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Introduction

There has been a shift in attention from industrial robotics towards the development of
robots that are capable of a more dexterous interaction with their environment.

Locomotion Dynamic Manipulation
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Dynamic Manipulation

Nonprehensile (graspless) manipulation includes phases where the manipulator loses
possibility of contact with the object before task completion
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efficiently for hopes of applying it
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Motivation & Problem Statement

@ Solve the optimal control problem
efficiently for hopes of applying it
within an MPC framework

@ Ensure dynamic feasibility and
physically consistent contact
behavior

© Avoid specifying a hand-crafted
contact schedule
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Motivation & Problem Statement

@ Solve the optimal control problem
efficiently for hopes of applying it
within an MPC framework

@ Ensure dynamic feasibility and
physically consistent contact
behavior

© Avoid specifying a hand-crafted
contact schedule

© Ensure ease of transferability onto
real hardware without any
post-optimization modifications
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Optimal Control Problem

Trajectory optimization techniques aim to solve the following nonlinear optimal control
(NLOC) problem:

T

rf-l(u)a J(x(t), 7(t),t) = m(x(T)) + O/L(T(t),ac(t))dt

s.t. x(t) = f(z(t), 7(t)) (nonlinear, smooth ODEs)
hpin < h(x(t),7(t)) < hpmee (inequality constraints)
g(x(t), 7(t) =0 (equality constraints)

vt € 10,T]
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Optimal Control Problem

Trajectory optimization techniques aim to solve the following nonlinear optimal control
(NLOC) problem:

T
rf-l(u)a J(x(t), 7(t),t) = m(x(T)) + O/L(T(t),ac(t))dt

C N T T e ST T | How to incorporate the multi-contact
! behavior into the dynamics?
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Non-Smooth Contact Dynamics
Modeling

A reliable model describing multi-body contacts has to be chosen before simulating the
system dynamics

Bl Bl
By By
(a)

(b)
Contact dynamics can be modeled using either (a) a hard contact-model or (b) a soft
contact-model
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Optimal Control Problem

Trajectory optimization techniques aim to solve the following nonlinear optimal control
(NLOC) problem:

T
rf-l(u)a J(x(t), 7(t),t) = m(x(T)) + O/L(T(t),ac(t))dt

LN el oS Ny | How to simulate the hybrid dynamics
! resulting from a hard contact-model?
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Non-Smooth Contact Dynamics

Simulation

Two prominent schemes used for simulating hybrid dynamical systems are:
event-driven and time-stepping techniques

Courtesy of Blender Guru and Phymec

The forward simulation of multi-contact dynamics can be eventually formulated as a
so-called linear complementarity problem (LCP) Jean-Pierre Sleiman 7
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Non-Smooth Contact Dynamics
Trajectory Optimization

Unlike the multi-phase approach, contact-implicit optimization (CIO) does not
require a prespecified contact schedule!

States, Inputs and . -
Hard ) Complementarity Contact-Implicit
Interaction Forces as

- i A h
Contact-Model @piimization Varables Constraints pproac!

Mathematical Program
with Complementarity
Constraints (MPCC)
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Multiple Shooting
.’l?(t) .
Remove Defect e

Discretize 2 /
[v]
Simulation
-~ _—
Time t

optimze —— FQRCES"™
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Contact-Implicit Optimization

@ The cost function minimizes energy and
penalizes the robot’s wrist joint-velocities

ZN (Tk Ry, quderk>
12

max qmaz

X Goal

@ The manipulation task is specified in terms
of final boundary conditions in the
optimization program

© The signed distance function ¢(q) is
defined such that a negative distance
indicates that the end-effector is
penetrating the object

“x Goal
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Contact-Implicit Optimization

» Normal contact force An, contact impulse A, and percussion Py between robot and object
» Frictional force Ar, frictional impulse A r, and percussion Pr between environment and object
» Variables A,, and Ay defined in relation to the percussions: Py = At - A\, & Pr = At - Ay

M(q)§+ h(q,q) = ST+ JT(q)- RN]
F

M(q) G+ —¢7) = JI7(q)- [ﬂ |
F I
I 1

An
qk+1:lik+At'Mk_1 (STTk_hk'i'Jg' |:)\ k:|>

Qi1 = qr + At - gry1
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Contact-Implicit Optimization

» Normal contact force An, contact impulse A, and percussion Py between robot and object
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Complementarity Constraints

M(q)§+ h(q,q) = ST+ JT(q)- RN]

F 0 < ¢(gr) L Any 20

!

M@t — )= J7(q)- [ﬂ
F

I i

o(qr) >0 (no penetration)
An A, >0 unilateral contact force
qk+14k+At'M]€_1<STTk_hk+JE'|: k:|> k= ( )
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Contact-Implicit Optimization

» Normal contact force An, contact impulse A, and percussion Py between robot and object
» Frictional force Ar, frictional impulse A r, and percussion Pr between environment and object
» Variables A,, and Ay defined in relation to the percussions: Py = At - A\, & Pr = At - Ay

Complementarity Constraints

M(q)§+ h(q,q) = ST+ JT(q)- RN]

F 0 < ¢(gr) L Any 20

!

M@t — )= J7(q)- [ﬂ
F

I i

o(qr) >0 (no penetration)
A A, >0 unilateral contact force
dr+1 = qe + At - M, ! (STTk—hk+JE~|:nk:|> k= ( )
Aty Ang - #(qr) =0 (no force at a distance)

Qi1 = qr + At - gry1
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Contact-Implicit Optimization

» Positive scalar quantity v4 signifying the speed along the desired direction of motion
» Pre- and post-impact relative separation velocities v~ / ~™
» Newton'’s restitution coefficient e

Newton’s Restitution Law of Impacts

plg)=0: O0<PvLl(y"+ey7)>0

!

Pny - (Vo1 +ex) =0
At - Apy, - (ékJrl + €¢k) =0
At - Ay, - (IN(@e+1)Grt1 + eIn(qr)gr) =0

Jean-Pierre Sleiman 12



Without Newton’s Restitution Law With Newton’s Restitution Law
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Contact-Implicit Optimization

» Positive scalar quantity v4 signifying the speed along the desired direction of motion
» Pre- and post-impact relative separation velocities v~ / ~™
» Newton'’s restitution coefficient e

Newton’s Restitution Law of Impacts Coulomb Friction

Af
¢ =0: 0<PvLl(y"+ey)>0 A=A, ifog=0& Ay < Fs Fy = pusNy
I Ap=Fy ifvg>0

At Any - (o1 + edr) =0 {o<vdiTL(Fs—Ff)>o
At Any - (IN(@rt1)dr+1 + €IN(gr)gr) =0 (Fs = Fy)(A = Fy) =0

| [
| [
| [
| [
| [
| o
! Py, - (ye41 +eyk) =0 N ﬂ A
| [
| [
| [
| [
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Contact-Implicit Optimization

. . . Open-loop
The optimal input sequence 7., is an open-loop control Contact-Implicit
policy. Therefore, trajectory stabilization is still needed. Optimization
Topt
. . Gopt
Ti(t) = Tope(t) Ak (Gopts (t) — @i(t)) + K, (dope, (8) — Gi(t)) i
N—— opt
feedforward term feedback term
Feedforward Term
&
where 7,,(t) is obtained by a zero-order-hold while qp:(t) Linear-Time-Invariant
and qopt (t) by linear interpolation Feedback Law
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Robot-Door Manipulation Task Robot-Ball Manipulation Task
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Robot-Block Manipulation Task

» Compatibility between optimal contact force and
measured one

Instantaneous Normal Percussions for Experiment 3

Percussion (N-s)
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— Experimental
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Robot-Block Manipulation Task

Instantaneous Normal Percussions for Experiment 3
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measured one
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=

» Convergence rate two orders of magnitude ;
higher than that of previous works
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Robot-Block Manipulation Task

Instantaneous Normal Percussions for Experiment 3

2
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» Compatibility between optimal contact force and
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—
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» Convergence rate two orders of magnitude % M. 5
higher than that of previous works Final Exror
0.25
Tl .
> Satisfaction of manipulation task with T )| LT3 =
inaccuracy proportional to desired displacement m 01 ’lg;ij T
0.05 °
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Thank you for your attention!

ETHziirich L{SL

Robotic Systems Lab

SNF ANY

Swiss NATIONAL SCIENCE FOUNDATION

Any Questions?
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