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Magnetic dipole-dipole interactions govern the behavior of magnetic matter across scales 
from micrometer colloidal particles to centimeter magnetic soft robots. This pairwise 
long-range interaction creates rich emergent phenomena under both static and dynamic 
magnetic fields. However, magnetic dipole particles, from either ferromagnetic or 
paramagnetic materials, tend to form chain-like structures as low energy configurations 
due to dipole symmetry. The repulsion force between two magnetic dipoles raises 
challenges for creating stable magnetic assemblies with complex two-dimensional (2D) 
shapes. In this work, we propose a magnetic quadrupole module that is able to form 
stable and frustration-free magnetic assemblies with arbitrary 2D shapes. The quadrupole 
structure changes the magnetic particle-particle interaction in terms of both symmetry 
and strength. Each module has a tunable dipole moment that allows the magnetization of 
overall assemblies to be programmed at the single module level. We provide a simple 
combinatorial design method to reach both arbitrary shapes and arbitrary magnetizations 
concurrently. Finally, by combining modules with soft segments, we demonstrate 
programmable actuation of magnetic metamaterials that could be used in applications for 
soft robots and electromagnetic metasurfaces.  
 
One-Sentence Summary: A magnetic quadrupole module forms stable and frustration-free 
magnetic assemblies with arbitrary two-dimensional shapes. 
 

INTRODUCTION 

In 1903, Gustav Mie proposed a generalized form to describe the interaction between two 

particles, later known as the Mie potential (1). Since then, this phenomenological description 

of particle-particle interaction has been widely used to describe the balance between two 

competing forces at different length scales, one well-known example being the Lennard-

Jones potential for interatomic and intermolecular interactions (2). The symmetry and the 

strength of particle-particle interactions contain critical information to model a system’s 

dynamics, which is necessary for understanding the complex emergent behaviors of multi-

particle systems.  

 

Dominated by magnetic dipole-dipole interactions, magnetic particles can self-organize into 

various complex structures under spatiotemporally varying magnetic fields (3–11). Such 



structures include chains (11), rings (12), asters (6), ribbons (13), and microtubules (14). This 

list can be extended to include more complex emergent structures if combined with external 

acoustic (9) and electric (15) stimuli or on super-hydrophobic surfaces (16). The shape and 

dynamics of such assemblies attract interest for both fundamental research and applications, 

including self-assembled colloids (17, 18), programmable matter (19), directed particle 

transport (20), and reconfigurable modular microrobots (21–23). 

 

Magnetic dipole-dipole interactions exhibit some limitations. First, the repulsion force 

between magnetic dipoles under certain configurations undermines the stabilities of overall 

assemblies and sometimes leads to local frustrations under geometric constraints (24–28). 

Here the geometric frustration comes from local conflicting magnetic interactions. As a 

result, magnetic particles tend to form simple quasi–one-dimensional (1D) structures such as 

chains and rings at low densities. This makes many interesting configurations energetically 

unfavorable. The symmetry of magnetic dipoles fundamentally inhibits stable assemblies 

with complex 2D shapes. Although this limit can be overcome by adding other inter-particle 

interactions, such as electrostatics, the local repulsions between dipoles remain, making it 

difficult to predict the responses of overall assemblies as can be done for artificial spin ice 

systems (25).  

 

In addition, there is a strong coupling between the shape and the magnetization of the overall 

magnetic assemblies, because the magnetizations are determined by the local magnetic dipole 

arrangements. For soft magnetic robots in liquid, the shape determines the fluidic drag while 

the magnetization determines the force and torque applied by external magnetic fields. To 

obtain desired assembly motions, it would be ideal to program the shape and the 

magnetization independently. Decoupling shape and magnetization could dramatically 

broaden the design space of magnetic assemblies for programmable deformations, complex 

actuation, and locomotion in various environments. 

 

Despite the advances in complex configurations of magnetic particle assemblies, there are no 

design rules illustrating how to assemble magnetic particles for an arbitrary structure. 

Although generalized solutions were proposed for structured mechanical metamaterials (29, 

30), DNA origami (31), and reconfigurable modular robots (32, 33), the reverse design 

problem remains challenging for magnetic assemblies. Simplifying the assembly rules of 

magnetic particles for any given shape and magnetization would allow rational designs of 

customized programmable matter (34), a strongly desirable capability for many engineering 

applications. 

 

In this article, we address these challenges by developing magnetic quadrupole modules for 

2D assemblies. Each module has a dominant quadrupole moment and small dipole moment, 

which were designed to govern the near-field interactions with neighboring modules and to 

encode the magnetization, respectively. The dominate quadrupole structure with 4-fold 

symmetry allows modules to be assembled in a 2D square lattice without local repulsion. We 



also developed a simple frustration-free combinatorial design method for arbitrary 2D shapes 

with arbitrary magnetizations. This provides a new design space for magnetic assemblies to 

form customized small structures at the single module level that is inspirational for magnetic 

assemblies across all scales. 

 

RESULTS 

Quadrupole module with a turnable dipole moment 

The magnetic quadrupole module is composed of two identical NdFeB block magnets (1.2 

mm by 1 mm by 0.5 mm) inside a 3D-printed square case (Figure 1a). Two magnets are 

arranged with a relative angle θ between their dipole moments. Using magnetic multipole 

expansion, the module structure can be decomposed into a quadrupole term and a dipole 

term, respectively, based on their arrangements. By varying the relative angle θ between the 

two magnets, both dipole and quadrupole terms can be tuned from a pure quadrupole (θ = 0°) 

to a pure dipole (θ = 180°) (Figure 1b,c). The magnetic fields produced by dipoles and 

quadrupoles decay at different rates with 
3
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p
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4

1

p
, respectively(35), where p is the 

distance away from the center of the magnetic module. One can design the relative strength 

between two terms to utilize their different properties at near and far field. A simple 

comparison of dipole and quadrupole terms is shown with different θ angles (Figure 1c). The 

quadrupole term gets weaker with an increasing θ angle, whereas the dipole term gets 

stronger. 

 

We used the quadrupole's four-fold symmetry for assembly with other modules while keeping 

a small dipole moment inside the module to determine the magnetization of the assemblies 

and to respond to external magnetic fields. After analytical studies and numerical simulations, 

an angle (θ = 20°, Type A) was chosen so that four alternating magnetic poles can be easily 

identified on each side of the module structure with a noticeable magnetic dipole moment. 

This quadrupole module has a mirror design (Type B). 

 

Magnetic quadrupole-quadrupole interactions 

To show that each quadrupole module can form stable bonds with four neighbors, we 

modeled the potential energy of two quadrupole modules at any given position. The potential 

energy of two quadrupole modules can be written as the summation of magnetic dipole pairs 

(Eq. 1) with respect to the relative position and angle. Here we assume the magnets are point 

dipoles at geometric centers. 
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where 
i jd dH   is the magnetic energy between dipoles i and j and 

1 2q qH 
is the magnetic energy 

between two quadrupole modules. The magnetic permeability in vacuum is 0 , im  is the i-th 

magnetic dipole, and �̂� is the unit vector between two dipoles and 𝑟 the distance between 

them. For any given two quadrupole modules (θ = 20°), there exist four minimal energy 

positions on each side of the quadrupole module (Fig. 1d). 

The potential energy at each of the four stable positions is not equivalent due to the fact that a 

quadrupole module has two strong poles and two weak poles (Fig. S4). We experimentally 

demonstrate that assemblies between different types (typeA-typeB) and the same types 

(typeA-typeA) are possible (Fig. 1f-g). With an increasing θ, the quadrupole module 

gradually loses its four stable bonding sites and behaves like a dipole particle (Fig. S5).  

 

Combinatorial design method for arbitrary shapes and magnetizations 

To assist in the design process, we proposed a combinatorial design method for the magnetic 

quadrupole modules. Following this method, one can easily design 2D frustration-free 

magnetic assemblies with arbitrary shape and arbitrary magnetization (Figure 3) by pick-and-

place according to the design map (Figure 2). We simplified the magnetization profile of each 

quadrupole module by assigning the corresponding north and south pole on each side. The 

system energy of quadrupole assemblies can be modeled as Ising interactions between nearest 

neighbors (36) (Fig. S6). The assemblies become stable if all internal north poles are paired 

with south poles. This principle ensures that quadrupole assemblies will be structurally stable 

without internal frustrations in a square lattice. After determining the shape, four independent 

magnetization directions are available for each module, as shown in Figure 2a. 

 

Although each quadrupole module has only four directions of magnetization in the square 

lattice, the overall magnetization of the assembly can be much more complex. The 

magnetization of the assembly is simply the summation of magnetic dipole moments of each 

quadrupole module. To illustrate the design space, we used a nine-module assembly “small 

rocket” to demonstrate the possible magnetizations in the structure plane (Fig. 3b). By 

combining different magnetization directions of individual quadrupole modules, the 

magnetization direction of the assembly can be fine-tuned to an arbitrary angle. The smallest 

tunable angle of the magnetization direction depends on the total number of the modules in 

the assembly (Fig. S7). 

 

Programmable soft actuators and soft metamaterials 

The freedom to design complex magnetization profiles is particularly interesting if the 

assembly structure is soft (37–40). Soft material enables the local magnetizations to 

transform into relative deformations under an external magnetic field. We developed a soft 

segment with magnetic quadrupole modules at both ends. These two quadrupole modules 

have zero dipole moments, which serve as assembly anchors. By combining quadrupole 

modules with a dipole moment, we could assemble multi-segment soft structures with a 

programmable motion under external dynamic magnetic fields (Figure 4). Selected 



deformations are presented by programming the magnetization of various types of 

mechanical metamaterials, including an auxetic material characterized by their negative 

Poisson’s ratio. The active magnetic fields could dynamically deform the pre-programmed 

soft structures, making it a versatile tool for soft robotic applications.  

 

CONCLUSION 

In summary, we propose a quadrupole magnetic module with a tunable dipole moment. The 

four-fold symmetry of the quadrupole module promotes stable complex assemblies with 

arbitrary magnetizations. In this work, the fabrication process of quadrupole magnetic 

modules is limited by the resolution of the 3D printer, the permanent magnets that are 

commercially available, and the manual assembly process, which can be replaced using a 

three-axis robotic stage. Further efforts can be focused to overcome these fabrication 

limitations using similar quadrupole designs and 3D assemblies using a robotic hand. 

Compared with 3D printing (39) and laser cutting (38), magnetic soft robotic assemblies can 

reconfigure to various morphologies through de-assembly and re-assembly in situ, providing 

a new strategy to design minimally invasive medical devices. 

 

MATERIALS AND METHODS 

Fabrication of magnetic quadrupoles. 

The shell of the quadrupole module was printed with rigid resins (IC131 black, PR57 magenta yellow and white, 

Colorado Polymer Solutions) by an Ember 3D printer (Autodesk). The quadrupole modules with soft segments 

were directly printed by a Connex (Objet 350, Stratasys) with Agilus as the soft material and VeroWhite as the 

hard material. The 1.2 mm–by–1 mm–by–0.5 mm block magnets were N42 grade NdFeB block magnets with 

nickel-plated surfaces (article no. 9964-2353, HKCM Engineering). The magnets were assembled together and 

glued with ethyl 2-cyanoacrylate adhesives (Pattex). 

Simulations 

The static magnetic field simulation (Fig. 1b) was performed using COMSOL Multiphysics. The magnetization 

flux conservations were applied to each NdFeB magnets with a predefined magnetization direction. The color 

shows the norm of the magnetic field (B). The 2D streamlines were plotted with uniform density showing the 

magnetic field direction. The quadrupole-quadrupole potentials were calculated based on Eqn. 1. The results were 

implemented and visualized in MATLAB. The color map shows the potential energy between two quadrupole 

modules with a fixed relative angle. 

Assembly process 

We built up an assembly stage for quadrupole modules (Extended Data Fig. 1a). The stage had a transparent 

PMMA cover (3mm) and a thin brass substrate (0.5 mm painted as white color). The motions of quadrupole 

modules were confined in two dimensions inside the assembly platform. A small bar magnet (1 mm by 1 mm by 

4 mm) as the magnetic tweezer moved under the brass substrate to move individual quadrupole modules for 

desired position and orientation. Glycerol (99%, ABCR) was used to damp the motion of quadrupole modules 

providing facile control of the assembly processes. The equations of motion for each quadrupole module are 

 _τ ψ 0Linear drag   M B v F  

 _τ ψ ω 0Rotation drag   M B T  



where τ  is the volume of the magnet; M is the magnetization of the material; B is the magnetic field generated 

by the magnetic tweezer; v and ω  are the linear and rotational velocity vector, respectively; _ψLinear drag  and 

_ψRotation drag  are the linear and rotational drag coefficients, respectively; and F and T are the friction force and 

torque applied to the module, respectively. In this setup, the magnetic field gradient generated by the magnetic 

tweezer is the dominant force to move the quadrupole modules (Fig. S1b).  

Only single module assemblies and a pi shape were demonstrated in this setup (Figure 1 and Fig. S2). The rest of 

the quadrupole module assemblies were achieved manually using a normal tweezer. Although we demonstrate the 

assembly process using manual control of the magnetic tweezer, this process can be automated using a 3d robotic 

hand and computer vision feedback. 

Multipole expansion of quadrupole module 

We implemented the multi-pole expansion for permanent magnets based on our quadrupole module structure. The 

generalized magnetic scalar potential Φ  of a permanent magnet is represented in Fig. S3a, which can be 

expressed as 

 

Φ(p) =
1

4π
∮

n̂∙M

|p−ρ|S
ds  

where M is the magnetization, n̂  is the unit vector normal to the surface ds, p is the vector to the point of interest, 

and ρ  is from the center O to the point of integration. Applying the multipole expansion using Legendre 

polynomials Pn(), the magnetic potential can be expressed as 

 

Φ(p) =
1

4π
∑

1

pn+1
∞
n=0 ∮ ρnPn(p̂ ∙ ρ̂)(n̂ ∙ M)

S
ds  

with p =  |p|, ρ =  |ρ|, p̂  and ρ̂  the unit vectors of p  and ρ  respectively. In the following, we are primarily 

interested in the terms of the series corresponding to n = 1 and 2 that respectively correspond to the dipole and 

quadrupole terms. For a block magnet magnetized along its major axis, only two surfaces perpendicular to the 

magnetization need to be integrated. The multipole expansion in this case can thus be re-written as  

 

Φ(p) =
M

4π
∑

1

pn+1

∞

n=0

𝐷𝑛 

where 

𝐷𝑛 = ∑(−1)𝑖+1 ∮ ρnPn(p̂ ∙ ρ̂)

S𝑖

ds

4

i=1

 

with M = |M| and iS  the i-th surface contributing to the potential, i.e. the surfaces corresponding to the north and 

south poles of each block magnets. The term  ˆ n M  is equal to M  and to M  on the north and south pole 

surfaces, respectively. The term 0  D is always zero because there is no magnetic monopole, and the dipole and 

quadrupole contributions to the magnetic potential can be expressed in spherical coordinates (Fig. S3b) as follows 

for a Type A module 

  

Φdipole(p) =
Mτ

4πp2
sin

θ

2
sin Π sin Ψ 

Φquadrupole(p) =
−Mτd

4πp3
cos

θ

2
(3 sin2 Π cos2 Ψ − 1) 



 

The magnetic field can be calculated outside of the permanent magnets as 0 Φ  B  with 

7 2

0 4 10 N A      , the magnetic permeability for free space. The magnetic field B  described in spherical 

coordinates is then expressed as 

 

B(p) =
𝜇0M

4π
∑

1

pn+2

∞

n=0

((𝑛 + 1)𝐷𝑛�̂� −
𝑑𝐷𝑛

𝑑Π
�̂� −

1

sin Π

𝑑𝐷𝑛

𝑑Ψ
Ψ̂) 

where r̂ , Π̂ , and Ψ̂  are the unit base vectors of the spherical coordinate system, with r̂  pointing in the  p 

direction, and Π̂  and Ψ̂  pointing in the positive Π  and Ψ  direction, respectively. The contribution from the 

dipole and quadrupole terms of the multipole expansion are then expressed as 

 

B𝑑𝑖𝑝𝑜𝑙𝑒(p) =
𝜇0Mτ

4πp3
sin

θ

2
(sin Π sin Ψ r̂ − cos Π sin Ψ Π̂ − cos Ψ Ψ̂) 

 

B𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑜𝑙𝑒(p) =
3𝜇0Mτd

8πp4
cos

θ

2
(− (3sin2Πcos2 Ψ − 1)r̂ + 2 cos Π sin Π cos2ΨΠ̂ − 2 sin Π cos Ψ sin Ψ �̂�) 

 

Strong poles and weak poles 

The magnetic poles on each side of the quadrupole module are not equivalent. If we consider the implementation 

of the quadrupole structure in three dimensions, there are two poles on the top and bottom sides of the module 

(Fig. S4a). For type A quadrupole modules, both top and bottom poles are north poles. The magnetic flux from 

four north poles is equivalent to the flux coming back from two south poles, making the south poles stronger than 

the north poles. For type B quadrupole modules, the north poles are stronger than the south poles. The difference 

can be evaluated by the quadrupole-quadrupole interaction model based in Eqn. 1 (Fig. S4b). During the 

experiments, stronger poles are more likely to bond together than two weak poles between type A and type B 

quadrupole modules. 

Ising model of quadrupole assemblies 

The magnetic energy of the quadrupole assemblies can be calculated based on all the dipole-dipole pairs, except 

for the ones belong to the same module. To simplify the calculation, we provided an equivalent Ising model for 

quadrupole assemblies considering the interactions only within the nearest neighbors. 

  
 

ij i j

i j

H J     

ijJ  is the energy map and   i  is the “spin” of the magnetic pole on each side of the quadrupole module. As in Fig. 

S6, the total energy of the quadrupole assemblies can be written as the summation of all the binding pole pairs. 

The red and blue circles represent the strong north and south poles, and the half red and blue circles represent the 

weak north and south poles, respectively. Six different energy bonds are listed between strong and weak magnetic 

poles. This method provides a simple evaluation tool for calculating the minimal energy configurations and quick 

access to stabilities of the assemblies. 

Magnetization Design space 

Based on our quadrupole formulation, the magnetization and the shape can be decoupled for quadrupole 

assemblies. For a given shape made of N quadrupole modules, each quadrupole has a dipole moment either 

pointing to one of the four directions (north, south, west, and east) in a square lattice. Considering each module 

in a 2D assembly as a distinct order, the magnetization design space is 4N
, considering the spatial distribution of 



the magnetization space. However, in terms of the overall magnetization, there are several degeneracies which 

different combinatorics that give the same magnetization. For any number  north south east westN N N N N     

and the magnetization vector is  

    ˆ ˆ
north south east westm N N y N N x     

if we assume that the north represents the positive direction of the y axis and east represents the direction of 

positive x axis. 

For the assemblies with the same magnetization, we calculated the number of designs based on simple 

combinatorics. The number of designs with identical magnetization and shape is  

 Ω  
south east westnorth

north north south north south east

N N NN

N N N N N N N N NN

    
     

         
 

where
 

!

!  !

m n

n n m m

 
 

 
 with  m n . 

As an example, we studied the number of designs yielding equivalent magnetization in Fig. S7. We calculated the 

designs in one-eighth of the magnetization design space based on assembly made of 9 modules.  

Actuations of magnetic assemblies 

The alignment experiments (Fig. 3b) and actuation of soft metamaterial were performed in the eight 

electromagnetic systems. Only uniform magnetic fields were applied to the assemblies. A dry PFPE petri dish was 

used as the substrate to reduce friction. The configuration of the structure could be dynamically changed within a 

rapidly changing magnetic field ((Fig. S8). Some of the assembled metamaterials were de-assembled during the 

experiments due to strong magnetic torque applied to the materials that overcame the magnetic bonding 

interactions (Fig. S9c,d). All videos were recorded using an iPhone 8 plus under the room light. The static images 

of the assemblies were acquired using a mirrorless camera (Fuji x-t20), an iPhone 8 plus, and a firewire camera 

(Grasshopper, Point Grey Research Inc.). 

 

Supplementary Materials 

Fig. S1. Magnetic assembly stage for quadrupole modules. 

Fig. S2. Assemble process of a “pi” shape using the quadrupole modules in the assembly 

stage. 

Fig. S3. Multipole expansion of the quadrupole structures. 

Fig. S4. Strong poles and weak poles. 

Fig. S5. Magnetic potential energy map of two quadrupole modules with varying angle θ. 

Fig. S6. Ising model of magnetic quadrupole assemblies. 

Fig. S7. Design space of the magnetization of a “small rocket.” 

Fig. S8. Dynamic performance of the auxetic material assembled by quadrupole modules. 

Fig. S9. Single-segment bending motion and collapse of soft metamaterials under large 

magnetic fields. 

Fig. S10. Stability of quadrupole assemblies with mechanical disturbances. 



Movie S1. 

Movie S2.  
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Figure 1 | Quadrupole magnetic modules with a tunable dipole moment. a, Structure of a 

dipole magnet and a quadrupole module. There are four alternating poles on each side of the 

quadrupole module structure. b, The simulated magnetic fields around the quadrupole 

modules with different angles θ between the two magnets. A “pure” dipole (θ = 180°) and a 

“pure” quadrupole module (θ = 0°) can be achieved. In this work, θ = 20° was selected for a 

dominant quadrupole structure with a balanced dipole moment. c, Analytical solution of the 

magnetic potential evaluated at x = 0 and y = -3 mm contributed from dipole and quadrupole 

terms of a Type A module (Methods: Multipole expansion of quadrupole module). d, 

Magnetic potential energy map of two quadrupole modules (white Type B module moves 

around fixed grey Type A module). There are four local minimal energy regions (purple), 

which allow four stable assembly positions on each side due to the dominant quadrupole 

symmetry. e, The magnetic potential energy in the line from A to E, which is the central 

position of Type B module. The relative positions between two modules are shown. f, g, 

Actual assembly between two quadrupole modules. When two quadrupoles are brought close 

together, they will automatically assemble (movie S1). Quadrupole assemblies between the 

same type and different types are demonstrated (scale bars, 5 mm). 



 

Figure 2 | Combinatorial design process for quadrupole magnetic assemblies. a, First, we 

digitalized the target structure in a 2D square lattice; each module represents a quadrupole 

module to be filled. The checkerboard pattern made of quadrupoles with different 

orientations automatically ensures the matching of north poles with south poles. This allows 

one to design arbitrary shape assemblies without internal magnetic frustrations. b, Second, 

we chose the magnetization of each module utilizing the hidden dipole inside each module. 

Based on the selection map, the internal dipole moment can align in four directions (up, 

down, left, and right) for each quadrupole module for both types of quadrupole orientations in 

the checkerboard. c, The calculated assembly structures with the experimental realization 

(scale bar, 4 mm). 



 

Figure 3 | Arbitrary shapes and arbitrary magnetizations of quadrupole assemblies and 

alignment in an external magnetic field. a, Examples of complex quadrupole assemblies in 

2D using the shapes of emoji pixel art (scale bar, 1 cm). b, The magnetization space for a 

given assembly structure (“Small Rocket”). The “Small Rocket” composed of nine 

quadrupole modules and possible magnetizations were reachable for all black dots and yellow 

dots in the map. Cases with large magnetization were selected (yellow dots on the map) to 

experimentally demonstrate the alignment in an external magnetic field (scale bar, 5 mm).  



 

Figure 4 | Actuated soft material with programmable deformations. A soft segment with 

two quadrupole modules was proposed in this experiment. The quadrupole modules on both 

ends of the soft segment have no dipole moment. The deformation is completely dependent 

on the dipole moment of quadrupoles attached to it. This allowed us to program the 

magnetization direction of each rigid part and to create programmable motion of structure 

material under uniform magnetic fields. We demonstrate a star material (a,b) and a square 

material (c-e) with programmable motion. The deformation could be directly controlled with 

externally generated magnetic fields (movie S2). 

 


