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Abstract

We propose a hybrid method to solve time-harmonic Maxwell’s equations in R3

through the Finite Element Method (FEM) in a bounded region encompass-
ing parameter inhomogeneities, coupled with the Multiple Multipole Program
(MMP) in the unbounded complement.

FEM and MMP enjoy complementary capabilities. FEM requires a mesh of
the computational domain of interest. This is expensive, but can treat inho-
mogeneous materials, shapes with corners, or other singularities. Moreover,
FEM allows a purely local construction of the discrete system of equations.

On the other hand, MMP belongs to the class of methods of auxiliary sources
and of Trefftz methods, as it employs point sources that are exact solutions
of the homogeneous equations as (global) basis functions: one only needs
to evaluate them on hypersurfaces to obtain the discrete problem, and the
resulting linear combination is valid in the whole domain where the equations
hold, which can be unbounded. MMP performs well where the electromagnetic
field is smooth, i.e. in the free space far from physical sources and material
interfaces.

Thus, a natural way to combine the strengths of these methods arises when one
needs to simulate the electromagnetic field of components with inhomogeneous
parameters or nonsmooth shapes surrounded by free space: use FEM on a
mesh defined on the components and MMP in the unbounded domain outside.
The boundary between the FEM and MMP domains can be nonphysical if one
surrounds the components by a conforming mesh of an “airbox” also modeled
by FEM.

The interface conditions on the surface of the FEM domain are key to accurate
coupled FEM–MMP solutions. Integrating by parts the variational form solved
by FEM, surface integrals appear, through which one can impose interface
conditions by substituting the ansatz of MMP.
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However, one interface condition (for example, the continuity of the tangential
trace for Maxwell’s equations) cannot be imposed in this way.

To include this additional condition, we derive four methods from Lagrangian
functionals that enforce both the variational form in the FEM domain and all
the interface conditions between different discretizations:

1. Least-squares-based coupling using techniques from PDE-constrained op-
timization. This approach optimizes a functional for the additional con-
dition, subject to a constraint expressed by the variational form of FEM.

2. Discontinuous Galerkin (DG) between the meshed FEM domain and
the single-entity “MMP mesh”, interpreting MMP as FEM with special
basis functions.

3. Multi-field variational formulation in the spirit of mortar finite element
methods, relying on the same interpretation of MMP as the DG-based
coupling.

4. Coupling through the Dirichlet-to-Neumann operator : here we intro-
duce a weak formulation of the additional condition where MMP basis
functions are used as test functions. This approach is generalized to
couple MMP with any numerical method based on volume meshes that
fits co-chain calculus.

Furthermore, to minimize the meshed region and for the sake of generalization,
we assume that equation parameters are piecewise constant in the MMP do-
main (instead of constant everywhere). This induces a partition: we consider
the case of one unbounded subdomain with other bounded, but possibly very
large, subdomains, each requiring its own MMP discretization space (but with-
out the need of meshes). Hence, on top of the interface conditions between the
FEM and MMP domains, one should also impose interface conditions between
the MMP subdomains themselves.

We compare the FEM–MMP coupling approaches in a series of numerical
experiments with different geometries and equation parameters, including ex-
amples that exhibit triple-point singularities. Convergence tests are performed
for examples that cover the whole spectrum of computational electromagnet-
ics, obtaining the expected results.
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Riassunto

Proponiamo un metodo ibrido per risolvere in R3 equazioni di Maxwell armo-
niche nel tempo tramite il metodo degli elementi finiti (FEM) in una regione
limitata caratterizzata da parametri disomogenei, accoppiato col programma
dei “multipoli multipli” (Multiple Multipole Program, MMP) nel complemento
illimitato.

FEM ed MMP offrono caratteristiche complementari. FEM richiede una mesh
del dominio di interesse. Ciò è dispendioso, ma permette di trattare materiali
disomogenei, figure con spigoli o altre singolarità. Inoltre, con FEM si può
costruire localmente il sistema di equazioni discreto.

D’altra parte, MMP appartiene alla classe dei metodi delle sorgenti ausilia-
rie e dei metodi di Trefftz, dato che utilizza come funzioni di base (globali)
delle sorgenti puntiformi che sono soluzioni esatte delle equazioni omogenee:
per ottenere il problema discreto si deve valutarle solo su ipersuperfici, e la
combinazione lineare risultante è valida nell’intero dominio di validità delle
equazioni, che può essere illimitato. MMP funziona bene quando il cam-
po elettromagnetico è regolare, ovvero in spazio libero da sorgenti fisiche e
interfacce di materiali.

Si ha quindi un modo naturale di combinare i punti di forza di questi metodi
quando si vuole simulare il campo elettromagnetico di componenti con para-
metri disomogenei o forme non lisce circondate da spazio libero: si usi FEM su
una mesh definita sulle componenti ed MMP nel dominio illimitato esterno. Il
bordo tra i domini FEM ed MMP può non essere fisico se si circondano le com-
ponenti con una mesh conforme di una “scatola d’aria”, anch’essa modellata
da FEM.

Le condizioni di interfaccia sulla superficie del dominio di FEM sono cruciali
per ottenere soluzioni accoppiate tra FEM ed MMP. Integrando per parti la
forma variazionale risolta da FEM, appaiono integrali di superficie con cui
si possono imporre condizioni di interfaccia sostituendovi l’ansatz di MMP.
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Tuttavia, una delle condizioni di interfaccia (ad esempio, la continuità della
traccia tangenziale per equazioni di Maxwell) non può essere imposta in questo
modo.

Per includere questa condizione aggiuntiva, deriviamo quattro metodi da fun-
zionali di Lagrange che impongono sia la forma variazionale delle equazioni
nel dominio di FEM, sia tutte le condizioni di interfaccia tra discretizzazioni
differenti:

1. Accoppiamento basato sui minimi quadrati tramite tecniche di ottimiz-
zazione con vincoli dati da equazioni alle derivate parziali. Questo ap-
proccio ottimizza un funzionale per la condizione aggiuntiva soggetto ad
un vincolo espresso dalla forma variazionale di FEM.

2. Galerkin discontinuo (DG) tra la mesh di FEM e la “mesh di MMP”
formata da una sola cella, se si considera MMP come un metodo agli
elementi finiti con funzioni di base speciali.

3. Formulazione variazionale multicampo nello spirito dei metodi degli ele-
menti finiti mortar, che si affida alla stessa interpretazione di MMP su
cui si fonda l’accoppiamento basato su DG.

4. Accoppiamento tramite l’operatore Dirichlet a Neumann: introducia-
mo una formulazione debole della condizione aggiuntiva dove funzioni di
base MMP sono usate come funzioni test. Questo approccio si può ge-
neralizzare per accoppiare MMP con qualsiasi metodo numerico basato
su mesh di volume che rientri nel calcolo delle cocatene.

Inoltre, per minimizzare la regione con mesh e per generalizzare, assumiamo
che i parametri delle equazioni siano costanti a tratti nel dominio MMP (invece
di costanti ovunque). Ciò induce una partizione: consideriamo il caso di un so-
lo sottodominio illimitato assieme ad altri sottodomini limitati, che comunque
possono essere molto grandi, ciascuno col proprio spazio di discretizzazione
MMP (ma senza bisogno di mesh). Dunque, in aggiunta alle condizioni di
interfaccia tra i domini FEM ed MMP, si devono anche imporre condizioni di
interfaccia tra gli stessi sottodomini di MMP.

Paragoniamo i modi di accoppiare FEM ed MMP in una serie di esperimenti
numerici con diverse geometrie e parametri delle equazioni, inclusi esempi che
esibiscono singolarità di punto triplo.
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Eseguiamo test di convergenza per esempi che coprono l’intero spettro dell’e-
lettromagnetismo computazionale, ottenendo i risultati sperati.
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Introduction

Computational electromagnetics is devoted to the numerical simulation of the
interactions of the electromagnetic field with the physical world. Compared to
the subject of electromagnetism, the focus is on practical applications, rather
than the theory.

The well-known Maxwell’s equations in differential form [43, p. 337, (7.40)]
constitute the basis of this analysis. These linear equations look simple and
almost symmetric with respect to their unknowns, and present smooth exact
solutions where equation parameters are constant (for example, [43, p. 395,
(9.43)]). Difficulties arise from complex geometries or local equation param-
eters, which can even be nonlinear or subject to a hysteresis loop (see [43,
p. 290]); for example, these parameters can have jump discontinuities on the
interface between different materials. Hence, the geometry of the components
forming the spatial domain is of paramount importance.

Different numerical methods perform best in different circumstances. Methods
relying on volume meshes can handle singularities of shapes with corners by
locally refining the mesh there, but only work in bounded domains. Other
methods only require evaluations on hypersurfaces to obtain a solution that
also holds inside volumes, as long as the problem is simple enough, but require
to explicitly know the solution of some other related problem in advance (for
example, for the homogeneous equation).

A common strategy to simulate real-world applications is to use methods of
the first class, which can handle inhomogeneities, with a boundary condition
that well approximates the field despite artificially truncating the mesh.

Some boundary conditions are trivial to implement, such as the surface of a
perfect electric conductor, where the tangential component of the electric field
and the normal component of the magnetic field are set to zero [43, p. 425,
(9.175)]. Things become more difficult if the solution is a wave propagating
to infinity. In this case, absorbing boundary conditions or perfectly matched
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layers can be used [72]. Both, however, are local approximations to nonlocal
operators, and therefore have limitations [59, p. 14, Section 7].

Hence, a good strategy is to use both kinds of methods discussed above, based
on volume meshes and hypersurfaces, for the same problem, i.e. to devise a hy-
brid domain-decomposition method. Domain decomposition refers to splitting
the equations into coupled problems on smaller subdomains forming a par-
tition of the original domain. To form a hybrid method, this decomposition
becomes relevant at the discrete level, where different approximation methods
are employed in each subdomain.

The most popular hybrid method is probably the Finite Element Method
(FEM) coupled with the Boundary Element Method (BEM): as a famous pa-
per states in the title, the marriage of convenience (à la mode) between these
methods can achieve the “best of both worlds” [15]. FEM is not only apt to
model inhomogeneous materials, but can also be used without knowing fun-
damental solutions of the governing differential equations. These solutions,
which BEM requires, can be nonexistent or extremely complex.

On the other hand, BEM is clearly better-suited for domains involving a small
ratio of boundary surface to volume: extreme cases are unbounded domains.
Moreover, the coupling of FEM and BEM is not very difficult, as both have
their roots in integrations by parts by means of Green’s identities [64, p. 4,
(1.8) and (1.9)] (variational form for FEM, boundary integral equation for
BEM) and are set in related function space frameworks [8].

However, BEM presents two disadvantages:

1. Singular integrals in its formulation. While one can usually get rid of
these singularities (for example, with Duffy transformations or analytic
integrals for some geometries of the boundary), an ad-hoc solution per
problem has to be identified. This complicates the implementation,
which cannot be a “black box”, i.e. valid for any problem involving
Maxwell’s equations, as with FEM.

2. More importantly, given that kernels of boundary integral equations are
nonlocal, BEM leads to large, dense matrices. A whole set of techniques
is devoted to their study (panel-clustering methods or hierarchical matri-
ces [75, pp. 464–465, Section 7.6]), but those same matrices still appear
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Introduction

as blocks of the linear system of equations originating from coupling
FEM and BEM.

Thus, we propose to couple FEM with a Trefftz method (Chapter 2) instead
of BEM. In fact, Trefftz methods present the following desirable features:

1. No singular integrals, because if Trefftz basis functions have central sin-
gularities, they are placed at points outside the Trefftz domain of ap-
proximation. When coupled with FEM, these singularities are therefore
positioned in the FEM domain.

2. When applied to analytic solutions, the approximation error of Trefftz
methods converges exponentially. We can formally prove this when Tre-
fftz methods are used to model the Poisson’s equation [64, p. 246, Chap-
ter 8] in R2 (Section 2.3) and show it empirically for Maxwell’s equations
(Section 2.4).

Quoting again the author arguing in favor of the marriage between BEM and
FEM [87, p. 314, Section 5],

it seems without doubt that in the future Trefftz type elements
will frequently be encountered in general finite element codes. [...]
It is the author’s belief that the simple Trefftz approach will in the
future displace much of the boundary type analysis with singular
kernels.

Of course, Trefftz methods also have a major flaw, namely their dependence
on heuristics, especially impacting the choice of Trefftz basis functions in 3D
settings. As a matter of fact, when modeling close to field singularities or
sources, the quality of their numerical solutions is heavily impacted by the
choice of Trefftz basis functions; e.g., the position of their central singularities
inside the FEM domain. An ideal strategy is therefore to apply FEM where the
field is difficult to model and Trefftz methods elsewhere, such that heuristics
becomes irrelevant. This suggests to use an artificial interface between the
FEM and Trefftz domains, not coinciding with any discontinuity of material
properties.

Throughout this thesis we show how well the coupling between FEM and
Trefftz methods matches the aforementioned expectations through numerical
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results covering the whole spectrum of frequency-domain computational elec-
tromagnetics.

Scope

Several approaches to couple FEM and a Trefftz method for the Poisson’s
equation in both 2D and 3D have been discussed by the author from the per-
spective of numerical analysis in [28]. Existence, uniqueness, and stability
of all coupling approaches is formally proven in that work, which only deals
with scalar unknown functions. We offer numerical evidence for Maxwell’s
equations (vector unknown functions) in [29, 30], which illustrate numerical
convergence results for the magnetostatic and eddy-current equations, respec-
tively.

[26] generalizes one of the coupling approaches, the Dirichlet-to-Neumann-
based coupling (DtN-based coupling, Section 3.4), to any numerical method
based on volume meshes. The particular case of the coupling with the cell
method, a technique based on both a primal and a dual volume mesh [83], is
illustrated theoretically and through numerical experiments performed with
iterative solvers applied to the Schur complement [18, p. 221] of the coupling
systems (Trefftz degrees of freedom are eliminated).

Finally, [27] assumes that equation parameters are piecewise constant in the
Trefftz domain, which induces a partition: one unbounded subdomain and
other bounded, but possibly very large, subdomains, each requiring its own
Trefftz discretization space. Hence, coupling strategies are extended to handle
more than one Trefftz domain for the case of 2D Helmholtz equation [64,
p. 276, Chapter 9].

The coupling between FEM and a Trefftz method has also been addressed be-
fore from an engineering perspective [79]. However, a different methodology
for the coupling is used in that work: FEM and Trefftz field values, the Dirich-
let data, are matched in selected points on the interface between their domains
(collocation method), while the Neumann data enter through a boundary term
of the variational form. The resulting overdetermined system of equations is
solved in the least-squares sense.
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To the best of our knowledge, apart from these papers, little research has been
devoted to the investigation of strategies combining Trefftz methods with con-
ventional finite element methods. We cite [45, 71]: in particular, the coupling
proposed in [45, p. 672, Section III] is the same as the DtN-based coupling of
Section 3.4.

Remark. It is also worth mentioning the infinite element method [39], pri-
marily used for exterior Helmholtz problems, which employs standard FEM in
a bounded domain and infinite elements in the unbounded exterior. In fact,
given a spherical coordinate system [43, p. 38, Section 1.4.1], the radial com-
ponent of infinite elements is expressed by a multipole expansion [43, p. 151,
Section 3.4], which can be used as Trefftz basis functions (see Section 2.2).
Conversely, the spherical component is approximated by standard polynomial
finite element shape functions [67, p. 143, Section 5.6].

Infinite elements are then coupled with standard FEM by solving the varia-
tional form of the equations everywhere (see Section 1.4): unbounded radial
integrals can be computed by choosing a radial dependence that leads to expo-
nential integrals [2, p. 227, Chapter 5]. The final coupling system may not be
symmetric.

This thesis describes the coupling techniques introduced in [28, 29, 30, 27] for
Poisson’s (one Trefftz domain) and time-harmonic Maxwell’s equations and
illustrate all the numerical results reported in these works. Novel results for
FEM coupled with more than one Trefftz domain are also included ([27] is
confined to 2D Helmholtz).

Having multiple Trefftz domains allows to treat piecewise-constant material
parameters on potentially very large regions, while using a minimal volume
mesh for the FEM domain. This mesh can be so small that it only surrounds
points where the field is singular, like Triple-Point Singularities (TPS), which
emerge at the junction of three different materials [42]. At the same time, one
also needs to impose interface conditions between neighboring Trefftz domains,
which requires a mesh on the interfaces separating them.

Furthermore, while mesh-based methods like FEM suffer from the well-known
pollution effect [9] with time-harmonic Maxwell’s equations, oscillating basis
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functions are used in the Trefftz domains (see Section 2.2): these basis func-
tions may achieve better approximation properties than the classical piecewise-
polynomial spaces of FEM [54].

Outline

Chapter 1 illustrates the boundary value problems discussed in this work. It
also provides references to the relevant formalism of functional analysis and,
specifically, FEM, one leg of the hybrid strategy we propose. The other leg,
Trefftz methods, is more thoroughly described in Chapter 2, where we also
present results on the related exponential convergence behavior.

Given these approaches, Chapter 3 describes four algorithms to couple them:
one of these strategies is further generalized in Chapter 4, so that it can couple
Trefftz methods with any numerical technique based on volume meshes.

Chapter 5 gives some insight into the code that is used for the numerical ex-
periments of this work. The corresponding results are described in Chapter 6,
showing the convergence of all coupling approaches with one or more Trefftz
domains (that also need to be coupled with each other) and with or with-
out an analytic solution: an example of the latter is when singularities are
introduced.

Some remarks in Chapter 7 conclude the work.
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1 Preliminaries

This chapter illustrates the boundary value problems and notation behind our
description of the coupling approaches between FEM and Trefftz methods.
Firstly, the continuous setting: the boundary value problems considered in
this work (Section 1.1), including time-harmonic Maxwell’s equations (Sec-
tion 1.1.3), the partition of their domain Rd, d = 2, 3 (Section 1.2), and the
function spaces involved in each subdomain and on the interfaces between
them (Section 1.3). Secondly, given all these ingredients, in Section 1.4 we
derive the variational (weak) forms of the boundary value problems, which
constitute the basis of their discretizations relying on volume meshes, and
present the discrete finite element spaces used in this work.

1.1 Boundary Value Problems

1.1.1 Poisson’s Equation

To derive some theoretical (Section 2.3 and Chapter 3) and numerical results
(Sections 2.3.1, 6.1, and 6.2), we refer to the following Poisson’s problem:

−∇ ·
[
M−1

µ (x)∇u
]

= j in Rd, d = 2, 3, (1.1a)

u(x) =

{
c log‖x‖+O(‖x‖−1) in R2, c ∈ R

O(‖x‖−1) in R3 for ‖x‖ → ∞ uniformly,

(1.1b)

which, in R3, models an electrostatic phenomenon [43, p. 60] through Gauss’s
law [43, p. 182, (4.22)] for the electric displacement field [43, p. 182, (4.21)].

• u : Rd → C, d = 2, 3, represents the electric displacement field.

1



1 Preliminaries

• Mµ : Rd → Cd,d is a symmetric, bounded, uniformly positive-definite
matrix that corresponds to an inhomogeneous, anisotropic permeability
[43, p. 285, (6.32)]. We assume that Mµ(x) = µ I ∀x ∈ Rd \ Ω?, given
a bounded domain Ω? ⊂ Rd, and µ ∈ C constant everywhere in Rd \Ω?.

• j : Rd → C represents the stationary current that generates the electro-
magnetic field. j has compact support in Ω?.

• The decay condition (1.1b) follows from [64, p. 259, Theorem 8.9].

1.1.2 Helmholtz Equation

The numerical results in Sections 2.3.2 and 6.3 are obtained for the reference
2D Helmholtz problem

−∇ ·
[
M−1

µ (x)∇u
]
− ω2ε(x)u = j in R2, (1.2a)

∇u · x− ık‖x‖u = 0 for ‖x‖ → ∞ uniformly, (1.2b)

which models the scattering of transverse-electric polarized z-invariant time-
harmonic electromagnetic waves at penetrable objects [43, p. 427, (9.181)].

• u : R2 → C represents the longitudinal (z-)component of a magnetic
vector potential [43, p. 243, (5.61)]

• Mµ : R2 → C2,2 is the same permeability of Section 1.1.1, while ε : R2 →
C represents an inhomogeneous permittivity [43, p. 186, (4.33)]. We
again assume that Mµ(x) = µ I ∀x ∈ R2 \Ω?, given a bounded domain
Ω? ⊂ R2, but this time µ, ε ∈ C are piecewise constant in R2 \ Ω?.

• ω ∈ R is the angular frequency [43, p. 386, (9.11)], while k := ω
√
µε the

piecewise-constant wavenumber [43, p. 385, Section 9.1.2] in R2 \ Ω?.

• j : R2 → C is the same stationary current of Section 1.1.1.

• (1.2b) is the Sommerfeld radiation condition; please refer to [32, p. 19,
Definition 2.4].

2



1.1 Boundary Value Problems

1.1.3 Maxwell’s Equations

We now consider the following second-order vector boundary value problem
for numerical results in Sections 2.4 and 6.6:∇×

[
M−1

µ (x)∇× u
]
− ω2Mε(x) u +∇φ = j

∇ · u = 0
in R3, (1.3a)

∇× u× x− ık‖x‖u = 0 for ‖x‖ → ∞ uniformly,
(1.3b)

which models time-harmonic Maxwell’s equations [43, p. 233, (5.56)] expressed
in terms of a magnetic vector potential subject to the Coulomb gauge [43,
p. 440, (10.8)].

• u : R3 → C3 represents the magnetic vector potential.

• φ : R3 → C represents the electric scalar potential [43, p. 79, (2.23)],
which also acts as a Lagrange multiplier to impose the Coulomb gauge.
φ must be subject to a further constrain such that it is uniquely defined
by (1.3a). In the scope of this work, we set

∫
R3 φ dx = 0.

• Mµ,Mε : R3 → C3,3 are symmetric, bounded, uniformly positive-definite
matrices that correspond to an inhomogeneous, anisotropic permeability
and permittivity, respectively. We assume that both Mµ(x) = µ I and
Mε(x) = ε I ∀x ∈ R3 \ Ω?, given a bounded domain Ω? ⊂ R3, and
µ, ε ∈ C are piecewise constant in R3 \ Ω?.

• ω ∈ R and k := ω
√
µε are the same constant angular frequency and

piecewise-constant wavenumber (in R3 \ Ω?) of Section 1.1.2.

• j : R3 → C3, with ∇ · j = 0, represents the stationary current that
generates the electromagnetic field. j has compact support in Ω?.

• (1.3b) is the Silver-Müller radiation condition; please refer to [32, p. 195,
Definition 6.6].

It is implicitly assumed that k 6= 0; otherwise, if, e.g., ω = 0, we would be in a
magnetostatic regime [43, p. 241, Section 5.3.4] – see Section 6.4. In this case,

3



1 Preliminaries

the Silver-Müller radiation condition would be replaced by the decay condition
[57, p. 180, (5.28)]

u(x) = O(‖x‖−1) for ‖x‖ → ∞ uniformly. (1.4)

1.1.4 Eddy-Current Model

Here we consider a special case of Section 1.1.3, i.e. a magnetoquasistatic [55]
reduced eddy-current [43, p. 310] model obtained from Maxwell’s equations.
We use the H-Φ formulation [63], which employs the H-field [43, p. 279, Sec-
tion 6.3] in electrically-conductive [43, p. 296] domains Ωc (≡ Ω? from Sec-
tion 1.1.3) and a magnetic scalar potential Φ (see Remark 1.2.1 in the next
section) in nonconductive domains Ωn. This form typically requires to know
the source magnetic field Hs before simulating and has difficulties with a
multiply-connected Ωc (see Remark 1.2.1).

J. Smajic in [78] proposes a new H-Φ field formulation on a multiply-connected
domain not requiring to precompute the Hs-field before the actual simulation.
Here we present another formulation with the same property and later solve
it by coupling FEM and Trefftz methods.

Indeed, let us consider the same eddy-current boundary value problem as in
[78], but on an unbounded domain Ωn := Ω+ \ Ωc, where Ω+ designates the
first octant of R3 (all axes with positive directions). The reason for the octant
is that we treat XY , XZ, and Y Z as symmetry planes of our model, where
we impose boundary conditions.

∇×
(
σ−1∇×H

)
+ ıωµc H = 0 in Ωc

n×∇×H = 0 on ∂NΩc

n×H = 0 on ∂DΩc

H = ∇Φ, ∇ · (µn∇Φ) = 0 in Ωn

n · µn∇Φ = 0 on ∂NΩn

Φ = I/2 on ∂D1Ωn

Φ = 0 on ∂D2Ωn

Φ is const on ∂D3Ωn

(1.5)
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Φ on ∂D3Ωn is a constant potential that has to be determined. For Φ at infinity
we aim at the same behavior as (1.4).

We assume that the bounded conductive domain Ωc lies inside Ωf , Ωc ⊆ Ωf ,
similarly to Ω? in Section 1.2. Hence, given Lemma 1.3.1, interface conditions
between Ωc and Ωn (inside Ωf) are required for the field to be well-posed: n×H = n×∇Φ

µc n ·H = µn n · ∇Φ
on ∂cnΩc. (1.6a)

(1.6a) should be imposed together with the other interface conditions between
the FEM and Trefftz domains, also derived from Lemma 1.3.1: Φf = Φm

n · ∇Φf = n · ∇Φm

on Γ, (1.6b)

with Γ lying inside Ωn.

We will solve this problem in Section 6.5, where a geometric model of Ωc, Ωn,
and their boundary conditions is provided.

1.2 Domain Decomposition

For Sections 1.1.2 and 1.1.3, piecewise-constant µ, ε in Rd\Ω?, d = 2, 3, induce
a natural partition of Rd\Ω? into m+1 subdomains Ωi, i = 0, . . . ,m, such that
the pair (µ, ε) ∈ C2 (and therefore the wavenumber k) is constant in each Ωi.
We denote the constant wavenumber in each subdomain with ki, i = 0, . . . ,m,
and assume that there is only one unbounded domain in this partition, which
we refer to as Ω0.

To simplify the exposition and without loss of generality, from now on we
assume that m = 1 for Sections 1.1.2 and 1.1.3, i.e. that Ω0 ∪ Ω1 = Rd \ Ω?,
with constant k0 ∈ C in the unbounded domain Ω0 and constant k1 ∈ C in
the bounded Ω1. Generalization to m > 1 is immediate. For Section 1.1.1,
the simpler case m = 0 (one unbounded domain) holds.

5



1 Preliminaries

Ω٭= supp(μ(x)        ) ∪ supp(ε(x)        )   ∪ supp(j) Ω1

Ω0

nonconstnonconst

μ1 , ε1

μ0 , ε0
(a) Sample domains Ω?, Ω0, and Ω1.

Ωf

Γf0

Ω٭= supp(μ(x)        ) ∪ supp(ε(x)        )   ∪ supp(j) Ωm1

Ωm0

Γf1 Γ01

nonconstnonconst

μ1 , ε1

μ0 , ε0
(b) Sample domains Ωf , Ω0

m, and Ω1
m.

Figure 1.1: Physical domains (Figure 1.1a) do not necessarily correspond to
computational domains (Figure 1.1b): Γf0,Γf1 can be artificial in-
terfaces. Different colors in the (left) figure represent regions with
different parameters µ, ε.

However, for our computations we introduce a different domain decomposition.
As a matter of fact, we do not necessarily have to couple FEM and Trefftz
methods across physical interfaces that coincide with discontinuities of param-
eters µ, ε. Hence, instead of considering the physical domains Ω?,Ω0,Ω1 (see
Figure 1.1a), we take a different partition for computations (see Figure 1.1b):

Rd = Ωf ∪ Ω0
m ∪ Ω1

m ∪ Γf0 ∪ Γf1 ∪ Γ01, (1.7)

with Γf0 := ∂Ωf ∩ ∂Ω0
m, Γf1 := ∂Ωf ∩ ∂Ω1

m, Γ01 := ∂Ω0
m ∩ ∂Ω1

m and Ωf ∩ Ω0
m =

∅, Ωf ∩ Ω1
m = ∅, Ω0

m ∩ Ω1
m = ∅. We also define Ωm := Ω0

m ∪ Ω1
m and

Γ := Γf0 ∪Γf1 ∪Γ01; for Section 1.1.1, Ωm = Ω0
m and Γ = Γf0 = ∂Ωf = ∂Ωm.

We demand Ω? ⊆ Ωf , but not necessarily Ω? = Ωf . If Ω? 6= Ωf , Γf0∪Γf1 = ∂Ωf

is an artificial interface. Note that Ωf can be composed of disjoint regions.

We also demand that Ω0
m,Ω

1
m include different values of the equation pa-

rameters of (1.3a): Ωi
m ⊆ Ωi, i = 0, 1, i.e. constant wavenumbers k0, k1 for

Ω0
m,Ω

1
m.

We call Ωf , a bounded Lipschitz domain [41, p. 4, Definition 1.1], the FEM
domain, whereas Ω0

m is the unbounded and Ω1
m the bounded Trefftz domain.

The terminology indicates the type of approximation of the unknown to be
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employed in each domain. Coupling between the FEM and Trefftz domains is
done across the (artificial) interfaces Γfi, i = 0, 1, while coupling between the
two Trefftz domains occurs across the physical interface Γ01 (not required for
Poisson’s problem of Section 1.1.1).

Remark 1.2.1. A special setting occurs when ki = 0 and Ωi
m is also simply

connected [37, p. 252, Section 8]. As a matter of fact, as Ωi
m does not con-

tain any free current by definition (Ω? ⊆ Ωf), then we can replace Maxwell’s
equations (1.3a) for k = 0 in Ωi

m with the Poisson’s problem (1.1) using a
magnetic scalar potential [43, p. 245, (5.67)] (see Section 1.1.4) as unknown,
which is easier to handle (see Sections 4.4 and 6.5).

1.3 Function Spaces

We look for unknowns u (Sections 1.1.1 and 1.1.2) and φ,u (Section 1.1.3) in
Sobolev spaces [67, p. 36, Chapter 3] on a generic open set Ω ⊆ Rd, d = 2, 3:

• H1(Ω) [67, p. 38] for u and H1
∗ (Ω) :=

{
v ∈ H1(Ω):

∫
Ω v dx = 0

}
for φ,

and

• H(curl,Ω) [67, p. 55, (3.40)] and the broader Hloc(curl,Ω) for u: the
subscript “loc” indicates that functions belong to the reported space,
here H(curl,Ω), after multiplication with a compactly-supported smooth
function [67, p. 230].

In the following we will also make use of Sobolev spaces L2(Ω) [67, p. 36,
Section 3.2], L2

t (∂Ω) [67, p. 48, (3.13)], and H(div,Ω) [67, p. 52, (3.29)].

Given these spaces and the computational domains introduced in Section 1.2,
for Sections 1.1.2 and 1.1.3 we can decompose u, φ,u as

uf := u|Ωf
∈ H1(Ωf), u0

m := u|Ω0
m
∈ H1

loc(Ω0
m), u1

m := u|Ω1
m
∈ H1(Ω1

m),

(1.8a)

φf := φ|Ωf
∈ H1

∗ (Ωf), φ0
m := φ|Ω0

m
∈ H1

∗,loc(Ω0
m), φ1

m := φ|Ω1
m
∈ H1

∗ (Ω1
m),

(1.8b)

uf := u|Ωf
∈ H(curl,Ωf), u

0
m := u|Ω0

m
∈ Hloc(curl,Ω0

m), u1
m := u|Ω1

m
∈ H(curl,Ω1

m).

(1.8c)
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For Section 1.1.1, the decomposition (1.8a) is only on domains Ωf and Ωm =
Ω0

m.

It is now important to introduce a formalism to evaluate u, φ,u on the in-
terfaces Γf0,Γf1,Γ01 between Ωf ,Ω

0
m,Ω

1
m. The relevant traces [67, p. 42, Sec-

tion 3.2.1] are

• the Dirichlet trace [67, p. 43, (3.8)],

• the Neumann trace γN [75, p. 68, (2.103)]:

γN :

H1
loc(∇2,Ω�)→ H̃−

1
2 (Γ�),

v 7→ n ·M−1
µ ∇v for v ∈ H2

loc(Ω�),
(1.9a)

• the tangential trace [67, p. 57, (3.45)],

• the tangential components trace [67, p. 57, (3.46)], and

• the magnetic trace γm [67, p. 59, (3.51)]:

γm :

Hloc(curl curl,Ω�)→ H̃−
1
2 (divΓ�

,Γ�),

v 7→ n×
(
M−1

µ ∇× v
)
.

(1.9b)

We define the terms appearing in (1.9a) and (1.9b):

• Ω� ∈
{

Ωf ,Ω
0
m,Ω

1
m

}
and Γ� ∈ {Γf0,Γf1,Γ01}.

• n is the normal vector on Γ�.

• H1
loc(∇2,Ω�) is the space of functions v ∈ H1

loc(Ω�) for which ∇2v ∈
L2

loc(Ω�).

• H̃−
1
2 (Γ�) [67, p. 44] is the dual space [67, p. 19, Definition 2.14] of

H
1
2 (Γ�) [67, p. 44], given by the range of Dirichlet traces. The tilde of

H̃−
1
2 (Γ�) takes into account that Γ� is generally an open interface [75,

p. 59, (2.90)].

• Hloc(curl curl,Ω�) is the space of functions v ∈ Hloc(curl,Ω�) for

which ∇× (∇× v) ∈ L2
loc(Ω�) :=

[
L2

loc(Ω)
]3

.
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1.3 Function Spaces

• H̃−
1
2 (divΓ�

,Γ�) [67, p. 59] is the dual space of H−
1
2 (curlΓ�

,Γ�) [67,
p. 59, (3.53)].

Relying on this formalism, we can then write the interface conditions that the
restrictions of the solution of a generic boundary value problem on two different
domains Ω1,Ω2 have to satisfy across the common interface Γ := Ω1 ∩ Ω2 for
the joint solution to be well-posed. They are given by [67, p. 107, Lemma 5.3],
which we report here, given the importance of these conditions for our work:

Lemma 1.3.1. Let Ω1,Ω2 be nonoverlapping Lipschitz domains [67, p. 38,
Definition 3.1] with a common surface Γ := Ω1 ∩ Ω2 with nonzero measure.

• Given u1 := u|Ω1
∈ H1(Ω1), u2 := u|Ω2

∈ H1(Ω2), and u ∈ L2(Ω1 ∪
Ω2 ∪ Γ), then:

u1

∣∣
Γ

= u2

∣∣
Γ

=⇒ u ∈ H1(Ω1 ∪ Ω2 ∪ Γ).

• Given u1 := u|Ω1
∈ H(curl,Ω1), u2 := u|Ω2

∈ H(curl,Ω2), and u ∈
L2(Ω1 ∪ Ω2 ∪ Γ), then:

n× u1

∣∣
Γ

= n× u2

∣∣
Γ

=⇒ u ∈ H(curl,Ω1 ∪ Ω2 ∪ Γ).

• Given u1 := u|Ω1
∈ H(div,Ω1), u2 := u|Ω2

∈ H(div,Ω2), and u ∈
L2(Ω1 ∪ Ω2 ∪ Γ), then:

n · u1

∣∣
Γ

= n · u2

∣∣
Γ

=⇒ u ∈ H(div,Ω1 ∪ Ω2 ∪ Γ).

Hence, for Poisson’s problem (1.1), interface conditions between uf := u|Ωf
∈

H1(Ωf) and um := u|Ωm
∈ H1

loc(Ωm), given a single Trefftz domain Ωm (m =
0), with Γ = ∂Ωf = ∂Ωm, are

uf |Γ = um|Γ , (1.10a)

γNuf |Γ = γNum|Γ . (1.10b)

For Helmholtz problem (1.2), interface conditions are the same as (1.10) but
for the three interfaces Γf0,Γf1,Γ01 between Ωf ,Ω

0
m,Ω

1
m:

uf |Γfi
= uim

∣∣
Γfi
, (1.11a)
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γNuf |Γfi
= γNu

i
m

∣∣
Γfi
, (1.11b)

with i = 0, 1. Analogous conditions also have to hold across Γ01.

Finally, the interface conditions that the solution u of (1.3) has to satisfy
across Γfi, i = 0, 1, are

n× uf

∣∣
Γfi

= n× uim
∣∣
Γfi
, (1.12a)

γmuf

∣∣
Γfi

= γmuim
∣∣
Γfi
, (1.12b)

n · uf

∣∣
Γfi

= n · uim
∣∣
Γfi
. (1.12c)

(1.12a) and (1.12b) stem from the first line of (1.3a), (1.12c) from the second
line (Coulomb gauge).1 Analogous conditions also have to hold across Γ01.

1.4 Finite Elements

Integrating Maxwell’s equations over any volumes and surfaces in Rd, d = 2, 3,
and exploiting the divergence [43, p. 31, (1.56)] or Stokes’ theorems [43, p. 34,
(1.57)], one obtains the integral (weak) form of Maxwell’s equations [43, p. 342,
Section 7.3.6]. This form, involving fluxes and line integrals, is considered by
some [83] to be more “physical” than the corresponding differential form [43,
p. 341, (7.56)], as it involves directly measurable quantities, like currents,
allows more relaxed smoothness requirements for the unknowns (which can
be smooth almost everywhere), and also encodes conservation of energy. For
these reasons, Maxwell’s equations in integral form constitute the basis of the
cell method [84].

On a similar note, a finite element analysis always starts from the variational
form of the differential equations involved. By testing the integral form of
(1.1a) on Ωf with suitable functions and integrating by parts, we obtain

Seek uf ∈ H1(Ωf) :∫
Ωf

(
M−1

µ ∇uf

)
· ∇vf dx−

∫
Γ

γNuf vf dS =

∫
Ωf

j vf dx ∀vf ∈ H1(Ωf).
(1.13a)

1At first sight, one could think of combining (1.12a) and (1.12c) and impose the continuity
uf

∣∣
Γfi

= uim
∣∣
Γfi

, i = 0, 1. However, this would only hold if each restriction of u lay in

H1(Ω�) :=
[
H1(Ω�)

]3
.

10



1.4 Finite Elements

Let us also introduce the variational form for Maxwell’s PDEs (1.3a):

Seek uf ∈ H(curl,Ωf), φf ∈ H1
∗ (Ωf) :

∫
Ωf

[(
M−1

µ ∇× uf

)
· (∇× vf)− ω2 (Mεuf) · vf

]
dx +∑

i=0,1

∫
Γfi
γmuif · vf dS +

∫
Ωf
∇φf · vf dx =

∫
Ωf

j · vf dx ∀vf ∈ H(curl,Ωf),∫
Ωf

uf · ∇ψf dx−
∑
i=0,1

∫
Γfi

(
n · uif

)
ψf dS = 0 ∀ψf ∈ H1

∗ (Ωf).

(1.13b)

We use standard finite element spaces to discretize (1.13a) and (1.13b) in
Ωf ⊇ Ω?, where Mµ,Mε may vary in space. These discrete spaces are built
on triangular [18, p. 65, Section 5.6] (in R2) or tetrahedral meshes Mf [67,
p. 112, Section 5.3] on Ωf . More specifically, we discretize uf ∈ H1(Ωf) and
φf ∈ H1

∗ (Ωf) with piecewise-linear Lagrangian finite elements [67, p. 143, Sec-
tion 5.6], i.e.

V n(Mf) := S0
1 (Mf) :=

{
vn ∈ C0(Ωf) : vn|K (x) = aK + bK · x,

aK ∈ R, bK ∈ Rd, x ∈ K ∀K ∈Mf

}
, (1.14a)

with d = 2, 3 depending on the problem, and uf ∈ H(curl,Ωf) with the lowest-
order H(curl,Ωf)-conforming edge elements of the first family due to Nédélec
[67, p. 126, Section 5.5], i.e.

Vn(Mf) := R1(Mf) :=
{

vn ∈ H0(curl,Ωf) : vn|K (x) = aK + bK × x,

aK ,bK ∈ R3, x ∈ K ∀K ∈Mf

}
. (1.14b)

On each discrete function φnf ∈ H1
∗ (Ωf) discretized by V n(Mf) ⊂ H1(Ωf) we

impose the condition
∫

Ωf
φnf dx = 0 by means of a scalar Lagrange multiplier

[18, p. 129].

(1.13a) and (1.13b) are used in Chapter 3 to describe the strategies to couple
FEM with Trefftz methods.
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2 Trefftz Methods

Given the model problems (1.1) and (1.3) and their finite element discretiza-
tions (1.13a) and (1.13b) in Ωf , we introduce here the other leg of our hybrid
approach, which is made of Trefftz methods. Section 2.1 describes the con-
tinuous Trefftz spaces for the boundary value problems of Section 1.1, while
Section 2.2 the discrete basis functions that are used by a particular Trefftz
method, the Multiple Multipole Program (MMP). A theorem for exponential
convergence of MMP for Poisson’s problem (1.1) in R2 is proven in Section 2.3:
numerical results in Sections 2.3.1 and 2.3.2 agree with this theorem and also
show what happens when the hypotheses are no longer true. Section 2.4 only
provides empirical evidence for R3, with considerations about the limitations
of Trefftz methods.

2.1 Trefftz Spaces

In the partition of Rd \ Ω?, d = 2, 3, induced by piecewise-constant equation
parameters µ, ε and giving rise to the unbounded domain Ω0 and the (possibly
very large) domain Ω1 (Figure 1.1a), we do not intend to employ mesh-based
basis functions, as required in Ω?. Indeed, given the computational domains
Ω0

m,Ω
1
m introduced in Section 1.2, the weak solution u0

m ∈ Hloc(curl,Ω0
m) of

(1.3) is sought in the Trefftz space

T (Ω0
m) :=

{
v ∈ Hloc(curl,Ω0

m) : ∇× (∇× v)− k2
0 u = 0 , k0 ∈ C , ∇ · v = 0 ,

v satisfies the radiation condition (1.3b)
}
, (2.1a)

which is composed of exact solutions of (1.3) in Ω0
m. Correspondingly, u1

m ∈
H(curl,Ω1

m) is sought in

T (Ω1
m) :=

{
v ∈ H(curl,Ω1

m) : ∇× (∇× v)− k2
1 u = 0 , k1 ∈ C , ∇ · v = 0

}
.

(2.1b)
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2 Trefftz Methods

Similar scalar Trefftz spaces T are needed for u of Poisson’s and Helmholtz
problems (1.1) and (1.2).

Trefftz methods seek to approximate the unknown in Ω0
m,Ω

1
m using finite-

dimensional (discrete) subspaces of T (Ω0
m),T (Ω1

m). When Trefftz methods
are used alone, the coefficients of the chosen basis that express the unknown
are found by matching either a boundary condition or interface conditions with
the basis of another neighboring Trefftz domain. There are several methods
to achieve this goal [54]: the most common is arguably collocation on selected
matching points of the hypersurface [46].

However, the main feature that characterizes a Trefftz method is its own dis-
crete Trefftz space, not the way such space is used to solve a problem. Hence,
the functional form of the corresponding discrete basis functions leads to dif-
ferent types of Trefftz methods:

• Plane waves [43, p. 395, (9.43)] or (generalized) harmonic polynomials
[66, p. 47, Section 2.4] constitute the most common choice [54].

• If Trefftz basis functions solve an inhomogeneous problem, then we ob-
tain the method of fundamental solutions [61].

• Conversely, if they are point sources solving homogeneous equations (the
right-hand side can be expressed by a known offset function), then we
get the Method of Auxiliary Sources (MAS) [86].

In spite of this diversity, all Trefftz methods share a desirable feature and a
drawback. The former is the exponential convergence of their approximation
error if the field is sufficiently smooth (see Sections 2.3 and 2.4). The drawback
is that, as exact solutions of a PDE are global functions and simple choices for
a basis of T (Ω0

m),T (Ω1
m) may be affected by near-linear dependence, Trefftz

basis functions typically lead to ill-conditioned dense matrices. Stability is
therefore an issue. Related is the need of heuristic rules to build the discrete
Trefftz spaces when the unknown is difficult to model, e.g., when close to sin-
gularities: instability can have such a large impact that the numerical solution
is not accurate.

The numerical examples of Chapter 6 show that coupling a Trefftz method
with FEM can be a way to overcome this issue. These examples rely on

14



2.2 Multiple Multipole Program

a special case of MAS. Specifically, we use spaces spanned by multipoles and
refer to this discretization as the MMP approximation after the Trefftz method
known as Multiple Multipole Program.

2.2 Multiple Multipole Program

The concept of the Multiple Multipole Program was proposed by Ch. Hafner
in his dissertation [46] and popularized by his free code OpenMaXwell [48] for
2D axisymmetric problems. Hafner’s MMP is in turn based on the much older
work of G. Mie and I. N. Vekua [65, 85]. Essentially, the Mie-Vekua approach
expands some scalar field in a 2D multiply-connected domain [37, p. 252,
Section 8] by a multipole expansion supplemented with generalized harmonic
polynomials. Extending these ideas, MMP introduces more basis functions
(multiple multipoles) than required according to Vekua’s theory [85] to span
the Trefftz spaces (2.1).

Multipoles are potentials spawned by (anisotropic) point sources. These point
sources are taken from the exact solutions of the homogeneous PDEs (1.3a)
that can be subject to the decay condition (1.3b), depending on whether they
are used to approximate the solution in Ω0

m.

A multipole can generally be written as v (x) := f (rxc) g (θxc) or v (x) :=
f (rxc) g (θxc, ϕxc) in a polar/spherical coordinate system in Rd, d = 2, 3
(r ∈ [0,∞), θ ∈ [0, 2π), ϕ ∈ [0, π]) with respect to its center c ∈ Rd
(x, c ∈ Rd are position vectors in Cartesian coordinates). Here, (rxc, θxc)

> and
(rxc, θxc, ϕxc)

> are polar/spherical coordinates of the vector xc := x− c.

The radial dependence f (rxc) has a center that may present a singularity,
|f (r)| → ∞ for r → 0, and, when needed, the desired decay condition at
infinity. If there is a singularity, multipoles are centered outside the domain
in which they are used for approximation.

On the other hand, the polar/spherical dependence g or g is usually formulated
in terms of trigonometric functions [2, p. 71, Section 4.3] or (vector) spherical
harmonics [21, p. 289]. The additional constraint of the Coulomb gauge in
(1.3a) is taken into account by selecting a subset of vector spherical harmonics
to express g.
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2 Trefftz Methods

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(a) log r

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.01

-0.005

0

0.005

0.01

(b) r−2 cos(2θ) (c) r−3 cos(3θ)

Figure 2.1: Sample multipoles for 2D Poisson’s problem.

More specifically, the multipoles chosen for the numerical experiments tackling
(1.1) in Rd, d = 2, 3, have the forms

in R2 : (r, θ) 7→


log rxc ` = 0,

r−`xc cos(`θxc), ` = 1, . . . ,∞,
r−`xc sin(`θxc), ` = 1, . . . ,∞,

(2.2a)

and

in R3 : (r, θ, ϕ) 7→ r−(`+1)
xc Y`m(θxc, ϕxc), ` = 0, . . . ,∞, m = −l, . . . , l.

(2.2b)

Ylm(θ, ϕ) denotes the spherical harmonics [64, p. 250]. Figure 2.1 shows three
examples of multipoles according to (2.2a) with center c = 0.

Secondly, for the Helmholtz problem (1.2) in R2:

(r, θ) 7→
{
B0(krxc), B1(krxc) cos(θxc), B1(krxc) sin(θxc), . . . ,

B`(krxc) cos(` θxc), B`(krxc) sin(` θxc), . . .
(2.3)

• B` is a (non-spherical) Hankel function of the first kind H
(1)
` [64, p. 280]

or a (non-spherical) Bessel function of the first kind J` [64, p. 278, (9.7)],
depending on whether the Trefftz space is subject to the Sommerfeld
radiation condition (1.2b).

• k := ω
√
µε ∈ C is the piecewise-constant wavenumber: k = ki in Ωi

m,
i = 0, 1.
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2.2 Multiple Multipole Program

We conclude the exposition with multipoles for Maxwell’s problem (1.3) in
R3:

(r, θ, ϕ) 7→
b`(krxc) Φ`m(θxc, ϕxc),

`(`+ 1)
b`(krxc)

krxc
Y`m(θxc, ϕxc) +

[
b′`(krxc) +

b`(krxc)

krxc

]
Ψ`m(θxc, ϕxc),

` = 1, . . . ,∞, m = −l, . . . , l,
(2.4)

given vector spherical harmonics defined as

Y`m(θ, ϕ) := er Y`m(θ, ϕ), er= (1, 0, 0)>, (2.5a)

Φ`m(θ, ϕ) := r×∇sphY`m(θ, ϕ), r = (r, 0, 0)>, (2.5b)

Ψ`m(θ, ϕ) := r∇sphY`m(θ, ϕ), (2.5c)

here with spherical components.

• b` is a spherical Hankel function of the first kind h
(1)
` [64, p. 281] or

a spherical Bessel function of the first kind j` [64, p. 279], depending
on whether the Trefftz space is subject to the Silver-Müller radiation
condition (1.3b).

• ∇sph denotes the gradient in spherical coordinates. It can be shown that
Φ`m,Ψ`m do not depend on r despite its presence in their definitions
(2.5b) and (2.5c).

However, in a magnetostatic regime (k = 0, see Section 1.1.3), multipoles
would take the form [29, p. 4, (4)]

(r, θ, ϕ) 7→ r−(l+1)
xc Φ`m(θxc, ϕxc), ` = 1, . . . ,∞, m = −l, . . . , l, (2.6)

which satisfies the decay condition (1.4).

Remark 2.2.1. Yet, let us consider the case of a single (unbounded) MMP
domain Ωm to solve the magnetostatic problem ∇× (∇× u) = j, ∇ · u = 0 in
R3 subject to the decay condition (1.4) (compare with Section 6.4). If Ωm is
multiply connected [37, p. 252, Section 8], then multipoles (2.6) solving the
homogeneous problem are not enough for Ampère’s law in integral form [43,
p. 233, (5.57)] to hold in Ωm.
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2 Trefftz Methods

j

Σ

Ωm

Ωf=Ω⋆

Figure 2.2: A current loop Ωf = Ω?, along which j is tangential, and a closed
curve in Ωm = R3 \ Ω? where to test Ampère’s law.

As a matter of fact, let us consider the case when Ωf = Ω? is a torus that con-
tains a current loop along which j is tangential, which is Ω? (see Figure 2.2).
Ampère’s law states that the magnetic field ∇ × u [43, p. 243, (5.61)] inte-
grated on any closed curve is equal to the current flowing through it; therefore,
if one takes a closed curve such that the current loop passes through it (like
two links of a chain), we should have∮

(∇× um) · d~s =

∫
Σ

j · dS, (2.7a)

where Σ is the surface bounded by the closed curve. However, on any closed
curve in Ωm, including those through which the torus Ωf passes, given um

linear combination of multipoles (2.6), we always have∮
(∇× um) · d~s =

∫
Σ

[∇× (∇× um)] · dS = 0, (2.7b)

where the first step follows from Stokes’ theorem [43, p. 34, (1.57)].

To address this issue, one should complete (2.6) with a known offset function
being the solution of the inhomogeneous magnetostatic problem in free space,
i.e. Biot–Savart law [43, p. 224, (5.34) and p. 227, (5.42)].
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2.3 Trefftz Approximation Error in 2D

Each multipole from (2.2a), (2.2b), (2.3), (2.4), and (2.6) is characterized
by a location, i.e. its center c, and parameters ` (degree) and, optionally, m
(subdegree). When we place several multipoles at a given location up to a
certain order, which is the maximum degree of multipoles with that center,
we use the term multipole expansion. Summing the number of terms of all
multipole expansions used for approximation yields the total number of degrees
of freedom of the discretized Trefftz spaces T n(Ωi

m) ⊂ T (Ωi
m), i = 0, 1.

2.3 Trefftz Approximation Error in 2D

Let the solution u of the Poisson’s problem (1.1) in R2 allow an analytic
extension beyond an MMP domain Ωm ∈ R2, into the region of Ωc

m := R2 \Ωm

between Γ := ∂Ωm and the curve Σ along which the multipole expansions
are placed. Then we expect exponential convergence of MMP in terms of its
number of degrees of freedom, both when the number of multipole expansions
and the order of the expansions is raised. This result has been proven in [74,
p. 1385, Theorem 4.1] for the dipole simulation method, but the author of [74]
expects that the proof can be extended to MMP [74, p. 1392, Section 6].

Moreover, one can prove that convergence results in H1-seminorm for the
Poisson’s problem (1.1) solved by harmonic polynomials inside a domain Ω? ∈
R2 also hold for multipoles in the complement Ωc

?. This is stated in the
following theorem, originally reported in [28, p. 3, Proposition 1].

Proposition 2.3.1. Let d = 2. If the solution u : Ωc
? → R of the Poisson’s

problem (1.1)

• is harmonic [36, p. 20] in the complement Ωc
? of a 2D bounded uniformly

star-shaped [66, p. 56, Assumption 3.1.1] (with respect to the origin)
domain Ω?,

• satisfies the decay condition (1.1b) at infinity,

• and possesses a harmonic extension into parts of the domain Ω?,

then its best approximation by multipoles (2.2a) located in the origin converges
exponentially with respect to the order of the multipole expansion in the H1-
seminorm.
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2 Trefftz Methods

Proof. The proof is based on the Kelvin transform [64, p. 259, Equation 8.30]

u→ u∗ : u∗(x) := u(x∗), x∗ :=
x

‖x‖2
, x ∈ R2 \ {0}. (2.8)

For the H1-seminorm we can show that

|u|H1(Ω) = |u∗|H1(Ω∗) ∀u : Ω→ R, (2.9)

where Ω is any domain in R2, given that the Kelvin transform preserves har-
monicity. Indeed, when the Kelvin transform is applied to harmonic polynomi-
als p(r, θ) = r` cs(`θ), with r, θ polar coordinates in R2 (r ∈ [0,∞), θ ∈ [0, 2π)),
` ∈ Z∗, cs ∈ {cos, sin}, we obtain multipoles (2.2a) for the Laplace’s equation
in R2:

p∗(r, θ) = r−` cs(`θ). (2.10)

Let us now consider u, solution of the Poisson’s problem (1.1) respecting the
conditions stated above, and the domain Ωm := Ωc

? where we want to estimate
the MMP approximation. We first define ũ := u − c log r, c ∈ R, whose
decay satisfies ũ(x) = O(‖x‖−1) for ‖x‖ → ∞ uniformly. Under the Kelvin
transform, ũ∗ = O(‖x‖) for ‖x‖ → 0.

Without loss of generality, we assume that Ω∗m, Kelvin-transformed Ωm, con-
tains the unit disk and that ũ∗ is harmonic in Ω∗m, which implies that ũ∗ pos-
sesses a harmonic extension beyond Ω∗m. Thus, we can conclude exponential
convergence in H1-seminorm for the approximation by harmonic polynomials
of ũ∗ in Ω∗m [66, p. 61, Remark 3.2.6]:

∀N ∈ Z∗, ∃α(N)
` , β

(N)
` ∈ R, ` = 1, . . . , N :∣∣∣ũ∗ − N∑

`=1

α
(N)
` r` cos(`θ) + β

(N)
` r` sin(`θ)

∣∣∣
H1(Ω∗

m)
≤ C qN (2.11a)

for some 0 ≤ q ≤ 1, C ∈ R+ independent of N.

By applying (2.9) and (2.10) to (2.11a), we get that

∀N ∈ Z∗, ∃α(N)
` , β

(N)
` ∈ R, ` = 1, . . . , N :∣∣∣ũ− N∑

`=1

α
(N)
` r−` cos(`θ) + β

(N)
` r−` sin(`θ)

∣∣∣
H1(Ωm)

≤ C qN (2.11b)
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2.3 Trefftz Approximation Error in 2D

for some 0 ≤ q ≤ 1, C ∈ R+ independent of N.

Finally, we can restore the proper decay condition of u, u(x) = c log r +

O(‖x‖−1) for ‖x‖ → ∞, where c ∈ R is given by the coefficient α
(N)
0 of the

zeroth-order multipole log r (see (2.2a)). This concludes the proof.

2.3.1 Numerical Results for the Poisson’s Equation

By means of a simple numerical experiment we illustrate the convergence
results of Proposition 2.3.1 in R2. Ωm is the complement of the unit square
[0, 1]2. We test the following solution which enjoys a O(‖x‖−1)-decay for
‖x‖ → ∞:

u(x) = r−2
xc sin(2θxc), (2.12)

where rxc ∈ [0,∞) and θxc ∈ [0, 2π) are polar coordinates of vector x − c.
We consider two positions of c: (0.4, 0.4)> and (0.2, 0.2)>. (2.12) represents a
harmonic function in H1(R2 \ [0, 1]2) that uniformly decays for ‖x‖ → ∞ with
a singularity in c.

Multipoles are chosen from (2.2a). We consider two configurations:

1. Multipole expansions up to a fixed order 1 uniformly located on a circle
at the center of the unit square [0, 1]2 with radius 0.25. During the
convergence test we increase the number of expansions.
Note that, given this choice of multipoles, the singularity of the solution
with c = (0.4, 0.4)> lies inside the circle of multipoles, i.e. the solution
has an analytic extension between Γ and the circle of multipoles Σ. On
the other hand, the solution with c = (0.2, 0.2)> has the singularity
outside Σ and does not have an analytic extension.

2. One multipole expansion of a given order placed in the center of the unit
square [0, 1]2. During the test we increase this order.

We compute the best approximation of the solutions in spaces spanned by
multipoles by means of the collocation method on uniformly spaced points on
the edges of the unit square (corners are avoided). The number of points is
chosen to make the overdetermined system almost square. The system is then
solved by QR decomposition [47, p. 25, Section 3.3].
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Figure 2.3: p-refinement semi-log error plots for 2D Poisson’s equation without
singularities solved by MMP: exponential convergence in H1(Ω)-
seminorm. The solution is r−2

xc sin(2θxc) with c = (0.4, 0.4)>.

The (relative) approximation error in H1-seminorm on the unbounded domain
Ωm is computed using

∫
Ωm

‖∇ (u− um)‖2`2 dx =

∫
Γ

γN(u− um) (u− um) dS, (2.13)

given the definition of multipoles (2.2a), with γN defined in Section 1.1.1.
(2.13) is approximated by a Gaussian quadrature rule that is exact for poly-
nomials of degree 2 (order 3).

For the solution with an analytic extension (c = (0.4, 0.4)>), we observe ex-
ponential convergence given both fixed-order multipole expansions on a circle
and one variable-order expansion placed in the origin, as shown in Figure 2.3.
This is in accordance with Proposition 2.3.1 and the literature.

For the solution without an analytic extension (c = (0.2, 0.2)>), we see con-
vergence from Figure 2.4, but without the same regular pattern as Figure 2.3
(and the error is much higher).
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Figure 2.4: p-refinement semi-log error plots for 2D Poisson’s equation with a
singularity solved by MMP: convergence in H1(Ω)-seminorm. The
solution is r−2

xc sin(2θxc) with c = (0.2, 0.2)>.
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Figure 2.5: The geometry represents Ω0
m, Ω1

m, and Ω2
m, the three MMP sub-

domains with different wavenumbers, and their shared boundaries
Γ01, Γ02, and Γ12.
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2 Trefftz Methods

2.3.2 Numerical Results for the Helmholtz Equation

We now consider the 2D Helmholtz problem (1.2) subject to the Sommerfeld
radiation condition (1.2b) to show the exponential convergence implied by
Proposition 2.3.1 for Helmholtz equation solved by more than one MMP dis-
cretization coupled together. The domain is R2 with a unit disk split into two
halves: we call these subdomains Ω0

m, Ω1
m, and Ω2

m (see Figure 2.5). In each
of them, the wavenumber k is referred to as k1 in one half of the disk (Ω1

m),
k2 in the other half (Ω2

m), and k0 in the complement (Ω0
m). In Ω0

m we also as-
sume that the solution u is decomposable as uinc +uref, with uinc := exp(ık0x)
(with x first Cartesian coordinate) a known plane wave that gives rise to the
right-hand side of the problem and uref to be determined.

At the endpoints of the segment splitting the disk in two the solution has triple-
point singularities if k0, k1, k2 are all different. Hence, assuming piecewise-
constant k, we need to use different Trefftz spaces for each subdomain. Mul-
tipoles are then chosen according to (2.3): Hankel functions are used on the
unbounded domain Ω0

m, Bessel functions on the bounded domains Ω1
m,Ω

2
m.

We consider two configurations of multipoles:

1. Multipole expansions up to a fixed order 1 uniformly located on a circle
at the center of each subdomain: (−0.5, 0) for Ω1

m, (0.5, 0) for Ω2
m, and

the origin for Ω0
m. Radii are 1.5, 1.5, and 0.5 for Ω1

m, Ω2
m, and Ω0

m,
respectively. During the convergence test we increase the number of
expansions.

2. For each subdomain, one multipole expansion of a given order placed in
the origin. During the test we increase this order.

We solve this problem by collocation, imposing interface conditions (1.11)
between uim, i = 0, 1, 2, denoting the MMP solution in Ωi

m; in Ω0
m, u0

m is
shifted by the plane wave exp(ık0x). From now on, Γij , i < j, j = 0, 1, 2,

refers to the boundary Ωi
m ∩ Ωj

m (Figure 2.5).

Matching points for collocation on Γij are found through the intersections
of conforming meshes on the disk Ω1

m ∪ Ω2
m: these meshes are more refined

depending on the number of degrees of freedom of T n(Ωi
m), i = 0, 1, 2, such

that the number of matching points is always larger than the sum of the
dimensions of the discrete Trefftz spaces (leading to overdetermined systems
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2.3 Trefftz Approximation Error in 2D
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Figure 2.6: p-refinement semi-log error plots for 2D Helmholtz equation with-
out TPS solved with three MMP domains: exponential conver-
gence in H1(Ωi)-seminorm, i = 1, 2. Parameters are k1 = k2 =
1.59 k0 and k0 = 7.86 rad m−1.

solved in a least-squares sense by QR decomposition). We use volume meshes
to identify matching points on boundaries Γij because we also want to track
a volume error; specifically, the (relative) approximation error in H1(Ωi

m)-
seminorm ∫

Ωim

∥∥∇ (u− uim)∥∥2

`2
dx (2.14)

on bounded domains Ω1
m,Ω

2
m. (2.14) is approximated by a Gaussian quadra-

ture rule that is exact for polynomials of degree 2 (order 3). As benchmark
u we rely on the numerical solution that MMP provides with a number of
degrees of freedom substantially higher than the highest number used in the
convergence study.

Firstly, we consider the case k1 = k2 = 1.59 k0 and k0 = 7.86 rad m−1, i.e. with-
out TPS. Figure 2.6 shows the corresponding relative H1-errors: the measured
errors provide some evidence of exponential convergence, as in this example
the solution possesses analytic extensions beyond the interface.

Conversely, Figure 2.7 shows these errors for k1 = 4 k0, k2 = 2 k0, and k0 =
7.86 rad m−1: here we may conjecture only algebraic convergence. Indeed,
exponential convergence is not preserved because the solution has TPS (no
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Figure 2.7: p-refinement log-log error plots for 2D Helmholtz equation with
TPS solved with three MMP domains: convergence in H1(Ωi)-
seminorm, i = 1, 2. Parameters are k1 = 4 k0, k2 = 2 k0, and
k0 = 7.86 rad m−1.
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Figure 2.8: p-refinement log-log error plots for 2D Helmholtz equation with
TPS solved with three MMP domains: convergence in H1(Ωi)-
seminorm, i = 1, 2. Parameters are k1 = 100 k0, k2 = 10 k0, and
k0 = 7.86 rad m−1.
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2.4 Trefftz Approximation Error for Maxwell’s Equations

harmonic extension for Proposition 2.3.1), and therefore convergence becomes
much slower. Figure 2.8 presents more pronounced TPS with k1 = 100 k0, k2 =
10 k0, and k0 = 7.86 rad m−1: even algebraic convergence becomes difficult to
recognize.

2.4 Trefftz Approximation Error for Maxwell’s Equations

A corresponding result to Proposition 2.3.1 for d = 3 remains elusive. How-
ever, here we present a numerical experiment showing that exponential con-
vergence also holds for Maxwell’s problem (1.3).

We consider the equations ∇× (∇× u) − k2 u = 0, ∇ · u = 0 subject to the
Silver-Müller radiation condition (1.3b). The domain is R3 with a unit ball: we
call this subdomain Ω1

m and the complement Ω0
m (see Section 1.2). In each of

them, the wavenumber k is referred to as k1 and k0. In Ω0
m we also assume that

the solution u is decomposable as uinc + uref, with uinc := exp(ık0z) (0, 1, 0)>

(with z third Cartesian coordinate) a known plane wave that gives rise to the
right-hand side of the problem and uref to be determined.

Assuming piecewise-constant k, we need to use different Trefftz spaces for each
subdomain. Multipoles are then chosen according to (2.4): Hankel functions
are used on the unbounded domain Ω0

m, Bessel functions on the bounded
domain Ω1

m.

We consider two configurations of multipoles:

1. Multipole expansions up to a fixed order 1 uniformly located on unit
cubes centered in the origin. Side lengths are 2.6 and 0.8 for Ω1

m and
Ω0

m, respectively. During the convergence test we increase the number
of expansions.

2. For each subdomain, one multipole expansion of a given order placed in
the origin. During the test we increase this order.

We solve this problem by collocation, imposing interface conditions (1.12)
between uim, i = 0, 1, denoting the MMP solution in Ωi

m; in Ω0
m, u0

m is shifted
by the plane wave exp(ık0z) (0, 1, 0)>. From now on, Γ01 refers to the boundary
Ω0

m ∩ Ω1
m.
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Figure 2.9: p-refinement semi-log error plots for Maxwell’s equations without
TPS solved with two MMP domains: exponential convergence in
H(curl,Ω1)-seminorm. Parameters are k1 = 1.59 k0 and k0 =
3.33 rad m−1.

Matching points for collocation on Γ01 are found through the intersections of
meshes on the ball Ω1

m: these meshes are more refined depending on the num-
ber of degrees of freedom of T n(Ωi

m), i = 0, 1, such that the number of match-
ing points is always larger than the sum of the dimensions of the discrete Trefftz
spaces (leading to overdetermined systems solved in a least-squares sense by
QR decomposition). We use volume meshes to identify matching points on
boundaries Γ01 because we also want to track a volume error; specifically, the
relative approximation error in H(curl,Ω1

m)-seminorm∫
Ω1

m

∥∥∇× (u− u1
m

)∥∥2

`2
dx (2.15)

on the bounded domain Ω1
m. (2.15) is approximated by a Gaussian quadrature

rule that is exact for polynomials of degree 2 (order 3). As benchmark u we
rely on the numerical solution that MMP provides with a number of degrees of
freedom substantially higher than the highest number used in the convergence
study.

We take constant parameters k1 = 1.59 k0 and k0 = 3.33 rad m−1. Figure 2.9
shows the corresponding relative H(curl)-errors: it hints at exponential con-
vergence, as in this example the solution possesses analytic extensions beyond
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2.4 Trefftz Approximation Error for Maxwell’s Equations

Figure 2.10: Magnitude of the real component of u along the XZ-plane for
k1 = 1.59 k0 and k0 = 7.86 rad m−1. The beam on the surface of
the ball is the photonic nanojet.

the interface. Yet, the same error is reached by the multipoles on cubes with
a much larger number of degrees of freedom than the single expansions: this
is due to the higher instability of the former configuration compared to the
latter (the aforementioned heuristics issue).

As a matter of fact, one could expand the incident plane wave in terms of vector
spherical harmonics and obtain coefficients for the resulting fields in Ω0

m,Ω
1
m

as multipole expansions centered in the origin – see Section 6.6.1. At the same
time, considering a full plane wave as excitation, as we do in Figure 2.9, and
choosing a slightly higher wavenumber k0 = 7.86 rad m−1 (higher frequency),
one can observe a photonic nanojet [49, p. 1985, Fig. 4.a] in Figure 2.10,
which illustrates the magnitude of the real component of u along the XZ-
plane: given that exp(ık0z) (0, 1, 0)> propagates along the z-axis, we can in
fact see a beam on the point where the plane wave first hits Ω1

m, i.e. where
Γ01 intersects the positive z-axis. We will again observe this phenomenon in
Section 6.3.1 with the FEM–MMP coupling.

Remark 2.4.1. MMP without modifications cannot properly handle more com-
plicated situations than those explored in Sections 2.3.2 and 2.4, such as triple-
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2 Trefftz Methods

point singularities, and preserve its exponential behavior. For example, this is
shown in Figures 2.7 and 2.8 for 2D Helmholtz equation. There are two ways
to cope with these situations:

1. Augmenting the Trefftz spaces with basis functions that capture the sin-
gularities [11]. However, explicit knowledge of the form of such singu-
larities is required.

2. Coupling MMP with a method based on volume meshes, like FEM, and
applying the latter to a locally-refined mesh that encompasses both the
singularities and their immediate surrounding regions. By truncating
the mesh at an auxiliary boundary that does not coincide with any phys-
ical discontinuity, MMP can be applied to a region where the field is
sufficiently easy to approximate that heuristics on the placement of mul-
tipoles (relevant for, e.g., the two configurations of Figure 2.9) does not
impact much on the quality of the solution. This is the approach followed
by this work.
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3 Coupling Strategies

From now on, we refer to the computational domain decomposition introduced
in Section 1.2 (see, for example, Figure 1.1b) solved by FEM (Section 1.4) in
Ωf and a Trefftz method (Chapter 2) in Ωm, which can be either a single
domain or := Ω0

m ∪ Ω1
m, depending on the problem of Section 1.1.

Interface conditions (1.10) on Γ (given a single Trefftz domain) and the weak
form (1.13a) of (1.1a) in Ωf are all the ingredients to obtain a FEM–Trefftz
coupled solution of (1.1). By inserting the interface condition (1.10b) into the
boundary integral of (1.13a), we obtain

Seek uf ∈ H1(Ωf), um ∈ T (Ωm) :∫
Ωf

(
M−1

µ ∇uf

)
· ∇vf dx−

∫
Γ

γNum vf dS =

∫
Ωf

j vf dx ∀vf ∈ H1(Ωf).
(3.1a)

Correspondingly, we need interface conditions (1.12) on Γf0,Γf1,Γ01 and the
weak form (1.13b) of (1.3a) in Ωf to develop the FEM–Trefftz coupling of
(1.3). By inserting (1.12b) and (1.12c) on Γf0,Γf1 into the boundary integrals
of (1.13b), we obtain

Seek uf ∈ HΓ(curl,Ωf), u0
m ∈ T (Ω0

m), u1
m ∈ T (Ω1

m), φf ∈ H1
∗ (Ωf) :

∫
Ωf

[(
M−1

µ ∇× uf

)
· (∇× vf)− ω2 (Mεuf) · vf

]
dx +∑

i=0,1

∫
Γfi
γmuim · vf dS +

∫
Ωf
∇φf · vf dx =

∫
Ωf

j · vf dx ∀vf ∈ H(curl,Ωf),∫
Ωf

uf · ∇ψf dx−
∑
i=0,1

∫
Γfi

(
n · uim

)
ψf dS = 0 ∀ψf ∈ H1

∗ (Ωf).

(3.1b)

Note that, even if in (1.3a) the second equation (Coulomb gauge) is implicitly
contained in the first in the case of piecewise-constant µ, ε ∈ C in Ωf , the
Coulomb gauge needs to be imposed nonetheless via the Lagrange multiplier
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3 Coupling Strategies

φf ∈ H1
∗ (Ωf) for (1.12c) to hold through the boundary integrals of the second

line of (3.1b).1 Conversely, the Coulomb gauge is already taken into account
strongly for functions uim ∈ T (Ωi

m), i = 0, 1.

We end up with four different coupling approaches depending on how we im-
pose

• the additional interface condition (1.10a) on Γ for (3.1a) and

• (1.12a) on Γf0,Γf1 and all interface conditions (1.12) on Γ01 for (3.1b).

These coupling approaches in the continuous and discrete cases are discussed in
the following sections as stationary problems for different Lagrangian function-
als [18, p. 129, (4.3)]. The resulting linear variational saddle-point problems
[18, p. 129, (4.4)] are also stated.

The coupling strategies are illustrated for both the Poisson’s (with one Tr-
efftz domain) and Maxwell’s cases. Furthermore, for Poisson’s problem, we
prove existence, uniqueness, and stability of the FEM–Trefftz coupled solu-
tions based on abstract saddle-point theory [18, p. 129, Section 4] for both the
continuous and discrete cases.2

3.1 PDE-constrained Least-Squares Coupling

3.1.1 Poisson’s Equation

We determine a quadratic minimization problem under a linear variational
constraint [50, p. 2, (1.1)] by seeking uf ∈ H1(Ωf) and um ∈ T (Ωm) that

1. minimize the mismatch in the interface condition

JΓ(uf , um) := ‖uf − um‖2
H

1
2 (Γ)

(3.2)

2. and satisfy the constraint (3.1a).

1This is also why we choose φf ∈ H1
∗(Ωf) instead of H1

0 (Ωf) [67, p. 38, (3.5)]: otherwise,
the boundary integrals to impose (1.12c) would disappear from the second line of (3.1b).

2Except for the DG-based coupling (Section 3.2), which only works in the discrete sense.
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3.1 PDE-constrained Least-Squares Coupling

Note that here the constraint is given by the variational form of the system
of PDEs (1.1a) in Ωf , while the functional JΓ to be minimized is based on the
interface condition not imposed by the variational form (3.1a).

This problem can be rephrased as seeking a saddle point of the following
Lagrangian:

L(uf , um, pf) :=
1

2
‖uf − um‖2L2(Γ) +∫

Ωf

(
M−1

µ ∇uf

)
· ∇pf dx +

∫
Γ
γNum pf dS −

∫
Ωf

j pf ,
(3.3)

where pf ∈ H1(Ωf) is the Lagrange multiplier imposing (3.1a).

Saddle-Point Problem

The trace norm ‖·‖
H

1
2 (Γ)

is nonlocal. Thus, for practicality we replace it with

the L2(Γ)-norm in (3.2) and seek uf ∈ H1
Γ(Ωf) :=

{
v ∈ H1(Ωf) : v|Γ ∈ L2

t (Γ)
}

.
Given this substitution, the necessary and sufficient optimality conditions of
(3.3) give rise to the saddle-point problem

Seek uf ∈ H1
Γ(Ωf), um ∈ T (Ωm), pf ∈ H1(Ωf) :aLS[(uf , um) , (vf , vm)] + bLS[(vf , vm) , pf ] = 0

bLS[(uf , um) , qf ] =
∫

Ωf
j qf dx

∀vf ∈ H1
Γ(Ωf), ∀vm ∈ T (Ωm), ∀qf ∈ H1(Ωf),

(3.4)

where

aLS[(uf , um) , (vf , vm)] :=

∫
Γ

(uf − um) (vf − vm) dS, (3.5a)

bLS[(uf , um) , qf ] :=

∫
Ωf

(
M−1

µ ∇uf

)
· ∇qf dx−

∫
Γ
γNum qf dS. (3.5b)

We propose the following discretization for (3.4):

• uf , vf , pf , qf ∈ V n(Mf), see (1.14a), and

• um, vm ∈ T n(Ωm).
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3 Coupling Strategies

Existence, Uniqueness, and Stability

The constraint implied by the second line of (3.4) uniquely defines a function
uf = uf(um) that satisfies γNuf = γNum from (1.10b). Thus, the existence
and uniqueness of a solution to (3.4) follows from those for (1.1). However,
stability in energy norms cannot be proven as aLS fails to be coercive on the
kernel of bLS.

Remark 3.1.1. If we relied on the H
1
2 (Γ)-inner product 〈·, ·〉

H
1
2 (Γ)

and defined

aLS[(uf , um) , (vf , vm)] := 〈uf − um, vf − vm〉
H

1
2 (Γ)

, (3.6)

then the ellipticity on the kernel condition [18, p. 132, Theorem 4.3, (i)] of
abstract saddle-point theory would be satisfied for (3.4). To see it note that, if
(uf , um) ∈ H1(Ωf) × T (Ωm) satisfy bLS[(uf , um) , qf ] = 0 for all qf ∈ H1(Ωf),
then integration by parts in Ωm shows that

|uf |2H1(Ωf)
+ |um|2H1(Ωm) ≤ C

{
‖uf −um‖2

H
1
2 (Γ)

+‖γNuf −γNum‖2
H− 1

2 (Γ)

}
(3.7)

for some C ∈ R+. The second term on the right-hand side vanishes. Yet, the
H

1
2 (Γ)-inner product is nonlocal and, consequently, not suitable for numerical

purposes.

The Galerkin discretization of (3.4) is straightforward:

• We replace H1(Ωf) with a Lagrangian finite element space V n(Mf) built
on a mesh Mf of Ωf , as in (1.14a).

• We approximate um and vm in a finite-dimensional Trefftz space T n(Ωm) ⊂
T (Ωm).

We appeal to variational saddle-point theory and note that a uniform dis-
crete inf-sup condition [18, p. 130] of abstract saddle-point theory for bLS is
immediate.

Yet, ellipticity on the discrete kernel,

kern bLS := {(vnf , vnm) ∈ V n × T n : bLS[(vf , vm) , qf ] = 0 ∀qf ∈ V n} , (3.8a)
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3.1 PDE-constrained Least-Squares Coupling

hinges on an inverse inequality. Define

Kn := sup
{
‖γNu

n
m‖L2(Γ) : unm ∈ T n, ‖γNu

n
m‖H− 1

2 (Γ)
= 1
}
. (3.8b)

By the equivalence of all norms on finite-dimensional spaces, a finite Kn ∈ R+

will exist. Let (unf , u
n
m) ∈ kern bLS. This means that

∫
Γ γNu

n
m dS = 0, which

implies ∇unm(x) = O(‖x‖−2). As a consequence, ∇unm ∈ L2(Ωm) also for
d = 2. Thus, we get∫

Ωf

(
M−1

µ ∇unf
)
· ∇unf dx +

∫
Ωm

‖∇unm‖2`2 dx =

∫
Γ

(unf − unm) γNu
n
m dS. (3.9)

We conclude that, with C ∈ R+ independent of the choice of both V n(Mf)
and T n(Ωm),

‖∇unf ‖2L2(Ωf)
+ ‖∇unm‖2L2(Ωm) ≤ C ‖u

n
f − unm‖L2(Γ) · ‖γNu

n
m‖L2(Γ). (3.10a)

Next, we use the inverse inequality implicit in (3.8b), together with the esti-
mate ‖γNum‖

H− 1
2 (Γ)
≤ C ‖∇um‖L2(Ωm) ∀um ∈ T (Ωm), C ∈ R+, and obtain

‖∇unf ‖L2(Ωf) + ‖∇unm‖L2(Ωm) ≤ C Kn ‖unf − unm‖L2(Γ), (3.10b)

which proves the ellipticity of aLS on kern bLS, albeit with a constant Kn

tending to zero as the Trefftz space T n(Ωm) is refined. Hence, the discrete
variational problem is stable, but convergence is guaranteed only if, asymp-
totically, the approximation errors decay faster than Kn increases.

3.1.2 Maxwell’s Equations

We determine a quadratic minimization problem under a linear variational
constraint [50, p. 2, (1.1)] by seeking uf ∈ H(curl,Ωf), u0

m ∈ T (Ω0
m), and

u1
m ∈ T (Ω1

m) that

1. minimize the mismatch in the interface conditions

JΓ(uf ,u
0
m,u

1
m) :=

∥∥n× (uf − u0
m

)∥∥2

H− 1
2 (divΓf0

,Γf0)
+∥∥n× (uf − u1

m

)∥∥2

H− 1
2 (divΓf1

,Γf1)
+
∥∥n× (u0

m − u1
m

)∥∥2

H− 1
2 (divΓ01

,Γ01)
+∥∥γm

(
u0

m − u1
m

)∥∥2

H− 1
2 (divΓ01

,Γ01)
+
∥∥n · (u0

m − u1
m

)∥∥2

H− 1
2 (Γ01)

(3.11)
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2. and satisfy the PDE-constraint (3.1b).

Note that here the constraint is given by the variational form of the system
of PDEs (1.3a) in Ωf , while the functional JΓ to be minimized is based on the
interface conditions not imposed by the variational form (3.1b).

This problem can be rephrased as seeking a saddle point of the following
Lagrangian:

L(uf ,u
0
m,u

1
m, φf ,pf , ξf) :=

1

2
JΓ(uf ,u

0
m,u

1
m) +∫

Ωf

[(
M−1

µ ∇× uf

)
· (∇× pf)− ω2 (Mεuf) · pf

]
dx +

∑
i=0,1

∫
Γfi

γmuim · pf dS+∫
Ωf

∇φf · pf dx−
∫

Ωf

j · pf +

∫
Ωf

uf · ∇ξf dx−
∑
i=0,1

∫
Γfi

(
n · uim

)
ξf dS.

(3.12)

• φf ∈ H1
∗ (Ωf), as discussed in Section 1.3.

• pf ∈ H(curl,Ωf) is the Lagrange multiplier imposing the first line of
(3.1b).

• ξf ∈ H1
∗ (Ωf) is the Lagrange multiplier imposing the second line of (3.1b).

Saddle-Point Problem

The trace norms ‖·‖
H− 1

2 (divΓ�
,Γ�)

, ‖·‖
H− 1

2 (Γ�)
are nonlocal. Thus, for practi-

cality we replace them with the L2(Γ�) and L2(Γ�)-norms in (3.11), respec-

tively, and seek uf ∈ H∂Ωf
(curl,Ωf) :=

{
v ∈ H(curl,Ωf) : n× v|∂Ωf

∈ L2
t (∂Ωf)

}
.

Given this substitution, the necessary and sufficient optimality conditions of

36



3.1 PDE-constrained Least-Squares Coupling

(3.12) give rise to the saddle-point problem

Seek uf ∈ H∂Ωf
(curl,Ωf), u0

m ∈ T (Ω0
m), u1

m ∈ T (Ω1
m),

φf ∈ H1
∗ (Ωf), pf ∈ H(curl,Ωf), ξf ∈ H1

∗ (Ωf) :aLS[
(
uf ,u

0
m,u

1
m

)
,
(
vf ,v

0
m,v

1
m

)
] + bLS[

(
vf ,v

0
m,v

1
m, ψf

)
, (pf , ξf)] = 0

bLS[
(
uf ,u

0
m,u

1
m, φf

)
, (qf , ζf)] =

∫
Ωf

j · qf dx

∀vf ∈ H∂Ωf
(curl,Ωf), ∀v0

m ∈ T (Ω0
m), ∀v1

m ∈ T (Ω1
m),

∀ψf ∈ H1
∗ (Ωf), ∀qf ∈ H(curl,Ωf), ∀ζf ∈ H1

∗ (Ωf),
(3.13)

where

aLS

[(
uf ,u

0
m,u

1
m

)
,
(
vf ,v

0
m,v

1
m

)]
:=∫

Γf0

[
n×

(
uf − u0

m

)]
·
[
n×

(
vf − v0

m

)]
dS+∫

Γf1

[
n×

(
uf − u1

m

)]
·
[
n×

(
vf − v1

m

)]
dS+∫

Γ01

{ [
n×

(
u0

m − u1
m

)]
·
[
n×

(
v0

m − v1
m

)]
+
[
γm

(
u0

m − u1
m

)]
·
[
γm

(
v0

m − v1
m

)]
+[

n ·
(
u0

m − u1
m

)]
·
[
n ·
(
v0

m − v1
m

)] }
dS,

(3.14)
bLS

[ (
uf ,u

0
m,u

1
m, φf

)
, (qf , ζf)

]
:=∫

Ωf

[(
M−1

µ ∇× uf

)
· (∇× qf)− ω2 (Mεuf) · qf

]
dx +

∑
i=0,1

∫
Γfi

γmuim · qf dS+∫
Ωf

∇φf · qf +

∫
Ωf

uf · ∇ζf dx−
∑
i=0,1

∫
Γfi

(
n · uim

)
ζf dS.

(3.15)

We propose the following discretization for (3.13):

• uf ,vf ,pf ,qf ∈ Vn(Mf), see (1.14b),

• φf , ψf , ξf , ζf ∈ V n(Mf), see (1.14a),

• u0
m,v

0
m ∈ T n(Ω0

m), and

• u1
m,v

1
m ∈ T n(Ω1

m).
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3 Coupling Strategies

3.2 Discontinuous Galerkin

3.2.1 Poisson’s Equation

Discontinuous Galerkin (DG) methods allow to use FEM with nonconforming
meshes on different neighboring domains for the same boundary value problem
[5]. This is well-suited for the coupling because one can think of MMP as FEM
with special trial and test functions used on a “mesh” with one entity, Ωm.
More specifically, we want to impose weak continuity of the tangential traces
(1.12a) by a DG method [25].

Following this idea, the coupling can be expressed as a discrete stationary
problem for the following Lagrangian:3

L(unf , u
n
m) := JΩf

(unf ) + JΩm(unm) +

∫
Γ

(unf − unm) Pn(unf , u
n
m) dS. (3.16)

We propose unf ∈ V n(Mf) (1.14a) and unm ∈ T n(Ωm).

Let us first discuss functionals JΩf
, JΩm in the continuous case, then the dis-

crete operator Pn.

Functionals JΩf
, JΩm

JΩf
expresses the saddle-point problem that corresponds to (1.1a) in Ωf :

JΩf
(uf) :=

1

2

∫
Ωf

(
M−1

µ ∇uf

)
· ∇uf dx−

∫
Ωf

j uf dx. (3.17a)

JΩm for um has a similar formulation, but for constant scalar coefficients and
no sources:

JΩm(um) :=
1

2

∫
Ωm

µ−1
i ‖∇um‖2`2 dx. (3.17b)

Because um ∈ T (Ωm), one can rewrite the volume integral in (3.17b) as a
boundary integral:

1

2

∫
Ωm

µ−1
i ‖∇um‖2`2 dx =

1

2

∫
Γ
γNum um dS. (3.18)

3A Lagrangian formulation for DG is given in [12, p. 21 and 28].
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3.2 Discontinuous Galerkin

Operator Pn

Let us now go back to the Lagrangian functional (3.16). Depending on the
choice of its discrete operator

Pn : (V n(Mf) + T n(Ωm))× (V n(Mf) + T n(Ωm))→ (V n(Mf) + T n(Ωm)),
(3.19a)

we obtain different DG approaches. We follow the (symmetric) Interior Penalty
DG method [80]:

Pn(un, vn) := −n · µ−1∇(un + vn) + η µ−1(un − vn). (3.19b)

• µ(x) : Rd → C, d = 2, 3, is the mean of material parameters µ in Ωf and
Ωm when integrating on Γ:

µ(x) :=
µ(x) + µ I

2
∀x ∈ Γ. (3.20)

• η ∈ R is a penalty parameter that needs to be assigned heuristically. η
should be proportional to Nm/h, where Nm is the number of degrees of
freedom of T n(Ωm) and h ∈ R the meshwidth of Mf restricted to Γ.
This choice is inspired by η ∼ p/h, used in case of polynomial DG–FEM
[82, p. 229] (with p ∈ N∗ the polynomial degree).

Saddle-Point Problem

Finding the stationary point of (3.16) leads to the discrete symmetric prob-
lem

Seek unf ∈ V n(Mf), u
n
m ∈ T n(Ωm) :

anDG

[
(unf , u

n
m) , (vnf , v

n
m)
]

=

∫
Ωf

j vnf dx

∀vnf ∈ V n(Mf), ∀vnm ∈ T n(Ωm),

(3.21)
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3 Coupling Strategies

where we define the symmetric bilinear form anDG(·, ·) as

anDG

[
(unf , u

n
m) , (vnf , v

n
m)
]

:=

∫
Ωf

(
M−1

µ ∇unf
)
· ∇vnf dx−∫

Γ
{[γN(unf + unm)] (vnf − vnm) + (unf − unm) [γN(vnf + vnm)]} dS+∫

Γ
2 η (unf − unm) (vnf − vnm) dS +

∫
Γ
γNum vm dS.

(3.22)

3.2.2 Maxwell’s Equations

Discontinuous Galerkin (DG) methods allow to use FEM with nonconforming
meshes on different neighboring domains for the same boundary value problem
[5]. This is well-suited for the coupling because one can think of MMP as FEM
with special trial and test functions used on a “mesh” with two entities: Ω0

m

and Ω1
m. More specifically, we want to impose weak continuity of the tangential

traces (1.12a) by a DG method [25].

Following this idea, the coupling can be expressed as a discrete stationary
problem for the following Lagrangian:4

L(unf ,u
n,0
m ,un,1m , φnf , φ

n,0
m , φn,1m ) := JΩf

(unf , φ
n
f ) + JΩm(un,0m ,un,1m , φn,0m , φn,1m ) +∑

i=0,1

∫
Γfi

[
n×

(
unf − un,im

)]
·Pn(unf ,u

n,i
m ) dS+∫

Γ01

[
n×

(
un,0m − un,1m

)]
·Pn(un,0m ,un,1m ) dS.

(3.23)
We propose unf ∈ Vn(Mf) (1.14b), un,0m ∈ T n(Ω0

m), un,1m ∈ T n(Ω1
m), and

φnf ∈ V n(Mf) (1.14a). However, to discretize φn,0m , φn,1m , we first need to dis-
cuss functionals JΩf

, JΩm in the continuous case; the discrete operator Pn is
discussed at a later stage.

4A Lagrangian formulation for DG is given in [12, p. 21 and 28].
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3.2 Discontinuous Galerkin

Functionals JΩf
, JΩm

JΩf
expresses the saddle-point problem that corresponds to (1.3a) in Ωf :

JΩf
(uf , φf) :=

1

2

∫
Ωf

[(
M−1

µ ∇× uf

)
· (∇× uf)− ω2 (Mεuf) · uf

]
dx +∫

Ωf

uf · ∇φf dx−
∫

Ωf

j · uf dx. (3.24a)

JΩm for u0
m,u

1
m has a similar formulation, but for constant scalar coefficients

and no sources:

JΩm(u0
m,u

1
m, φ

0
m, φ

1
m) :=

∑
i=0,1

1

2

∫
Ωim

(
µ−1
i ‖∇ × uim‖2`2 − ω

2εi ‖uim‖2`2
)

dx +

∑
i=0,1

∫
Ωim

uim · ∇φim dx. (3.24b)

Because uim ∈ T (Ωi
m), i = 0, 1, one can rewrite the volume integrals in (3.24b)

as boundary integrals:

1

2

∫
Ωim

(
µ−1
i ‖∇ × uim‖2`2 − ω

2εi ‖uim‖2`2
)

dx = −1

2

∫
∂Ωim

γmuim · uim dS,

(3.25a)∫
Ωim

uim · ∇φim dx =

∫
∂Ωim

(
n · uim

)
φim dS. (3.25b)

Normal Continuity

From (3.25b), by considering only the integrals on each Γfi := ∂Ωf ∩ ∂Ωi
m,

i = 0, 1, taking n always pointing from Ωf to Ωi
m, and setting φim

∣∣
Γfi

= φf |Γfi
,

from (3.25b) one can extract the terms

−
∑
i=0,1

∫
Γfi

(
n · uim

)
φf dS, (3.26a)
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3 Coupling Strategies

which is like imposing (1.12c) on each Γfi by inserting5 the MMP ansatz in the
boundary terms of the second line of the variational form (1.13b), as done in
(3.1b). Furthermore, by considering only the integrals on Γ01 := ∂Ω0

m ∩ ∂Ω1
m,

taking the same n on both sides of Γ01, and defining φ01
m := φ0

m

∣∣
Γ01

= φ1
m

∣∣
Γ01

,

from (3.25b) one can also extract∫
Γ01

(
n · u0

m − n · uim
)
φ01

m dS, (3.26b)

which is like imposing (1.12c) on Γ01 by means of a Lagrange multiplier φ01
m ∈

H
1
2 (Γ01). Thus, we can rewrite (3.25b) as∑

i=0,1

∫
∂Ωim

(
n · uim

)
φim dS =−

∑
i=0,1

∫
Γfi

(
n · uim

)
φf dS+∫

Γ01

(
n · u0

m − n · u1
m

)
φ01

m dS.

(3.27)

To discretize φ01
m ∈ H

1
2 (Γ01), we use Dirichlet traces of n · vm on Γ01, given

vm ∈ T n(Ω0
m) or T n(Ω1

m), and define this discrete trace space as T n(Γ01).
This choice of T n(Γ01) is consistent with:

• The PDE-constrained least-squares coupling approach of Section 3.1.2:
the same test functions in T n(Γ01) are chosen to impose (1.12c) on Γ01

through (3.11) – see (3.14).

• Mortar element methods (Section 3.3). In fact, these methods impose
weak continuity between nonconforming meshes by a Lagrange multiplier
discretized by traces of functions belonging to one of the discretization
spaces of the neighboring domains, here Ω0

m or Ω1
m [14, p. 100, Remark].

Operator Pn

Let us now go back to the Lagrangian functional (3.23). Depending on the
choice of its discrete operator

Pn :
(
Vn(Mf) + T n(Ωi

m)
)
×
(
Vn(Mf) + T n(Ωi

m)
)
→
(
Vn(Mf) + T n(Ωi

m)
)
,

(3.28a)

5The minus sign is due to flipping the direction of n, which now points from Ωf to Ωim,
i = 0, 1, for this integral.
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3.2 Discontinuous Galerkin

i = 1, 2, we obtain different DG approaches. We follow the (symmetric) Inte-
rior Penalty DG method [80]:

Pn(un,vn) := M
−1
µ [∇× (un + vn)] + η M

−1
µ [n× (un − vn)]. (3.28b)

• Mµ(x) : R3 → C3,3 is the mean of material parameters Mµ in Ωf and
Ωi

m when integrating on each Γfi, i = 0, 1:

Mµ(x) :=
Mµ(x) + µi I

2
∀x ∈ Γfi, (3.29)

and of Mµ in Ω0
m and Ω1

m when integrating on Γ01:

Mµ(x) :=
µ0 + µ1

2
I ∀x ∈ Γ01. (3.30)

• η ∈ R is a penalty parameter that needs to be assigned heuristically. On
any Γfi, i = 0, 1, η should be proportional to N i

m/h, where N i
m is the

number of degrees of freedom of T n(Ωi
m) and h ∈ R the meshwidth of

Mf restricted to Γfi. On Γ01, η should be proportional to N0
m+N1

m. Both
choices are inspired by η ∼ p/h, used in case of polynomial DG–FEM
[82, p. 229] (with p ∈ N∗ the polynomial degree).

Saddle-Point Problem

Finding the stationary point of (3.23) leads to the discrete saddle-point prob-
lem

Seek unf ∈ Vn(Mf), un,0m ∈ T n(Ω0
m), un,1m ∈ T n(Ω1

m), φnf ∈ V n(Mf), φ
n,01
m ∈ T n(Γ01) :anDG[

(
unf ,u

n,0
m ,un,1m

)
,
(
vnf ,v

n,0
m ,vn,1m

)
] + bnDG[

(
vnf ,v

n,0
m ,vn,1m

)
,
(
φnf , φ

n,01
m

)
] =

∫
Ωf

j · vnf dx

bnDG[
(
unf ,u

n,0
m ,un,1m

)
,
(
ψnf , ψ

n,01
m

)
] = 0

∀vnf ∈ Vn(Mf), ∀vn,0m ∈ T n(Ω0
m), ∀vn,1m ∈ T n(Ω1

m), ∀ψnf ∈ V n(Mf), ∀ψn,01
m ∈ T n(Γ01),

(3.31)
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where we define the symmetric bilinear form anDG(·, ·) and linear form bnDG(·, ·)
as

anDG

[ (
unf ,u

n,0
m ,un,1m

)
,
(
vnf ,v

n,0
m ,vn,1m

) ]
:=∫

Ωf

[(
M−1

µ ∇× unf
)
· (∇× vnf )− ω2 (Mεu

n
f ) · vnf

]
dx +

∑
i=0,1

∫
Γfi

{[
M

−1

µ ∇×
(
unf + un,im

) ]
·
[
n×

(
vnf − vn,im

) ]
+[

n×
(
unf − un,im

) ]
·
[
M

−1

µ ∇×
(
vnf + vn,im

) ]}
dS+∑

i=0,1

∫
Γfi

2 η
[
M

−1

µ n×
(
unf − un,im

) ]
·
[
n×

(
vnf − vn,im

) ]
dS −

∑
i=0,1

∫
∂Ωi

m

γmun,im · vn,im dS+

∫
Γ01

{[
M

−1

µ ∇×
(
un,0m + un,1m

) ]
·
[
n×

(
vn,0m − vn,1m

) ]
+[

n×
(
un,0m − un,1m

) ]
·
[
M

−1

µ ∇×
(
vn,0m + vn,1m

) ]}
dS+∫

Γ01

2 η
[
M

−1

µ n×
(
un,0m − un,1m

) ]
·
[
n×

(
vn,0m − vn,1m

) ]
dS,

(3.32)

bnDG

[ (
unf ,u

n,0
m ,un,1m

)
,
(
ψnf , ψ

n,01
m

) ]
:=

∫
Ωf

unf · ∇ψnf dx−∫
Γf0

(
n · un,0m

)
ψnf dS −

∫
Γf1

(
n · un,1m

)
ψnf dS+

∫
Γ01

(
n · un,0m − n · un,1m

)
ψn,01

m dS.

(3.33)

Remark 3.2.1. The two coupling approaches we describe now can only6 be used
in the case of m = 0, i.e. a single (unbounded) Trefftz domain Ω0

m, which we
refer to as Ωm. This also results in having a single interface Γ ≡ Γf0 = ∂Ωf =
∂Ωm.

Moreover, both these methods

1. impose the continuity of the tangential components trace for Maxwell’s
equations (1.3), i.e.

n×
(
n× uf

)∣∣
Γ

= n×
(
n× um

)∣∣
Γ
, (3.34)

instead of the continuity between tangential traces stated in (1.12a), and

6Except for the multi-field coupling, which can be extended to the case of multiple Trefftz
domains for scalar equations (see Section 6.3).
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3.3 Multi-Field Coupling

2. enforce (3.34) (or the continuity between Dirichlet traces (1.10a)) weakly
through test functions γmv, given v ∈ Hloc(curl,Ω�), Ω� ∈ {Ωf ,Ωm}
(or γNv, given v ∈ H1

loc(Ω�)).

3.3 Multi-Field Coupling

3.3.1 Poisson’s Equation

As for the DG-based coupling (Section 3.2), we treat the (here single) MMP
discretization as a finite element with special functions. However, now we rely
on the other main approach for imposing weak continuity on nonconforming
meshes, which is the multi-field domain decomposition method [20].

For Poisson’s equation, the multi-field method aims at imposing the continuity
of the Dirichlet trace in a weak sense by means of a Lagrange multiplier

λ := γNv, v ∈ H1
loc(Ω), Ω ⊆ Rd, d = 2, 3. (3.35)

From (3.35) one can see that λ belongs to the dual space H−
1
2 (Γ) (see Sec-

tion 1.3), which is consistent with Dirichlet traces being in H
1
2 (Γ).

The rationale behind the multi-field method becomes clear if one applies the
divergence theorem in H(∇2,Ω) [43, p. 31, (1.56)] to the weak form of (1.1a)
in Ωf , which then leads to the boundary integral∫

Γ

γNuf vf dS. (3.36)

Substituting vm into (3.36) for the continuity of Dirichlet traces, as done in
(3.1a), we can understand the reason for (3.35).

Hence, the multi-field coupling can be expressed by the following Lagrangian:

L(uf , um, λ) := JΩf
(uf) + JΩm(um) +

∫
Γ

(uf − um) λ dS, (3.37)

where JΩf
and JΩm are the same as in (3.17a) and (3.17b). In the same way as

(3.18), we can also rewrite the volume integral of JΩm as a boundary integral
on Γ.
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3 Coupling Strategies

Saddle-Point Problem

We obtain the following saddle-point problem:

Seek uf ∈ H1(Ωf), um ∈ T (Ωm), λ ∈ H−
1
2 (Γ) :

∫
Ωf

(
M−1

µ ∇uf

)
· ∇vf dx +

∫
Γ λ vf dS =

∫
Ωf
j vf dx∫

Γ

γNum vm dS −
∫

Γ λ vm dS = 0∫
Γ uf χ dS −

∫
Γ um χ dS = 0

∀vf ∈ H1(Ωf), ∀vm ∈ T (Ωm), ∀χ ∈ H−
1
2 (Γ).

(3.38)

For the discretization of (3.38), we suggest uf , vf ∈ V n(Mf) of (1.14a) and
um, vm ∈ T n(Ωm), as in Sections 3.1.1 and 3.2.1.

Conversely, the discretization of λ ∈ H−
1
2 (Γ) is a topic debated in the litera-

ture [73, Section 4]. In the spirit of mortar element methods, we opt for the
Dirichlet traces on Γ of the trial space used to discretize one of the neighbor-
ing domains [73, p. B426], specifically the Lagrangian space V n(Mf), given
its higher number of degrees of freedom than T n(Ωm). Note that this choice,
while being the most common discretization strategy [73, Section 4.1], ignores
the duality of λ.

Existence, Uniqueness, and Stability

For the Galerkin discretization of (3.38), we replace H1(Ωf) with the La-
grangian finite element space V n(Mf) from (1.14a) and T (Ωm) with a finite-
dimensional subspace T n(Ωm), as in Section 3.1.1. For discretizing λ we use
the traces of the finite element functions in V n(Mf) on Γ.

In order to apply saddle-point theory to (3.38), let us consider the left-hand
side of (3.38) and define the following bilinear form:

aMF[(uf , um) , (vf , vm)] :=

∫
Ωf

(
M−1

µ ∇uf

)
· ∇vf dx +

∫
Γ

γNum vm dS. (3.39a)
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3.3 Multi-Field Coupling

Let us also define

bMF[(uf , um) , χ] :=

∫
Γ

(uf − um) χ dS. (3.39b)

We restrict ourselves to d = 3 and observe that, in this case,

aMF[(uf , um) , (vf , vm)] =

∫
Ωf

(
M−1

µ ∇uf

)
· ∇uf dx +

∫
Ωm

‖∇um‖2`2 dx. (3.40)

In the continuous case we have that

ker bMF =
{
vf ∈ H1(Ωf), vm ∈ T (Ωm) : vf = vm on Γ

}
(3.41)

and ellipticity on the kernel is clear because aMF induces a norm on ker bMF

that is equivalent to the energy norm.

In the discrete case, since V n(Mf) contains constant functions, the kernel
of aMF again contains only piecewise-constant functions inside Ωf , combined
with the zero function in Ωm. Obviously, the intersection of this space with
the discrete kernel kern bMF must be trivial. This amounts to ellipticity on
the kernel in the discrete case.

The continuous inf-sup condition for bMF is a consequence of the duality of
H

1
2 (Γ) and H−

1
2 (Γ).

Finally, we discuss the discrete inf-sup condition for the concrete case of
piecewise-linear Lagrangian finite elements on a tetrahedral mesh Mf of Ωf :
V n(Mf) = S0

1 (Mf) of (1.14a). The H−
1
2 (Γ)-norm of λn ∈ V n(Mf) can be

expressed as

‖λn‖
H− 1

2 (Γ)
:= sup

v∈H
1
2 (Γ)

∫
Γ Qn v λn dS

‖v‖
H

1
2 (Γ)

≤ C sup

v∈H
1
2 (Γ)

∫
Γ Qn v λn dS

‖Qn v‖
H

1
2 (Γ)

, (3.42)

where Qn : L2(Γ) → V n|Γ is the L2(Γ)-orthogonal projection operator such
that, given u ∈ L2(Γ),

Qn u ∈ V n|Γ :

∫
Γ

(u−Qn u) vn dS = 0 ∀vn ∈ V n. (3.43)
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3 Coupling Strategies

Under mild assumptions on the surface mesh Mf |Γ, we have that ‖Qn uΓ‖H1(Γ) ≤
C ‖uΓ‖H1(Γ) ∀uΓ ∈ H1(Γ), C ∈ R+ independent of V n(Mf) [19, 10, 22]. Ap-
pealing to interpolation between L2(Γ) and H1(Γ), we conclude with

‖Qn uΓ‖
H

1
2 (Γ)
≤ C ‖uΓ‖

H
1
2 (Γ)

, (3.44)

which shows (3.42).

3.3.2 Maxwell’s Equations

As for the DG-based coupling (Section 3.2), we treat the (here single) MMP
discretization as a finite element with special functions. However, now we rely
on the other main approach for imposing weak continuity on nonconforming
meshes, which is the multi-field domain decomposition method [20].

For Maxwell’s equations, the multi-field method aims at imposing the conti-
nuity of the tangential components trace (3.34) in a weak sense by means of
a Lagrange multiplier

λ := γmv, v ∈ Hloc(curl,Ω), Ω ⊆ R3. (3.45)

From (3.45) one can see that λ belongs to the dual space H−
1
2 (divΓ,Γ) (see

Section 1.3), which is consistent with (3.34) connecting traces in H−
1
2 (curlΓ,Γ).

The rationale behind the multi-field method becomes clear if one applies the
generalized Stokes’ theorem in H(curl curl,Ω) [67, p. 59, Theorem 3.31] to
the weak form of (1.3a) in Ωf , which then leads to the boundary integral∫

Γ

γmuf · [n× (n× vf)] dS. (3.46)

Substituting (3.34) into (3.46), we can understand the reason for (3.45). Then,
relying on the definition of γm (1.9b), (3.46) can be simplified as the boundary
integrals of the first line of (3.1b).

Hence, the multi-field coupling can be expressed by the following Lagrangian:

L(uf ,um, φf , φm,λ) := JΩf
(uf , φf)+JΩm(um, φm)+

∫
Γ
{n× [n× (uf − um)]}·λdS,

(3.47)
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3.3 Multi-Field Coupling

where JΩf
and JΩm are the same as in (3.24a) and (3.24b). In the same way as

(3.25), we can also rewrite the volume integrals of JΩm as boundary integrals
on the single interface Γ and then, as in (3.26a), rename φm|Γ as φf |Γ.

Saddle-Point Problem

We obtain the following saddle-point problem:

Seek uf ∈ H(curl,Ωf), um ∈ T (Ωm), φf ∈ H1
∗ (Ωf), λ ∈ H̃−

1
2 (divΓ,Γ):aMF[(uf ,um) , (vf ,vm)] + bMF[(vf ,vm) , (φf ,λ)] =

∫
Ωf

j · vf dx

bMF[(uf ,um) , (ψf ,χ)] = 0

∀vf ∈ H(curl,Ωf), ∀vm ∈ T (Ωm), ∀ψf ∈ H1
∗ (Ωf), ∀χ ∈ H̃−

1
2 (divΓ,Γ),

(3.48)
where

aMF[(uf ,um) , (vf ,vm)] :=

∫
Ωf

[(
M−1

µ ∇× uf

)
· (∇× vf)− ω2 (Mεuf) · vf

]
dx−∫

Γ
γmum · vm dS, (3.49a)

bMF[(uf ,um) , (ψf ,χ)] :=

∫
Ωf

uf · ∇ψf dx−
∫

Γ
(n · um) ψf dS+∫

Γ
{n× [n× (uf − um)]} · χ dS. (3.49b)

For the discretization of (3.48), we suggest uf ,vf ∈ Vn(Mf) of (1.14b),
φf , ψf ∈ V n(Mf) of (1.14a), and um,vm ∈ T n(Ωm), as in Sections 3.1.2
and 3.2.2.

Conversely, the discretization of λ ∈ H̃−
1
2 (divΓ,Γ) is a topic debated in the

literature [73, Section 4]. In the spirit of mortar element methods, we opt
for the tangential traces on Γ of the trial space used to discretize one of the
neighboring domains [73, p. B426], specifically the Nédélec’s space Vn(Mf),
given its higher number of degrees of freedom than T n(Ωm).

Note that this choice, while being the most common discretization strategy [73,
Section 4.1], ignores the duality of λ. This nonconforming discretization then

49



3 Coupling Strategies

prevents us from extending the multi-field coupling approach to the case with
multiple MMP domains. As a matter of fact, a Lagrange multiplier λ01 ∈
H̃−

1
2 (divΓ01 ,Γ01), which would impose continuity of tangential components

traces between the MMP domains Ω0
m,Ω

1
m, would have to be discretized by

the tangential traces of either T n(Ω0
m) or T n(Ω1

m), the neighboring volume
discretization spaces. While on Γf0 and Γf1 the Nédélec’s space is the obvious
natural decision, no easy choice exists on Γ01.

This is a similar issue that afflicts the discretization of ψn,01
m for the DG-based

coupling (Section 3.2.2). However, in that case only the normal continuity
(1.12c) between MMP domains is affected, which is of lesser importance be-
cause it comes from a Gauge condition (second line of (1.3a)). On the other
hand, the tangential continuity (1.12a) comes from the physically more rele-
vant Ampère’s law (first line of (1.3a)).

Remark 3.3.1. However, numerical results for (scalar) Helmholtz equation in
R2 solved by the multi-field coupling proved encouraging for the case of more
than one Trefftz domain. These results are reported in Section 6.3 for λ01 ∈
H̃−

1
2 (Γ01) discretized by the (Dirichlet) traces of both T n(Ω0

m) and T n(Ω1
m).

3.4 DtN-based Coupling

3.4.1 Poisson’s Equation

This coupling approach is a special case of the Trefftz co-chain calculus pre-
sented in Chapter 4, where Trefftz methods are coupled with any numerical
method based on volume meshes that fits the framework of co-chain calculus.
Obviously, the numerical method here is FEM.

(1.10a) is imposed in weak form by testing it with γNvm, given vm ∈ T (Ωm)
(compare with (3.35) and (3.36) in Section 3.3.1):∫

Γ
(uf − um) γNvm dS = 0 ∀vm ∈ T (Ωm). (3.50)
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3.4 DtN-based Coupling

Saddle-Point Problem

Combining (3.50) with the variational form (3.1a), we end up with the follow-
ing system:

Seek uf ∈ H1(Ωf), um ∈ T (Ωm) :
∫

Ωf

(
M−1

µ ∇uf

)
· ∇vf dx −

∫
Γ γNum vf dS =

∫
Ωf
j vf dx

−
∫

Γ uf γNvm dS +
∫

Γ um γNvm dS = 0

∀vf ∈ H1(Ωf), ∀vm ∈ T (Ωm).

(3.51)

The Galerkin discretization of (3.51) is straightforward: as done before, we
replace H1(Ωf) with V n(Mf) of (1.14a) and T (Ωm) with a finite-dimensional
subspace T n(Ωm).

Remark 3.4.1. (3.51) can also be derived by finding a stationary point of the
functional

L(uf , um) := JΩf
(uf) + JΩm(um)−

∫
Γ
uf γNum dS, (3.52)

where JΩf
and JΩm are the same as in (3.17a) and (3.17b).

Existence, Uniqueness, and Stability

The analysis of (3.51) on both the continuous and discrete levels is based on
splitting uf , vf ∈ H1(Ωf) asuf = u?f + π

vf = v?f + τ
: u?f , v

?
f ∈ H1

? (Ωf) :=

{
w ∈ H1(Ωf) :

∫
Ωf

w dx = 0

}
, π, τ ∈ R,

(3.53)
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3 Coupling Strategies

which leads to the following saddle-point problem:

Seek u?f ∈ H1
? (Ωf), um ∈ T (Ωm), π ∈ R :

∫
Ωf

(
M−1

µ ∇u?f
)
· ∇v?f dx −

∫
Γ γNum v

?
f dS =

∫
Ωf
f v?f dx

−
∫

Γ u
?
f γNvm dS +

∫
Γ um γNvm dS −

∫
Γ π γNvm dS = 0

−
∫

Γ γNum dS =
∫

Ωf
f dx

∀v?f ∈ H1
? (Ωf), ∀vm ∈ T (Ωm).

(3.54)

Galerkin discretization of (3.54) is straightforward: as in Sections 3.1.1, 3.2.1,
and 3.3.1, we replace H1(Ωf) with the Lagrangian finite element space from
(1.14a) and T (Ωm) with a finite-dimensional subspace T n(Ωm).

To apply saddle-point theory to (3.51), let us define the following operators:

aDtN[(u?f , um) , (v?f , vm)] :=

∫
Ωf

(
M−1

µ ∇u?f
)
· ∇v?f dx−

∫
Γ
γNum v

?
f dS−∫

Γ
u?f γNvm dS +

∫
Γ
um γNvm dS, (3.55a)

bDtN(um, π) :=−
∫

Γ
γNum π dS. (3.55b)

For um ∈ ker bDtN, we have that
∫

Γ γNum dS = 0, which implies ∇um(x) =
O(‖x‖−2) for ‖x‖ → ∞. As a consequence,

aDtN[(u?f , um) , (v?f , vm)] =

∫
Ωf

(
M−1

µ ∇u?f
)
· ∇u?f dx +

∫
Ωm

‖∇um‖2`2 dx. (3.56)

This proves ellipticity on the kernel in both the continuous and discrete set-
tings: the variational problems are uniformly stable. The inf-sup condition
for bDtN of (3.55b) is trivial considering that π ∈ R and

∫
Γ γNum dS 6= 0 for

some um ∈ T (Ωm).

Remark 3.4.2. Summing up, mesh-independent stability can be confirmed for
the DtN-based coupling from Section 3.4.1 and the multi-field approach from
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3.4 DtN-based Coupling

Section 3.3.1, whereas it remains elusive for the PDE-constrained least-squares
technique examined in Section 3.1.1. However, numerical tests for Poisson’s
problem (Section 6.1) do not confirm a superior performance of the two former
approaches compared to the latter.

3.4.2 Maxwell’s Equations

This coupling approach is a special case of the Trefftz co-chain calculus pre-
sented in Chapter 4, where Trefftz methods are coupled with any numerical
method based on volume meshes that fits the framework of co-chain calculus.
Obviously, the numerical method here is FEM.

As mentioned in Remark 3.2.1, instead of the continuity between tangential
traces implied by (1.12a), we take into account the continuity of the tangential
components trace. (3.34) is then imposed in weak form by testing it with
γmvm, given vm ∈ T (Ωm) (compare with (3.45) and (3.46) in Section 3.3.2):∫

Γ
{[n× (n× uf)]− [n× (n× um)]} · γmvm dS = 0 =⇒∫

Γ
(uf − um) · γmvm dS = 0 ∀vm ∈ T (Ωm),

(3.57)

which holds because of the definition of γm (1.9b).

Saddle-Point Problem

Combining (3.57) with the (symmetrized) variational form (3.1b), we end up
with the following system:

Seek uf ∈ H(curl,Ωf), um ∈ T (Ωm), φf ∈ H1
∗ (Ωf) :aDtN[(uf ,um) , (vf ,vm)] + bDtN[(vf ,vm) , φf ] =

∫
Ωf

j · vf dx

bDtN[(uf ,um) , ψf ] = 0

∀vf ∈ H(curl,Ωf), ∀vm ∈ T (Ωm), ∀ψf ∈ H1
∗ (Ωf),

(3.58)

where

aDtN[(uf ,um) , (vf ,vm)] :=

∫
Ωf

[(
M−1

µ ∇× uf

)
· (∇× vf)− ω2 (Mεuf) · vf

]
dx +
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∫
Γ

uf · γmvm dS +

∫
Γ
γmum · vf dS −

∫
Γ
γmum · vm dS,

(3.59a)

bDtN[(uf ,um) , ψf ] :=

∫
Ωf

uf · ∇ψf dx−
∫

Γ
(n · um) ψf dS. (3.59b)

The Galerkin discretization of (3.58) is straightforward: as done before, we
replace H(curl,Ωf) with Vn(Mf) of (1.14b), H1(Ωf) with V n(Mf) of (1.14a),
and T (Ωm) with a finite-dimensional subspace T n(Ωm).

Remark 3.4.3. (3.58) can also be derived by finding a stationary point of the
functional

L(uf ,um, φf , φm) := JΩf
(uf , φf) + JΩm(um, φm) +

∫
Γ

uf · γmum dS, (3.60)

where JΩf
and JΩm are the same as in (3.24a) and (3.24b) and φm disappears

by setting φm|Γ = φf |Γ as in (3.26a).
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4 Trefftz Co-chain Calculus

Here we propose a comprehensive approach to obtain systems of equations that
discretize linear stationary or time-harmonic elliptic problems in unbounded
domains. This is achieved by coupling any numerical method that fits co-
chain calculus (Section 4.1) with a Trefftz method. Specifically, in Section 4.2
we present the formalism of co-chain calculus, while Section 4.3 illustrates its
coupling with a Trefftz method. Finally, Section 4.4 replaces the equations
for the exterior problem with a simpler, but equivalent expression, given a
condition on the topology of the Trefftz domain that can always be satisfied.1

The coupling proposed here between co-chain calculus and Trefftz functions
can be seen as a generalization of the DtN-based coupling presented in Sec-
tion 3.4 and was developed during a research stay at the University of Padova
managed by Prof. F. Moro, whose support we gratefully acknowledge. Our
collaboration culminated, together with Prof. L. Codecasa, in [26], which also
specializes Sections 4.2 to 4.4 for MMP and the cell method [83], another tech-
nique based on volume meshes like FEM,2 and reports numerical results for
this coupling. These results are obtained by solving iteratively the Schur com-
plement of the coupling systems: MMP degrees of freedom, thanks to their
exponential convergence (Sections 2.3 and 2.4), are so low that they can be
eliminated.

4.1 Co-chain Calculus

The framework of co-chain calculus [51, 52] allows for a unified treatment
of a wide class of finite element and finite volume schemes, building on the

1This condition generalizes the concept of simply-connected domains introduced in Re-
mark 1.2.1.

2The cell method is coupled with BEM in a way similar to Trefftz co-chain calculus in
[68, 69] for, respectively, magnetostatic and eddy-current problems.
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4 Trefftz Co-chain Calculus

foundation established by other works like [17]. Co-chain calculus is the gen-
eralization of both Finite Element Exterior Calculus (FEEC) [6] and Discrete
Exterior Calculus (DEC) [56, 77]. The degrees of freedom of the former are
coefficients of an expansion in terms of piecewise polynomials built on a mesh:
what one obtains is a function approximating the unknown in the chosen func-
tional space, in the way of FEM. Conversely, DEC operates on values of the
unknown on entities of (primal and dual) meshes, something more akin to
finite difference or finite volume methods.

The starting point of co-chain calculus is a linear stationary or time-harmonic
elliptic boundary value problem, more general than (1.3), expressed in terms
of differential forms and Hodge operators (see Section 4.2). In particular,
we distinguish between equilibrium equations, stated by means of the exte-
rior derivative, and constitutive equations, involving Hodge operators. In the
discrete setting, based on meshes, Hodge operators are approximated by ma-
trices, whose construction is done differently in FEEC and DEC, as discussed
in [52, Section 4]. Indeed, the discrete matrix forms of co-chain calculus only
need to respect a few algebraic requirements, independent of the details of
the approximation. These are only addressed when the framework of co-chain
calculus is specialized into a numerical method.

Moreover, in order to include both FEEC and DEC, the discrete formalism
of co-chain calculus is based on both a primary and a secondary mesh on a
bounded domain. Given a numerical method, if its degrees of freedom are
defined on either the primary or secondary mesh, we disregard the other mesh
and fit the method into FEEC. Conversely, some degrees of freedom may be
represented on the primary mesh and others on the secondary mesh. In this
case, a bijective relationship between the two types of unknowns is needed,
which can be achieved by using a secondary mesh dual to the primary mesh.
This leads to numerical schemes fitting the framework of DEC, which are
called generalized finite volume methods in [52], generalized finite differences
in [17], and cell method in [83].
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4.2 Formalism

4.2 Formalism

We write Λl(Rn) for the space of differential forms of order l, 0 ≤ l ≤ n, in
Rn, n ∈ N∗ [6, p. 13, Section 2.2].

The statement of an elliptic boundary value problem is composed of two sets
of equations. One is the set of equilibrium equationsdu = (−1)l σ,

dj = ψ,
(4.1a)

connecting the differential forms u ∈ Λl−1(Rn), σ ∈ Λl(Rn), j ∈ Λm(Rn),
ψ ∈ Λm+1(Rn) for l ∈ {1, . . . , n} and m := n− l. The other set is formed by
the constitutive equations  j = ?ασ,

ψ = ?γu .
(4.1b)

The symbols ?α and ?γ indicate Hodge operators, which supply linear map-
pings of l-forms into m-forms [6, p. 12]. These are induced by the Riemannian
metrics α and γ: if Rn is equipped with Cartesian coordinates, these metrics
can be represented by Hermitian positive-definite matrix fields.

The model problem is completed by the condition at infinity [64, p. 259, The-
orem 8.9] (compare with (1.1b))

‖u(x)‖ =

{
c log‖x‖+O(‖x‖−1) if n = 2, c ∈ R
O(‖x‖2−n) if n ≥ 3

for ‖x‖ → ∞ uniformly.

(4.2)

For the sake of simplicity, we consider a bounded domain Ω? such that, in
the complement Rn \ Ω?, we have constant α, γ ∈ C. Let us also introduce
Ω ⊇ Ω?, in whose complement Rn \Ω we are given a known nonzero excitation
(l − 1)-form w such that u|Rn\Ω = v + w, with v, w ∈ Λl−1(Rn \ Ω) and v
solving the homogeneous problem. The field w will enter the right-hand side
of the system.
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4 Trefftz Co-chain Calculus

Furthermore, we assume that γ = 0 in Rn \ Ω, which implies ψ|Rn\Ω = 0 and
dj|Rn\Ω = 0 from (4.1a) and (4.1b).

Next, we eliminate all other variables except for u in Ω:

d (?αdu) = (−1)l d (?ασ) = (−1)l dj = (−1)l ψ = (−1)l ?γ u , (4.3)

which can be rewritten as3

(−1)l−1 d (?αdu) + ?γu = 0 . (4.5)

Multiplication with η ∈ Λl−1(Ω) and integration on Ω yields∫
Ω

[
(−1)l−1 d (?αdu) + ?γu

]
∧ η = 0 ∀η ∈ Λl−1(Ω). (4.6)

Taking the ∧-product with η and integrating by parts [52, p. 254, (6)], we
then obtain the weak formulation∫

Ω

(?αdu ∧ dη + ?γu ∧ η)+(−1)l−1
∫
Γ

t (?αdu)∧t η = 0 ∀η ∈ Λl−1(Ω), (4.7)

where t : Λl(Ω) → Λl(Γ) is the (tangential, Dirichlet) trace of l-forms for any
l ∈ {1, . . . , n} on Γ := ∂Ω.

4.3 Coupling through an (l − 1)-Form

We discretize Hodge operators inside Ω with meshes (approximation of con-
stitutive equations), while we use Trefftz functions in the complement Ωm :=
R3 \ Ω, i.e. functions that belong to the Trefftz space (see Section 2.1)

T (Ωm) :=
{
v ∈ Λl−1(Ωm) : d (?αdv) = 0, α ∈ C,

v satisfies the condition at infinity (4.2)
}
.

(4.8)

3If we take n = 3 (R3), l = 2, m = 1, and rename u ∈ Λ1(R3) as u : R3 → C3 and ?α, ?γ as
M−1

µ ,−ω2Mε : R3 → C3,3, we obtain the ungauged version of (1.3):

∇×
(
M−1

µ ∇× u
)
− ω2Mε u = 0 , (4.4)

where the right-hand side j is replaced by a known offset function as in Sections 2.3.2,
2.4, 6.3, and 6.6.
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Interface conditions are required on Γ between Ω and Ωm, given Lemma 1.3.1:

t u|Ω = t u|Ωm
, (4.9a)

t
(
?αdu|Ω

)
= t

(
?αdu|Ωm

)
. (4.9b)

From now on, with a small abuse of notation, we refer to u|Ω as u. We
also write u|Ωm

:= v + w, where v ∈ T (Ωm) and w is the known excitation
(l − 1)-form.

We then plug (4.9b) into (4.7) and impose (4.9a) weakly with test functions
in T (Ωm) to obtain the system for the coupling:

Seek u ∈ Λl−1(Ω), v ∈ T (Ωm) :
∫
Ω

(?αdu ∧ dη + ?γu ∧ η) + (−1)l−1 ∫
Γ

t (?αdv) ∧ t η = (−1)l
∫
Γ

t (?αdw) ∧ t η

(−1)l−1 ∫
Γ

t (?αdζ) ∧ tu − (−1)l−1 ∫
Γ

t (?αdζ) ∧ t v = (−1)l−1 ∫
Γ

t (?αdζ) ∧ tw

∀η ∈ Λl−1(Ω), ∀ζ ∈ T (Ωm).
(4.10)

We choose primary and secondary discretization meshes which can be un-
related [52, p. 250, Definition 2.2]. From now on, quantities linked to the
secondary mesh are tagged by a tilde. Then, with the discrete counterpart of
the integration by parts formula used in (4.7), we can rewrite (4.10) in abstract
algebraic form[(

Dl−1
)H

Ml
αDl−1 + Ml−1

γ

]
~u + (−1)

l−1 (
Tl−1

Γ

)H
K̃l−1
m,ΓPΓ~v = (−1)

l (
Tl−1

Γ

)H
K̃l−1
m,Γ ~ω

(−1)
l−1

PH
Γ

(
K̃l−1
m,Γ

)H
Tl−1

Γ ~u − Mm~v = (−1)
l−1

PH
Γ

(
K̃l−1
m,Γ

)H
~w

(4.11)

using the following terms:

• The exterior-derivative matrix Dl−1 ∈ {−1, 0, 1}Nl,Nl−1 , with Nl number
of l-dimensional entities of the primary mesh, is the incidence matrix
between oriented l- and (l − 1)-dimensional entities.

• Mass matrices Ml
α ∈ CNl,Nl and Ml−1

γ ∈ CNl−1,Nl−1 need to be square,
Hermitian, and positive-definite [52, p. 254]. They can be viewed as
discrete Hodge operators.

59



4 Trefftz Co-chain Calculus

• We use a vector notation for the coefficient vector ~u ∈ CNl−1 , whose en-
tries are related to integrals of u ∈ Λl−1(Ω) over the (l − 1)-dimensional
entities of the primary mesh. These integrals are regarded as degrees of
freedom.

• The trace matrix Tl−1
Γ ∈ {0, 1}N

bnd
l−1 ,Nl−1 , with Nbnd

l−1 number of (l − 1)-
dimensional primary mesh entities ⊂ Γ, selects the degrees of freedom
on Γ.

• The pairing matrix K̃l−1
m,Γ ∈ CN

bnd
l−1 ,Ñ

bnd
m is a discrete representative of the

∧-product
∫

Γ f ∧ g, f ∈ Λl−1(Ω), g ∈ Λm(Ω). Pairing matrices need to
fulfill the algebraic relationship [52, p. 254]

K̃l
m = (−1)lm (Km

l )H ⇐⇒ Km
l = (−1)lm

(
K̃l
m

)H
(4.12)

for any l ∈ {1, . . . , n}, m := n− l.

• We call PΓ ∈ CÑbnd
m ,Nm Dirichlet-to-Neumann matrix, with Nm dimen-

sion of the discrete Trefftz space Tn(Ωm) ∈ T (Ωm). Comparing (4.10)
and (4.11), it stands clear that the role of PΓ is to connect the discrete
representations of v and ?αdv (the latter expressed only by degrees of
freedom on Γ).

• ~v ∈ CNm is the vector of expansion coefficients of v ∈ Tn(Ωm) with
respect to a basis of the discrete Trefftz space.

• ~w ∈ CN
bnd
l−1 and ~ω ∈ CÑbnd

m are known vectors determined by integrals
of the excitation (l − 1)-form w on (l − 1)-entities of the primary mesh
and by ?αdw on m-entities of the secondary mesh, respectively.

• Mm ∈ CNm,Nm is the energy matrix in Ωm, another discrete Hodge
operator. This interpretation is clarified below.

We deduce an expression with the energy matrix in Ωm based on the discrete
form of (4.7), which is also given in [52, p. 255, Primary elimination, (12)].
There, the left-hand side of the resulting linear system is[(

Dl−1
)H

Ml
αDl−1 + Ml−1

γ +
(
Tl−1

Γ

)H
Ml−1

β,ΓTl−1
Γ

]
~u , (4.13)
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4.3 Coupling through an (l − 1)-Form

where Ml−1
β,Γ is an abstract boundary-energy term related to the DtN opera-

tor.

To arrive at an expression involving Mm ∈ CNm,Nm , we note that the total
number of degrees of freedom of the Trefftz discretization, Nm, is generally
low because, under certain conditions, Trefftz methods enjoy exponential con-
vergence (Sections 2.3 and 2.4). Thus, Mm can easily be inverted by Gaussian
elimination, and we can write the Schur complement of (4.11):[(

Dl−1
)H

Ml
αDl−1 + Ml−1

γ +
(
Tl−1

Γ

)H
K̃l−1
m,ΓPΓM−1

m PH
Γ

(
K̃l−1
m,Γ

)H
Tl−1

Γ

]
~u =

(−1)l
(
Tl−1

Γ

)H
K̃l−1
m,Γ ~ω +

(
Tl−1

Γ

)H
K̃l−1
m,ΓPΓM−1

m PH
Γ

(
K̃l−1
m,Γ

)H
~w.

(4.14)

We can now compare the left-hand side of (4.14) with the generic discrete
system (4.13), write

Ml−1
β,Γ ≡ K̃l−1

m,ΓPΓM−1
m PH

Γ

(
K̃l−1
m,Γ

)H
, (4.15)

and associate the boundary-energy term of (4.14) with the energy in Ωm: both
matrices are discrete Hodge operators, like mass matrices Ml

α,M
l−1
γ . More

details on this association are given in the next paragraph.

Remark 4.3.1. The system (4.10) can also be derived by finding a stationary
point of the functional (compare with (3.52) and (3.60))

L(u, v) :=
1

2

∫
Ω

(?αdu ∧ du+ ?γu ∧ u) +
1

2

∫
Ωm

?αd (v + w) ∧ d (v + w) +

(−1)l−1
∫
Γ

t [?αd (v + w)] ∧ tu ,

(4.16)
with u ∈ Λl−1(Ω) and v, w ∈ T (Ωm), where w is the known excitation (l − 1)-
form.

The first integral in (4.16) expresses the energy of (4.5) in Ω, the second the
energy in Ωm (given γ = 0 in Ωm). From the conditions for a stationary point
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4 Trefftz Co-chain Calculus

of L, we obtain the coupled problem in variational form

Seek u ∈ Λl−1(Ω), v ∈ T (Ωm) :
∫
Ω

(?αdu ∧ dη + ?γu ∧ η) + (−1)l−1 ∫
Γ

t (?αdv) ∧ t η = (−1)l
∫
Γ

t (?αdw) ∧ t η

(−1)l−1 ∫
Γ

t (?αdζ) ∧ tu +
∫

Ωm

?αdζ ∧ dv =
∫

Ωm

?αdζ ∧ dw

∀η ∈ Λl−1(Ω), ∀ζ ∈ T (Ωm).
(4.17)

The same expression as (4.10) is obtained by noticing that∫
Ωm

?αdζ ∧ dv = − (−1)l−1
∫
Γ

t (?αdζ) ∧ t v , (4.18a)

∫
Ωm

?αdζ ∧ dw = − (−1)l−1
∫
Γ

t (?αdζ) ∧ tw , (4.18b)

which hold by integration by parts because of v, w ∈ T (Ωm). (4.18a) shows that
Mm, which is its discrete representation, is a Hermitian positive-definite ma-
trix and therefore invertible, which ensures that the Schur complement system
(4.14) exists.

4.4 Coupling through an (m− 1)-Form

We conclude by exploiting dj = 0 in Ωm to switch to a potential representation;
Ωm is supposed to have trivial topology, i.e. m-th Betti number βm(Ωm) = 0
[53, p. 246, Theorem 2.1], given m := n − l. From (4.17) we derive a hybrid
system for u ∈ Λl−1(Ω) and j ∈ Λm(Ωm) (with an abuse of notation) and
introduce a potential form π ∈ Λm−1(Ωm), which replaces the unknown v ∈
T (Ωm) ∈ Λl−1(Ωm) in the exterior problem.4

4In the case of n = 3, the unknown v ∈ Λ1(Ωm) is replaced by π ∈ Λ0(Ωm), i.e. a vector
function is replaced by (the gradient of) a scalar function (magnetic scalar potential, see
Remark 1.2.1). The problem becomes equivalent to Section 1.1.4.
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4.4 Coupling through an (m− 1)-Form

Based on (4.1a) and (4.1b), we can write that ?αdv = (−1)l j in Ωm. (4.17)
can therefore be rewritten as

Seek u ∈ Λl−1(Ω), j ∈ T (Ωm) :
∫
Ω

(?αdu ∧ dη + ?γu ∧ η) −
∫
Γ

t j ∧ t η = (−1)l
∫
Γ

t (?αdw) ∧ t η

−
∫
Γ

t ι ∧ tu +
∫

Ωm

ι ∧ ?α−1j = (−1)l
∫

Ωm

ι ∧ dw

∀η ∈ Λl−1(Ω), ∀ι ∈ T (Ωm),

(4.19)

where j, ι belong to the same Trefftz space (4.8), after applying the transfor-
mation v → (−1)l ?α dv for functions v ∈ T (Ωm).

Let us now take π, τ ∈ Λm−1(Ωm) such that, in Ωm, j = ?αdπ and ι = ?αdτ .
This means that the new Trefftz space of functions that solve the exterior
problem exactly is

T (Ωm) :=
{
v ∈ Λm−1(Ωm) : d (?αdv) = 0 , α ∈ C,

v satisfies the condition at infinity (4.2)
}
,

(4.20)

where (m− 1)-forms are used instead of (l − 1)-forms as in (4.8).

System (4.19) finally becomes

Seek u ∈ Λl−1(Ω), π ∈ T (Ωm) :
∫
Ω

(?αdu ∧ dη + ?γu ∧ η) −
∫
Γ

t (?αdπ) ∧ t η = (−1)l
∫
Γ

t (?αdw) ∧ t η

−
∫
Γ

t (?αdτ) ∧ tu +
∫

Ωm

?αdτ ∧ dπ = (−1)l
∫

Ωm

?αdτ ∧ dw

∀η ∈ Λl−1(Ω), ∀τ ∈ T (Ωm),
(4.21)

where we can replace the integrals in Ωm with integrals on Γ, similarly to
(4.18).
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5 Implementation

The code implementing the FEM–MMP coupling for the numerical experi-
ments of this work is written in C++. CMake v3.14.5 [1] takes care of the build
process, including the dependencies of the code. We use Boost v1.71.0 [34] for
its program options and unit test framework libraries, Eigen v3.3.7 [44]
for linear algebra, and HyDi [24] for the FEM component.

HyDi, which can handle Hybrid nonconforming meshes and Discontinuous fi-
nite elements, is a template-based C++14 library, parallelized with C++11 mul-
tithreading, that is used as in-house simulation software at the multinational
ABB. It was written during the PhD project of R. Casagrande at ETH Zurich
[23, p. 147, Chapter 6] in collaboration with Ch. Winkelmann (ABB Corporate
Research Center): we gratefully acknowledge their contribution.

On top of HyDi, we introduce new libraries (for a comprehensive list, see
Section 5.1), generally independent of other HyDi libraries. They take care of
computing

• local matrices on the mesh entities that, when assembled together, form
a block of the coupling system, and

• multipoles (Section 2.2).

Blocks of the coupling systems can be purely FEM, mixed FEM–MMP, or
purely MMP. They are assembled following the strategy pattern [38, p. 349]:
an object with a method that returns the local matrix of the block is passed to
a context class that assembles the block by calling such method for each entity
of the mesh. The loop of the assembly process [58, p. 37] is then parallelized
using threads of the C++ Standard Template Library [81]. Mutex must be
enforced on the entries of the blocks to prevent race conditions when summing
contributions from neighboring mesh entities [7, p. 59, Chapter 4].

Multipoles are child classes of a common virtual interface templated with re-
spect to the type of the returned evaluations. This type is specialized as
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5 Implementation

double or std::complex<double> depending on whether the multipole has Han-
kel functions of the first kind [64, p. 280] as radial dependence. Objects of
class multipole with different centers or orders are then stored in a container
class [38, p. 183] forming the expansion.

The implementation of multipoles depends on four libraries for

1. (vector) spherical harmonics [64, p. 250],

2. Bessel and Hankel functions of the first kind [64, p. 278, (9.7)] taking a
complex argument,

3. the exact multipole expansion of Mie theory (see Section 6.6.1), and

4. layered dipoles (see Section 6.6.2).

For the spherical harmonics, we rely on [62]: these functions are hardcoded
for efficiency up to order ` = 4 and, for higher orders, computed through the
associated Legendre polynomials [64, p. 255], for which a recurrence relation
holds [64, p. 269, Exercise 8.8]. The automatic differentiation module of Eigen
[44] applied to [62] returns the derivatives needed by the vector spherical
harmonics.1

Bessel functions of complex arguments are implemented by [35], while Mie the-
ory by [70]. The former are needed in case we work with complex wavenumbers
[43, p. 422, (9.165)].

We acknowledge U. Koch, researcher at the Institute of Electromagnetic Fields
of ETH Zurich (D-ITET), for his C++ implementation of layered dipoles [60,
p. 128, Section 6.3.2]. This kind of multipoles includes Sommerfeld integrals,
which present singularities that require integration over complex contours [31,
p. 111, Section 2.7].

In addition to the assembly process that builds the linear system for the cou-
pling, solving such systems constitutes the other bottleneck of a coupled FEM–
MMP implementation. However, these systems, formed by large, sparse blocks
(pure FEM) and small, dense ones (pure MMP) present nontrivial sparsity pat-
terns (see Figure 5.1) that do not lead to obvious preconditioners for iterative

1The Auto Diff module of Eigen cannot be applied to the spherical harmonics provided by
Boost [34].
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5.1 Libraries

0 100 200 300 400

nz = 8910

0

100

200

300

400

Figure 5.1: Sample matrix of the DtN-based coupling for a 2D scattering ex-
periment. The top-left large, sparse block is for pure FEM, the
bottom-right small, dense one for pure MMP. The off-diagonal,
symmetric blocks have nonzero rows/columns for FEM degrees of
freedom that are associated to intersections of Mf with Γ.

solvers [58, p. 605, Section 13.2]. LU decomposition [58, p. 587, Section 13.1.1]
is therefore the algorithm of choice.2

To this aim, we use the PARDISO v6.0 library [76] that is parallelized on sym-
metric multiprocessor systems (i.e. with a shared memory). A modified Eigen

wrapper converts the matrices stored with Eigen data structures to a format
compatible with PARDISO.

5.1 Libraries

The new libraries that implement the FEM–MMP coupling are:

• coupling, a header-only library containing BlockInstruct template
classes: each encodes the instructions to build a block of the left-hand

2Iterative solvers are only used in our work [26]: more details in Chapter 4.
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side of the linear system for a coupling strategy (Chapter 3). They in-
herit from one among BlockInstruct A FEM MMP, BlockInstruct A MMP FEM,
or BlockInstruct A MMP, depending on whether they have FEM test
functions and MMP trial functions, the other way around, or express
pure MMP blocks (pure FEM blocks are implemented by HyDi – see inte-
grators below). BlockInstruct A is the base class of these three types.3

The DG-based coupling, being arguably the most difficult strategy to
implement out of Chapter 3, has the largest number of BlockInstruct
classes, also to consider the differences between its scalar (Section 1.1.1)
and vector implementations (Section 1.1.3).

• matching is a sublibrary of coupling, also header-only, with the in-
structions to assemble (rectangular) blocks for the collocation method:
test functions are Dirac delta functions [43, p. 45, Section 1.5] centered
in selected matching points. These points are generally many more than
the number of degrees of freedom of the trial space.

• expansion stores template classes derived from base Multipole in header
files and the specializations of their methods, depending on whether they
return double or std::complex<double>, in corresponding source files.
The template class Expansion constitutes the container of objects of
derived types from Multipole.

• spherharm is a sublibrary of expansion implementing real and com-
plex spherical harmonics and corresponding vector spherical harmonics,
which are based on the derivatives of the former.

• extra contains all the routines that do not belong to any of the above
libraries. Specifically,

– some code to find equispaced points on the surface of a rectangular
prism, which are potential centers of multipole expansions in R3,

– utilities to concatenate Eigen sparse matrices or eliminate their
empty rows/columns, and

– a struct organizing the electromagnetic parameters of a numerical
example (Section 5.2).

3On the other hand, BlockInstruct b is the base class for the instructions to assemble
subvectors forming the right-hand side of the coupling system.
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Moreover, there are two sets of new classes that enrich existing HyDi libraries;
namely,

1. integrators, which contains instructions for pure FEM blocks that were
not expected by HyDi: for example, the boundary integral

∫
Γ [n× (n× uf)]·

λ dS of (3.47) for the multi-field coupling; and

2. new classes derived from hydi::fem::IGridFunction: for example, to
evaluate a linear combination of multipoles on a mesh for visualization
purposes.

A unit test framework [23, p. 150, Section 6.2] checks that the new libraries,
especially the vector spherical harmonics, return the expected results.

5.2 Executables

Here we provide the CMake targets to compile the executables for the numerical
experiments in the next Chapter 6:

• CT Magnetostatics 2D for Section 6.1.1, with codes in folder
ConvergenceTests/Magnetostatics 2D;

• CT Magnetostatics 2D Alt for Section 6.1.2, with codes in folder
ConvergenceTests/Magnetostatics 2D Alt;

• CT Electrostatics for Section 6.2, with codes in folder
ConvergenceTests/Electrostatics;

• CT Scattering 2D for Section 6.3.1 (one MMP domain), with codes in folder
ConvergenceTests/Scattering 2D;

• 2D Scattering for Section 6.3.2 (more than one MMP domain), with
codes in folder 2D Scattering;

• CT Magnetostatics for Section 6.4.1, with codes in folder
ConvergenceTests/Magnetostatics;

• 3D Inductor for Section 6.4.2, with codes in folder 3D Inductor;

• Eddy for Section 6.5, with codes in folder Eddy;
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• CT Scattering for Section 6.6.1 (one MMP domain), with codes in folder
ConvergenceTests/Scattering;

• 3D Scattering for Section 6.6.2 (more than one MMP domain), with
codes in folder 3D Scattering; and

• NanoParticle for Section 6.6.2 (layered dipoles), with codes in folder
NanoParticle.

Meshes are stored in a subfolder called mesh; when a target is executed, sym-
bolic links to the required meshes are automatically created by CMake in the
target folder of the build directory. A text file called config.ini is also linked
in the target folder and can be edited to specify configuration options with the
format name of option = value, given the Boost/program options library
[34].

For each coupling strategy, you need to append a suffix to the above targets;
namely,

1. LS for the PDE-constrained least-squares coupling (Section 3.1),

2. DG for the DG-based coupling (Section 3.2),

3. mortar for the multi-field coupling (Section 3.3), and

4. DtN for the DtN-based coupling (Section 3.4).
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6 Numerical Experiments

Throughout we use piecewise-linear Lagrangian finite elements for scalar vari-
ables, i.e. V n(Mf) = S0

1 (Mf) from (1.14a), and lowest-order H(curl,Ωf)-
conforming edge elements of the first family due to Nédélec for vector vari-
ables, i.e. Vn(Mf) = R1(Mf) from (1.14b). Meshes Mf of Ωf are composed
of

• triangles [18, p. 61, Defintion 5.1] in 2D, and generated using Gmsh v4.4.1
[40], or

• tetrahedra [67, p. 112, Section 5.3] in 3D, and generated using COMSOL

v5.3a [33].

To study the convergence we employ uniform h-refinement of Mf and p-
refinement of the Trefftz (MMP) approximations, in the sense that we in-
crease the number of multipoles. The p-refinement of the multipoles forming
T n(Ωi

m), i = 0, 1, is linked to the h-refinement of Mf ; specifically, to the log-
arithm of the number of intersections of the mesh entities of Mf on Γfi. This
choice is motivated by the exponential convergence of the MMP approximation
error (see Sections 2.3 and 2.4).

We monitor the following errors:

• The volume errors in the bounded domains Ωf ,Ω
1
m. These are the relative

L2(Ωf)- and L2(Ω1
m)-errors (or L2, if scalar) of the FEM and MMP (in

Ω1
m) approximations compared to the reference solution u, i.e.∥∥∥∥∥∥u−

Nf∑
j=1

αjf vjf (x)

∥∥∥∥∥∥
L2(Ωf)

/
‖u‖L2(Ωf) and

∥∥∥∥∥∥u−
N1

m∑
j=1

αj,1m vj,1m (x)

∥∥∥∥∥∥
2

L2(Ω1
m)

/
‖u‖L2(Ω1

m) ,

(6.1)
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with αjf , α
j,1
m ∈ C, vjf ∈ Vn(Mf), vj,1m ∈ T n(Ω1

m), and Nf , N
1
m num-

bers of degrees of freedom of the discrete spaces Vn(Mf) and T n(Ω1
m),

respectively.
Remark 6.0.1. On the bounded MMP domain Ω1

m we define an auxiliary
volume mesh for the numerical quadrature of the error (6.1). However,
on top of Mf , only a mesh on the hypersurface Γ01 is really necessary
for the coupling, in order to compute the numerical integrals on that
interface. Specifically, throughout we mesh Γ01 (and any curved surface)
by simple polygonal/polyhedral approximations. Of course, if only one
(unbounded) MMP domain Ωm is considered, then only the mesh Mf is
needed (and no other volume error than L2(Ωf) is computed).

• The boundary error on ∂Ω0
m = Γf0∪Γ01, union of the interfaces between

the unbounded domain Ω0
m and the other (bounded) domains Ωf ,Ω

1
m.

This is the relative L2(∂Ω0
m)-error of the MMP solution in Ω0

m compared
to the reference solution.

We can ignore the impact of numerical integration for FEM because we use a
local Gaussian quadrature rule that is exact for polynomials of degree 2 (order
3).

In the following, when lengths are reported, the implicit measurement unit is
meter1 for consistency with the electromagnetic parameters Mµ,Mε, ω, j.

6.1 2D Diffusion

6.1.1 2D Diffusion with Exact Solution

We solve −∇2u = j in R2, with piecewise constant source j, |j| = 1.05 · 106 in
Ω? and = 0 elsewhere. Ω? is formed by two disks, with j having a different sign
in each of them. The geometry is shown in Figure 6.1; the coupling boundary
Γ is artificial.

The exact solution is given by the fundamental solution of 2D Poisson’s equa-
tion integrated with Gaussian quadrature of degree 2 (order 3). Multipole

1Except for the 2D diffusion case (Section 6.1), which is dimensionless.
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6.1 2D Diffusion

Figure 6.1: Geometry of Ωf . The violet disks of radius 0.1 are Ω?, the area
where j 6= 0: in one it is = 1.05 · 106, in the other = −1.05 ·
106. They are centered at (0.5, 0.5)> and (−0.5, 1)>. The black
circle centered in the origin with radius 2 is the artificial coupling
boundary Γ.
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Figure 6.2: h-refinement log-log error plots for 2D diffusion with exact solu-
tion.

expansions are uniformly positioned on a circle of radius 1 centered in the
origin. We only use multipole expansions of order 1.

Numerical Results

Figure 6.2 shows h-refinement convergence plots for all coupling approaches,
which lead to very similar plots. We can clearly identify a quadratic conver-
gence of the FEM and MMP errors in terms of the meshwidth.

Figure 6.3 shows surface plots of the total relative L2-error for all coupling ap-
proaches. The error decreases with h (algebraic convergence) and is generally
independent of the number of multipoles. This is due to the fact that the exact
solution is so easy to approximate in the MMP domain that it can already be
represented by very few multipoles. However, the error also becomes worse
with the coarsest meshes and the highest number of multipoles considered:
the FEM error dominates.
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Figure 6.3: Meshwidth h vs. MMP degrees of freedom for 2D diffusion with
exact solution: total relative error.

6.1.2 2D Diffusion with Jumping Coefficients

We solve −∇ · (κ∇u) = j in R2, with κ = 1
10 , j = 1.05 · 106 in Ω? and κ = 1,

j = 0 elsewhere. Ω? is the U-shaped region displayed in Figure 6.4. For want
of an exact solution, as reference we rely on the numerical solution provided by
a mesh substantially more refined than the finest mesh used in the convergence
study. However, local mesh refinement at the corners of the U-shaped region
inside Ωf is needed because the solution is not smooth there: the meshwidth
goes like h0 +r3, with h0 minimum meshwidth and r distance from the closest
corner.

All types of meshes employed are shown in Figure 6.4: we consider three
examples where the boundary Γ has different positions and shapes.

With Γ at the discontinuities of κ and j, multipoles are uniformly positioned
along the skeleton inside Ωf (see Figure 6.4a). With Γ at a positive distance
from Ω?, that is, in the case of an artificial coupling boundary, multipoles are
uniformly positioned along a line following the skeleton of Ωf \ Ω?, which is
positioned at a distance of 0.15 from ∂Ω? (see Figures 6.4b and 6.4c). We only
use multipoles of order 0 (fundamental solutions of −∇2u = 0).

Given the different boundaries Γ, for a fair comparison the MMP error has
not been computed as a boundary error, but on coarser meshes encompassing
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(a) Geometry of Ωf = Ω?.
Γ coincides with the
discontinuities of κ and
j.

(b) Geometry of Ωf ⊃ Ω?
that has different κ and
j. Γ lies at a positive
distance from Ω? and is
polygonal.

(c) Geometry of Ωf ⊃ Ω?
that has different κ and
j. Γ lies at a positive
distance from Ω? and is
C1.

Figure 6.4: The violet U-shape, which fits into [−1, 1]2, is Ω? with κ = 1
10 and

j = 1.05 · 106. The other part of the geometry is characterized
by κ = 1 and j = 0. The brown line is the curve along which
multipoles are positioned uniformly.

the area around Ωf bounded by [−4, 4]2.

Numerical Results

Figure 6.5 shows DoF-refinement convergence plots for all coupling approaches,
given Γ at the discontinuities. We can identify algebraic convergence of the
FEM and MMP errors, but with quite different rates depending on the cou-
pling approach.

Figures 6.6 and 6.7 show DoF-refinement convergence plots for all coupling
approaches, given Γ at a positive distance from Ω?, either with or without
corners. We can clearly identify algebraic convergence of the FEM and MMP
errors.
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Figure 6.5: DoF-refinement log-log error plots for 2D diffusion with jumping
coefficients. Γ coincides with the discontinuities of κ and j (see
Figure 6.4a).
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Figure 6.6: h-refinement log-log error plots for 2D diffusion with jumping co-
efficients. Γ lies at a positive distance from Ω? and is polygonal
(see Figure 6.4b).
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Figure 6.7: DoF-refinement log-log error plots for 2D diffusion with jumping
coefficients. Γ lies at a positive distance from Ω? and is C1 (see
Figure 6.4c).

6.2 Electrostatics

We solve −∇2u = j in R2, with j = 3
4π C m−3 in Ω? and = 0 elsewhere. Ω? is

formed by a sphere of radius 1 centered at (0, 0, 0.5)>. The geometry is shown
in Figure 6.8; the coupling boundary Γ is artificial.

The exact solution is given by an exact integration inside Ω? and the funda-
mental solution of 3D Poisson’s equation (integrated with Gaussian quadrature
of order 3) outside. Multipole expansions are uniformly positioned on a circle
of radius 1 centered in the origin and lying on the XY -plane. We only use
multipole expansions of order 1.

Numerical Results

Figure 6.9 shows h-refinement convergence plots for all coupling approaches,
which lead to very similar plots. We can identify algebraic convergence of the
FEM and MMP errors.
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6.2 Electrostatics

Figure 6.8: Cross-section of 3D geometry of Ωf along the XZ-plane. The violet
sphere of radius 1 is Ω?, the volume where q 6= 0. It is centered at
(0, 0, 0.5)>. The large sphere centered in the origin with radius 2
is the artificial coupling boundary Γ.
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Figure 6.9: h-refinement log-log error plots for electrostatics.
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Figure 6.10: Meshwidth h vs. MMP degrees of freedom for electrostatics: total
relative error.

Figure 6.10 shows surface plots of the total relative L2-error for all coupling ap-
proaches. The error decreases with h (algebraic convergence) and is generally
independent of the number of multipoles.

6.3 2D Scattering

6.3.1 2D Scattering with Exact Solution

We solve ∇ ·
(
µ−1∇u

)
+ ω2ε u = 0 in R2 subject to the Sommerfeld radiation

condition (1.2b) with piecewise-constant permeability µ = 100µ0 in a unit
disk centered in the origin, which we dub Ω•, and µ = µ0 = 4π · 10−7 H s−1

(permeability of free space) elsewhere. ε and ω are everywhere equal to
ε0 = 8.85 · 10−12 F m−1 (permittivity of free space) and 23.56 · 107 rad s−1, re-
spectively. Wavenumbers are therefore k• = 10 k0 in Ω• and k0 = 0.79 rad m−1

elsewhere.

We assume that u is subject to an excitation by an incident plane wave prop-
agating along the x-axis outside Ω•, i.e.

u = uinc + uref in R2 \ Ω•, uinc := exp(ık0x), (6.2)
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6.3 2D Scattering

where uref represents the unknown reflected potential and x in uinc the first
Cartesian coordinate. This problem has an exact solution that can be derived
using Mie theory [16, Chapter 4, pp. 82–101] in 2D:

u = uinc + uref =
∞∑

`=−∞
ı`J`(k0r)e

ı`θ +
∞∑

`=−∞
A`H

(1)
` (k0r)e

ı`θ in R2 \ Ω•,

u = utra =
∞∑

`=−∞
B`J`(k•r)e

ı`θ in Ω•.

(6.3)
Here uinc is the Jacobi–Anger expansion of the exciting plane wave [32, p. 33,

(2.46)], given J` and H
(1)
` Bessel and Hankel functions of the first kind and

r ∈ [0,∞), θ ∈ [0, 2π) canonical polar coordinate system in R2. utra is the
unknown transmitted potential.

Coefficients A`, B` in (6.3) are

A` = ı`
µ−1
• k•J`(k0r•)J

′
`(k•r•)− µ

−1
0 k0J`(k•r•)J

′
`(k0r•)

µ−1
0 k0H

′(1)
` (k0r•)J`(k•r•)− µ−1

• k•H
(1)
` (k0r•)J ′`(k•r•)

,

B` =
A`H

(1)
` (k0r•) + ı`J`(k0r•)

J`(k•r•)
.

(6.4)

r• is the radius of the disk Ω•, here = 1 m.

For our numerical tests, we consider the terms in the expansions of (6.3) for
` = 0, . . . , 20, identify Ω• with Ωf and R2 \Ω• with a single MMP domain Ωm,
and therefore set Γ := ∂Ωf ∩∂Ωm on the physical boundary of the disk. Given
that we use triangular meshes, Γ is actually a polygonal approximation of a
circle.

T n(Ωm) is generated by a single multipole expansion centered in the origin.

Numerical Results

Figure 6.11 shows h-refinement convergence plots for all coupling approaches,
which yield very similar results. We can clearly see algebraic convergence of
the FEM and MMP errors with rate 2.
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Figure 6.11: h-refinement log-log error plots for 2D scattering with exact so-
lution. Parameters are µ• = 100µ0 and ω = 23.56 · 107 rad s−1.
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Figure 6.12: Meshwidth h vs. MMP degrees of freedom for 2D scattering with
exact solution: total relative error. Parameters are µ• = 100µ0

and ω = 23.56 · 107 rad s−1.
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Figure 6.13: h-refinement log-log error plots for 2D scattering with exact so-
lution. Parameters are µ• = 100µ0 and ω = 23.56 · 108 rad s−1.

Figure 6.12 shows surface plots of the total relative L2-error for all coupling
approaches. The error decreases with h (algebraic convergence) and is gener-
ally independent from the number of multipoles: the FEM error dominates.
This is a consequence of the exponential convergence of MMP (Section 2.3):
the exact solution is so easy to approximate in the MMP domain that it can al-
ready be represented by a multipole expansion of the lowest considered order,
which is 8, leading to 17 terms of the expansion – see (2.3).

We have also considered different material parameters, leading to similar con-
vergence rates. For example, Figure 6.13 shows h-refinement convergence plots
for µ• = 2.5281µ0 and ω = 23.56 · 108 rad s−1, which entails k• = 1.59 k0 and
k0 = 7.86 rad m−1. Datapoints are slightly noisier than before because we con-
sider a higher value for the frequency ω, which causes the pollution effect for
FEM. However, with these parameters one can observe an interesting physical
phenomenon.

Photonic Nanojet

Parameters r• = 1 m, µ• = 2.5281µ0, ε• = ε0, and ω = 23.56 · 108 rad s−1

permit to observe a photonic nanojet [49, p. 1985, Fig. 4.a] if one considers
the full plane wave as excitation. This can be seen in Figure 6.14, which
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6 Numerical Experiments

Figure 6.14: Magnitude of the Poynting vector for µ• = 2.5281µ0 and ω =
23.56 · 108 rad s−1. The beam on the circumference of the disk
is the photonic nanojet. Numerical solution obtained with the
DtN-based coupling.

illustrates the magnitude of the Poynting vector [57, p. 259, (6.109)] for a
simulation with the DtN-based coupling. The other coupling schemes yield
comparable results.

Two Trefftz Domains

Parameters are still r• = 1 m, µ• = 2.5281µ0, ε• = ε0, and ω = 23.56 ·
108 rad s−1. Similarly to the numerical example of Section 2.3.2, we split
the disk Ω• into two halves, one modeled by FEM (Ωf), the other by MMP
(Ω1

m): the coupling interface Γf1 is therefore artificial. MMP also models the
complement R2 \ Ω• (Ω0

m): the coupling boundaries Γf0 and Γ01, on the two
halves of the circle, correspond to the physical discontinuity of ε. The geometry
is shown in Figure 6.15a, with a sample mesh in Figure 6.15b.

As excitation we consider terms for ` = 0, . . . , 20 from the expansion of a plane
wave given by (6.3).
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Ωf Ωm
1

Ωm
0

Γ
f1

Γf0 Γ01

(a) Geometry of Ωf , Ω0
m, and Ω1

m. The
disk of radius 1 is Ω•, the area where
µ 6= µ0.

(b) 2D mesh of Ωf and Ω1
m. The blue mesh

covers Ωf , the purple mesh Ω1
m and is

used for numerical quadrature of the
error.

Figure 6.15: Geometry and sample mesh of Ωf , Ω0
m, and Ω1

m.
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Figure 6.16: h-refinement log-log error plots for 2D scattering with exact solu-
tion solved with two MMP domains. A single multipole expansion
is used for each MMP domain. Parameters are µ• = 2.5281µ0

and ω = 23.56 · 108 rad s−1.

To approximate in Ω1
m, a single multipole expansion with Bessel functions as

radial dependence is centered in the origin: Bessel functions of the first kind
have no singularities in that point, which lies on ∂Ω1

m. To approximate in
Ω0

m, a single multipole expansion with Hankel functions as radial dependence
is also centered in the origin.

Figure 6.16 shows h-refinement convergence plots for all coupling approaches,
which yield very similar results except for the multi-field coupling with λn01

discretized by T n(Ω0
m): there is no convergence for the most refined mesh.

This is because the number of degrees of freedom of T n(Ω0
m) for that mesh is

not large enough to properly impose the continuity between Ω0
m and Ω1

m. In
all the other plots we can clearly see algebraic convergence of the FEM and
MMP errors with rate ∼ 1.7.

We have also considered a different configuration of multipoles. To approx-
imate in Ω1

m, multipole expansions of order 1 are uniformly positioned on a
circle of radius 1.5 centered in (0.5, 0)>. To approximate in Ω0

m, multipole ex-
pansions of order 1 are uniformly positioned on a circle of radius 0.5 centered
in the origin.
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Figure 6.17: h-refinement log-log error plots for 2D scattering with exact so-
lution solved with two MMP domains. Many multipole expan-
sions on circles are used for each MMP domain. Parameters are
µ• = 2.5281µ0 and ω = 23.56 · 108 rad s−1.

Figure 6.17 shows the corresponding h-refinement convergence plots, which
look almost the same as Figure 6.16 but without any problem with the multi-
field coupling for λn01 ∈ T n(Ω0

m).

6.3.2 2D Scattering with Triple-Point Singularities

The problem is the same as in Section 6.3.1, but now we consider different
values of µ in each half of the disk Ω•. Specifically, we take µ+ = 4µ0 in the left
side of Ω• and µ− = 2.5281µ0 in the right side. ω is still = 23.56 · 108 rad s−1:
wavenumbers are k+ = 2 k0 and k− = 1.59 k0. Hence, at the extremes of the
segment splitting Ω• we have triple-point singularities.

We fully surround the points with TPS by a mesh, and therefore also model
with FEM a small region on the other side of the physical discontinuity of Ω•
and an “airbox” in R2 \ Ω•. The coupling interfaces Γf0 and Γf1 are therefore
auxiliary; only the interface Γ01 is physical. The FEM mesh is also locally
refined towards the points with TPS: the meshwidth goes like h0 + r3, with
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ε+ ε–

ε0

0

(a) Geometry of Ωf , Ω0
m, and Ω1

m. The
disk of radius 1 is Ω•: in one half,
µ = µ+; in the other, = µ−. In the
rectangle outside the disk, µ = µ0.

(b) 2D mesh of Ωf and Ω1
m. The blue,

pink, and green meshes cover Ωf and
are characterized by parameters µ+,
µ−, and µ0, respectively. The purple
mesh covers Ω1

m, is characterized by
µ−, and is used for numerical quadra-
ture of the error.

Figure 6.18: Geometry and sample mesh of Ωf , Ω1
m, and a part of Ω0

m.

h0 minimum meshwidth and r distance from the closest triple point. The
geometry is shown in Figure 6.18a, with a sample mesh in Figure 6.18b.

The excitation is still given by a plane wave uinc := exp(ık0z) that shifts the
MMP ansatz in Ω0

m. However, given the TPS, there is no exact solution: as
reference we rely on the numerical solution provided by a mesh substantially
more refined than the finest mesh used in the convergence study.

To approximate in Ω1
m, multipole expansions of order 1 with Bessel functions as

radial dependence are uniformly positioned on a circle of radius 1.5 centered in
(0.5, 0)>. To approximate in Ω0

m, multipole expansions of order 1 with Hankel
functions as radial dependence are uniformly positioned on a circle of radius
0.5 centered in the origin.
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Figure 6.19: DoF-refinement log-log error plots for 2D scattering with TPS
solved with two MMP domains (geometry in Figure 6.18a).
Parameters are µ+ = 4µ0, µ− = 2.5281µ0, and ω =
23.56 · 108 rad s−1.

Figure 6.19 shows DoF-refinement convergence plots for all coupling approaches.
The PDE-constrained and DG-based coupling approaches have similar alge-
braic convergence patterns, but the datapoints of the multi-field coupling with
multiplier λn01 ∈ T n(Ω0

m) or T n(Ω1
m), while they converge, are more irregu-

lar.

We repeat this experiment with the geometry shown in Figure 6.20a, where
only the points with TPS and their immediate surrounding regions are modeled
with FEM, so to minimize the meshed region. A sample mesh is shown in
Figure 6.20b.

To approximate in Ω1
m and Ω2

m, multipole expansions of order 1 are uniformly
positioned on two circles of radius 1.5 centered in (−0.5, 0)> and (0.5, 0)>,
respectively. To approximate in Ω0

m, multipole expansions of order 1 are uni-
formly positioned on a circle of radius 0.5 centered in the origin.

Figure 6.21 shows DoF-refinement convergence plots for the PDE-constrained
and DG-based coupling approaches: we can still guess algebraic convergence.
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1
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(a) The geometry represents Ωf , Ω1
m, and

Ω2
m. The disk of radius 1 is Ω•: in

one half, µ = µ+; in the other, = µ−.
In the small squares outside the disk,
µ = µ0.

(b) 2D mesh of Ωf , Ω1
m, and Ω2

m. The light
blue, pink, and green meshes cover Ωf

and are characterized by parameters
µ+, µ−, and µ0, respectively. The
blue mesh covers Ω1

m and is charac-
terized by µ+, the purple mesh covers
Ω2

m and is characterized by µ−: both
are used for numerical quadrature of
the error.

Figure 6.20: Geometry and sample mesh of Ωf , Ω1
m, and Ω2

m.
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Figure 6.21: DoF-refinement log-log error plots for 2D scattering with TPS
solved with three MMP domains (geometry in Figure 6.20a).
Parameters are µ+ = 4µ0, µ− = 2.5281µ0, and ω =
23.56 · 108 rad s−1.

6.4 Magnetostatics

6.4.1 Magnetostatics with Exact Solution

We solve ∇×
(
µ−1∇× u

)
= j, ∇ · u = 0 in R3 subject to the decay condition

(1.4) with constant permeability µ0 = 4π · 10−7 H s−1 (permeability of free
space) everywhere. Ω?, the domain where j 6= 0, is a torus of radius 0.1

centered at (0, 0, 0.5)> and with normal axis
(

0,
√

2
2 ,
√

2
2

)>
. In Ω?, ‖j‖ =

1.05 · 106 A m−3 and is tangential to the torus; elsewhere, j = 0. A sample
mesh of Ωf is shown in Figure 6.22; the unbounded complement is the single
MMP domain Ωm.

We consider two different auxiliary boundaries Γ between Ωf and Ωm: two
spheres centered in the origin of radius 4 and 2. Given that we use tetrahedral
meshes, Γ is actually a polyhedral approximation of a sphere.

T n(Ωm) is generated by multipole expansions uniformly positioned on a circle
of radius 1 centered in the origin and lying on the XY -plane. This positioning
has been chosen to show that, with auxiliary boundaries Γ, one can properly
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Figure 6.22: Cross-section of a 3D mesh of Ωf along the Y Z-plane. The blue
mesh represents Ω?. The green mesh covers a hollow ball centered
in the origin that, in the mesh shown, has radius 2.

approximate u in Ωm regardless of the locations of the multipoles. We only
use multipole expansions of order 1.

Numerical Results

Figures 6.23 and 6.24 show h-refinement convergence plots for all coupling
approaches, which lead to very similar plots. We can clearly identify a linear
convergence of the FEM error when Γ has radius 4, while the convergence is
slower with radius 2, when the multipoles are closer to the source in Ω?.

In both cases, the MMP error decreases much more slowly. This is due to
the fact that the exact solution is so easy to approximate in Ωm that it can
already be represented by very few multipoles.

Figures 6.25 and 6.26 show surface plots of the total relative L2-error for all
coupling approaches. The error is much lower for Γ as a sphere of radius 4
than 2, decreases with h (algebraic convergence), and is generally independent
of the number of multipoles.
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Figure 6.23: h-refinement log-log error plots for magnetostatic Maxwell’s equa-
tions with exact solution. Γ is a sphere of radius 4.
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Figure 6.24: h-refinement log-log error plots for magnetostatic Maxwell’s equa-
tions with exact solution. Γ is a sphere of radius 2.
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Figure 6.25: Meshwidth h vs. MMP degrees of freedom for magnetostatic
Maxwell’s equations with exact solution: total relative error. Γ
is a sphere of radius 4.
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Figure 6.26: Meshwidth h vs. MMP degrees of freedom for magnetostatic
Maxwell’s equations with exact solution: total relative error. Γ
is a sphere of radius 2.
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6.4 Magnetostatics

However, the error also increases with the coarsest meshes and highest num-
bers of multipoles considered, when the coupling is mostly difficult due to a
disproportionately large number of degrees of freedom for MMP (dense blocks
of the coupling matrices) with respect to FEM (sparse blocks). In these cases,
our conjecture is that it becomes difficult for a direct solver to properly solve
such an ill-conditioned system, and the MMP error dominates.

All coupling approaches lead to similar plots, except for the multi-field and
DG-based coupling, which exhibit even larger errors with the coarsest meshes
and highest numbers of multipoles considered. Some of these errors for the
multi-field coupling are so large that they have been omitted from the plots.

6.4.2 Magnetostatic Inductor

The problem is the same as in Section 6.4, but now Ω? is composed of three
regions: two hollow cylinders and one hollow rectangular prism (see Fig-
ure 6.27b). In the cylinders, j is tangential to the lateral surfaces, with oppo-
site directions and ‖j‖ = 1.05 · 106 A m−3 or = 1.25 · 106 A m−3 in each of the
cylinders. In the prism, µ ∼ ‖∇ × u‖ according to a given nonlinear curve
(hysteresis loop [43, p. 290]). Elsewhere, j = 0 and µ = µ0.

The geometry of Ωf is shown in Figure 6.27a, with a sample mesh in Fig-
ure 6.27b; the unbounded complement is the single MMP domain Ωm. Local
mesh refinement at the edges and corners of the prism inside Ωf is needed
because the solution is not smooth there.

T n(Ωm) is generated by multipole expansions uniformly positioned on a rect-
angular prism with sizes 0.1 × 0.1 × 0.08 that lies completely inside Ωf (26
expansions). We only use multipole expansions of order 1.

Numerical Results

Figure 6.28 shows a plot of the magnitude of u along the XY -plane obtained
with the DtN-based coupling (Section 3.4). Results were collected after 10
iterations to let µ ∼ ‖∇ × u‖ converge to a stable value for each part of
Mf .
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6 Numerical Experiments

(a) Geometry of Ωf . The outer rectangu-
lar prism has dimensions 0.2 × 0.2 ×
0.15.

(b) Cross-section of the 3D mesh of Ωf

along the XY -plane. The blue and
violet meshes cover the two regions of
Ω? where ‖j‖ = 1.05 · 106 A m−3 and
= 1.25 · 106 A m−3, respectively. The
orange mesh covers the third region of
Ω? where µ ∼ ‖∇×u‖, which forms a
hollow rectangular prism. The green
mesh covers a “airbox” with µ = µ0.

Figure 6.27: Geometry and sample mesh of Ωf .
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6.5 Eddy Current with H-Φ Formulation

Figure 6.28: Magnitude of u along the XY -plane. Colors are in logarithmic
scale. Plot obtained with the DtN-based coupling.

6.5 Eddy Current with H-Φ Formulation

We solve the eddy-current problem (1.5) introduced in Section 1.1.4. As
in [78], we use parameters σ = 3.5 · 107 Sv m−1, ω = 400π rad s−1, µc =
µn = 4π · 10−7 T m A−1, and I = 200 A. Figure 6.29 illustrates the multiply-
connected domain Ωc and a part of Ωn =: Ωn

f , which form Ωf := Ωc ∪ Ωn
f .

The coupling between FEM and MMP is done on all the boundaries of Ωf that
do not intersect symmetry planes in Figure 6.29 (artificial interfaces). Hence,
considering the variational form found in [13, p. 19, Problem DHP], we aim
at finding a stationary point of the functional

JΩf
(Hf ,Φf) :=

∫
Ωc

σ−1 (∇×Hf) · (∇×Hf) dx +

ıω

∫
Ωc

µc Hf ·Hf dx + ıω

∫
Ωn

f

µn∇Φf · ∇Φf dx
(6.5)

subject to the interface conditions (1.6b) and

n×Hf = n×∇Φf on ∂cnΩf . (6.6)
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Figure 6.29: Geometry of Ωf , formed by Ωc (one octant of a holed wire) and
a part of Ωn (surrounding unbounded “airbox”). ∂DΩ is the in-
tersection with the XZ-plane (frontal face of the figure). ∂NΩ
comprises the boundaries that intersect the Y Z- and XY -planes
(right and bottom face, respectively). All the other (auxiliary)
boundaries of the figure constitute the FEM–MMP coupling in-
terface Γ.
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6.5 Eddy Current with H-Φ Formulation

Note that (6.6) only includes one interface condition of (1.6a): the other is
implied by (6.5).

As FEM discretization, given meshes of tetrahedra Mf on Ωf , we approxi-
mate Hf ∈ H(curl,Ωc) with Vn(Mf |Ωc) of (1.14b) and Φf ∈ H1(Ωn

f ) with
V n(Mf |Ωn

f
) of (1.14a). The Dirichlet boundary conditions of (1.5) are imposed

strongly by setting the affected degrees of freedom of Vn, V n accordingly. Sim-
ilarly, (6.6) is imposed by (scalar) Lagrange multipliers for each edge e ofMf

on ∂cnΩf , relying on the identity∫
ei

vi · t d~s = vi1(xi1)− vi2(xi2), i = 1, . . . , Nbnd
edges, (6.7)

with vi ∈ Vn(Mf), vi1, vi2 ∈ V n(Mf), t tangent, and xi1,xi2 corners of edge
ei: on the left of (6.7), one degree of freedom of Nédélec elements Vn(Mf |Ωc)
[67, p. 126, Section 5.5]; on the right, a pair of degrees of freedom of V n(Mf |Ωn

f
)

[67, p. 143, Section 5.6].

Outside Ωf , multipoles in T n(Ωm) have the same formulation of (2.2b) (3D
Poisson’s equation) with the origin shifted inside Ωf to avoid dealing with
their singularities; more specifically, multipoles are uniformly positioned on a
rectangular prism that lies completely inside Ωf . However, to form a multipole
that fully respects (1.5), in addition to (2.2b), there must be seven other terms
whose origins are symmetrically disposed in the other octants of R3 such that
the boundary conditions of (1.5) hold on the infinite symmetry planes of Ωn

(∂NΩn and ∂D2Ωn).

For each center we consider multipoles up to order 1. The total number of
multipoles is set proportional to the number of intersections of Mf with Γ.

Numerical Results

To validate our results, we first compute induced eddy currents I3 and I4,
which are defined as surface integrals

Ii :=

∫
Σi

n · (∇×H) dS, i = 3, 4, (6.8)
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Figure 6.30: Eddy currents |I3| and |I4| for different mesh refinements of the
geometry in Figure 6.29.

where Σ3 and Σ4 are surfaces cutting Ωc on each side of the hole of Figure 6.29.
For all meshes considered, the different coupling approaches return values
similar to each other, with |I3| + |I4| being very close to I/2 = 100 A, as
expected from the theory. This is shown in Figure 6.30.

We also compute the power loss of the conductor L, which is defined as the
integral

L :=

∫
Ωc

σ ‖E‖2 dx =

∫
Ωc

σ−1 ‖∇ ×H‖2 dx . (6.9)

Again, Figure 6.31 shows that L stays constant throughout all our simulations,
as expected.

Convergence tests for the relative L2(Ωf)-error of the H-field with respect to
the most refined mesh are presented in Figure 6.32. All coupling approaches
exhibit an algebraic convergence with a similar rate.

Finally, Figure 6.33 illustrates the magnitude of the H-field in Ωf as seen
from the front of Figure 6.29 (along the XZ-plane), applying the DtN-based
coupling to the most refined mesh: the result agrees with engineering intuition.
Figures for the other coupling approaches are also very similar.
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Figure 6.31: Power loss L for different mesh refinements of the geometry in
Figure 6.29.
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Figure 6.32: h-refinement log-log error plots for eddy-current equations.
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Figure 6.33: Magnitude of the real component of H along the XZ-plane. Plot
obtained with the DtN-based coupling.

6.6 Maxwell’s Equations

6.6.1 Maxwell’s Equations with Exact Solution

We solve ∇ ×
(
µ−1∇× u

)
− ω2εu = 0, ∇ · u = 0 in R3 subject to the

Silver-Müller radiation condition (1.3b) with piecewise-constant permeability
µ = 2.5281µ0 in a unit ball centered in the origin, which we dub Ω•, and
µ = µ0 = 4π · 10−7 H s−1 (permeability of free space) elsewhere. ε and ω are
everywhere equal to ε0 = 8.85 · 10−12 F m−1 (permittivity of free space) and
23.56 · 108 rad s−1, respectively. Wavenumbers are therefore k• = 1.59 k0 in Ω•
and k0 = 7.86 rad m−1 elsewhere.

We assume that u is subject to an excitation by an incident plane wave prop-
agating along the z-axis outside Ω•, i.e.

u = uinc + uref in R3 \ Ω•, uinc := exp(ık0z) (0, 1, 0)>, (6.10)

where uref represents the unknown reflected potential and z in uinc the third
Cartesian coordinate. This problem has an exact solution coming from Mie
theory [16, Chapter 4, pp. 82–101], where the plane wave is expanded into
vector spherical harmonics [21, p. 289] and coefficients are derived for the
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(a) Numerical solution obtained with the
DtN-based coupling.

(b) Exact solution given by Mie theory.

Figure 6.34: Magnitude of the real component of u along the XZ-plane for
µ• = 2.5281µ0 and ω = 23.56 · 108 rad s−1. The excitation is
given by the expansion of a plane wave in terms of vector spherical
harmonics (for ` = 1, . . . , 5) propagating along the z-axis.

corresponding terms of the expansions of the reflected and transmitted poten-
tials.

For our numerical tests, we consider the terms in the expansions of Mie theory
for ` = 1, . . . , 5 (35 terms), identify Ω• with Ωf and R3 \Ω• with a single MMP
domain Ωm, and therefore set Γ := ∂Ωf ∩ ∂Ωm on the physical boundary of
the ball. Given that we use tetrahedral meshes, Γ is actually a polyhedral
approximation of a sphere.

T n(Ωm) is generated by a single multipole expansion centered in the origin.

Numerical Results

Figure 6.34 exemplifies the performance of FEM–MMP by visualizing the mag-
nitude of u in the case of the DtN-based coupling (Section 3.4) compared to
the exact solution. The other coupling schemes return comparable images.
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Figure 6.35: h-refinement log-log error plots for time-harmonic Maxwell’s
equations with exact solution. Parameters are µ• = 2.5281µ0

and ω = 23.56 · 108 rad s−1.

For a quantitative convergence test, see Figure 6.35, which shows h-refinement
convergence plots for all coupling approaches, which yield very similar results.
We can clearly see algebraic convergence of the FEM and MMP errors.

Figure 6.36 shows surface plots of the total relative L2-error for all coupling
approaches. The error decreases with h (algebraic convergence) and is gener-
ally independent from the number of multipoles: the FEM error dominates.
This is a consequence of the exponential convergence of MMP (Section 2.4):
the exact solution is so easy to approximate in the MMP domain that it can al-
ready be represented by a multipole expansion of the lowest considered order,
which is 8, leading to 160 terms of the expansion – see (2.4).

However, the error also increases with the coarsest meshes and highest num-
bers of multipoles considered, when the coupling is mostly difficult due to a
disproportionately high number of degrees of freedom for MMP (dense blocks
of the coupling matrices) with respect to FEM (sparse blocks). In these cases,
our conjecture is that it becomes difficult for a direct solver to properly solve
such an ill-conditioned system, and the MMP error dominates.

Moreover, we do not have datapoints for the PDE-constrained coupling with
the most refined meshes and highest numbers of multipoles: the resulting linear
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Figure 6.36: Meshwidth h vs. MMP degrees of freedom for time-harmonic
Maxwell’s equations with exact solution: total relative error. Pa-
rameters are µ• = 2.5281µ0 and ω = 23.56 · 108 rad s−1.

systems are too large to be solved by an LU decomposition due to memory
constraints.

Two Trefftz Domains

Parameters are still µ• = 2.5281µ0, ε• = ε0, and ω = 23.56 · 108 rad s−1. We
split the unit ball Ω• into two halves, one modeled by FEM (Ωf), the other
by MMP (Ω1

m): the coupling interface Γf1 is therefore artificial. MMP also
models the complement R3 \ Ω• (Ω0

m): the coupling boundaries Γf0 and Γ01,
on the two halves of the sphere, correspond to the physical discontinuity of µ.
A sample mesh is shown in Figure 6.37.

As excitation, we consider terms for ` = 1, . . . , 5 from the expansion of a plane
wave given by Mie theory.

To approximate in Ω1
m, a single multipole expansion with spherical Bessel

functions as radial dependence is centered in the origin: Bessel functions of
the first kind have no singularities in that point, which lies on ∂Ω1

m. To ap-
proximate in Ω0

m, a single multipole expansion with spherical Hankel functions
as radial dependence is also centered in the origin.
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Figure 6.37: Cross-section of a 3D mesh of Ωf and Ω1
m along the XZ-plane.

The ball of radius 1 is Ω•, the volume where µ 6= µ0. The blue
mesh covers Ωf , the purple one Ω1

m, which is meshed for numerical
quadrature of the error.
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Figure 6.38: h-refinement semi-log error plots (y-axis) for time-harmonic
Maxwell’s equations with exact solution solved with two
MMP domains. Parameters are µ• = 2.5281µ0 and ω =
23.56 · 108 rad s−1.
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Figure 6.38 shows h-refinement convergence plots for all coupling approaches
that work with multiple MMP domains (Sections 3.1 and 3.2). We can see
algebraic convergence of the FEM and MMP errors, which is of rate ∼ 1 for
FEM.

6.6.2 Maxwell’s Equations with Triple-Point Singularities

The problem is the same as in Section 6.6.1, but now we consider different
values of µ in each half of the ball Ω•. Specifically, we take µ+ = 4µ0 in one
half of Ω• and µ− = 2.5281µ0 in the other half. ω is still = 23.56 · 108 rad s−1:
wavenumbers are k+ = 2 k0 and k− = 1.59 k0. Hence, on the circumference
that delimits the surface splitting Ω• we have triple-point singularities.

We fully surround the circumference with TPS by a mesh, and therefore also
model with FEM a small region on the other side of the physical discontinu-
ity of Ω• and an “airbox” in R3 \ Ω•. The coupling interfaces Γf0 and Γf1

are therefore auxiliary; only the interface Γ01 is physical. The FEM mesh is
also locally refined towards the points with TPS. A sample mesh is shown in
Figure 6.39.

The excitation is still given by a plane wave uinc := exp(ık0z) (0, 1, 0)> that
shifts the MMP ansatz in Ω0

m. However, given the TPS, there is no exact so-
lution: as reference we rely on the numerical solution provided by a mesh sub-
stantially more refined than the finest mesh used in the convergence study.

To approximate in Ω1
m, a single multipole expansion with spherical Bessel

functions as radial dependence is centered in the origin. To approximate in
Ω0

m, a single multipole expansion with spherical Hankel functions as radial
dependence is also centered in the origin.

Numerical Results

Figure 6.40 shows DoF-refinement convergence plots for all coupling approaches
that work with multiple MMP domains. We can clearly see algebraic conver-
gence of the FEM and MMP errors, even if the relative errors of the DG-based
coupling are higher than those of the PDE-constrained approach.
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Figure 6.39: Cross-section of a 3D mesh of Ωf and Ω1
m along the XZ-plane.

The blue, pink, and green meshes cover Ωf and are character-
ized by parameters µ+, µ−, and µ0, respectively. The purple
mesh covers Ω1

m, is characterized by µ−, and is used for numeri-
cal quadrature of the error. For better visualization, this mesh is
not locally refined at the points with TPS (circumference touch-
ing the blue, pink, and green meshes).
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Figure 6.40: DoF-refinement log-log error plots for time-harmonic Maxwell’s
equations with TPS solved with two MMP domains (sample mesh
in Figure 6.39). Parameters are µ+ = 4µ0, µ− = 2.5281µ0, and
ω = 23.56 · 108 rad s−1.

We have also considered material parameters where the frequency ω is lower,
and therefore FEM suffers less from the pollution effect, but the difference
between µ+, µ−, and µ0 is higher and the TPS more pronounced. Specifically,
µ+ = 10µ0, µ− = 4µ0, and ω = 23.56 · 107 rad s−1.

Figure 6.41 shows DoF-refinement convergence plots for all coupling approaches
that work with multiple MMP domains. Again, we can clearly see algebraic
convergence of the FEM and MMP errors and the errors of the DG-based
coupling are higher. However, while the convergence rate does not improve
with respect to the plots of Figure 6.40, the values of the relative errors are
much lower than before, given the easier-to-handle frequency.

Minimal FEM Mesh

We repeat these experiments with the meshes shown in Figure 6.42, where only
the points with TPS and their immediate surrounding regions are modeled
with FEM, so to minimize the meshed region. Hence, here we have three
MMP domains: bounded Ω1

m,Ω
2
m (µ+, µ−) and unbounded Ω0

m (µ0).
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Figure 6.41: DoF-refinement log-log error plots for time-harmonic Maxwell’s
equations with TPS solved with two MMP domains (sample mesh
in Figure 6.39). Parameters are µ+ = 10µ0, µ− = 4µ0, and
ω = 23.56 · 107 rad s−1.

Figure 6.42: Cross-section of a 3D mesh of Ωf , Ω1
m, and Ω2

m along the XZ-
plane. The blue, pink, and green meshes cover Ωf and are char-
acterized by parameters µ+, µ−, and µ0, respectively. The purple
and orange meshes cover Ω1

m and Ω2
m, are characterized by µ+ and

µ−, and are used for numerical quadrature of the errors.
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2.5281µ0, and ω = 23.56 · 108 rad s−1.
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4µ0, and ω = 23.56 · 107 rad s−1.

Figure 6.43: DoF-refinement log-log error plots for time-harmonic Maxwell’s
equations with TPS solved with three MMP domains (sample
mesh in Figure 6.42) using the PDE-constrained coupling.

To approximate in Ω1
m and Ω2

m, two multipole expansions with spherical Bessel
functions as radial dependence are centered in the origin. To approximate in
Ω0

m, a multipole expansion with spherical Hankel functions as radial depen-
dence is also centered in the origin.

Figure 6.43 shows DoF-refinement convergence plots for the PDE-constrained
coupling, given

• µ+ = 4µ0, µ− = 2.5281µ0, and ω = 23.56 · 108 rad s−1 in Figure 6.43a,
and

• µ+ = 10µ0, µ− = 4µ0, and ω = 23.56 · 107 rad s−1 in Figure 6.43b.

We can still see algebraic convergence of the FEM and MMP errors. Moreover,
the values of the relative MMP errors in Figure 6.43b are again much lower
than Figure 6.43a, given the lower frequency.

We do not report results for DG-based coupling because we would have to
choose 6 penalty parameters η for Γfj ,Γij , i < j, j = 0, 1, 2, and 3 dis-

cretization spaces T n(Γij) to impose normal continuity between Ωi
m,Ω

j
m (see

Section 3.2).

111



6 Numerical Experiments

Figure 6.44: Cross-section of a 3D mesh of Ωf , Ω1
m, and a part of Ω0

m along
the XZ-plane. The blue, pink, and green meshes cover Ωf and
are characterized by parameters µ+, µ−, and µ0, respectively.
The purple and orange meshes cover Ω1

m and a part of Ω0
m: they

are characterized by µ+ and µ−. The mesh of Ω1
m is used for

numerical quadrature of the error, while the mesh of Ω0
m only

serve a graphical purpose.

Minimal FEM Mesh and Layered Medium

We consider a similar setting to Figure 6.42, where the FEM mesh only sur-
rounds the TPS, and further introduce a substrate with permeability µ− that
occupies half of R3 (with negative z-axis). Hence, the ball Ω• becomes a half-
ball with permeability µ+ and there is a physical discontinuity between µ−
and µ0 on the whole XY -plane: see a sample mesh in Figure 6.44.

To approximate in the half-ball Ω1
m, multipole expansions with spherical Bessel

functions as radial dependence are uniformly positioned on a rectangular prism
that lies completely outside Ω1

m. However, to approximate in Ω0
m, which con-

tains an infinite physical discontinuity,2 we cannot make use of the standard

2Here, Ω0
m does not fit into the partition of Section 1.2, where we require that (µ, ε) ∈ C2
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Figure 6.45: DoF-refinement log-log error plots for time-harmonic Maxwell’s
equations with TPS solved with two MMP domains (sample mesh
in Figure 6.44) and layered dipoles. Parameters are µ+ = 4µ0,
µ− = 2.5281µ0, and ω = 23.56 · 108 rad s−1.

multipoles from Section 2.2.

We therefore use layered dipoles [60, p. 128, Section 6.3.2], which rely on the
layered-media Green’s functions reported in [3, p. 81, Appendix A] and [4].
Layered dipoles in Ω0

m are also shifted by plane waves

uinc + uref with z ≥ 0,

uinc := exp(ık0 z ) (0, 1, 0)> , uref := exp(−ık0z) (0, 1, 0)>Aref,

utrs := exp(ık−z) (0, 1, 0)>Atrs with z < 0,
(6.11)

where Aref =
√
µ0−
√
µ−√

µ0+
√
µ−

, Atrs =
2
√
µ−√

µ0+
√
µ−

, and z+, z− are halves of R3 with

positive/negative z-axis. (6.11) can be derived from standard results of re-
flection and transmission of plane waves with normal incidence [43, p. 403,
Section 9.3.2].

Figures 6.45 and 6.46 shows DoF-refinement convergence plots for both the
PDE-constrained and DG-based coupling approaches and both sets of param-
eters used in the previous experiments. We can see algebraic convergence of

is constant in Ω0
m.
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Figure 6.46: DoF-refinement log-log error plots for time-harmonic Maxwell’s
equations with TPS solved with two MMP domains (sample mesh
in Figure 6.44) and layered dipoles. Parameters are µ+ = 10µ0,
µ− = 4µ0, and ω = 23.56 · 107 rad s−1.

the FEM and MMP errors: in particular, the FEM convergence rates of both
approaches are very similar to each other.

At the same time, plots for the higher frequency ω = 23.56 · 108 rad s−1 (Fig-
ure 6.45) look more irregular because of the FEM pollution effect, especially
the one obtained with the DG-based coupling, where the relative errors are
quite high (like in the previous experiments). With a lower frequency (Fig-
ure 6.46), while the relative errors of the DG-based coupling are still higher
than the PDE-constrained coupling, they are at most 0.3 even for the coars-
est mesh employed, and all datapoints are aligned very closely to the fitted
lines.
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7 Conclusions

We have already addressed some advantages of Trefftz methods with respect
to BEM in the introduction. Another relevant feature for high-frequency scat-
tering problems is that the locally-supported piecewise-polynomial basis func-
tions of boundary element methods [75, p. 183, Chapter 4] may suffer from the
pollution effect like FEM, which is not a problem for the oscillating Trefftz ba-
sis functions. Moreover, coupling Trefftz methods with FEM allows to reduce
the impact of heuristics on the quality of Trefftz solutions, arguably the major
flaw of such methods, as long as the Trefftz domain avoids singularities.

However, similarly to other hybrid methods, the FEM–Trefftz coupling suffers
from ill-conditioning. At the same time, its impact is still more limited than
FEM coupled with BEM due to the low number of degrees of freedom required
for Trefftz methods, given their exponential convergence: the dense Trefftz
blocks in the coupling matrices are small (an order of 102 × 102 entries for a
usual implementation).

Between the two coupling approaches that work with multiple Trefftz domains
(Sections 3.1 and 3.2), we recommend the PDE-constrained coupling thanks to
its reliability, especially when the FEM mesh only surrounds field singularities.
Even though this coupling requires the highest number of degrees of freedom
due to its Lagrange multipliers on the FEM mesh, this number is still low
in absolute terms when such mesh is minimal. The DG-based coupling is less
expensive, as it relies on fewer variables, but requires the additional user input
of appropriate penalty parameters.

Conversely, among all coupling strategies, methods based on the tangential
components trace stand out (Sections 3.3 and 3.4): both the multi-field and
DtN-based approaches combine a sensibly lower number of degrees of freedom
than the PDE-constrained coupling without the penalty parameters of the DG-
based one. In particular, the DtN-based coupling is the easiest to implement:
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7 Conclusions

Trefftz degrees of freedom can even be eliminated by a Schur complement
approach, paving the way for an iterative solver (Chapter 4 and Figure 5.1).
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