
ETH Library

Controlling cell-to-cell variability
with synthetic gene circuits

Journal Article

Author(s):
Azizoglu, Asli; Stelling, Jörg

Publication date:
2019-12

Permanent link:
https://doi.org/10.3929/ethz-b-000387382

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Biochemical Society transactions 47(6), https://doi.org/10.1042/BST20190295

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000387382
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1042/BST20190295
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


1 
 

Controlling Cell-to-Cell Variability with Synthetic Gene Circuits 

 

Asli Azizoglu1 , Jörg Stelling1,* 

1 Department of Biosystems Science and Engineering and SIB Swiss Institute of 

Bioinformatics, ETH Zurich, 4058 Basel, Switzerland  

 

* Corresponding author: joerg.stelling@bsse.ethz.ch 

 

Cell-to-cell variability originating, for example, from the intrinsic stochasticity of gene 

expression, presents challenges for designing synthetic gene circuits that perform 

robustly. Conversely, synthetic biology approaches are instrumental in uncovering 

mechanisms underlying variability in natural systems. With a focus on reducing noise in 

individual genes, the field has established a broad synthetic toolset. This includes noise 

control by engineering of transcription and translation mechanisms either individually, 

or in combination to achieve independent regulation of mean expression and its 

variability. Synthetic feedback circuits use these components to establish more robust 

operation in closed-loop, either by drawing on, but also by extending traditional 

engineering concepts. In this perspective, we argue that major conceptual advances will 

require new theory of control adapted to biology, extensions from single genes to 

networks, more systematic considerations of origins of variability other than intrinsic 

noise, and an exploration of how noise shaping, instead of noise reduction, could establish 

new synthetic functions or help understanding natural functions. 
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Abbreviation List 

ATc:  anhydrotetracycline 

GOI:  gene of interest 

UTR:  untranslated region  

TetR:  tetracycline repressor protein 
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Introduction 

Synthetic, rationally engineered gene circuits serve a dual purpose. On the one hand – 

following the founding and predominant aim of the field of synthetic biology – they can 

establish novel functions in biological systems not present in nature for various applications in 

biotechnology and biomedicine [1, 2], ideally by expanding rational design principles from 

other engineering disciplines to biology [3, 4]. On the other hand, synthetic gene circuits can 

be used to increase our understanding of natural systems by precisely perturbing, monitoring, 

or refactoring biological networks [5]. 

The analysis and control of cell-to-cell variability, which we here define as phenotypic 

diversity in a population of isogenic cells in a homogeneous environment, is arguably one area 

where this dual nature of synthetic gene circuits is evident. Cell-to-cell variability presents 

challenges for designing and implementing new biological functions. A prominent example is 

the repressilator, a synthetic circuit in E. coli composed of three transcriptional repressors 

linked in a ring to elicit oscillations. The original repressilator [6] worked in principle, but it 

neither showed stable oscillations in single cells, nor synchronous oscillations in a cell 

population. The repressilator 2.0 [7] achieved both these aims. Importantly, it did so with 

apparently small design changes (for example, removal of protein degradation tags) by 

considering how causes of cell-to-cell variability – in this case, molecular noise due to low 

copy numbers – affect circuit performance. Opportunities for understanding fundamental 

principles of cell-to-cell variability by synthetic biology approaches are illustrated by many 

studies as well. These include the classical analysis of gene expression noise in single cells 

with synthetic, dual-reporter constructs [8] and the analysis of noise propagation in networks 

with engineered gene cascades [9]. 

Here, we review general principles and recent developments at the intersection of synthetic 

gene circuits and cell-to-cell variability. We focus on gene expression noise, namely synthetic 

approaches to control this aspect of cell-to-cell variability and new biological understanding 

gained by them, because this is the predominant direction of the field. However, we argue that 

other origins of cell-to-cell variability deserve more attention in the future; they could open 

new avenues for rationally engineering as well as understanding biological functions. 
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Origins of cell-to-cell variability 

In natural systems, gene expression noise has functional importance for cellular decision 

making in development and adaptation to fluctuating environments [10]. Specifically, by noise 

we understand temporal fluctuations of abundances of components such as mRNAs and 

proteins; they are induced by the stochastic nature of biochemical reactions when few copies 

of the molecules are present in the cell [11, 12]. For a single gene of interest (GOI) in isolation, 

the extent of this so-called intrinsic noise [8] depends on details of the gene expression 

dynamics, as illustrated in Figure 1. In this theoretical example, different transcription and 

translation rates for two independent genes lead to the same steady-state protein abundances 

without considering stochasticity (Figure 1A). Stochastic effects introduce variability through 

translational bursts [13], and their frequencies and shapes differ between the genes (Figure 

1B), such that average molecule numbers are nearly identical, but their variances differ, making 

gene 2 ‘noisier’ (Figure 1C; visible by the wider distribution for gene 2). Hence, synthetic 

controllers may target different aspects of gene expression, with different impact on intrinsic 

noise. 

In vivo, transcription determines the mRNA level of a given gene and this correlates strongly 

with translation efficiency and the protein level in the cell [14]. For example, mRNA levels 

explain about 85% of protein expression variability in budding yeast, pointing to the 

importance of random creation and degradation of mRNA molecules [14, 15]. Because 

stochastic fluctuations in mRNA production will be amplified through translation [15] (Figure 

1), one method of modulating cell-to-cell variability is to control the magnitude of random 

fluctuations in mRNA and its amplification via transcription and translation rates (Figure 2A). 

Note, however, that additional processes in eukaryotes such as nuclear export of mRNA and 

proteolytic degradation contribute to noise amplification [16]. 

In reality, genes of interest do not operate in isolation, they are embedded in networks that, for 

example, produce RNA polymerases, ribosomes, and other components of the infrastructure 

for gene expression. They represent noise sources that propagate through cellular networks and 

impinge on a gene of interest as so-called extrinsic noise [17, 18]. Because the expression of 

every gene in an organism relies on the shared infrastructure, this implies resource competition 

and trade-offs, where synthetic circuits can impose burden on the cell, and natural gene 

expression can affect a synthetic circuit’s function [19-21]. For example, competition for 

resources has been shown to shape gene expression bursting in E. coli [22]. Phenotypic effects 

of gene expression noise therefore represent selectable traits under evolutionary pressure, as 
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shown in budding yeast [23, 24], where mechanistic explanations of optimised noise control 

involve the abundance of translation initiation factors [25]. Due to these complexities, also in 

theory, noise propagation through networks is not well-understood [26]. 

Two additional factors that are not directly related to stochastic noise can further shape 

heterogeneity of gene expression and its indirect phenotypes. First, even in stationary 

environments, ‘pre-existing’ differences between cells in terms of growth rate [27], 

mitochondrial content [28], cell cycle stage [29], cell age [30, 31], or gene expression capacity 

[32-34] may translate into such phenotypic cell-to-cell variability. Second, changing 

environments may even alter the limiting resource types for competition in gene expression, 

for example, switching from transcription to translation when E. coli encounters nutrient-poor 

environments [35]. It therefore remains a challenge to elucidate – experimentally or 

theoretically – what the origins of cell-to-cell variability, even in the expression of a single 

gene, actually are [36]. 

Controlling gene expression noise by engineering transcription and translation 

The simplest technique for modulating transcription rates is to use different promoters to 

express a gene of interest (GOI). Both in E. coli and in S. cerevisiae increased mean expression 

levels lead to reduced intrinsic noise, consistent with stochastic theory [8, 37]. Note, however, 

that increased mean expression makes extrinsic noise – presumably due to variable cell 

resources and competition for them – dominant [38], thus leading to trade-offs between 

expression strength and impact of noise sources on a GOI. To modulate protein expression 

variability, one can pick any suitable promoter from libraries of naturally occurring or 

synthetically designed promoters [39, 40]. Further promoter engineering can help dampen or 

increase noise from a given promoter. For example, single base mutations in the TDH3 

promoter of S. cerevisiae modulate mean expression level and noise [41]. One particular 

mutation within an important transcription factor binding site yielded a promoter that was about 

8 times noisier than the original TDH3 promoter and had only about 40% of the activity. 

Analysis of synthetic promoters showed that addition of nucleosome disfavoring poly dT:dA 

tracts, or of binding sites for transcriptional activators also naturally increase mean levels, but 

dT:dA tracts reduce noise, while activator sites increase it [42]. Other modulation strategies 

use TATA-box mutations [43], or vary the number of repressor binding sites placed after a 

TATA-box [44]. Therefore, careful promoter engineering is one approach to generate 

promoters of similar mean expression levels with different noise characteristics. 
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Translational efficiency is another easily modifiable target of noise control, in particular, to 

reduce variability in synthetic gene circuits. In prokaryotes, one can employ less efficient 

ribosomal binding sequences (RBS) or mutations in the start codon [45]. More complex 

methods are also available, such as RNA hybridization [46]. It involves adding a short mRNA 

sequence upstream of the start codon of the GOI. The complementary mRNA sequence, 

expressed from an inducible promoter, competes with ribosome binding to the GOI’s mRNA. 

This allows to modulate translational efficiency by an external inducer such as IPTG, although 

with a limited range [46]. While these techniques modulate translational initiation, elongation 

rates may contribute more significantly to noise levels in prokaryotes [47]. Thus, codon 

optimization/de-optimization of the open reading frame should be utilized to modulate noise 

levels, possibly in addition to the other techniques. In eukaryotes, codon optimization also 

enables noise control [48], but translation initiation rates are less straightforward to vary. It has 

been suggested that a structured 5’ untranslated region (5’ UTR) reduces initiation rates and 

slightly reduces noise [49]. This region also includes the Kozak sequence for translational 

initiation, which can be modified to influence initiation rates [50]. 

Protein and mRNA half-lives can also influence the observed noise level. If the half-life of a 

given protein is much longer than the half-life of its mRNA, fluctuations in mRNA numbers 

can be dampened [15]. Fusing a protein to degradation tags that recruit natural protein 

degradation pathways within the cell can help adjust its half-life [51, 52]. mRNA half-life can 

be modified by employing different terminators [53], or by mRNA destabilizing loops[54]. 

Overall, the lowest noise levels will likely be achievable with a heavily destabilized mRNA 

and a stable protein product. 

Overall, efficient transcription reduces random mRNA fluctuations, and reduced translational 

efficiency prevents these fluctuations from being amplified. Therefore, a strong promoter 

combined with low translational efficiency and a stable protein product will tend to show low 

noise levels. Indeed in S. cerevisiae, efficient transcription coupled to inefficient translation 

was shown to be evolutionarily selected for in genes that likely require low noise levels, such 

as essential genes and genes encoding for proteins that form complexes [55]. 

Independent control of expression mean and variance 

Recent developments in the field use the methods outlined in the previous section in more 

complex synthetic circuits to achieve dynamic and temporal control over noise levels. Overall, 

the goal is to modulate mean and noise levels (of a gene of interest) independently, for example, 
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to observe expression level independent effects of noise. A recent example is a two-inducer 

input circuit to adjust transcription rates and mRNA stability independently (Figure 2B) [54]. 

It uses a doxycycline inducible promoter to express a fluorescent protein mRNA fused to a 

ribozyme. The mRNA half-life is then adjusted by adding theophylline, which binds to the 

3’UTR ribozyme and prevents mRNA degradation. Varying the doxycycline and theophylline 

levels led to different noise profiles at similar mean expression levels. The authors could also 

regulate the output noise from the natural mating pathway of S. cerevisiae. However, the 

readout in this case was still a fluorescent protein signal controlled by the pathway-specific 

promoter, PFus1, and not the natural pathway response. The analysis also controlled for extrinsic 

noise through normalization by a different, constitutively expressed fluorescent protein signal. 

It is therefore unclear whether this system can effectively modulate overall noise in the context 

of the natural circuit.  

A different strategy to create a "noise rheostat" [56] controlled the noise of the yeast cell cycle 

regulator Sic1 by a two-input circuit and measured cell density in addition to fluorescence 

(Figure 2C). This involved connecting two transcriptional activators in series, such that the 

upstream promoter activated by estradiol expresses the activator for the downstream promoter, 

responsive to progesterone. At low transcriptional rates from the first promoter (i.e. low 

estradiol concentration), there is higher noise in the protein levels of the activator for the second 

promoter. High input to the second promoter (i.e. high progesterone) amplifies this noise. 

Therefore, the highest noise was generated at low estradiol and high progesterone input values. 

This noise was observed both in the fluorescence readout, but also to an extent in the cell 

density readout, although analysis of the phenotypic data was limited to estimated cell 

densities. Ideally such methods should be characterized much more extensively using 

phenotypic readouts to see whether noise modulation can be useful in this context.  

Since cell-to-cell variability is frequently dominated by extrinsic noise [8, 57], transcription 

and translation-based approaches do not necessarily address the majority of the variation seen 

in populations. Most recently, Benzinger et. al. showed that a light controlled activating 

transcription factor can reduce cell-to-cell variability due to both intrinsic and extrinsic noise 

if activated in a pulsatile fashion, compared to a static input [58]. The authors could regulate 

cell-to-cell variability while keeping the mean expression level the same by using different 

periods of pulsatile activation. They also demonstrated the phenotypic effects of such 

variability modulation by controlling a gene in the uracil biosynthetic pathway without 

exclusion of extrinsic variability. In the near future, development of other methods to modulate 
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extrinsic noise, for instance, via mRNA degradation [59] will likely be instrumental in 

advancing our understanding of, and control over, cell-to-cell variability.  

Controlling variability with feedbackAll the control strategies discussed so far are open-

loop, meaning that the controlled protein abundance does not influence gene expression 

(directly). In traditional engineering as well as in synthetic biology, however, feedback (closed-

loop) control is more suitable to achieve robust performance under uncertainty (see [60, 61] 

for reviews on control theory and synthetic biology). Importantly, feedback control can be used 

to address variability in biological systems for different control purposes, namely to influence 

single-cell variability, cell-to-cell variability in the population, and variability of characteristics 

of the population such as the population mean (Figure 3A). Reduction of variability at one 

level often, but not always (see the example of the antithetic feedback controller below) implies 

reduction of variability at other levels. 

Most commonly in synthetic circuit design, negative feedback is used to reduce noise at the 

single-cell level, and thereby to control cell-to-cell variability. There, positive (negative) 

deviations from the target output are compensated by negative (positive) control action. At 

least in the regime of high mean gene expression with dominant extrinsic variability, negative 

feedback achieves noise reduction structurally, largely independent of its quantitative 

parameters [62]. An early example of such a synthetic negative feedback in E. coli relied on a 

single transcriptional repressor, a variant of the tetracycline repressor protein TetR, binding to 

its own operator, which reduced cell-to-cell variability of the repressor’s protein abundance 

compared constitutive gene expression [63] (see Figure 3B). 

Most of the subsequently established negative feedback synthetic controllers have in common 

that their design relies on traditional (control) engineering concepts, and that they aim to reduce 

expression noise for a single target gene. To give one example (see also [61]), Nevozhay et al. 

developed a synthetic controller in yeast where TetR regulates its own as well as a target gene’s 

expression. The controller set-point was given by the concentration of extracellular 

anhydrotetracycline (ATc), leading to a linearized dose-response (ATc – target protein) relation 

and to reduced cell-to-cell variability of the target protein abundance [64]. An equivalent circuit 

in mammalian cells performed the same functions [65], indicating transferability of the 

concept. Thus, many variants of synthetic negative feedback controllers now provide means 

for reducing variability in single-gene expression in larger circuits for applications, in principle. 
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While many such feedback controllers performed well in proof-of-principle tests with 

fluorescent protein regulation (and to a limited extent in applications), a direct transfer of 

traditional engineering concepts to biology has limitations. This is often due to the presence of 

stochastic noise – also the controller is not ideal because it is implemented in biology and 

therefore subject to noise [66]. A notable exception in several regards is the so-called antithetic 

integral feedback controller [67, 68] (Figure 3C) because (i) its design started from and 

explicitly considers stochastic noise, unlike in traditional engineering, (ii) the molecular 

implementation is non-intuitive, with a core annihilation (‘antithetic’) reaction, and (iii) it 

establishes integral feedback with desirable properties such as robust perfect adaptation also in 

the stochastic setting. The concept’s performance was recently demonstrated for growth rate 

control in E. coli via methionine synthase regulation [69]. However, while the antithetic 

controller guarantees to achieve a desired average behavior in the population, or for a single 

cell over time, it increases intrinsic noise and cell-to-cell variability. Future theoretical 

developments and molecular implementations can address this issue, for example, by additional 

feedback loops [70]. 

Conclusions 

Synthetic biology approaches to address cell-to-cell variability have developed rapidly, with a 

clear focus: intrinsic stochastic noise of gene expression. This enabled not only fundamental 

biological insights, but also new control concepts for reducing variability, where synthetic 

negative feedback controllers should enable more robust performance than open-loop 

strategies. New (formal) design theories specifically for stochastic gene circuits are clearly 

required to drive the field forward [66]. A major challenge, however, is to extend rational 

design concepts to larger (synthetic or natural) circuits because we have only a very limited 

understanding of (‘extrinsic’) noise propagation in biological systems [61]. For example, 

theoretical analysis of more detailed models of gene expression indicates that negative 

feedback may even increase variability of protein abundances [71]. In the network context, 

subtle modifications may change the behavior dramatically; for instance, introducing ‘non-

functional’ TetR binding sites to increase the threshold of promoter de-repression was critical 

for the repressilator 2.0 [7]. At a larger scale, the cellular economics and evolutionary potential 

of expression control strategies are rarely considered – while natural genes appear to be 

constrained by trade-offs between precise and ‘cheap’ control [72]. 

Finally, we argue that two aspects of cell-to-cell variability should gain more attention. First, 

origins of cell-to-cell variability that do not result (directly) from gene expression noise may 
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dominate in many applications, but they are not systematically incorporated into synthetic 

circuit design so far. One example is variability in ‘pathway capacity’ and ‘gene expression 

capacity’, presumably linked to variable growth physiology and RNA polymerase [73] as well 

as ribosome content that can dominate cell-to-cell variability in signaling [33]. Especially for 

highly expressed genes the corresponding extrinsic variability will dominate expression 

variability, and (synthetic) controllers for extrinsic variability are needed. In this direction, 

recently developed resource allocation controllers (e.g., regulating ribosome availability 

according to cellular load) [20, 74] are promising concepts. Secondly, unexplored opportunities 

exist in shaping cell-to-cell variability with synthetic circuits that goes beyond reducing this 

variability.  For example, we could take inspiration from or cellular decision-making in natural 

systems ranging from bacterial persister cells to differentiation in higher cells, where control 

of noise is critical for generating and quantitatively regulating cellular subpopulations [12, 18, 

41]. This may allow to systematically uncover natural biological mechanisms, as recently 

demonstrated by an analysis of the development of drug resistance in mammalian cells [75]. 

 

Perspectives 

(i) Importance: Synthetic gene circuits are instrumental for uncovering mechanisms underlying 

cell-to-cell variability, but this variability is also a challenge for reliably implementing novel 

functions in biology. 

(ii) Current state: Current concepts and tools focus on intrinsic stochastic noise for single genes, 

ranging from transcription / translation engineering to more complex feedback controllers to 

reduce stochastic noise. 

(iii) Future directions: Future rational engineering approaches should aim to include 

propagation of noise through networks as well as other sources of cell-to-cell variability. 
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Figure 1. Example of stochastic gene expression dynamics. Simulation results for two 

constitutively active, independent genes with their corresponding mRNAs (R1, R2) and proteins 

(P1, P2) according to a standard model of gene expression [11]. The model captures 

transcription, translation, mRNA degradation, and protein degradation individually. (A) 

Deterministic dynamics for parameter settings for which transcription rates and protein steady-

state levels are identical for both genes. Relative to the transcription rates, translation rate 

constants for gene 1 (gene 2) are 12.5 (50), and both degradation rate constants are 2.5 (5). 

Thus, higher turnover of gene 2’s components is compensated by more efficient translation to 

achieve identical protein levels at steady-state. (B,C) Stochastic simulation results with 

parameter settings as in (A) for the initial dynamics (B; top: gene 1 and bottom: gene 2) and 

for the probability distribution of protein copy numbers over the simulation time. Blue (red) 

lines show species associated with gene 1 (2). Vertical dashed lines in (C) indicate very similar 

average protein copy numbers (1.9 and 2.1 copies, respectively). The standard deviation of 

protein copy numbers is 2.6 for gene 1 and 3.6 for gene 2. 
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Figure 2. Principles of noise modulation through engineering transcription and 

translation. (A) Intrinsic noise levels can be modulated by changing rates of transcription, 

translation and degradation. The table depicts the qualitative effects on mean expression level 

and intrinsic noise level (for a given mean expression level) when the given rates are increased. 

The opposite would apply if these rates were decreased. Fluctuations in mRNA levels dominate 

intrinsic noise, and high translation rates can amplify the effect of these fluctuations. Therefore 

a high transcription rate and a low translation rate leads to low intrinsic noise. mRNA and 

protein degradation rates mirror the effects of transcription and translation rates. In (B) this 

principle is demonstrated in one of the synthetic circuits built to modulate mean expression 

level and noise independently [54]. Doxycycline regulates transcription rates from the synthetic 

promoter, whereas theophylline prevents mRNA degradation through the ribozyme at the 

3’UTR of the mRNA. The levels of the two inputs can be varied to achieve similar expression 

levels with different noise profiles. Similarly in (C), a cascade of two activators allows 

independent control of mean and noise levels of the target protein Sic1 with two hormone 

inputs [56].   
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Figure 3. Feedback strategies for the modulation of single-cell and population level 

variances. (A) Simulated measurements of single-cell behaviour in a population across time. 

Each grey trace corresponds to a single cell; the pink trace highlights one specific cell. The red 

line indicates the population mean. The density plots show the distributions of the 

corresponding measurements across all time points for the selected single cell, the population 

mean, and the entire population (cell-to-cell variability). (B) Schematic of a basic 

transcriptional negative feedback controller. The repressor inhibits its own transcription and 

transcription of the reporter gene. Addition of the inducer removes this repression and allows 

transcription of both genes. (C) Schematic of the antithetic feedback strategy. An activator, 

which itself is activated by an inducer, drives expression of the anti-activator and the reporter 

gene. Complex formation of activator and anti-activator then results in degradation of both 

proteins. 


