemeinden, Gemeinden mit industriell-tertiärer Erwerbsbevölkerung, Gemeinden mit industrieller Erwerbsbevölkerung</td>
<td>4</td>
</tr>
<tr>
<td>11. Semiagrarische Gemeinden</td>
<td>Gemeinden mit agrar-industrieller Erwerbsbevölkerung, Gemeinden mit agrar-tertiärer Erwerbsbevölkerung</td>
<td>4</td>
</tr>
<tr>
<td>12. Agrarische Gemeinden</td>
<td>Gemeinden mit agrarischer Erwerbsbevölkerung, Gemeinden mit starkem Bevölkerungsrückgang</td>
<td>4</td>
</tr>
<tr>
<td>13. Touristische Gemeinden</td>
<td>Touristische und semitouristische Gemeinden</td>
<td>4</td>
</tr>
</tbody>
</table>

Quelle: ARE, 2005

5.11 Pendlererhebung

Bei den in der vorliegenden Arbeit verwendeten Daten handelt es sich für alle Untersuchungszeitpunkte um die Erwerbstätigen mit mehr als sechs Stunden Wochenarbeitszeit. Ab 1990 wurden zusätzlich die Erwerbstätigen ab einer Wochenstunde erhoben, aber aus Gründen der Konsistenz wurden diese nicht verwendet. Weiter werden im Zuge der Pendlererhebung Personen in Ausbildung, also Schüler und Studierende, erhoben, die in der vorliegenden Arbeit nicht berücksichtigt wurden.

Für die Aggregation auf die drei Verkehrsarten Langsamer Individualverkehr (LIV), Motorisierter Individualverkehr (MIV) und Öffentlicher Verkehr (ÖV) wurde die Zuordnung laut Tabelle 18 vorgenommen. Die Kategorie Werkbus wurde nicht berücksichtigt, da hierfür keine Angebotsdaten bekannt sind und es sich nicht um öffentlichen Verkehr im eigentlichen Sinne handelt, da keine Beförderungspflicht besteht.
Tabelle 18 Verkehrsmittel in der Pendlererhebung und ihre Aggregierung

<table>
<thead>
<tr>
<th>Verkehrsmittel laut Pendlermatrix BFS</th>
<th>Aggregiert zu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zu Fuß</td>
<td>LIV</td>
</tr>
<tr>
<td>Rad</td>
<td>MIV</td>
</tr>
<tr>
<td>Moped</td>
<td>ÖV</td>
</tr>
<tr>
<td>Auto (Selbst- oder Mitfahrer)</td>
<td></td>
</tr>
<tr>
<td>Motorrad</td>
<td></td>
</tr>
<tr>
<td>Zug</td>
<td></td>
</tr>
<tr>
<td>Zug und Tram, Bus, Postbus</td>
<td></td>
</tr>
<tr>
<td>Zug und Auto</td>
<td></td>
</tr>
<tr>
<td>Zug und Rad, Moped</td>
<td></td>
</tr>
<tr>
<td>Tram und Bus, Postbus</td>
<td></td>
</tr>
<tr>
<td>Tram, Bus, Postbus und Auto</td>
<td></td>
</tr>
<tr>
<td>Tram, Bus, Postbus und Rad, Moped</td>
<td></td>
</tr>
<tr>
<td>Andere öffentliche Verkehrsmittel</td>
<td></td>
</tr>
</tbody>
</table>

Die Fahrten aus der Pendlererhebung (Rohdatensatz) wurden folgendermassen aufbereitet:

1) Aggregation auf die drei Hauptverkehrsmittel MIV, ÖV und LIV
2) Grenzgänger wurden gelöscht.
3) Pendler mit fehlenden Angaben wurden gelöscht.
4) In den fünf grössten Schweizer Städten wurde die Zonierung auf Stadtkreisniveau mit Hilfe der Erwerbstätigen für die Quellseite und der Beschäftigten auf der Zielseite aufgesplittet.

Die LIV-Pendler werden bei der Verkehrsmittel- und Zielwahl nicht weiter berücksichtigt, da für sie keine entsprechend feinen Verkehrsnetze vorliegen. Bei der Schätzung der Auspendleranteile werden sie wieder berücksichtigt.
6 Deskriptive Analyse der Pendlererhebung

<table>
<thead>
<tr>
<th>Tabelle 19</th>
<th>Übersicht: Anzahl Gesamtwege, interzionale und intrazionale Wege</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtverkehr</td>
<td>2'165'501</td>
</tr>
<tr>
<td>Gesamtwege</td>
<td>(100.00%)</td>
</tr>
<tr>
<td>Gesamtverkehr</td>
<td>1'220'237</td>
</tr>
<tr>
<td>Interzionale Wege</td>
<td>(56.35%)</td>
</tr>
<tr>
<td>Gesamtverkehr</td>
<td>945'264</td>
</tr>
<tr>
<td>Intrazionale Wege</td>
<td>(43.65%)</td>
</tr>
</tbody>
</table>

Tabelle 20 MIV: Anzahl Gesamtwege, interzonale und intrazonale Wege

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Gesamtwege</td>
<td>754'567</td>
<td>1'105'543</td>
<td>1'442'225</td>
<td>1'676'486</td>
</tr>
<tr>
<td></td>
<td>(100.00%)</td>
<td>(100.00%)</td>
<td>(100.00%)</td>
<td>(100.00%)</td>
</tr>
<tr>
<td>MIV Interzonale Wege</td>
<td>506'894</td>
<td>788'978</td>
<td>1'121'107</td>
<td>1'339'685</td>
</tr>
<tr>
<td></td>
<td>(67.18%)</td>
<td>(71.37%)</td>
<td>(77.73%)</td>
<td>(79.91%)</td>
</tr>
<tr>
<td>MIV Intrazonale Wege</td>
<td>247'673</td>
<td>316'565</td>
<td>321'118</td>
<td>336'801</td>
</tr>
<tr>
<td></td>
<td>(32.82%)</td>
<td>(28.63%)</td>
<td>(22.27%)</td>
<td>(20.09%)</td>
</tr>
</tbody>
</table>

Tabelle 21 ÖV: Anzahl Gesamtwege, interzonale und intrazonale Wege

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖV Gesamtwege</td>
<td>533'233</td>
<td>559'642</td>
<td>815'597</td>
<td>769'776</td>
</tr>
<tr>
<td></td>
<td>(100.00%)</td>
<td>(100.00%)</td>
<td>(100.00%)</td>
<td>(100.00%)</td>
</tr>
<tr>
<td>ÖV Interzonale Wege</td>
<td>439'335</td>
<td>463'836</td>
<td>693'567</td>
<td>680'285</td>
</tr>
<tr>
<td></td>
<td>(82.39%)</td>
<td>(82.88%)</td>
<td>(85.04%)</td>
<td>(88.37%)</td>
</tr>
<tr>
<td>ÖV Intrazonale Wege</td>
<td>93'898</td>
<td>95'806</td>
<td>122'030</td>
<td>89'491</td>
</tr>
<tr>
<td></td>
<td>(17.61%)</td>
<td>(17.12%)</td>
<td>(14.96%)</td>
<td>(11.63%)</td>
</tr>
</tbody>
</table>

Tabelle 22 LIV: Anzahl Gesamtwege, interzonale und intrazonale Wege

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIV Gesamtwege</td>
<td>877'701</td>
<td>692'259</td>
<td>614'715</td>
<td>502'622</td>
</tr>
<tr>
<td>(%)</td>
<td>(100.00%)</td>
<td>(100.00%)</td>
<td>(100.00%)</td>
<td>(100.00%)</td>
</tr>
<tr>
<td>LIV Interzonale Wege</td>
<td>274'008</td>
<td>216'584</td>
<td>190'891</td>
<td>146'426</td>
</tr>
<tr>
<td>(%)</td>
<td>(31.22%)</td>
<td>(31.29%)</td>
<td>(31.05%)</td>
<td>(29.13%)</td>
</tr>
<tr>
<td>LIV Intrazonale Wege</td>
<td>603'693</td>
<td>475'675</td>
<td>423'824</td>
<td>356'196</td>
</tr>
<tr>
<td>(%)</td>
<td>(68.78%)</td>
<td>(68.71%)</td>
<td>(68.95%)</td>
<td>(70.87%)</td>
</tr>
</tbody>
</table>

In Tabelle 23 sind die Modal-Split-Anteile aufgrund der Wege aufgeführt. Hier bestätigen sich die Trends, wie schon in den vorangegangenen Tabellen. Der Anteil des MIV nimmt kontinuierlich zu, der ÖV hält seine Modal-Split-Anteile über die 30 Untersuchungsjahre und der LIV verliert an Anteilen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Gesamt</td>
<td>34.84%</td>
<td>46.90%</td>
<td>50.21%</td>
<td>56.85%</td>
</tr>
<tr>
<td>MIV Interzonale Wege</td>
<td>41.54%</td>
<td>53.69%</td>
<td>55.90%</td>
<td>61.84%</td>
</tr>
<tr>
<td>MIV Intrazonale Wege</td>
<td>26.20%</td>
<td>35.65%</td>
<td>37.04%</td>
<td>43.04%</td>
</tr>
<tr>
<td>ÖV Gesamt</td>
<td>24.62%</td>
<td>23.74%</td>
<td>28.39%</td>
<td>26.10%</td>
</tr>
<tr>
<td>ÖV Interzonale Wege</td>
<td>36.00%</td>
<td>34.58%</td>
<td>31.40%</td>
<td>26.10%</td>
</tr>
<tr>
<td>ÖV Intrazonale Wege</td>
<td>9.93%</td>
<td>10.79%</td>
<td>14.08%</td>
<td>11.44%</td>
</tr>
<tr>
<td>LIV Gesamt</td>
<td>40.53%</td>
<td>29.36%</td>
<td>21.40%</td>
<td>17.04%</td>
</tr>
<tr>
<td>LIV Interzonale Wege</td>
<td>22.46%</td>
<td>14.74%</td>
<td>9.52%</td>
<td>6.76%</td>
</tr>
<tr>
<td>LIV Intrazonale Wege</td>
<td>63.87%</td>
<td>53.56%</td>
<td>48.89%</td>
<td>45.52%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtverkehr</td>
<td>70'834</td>
<td>102'345</td>
<td>157'828</td>
<td>204'572</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+44.5%</td>
<td>+54.2%</td>
<td>+29.6%</td>
<td></td>
</tr>
<tr>
<td>MIV</td>
<td>56'043</td>
<td>88'943</td>
<td>137'407</td>
<td>183'587</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+58.7%</td>
<td>+54.5%</td>
<td>+33.6%</td>
<td></td>
</tr>
<tr>
<td>ÖV</td>
<td>36'099</td>
<td>41'755</td>
<td>63'431</td>
<td>75'762</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+15.7%</td>
<td>+51.9%</td>
<td>+19.4%</td>
<td></td>
</tr>
<tr>
<td>LIV</td>
<td>19'399</td>
<td>21'553</td>
<td>23'926</td>
<td>22'060</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+11.1%</td>
<td>+11.0%</td>
<td>-7.8%</td>
<td></td>
</tr>
</tbody>
</table>

Änderungen der Intensitäten im Arbeitspendlerverkehr von 1970 bis 2000

Abbildung 18 Einzugsgebiet und Haupteinfallsrichtung von zehn Kantonshauptorten

Quelle: Botte, 2003

In Tabelle 25 sind die Medianwerte für die Reiseweite, -zeit und -geschwindigkeit für den MIV und ÖV aufgeführt. Dabei handelt es sich um die Angaben von Quellzonenschwerpunkt zu Zielzonenschwerpunkt (also inkl. Zu- und Abgangswege im ÖV).

ten. Beim ÖV ist eine ähnlich starke relative Entwicklung, natürlich ab einem tieferen Niveau, festzustellen. So steigt die Geschwindigkeit von 15.97 km/h auf 21.46 km/h. Die stärksten Veränderungen pro Dekade sind in den 90er Jahren festzustellen.

Tabelle 25 Reiseweite, -zeit und -geschwindigkeit für MIV und ÖV

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reiseweite MIV (km)</td>
<td>6.60</td>
<td>8.29</td>
<td>9.71</td>
<td>11.54</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+25.6%</td>
<td>+17.2%</td>
<td>+18.9%</td>
<td></td>
</tr>
<tr>
<td>Reiseweite ÖV (km)</td>
<td>9.86</td>
<td>10.14</td>
<td>10.80</td>
<td>12.25</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+2.76%</td>
<td>+6.5%</td>
<td>+13.5%</td>
<td></td>
</tr>
<tr>
<td>Reisezeit MIV (min)</td>
<td>12.17</td>
<td>13.72</td>
<td>14.50</td>
<td>15.46</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+12.8%</td>
<td>+5.7%</td>
<td>+6.6%</td>
<td></td>
</tr>
<tr>
<td>Reisezeit ÖV (min)</td>
<td>36.75</td>
<td>37.50</td>
<td>37.43</td>
<td>39.20</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+2.0%</td>
<td>-0.2%</td>
<td>+4.7%</td>
<td></td>
</tr>
<tr>
<td>Reisegeschwindigkeit MIV (km/h)</td>
<td>30.12</td>
<td>38.79</td>
<td>43.07</td>
<td>47.95</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+28.8%</td>
<td>+11.0%</td>
<td>+11.3%</td>
<td></td>
</tr>
<tr>
<td>Reisegeschwindigkeit ÖV (km/h)</td>
<td>15.97</td>
<td>16.66</td>
<td>18.49</td>
<td>21.46</td>
</tr>
<tr>
<td>Veränderung zur Vorperiode</td>
<td>+4.3%</td>
<td>+11.0%</td>
<td>+16.1%</td>
<td></td>
</tr>
</tbody>
</table>

Die Verteilung der Reiseweiten für den MIV und ÖV ist in Abbildung 19 dargestellt. Die Fahrtweite nimmt über die Zeit zu und die ÖV-Fahrten sind länger als die MIV-Fahrten.

Die Verteilung der Reisezeiten für MIV und ÖV ist in Abbildung 20 dargestellt. Sowohl für den MIV als für den ÖV steigen die Reisezeiten über die Zeit an. Beim MIV erfolgt ein scharfer Übergang bei knapp 30 min Reisezeit, ca. 95% der Fahrten liegen darunter. Beim ÖV ist nicht so ein scharfer Übergang festzustellen.

In Abbildung 21 ist die Verteilung der Reisegeschwindigkeiten für den MIV und den ÖV dargestellt. Beim MIV ist die starke Geschwindigkeitszunahme in den 70er Jahren zu erkennen. Beim ÖV ergaben sich die größten Verbesserungen in den 80er Jahren.
7 Entwicklung gewichteter Variablenmittelwerte der Modelle

In den nachfolgenden Abbildungen sind die nachfragegewichteten Variablenmittelwerte der für die Modelle verwendeten Attribute dargestellt. Der Unterschied zur in Kapitel 6 gezeigten Auswertung ist, dass dort der komplette Datensatz verwendet wurde und hier nun, nach der Plausibilisierung der unterschiedlichen Variablen (insbesondere PW pro Führerausweisbesitzer und ÖV-Intervall, siehe Kapitel 5.5 und 5.1.3), ein ausgedünnter Datensatz vorliegt. Variablen, die in den Modellschätzungen in logarithmierter Form verwendet wurden, sind hier zum Zwecke der Anschaulichkeit auch in linearer Form aufgeführt. Die gewichteten Variablenmittelwerte wurden mit dem jeweiligen Wert im Jahr 1970 auf 100 indexiert. Die vollständige deskriptive Beschreibung der Datensätze und die Korrelationsmatrizen der Variablen sind im Anhang aufgeführt.

8 Modellstruktur

Abbildung 26 Modellstruktur

Die Modelle für die Verkehrsmittel- und die Zielwahl sind als MNL formuliert, wobei die beobachteten Entscheidungen, die interzonalen Pendlerfahrten mit dem MIV und ÖV, aus der Pendlermatrix in der verwendeten Software NLOGIT (Greene, 2002) als Frequenz behandelt werden. Das Modell zur Schätzung des Anteils der Auspendler im Verhältnis zu den Erwerbstätigen ist als Probit-Modell formuliert und in SPSS geschätzt.

Die Wahl der Modellstruktur, insbesondere Verkehrsmittel- und Zielwahl, ergab sich aufgrund verschiedener Modellversuche inkl. NL-Modelle und der Verwendung ähnlicher Strukturen in anderen Untersuchungen, welche hier nun kurz zusammengefasst werden.

Yao und Morikawa (2005) haben mit RP, SP und aggregierten Daten für den Fernverkehr hierarchische Modelle für die (in der Reihenfolge der Modellschritte von unten nach oben) Routen-, Verkehrsmittel-, Zielwahl und Erzeugung geschätzt. Für die Routen- und Verkehrsmittel-
wahl wurde ein Nested-Logit-Modell, für die Zielwahl ein MNL-Modell und für die Erzeugung ein Regressionsmodell verwendet.

Die Nutzenfunktion für die Verkehrsmittelwahl für die beiden Alternativen MIV und ÖV lautet:

\[V_{\text{MIV}} = \beta_{\text{MIV RZ}} \cdot \text{MIV Reisezeit} + \beta_{\text{FP}} \cdot \text{MIV Fahrpreis} + \beta_{\text{PW}} \cdot \text{PW pro Führerausweis} + \beta_{\text{EK}} \cdot \ln(\text{Einkommen}) + \beta_{\text{qppbx}} \cdot \text{qualitätsad} \text{justierte PW-Besitzkosten} \]

\[+ \beta_{11} \cdot D_{11} + \beta_{12} \cdot D_{12} + \beta_{13} \cdot D_{13} + \beta_{14} \cdot D_{14} + \beta_{21} \cdot D_{21} + \beta_{22} \cdot D_{22} + \beta_{23} \cdot D_{23} + \beta_{24} \cdot D_{24} + \beta_{31} \cdot D_{31} + \beta_{32} \cdot D_{32} + \beta_{33} \cdot D_{33} + \beta_{34} \cdot D_{34} + \beta_{41} \cdot D_{41} + \beta_{42} \cdot D_{42} + \beta_{43} \cdot D_{43} + \beta_{44} \cdot D_{44} \]

\[V_{\text{ÖV}} = \beta_{\text{ÖV RZ}} \cdot \text{ÖV Reisezeit} + \beta_{\text{FP}} \cdot \text{ÖV Fahrpreis} + \beta_{\text{U}} \cdot \text{Anz. Umsteigen} + \beta_{\text{Int}} \cdot \text{Intervall} \]

Die Beziehungsparameter (D XX) sind effektkodierte Kategorievariablen, welche die Quell- und Zielzone nach den aggregierten ARE-Raumtypen (vergleiche Kapitel 5.10) abbilden. Dabei steht 1 für Grossstadt, 2 für Agglomeration, 3 für kleinere freistehende Städte und 4 für ländliche Zonen. Da die Variable qualitätsadjustierte PW-Besitzkosten aufgrund von nicht vorhandenen Datengrundlagen für alle Zonen den gleichen Wert hat und somit wie eine Konstante wirkt, wurden die Schätzergebnisse sowohl mit, als auch ohne diese Variable berichtet.
Beim Zielwahlmodell wurden als mögliche Zielzonen (Alternativenansatz) alle beobachteten Zielzonen einer Quellzone bis zu einer Maximalzahl von 100 generiert. Wenn mehr als 100 Zielzonen für eine Quellzone im Datensatz vorhanden waren, wurden davon 100 zufällig gezogen. Die maximale Alternativenzahl von 100 ergibt sich daraus, dass dies das Maximum von möglichen Alternativen der verwendeten Software NLOGIT (Greene, 2002) ist.

Die Attraktionsvariablen, die Anzahl Beschäftigte im 2. (Industrie) und 3. Sektor (Dienstleistung) als Proxy für das Arbeitsplatzangebot, werden in logarithmischer Form verwendet, damit der abnehmende Grenznutzen der Attraktionsvariablen plausibel berücksichtigt wird. Der EMU der Verkehrsmittelwahl liegt schon in logarithmischer Form vor. Die Nutzenfunktionen der Zielwahl lauten:

\[
V_1 = \beta_{EMU} \ast EMU_1 + \beta_{B2S} \ast \ln(\text{Beschäftigte 2. Sektor})_1 + \beta_{B3S} \ast \ln(\text{Beschäftigte 3. Sektor})_1
\]

\[
V_2 = \beta_{EMU} \ast EMU_2 + \beta_{B2S} \ast \ln(\text{Beschäftigte 2. Sektor})_2 + \beta_{B3S} \ast \ln(\text{Beschäftigte 3. Sektor})_2
\]

\[
V_{100} = \beta_{EMU} \ast EMU_{100} + \beta_{B2S} \ast \ln(\text{Beschäftigte 2. Sektor})_{100} + \beta_{B3S} \ast \ln(\text{Beschäftigte 3. Sektor})_{100}
\]

Das Modell zur Schätzung des Anteils der Auspendler im Verhältnis zu den Erwerbstätigen ist als Probit-Modell formuliert und in SPSS geschätzt.

\[
V = \text{ASC} + \beta_{EMU} \ast \text{EMU-Zielwahl} + \beta_{B2S} \ast (\text{Beschäftigte 2. Sektor/Erwerbstätige})
\]

\[
+ \beta_{B3S} \ast (\text{Beschäftigte 3. Sektor/Erwerbstätige})
\]

\[
+ \beta_{\text{Sek I}} \ast \text{Anteil Sekundarstufe I} + \beta_{\text{Sek II}} \ast \text{Anteil Sekundarstufe II}
\]

\[
+ \beta_{\text{Tert}} \ast \text{Anteil Tertiärstufe} + \beta_{\text{Frauen}} \ast \text{Anteil Frauen an den Erwerbstätigen}
\]

\[
+ \beta_{EK} \ast \ln(\text{Einkommen}) + \beta_{RT1} \ast \text{Raumtyp 1} + \ldots + \beta_{RT13} \ast \text{Raumtyp 13}
\]
9 Ergebnisse der Modellschätzungen

9.1 Verkehrsmittelwahl

In Tabelle 26 bis Tabelle 29 sind die Resultate der Verkehrsmittelwahl dargestellt.
Tabelle 26 Resultate Verkehrsmittelwahl 1970

<table>
<thead>
<tr>
<th></th>
<th>Grundmodell</th>
<th>t-Statistik</th>
<th>mit PW-Besitzkosten</th>
<th>t-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Beobachtungen</td>
<td>54'374</td>
<td></td>
<td>54'374</td>
<td></td>
</tr>
<tr>
<td>Adj. Pseudo-R²</td>
<td>0.065'286</td>
<td>0.065'476</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Likelihood Function</td>
<td>-551'148.3</td>
<td>-550'990.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Likelihood Ratio Test (LR)</td>
<td>76'943.6</td>
<td>77'258.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR GM zu PW</td>
<td></td>
<td></td>
<td>314.8 (sig)</td>
<td></td>
</tr>
<tr>
<td>ÖV-Reisezeit</td>
<td>-0.560</td>
<td>-45.11</td>
<td>-0.583</td>
<td>-46.68</td>
</tr>
<tr>
<td>Umsteigen</td>
<td>-0.119</td>
<td>-13.06</td>
<td>-0.104</td>
<td>-11.36</td>
</tr>
<tr>
<td>Intervall</td>
<td>-0.085</td>
<td>-18.42</td>
<td>-0.103</td>
<td>-21.81</td>
</tr>
<tr>
<td>Fahrpreis</td>
<td>-0.165</td>
<td>-22.01</td>
<td>-0.164</td>
<td>-21.91</td>
</tr>
<tr>
<td>MIV-Reisezeit</td>
<td>-1.644</td>
<td>-42.29</td>
<td>-1.658</td>
<td>-42.63</td>
</tr>
<tr>
<td>PW-Besitz</td>
<td>1.684</td>
<td>72.80</td>
<td>1.581</td>
<td>66.44</td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>-0.108</td>
<td>-35.43</td>
<td>0.207</td>
<td>11.49</td>
</tr>
<tr>
<td>Qualitätsadj. PW-Besitzkosten</td>
<td>-0.063</td>
<td>-17.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>-1.147</td>
<td>-122.38</td>
<td>-1.135</td>
<td>-120.93</td>
</tr>
<tr>
<td>D12</td>
<td>-0.087</td>
<td>-7.56</td>
<td>-0.089</td>
<td>-7.72</td>
</tr>
<tr>
<td>D13</td>
<td>-0.166</td>
<td>-5.55</td>
<td>-0.181</td>
<td>-6.06</td>
</tr>
<tr>
<td>D14</td>
<td>0.245</td>
<td>4.47</td>
<td>0.200</td>
<td>3.68</td>
</tr>
<tr>
<td>D21</td>
<td>-0.195</td>
<td>-24.31</td>
<td>-0.230</td>
<td>-27.83</td>
</tr>
<tr>
<td>D22</td>
<td>0.569</td>
<td>53.25</td>
<td>0.545</td>
<td>50.63</td>
</tr>
<tr>
<td>D23</td>
<td>0.175</td>
<td>7.61</td>
<td>0.151</td>
<td>6.54</td>
</tr>
<tr>
<td>D24</td>
<td>0.726</td>
<td>18.58</td>
<td>0.696</td>
<td>17.88</td>
</tr>
<tr>
<td>D31</td>
<td>-0.737</td>
<td>-47.56</td>
<td>-0.739</td>
<td>-47.63</td>
</tr>
<tr>
<td>D32</td>
<td>0.082</td>
<td>4.29</td>
<td>0.078</td>
<td>4.08</td>
</tr>
<tr>
<td>D33</td>
<td>0.168</td>
<td>20.13</td>
<td>0.177</td>
<td>21.21</td>
</tr>
<tr>
<td>D34</td>
<td>0.231</td>
<td>15.34</td>
<td>0.237</td>
<td>15.73</td>
</tr>
<tr>
<td>D41</td>
<td>-0.460</td>
<td>-28.55</td>
<td>-0.428</td>
<td>-26.40</td>
</tr>
<tr>
<td>D42</td>
<td>0.205</td>
<td>10.35</td>
<td>0.239</td>
<td>12.00</td>
</tr>
<tr>
<td>D43</td>
<td>-0.008</td>
<td>-0.85</td>
<td>0.034</td>
<td>3.43</td>
</tr>
<tr>
<td>D44(^1)</td>
<td>0.399</td>
<td></td>
<td>0.445</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Wert errechnet
Tabelle 27 Resultate Verkehrsmittelwahl 1980

<table>
<thead>
<tr>
<th></th>
<th>Grundmodell</th>
<th>t-Statistik</th>
<th>mit PW-Besitzkosten</th>
<th>t-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Beobachtungen</td>
<td>74'998</td>
<td></td>
<td>74'998</td>
<td></td>
</tr>
<tr>
<td>Adj. Pseudo-R²</td>
<td>0.134033</td>
<td>0.134087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Likelihood Function</td>
<td>-629'176.6</td>
<td>-629'135.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Likelihood Ratio Test (LR)</td>
<td>194'816.0</td>
<td>194497.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR GM zu PW</td>
<td></td>
<td>81.8</td>
<td>(sig)</td>
<td></td>
</tr>
<tr>
<td>ÖV-Reisezeit</td>
<td>-0.477</td>
<td>-43.18</td>
<td>-0.485</td>
<td>-43.79</td>
</tr>
<tr>
<td>Umsteigen</td>
<td>-0.267</td>
<td>-32.60</td>
<td>-0.265</td>
<td>-32.33</td>
</tr>
<tr>
<td>Intervall</td>
<td>-0.183</td>
<td>-40.23</td>
<td>-0.188</td>
<td>-41.05</td>
</tr>
<tr>
<td>Fahrpreis</td>
<td>-0.085</td>
<td>-14.88</td>
<td>-0.080</td>
<td>-13.93</td>
</tr>
<tr>
<td>MIV-Reisezeit</td>
<td>-1.802</td>
<td>-52.52</td>
<td>-1.838</td>
<td>-53.21</td>
</tr>
<tr>
<td>PW-Besitz</td>
<td>1.728</td>
<td>74.01</td>
<td>1.714</td>
<td>73.30</td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>-0.103</td>
<td>-30.03</td>
<td>0.073</td>
<td>3.69</td>
</tr>
<tr>
<td>Qualitätsadj. PW-Besitzkosten</td>
<td>-0.029</td>
<td>-9.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>-1.343</td>
<td>-160.91</td>
<td>-1.342</td>
<td>-160.81</td>
</tr>
<tr>
<td>D12</td>
<td>-0.047</td>
<td>-4.31</td>
<td>-0.047</td>
<td>-4.36</td>
</tr>
<tr>
<td>D13</td>
<td>-0.174</td>
<td>-7.12</td>
<td>-0.179</td>
<td>-7.31</td>
</tr>
<tr>
<td>D14</td>
<td>0.275</td>
<td>6.51</td>
<td>0.262</td>
<td>6.22</td>
</tr>
<tr>
<td>D21</td>
<td>-0.535</td>
<td>-78.03</td>
<td>-0.555</td>
<td>-76.92</td>
</tr>
<tr>
<td>D22</td>
<td>0.511</td>
<td>52.83</td>
<td>0.495</td>
<td>50.37</td>
</tr>
<tr>
<td>D23</td>
<td>0.131</td>
<td>7.13</td>
<td>0.118</td>
<td>6.39</td>
</tr>
<tr>
<td>D24</td>
<td>0.623</td>
<td>20.24</td>
<td>0.610</td>
<td>19.81</td>
</tr>
<tr>
<td>D31</td>
<td>-0.795</td>
<td>-67.92</td>
<td>-0.796</td>
<td>-68.03</td>
</tr>
<tr>
<td>D32</td>
<td>0.181</td>
<td>11.08</td>
<td>0.177</td>
<td>10.86</td>
</tr>
<tr>
<td>D33</td>
<td>0.132</td>
<td>18.09</td>
<td>0.137</td>
<td>18.71</td>
</tr>
<tr>
<td>D34</td>
<td>0.414</td>
<td>30.47</td>
<td>0.419</td>
<td>30.79</td>
</tr>
<tr>
<td>D41</td>
<td>-0.438</td>
<td>-32.72</td>
<td>-0.424</td>
<td>-31.43</td>
</tr>
<tr>
<td>D42</td>
<td>0.391</td>
<td>20.90</td>
<td>0.404</td>
<td>21.53</td>
</tr>
<tr>
<td>D43</td>
<td>0.138</td>
<td>15.43</td>
<td>0.161</td>
<td>17.32</td>
</tr>
<tr>
<td>D44¹</td>
<td>0.534</td>
<td>0.560</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Wert errechnet
Tabelle 28 Resultate Verkehrsmittelwahl 1990

<table>
<thead>
<tr>
<th>Grundmodell</th>
<th>t-Statistik</th>
<th>mit PW-Besitzkosten</th>
<th>t-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Beobachtungen</td>
<td>117'292</td>
<td>117'292</td>
<td></td>
</tr>
<tr>
<td>Adj. Pseudo-R²</td>
<td>0.155777</td>
<td>0.155832</td>
<td></td>
</tr>
<tr>
<td>Log Likelihood Function</td>
<td>-880'751.1</td>
<td>-880'691.6</td>
<td></td>
</tr>
<tr>
<td>Log Likelihood Ratio Test (LR)</td>
<td>325'083.8</td>
<td>325'202.8</td>
<td>119.0 (sig)</td>
</tr>
<tr>
<td>LR GM zu PW</td>
<td></td>
<td>119.0</td>
<td>(sig)</td>
</tr>
<tr>
<td>ÖV-Reisezeit</td>
<td>-0.448</td>
<td>-49.21</td>
<td>-0.455</td>
</tr>
<tr>
<td>Umsteigen</td>
<td>-0.267</td>
<td>-46.16</td>
<td>-0.265</td>
</tr>
<tr>
<td>Intervall</td>
<td>-0.187</td>
<td>-41.48</td>
<td>-0.194</td>
</tr>
<tr>
<td>Fahrpreis</td>
<td>-0.038</td>
<td>-8.56</td>
<td>-0.035</td>
</tr>
<tr>
<td>MIV-Reisezeit</td>
<td>-1.352</td>
<td>-51.41</td>
<td>-1.374</td>
</tr>
<tr>
<td>PW-Besitz</td>
<td>2.411</td>
<td>112.64</td>
<td>2.392</td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>-0.223</td>
<td>-73.95</td>
<td>-0.058</td>
</tr>
<tr>
<td>Qualitätsadj. PW-Besitzkosten</td>
<td></td>
<td>-0.023</td>
<td>-10.90</td>
</tr>
<tr>
<td>D11</td>
<td>-1.405</td>
<td>-198.72</td>
<td>-1.403</td>
</tr>
<tr>
<td>D12</td>
<td>-0.052</td>
<td>-6.54</td>
<td>-0.051</td>
</tr>
<tr>
<td>D13</td>
<td>-0.117</td>
<td>-6.24</td>
<td>-0.118</td>
</tr>
<tr>
<td>D14</td>
<td>0.231</td>
<td>7.93</td>
<td>0.225</td>
</tr>
<tr>
<td>D21</td>
<td>-0.781</td>
<td>-143.13</td>
<td>-0.801</td>
</tr>
<tr>
<td>D22</td>
<td>0.407</td>
<td>58.79</td>
<td>0.391</td>
</tr>
<tr>
<td>D23</td>
<td>0.263</td>
<td>19.06</td>
<td>0.251</td>
</tr>
<tr>
<td>D24</td>
<td>0.668</td>
<td>30.20</td>
<td>0.654</td>
</tr>
<tr>
<td>D31</td>
<td>-0.952</td>
<td>-108.51</td>
<td>-0.951</td>
</tr>
<tr>
<td>D32</td>
<td>0.317</td>
<td>28.18</td>
<td>0.316</td>
</tr>
<tr>
<td>D33</td>
<td>0.143</td>
<td>25.18</td>
<td>0.148</td>
</tr>
<tr>
<td>D34</td>
<td>0.624</td>
<td>58.59</td>
<td>0.630</td>
</tr>
<tr>
<td>D41</td>
<td>-0.743</td>
<td>-74.24</td>
<td>-0.734</td>
</tr>
<tr>
<td>D42</td>
<td>0.460</td>
<td>34.58</td>
<td>0.467</td>
</tr>
<tr>
<td>D43</td>
<td>0.224</td>
<td>31.43</td>
<td>0.242</td>
</tr>
<tr>
<td>D441</td>
<td>0.693</td>
<td></td>
<td>0.734</td>
</tr>
</tbody>
</table>

1 Wert errechnet
<table>
<thead>
<tr>
<th>Grundmodell</th>
<th>t-Statistik</th>
<th>mit PW-Besitzkosten</th>
<th>t-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Beobachtungen</td>
<td>162'848</td>
<td>162'848</td>
<td></td>
</tr>
<tr>
<td>Adj. Pseudo-R²</td>
<td>0.203987</td>
<td>0.203994</td>
<td></td>
</tr>
<tr>
<td>Log Likelihood Function</td>
<td>-960'210.7</td>
<td>-960'201.4</td>
<td></td>
</tr>
<tr>
<td>Log Likelihood Ratio Test (LR)</td>
<td>492'184.6</td>
<td>492'203.2</td>
<td></td>
</tr>
</tbody>
</table>

LR GM zu PW: 18.6 (sig)

ÖV-Reisezeit	-0.625	-77.11	-0.628	-77.16
Umsteigen	-0.141	-28.13	-0.140	-10.86
Intervall	-0.103	-28.35	-0.105	-27.99
Fahrpreis	-0.042	-11.32	-0.040	-28.58
MIV-Reisezeit	-1.580	-58.99	-1.593	-59.11
PW-Besitz	2.865	138.259	2.860	137.89
Ln (Einkommen)	-0.245	-85.16	-0.192	-15.33
Qualitätsadj. PW-Besitzkosten	-0.008	-4.301		

D11 | -1.429 | -199.04 | -1.431 | -198.96 |
D12 | -0.148 | -19.27 | -0.149 | -19.38 |
D13 | -0.133 | -8.99 | -0.133 | -9.01 |
D14 | 0.178 | 7.429 | 0.177 | 7.39 |
D21 | -0.880 | -173.98 | -0.886 | -168.36 |
D22 | 0.328 | 52.09 | 0.323 | 50.28 |
D23 | 0.299 | 25.40 | 0.295 | 24.99 |
D24 | 0.618 | 32.58 | 0.615 | 32.38 |
D31 | -1.007 | -133.45 | -1.007 | -133.42 |
D32 | 0.341 | 34.84 | 0.341 | 34.79 |
D33 | 0.233 | 43.48 | 0.236 | 43.68 |
D34 | 0.645 | 66.06 | 0.649 | 66.20 |
D41 | -0.787 | -92.15 | -0.785 | -91.66 |
D42 | 0.533 | 45.75 | 0.535 | 45.89 |
D43 | 0.382 | 56.48 | 0.388 | 56.18 |
D44 | 0.825 | 0.832 |

¹ Wert errechnet

Die Erklärungskraft der Modelle zur Verkehrsmittelwahl (Tabelle 30) steigt über den Untersuchungszeitraum an. Insbesondere beim Pseudo-R² ergibt sich zwischen 1970 und 1980 eine Verdopplung. Für die Jahre 1990 und 2000 bewegen sich die Werte für das Pseudo-R² im Bereich von 0.15 und 0.20, was für Verkehrsmittelwahlmodelle mit RP-Daten gute Werte darstellt. Das Prognosemass erhöht sich weniger stark.

Tabelle 30 Verkehrsmittelwahl: Erklärungskraft der Modelle

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj. Pseudo-R²</td>
<td>0.065</td>
<td>0.134</td>
<td>0.156</td>
<td>0.204</td>
</tr>
<tr>
<td>Prognosemass (%)</td>
<td>54.38</td>
<td>58.69</td>
<td>60.09</td>
<td>62.94</td>
</tr>
</tbody>
</table>

Die geschätzten Parameter sind alle auf dem 95%-Niveau statistisch signifikant, die Mehrzahl auch auf dem 99%-Niveau, und haben die erwarteten Vorzeichen.

Interpretation der Ergebnisse Verkehrsmittelwahl

Im Grundmodell hat der Parameter des logarithmierten Einkommens im gesamten Zeitraum einen negativen Wert, der sich in den 30 Jahren der Untersuchungsperiode von -0.1 auf -0.2 verstärkt. Wenn aber auch die qualitätsadjustierten PW-Besitzkosten berücksichtigt werden, hat der Parameter des logarithmierten Einkommens in den Jahren 1970 uns 1980 einen positiven Wert (0.207 bzw. 0.073), um dann für die Jahre von 1990 bis 2000 negativ auszufallen.

Wie lassen sich die Resultate interpretieren?

Die PW-Besitzkosten liefern einen negativen Beitrag im gesamten Zeitraum, der von anfangs -0.063 auf -0.029 steigt, danach im Jahr 1990 mit -0.023 relativ konstant bleibt, um dann wieder auf -0.008 zu steigen. Somit nimmt der negative Nutzenbeitrag für die MIV-Wahl über die Zeit stark ab.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖV-Reisezeit</td>
<td>44.63</td>
<td>49.30</td>
<td>54.34</td>
<td>69.17</td>
</tr>
<tr>
<td>ÖV-Fahrpreis</td>
<td>26.54</td>
<td>17.88</td>
<td>10.80</td>
<td>10.38</td>
</tr>
<tr>
<td>Umsteigen</td>
<td>17.01</td>
<td>6.22</td>
<td>10.27</td>
<td>6.17</td>
</tr>
<tr>
<td>Intervall</td>
<td>11.82</td>
<td>26.59</td>
<td>24.60</td>
<td>14.29</td>
</tr>
</tbody>
</table>

Beim MIV ist der Beitrag der Reisezeit zum MIV-Nutzen viel kleiner als beim ÖV und beträgt rund 10%. Ein klarer zeitlicher Trend lässt sich nicht ableiten. Die MIV-Fahrpreis umfassen nur einen kleinen Beitrag und nehmen über die Zeit weniger stark ab als im ÖV. Der PW-Besitz hat anfangs einen Beitrag von 19.59%, der sich bis ins Jahr 1980 auf 40.98% verdoppelt,
danach nochmals auf 52.18% anwächst, um in den 90er Jahren recht konstant zu bleiben. Hier zeigt sich der grosse Einfluss des Mobilitätswerkzeugbesitzes auf die Verkehrsmittelwahl.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Reisezeit</td>
<td>8.59</td>
<td>13.98</td>
<td>10.35</td>
<td>11.32</td>
</tr>
<tr>
<td>MIV Fahrpreis</td>
<td>3.79</td>
<td>2.51</td>
<td>1.31</td>
<td>1.92</td>
</tr>
<tr>
<td>PW-Besitz</td>
<td>19.59</td>
<td>40.98</td>
<td>52.18</td>
<td>52.48</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>27.15</td>
<td>13.27</td>
<td>9.61</td>
<td>26.72</td>
</tr>
<tr>
<td>PW-Besitzkosten</td>
<td>40.88</td>
<td>31.77</td>
<td>26.56</td>
<td>7.56</td>
</tr>
</tbody>
</table>

Tabelle 33 Value of Travel Time Savings 1970 - 2000

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VTTS MIV (CHF/h)</td>
<td>10.11</td>
<td>22.86</td>
<td>39.11</td>
<td>39.45</td>
</tr>
<tr>
<td>VTTS ÖV (CHF/h)</td>
<td>3.55</td>
<td>6.03</td>
<td>12.94</td>
<td>15.57</td>
</tr>
<tr>
<td>Realer Stundenlohn (CHF/h)</td>
<td>22.56</td>
<td>27.68</td>
<td>29.64</td>
<td>30.40</td>
</tr>
<tr>
<td>Verhältnis Reisezeit MIV/ÖV</td>
<td>2.84</td>
<td>3.79</td>
<td>3.02</td>
<td>2.53</td>
</tr>
</tbody>
</table>

Abbildung 27 VTTS für den MIV und ÖV sowie realer Stundenlohn von 1970 bis 2000

ser als in anderen Schweizer VTTS-Studien. Diese Ergebnisse sind auf verschiedene Faktoren zurückzuführen.

Die Resultate für den VTTS zeigen, dass jene Arbeitnehmer, welche mit dem Auto zur Arbeit pendeln, einen höheren VTTS haben als die ÖV-Benutzer. Die grösste Zunahme des VTTS für den MIV erfolgte in den 70er Jahren, als das Nationalstrassennetz stark ausgebaut wurde. Der VTTS für den ÖV änderte sich am stärksten in den 80er Jahren (von 6.03 auf 12.94, was einer Verdoppelung entspricht), als der Taktfahrplan (Loeffel, Meiner und Wildener, 2002) in der Schweiz eingeführt wurde.

In der ÖV-Reisezeit ist auch die Zugangszeit enthalten, was aufgrund der Netzmodelle notwendig war. In vergleichbaren Studien wurden aber die Zugangszeit und die ÖV-Beförderungszeit (Zeitbedarf von Starthaltestelle zu Endhaltestelle) getrennt geschätzt und der VTTS für den ÖV mit dem Parameter für die ÖV-Beförderungszeit geschätzt. Daher ist der hier ermittelte VTTS-ÖV-Wert nicht direkt mit den VTTS-ÖV-Werten aus anderen Studien vergleichbar.

Die Modellspezifikationen berücksichtigen nicht die Veränderungen der Regelarbeitszeit und des Anteils der Teilzeitbeschäftigten, wobei anzunehmen ist, dass beide einen Einfluss auf den VTTS haben. Da leider keine entsprechenden disaggregierten Daten für den Untersuchungszeitraum vorliegen, konnten diese Effekte nicht in der Nutzenfunktion berücksichtigt werden.

Mackie, Jara-Diaz und Fowkes (2001) schreiben, dass die empirischen Beweise für die Entwicklung von VTTS-Werten über längere Zeiträume noch unklar („clouded“) sind, und daher kann als Näherung die Lohnrate für Arbeitsfahrten verwendet werden. Weiter kann erwartet werden, dass der Durchschnittswert für die eingesparte Arbeitszeit des Arbeitnehmers dem proportionalen Wachstum des Reallohns entspricht. Wenn das BIP pro Person zulegt, dann wächst die Lohnrate stärker bei gleichzeitig weniger Arbeitsstunden, dies wurde für längere Zeiträume beobachtet. Daher kann davon ausgegangen werden, dass der Wert für die gesparte Arbeitszeit für den Arbeitnehmer schneller wächst als das BIP.

Auf Gesamtschweizerniveau gibt es leicht unterschiedliche, aber durchaus vergleichbare Erhebungen der Wochenarbeitszeit (siehe Tabelle 34). Hier zeigt sich, dass die Arbeitszeit im 2. Sektor von 44.7 Stunden pro Woche im Jahr 1970 auf 41.5 im Jahr 2000 gefallen ist. Die Ent-

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wochenarbeitszeit 2. Sektor (h)</td>
<td>44.7</td>
<td>43.8</td>
<td>42.2</td>
<td>41.5</td>
</tr>
<tr>
<td>Wochenarbeitszeit 3. Sektor (h)</td>
<td>Kein Wert</td>
<td>43.5</td>
<td>42.3</td>
<td>41.9</td>
</tr>
<tr>
<td>Anteil Teilzeitbeschäftigte (%)</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>33</td>
</tr>
</tbody>
</table>

Quelle: BFS (2006a)

Zusammenfassend kann festgestellt werden, dass die VTTS-Schätzungen nicht unter gleichen Randbedingungen (Arbeitszeit, Anteil Teilzeiterwerbstätige) durchgeführt wurden und die Möglichkeit, diese Effekte zu kontrollieren, aufgrund fehlender Daten nicht vorhanden war. Die verwendeten aggregierten RP-Daten und ihre aus Netzmodellen abgeleiteten Attribute können sowohl von der Variation der Variablenwerte als auch vom Realitätsniveau her nicht mit SP-Befragungen aufgesetzt auf RP-Erhebungen verglichen werden. Auch liegt der Schwerpunkt der vorliegenden Studie nicht bei einer Untersuchung der langfristigen Veränderungen des VTTS.

Einige Grundtendenzen lassen sich aber durchaus feststellen:

- Der VTTS für den Arbeitspendlerverkehr wächst proportional bzw. überproportional mit der Reallohnentwicklung.
- Die Regelarbeitszeit und der Erwerbstätigkeitsgrad haben wahrscheinlich einen Einfluss auf den VTTS.
- Der MIV hat einen höheren VTTS als der ÖV.
Elastizität der Verkehrsmittelwahl

Tabelle 35 Verkehrsmittelwahl 1970 Elastizität (PWSE)

<table>
<thead>
<tr>
<th></th>
<th>Grundmodell</th>
<th>Mit PW-Besitzkosten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIV</td>
<td>ÖV</td>
</tr>
<tr>
<td>ÖV-Reisezeit</td>
<td>0.201</td>
<td>-0.301</td>
</tr>
<tr>
<td>Umsteigen</td>
<td>0.023</td>
<td>-0.034</td>
</tr>
<tr>
<td>Intervall</td>
<td>0.050</td>
<td>-0.075</td>
</tr>
<tr>
<td>ÖV-Fahrpreis</td>
<td>0.123</td>
<td>-0.184</td>
</tr>
<tr>
<td>MIV-Fahrpreis</td>
<td>-0.152</td>
<td>0.227</td>
</tr>
<tr>
<td>MIV-Reisezeit</td>
<td>-0.237</td>
<td>0.355</td>
</tr>
<tr>
<td>PW-Besitz</td>
<td>0.320</td>
<td>-0.479</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>-0.225</td>
<td>0.337</td>
</tr>
</tbody>
</table>
Tabelle 36 Verkehrsmittelwahl 1980 Elastizität (PWSE)

<table>
<thead>
<tr>
<th></th>
<th>Grundmodell</th>
<th></th>
<th>Mit PW-Besitzkosten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIV</td>
<td>ÖV</td>
<td>MIV</td>
<td>ÖV</td>
</tr>
<tr>
<td>ÖV-Reisezeit</td>
<td>0.127</td>
<td>-0.341</td>
<td>0.129</td>
<td>-0.347</td>
</tr>
<tr>
<td>Umsteigen</td>
<td>0.034</td>
<td>-0.092</td>
<td>0.034</td>
<td>-0.091</td>
</tr>
<tr>
<td>Intervall</td>
<td>0.062</td>
<td>-0.167</td>
<td>0.064</td>
<td>-0.172</td>
</tr>
<tr>
<td>ÖV-Fahrpreis</td>
<td>0.052</td>
<td>-0.139</td>
<td>0.049</td>
<td>-0.131</td>
</tr>
<tr>
<td>MIV-Fahrpreis</td>
<td>-0.067</td>
<td>0.180</td>
<td>-0.063</td>
<td>0.169</td>
</tr>
<tr>
<td>MIV-Reisezeit</td>
<td>-0.129</td>
<td>0.516</td>
<td>-0.196</td>
<td>0.527</td>
</tr>
<tr>
<td>PW-Besitz</td>
<td>0.322</td>
<td>-0.866</td>
<td>0.319</td>
<td>-0.859</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>-0.144</td>
<td>0.387</td>
<td>0.102</td>
<td>-0.274</td>
</tr>
</tbody>
</table>

Tabelle 37 Verkehrsmittelwahl 1990 Elastizität (PWSE)

<table>
<thead>
<tr>
<th></th>
<th>Grundmodell</th>
<th></th>
<th>Mit PW-Besitzkosten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIV</td>
<td>ÖV</td>
<td>MIV</td>
<td>ÖV</td>
</tr>
<tr>
<td>ÖV-Reisezeit</td>
<td>0.133</td>
<td>-0.357</td>
<td>0.135</td>
<td>-0.362</td>
</tr>
<tr>
<td>Umsteigen</td>
<td>0.045</td>
<td>-0.121</td>
<td>0.045</td>
<td>-0.120</td>
</tr>
<tr>
<td>Intervall</td>
<td>0.043</td>
<td>-0.117</td>
<td>0.045</td>
<td>-0.121</td>
</tr>
<tr>
<td>ÖV-Fahrpreis</td>
<td>0.030</td>
<td>-0.082</td>
<td>0.028</td>
<td>-0.075</td>
</tr>
<tr>
<td>MIV-Fahrpreis</td>
<td>-0.039</td>
<td>0.105</td>
<td>-0.036</td>
<td>0.096</td>
</tr>
<tr>
<td>MIV-Reisezeit</td>
<td>-0.175</td>
<td>0.472</td>
<td>-0.178</td>
<td>0.480</td>
</tr>
<tr>
<td>PW-Besitz</td>
<td>0.451</td>
<td>-1.215</td>
<td>0.448</td>
<td>-1.206</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>-0.306</td>
<td>0.825</td>
<td>-0.080</td>
<td>0.216</td>
</tr>
</tbody>
</table>

Die Elastizitätswerte für die Anzahl Umsteigevorgänge und Intervalle bleiben im gesamten Untersuchungszeitraum in einem engen Band. Die direkte Elastizität für die Anzahl Umsteigevorgänge steigt von 1970 auf 1980 massiv an, um danach konstant zu bleiben. Die Kreuzelastizität bleibt im gesamten Zeitraum im gleichen Bereich. Die Eigenelastizität für das Intervall wird (negativ) elastischer. Die Kreuzelastizität verringert sich von 0.06 auf 0.02.

Die Eigenelastizität für die ÖV-Fahrpreis halbiert sich zwischen 1970 und 2000, was eine Zunahme von -0.18 auf -0.10 bedeutet. Die Kreuzelastizität nimmt noch stärker ab. Die Eigenelastizitätswerte für die MIV-Fahrpreis verringern sich noch stärker als bei den ÖV-Fahrpreis. Die Kreuzelastizität verkleinert sich ebenfalls, aber weniger stark.

In Tabelle 39 werden die Elastizitätswerte aus dem Grundmodell 2000 mit den Werten aus der ICN-Studie (Vrtic et al., 2003) verglichen. Es zeigen sich insbesondere beim MIV stark divergierende Resultate, die auf folgende Gründe zurückzuführen sind:

- Die durchschnittliche Weglänge beträgt in der ICN-Studie 46 km und in der vorliegenden Arbeit 12 km. Da der Variablenwert in die Elastizitätsberechnung direkt einfließt, hat dies eine relativ starke Auswirkung.

- In der ICN-Studie wurden SP-Daten verwendet, womit eine größere Variabilität der Daten möglich ist als bei RP-Daten.

- In der ICN-Studie wurden die Elastizitätswerte mit der Naive-Pooling-Methode berechnet, welche größere Werte als die hier verwendete PWSE-Methode ergibt.

Tabelle 39 Verkehrsmittelwahl 2000 Elastizität mit Resultaten ICN-Studie

<table>
<thead>
<tr>
<th></th>
<th>Grundmodell (GM)</th>
<th>ICN</th>
<th>Variablenmittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIV</td>
<td>ÖV</td>
<td>MIV</td>
</tr>
<tr>
<td>ÖV-Reisezeit</td>
<td>0.170</td>
<td>-0.557</td>
<td>0.480</td>
</tr>
<tr>
<td>Umsteigen</td>
<td>0.024</td>
<td>-0.077</td>
<td>0.133</td>
</tr>
<tr>
<td>Intervall</td>
<td>0.023</td>
<td>-0.076</td>
<td>0.320</td>
</tr>
<tr>
<td>ÖV-Fahrpreis</td>
<td>0.030</td>
<td>-0.098</td>
<td>0.435</td>
</tr>
<tr>
<td>MIV-Fahrpreis</td>
<td>-0.046</td>
<td>0.152</td>
<td>-0.312</td>
</tr>
<tr>
<td>MIV-Reisezeit</td>
<td>-0.191</td>
<td>0.624</td>
<td>-0.665</td>
</tr>
</tbody>
</table>

Interpretation der Beziehungsparameter

Die Parameter sind auf dem 95%-Niveau signifikant und haben die erwarteten Vorzeichen. So ist der Einfluss auf den Nutzen der MIV-Wege in einer Großstadt bzw. innerhalb einer Großstadt negativ in der MIV-Nutzenfunktion der Verkehrsmittelwahl, was die Verkehrsverhältnisse, für welche nicht in der Nutzenfunktion kontrolliert ist, widerspiegelt. Andererseits ist der Beitrag zum MIV-Nutzen in den ländlichen Gebieten ein positiver.

Für die Beziehungen D12 (Grossstadt nach Agglomeration) und D13 (Grossstadt nach Mittel- und Kleinzentrum) ist der Nutzen im neutralen Bereich und ändert sich wenig über die Zeit. Einzig in den 90er Jahren ist für D12 eine Zunahme des negativen Nutzens für den MIV er-
kennbar. Für die Beziehungen D22 (Agglomeration nach Agglomeration) und D23 (Agglomeration nach Mittel- und Kleinzentrum) ist der Nutzenbeitrag für den MIV im positiven Bereich, wobei er für D22 über die Zeit geringer wird. Auch hier zeigen sich die Resultate der Verkehrspolitik in den Agglomerationen.

9.2 Zielwahl

In Tabelle 40 sind die Ergebnisse der Zielwahl zusammengefasst.
Tabelle 40 Resultate Zielwahl 1970-2000

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Quellbezirke</td>
<td>2'454</td>
<td>2'181</td>
<td>2'110</td>
<td>2'171</td>
</tr>
<tr>
<td>Anzahl Beobachtungen</td>
<td>53'772</td>
<td>72'196</td>
<td>104'270</td>
<td>132'989</td>
</tr>
<tr>
<td>Adj. Pseudo-R²</td>
<td>0.327810</td>
<td>0.296734</td>
<td>0.246827</td>
<td>0.229673</td>
</tr>
<tr>
<td>Log Likelihood Function</td>
<td>-2'120'200</td>
<td>-2'782'808</td>
<td>-3'886'808</td>
<td>-4'146'780</td>
</tr>
<tr>
<td>EMU VM</td>
<td>2.884</td>
<td>835.01</td>
<td>2.791</td>
<td>977.67</td>
</tr>
<tr>
<td>Ln Besch 2. Sektor</td>
<td>0.336</td>
<td>198.07</td>
<td>0.175</td>
<td>105.99</td>
</tr>
<tr>
<td>Ln Besch 3. Sektor</td>
<td>0.762</td>
<td>561.55</td>
<td>1.011</td>
<td>719.32</td>
</tr>
</tbody>
</table>

Bei der Anzahl Beobachtungen handelt es sich um die Anzahl angefahrener Ziele der jeweiligen Quellbezirke. Pro Quellbezirk sind maximal 100 Ziele im Alternativensatz enthalten, da dies die Begrenzung der Software NLOGIT (Greene, 2002) ist. Falls mehr als 100 Ziele von einem Quellbezirk angefahren werden, wurden aus dieser Menge 100 Zielbezirke zufällig gezogen.

Im Jahr 1970 enthält der Datensatz 2'454 Quellbezirke und in den nachfolgenden Jahren um 2'150. Die Anzahl der Beobachtungen erhöht sich aber stark, da die Verkehrsbeziehungen über die Zeit disperser werden.

Interpretation Zielwahl:

Der Parameter für den erwarteten maximalen Nutzen (EMU) ist positiv für alle Jahre, was folgendermassen interpretiert werden kann: Eine gute Verkehrsverbindung zwischen Quell- und Zielgemeinde erhöht die Auswahlwahrscheinlichkeit des Ziels. Der Parameter bleibt von 1970 bis 1990 um 2.90. Im Jahr 2000 verringert sich der Wert des Parameters auf 2.47, was bedeutet, dass das Gewicht des Verkehrssystems in der Nutzenfunktion gegenüber den vorangegangenen
Jahren abnimmt. Es sei darauf hingewiesen, dass der Parameter des EMU nicht mit dem Skalierungsparameter des NL-Modells zu vergleichen ist (Hensher, Rose und Greene, 2005).

Die Elastizität wird je Alternative berechnet (vergleiche Kapitel 4.4). Da bei der Zielwahl die Alternativenmenge (mögliche Ziele) wechselt, also die Alternative 1 für die Quellzone X eine andere ist als für Quellzone Y, ist die Berechnung der Elastizitätswerte sowie des Prognosemasses nicht zielführend.

9.3 Schätzung des Auspendleranteils

Die Ergebnisse für die Schätzung des Auspendleranteils der Erwerbstätigen mit dem Probit-Ansatz sind in Tabelle 41 dargestellt.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Beobachtungen</td>
<td>2'452</td>
</tr>
<tr>
<td>Prognosemass (%)</td>
<td>41.415</td>
</tr>
<tr>
<td>EMU Zielwahl</td>
<td>0.393</td>
</tr>
<tr>
<td>Anteil Frauen an Erwerbstätigen</td>
<td>-2.127</td>
</tr>
<tr>
<td>Rel. Sekundarst. I</td>
<td>-0.805</td>
</tr>
<tr>
<td>Rel. Sekundarst. II</td>
<td>-0.350</td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>-0.034</td>
</tr>
<tr>
<td>Beschäftigte 2.S. zu Erwerbstätige</td>
<td>-0.069</td>
</tr>
<tr>
<td>Beschäftigte 3.S. zu Erwerbstätige</td>
<td>-0.055</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>-0.657</td>
</tr>
<tr>
<td>Raumtyp 1</td>
<td>0.151</td>
</tr>
<tr>
<td>Raumtyp 2</td>
<td>-0.421</td>
</tr>
<tr>
<td>Raumtyp 3</td>
<td>0.001</td>
</tr>
<tr>
<td>Raumtyp 4</td>
<td>0.124</td>
</tr>
<tr>
<td>Raumtyp 5</td>
<td>-0.668</td>
</tr>
<tr>
<td>Raumtyp 6</td>
<td>-0.090</td>
</tr>
<tr>
<td>Raumtyp 7</td>
<td>0.053</td>
</tr>
<tr>
<td>Raumtyp 8</td>
<td>-0.398</td>
</tr>
<tr>
<td>Raumtyp 9</td>
<td>0.286</td>
</tr>
<tr>
<td>Raumtyp 10</td>
<td>-0.017</td>
</tr>
<tr>
<td>Raumtyp 11</td>
<td>0.263</td>
</tr>
<tr>
<td>Raumtyp 12</td>
<td>0.527</td>
</tr>
<tr>
<td>Raumtyp 13</td>
<td>0.189</td>
</tr>
<tr>
<td>Konstante</td>
<td>0.443</td>
</tr>
</tbody>
</table>

Der Parameter für den EMU der Zielwahl, unter Annahme eines identen Skalierungsparameters zu den verschiedenen Untersuchungszeitpunkten, ist positiv über den ganzen Untersuchungszeitraum. Da der erwartete maximale Nutzen (EMU) auch als Mass für die Erreichbarkeit in-
interpretiert werden kann, heisst das, dass die Nachfrage auf mehr Erreichbarkeit positiv elastisch reagiert. Der Parameter verringert sich von 0.39 im Jahr 1970, auf 0.34 im Jahr 1980 und 0.28 im Jahr 1990, um danach im Jahr 2000 den Wert von 0.28 anzunehmen. Die Nachfragereaktion auf die Erreichbarkeit verringert sich über die Zeit.

Der Anteil der erwerbstätigen Frauen hat für alle Zeitpunkte ein negatives Vorzeichen, was dahingehend interpretiert werden kann, dass Frauen auch andere Verpflichtungen (z.B. Familie etc.) haben und daher mehr an die Wohnzone gebunden sind. Interessanterweise wird der Parameter zwischen 1980 und 2000 negativer, was mit der Zunahme der erwerbstätigen Frauen zu erklären ist, wobei anzunehmen ist, dass der Anteil von Frauen mit Verpflichtungen mit der steigenden Frauenbeschäftigung überproportional steigt.

Bei den effektkodierten Kategorievariablen für die Raumtypen der Zonen zeigen die Parameter plausible Resultate und sind bis auf eine Ausnahme (D3 im Jahr 1970) signifikant. Der Parameter für die Grosszentren (D1) ist positiv; in Grossstädten wohnende Erwerbstätige verlassen relativ zum Schweizer Mittel wahrscheinlicher ihre Wohnzone für den Arbeitsweg – mit einer zunehmenden Tendenz über die Zeit. Dabei ist zu beachten, dass die Zonen bei den Grosszentren (Grossstädte) dem Stadtkreisniveau (z.B. Stadt Zürich: 12 Stadtkreise) entsprechen und nicht das ganze Stadtgebiet umfassen.

Bei Gemeindetyp 6 (Suburbane Gemeinden der Mittelzentren) dreht der Parameter von anfangs leicht negativ auf leicht positiv. Die periurbanen Gemeinden der Mittelzentren (Typ 7) haben einen leicht positiven Parameter. Ähnlich konstant ist die Entwicklung bei den Kleinzentren (Typ 8, wie z.B. Lyss oder Langenthal), mit konstant stark negativen Parametern. Hier zeigen die Kleinzentren eine andere Entwicklung als die Mittelzentren bzw. Nebenzentren der Grosszentren, wo die Parameter einen klaren Trend zeigen.

Beim Gemeindetyp 9, den nicht-städtischen Wegpendlergemeinden, nimmt der anfangs stark positive Parameter mit der Zeit ab, bleibt aber positiv. Der Gemeindetyp 10 (industrielle und tertiäre Gemeinden) hat einen leicht negativen Parameter mit leicht fallender Tendenz.

Abbildung 29 Auspendleranteil Fehlerrate Probit-Modell 1970

Abbildung 30 Auspendleranteil Fehlerrate Probit-Modell 1980
Abbildung 31 Auspendleranteil Fehlerrate Probit-Modell 1990

Abbildung 32 Auspendleranteil Fehlerrate Probit-Modell 2000
Um die Verlässlichkeit des Probit-Modells zur Schätzung des Auspendleranteils zu prüfen, wurde der Auspendleranteil auch mit dem linearen Regressionsansatz berechnet. Dabei wurde sowohl ein relater Ansatz, also die abhängige Variable ist der Prozentsatz der Auspendler von der Gesamtzahl der Erwerbstätigen einer Zone, also auch ein absoluter Ansatz mit Anzahl Auspendler als abhängige und die Gesamtzahl der Erwerbstätigen ist eine der unabhängigen Variablen verwendet.

Tabelle 42 Resultate Auspendleranteil 1970-2000: Relative Lineare Regression

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Beobachtungen</td>
<td>2452</td>
<td>2178</td>
<td>2110</td>
<td>2171</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.908</td>
<td>0.935</td>
<td>0.960</td>
<td>0.976</td>
</tr>
</tbody>
</table>

EMU Zielwahl
-0.134 -3.95 -0.202 -5.42 -0.201 -4.59 0.000 0.00

Anteil Frauen an Erwerbstätigen
0.036 0.95 0.102 1.90 0.148 4.52 -0.056 1.26

Rel. Sekundarst. I
0.036 0.95 0.102 1.90 0.148 4.52 -0.056 1.26

Rel. Sekundarst. II
-0.157 -5.32 0.043 0.84 0.119 2.17 0.047 1.26

Rel. Tertiärstufe
0.048 2.71 0.098 5.00 0.151 7.26 0.106 6.25

Beschäftigte 2.Sek. zu Erwerbstätige
-0.005 -0.087 0.001 0.23 -0.057 -8.55 -0.030 -5.84

Beschäftigte 3.Sek. zu Erwerbstätige
0.000 -0.05 -0.023 -2.91 -0.027 -4.44 -0.002 -0.47

Ln Einkommen
-0.097 -1.02 -0.362 -2.69 -0.329 -2.77 -0.283 -2.98

Raumtyp 1
0.041 3.48 0.050 4.64 0.051 6.09 0.020 3.03

Raumtyp 2
-0.034 -2.75 -0.021 -1.90 -0.011 -1.22 0.002 0.28

Raumtyp 3
0.062 7.09 0.044 5.37 0.031 4.98 0.028 5.84

Raumtyp 4
0.080 9.80 0.069 8.84 0.053 8.69 0.041 8.71

Raumtyp 5
-0.125 -11.12 -0.111 -11.19 -0.080 -10.34 -0.064 -10.43

Raumtyp 6
-0.013 -1.55 0.000 0.04 0.005 0.85 0.014 2.95

Raumtyp 7
0.073 9.24 0.063 8.90 0.047 8.30 0.047 10.95

Raumtyp 8
-0.103 -9.39 -0.099 -10.17 -0.079 -10.55 -0.062 -10.32

Raumtyp 9
0.103 12.49 0.103 13.63 0.069 11.67 0.058 12.59

Raumtyp 10
-0.040 -5.02 -0.036 -5.02 -0.010 -1.87 -0.010 -2.23

Raumtyp 11
0.046 5.48 0.042 5.47 0.027 4.56 0.035 7.61

Raumtyp 12
0.074 8.37 0.063 7.69 0.038 6.06 0.037 7.82

Raumtyp 13
-0.061 -0.167 -0.384 -0.146

Tabelle 43 Resultate Auspendleranteil 1970-2000: Absolute Lineare Regression

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Beobachtungen</td>
<td>2452</td>
<td>2178</td>
<td>2110</td>
<td>2171</td>
</tr>
<tr>
<td>Adj. R2</td>
<td>0.814</td>
<td>0.854</td>
<td>0.896</td>
<td>0.932</td>
</tr>
<tr>
<td>Erwerbstätige</td>
<td>0.571</td>
<td>0.611</td>
<td>0.652</td>
<td>0.801</td>
</tr>
<tr>
<td></td>
<td>73.63</td>
<td>73.63</td>
<td>73.63</td>
<td>73.63</td>
</tr>
<tr>
<td>EMU Zielwahl</td>
<td>0.313</td>
<td>0.415</td>
<td>0.381</td>
<td>0.336</td>
</tr>
<tr>
<td></td>
<td>3.81</td>
<td>3.81</td>
<td>3.81</td>
<td>3.81</td>
</tr>
<tr>
<td>Anteil Frauen an Erwerbstätigen</td>
<td>0.018</td>
<td>0.38</td>
<td>0.104</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>2.02</td>
<td>-0.204</td>
<td>-0.30</td>
<td>-0.30</td>
</tr>
<tr>
<td>Rel. Sekundarst. I</td>
<td>-0.093</td>
<td>-0.094</td>
<td>-0.18</td>
<td>-0.054</td>
</tr>
<tr>
<td></td>
<td>-1.02</td>
<td>-1.02</td>
<td>-1.15</td>
<td>-1.15</td>
</tr>
<tr>
<td>Rel. Sekundarst. II</td>
<td>0.055</td>
<td>0.116</td>
<td>0.172</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>-1.94</td>
<td>-1.94</td>
<td>-1.94</td>
<td>-1.94</td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>-0.023</td>
<td>-0.09</td>
<td>0.043</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>-0.035</td>
<td>-1.21</td>
<td>-1.21</td>
</tr>
<tr>
<td>Beschäftigte 2.Sek. zu Erwerbstätige</td>
<td>-0.001</td>
<td>0.003</td>
<td>-0.34</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>-1.79</td>
<td>-1.79</td>
<td>-1.79</td>
<td>-1.79</td>
</tr>
<tr>
<td>Beschäftigte 3.Sek. zu Erwerbstätige</td>
<td>-0.087</td>
<td>-0.121</td>
<td>-0.68</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>-10.30</td>
<td>-10.30</td>
<td>-10.30</td>
<td>-10.30</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>0.053</td>
<td>0.39</td>
<td>0.037</td>
<td>0.18</td>
</tr>
<tr>
<td>Raumtyp 1</td>
<td>0.216</td>
<td>0.216</td>
<td>0.216</td>
<td>0.071</td>
</tr>
<tr>
<td>Raumtyp 2</td>
<td>0.053</td>
<td>0.39</td>
<td>0.037</td>
<td>0.18</td>
</tr>
<tr>
<td>Raumtyp 3</td>
<td>-0.004</td>
<td>-0.03</td>
<td>0.043</td>
<td>3.47</td>
</tr>
<tr>
<td>Raumtyp 4</td>
<td>-0.089</td>
<td>-0.083</td>
<td>-0.069</td>
<td>-0.121</td>
</tr>
<tr>
<td>Raumtyp 5</td>
<td>-0.247</td>
<td>-0.205</td>
<td>-0.131</td>
<td>-0.137</td>
</tr>
<tr>
<td>Raumtyp 6</td>
<td>-0.059</td>
<td>-0.044</td>
<td>-0.032</td>
<td>-0.325</td>
</tr>
<tr>
<td>Raumtyp 7</td>
<td>-0.102</td>
<td>-0.103</td>
<td>-0.102</td>
<td>-0.039</td>
</tr>
<tr>
<td>Raumtyp 8</td>
<td>-0.103</td>
<td>-0.014</td>
<td>-0.087</td>
<td>-0.71</td>
</tr>
<tr>
<td>Raumtyp 9</td>
<td>-0.113</td>
<td>-0.132</td>
<td>-0.143</td>
<td>-1.233</td>
</tr>
<tr>
<td>Raumtyp 10</td>
<td>-0.102</td>
<td>0.0115</td>
<td>-0.113</td>
<td>-1.13</td>
</tr>
<tr>
<td>Raumtyp 11</td>
<td>-0.113</td>
<td>-0.132</td>
<td>-0.150</td>
<td>-1.299</td>
</tr>
<tr>
<td>Raumtyp 12</td>
<td>-0.068</td>
<td>-0.087</td>
<td>-0.108</td>
<td>-0.951</td>
</tr>
<tr>
<td>Raumtyp 13</td>
<td>0.227</td>
<td>0.216</td>
<td>0.216</td>
<td>0.071</td>
</tr>
</tbody>
</table>

Der Parameter für die EMU der Zielwahl ist positiv und signifikant, ein zeitlicher Trend lässt sich aber nicht ableiten. Die Parameter für den Anteil der Frauen an den Erwerbstätigen, die Bildungsvariablen, die Beschäftigten im 2. Sektor im Verhältnis zu den Erwerbstätigen und das logarithmierte Einkommen pro Tag sind meist nicht signifikant, und daher kann dazu keine

Bei den Raumtypen-Parametern sind nur zwei Parameter nicht signifikant, aber bei den meisten Raumtypen stimmen die Vorzeichen mit dem vorangegangenen Modell überein. Klare zeitliche Trends können aber nicht festgestellt werden.

Zusammenfassung Auspendleranteil

Bei der Schätzung des Anteils der Auspendler an allen Erwerbstätigen einer Zone bringt der Probit-Ansatz die plausibelsten Resultate. Die geschätzten Parameter für den EMU der Zielwahl, welche auch als Erreichbarkeit interpretiert werden können, zeigen, dass die Nachfrage gemessen in Anzahl Auspendler positiv elastisch reagiert, aber mit abnehmender Tendenz. So nimmt der Grenznutzen von Infrastrukturprojekten, welche zu Erreichbarkeitsverbesserungen führen, über die Zeit ab.

10 Schlussfolgerungen

Bei bisherigen Untersuchungen wurde die Fragestellung zu den langfristigen Verhaltensänderungen mit aggregierten Datensätzen meist aus dem Blickwinkel des angebotsinduzierten Verkehrs betrachtet. Die Motivation für die Arbeit war, die langfristigen Entwicklungen in Verkehrsangebot und -nachfrage auf disaggregiertem Niveau durchzuführen, um folgende Fragestellungen näher zu untersuchen:

- Wie lassen sich die Veränderung des Verkehrsangebots für den MIV und ÖV für den Zeitraum modellmässig abbilden und die Ergebnisse deskriptiv beschreiben?
- Wie wirken die unterschiedlichen verkehrlichen und sozioökonomischen Variablen bei der Verkehrsmittelwahl, Zielwahl und beim Anteil der Auspendler in den verschiedenen Jahren?
- Welche Schlussfolgerungen sind aus der zeitlichen Entwicklung der Modellresultate zu ziehen?

Dieses Kapitel fasst die Ergebnisse und Erkenntnisse im Hinblick auf die Fragestellung zusammen. Im anschliessenden Unterkapitel 10.1 wird die erste Fragestellung behandelt. Im Unterkapitel 10.2 werden die in Kapitel 3 formulierten Hypothesen mit den Resultaten aus den Schätzmodellen untersucht. Unterkapitel 10.3 diskutiert die Ergebnisse in einem breiten Kontext und leitet Schlussfolgerungen ab. Im abschliessenden Unterkapitel 10.4 wird der Forschungsbedarf aufgrund der bei der Arbeit gewonnenen Erfahrungen formuliert.
10.1 Deskriptive Beschreibung der Veränderungen im Arbeitspendler

Die deskriptive Analyse der Angebots- und Nachfragedaten bezüglich der nachfragegewichteten Medianwerte der Reiseweite, -zeit und -geschwindigkeit für den interzonalen Arbeitspendlerverkehr zeigt:

- Im ÖV stieg die Reiseweite von 9.9 km im Jahr 1970 auf 12.3 km im Jahr 2000, daher unterproportional zum MIV.

- Die Reisezeit im MIV ist weit geringer als beim ÖV. Sie steigt von 12.2 min im Jahr 1970 auf 15.5 min im Jahr 2000, was einem Zuwachs von rund 25% entspricht.

- Im ÖV steigert sich die Reisezeit von 36.8 min im Jahr 1970 auf 39.2 min im Jahr 2000, wobei die Zuwächse hauptsächlich in den 90er Jahren auftreten. Insgesamt ergibt sich eine Steigerung von 6.5%, was im Vergleich zum MIV wiederum unterdurchschnittlich ist.

- Die Reisegeschwindigkeit im MIV erhöht sich von 30.1 km/h im Jahr 1970 auf 38.8 km/h im Jahr 1980, danach folgen 43.1 km/h im Jahr 1990 und 48.0 km/h im Jahr 2000. Über den gesamten Zeitraum hat sich die Reisegeschwindigkeit im MIV um mehr als 50% erhöht.

- Beim ÖV war die Reisegeschwindigkeit im Jahr 1970 16.0 km/h, um danach auf 16.7 km/h im Jahr 1980 anzusteigen. Im Jahr 1990 betrug sie 18.5 km/h und für das Jahr 2000 wurden 21.5 km/h ermittelt. Im ÖV ergibt sich somit eine Erhöhung im gesamten Zeitraum von 34%.

Zusammenfassend lässt sich festhalten, dass beim MIV die grössten Veränderungen bei den Angebotskennzahlen während der 70er Jahre auftraten, als ein Grossteil des Nationalstrassenetzes fertig gestellt wurde. Beim ÖV sind die grossen Veränderungen sowohl in den 80er als auch in den 90er Jahren festzustellen, als grosse Angebotsverbesserungen auf der Schiene realisiert wurden.

10.2 Überprüfung der Hypothesen

Die in Kapitel 3 formulierten Hypothesen werden nun auf ihre Gültigkeit hin überprüft.

Die Grundhypothese lautet, dass die interzionale Nachfrage, gemessen an der Anzahl der Auspendler mit MIV und ÖV von allen Erwerbstätigen, positiv elastisch auf Erreichbarkeit reagiert, über die Zeit aber mit abnehmender Tendenz.

Die Teilhypothese 1 lautet, dass die Parameter und Elastizitäten der Verkehrsmittelwahl sich im untersuchten Zeitraum verändern, wobei die Gewichtung bzw. Elastizität der monetären Variablen abnimmt.

10.3 Die Resultate im gesellschaftlichen Kontext

Höhere Bildung dagegen fördert das Auspendeln, da Erwerbstätige mit tertiären Bildungsabschluss spezifischere Arbeitsplätze suchen, die oft nicht im näheren Wohnumfeld vorhanden sind. Eine höhere Frauenerwerbstätigkeit hat einen negativen Einfluss auf das Auspendeln, da hier oft auch andere Verpflichtungen, wie z.B. Familie bestehen, welche die Erwerbstätigkeit stärker an die Wohnzone binden.

Mittel- und Kleinzentren haben einen negativen, Gross- und Nebenzentren sowie die zugehörigen Agglomerations einen positiven Einfluss auf das Auspendeln. Für die Raumplanung ergibt sich daraus der Hinweis, dass wenn für die Erreichbarkeit und soziodemografische Variablen kontrolliert wird, der Siedlungstyp einen signifikanten Einfluss auf das Auspendeln hat.
10.4 Weiterer Forschungsbedarf

Ausbaufähig ist auch die Kombination der diskreten Entscheidungsmodelle mit Methoden der Zeitreihenanalyse, um eine gemeinsame Schätzung der verschiedenen Untersuchungszeitpunkte durchführen zu können. Dies könnte zusätzliche interessante Erkenntnisse über die zeitliche Entwicklung im Verkehrsverhalten der Arbeitspendler ergeben.

11 Literatur

BFS (2006a) Teilzeitarbeit in der Schweiz, BFS aktuell, Neuchâtel.

Holder, R. und V. Stover (1972) *An Evaluation of Induced Traffic on New Highway Facilities*, Texas Transportation Institute, Texas A&M University, College Park.

Koppelmann, F. (1972) Preliminary study for development of a macro urban travel demand model, Transportation System Division, Department of Civil Engineering, MIT, Cambridge.

Anhänge

Anhang 1: Verkehrsmittelwahl: Deskriptive Statistik und Korrelationen der Variablen

Tabelle A1 Deskriptive Statistik (gewichtet): Verkehrsmittelwahl 1970

<table>
<thead>
<tr>
<th>Variable</th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Fahrweite (km)</td>
<td>9.019</td>
<td>9.901</td>
<td>1.000</td>
<td>276.000</td>
</tr>
<tr>
<td>MIV Reisezeit (h)</td>
<td>0.235</td>
<td>0.166</td>
<td>0.030</td>
<td>3.750</td>
</tr>
<tr>
<td>MIV Fahrpreis (CHF)</td>
<td>1.048</td>
<td>1.164</td>
<td>0.098</td>
<td>32.443</td>
</tr>
<tr>
<td>PW Besitzkosten (CHF)</td>
<td>29.440</td>
<td>0.000</td>
<td>29.440</td>
<td>29.440</td>
</tr>
<tr>
<td>PW / Führerausweis</td>
<td>0.562</td>
<td>0.111</td>
<td>0.060</td>
<td>1.000</td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>5.956</td>
<td>0.169</td>
<td>5.246</td>
<td>7.329</td>
</tr>
<tr>
<td>Einkommen (CHF)</td>
<td>392.079</td>
<td>77.346</td>
<td>189.818</td>
<td>1524.114</td>
</tr>
<tr>
<td>ÖV Fahrweite (km)</td>
<td>12.431</td>
<td>11.429</td>
<td>0.000</td>
<td>321.000</td>
</tr>
<tr>
<td>ÖV Reisezeit (h)</td>
<td>0.635</td>
<td>0.328</td>
<td>0.070</td>
<td>6.490</td>
</tr>
<tr>
<td>ÖV Fahrpreis (CHF)</td>
<td>1.344</td>
<td>0.588</td>
<td>0.795</td>
<td>20.844</td>
</tr>
<tr>
<td>ÖV Intervall (h)</td>
<td>0.950</td>
<td>0.771</td>
<td>0.060</td>
<td>3.930</td>
</tr>
<tr>
<td>ÖV Anzahl Umsteigen (-)</td>
<td>0.136</td>
<td>0.360</td>
<td>0.000</td>
<td>4.000</td>
</tr>
</tbody>
</table>
Tabelle A2 Deskriptive Statistik (gewichtet): Verkehrsmittelwahl 1980

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Fahrweite (km)</td>
<td>10.962</td>
<td>11.769</td>
<td>1.000</td>
<td>202.000</td>
</tr>
<tr>
<td>MIV Reisezeit (h)</td>
<td>0.246</td>
<td>0.155</td>
<td>0.030</td>
<td>2.660</td>
</tr>
<tr>
<td>MIV Fahrpreis (CHF)</td>
<td>1.014</td>
<td>1.093</td>
<td>0.090</td>
<td>18.760</td>
</tr>
<tr>
<td>PW Besitzkosten (CHF)</td>
<td>35.410</td>
<td>0.000</td>
<td>35.410</td>
<td>35.410</td>
</tr>
<tr>
<td>PW / Führerausweis</td>
<td>0.773</td>
<td>0.105</td>
<td>0.080</td>
<td>1.000</td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>5.881</td>
<td>0.145</td>
<td>5.095</td>
<td>6.737</td>
</tr>
<tr>
<td>Einkommen (CHF)</td>
<td>362.273</td>
<td>57.652</td>
<td>163.211</td>
<td>843.397</td>
</tr>
<tr>
<td>ÖV Fahrweite (km)</td>
<td>14.196</td>
<td>13.785</td>
<td>1.000</td>
<td>253.000</td>
</tr>
<tr>
<td>ÖV Reisezeit (h)</td>
<td>0.654</td>
<td>0.358</td>
<td>0.070</td>
<td>5.170</td>
</tr>
<tr>
<td>ÖV Fahrpreis (CHF)</td>
<td>1.438</td>
<td>0.722</td>
<td>0.795</td>
<td>16.434</td>
</tr>
<tr>
<td>ÖV Intervall (h)</td>
<td>0.908</td>
<td>0.709</td>
<td>0.060</td>
<td>3.930</td>
</tr>
<tr>
<td>ÖV Anzahl Umsteigen (-)</td>
<td>0.151</td>
<td>0.395</td>
<td>0.000</td>
<td>4.000</td>
</tr>
</tbody>
</table>

Tabelle A3 Deskriptive Statistik (gewichtet): Verkehrsmittelwahl 1990

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Fahrweite (km)</td>
<td>13.565</td>
<td>17.245</td>
<td>1.000</td>
<td>409.000</td>
</tr>
<tr>
<td>MIV Reisezeit (h)</td>
<td>0.267</td>
<td>0.195</td>
<td>0.030</td>
<td>3.960</td>
</tr>
<tr>
<td>MIV Fahrpreis (CHF)</td>
<td>1.300</td>
<td>1.658</td>
<td>0.090</td>
<td>39.320</td>
</tr>
<tr>
<td>PW Besitzkosten (CHF)</td>
<td>40.950</td>
<td>0.000</td>
<td>40.950</td>
<td>40.950</td>
</tr>
<tr>
<td>PW / Führerausweis</td>
<td>0.774</td>
<td>0.111</td>
<td>0.050</td>
<td>1.000</td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>5.880</td>
<td>0.149</td>
<td>5.063</td>
<td>6.721</td>
</tr>
<tr>
<td>Einkommen (CHF)</td>
<td>362.138</td>
<td>60.789</td>
<td>158.032</td>
<td>829.449</td>
</tr>
<tr>
<td>ÖV Fahrweite (km)</td>
<td>17.122</td>
<td>20.062</td>
<td>1.000</td>
<td>486.000</td>
</tr>
<tr>
<td>ÖV Reisezeit (h)</td>
<td>0.675</td>
<td>0.401</td>
<td>0.060</td>
<td>6.990</td>
</tr>
<tr>
<td>ÖV Fahrpreis (CHF)</td>
<td>1.598</td>
<td>1.136</td>
<td>0.800</td>
<td>31.438</td>
</tr>
<tr>
<td>ÖV Intervall (h)</td>
<td>0.718</td>
<td>0.548</td>
<td>0.060</td>
<td>3.930</td>
</tr>
<tr>
<td>ÖV Anzahl Umsteigen (-)</td>
<td>0.219</td>
<td>0.469</td>
<td>0.000</td>
<td>4.000</td>
</tr>
</tbody>
</table>
Tabelle A5 Deskriptive Statistik (gewichtet): Verkehrsmittelwahl 2000

<table>
<thead>
<tr>
<th>Verkehrsmittel</th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Fahrweite (km)</td>
<td>16.406</td>
<td>19.244</td>
<td>1.000</td>
<td>396.000</td>
</tr>
<tr>
<td>MIV Reisezeit (h)</td>
<td>0.296</td>
<td>0.213</td>
<td>0.030</td>
<td>3.910</td>
</tr>
<tr>
<td>MIV Fahrpreis (CHF)</td>
<td>1.995</td>
<td>2.347</td>
<td>0.120</td>
<td>48.290</td>
</tr>
<tr>
<td>PW Besitzkosten (CHF)</td>
<td>39.320</td>
<td>0.000</td>
<td>39.320</td>
<td>39.320</td>
</tr>
<tr>
<td>PW / Führerausweis</td>
<td>0.7647</td>
<td>0.121</td>
<td>0.070</td>
<td>0.990</td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>5.803</td>
<td>0.169</td>
<td>5.226</td>
<td>6.802</td>
</tr>
<tr>
<td>Einkommen (CHF)</td>
<td>336.745</td>
<td>68.563</td>
<td>186.010</td>
<td>899.890</td>
</tr>
<tr>
<td>ÖV Fahrweite (km)</td>
<td>19.760</td>
<td>21.835</td>
<td>1.000</td>
<td>448.000</td>
</tr>
<tr>
<td>ÖV Reisezeit (h)</td>
<td>0.7317</td>
<td>0.456</td>
<td>0.030</td>
<td>6.960</td>
</tr>
<tr>
<td>ÖV Fahrpreis (CHF)</td>
<td>1.732</td>
<td>1.235</td>
<td>0.030</td>
<td>29.120</td>
</tr>
<tr>
<td>ÖV Intervall (h)</td>
<td>0.901</td>
<td>0.601</td>
<td>0.000</td>
<td>3.930</td>
</tr>
<tr>
<td>ÖV Anzahl Umsteigen (-)</td>
<td>0.294</td>
<td>0.532</td>
<td>0.000</td>
<td>4.000</td>
</tr>
</tbody>
</table>

Tabelle A6 Korrelation: Verkehrsmittelwahl 1970

<table>
<thead>
<tr>
<th>Verkehrsmittel</th>
<th>MIV Fahrweite</th>
<th>MIV Reisezeit</th>
<th>MIV Fahrpreis</th>
<th>PW Besitzkosten</th>
<th>PW / Führerausweis</th>
<th>Ln (Einkommen)</th>
<th>ÖV Fahrweite</th>
<th>ÖV Reisezeit</th>
<th>ÖV Fahrpreis</th>
<th>ÖV Intervall</th>
<th>ÖV Umsteigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Fahrweite</td>
<td>1.00</td>
<td>0.96</td>
<td>1.00</td>
<td>0.57</td>
<td>-0.15</td>
<td>-0.16</td>
<td>0.92</td>
<td>0.79</td>
<td>0.92</td>
<td>0.47</td>
<td>0.57</td>
</tr>
<tr>
<td>MIV Reisezeit</td>
<td>1.00</td>
<td>0.96</td>
<td>0.52</td>
<td>-0.12</td>
<td>-0.08</td>
<td>0.88</td>
<td>0.76</td>
<td>0.87</td>
<td>0.41</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>MIV Fahrpreis</td>
<td>1.00</td>
<td>0.57</td>
<td>0.92</td>
<td>-0.16</td>
<td>0.92</td>
<td>0.79</td>
<td>0.92</td>
<td>0.47</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW Besitzkosten</td>
<td>1.00</td>
<td>-0.19</td>
<td>0.58</td>
<td>-0.38</td>
<td>0.59</td>
<td>0.54</td>
<td>0.71</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW/Führerausweis</td>
<td>1.00</td>
<td>0.44</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-0.20</td>
<td>-0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>1.00</td>
<td>-0.23</td>
<td>-0.26</td>
<td>-0.20</td>
<td>-0.39</td>
<td>-0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrweite</td>
<td>1.00</td>
<td>0.92</td>
<td>0.99</td>
<td>0.51</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Reisezeit</td>
<td>1.00</td>
<td>0.90</td>
<td>0.53</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrpreis</td>
<td>1.00</td>
<td>0.48</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Intervall</td>
<td>1.00</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Umsteigen</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>
Tabelle A7 Korrelation: Verkehrsmittelwahl 1980

<table>
<thead>
<tr>
<th></th>
<th>MIV Fahrweite</th>
<th>MIV Reisezeit</th>
<th>MIV Fahrpreis</th>
<th>PW Besitzkosten</th>
<th>PW/Führerausweis</th>
<th>Ln(Einkommen)</th>
<th>ÖV Fahrweite</th>
<th>ÖV Reisezeit</th>
<th>ÖV Fahrpreis</th>
<th>ÖV Intervall</th>
<th>ÖV Umsteigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Fahrweite</td>
<td>1.00</td>
<td>0.96</td>
<td>1.00</td>
<td>0.58</td>
<td>0.02</td>
<td>-0.14</td>
<td>0.93</td>
<td>0.82</td>
<td>0.93</td>
<td>0.42</td>
<td>0.54</td>
</tr>
<tr>
<td>MIV Reisezeit</td>
<td>1.00</td>
<td>0.96</td>
<td>0.54</td>
<td>0.03</td>
<td>-0.08</td>
<td>0.89</td>
<td>0.80</td>
<td>0.89</td>
<td>0.38</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>MIV Fahrpreis</td>
<td>1.00</td>
<td>0.58</td>
<td>0.02</td>
<td>-0.14</td>
<td>0.93</td>
<td>0.82</td>
<td>0.93</td>
<td>0.42</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW Besitzkosten</td>
<td>1.00</td>
<td>0.14</td>
<td>-0.37</td>
<td>0.61</td>
<td>0.64</td>
<td>0.57</td>
<td>0.64</td>
<td>0.57</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW/Führerausweis</td>
<td>1.00</td>
<td>0.14</td>
<td>0.04</td>
<td>0.08</td>
<td>0.03</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>1.00</td>
<td>-0.20</td>
<td>-0.24</td>
<td>-0.18</td>
<td>-0.35</td>
<td>-0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrweite</td>
<td>1.00</td>
<td>0.93</td>
<td>0.99</td>
<td>0.46</td>
<td></td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Reisezeit</td>
<td>1.00</td>
<td>0.91</td>
<td>0.50</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrpreis</td>
<td>1.00</td>
<td>0.43</td>
<td></td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Intervall</td>
<td>1.00</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Umsteigen</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A8 Korrelation: Verkehrsmittelwahl 1990

<table>
<thead>
<tr>
<th></th>
<th>MIV Fahrweite</th>
<th>MIV Reisezeit</th>
<th>MIV Fahrpreis</th>
<th>PW Besitzkosten</th>
<th>PW / Führerausweis</th>
<th>Ln(Einkommen)</th>
<th>ÖV Fahrweite</th>
<th>ÖV Reisezeit</th>
<th>ÖV Fahrpreis</th>
<th>ÖV Intervall</th>
<th>ÖV Umsteigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Fahrweite</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>-0.52</td>
<td>0.09</td>
<td>-0.09</td>
<td>0.97</td>
<td>0.87</td>
<td>0.97</td>
<td>0.38</td>
<td>0.56</td>
</tr>
<tr>
<td>MIV Reisezeit</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>-0.53</td>
<td>0.09</td>
<td>-0.06</td>
<td>0.95</td>
<td>0.87</td>
<td>0.95</td>
<td>0.37</td>
<td>0.58</td>
</tr>
<tr>
<td>MIV Fahrpreis</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>-0.52</td>
<td>0.09</td>
<td>-0.09</td>
<td>0.97</td>
<td>0.87</td>
<td>0.97</td>
<td>0.38</td>
<td>0.56</td>
</tr>
<tr>
<td>PW Besitzkosten</td>
<td>1.00</td>
<td>-0.30</td>
<td>0.25</td>
<td>-0.56</td>
<td>-0.64</td>
<td>-0.52</td>
<td>-0.51</td>
<td>-0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW / Führerausweis</td>
<td>1.00</td>
<td>0.12</td>
<td>0.19</td>
<td>0.10</td>
<td>0.21</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>1.00</td>
<td>-0.12</td>
<td>-0.17</td>
<td>-0.11</td>
<td>-0.31</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrweite</td>
<td>1.00</td>
<td>0.94</td>
<td>1.00</td>
<td>0.41</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Reisezeit</td>
<td>1.00</td>
<td>0.92</td>
<td>0.47</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrpreis</td>
<td>1.00</td>
<td>0.40</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Intervall</td>
<td>1.00</td>
<td></td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Umsteigen</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle A9 Korrelation: Verkehrsmittelwahl 2000

<table>
<thead>
<tr>
<th></th>
<th>MIV Fahrweite</th>
<th>MIV Reisezeit</th>
<th>MIV Fahrpreis</th>
<th>PW Besitzkosten</th>
<th>PW / Führerausweis</th>
<th>Ln(Einkommen)</th>
<th>ÖV Fahrweite</th>
<th>ÖV Reisezeit</th>
<th>ÖV Fahrpreis</th>
<th>ÖV Intervall</th>
<th>ÖV Umsteigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV Fahrweite</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>-0.53</td>
<td>0.12</td>
<td>-0.11</td>
<td>0.96</td>
<td>0.93</td>
<td>0.96</td>
<td>0.34</td>
<td>0.60</td>
</tr>
<tr>
<td>MIV Reisezeit</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>-0.53</td>
<td>0.12</td>
<td>-0.09</td>
<td>0.95</td>
<td>0.93</td>
<td>0.95</td>
<td>0.33</td>
<td>0.61</td>
</tr>
<tr>
<td>MIV Fahrpreis</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>-0.53</td>
<td>0.12</td>
<td>-0.11</td>
<td>0.96</td>
<td>0.93</td>
<td>0.96</td>
<td>0.34</td>
<td>0.60</td>
</tr>
<tr>
<td>PW Besitzkosten</td>
<td>1.00</td>
<td>-0.38</td>
<td>0.25</td>
<td>-0.57</td>
<td>-0.60</td>
<td>-0.53</td>
<td>-0.42</td>
<td>-0.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW/Führerausweis</td>
<td>1.00</td>
<td>-0.01</td>
<td>0.16</td>
<td>0.18</td>
<td>0.14</td>
<td>0.23</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (Einkommen)</td>
<td>1.00</td>
<td>-0.14</td>
<td>-0.17</td>
<td>-0.13</td>
<td>-0.17</td>
<td>-0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrweite</td>
<td>1.00</td>
<td>0.97</td>
<td>1.00</td>
<td>0.35</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Reisezeit</td>
<td>1.00</td>
<td>0.96</td>
<td>0.36</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrpreis</td>
<td>1.00</td>
<td>0.35</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Intervall</td>
<td>1.00</td>
<td></td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Umsteigen</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Anhang 2: Zielwahl: Deskriptive Statistik und Korrelationen der Variablen

Tabelle A10 Deskriptive Statistik (gewichtet): Zielwahl 1970

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschäftigte 2.Sektor</td>
<td>5625.403</td>
<td>5001.616</td>
<td>0.000</td>
<td>24894.000</td>
</tr>
<tr>
<td>Beschäftigte 3.Sektor</td>
<td>8355.337</td>
<td>8331.787</td>
<td>0.000</td>
<td>34187.000</td>
</tr>
<tr>
<td>Ln (Beschäftigte 2.Sektor)</td>
<td>8.093</td>
<td>1.296</td>
<td>-6.908</td>
<td>10.122</td>
</tr>
<tr>
<td>Ln (Beschäftigte 3.Sektor)</td>
<td>8.176</td>
<td>1.704</td>
<td>-6.908</td>
<td>10.440</td>
</tr>
<tr>
<td>EMU VM 1970</td>
<td>0.107</td>
<td>0.430</td>
<td>-7.694</td>
<td>1.601</td>
</tr>
</tbody>
</table>

Tabelle A11 Deskriptive Statistik (gewichtet): Zielwahl 1980

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschäftigte 2.Sektor</td>
<td>4833.020</td>
<td>4446.406</td>
<td>0.000</td>
<td>23395.000</td>
</tr>
<tr>
<td>Beschäftigte 3.Sektor</td>
<td>13383.027</td>
<td>13774.346</td>
<td>0.000</td>
<td>53030.000</td>
</tr>
<tr>
<td>Ln (Beschäftigte 2.Sektor)</td>
<td>7.934</td>
<td>1.288</td>
<td>-6.908</td>
<td>10.060</td>
</tr>
<tr>
<td>Ln (Beschäftigte 3.Sektor)</td>
<td>8.624</td>
<td>1.692</td>
<td>-6.908</td>
<td>10.879</td>
</tr>
<tr>
<td>EMU VM 1980</td>
<td>0.437</td>
<td>0.482</td>
<td>-4.371</td>
<td>1.696</td>
</tr>
</tbody>
</table>

Tabelle A12 Deskriptive Statistik (gewichtet): Zielwahl 1990

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschäftigte 2.Sektor</td>
<td>4032.429</td>
<td>4006.460</td>
<td>0.000</td>
<td>20825.000</td>
</tr>
<tr>
<td>Beschäftigte 3.Sektor</td>
<td>13841.411</td>
<td>15308.657</td>
<td>0.000</td>
<td>64921.000</td>
</tr>
<tr>
<td>Ln (Beschäftigte 2.Sektor)</td>
<td>7.706</td>
<td>1.340</td>
<td>-6.908</td>
<td>9.944</td>
</tr>
<tr>
<td>Ln (Beschäftigte 3.Sektor)</td>
<td>8.600</td>
<td>1.704</td>
<td>-6.908</td>
<td>11.081</td>
</tr>
<tr>
<td>EMU VM 1990</td>
<td>0.536</td>
<td>0.521</td>
<td>-5.036</td>
<td>1.865</td>
</tr>
</tbody>
</table>
Tabelle A13 Deskriptive Statistik (gewichtet): Zielwahl 2000

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschäftigte 2.Sektor</td>
<td>2738.320</td>
<td>2720.574</td>
<td>0.000</td>
<td>12726.000</td>
</tr>
<tr>
<td>Beschäftigte 3.Sektor</td>
<td>12943.489</td>
<td>15018.434</td>
<td>0.000</td>
<td>66181.000</td>
</tr>
<tr>
<td>Ln (Beschäftigte 2.Sektor)</td>
<td>7.320</td>
<td>1.323</td>
<td>-6.908</td>
<td>9.451</td>
</tr>
<tr>
<td>Ln (Beschäftigte 3.Sektor)</td>
<td>8.509</td>
<td>1.704</td>
<td>-6.908</td>
<td>11.100</td>
</tr>
<tr>
<td>EMU VM 2000</td>
<td>0.660</td>
<td>0.660</td>
<td>-5.671</td>
<td>2.286</td>
</tr>
</tbody>
</table>

Tabelle A14 Korrelation: Zielwahl 1970

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschäftigte 2.Sektor</td>
<td>1.00</td>
<td>0.79</td>
<td>0.81</td>
<td>0.82</td>
<td>-0.07</td>
</tr>
<tr>
<td>Beschäftigte 3.Sektor</td>
<td>1.00</td>
<td>0.73</td>
<td>0.86</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>Ln (Beschäftigte 2.Sektor)</td>
<td>1.00</td>
<td>0.92</td>
<td>-0.26</td>
<td>-0.09</td>
<td>1.00</td>
</tr>
<tr>
<td>Ln (Beschäftigte 3.Sektor)</td>
<td>1.00</td>
<td>-0.28</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Tabelle A15 Korrelation: Zielwahl 1980

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschäftigte 2.Sektor</td>
<td>1.00</td>
<td>0.80</td>
<td>0.81</td>
<td>0.81</td>
<td>-0.24</td>
</tr>
<tr>
<td>Beschäftigte 3.Sektor</td>
<td>1.00</td>
<td>0.73</td>
<td>0.86</td>
<td>-0.21</td>
<td>-0.21</td>
</tr>
<tr>
<td>Ln (Beschäftigte 2.Sektor)</td>
<td>1.00</td>
<td>0.92</td>
<td>-0.26</td>
<td>-0.26</td>
<td>1.00</td>
</tr>
<tr>
<td>Ln (Beschäftigte 3.Sektor)</td>
<td>1.00</td>
<td>-0.28</td>
<td>1.00</td>
<td>-0.28</td>
<td>1.00</td>
</tr>
<tr>
<td>Tabelle A16</td>
<td>Korrelation: Zielwahl 1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 2.Sektor</td>
<td>1.00</td>
<td>0.78</td>
<td>0.76</td>
<td>0.79</td>
<td>-0.28</td>
</tr>
<tr>
<td>Beschäftigte 3.Sektor</td>
<td>1.00</td>
<td>0.67</td>
<td>0.83</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>Ln (Beschäftigte 2.Sektor)</td>
<td>1.00</td>
<td>0.88</td>
<td>-0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (Beschäftigte 3.Sektor)</td>
<td>1.00</td>
<td>-0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMU VM 1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle A17</th>
<th>Korrelation: Zielwahl 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschäftigte 2.Sektor</td>
<td>1.00</td>
</tr>
<tr>
<td>Beschäftigte 3.Sektor</td>
<td>1.00</td>
</tr>
<tr>
<td>Ln (Beschäftigte 2.Sektor)</td>
<td>1.00</td>
</tr>
<tr>
<td>Ln (Beschäftigte 3.Sektor)</td>
<td>1.00</td>
</tr>
<tr>
<td>EMU VM 2000</td>
<td></td>
</tr>
</tbody>
</table>
Anhang 4: Auspendleranteil: Deskriptive Statistik und Korrelationen der Variablen

Tabelle A18 Deskriptive Statistik (gewichtet): Auspendleranteil 1970

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU Zielwahl</td>
<td>11.560</td>
<td>1.080</td>
<td>2.730</td>
<td>14.472</td>
</tr>
<tr>
<td>Anteil Frauen an Erwerbstätigen</td>
<td>0.349</td>
<td>0.051</td>
<td>0.105</td>
<td>0.737</td>
</tr>
<tr>
<td>Rel. Sekundarstufe I</td>
<td>0.407</td>
<td>0.107</td>
<td>0.005</td>
<td>0.886</td>
</tr>
<tr>
<td>Rel. Sekundarstufe II</td>
<td>0.342</td>
<td>0.065</td>
<td>0.000</td>
<td>0.554</td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>0.113</td>
<td>0.037</td>
<td>0.000</td>
<td>0.393</td>
</tr>
<tr>
<td>Beschäftigte 2. Sektor zu Erwerbstätige</td>
<td>0.549</td>
<td>0.612</td>
<td>0.000</td>
<td>117.577</td>
</tr>
<tr>
<td>Beschäftigte 3. Sektor zu Erwerbstätige</td>
<td>0.480</td>
<td>0.602</td>
<td>0.000</td>
<td>7.621</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>5.938</td>
<td>0.152</td>
<td>5.246</td>
<td>7.329</td>
</tr>
<tr>
<td>Einkommen</td>
<td>383.979</td>
<td>66.550</td>
<td>189.818</td>
<td>1524.114</td>
</tr>
</tbody>
</table>

Tabelle A19 Deskriptive Statistik (gewichtet): Auspendleranteil 1980

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU Zielwahl</td>
<td>13.973</td>
<td>0.918</td>
<td>2.275</td>
<td>16.178</td>
</tr>
<tr>
<td>Anteil Frauen an Erwerbstätigen</td>
<td>0.366</td>
<td>0.044</td>
<td>0.000</td>
<td>0.560</td>
</tr>
<tr>
<td>Rel. Sekundarstufe I</td>
<td>0.358</td>
<td>0.092</td>
<td>0.040</td>
<td>0.960</td>
</tr>
<tr>
<td>Rel. Sekundarstufe II</td>
<td>0.390</td>
<td>0.050</td>
<td>0.040</td>
<td>0.592</td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>0.085</td>
<td>0.036</td>
<td>0.000</td>
<td>0.318</td>
</tr>
<tr>
<td>Beschäftigte 2. Sektor zu Erwerbstätige</td>
<td>0.540</td>
<td>0.546</td>
<td>0.000</td>
<td>88.173</td>
</tr>
<tr>
<td>Beschäftigte 3. Sektor zu Erwerbstätige</td>
<td>0.819</td>
<td>1.095</td>
<td>0.000</td>
<td>17.653</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>5.863</td>
<td>0.133</td>
<td>5.095</td>
<td>6.737</td>
</tr>
<tr>
<td>Einkommen</td>
<td>355.044</td>
<td>51.532</td>
<td>163.212</td>
<td>843.397</td>
</tr>
</tbody>
</table>
Tabelle A20 Deskriptive Statistik (gewichtet): Auspendleranteil 1990

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU Zielwahl</td>
<td>14.283</td>
<td>0.890</td>
<td>6.204</td>
<td>16.631</td>
</tr>
<tr>
<td>Anteil Frauen an Erwerbstätigen</td>
<td>0.395</td>
<td>0.033</td>
<td>0.125</td>
<td>0.522</td>
</tr>
<tr>
<td>Rel. Sekundarstufe I</td>
<td>0.276</td>
<td>0.074</td>
<td>0.000</td>
<td>0.755</td>
</tr>
<tr>
<td>Rel. Sekundarstufe II</td>
<td>0.474</td>
<td>0.059</td>
<td>0.194</td>
<td>0.680</td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>0.119</td>
<td>0.040</td>
<td>0.000</td>
<td>0.363</td>
</tr>
<tr>
<td>Beschäftigte 2. Sektor zu Erwerbstätige</td>
<td>0.450</td>
<td>0.288</td>
<td>0.000</td>
<td>8.104</td>
</tr>
<tr>
<td>Beschäftigte 3. Sektor zu Erwerbstätige</td>
<td>0.879</td>
<td>1.206</td>
<td>0.000</td>
<td>22.550</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>5.865</td>
<td>0.141</td>
<td>5.063</td>
<td>6.721</td>
</tr>
<tr>
<td>Einkommen</td>
<td>356.393</td>
<td>56.679</td>
<td>158.032</td>
<td>829.449</td>
</tr>
</tbody>
</table>

Tabelle A21 Deskriptive Statistik (gewichtet): Auspendleranteil 2000

<table>
<thead>
<tr>
<th></th>
<th>Arithmetisches Mittel</th>
<th>Standardabweichung</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU Zielwahl</td>
<td>13.563</td>
<td>0.970</td>
<td>7.459</td>
<td>15.785</td>
</tr>
<tr>
<td>Anteil Frauen an Erwerbstätigen</td>
<td>0.438</td>
<td>0.024</td>
<td>0.078</td>
<td>0.583</td>
</tr>
<tr>
<td>Rel. Sekundarstufe I</td>
<td>0.254</td>
<td>0.052</td>
<td>0.000</td>
<td>0.660</td>
</tr>
<tr>
<td>Rel. Sekundarstufe II</td>
<td>0.449</td>
<td>0.053</td>
<td>0.006</td>
<td>0.658</td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>0.167</td>
<td>0.055</td>
<td>0.000</td>
<td>0.487</td>
</tr>
<tr>
<td>Beschäftigte 2. Sektor zu Erwerbstätige</td>
<td>0.354</td>
<td>0.254</td>
<td>0.000</td>
<td>7.000</td>
</tr>
<tr>
<td>Beschäftigte 3. Sektor zu Erwerbstätige</td>
<td>0.922</td>
<td>1.315</td>
<td>0.000</td>
<td>32.000</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>5.787</td>
<td>0.163</td>
<td>5.226</td>
<td>6.802</td>
</tr>
<tr>
<td>Einkommen</td>
<td>330.927</td>
<td>65.223</td>
<td>186.010</td>
<td>899.895</td>
</tr>
</tbody>
</table>
Tabelle A22 Korrelation: Auspendleranteil 1970

<table>
<thead>
<tr>
<th></th>
<th>EMU Zielwahl</th>
<th>Anteil Frauen an Erwerbstätigen</th>
<th>Rel Sekundarstufe I</th>
<th>Rel Sekundarstufe II</th>
<th>Rel Tertiärstufe</th>
<th>Beschäftigte 2. S. zu Erwerbstätige</th>
<th>Beschäftigte 3. S. zu Erwerbstätige</th>
<th>Ln Einkommen</th>
<th>Einkommen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU Zielwahl</td>
<td>1.00</td>
<td>0.47</td>
<td>-0.67</td>
<td>0.72</td>
<td>0.48</td>
<td>-0.02</td>
<td>-0.05</td>
<td>0.74</td>
<td>0.68</td>
</tr>
<tr>
<td>Anteil Frauen an</td>
<td>1.00</td>
<td>-0.48</td>
<td>0.57</td>
<td>0.30</td>
<td>0.02</td>
<td>0.24</td>
<td>0.49</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>Erwerbstätigen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Sekundarstufe I</td>
<td>1.00</td>
<td>-0.81</td>
<td>-0.64</td>
<td>-0.00</td>
<td>-0.22</td>
<td>-0.72</td>
<td>-0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Sekundarstufe II</td>
<td>1.00</td>
<td>0.47</td>
<td>0.01</td>
<td>0.15</td>
<td>0.70</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>1.00</td>
<td>-0.02</td>
<td>0.14</td>
<td>0.59</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 2. Sek. zu Erwerbstätige</td>
<td>1.00</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 3. Sek. zu Erwerbstätige</td>
<td>1.00</td>
<td>0.17</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>0.97</td>
</tr>
<tr>
<td>Einkommen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>
Tabelle A23 Korrelation: Auspendleranteil 1980

<table>
<thead>
<tr>
<th></th>
<th>EMU Zielwahl</th>
<th>Anteil Frauen an Erwerbstätigen</th>
<th>Rel Sekundarstufe I</th>
<th>Rel Sekundarstufe II</th>
<th>Rel Tertiärstufe</th>
<th>Beschäftigte 2.S. zu Erwerbstätige</th>
<th>Beschäftigte 3.S. zu Erwerbstätige</th>
<th>Ln Einkommen</th>
<th>Einkommen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU Zielwahl</td>
<td>1.00</td>
<td>0.42</td>
<td>-0.70</td>
<td>0.65</td>
<td>0.65</td>
<td>-0.04</td>
<td>0.02</td>
<td>0.71</td>
<td>0.68</td>
</tr>
<tr>
<td>Anteil Frauen an</td>
<td>1.00</td>
<td>-0.58</td>
<td>0.48</td>
<td>0.56</td>
<td>0.01</td>
<td>0.31</td>
<td>0.55</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Erwerbstätigen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Sekundarstufe I</td>
<td>1.00</td>
<td></td>
<td>-0.89</td>
<td>-0.86</td>
<td>0.00</td>
<td>-0.23</td>
<td>-0.86</td>
<td>-0.84</td>
<td></td>
</tr>
<tr>
<td>Rel. Sekundarst. II</td>
<td>1.00</td>
<td></td>
<td>0.68</td>
<td>-0.00</td>
<td>0.11</td>
<td>0.73</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>1.00</td>
<td></td>
<td>-0.02</td>
<td>0.23</td>
<td>0.88</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 2.Sek.</td>
<td>1.00</td>
<td></td>
<td>0.04</td>
<td>0.00</td>
<td>-0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zu Erwerbstätige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 3.Sek.</td>
<td>1.00</td>
<td></td>
<td>0.20</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zu Erwerbstätige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td>1.00</td>
<td></td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einkommen</td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A24 Korrelation: Auspendleranteil 1990

<table>
<thead>
<tr>
<th></th>
<th>EMU Zielwahl</th>
<th>Anteil Frauen an Erwerbstätigen</th>
<th>Rel Sekundarstufe I</th>
<th>Rel Sekundarstufe II</th>
<th>Rel Tertiärstufe</th>
<th>Beschäftigte 2.S. zu Erwerbstätige</th>
<th>Beschäftigte 3.S. zu Erwerbstätige</th>
<th>Ln Einkommen</th>
<th>Einkommen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU Zielwahl</td>
<td>1.00</td>
<td>0.31</td>
<td>-0.52</td>
<td>0.42</td>
<td>0.45</td>
<td>-0.03</td>
<td>-0.08</td>
<td>0.54</td>
<td>0.50</td>
</tr>
<tr>
<td>Anteil Frauen an Erwerbstätigen</td>
<td>1.00</td>
<td>-0.50</td>
<td>0.23</td>
<td>0.60</td>
<td>0.06</td>
<td>0.33</td>
<td>0.58</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Rel. Sekundarstufe I</td>
<td>1.00</td>
<td>-0.78</td>
<td>-0.75</td>
<td>0.03</td>
<td>-0.09</td>
<td>-0.72</td>
<td>-0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Sekundarstufe II</td>
<td></td>
<td>1.00</td>
<td>0.35</td>
<td>-0.04</td>
<td>-0.06</td>
<td>0.40</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td></td>
<td>1.00</td>
<td>-0.03</td>
<td>0.18</td>
<td>0.85</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 2.Sek. zu Erwerbstätige</td>
<td></td>
<td>1.00</td>
<td>0.19</td>
<td>0.05</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 3.Sek. zu Erwerbstätige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Einkommen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>
Tabelle A25 Korrelation: Auspendleranteil 2000

<table>
<thead>
<tr>
<th></th>
<th>EMU Zielwahl</th>
<th>Anteil Frauen an Erwerbstätigen</th>
<th>Rel Sekundarstufe I</th>
<th>Rel Sekundarstufe II</th>
<th>Rel Tertiärstufe</th>
<th>Beschäftigte 2.S. zu Erwerbstätige</th>
<th>Beschäftigte 3.S. zu Erwerbstätige</th>
<th>Ln Einkommen</th>
<th>Einkommen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU Zielwahl</td>
<td>1.00</td>
<td>0.10</td>
<td>-0.35</td>
<td>0.34</td>
<td>0.22</td>
<td>-0.05</td>
<td>-0.16</td>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>Anteil Frauen an</td>
<td>1.00</td>
<td>-0.52</td>
<td>-0.06</td>
<td>0.48</td>
<td>0.10</td>
<td>0.28</td>
<td>0.46</td>
<td>0.46</td>
<td>0.42</td>
</tr>
<tr>
<td>Erwerbstätigen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Sekundarstufe I</td>
<td>1.00</td>
<td>-0.39</td>
<td>-0.76</td>
<td>-0.05</td>
<td>-0.18</td>
<td>-0.74</td>
<td>-0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Sekundarstufe II</td>
<td>1.00</td>
<td>0.02</td>
<td>-0.17</td>
<td>-0.27</td>
<td>0.10</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. Tertiärstufe</td>
<td>1.00</td>
<td>-0.06</td>
<td>0.15</td>
<td>0.81</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 2.Sek. zu Erwerbstätige</td>
<td>1.00</td>
<td>0.39</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschäftigte 3.Sek. zu Erwerbstätige</td>
<td>1.00</td>
<td>0.16</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln Einkommen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Einkommen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>
Anhang 5: Lebenslauf

Persönliche Angaben

Name: Philipp Fröhlich

Geburtsort: Mödling/Österreich

Nationalität: Österreich

Zivilstand: ledig

Ausbildung

Seit 2002 Doktorand an der ETH Zürich
Dissertationsthema: Änderungen der Intensitäten im Arbeitspendlerverkehr von 1970 bis 2000

1993 – 1999 Diplomstudium Bauingenieurwesen an der TU Wien mit Verifizierungsstudiom Verkehrswesen und Infrastrukturplanung

1997 – 1998 ERASMUS Student an der Heriot-Watt University in Edinburgh

1992 Matura an der HTL Mödling

Berufserfahrung

06/05 – dato Selbstständige Tätigkeit im Bereich Verkehrsmoellierung und -planung als Inhaber der Einzelfirma Verkehrsconsult Fröhlich in Zürich, einem Spin-off-Unternehmen der ETH Zürich

05/2001 – 06/2006 Wissenschaftlicher Mitarbeiter am Institut für Verkehrsplanung und Transportsysteme (IVT) an der ETH Zürich

07/2000 – 04/2001 Wissenschaftlicher Mitarbeiter am Institut für Strassen- und Verkehrswesen an der TU Graz
Publikationen

Begutachtete Zeitschriftenbeiträge

Fröhlich, Ph. (in Druck) Travel Behaviour Changes of Commuters between 1970 and 2000, *Transportation Research Record*.

Beiträge in Fachzeitschriften

Begutachtete Beiträge in Büchern und Tagungsbänden

Eingeladene Beiträge

Arbeitsberichte und Konferenzbeiträge

