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Introduction

There has been a shift in attention from industrial robotics towards the development of
robots that are capable of a more dexterous interaction with their environment.

Locomotion Dynamic Manipulation
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Dynamic Manipulation

Nonprehensile (graspless) manipulation includes phases where the manipulator loses
possibility of contact with the object before task completion

Pushing
Sliding

Tumbling
P ivoting
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Motivation & Problem Statement

Contact-Implicit Trajectory
Optimization and Stabilization
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Motivation & Problem Statement

1 Solve the optimal control problem
efficiently for hopes of applying it
within an MPC framework

2 Ensure dynamic feasibility and
physically consistent contact
behavior

3 Avoid specifying a hand-crafted
contact schedule

4 Ensure ease of transferability onto
real hardware without any
post-optimization modifications
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Optimal Control Problem

Trajectory optimization techniques aim to solve the following nonlinear optimal control
(NLOC) problem:



min
τ (·)

J(x(t), τ (t), t) = m(x(T )) +
T∫

0

L(τ (t),x(t))dt

s.t. ẋ(t) = f(x(t), τ (t)) (nonlinear, smooth ODEs)
hmin ≤ h(x(t), τ (t)) ≤ hmax (inequality constraints)
g(x(t), τ (t)) = 0 (equality constraints)

∀t ∈ [0, T ]
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How to incorporate the multi-contact
behavior into the dynamics?
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Non-Smooth Contact Dynamics

Modeling

A reliable model describing multi-body contacts has to be chosen before simulating the
system dynamics

B1

B2

(a)

B1

B2

(b)

Contact dynamics can be modeled using either (a) a hard contact-model or (b) a soft
contact-model
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Optimal Control Problem

Trajectory optimization techniques aim to solve the following nonlinear optimal control
(NLOC) problem:



min
τ (·)

J(x(t), τ (t), t) = m(x(T )) +
T∫

0

L(τ (t),x(t))dt

s.t. ẋ(t) = f(x(t), τ (t))
hmin ≤ h(x(t), τ (t)) ≤ hmax
g(x(t), τ (t)) = 0

∀t ∈ [0, T ]

How to simulate the hybrid dynamics
resulting from a hard contact-model?
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Non-Smooth Contact Dynamics
Simulation

Two prominent schemes used for simulating hybrid dynamical systems are:
event-driven and time-stepping techniques

Courtesy of Blender Guru and Phymec

The forward simulation of multi-contact dynamics can be eventually formulated as a
so-called linear complementarity problem (LCP) Jean-Pierre Sleiman 7
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Non-Smooth Contact Dynamics

Trajectory Optimization

Unlike the multi-phase approach, contact-implicit optimization (CIO) does not
require a prespecified contact schedule!

Hard
Contact-Model

States, Inputs and
Interaction Forces as

Optimization Variables

Complementarity
Constraints

Contact-Implicit
Approach

Mathematical Program
with Complementarity
Constraints (MPCC)
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Multiple Shooting

Transcription Process

I Integral expressions replaced with Riemann sums,
defines the cost function

I System dynamics integrated with a Runge-Kutta
scheme, defines the state transition function

Multi-staged Program

min
z1,...,zN

FN (zN ) +
N−1∑
k=1

F (zk)

s.t Ekzk+1 = c(zk) ∀ k = 1, ..., N − 1
S1z1 = zinit

SN zN = zfinal

zk ≤ zk ≤ z̄k ∀ k = 1, ..., N
hk ≤ h(zk) ≤ h̄k ∀ k = 1, ..., N

Discretize

Optimize

S
ta

te

x(t)

Time t

Simulation

Remove Defect
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Contact-Implicit Optimization
1 The cost function minimizes energy and

penalizes the robot’s wrist joint-velocities

J(zk) =
N∑

k=1
∆t ·

(
τT

k Rτk

τ2
max

+
q̇T

rk
Qq̇rk

q̇2
max

)

2 The manipulation task is specified in terms
of final boundary conditions in the
optimization program

3 The signed distance function φ(q) is
defined such that a negative distance
indicates that the end-effector is
penetrating the object
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Contact-Implicit Optimization

I Normal contact force λN , contact impulse ΛN , and percussion PN between robot and object
I Frictional force λF , frictional impulse ΛF , and percussion PF between environment and object
I Variables λn and λf defined in relation to the percussions: PN = ∆t · λn & PF = ∆t · λf

Underactuated Dynamics & Impulse-Momentum Equations
M(q)q̈ + h(q, q̇) = ST τ + JT (q) ·

[
λN

λF

]
M(q)(q̇+ − q̇−) = JT (q) ·

[
ΛN

ΛF

]

=⇒q̇k+1 = q̇k + ∆t ·M−1
k

(
ST τk − hk + JT

k ·
[
λnk

λfk

])
qk+1 = qk + ∆t · q̇k+1

Complementarity Constraints

0 ≤ φ(qk) ⊥ λnk ≥ 0

⇐
⇒

φ(qk) ≥ 0 (no penetration)
λnk ≥ 0 (unilateral contact force)
λnk · φ(qk) = 0 (no force at a distance)
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Contact-Implicit Optimization

I Positive scalar quantity vd signifying the speed along the desired direction of motion
I Pre- and post-impact relative separation velocities γ− / γ+

I Newton’s restitution coefficient ε

Newton’s Restitution Law of Impacts

φ(q) = 0 : 0 ≤ PN ⊥
(
γ+ + εγ−) ≥ 0=⇒

PNk · (γk+1 + εγk) = 0
∆t · λnk ·

(
φ̇k+1 + εφ̇k

)
= 0

∆t · λnk · (JN (qk+1)q̇k+1 + εJN (qk)q̇k) = 0

Coulomb Friction Model{
λf = λn if vd = 0 & λn < Fs

λf = Fs if vd > 0

=⇒{
0 ≤ vdir ⊥ (Fs − Ff ) ≥ 0
(Fs − Ff )(λ− Ff ) = 0

λf

v

Fs = µsNf
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Without Newton’s Restitution Law With Newton’s Restitution Law

Collision Event
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Contact-Implicit Optimization

The optimal input sequence τoptk is an open-loop control
policy. Therefore, trajectory stabilization is still needed.

τi(t) = τopti
(t)︸ ︷︷ ︸

feedforward term

+ kpi
(qopti

(t)− qi(t)) + kdi
(q̇opti

(t)− q̇i(t))︸ ︷︷ ︸
feedback term

where τopt(t) is obtained by a zero-order-hold while qopt(t)
and q̇opt(t) by linear interpolation

Open-loop
Contact-Implicit

Optimization

Feedforward Term
&

Linear-Time-Invariant
Feedback Law

τopt
qopt
q̇opt
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Robot-Door Manipulation Task Robot-Ball Manipulation Task

Gap Closed
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Robot-Block Manipulation Task

I Compatibility between optimal contact force and
measured one

I Convergence rate two orders of magnitude
higher than that of previous works

I Satisfaction of manipulation task with
inaccuracy proportional to desired displacement

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Mean

Numerical
Experimental

0 0.5 1 1.50

0.5

1.5

1

2
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