
ETH Library

Meta Answering for Machine
Reading

Working Paper

Author(s):
Borschinger, Benjamin; Boyd-Graber, Jordan; Buck, Christian; Bulian, Jannis; Ciaramita, Massimiliano; Chen Huebscher, Michelle;
Gajewski, Wojciech; Kilcher, Yannic; Nogueira, Rodrigo; Sestorain Saralegui, Lierni

Publication date:
2019-11-11

Permanent link:
https://doi.org/10.3929/ethz-b-000393755

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
arXiv

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000393755
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Meta Answering for Machine Reading

Benjamin Börschinger,1 Jordan Boyd-Graber,1,4 Christian Buck,1 Jannis Bulian,1

Massimiliano Ciaramita,1 Michelle Chen Huebscher,1 Wojciech Gajewski,1

Yannic Kilcher,2∗ Rodrigo Nogueira,3† Lierni Sestorain Saralegui1

1Google Research 2ETH Zürich 3New York University 4University of Maryland

{bboerschinger, cbuck, jbulian, jbg, lierni, massi, michellechen, wgaj}@google.com
rodrigonogueira@nyu.edu yannic.kilcher@inf.ethz.ch

Abstract

We investigate a framework for ma-
chine reading, inspired by real world
information-seeking problems, where a
meta question answering system interacts
with a black box environment. The en-
vironment encapsulates a competitive ma-
chine reader based on BERT, providing
candidate answers to questions, and possi-
bly some context. To validate the realism
of our formulation, we ask humans to play
the role of a meta-answerer. With just a
small snippet of text around an answer, hu-
mans can outperform the machine reader,
improving recall. Similarly, a simple ma-
chine meta-answerer outperforms the envi-
ronment, improving both precision and re-
call on the Natural Questions dataset. The
system relies on joint training of answer
scoring and the selection of conditioning
information.

1 Introduction

Question Answering (QA) is a benchmark task in
Natural Language Understanding, driving signifi-
cant effort and progress (e.g., Devlin et al. (2018)).
In the most popular setting, QA is framed as
a machine reading task (Rajpurkar et al., 2016;
Kwiatkowski et al., 2019). The problem requires
answering a question either by extracting a span
of text identifying the answer from a textual con-
text, or abstaining in the absence of adequate ev-
idence. Formulated this way, the problem can be
solved by humans with sufficient agreement, thus
allowing to encapsulate the task in the form of self-
contained static observations. This closed-world
setting has catalyzed considerable progress in ques-
tion answering, as the automatic and instant evalu-
ation of whether a candidate answer is right or not
has allowed the application of sophisticated ma-
chine learning techniques (Buck et al., 2018).

∗Part of the work done as an intern at Google.
†Work done as an intern at Google.

The price of this setting is artifice. As high-
lighted by recent work, systems are not pressured
to develop language understanding, are prone to
adversarial attacks, and take systematic advantage
of artifacts in the data (Jia and Liang, 2017; Mu-
drakarta et al., 2018; Niven and Kao, 2019). In
real world applications, information-seeking tasks
are mediated by machines which provide likely rel-
evant, but also incomplete and noisy, information
in heterogeneous formats. One example is web
search. When a user submits a query the results
may include document links and corresponding
snippets, related queries, featured snippets, struc-
tured information from knowledge graphs, images,
maps, ads etc. By design, these results will sat-
isfy some notion of relevance. However, there is
no guarantee that they will satisfy the user’s in-
tent, nor one should conclude that it is impossible
to answer the query, for which longer sessions and
diverse strategies might be necessary (Xie, 2002;
Marchionini, 2006; Russell, 2019). Such tasks are
characterized by imperfect and asymmetric infor-
mation, users and systems have access to different
sources and have different skills, while popular QA
tasks assume perfect information.

We study the strategies both humans and com-
puters can deploy to answer questions in imperfect
information environments, what we call a meta-
answering task. We perform an extensive analy-
sis of humans’ quantitative and qualitative perfor-
mance. For a machine, we call an analogous sys-
tem a machine meta-answerer , generalizing exist-
ing work on reranking, confidence estimation, and
determining whether a question is answerable (Ra-
jpurkar et al., 2018). We simplify this problem by
placing a supervised meta-answerer on top of an
existing strong machine reading QA system. We
experiment with an existing machine reading/QA
dataset—Natural Questions (Kwiatkowski et al.,
2019)—that embeds real users’ information seek-
ing needs in a realistic information retrieval con-
text. The following are our main findings. First,
even restricted to the limited contexts provided by
the environment, a human meta-answerer can im-
prove the accuracy of a strong QA system: they

ar
X

iv
:1

91
1.

04
15

6v
1

 [
cs

.C
L

]
 1

1
N

ov
 2

01
9

are able to discern whether answer candidates are
responsive to the question, can solve ambiguous
references, and can spot irrelevant distractors that
can vex brittle QA systems. Second, it is possi-
ble to design a simple supervised meta-answerer
with a built-in heuristic inference policy that out-
performs the QA system on the Natural Questions
task, producing the best single system on the NQ
leaderboard for short answers.

With respect to the machine meta-answerer, it
is important to structure the system in such a way
that the problem of composing the conditioning in-
formation and scoring answers are decoupled. Fur-
thermore, joint training of these factors, including
additional auxiliary tasks, is key to obtaining good
performance.

2 From Question Answering to
Meta-answering

An extractive QA system maps a question-context
pair 〈q, d〉 to a set of answer candidates and their
scores, {ai, σi}Mi=1, where all ai are subspans of
c and σi is a score assigned to the candidate by
the QA system. In the case of Natural Ques-
tions (Kwiatkowski et al., 2019), the data set we
use to explore the meta-answering task in this pa-
per, each q is a web search query, each c is the
highest ranking Wikipedia page returned for this
query by Google, and each answer candidate is a
short, contiguous span from this page.

In contrast, a meta-answerer lacks direct access
to d and instead takes the M -best list of an ex-
isting QA system as starting point to predict the
single best answer â. Conceptually, this is similar
to a human being confronted with a search results
page and having to identify, from the very limited
information provided, which of the different results
(generated by some system that had access to the
full document d) is worth exploring.

This differs from vanilla M -best list re-ranking
in two ways. First, considering only the answer
candidates and question is an ill-defined (and, for
humans, frustrating) task, as validated by our em-
pirical experiments. Secondly, providing the origi-
nal document d to the re-ranker actually turns the
problem back into extractive QA, assuming a hard
prior on what spans ought to be considered. In
contrast, a meta-answerer has to assemble a suffi-
ciently informative yet also compact ‘history’ h by
way of interacting with the original full context d
only through the QA system.

For this, we allow the QA system to return ‘ob-
servations’ of d that are centered on the answer
candidates. In the simplest case, an observation

oi = 〈c(l)m , am, c
(r)
m , σm〉 is an ‘in-context’ view of

an answer span, with c
(l)
m , c

(r)
m being the tokens to

the left/right of am in d. Theoretically, we can add
arbitrary information about the answer candidate

to an observation, possibly from other systems that
provide scores / additional context - this is partic-
ularly natural in a WebSearch setting where many
ranking signals could provide valuable information
for making decisions without requiring access to
the full document.

To avoid degeneration into the original task by
simply reassembling d through concatenating a
large number of observations, we limit the length
of the left/right context to a small number of to-
kens (e.g., 5 works well), and additionally restrict
the meta-answerer to only select K << M obser-
vations on the basis of which it will score the M
answer candidates. Phrased like this, it is natural
to decompose the Meta-Answering problem into
two sub-tasks, history selection that computes h
by picking K of the M observations; and answer
selection that (re-)scores the M answer candidates
returned by the QA system on the basis of h to
identify the best candidate.

As in other domains involving multi-party in-
teraction, from macroeconomics (Akerlof, 1970) to
game theory (Osborne and Rubinstein, 1994), the
meta answering problem is characterized by imper-
fect information. Information is imperfect because
there is noise and errors in the observations re-
turned by the environment, it is also asymmetric
because the environment has access to full docu-
ments while the meta-answerer only sees snippets
of the context. We believe that this is an important
aspect to account for in information-seeking tasks
such as question answering. In the next section we
show that humans can successfully deal with the
meta-answering task.

3 Humans as meta-answerer

To better understand the task and provide a bench-
mark, we place humans in the role of the meta-
answerer. They see exactly the same information
available to a machine-learned system and select
actions to answer the question. They can request
candidate answers one at a time, ranked from the
QA system’s n-best list. On one hand, humans
have world knowledge that the computers do not.
However, they are restricted to the same context
as computers; they may instead be burdened by
their innate knowledge rather than aided.

This section examines how well human meta-
answerers can find correct answers compared to
both the annotators of the NQ dataset (under far
less elaborate restrictions) and to the machine QA
system. We evaluate three frameworks for humans
to interact with the underlying QA system with
increasing complexity and information; a subset of
these settings also correspond to those of our ma-
chine meta-answerer.
Baseline shows only the question and candidate

answers without context ; the meta-answerer needs

Baseline Context RewriteQues
Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

NQ annotator 57.9 46.4 51.5 64.2 51.6 57.2 57.7 45.5 50.9
Baseline QA 56.4 45.7 50.5 60.1 47.2 52.9 67.2 56.4 61.4
agv. Human 40.7 41.1 40.6 48.9 50.9 49.8 54.5 56.7 55.5
best Human 39.4 48.8 43.6 52.7 59.1 55.7 60.1 66.8 63.3
↪→ vs. NQ annotator -18.5 2.4 -7.9 -11.5 7.5 -1.5 2.4 21.3 12.4
↪→ vs. Baseline QA -17.1 3.1 -6.9 -7.5 11.9 2.8 -7.1 10.4 1.9

Table 1: Results of the human evaluation, using bootstrap sampling and exact string matches. As dis-
cussed in Section 3.2 these number are not comparable to the official eval metric but allow for comparison
between original NQ annotators, the baseline QA system and humans that have to operate on partial
information.

to decide whether Central Germany is a reason-
able answer to “what culture region is Germany a
part of”. Context adds surrounding context: is
“Charles Osgood as the Narrator Jesse McCartney
as JoJo, the Mayor’s son” a good answer to the
question “who is JoJo in Horton Hears a Who”.
This is identical to the information the machine
meta-answerer uses in the next section. Rewrite-
Ques goes beyond the machine meta-answerer and
allows the user to ask any question to two other QA
systems: Lee et al. (2019) over all of Wikipedia or
Alberti et al. (2019a) over the source page from
NQ. For example, the user can ask “Who did Jesse
McCartney play in Horton Hears a Who” to verify
that (the system believes) he plays JoJo.

3.1 Human Answering Framework

A human meta-answerer interacts with the under-
lying QA system through a text-based interface.
They first see a prompt; they can then request an
answer from the underlying QA system. After re-
questing up to 20 examples, the user can either
abstain or propose one of the answer candidates.
For each condition, the same five human meta-
answerers (results are averages with error bars)
play episodes for random samples of 100 questions
from the dev set of the NQ dataset. In addition,
in RewriteQues, the human meta-answerer can
ask a different question as an action.

3.2 Comparing Human meta-answerers to
Original Annotators and the QA
system

There are a few differences between how the NQ
systems are evaluated vs. how we compare our
human evaluations to a baseline. Most impor-
tantly, our human subjects select a single continu-
ous string as the answer (they do not know where
the string came from in the document); however,
the official NQ evaluation calls for matching the ex-
act span in the document. Thus, selecting the cor-
rect answer at the wrong position is still counted as
a miss (e.g., Kevin Kline at token 13 or 47 is wrong
but Kevin Kline at token 30 is correct). In addi-

tion, a small number of questions have a short an-
swer that consist of multiple un-connected spans;
e.g., several names from a cast; because the un-
derlying QA system cannot produce such spans,
neither can our meta-answerer. Any disjoint gold
span will always be wrong. Finally, our setting
cannot answer binary yes/no questions because the
setup is strictly extractive. To compare the accu-
racy of the QA system and original NQ annotators
(both see the whole source document) with the hu-
mans operating on partial knowledge, we compare
exact and partial string matches via a “surface F1”
measure that compares token overlap.

The first comparison is between our humans and
the original NQ annotators. This is difficult be-
cause the NQ annotators define the gold answer.
To hold out one NQ annotator, we create a new
answer via bootstrapping against the five annota-
tions given for the dev set: We pick a random anno-
tation and sample (with replacement) five annota-
tions from the remaining four. A guess is counted
as correct if at least two out of the five annota-
tions have a short answer and at least one is an
exact string match. We consider yes/no annota-
tions as having no short (extractive) answer. This
allows us to fairly compare the accuracy of the NQ
annotator, our human annotators, and the baseline
QA system. Human meta-answerers, on average,
have lower F1 than both the original annotators as
well as the baseline QA system (Table 1), in Con-
text and especially Baseline. However, a clear
improvement in performance is visible when mov-
ing from Baseline to Context. There is also an
improvement from Context to RewriteQues,
but formulating new questions introduces different
information to each of the human meta-answerers,
there is also more variance. This variance is in
part a function of skill, and the best human meta-
answerer was able to improve over the baseline
system. The difference between the best human
meta-answerer and the NQ annotator that had ac-
cess to the full Wikipedia page improves from −7.9
to −1.5. Compared to the baseline QA system
on Context, the average human is −10.9 and

abstain

dead

fool

neg

right

surface_f1

Baseline

SYSTEM Users

abstain

dead

fool

neg

right

surface_f1

Context

0 0.2 0.4 0.6

abstain

dead

fool

neg

right

surface_f1

Rewrite

Figure 1: Humans improve over the underly-
ing QA as they see more information. they ab-
stain less, but this is often balanced out by being
“fooled” (tricked into answering questions where
they should abstain).

−7.4 F1 points behind, however the best human
is slightly more successful than the baseline, be-
ing 2.8 points ahead. On RewriteQues the best
human is over five points ahead, and the average
human score is higher than the baseline system.

Apart from specific spans/answers, we can also
investigate agreement at an action level. When we
measure the categorical distribution over final de-
cisions per question, human meta-answerers, users
typically agree with each other. The highest agree-
ment between raters is near 0.7 chance-adjusted κ,
while agreement between the users and the system
is typically between 0.5 and 0.6.

3.3 A Taxonomy of Outcomes

To see how human meta-answerers improve on the
baseline, it is helpful to consider different outcomes
of the game. As the meta-answerer interacts with
the environment, it can either improve or worsen
the answers. To build a vocabulary to discuss
the different ways the meta-answerer can answer
questions, we name the possible outcomes meta-
answerer can have answering a question with the
help of an underlying QA system (Figure 1). As
we discuss the types of outcomes we also discuss
strategies that lead human meta-answerers to that

outcome.

Right and Neg The most straightforward result
is that the meta-answerer selects a right answer
from the QA system and provides it. This can ei-
ther be confirming the answer that the QA system
would have presented anyway, answering when the
QA system would have abstained, or selecting a
different answer. The most common way for a hu-
man meta-answerer to improve is to answer right
when the model abstained. For example, to answer
1967 to the question “when did colour tv come out
in uk”, the answer at the top of the baseline QA’s
n-best list, but below the threshold.

Sometimes humans select a wrong answer when
an answer is available. We call this a negative
selection, or “neg” for short. For example, the
question “when did the crucifix become the symbol
of christianity” has gold answers the 4th century,
in the 2nd century, and 4th century. A human
meta-answerer selected the 2nd century, which
was not an acceptable answer.

Abstain Many NQ instances cannot be
answered—“universal social services are pro-
vided to members of society based on their income
or means” is not a question, the IR system returns
an article about Paralympics to a question about
the Olympics, or the page did not contain a span
that could answer the question “where am i on
the steelers waiting list”—the next most common
outcome is for a meta-answerer to correctly
recognize it should not provide a response. The
QA system abstains more than humans, which
leads to human meta-answerers biggest failing. . .

Fool The flipside of abstaining is be-
ing “fooled” into answering when no an-
swer was possible; for example answering
At the end of the episode ‘The Downward Spiral’
to the question “when does stefan turn his
humanity back on in season 8”: humans are
enticed by the context “humanity to save her”.
Human meta-answerer, lacking the full context,
do not realize the distinction between turning
humanity on and off in this vampire-based TV
show. While humans have a much higher rate
of being fooled than computers, some of this is
attributable to annotation problems with NQ. For
example, the NQ dataset associates the page for
Barry Humphries (the correct answer) with the
question “who plays the goblin king in the hobbit”
but has no annotated gold span. In addition to
vetting the validity of our meta-answerer, the
human game can also unearth issues in the NQ
dataset.

Dead Sometimes a question is answerable, but
the meta-answerer falsely abstains. We call this
result a “dead” question. Sometimes the meta-

answerer is unsure of an answer. For example, for
the question “when were the winnie the pooh books
written”, the gold answer is “1926) , and this was
followed by The House at Pooh Corner (1928”
(two disjoint spans). However, the underlying QA
system cannot annotate disjoint spans, so the hu-
man cannot find the matching answer span.

Humans improve as we move to the Rewrite-
Ques setting, adding the ability to ask new ques-
tions. Human meta-answerers can improve recall
by converting baseline abstentions into right an-
swers (and a smaller number of baseline negs).
However, humans are more often fooled, resulting
in lower average precision (Figure 1). Because the
human meta-answerer is at the mercy of the base-
line QA system, if the baseline system does not
surface the answer, the question will go dead with-
out the ability of the human to find the answer.

3.4 Human Strategies

Without contexts in the Baseline setting, the hu-
man meta-answerer was limited to examining the
question answer combination (e.g., knowing that
“Germany” is not a part of Central Germany or
that Jennifer is not the “meaning of the name
Sinead”). However, these cases are rare enough
that human meta-answerers do not overall improve
the system.

With Context, human meta-answerers
use context to select better answers than
the system. For example, seeing that
near Arenosa Creek and Matagorda Bay was
settled by explorer Robert Cavelier de La Salle in
the Wikipedia page context, allowing to convert a
dead model question into a correct one. However,
humans are often fooled as well. For example,
for the question “when did the united kingdom
entered world war 2”, most humans answer
3 September after seeing the context “Two days
later, on 3 September, after a British ultimatum
to Germany to cease military operations was
ignored, Britain and France declared war”, which
is not in the NQ answer set (presumably the NQ
annotators felt that there was ambiguity about
when war was declared); the model correctly
abstained.

With RewriteQues, humans can more thor-
oughly probe the source document to establish
whether an answer is correct. E.g., while the base-
line system answers the question “who plays ed-
die’s father on blue bloods” with Eric Laneuville,
humans can explore outside the source document
to find the correct answer (William Sadler, who
plays Armin Janko, only appears in the sixth sea-
son, while the NQ source document is about an
earlier season) or within the page to establish that
Eric Laneuville directed several episodes of Blue
Bloods.

4 Machines as meta-answerer

Human meta-answerers follow roughly the follow-
ing strategy. They inspect as many candidates as
needed, to form an opinion about the candidate
answers, based on the available context, until they
decide whether to answer and how. Given that the
information provided by the QA system is noisy
and incomplete, we argue that a suitable architec-
ture needs to model two related tasks. One task
is, necessarily, to score candidate answers, we call
this model PA. The second task involves evalu-
ating incoming observations, to select those that
provide the most reliable information to pick the
right answer or abstain. We call this model PH , as
its goal is to select the most relevant history of the
episode, to be retained to make the final decision.
We note that the selection task is also necessary,
because the capacity of the encoder is limited to a
fixed number of tokens.

4.1 System architecture

We model the tasks by training two binary classi-
fiers: PA, for answer scoring, and PH , for history
selection. PA and PH are implemented as output
layers on top of a BERT encoder (Devlin et al.,
2018) which translates a semi-structured input into
a single dense vector.

The intended meaning of PA(· | q, t, ai, h) is the
probability that a is a correct answer to question
q, assuming that the (unobserved) Wikipedia page
where a occurs has title t, and considering some
history h = 〈o1, . . . , oK〉, where each ok was picked
as ‘relevant’ for answering. The intended meaning
of PH(· | q, t, h) is the probability that h is a useful
sequence of observations to evaluate answer candi-
dates for q, t using PA. Abbreviating the respective
conditioning information as inputA and inputH,
respectively1:

e
([CLS])
A = BERT(E(inputA) (1)

e
([CLS])
H = BERT(E(inputH)

PA(· | inputA) = FFNNA(e
([CLS])
A)

PH(· | inputH) = FFNNH(e
([CLS])
H)

4.2 Semi-structured embeddings

The setup above follows the standard way
of training (binary) classifiers on top of the
[CLS]computed by BERT, with the sole difference
that our input comprises not a single sequence
of tokens and segment types but several segment
types and an additional feature vector, structured
as follows (cf. Table 2).
ET is the embedding matrix for textual tokens.

ES is the matrix for the top-level segment types

1inputH is identical to inputA except for the tokens
corresponding to the candidate answer being masked
out.

Question/Title Answer History

T [CLS] q t [SEP] c
(l)
i ai c

(r)
i [SEP] c

(l)
1 a1 c

(r)
1 [SEP]

S′ ∅ ∅ ∅ cl a cr cl a cr

S ∅ Q T A O
f 0.0 0.0 0.0 0.0 σi 0.0 σ1 0.0

Table 2: We represent all relevant input to the meta-answerer by generalizing the idea of segment em-
beddings to multiple independently varying layers, allowing us to capture the internal structure of obser-
vations; and by adding a layer of scalar feature strengths to capture the original QA model’s prediction.
See text for discussion.

used to differentiate the answer (A), the question
(Q) and observations (O). ES′

is the matrix for
sub-segment types used to distinguish the answer
span (a) and its surrounding left (c(l)) and right
(c(r)) context, within each primary segment type.
ef is a single embedding vector for the QA sys-
tem’s answer score. Finally, EP is the embed-
ding matrix for the absolute position (required by
BERT to model the sequential nature of text in
the absence of a recurrence mechanism). All em-
beddings have the same number of dimensions, so
we essentially compute the ith column of E by
summing the corresponding embeddings across the
rows of the ith column of Table 2 and adding the
feature embedding, compressing the four annota-
tion layers in Table 2, plus the position embed-
dings, into a single sequence of dense vectors, one
for each input position, as follows:

E:,i = ET
:,Ti

+ ES
:,Si

+ ES′

:,S′
i

+ Fi × ef + EP
:,i (2)

4.3 Answer candidate selector

The answer selector uses PA(· | q, t, ai, h) - the
probability that ai is a correct answer to question
q, given the available information - to score all M
answer candidates and pick the one with the high-
est probability. PA is a single feed-forward layer
with parameters WA, taking e[CLS] computed for
the entire conditioning information as input. It is
trained with a standard binary cross-entropy loss,
assuming examples of the form 〈y, q, t, o, h〉, where

q is a question, t a page title, o = (c
(l)
i , ai, c

(r)
i)

a candidate answer in context, h some additional
history of observations, and y a binary label indi-
cating whether the answer span contained in o is,
in fact, among the correct answers for q.

One can easily generate a dataset like this from
the original NQ data providing the questions and
labels, and using a strong baseline system (e.g., Al-
berti et al. (2019b)) to generate an M -best list of
answers. As we expect most candidates to be not
correct, we aggressively downsample negative ex-
amples at runtime (where o is an incorrect answer)
to get roughly balanced proportions of positive and
negative examples. We do this ‘dynamically’, that
is, for each epoch different negatives will be picked
so that, in expectation, we still expose the model

to the full M -best list.

The final question concerns the generation of h,
the observations used as ‘history’. We found that
simply sampling (without replacement) a random
set of k observations from each question’s M -best
works well in practice. Assuming a dataset D of
examples generated as described, the loss is

LA,D(WA,WE) =∑
〈y,q,t,o,h〉∈D

− logPA(y | q, t, o, h;WA,WE) (3)

4.4 History selector

The history selector uses PH(· | q, t, h) - the proba-
bility that h is a useful sequence of observations to
evaluate answers for q, t using PA - to pick, among
a set of candidate histories H, the highest scor-
ing h. Like PA, we model PH as a single feed-
forward layer with parameters WH on top of the
e[CLS] computed for the conditioning information.
Note that PH does not contain any ai, as it cor-
responds to the probability that h provides good
evidence for scoring different answer candidates for
q and t. We achieve this by masking the A slot for
the input when computing the input to PH .

As we do not have access to examples of
good/bad histories directly from D, we induce a
pseudo-label—a history discriminator d—which,
given q and h, h′, identifies which one is better in
the following sense:

d(PA, q, t, o, y, h, h
′) ≡

1 [− logPA(y | q, t, o, h) < − logPA(y | q, t, o, h′)]

For readability, we abbreviate the expression above
as d(PA, h, h

′). An intuitive way of thinking about
the history discriminator is that, for a given pair of
candidate histories h and h′ and one of the training
examples used to train PA, it assigns 1 to the his-
tory whose empirical cross-entropy loss on this one
example is smallest; or, phrased positively, to the
history that provides the most information about
answering this question.

This induces a loss function to train PH , which
discovers good histories, reusing dataset D from
above:

LH,D(WH ,WE) =∑
〈y,q,t,o,h〉∈D

(− logPH(d(PA, h, h
′) | q, t, h;WH ,WE)

− logPH(d(PA, h
′, h) | q, t, h′;WH ,WE)) (4)

We found that generating the alternate history h′

by randomly replacing exactly one of the observa-
tions in h is effective.2

One can further motivate the history loss by not-
ing that it maximizes the expected reduction in
entropy for PA and q produced by substituting h
with h′. While the full expectation would require
summing over all possible answers for q, training
on a single answer defines an unbiased (although
noisy) estimate of this expectation. The loss and,
consequently, the training signal for PH implicitly
depends on a PA. We found that one can effec-
tively co-train PA and PH from scratch.

4.5 Auxiliary impossibility loss

51% of the examples in the NQ dataset are ‘unan-
swerable’ questions, for which there is no gold an-
swer to be found in the entire context. Learning to
know when to abstain is thus an important part of
doing well on NQ.

Instead of modeling the abstain decision ex-
plicitly, Alberti et al. (2019b) and Alberti et al.
(2019a) demonstrated that good performance can
be achieved by always predicting some answer with
a score, and picking an optimal threshold on this
score on the development data. Whereas we follow
this practice in having our model always predict, if
you will, the answer scored highest by PA, and then
abstaining in cases where the highest score is below
the threshold, we found it important for training
to co-learn a PI model jointly with PA and PH ,
again implemented as a single feed-forward layer
on top of e[CLS]. Thus, while we do not use PI at
test time, we still add the following loss to train-
ing: LI,D′(ΘI ,ΘE) =

∑
〈q,t,b,o,h〉∈D′ − logPI(b |

q, t, o, h; ΘI ,ΘE). Here, D′ is a dataset trivially
derived from the original NQ data, with q, t, o, h
being defined as above, and b is a binary label that
is 1 if the example is considered unanswerable, and
0 else. Note that PI uses the same conditioning in-
formation as PA, making it cheap to co-train as,
unlike PH , we can reuse the same e[CLS] vector as
input.

4.6 Training

We initialize BERT from the public checkpoint.
The power of encoders like BERT comes to a
large degree from the masked language model pre-
training task. To ensure our encoder is used to the

2Choosing h, h′ pairs with an observation hamming-
distance of one also matches how we use PH in our
decoding algorithm.

kind of input described in Table 2, we perform ad-
ditional language model pre-training on the pub-
lic large BERT checkpoint, using examples in D
to compute input sequences and randomly mask-
ing 30 tokens in each. We run the pre-training for
200,000 steps, using a batch size of 32.

We found that doing our own pre-training pro-
duces better models, most likely because the kind
of inputs in Table 2 differ very much from actual
natural language that available public checkpoints
are used to. Additionally, we found it useful to
use the masked language modeling task - masking
one single random token from every input - as an
auxiliary task, co-trained with PA, PH , and PI .

We combine the four losses into a single weighted
loss and treat the per-loss weights as hyper-
parameters: L = wALA + wHLH + wILI +
wMLMLMLM

Input: q, t,QA,M
Parameters: k, PA, PH

Output: â, σâ
A ← GetCandidates(q, t,QA,M);
h1:k ← A1:k;
for t = k + 1to M do

i← arg maxi∈{1,...,k} PH(good | q, t, hi/t);
if PH(good | q, t, hi/t) > PH(good | q, t, h)
then
h← hi/t;

end

end
â← arg maxo∈A PA(correct | q, t, o, h);
σâ ← PA(correct | q, t, â, h)
Algorithm 1: Prediction algorithm for the meta-
answerer paired with machine reading system
QA.

Making predictions Having introduced the
components of our meta-answerer and the losses
with which we train them, we now describe how,
at test time, we can generate answer predictions.

We use Algorithm 1 which implements the fol-
lowing heuristic for using PA and PH , once trained,
to perform as a meta-answerer on top of an existing
QA system.

The algorithm first builds a size-k history com-
posed of the observations for the top-k answer can-
didates proposed by the base QA system. It then
iterates over the remaining M − k answer candi-
dates produced by the base QA system and de-
cides, using PH , whether or not to replace any of
the existing observations in the history with the ob-
servation for the new answer candidate. We denote
with hi/j the history obtained by replacing the ith

element of h with substitution of observation oj . In
simpler terms, the algorithm greedily selects those
observations that maximize PH at every time-step
and, after a single pass over the answer candidates,

produces the ‘best’ history h.
Once all answer M candidates have been

processed and a k-size history h has been selected,
we score all M answer candidates using PA and
return the answer and its score as our prediction.

5 Machine meta-answerer
Experiments

We take as starting point Alberti et al. (2019b)’s
QA model that was trained on NQ, and refer to it
as BERT. Adding whole word masking (Liu et al.,
2019) adds another 4.5 F1 points, and we use this
BERTWWM as the environment QA system. We per-
formed extensive hyper-parameter search, summa-
rized in Figure 2. Using an M -best list of size 5
and a history size K of 3 gave us best results on
dev, as well as choosing wA = 0.3, wH = 3, wI =
3, wMLM = 1 to compute the weighted training
loss. We trained all losses jointly for 100,000
steps, initializing the encoder with our custom pre-
trained BERT large model and randomly initial-
izing WA,WI ,WH for the answer, impossibility,
and history heads.

The full results on the NQ data for the
short answer task are reported in Table 3, for
BERT, BERTWWM, and our machine meta-answerer,
MMAContext. MMAContext adds another absolute 2.3
F1 points on dev, outperforming the single rater
human performance; and on test, increases the per-
formance of BERTWWM by 1.6 F1 points, reaching 58.2
F1 which, as of 2019/09/25, is the best-performing
non-ensemble model on the leaderboard.

Table 4 breaks down the results of MMAContext

and BERTWWM by decision type (abstain, answer) on
the dev partition of NQ. One can see that MMA an-
swers significantly less than the QA system (2837
vs. 3009). In particular, it is more accurate in
avoiding incorrect answers (-186), while also pro-
ducing a slight positive margin in terms of correct
answers (+14). With respect to abstain, the meta-
answerer’s win-to-loss ratio is almost 2:1 (111/61).
Overall, MMA implements a cautious strategy. From
looking at the human meta-answering tasks our im-
pression is that the space of discriminative ques-
tions in NQ, the questions that are neither too
simple or too hard, is rather narrow which rewards
risk-averse strategies.

We identify three main types of patterns charac-
terizing different answer predictions (non abstain-
ing) between BERTWWM and MMA. Sometimes both
choose a span that contains the right answer, but
one misses part of the gold span; e.g., for ”2017
Hurricane Ophelia During the autumn of 2017”
systems disagree with respect to the second date.
Other times they choose different entities; e.g., for
”what is the highest peak in the Ozarks?” one
picks ”Buffalo Lookout”, the other ”Turner Ward
Knob”. Both patterns above are roughly balanced

in terms of win/loss ratio. The third pattern is
where the same answer is chosen (”The Beatles”)
but from different spans, here MMA seems to have
an advantage with a win/loss ratio close to 2:1.

5.1 Comparing Computer and Human
meta-answerers

In both cases, the meta-answerer takes an initial
list of answer candidates and improves them. The
computer meta-answerer slightly improves both
precision and recall; qualitatively, the changes are
minor: tweaking a span, adding a word, favoring an
earlier span, or improving the abstention thresh-
old.

Human meta-answerers, however, were more
bold. The boldness allows them to greatly im-
prove recall, digging deep in the n-best list to find
the answers they believe best answer the question.
However, this boldness comes at the cost of lower
precision; they often get fooled by plausible sound-
ing answers that the NQ annotators did not agree
with.

The human meta-answerers were frustrated with
some of the NQ annotations. For example, “when
did the crucifix become the symbol of chris-
tianity” can be answered with the 4th century,
4th century, or in the 2nd century, but not “the
2nd century” or “2nd century”. While the com-
puter meta-answerer could not express its frustra-
tion, the Dev and Test scores were not always well
correlated.

6 Related Work

The work of Nogueira and Cho (2017) and Buck
et al. (2018) is related to meta answering. There,
agents are trained, with reinforcement learning
(RL), to find the best answer while interacting with
a black box QA system. Agents learn to reformu-
late the original question, in single-step episodes.
Here, we do not consider reformulations, although
including adaptive language generation actions is a
promising direction for future work, as underlined
in the human experiments. Also, meta-answering
naturally takes place over multi-step episodes. In
addition, in our work, the history (the state) in not
simply the original question, instead it summarizes
multiple observations, and the history composition
becomes a key sub-problem.

Another connection with RL is the state repre-
sentation problem. Recent work has highlighted
the role of auxiliary tasks for effective representa-
tion learning (Jaderberg et al., 2017; Such et al.,
2019; Bellemare et al., 2019). Such work deals
mostly with navigation or arcade environments
and, in general, not much research has focused on
complex language tasks. We confirm that model-
ing auxiliary tasks is useful. Given that we rely
on a simple heuristic decoding policy, performance

System Short Answer Dev Short Answer Test
P R F1 P R F1

BERT (Alberti et al., 2019b) 59.5 47.3 52.7 63.8 44.0 52.1
BERTWWM 59.5 51.9 55.4 63.1 51.4 56.6
Single annotator (Kwiatkowski et al., 2019) 63.4 52.6 57.5 - - -
MMAContext 65.4 51.7 57.7 64.8 52.8 58.2

Table 3: Results on the Short Answer task of the Natural Questions dataset.

10 1 100 101

Loss weight

0.026

0.028

0.030

0.032

0.034

0.036

F1
 d

iff
er

en
ce

 to
 b

as
el

in
e

Pa

Ph

Pi

1 2 3 4 5 6 7 8 9 10
n

0.029

0.030

0.031

0.032

0.033

0.034

0.035

0.036

F1
 d

iff
er

en
ce

 to
 b

as
el

in
e

History size
N-nest answers

Figure 2: Results of the hyper-parameters search. We report the max value over several runs.

ABSTAIN ANSWER
Correct Incorrect Correct Incorrect

MMAContext

3876 1117 1807 1030
77.63% 63.69%
4993 2837

BERTWWM

3765 1056 1793 1216
78.10% 59.59%
4821 3009

Difference
111 61 14 -186

172 -172

Table 4: Overall accuracy for the original model
and the agent, split by action type.

must be attributed primarily to the state represen-
tation, which BERT is able to exploit.

The problem of optimizing the input representa-
tion for machine reading is gaining importance also
in the language processing community, although it
is addressed in different terms and driven primar-
ily by resource scarcity. Deep BERT models (De-
vlin et al., 2018) provide the basis for virtually all
state of the art QA systems. However, they can
only encode limited amount of texts; e.g., 512 to-
kens for Chris-A’s system (Alberti et al., 2019c).
In the Natural Questions task, and others, docu-
ments are much longer. A simple workaround is
to split the input in overlapping windows (Devlin
et al., 2018; Alberti et al., 2019c). The highest
scoring span is computed considering all positions
in the document. This is not necessarily optimal.
A common theme among proposed solution is to
generate a summary of the full document, then

run the machine reader on the compressed context.
(Han et al., 2019) propose an episodic memory
reader that uses RL to build the summary. They
show that this approach works better than base-
lines such as rule-based memory scheduling and
other RL variants. Other work combines answer-
ing and summarization with the purpose of pro-
viding justification for the answer (Nishida et al.,
2019). While this a good approach for tasks where
the explanations are annotated (Yang et al., 2018;
Thorne et al., 2018), and constitute part of the
evaluation, there is no evidence so far, to the best
of our knowledge, that summarization-based ap-
proaches are competitive with the state-of-the-art
in machine reading.

Other relevant work combine retrieval and ma-
chine reading as a joint learning problem (Lee
et al., 2019; Nie et al., 2019). ORQA, for exam-
ple, (Lee et al., 2019) shows that is possible to
successfully model jointly these tasks. Their ar-
chitecture can outperform strong IR baselines, but
its performance is far from the supervised machine
reading levels, as they don’t have labeled data for
training. A meta-answerer outsources the IR steps
to the environment, however it would be interest-
ing to propagate training signals between the agent
and the environment as in (Lee et al., 2019).

7 Conclusion

In this paper we investigated a meta-answering
framework for question answering. A meta-
answerer interacts with a QA system to evaluate

candidate answers in context and eventually de-
cides whether to answer, and how, or abstain. This
setup attempts to simulate real-world (imperfect)
information seeking task, where a human seeks in-
formation in a setting that is mediated by a ma-
chine, using natural language. We found that hu-
mans can play the role of a meta-answerer and can
compete with a BERT-based single system trained
for this task by only looking at a 5 token window
to each side of a candidate answer. We also imple-
ment a supervised system that can outperform the
environments QA, using only the same context as
the humans. We find that factoring the system to
model separately the selection of the episode his-
tory, and the answer scoring task, is beneficial. The
framework lends itself naturally to experimenting
with modular system including multiple sources of
information, e.g., IR-based, active question refor-
mulation, multimodal observations and reinforce-
ment learning.

8 Acknowledgements

We would like to thank Chris Alberti, Tom
Kwiatkowski and Kenton Lee for feedback and
technical support.

References

George Akerlof. 1970. The market for ”lemons”:
Quality uncertainty and the market mechanism.
The Quarterly Journal of Economics, 84(3):488–
500.

Chris Alberti, Daniel Andor, Emily Pitler, Jacob
Devlin, and Michael Collins. 2019a. Synthetic
QA corpora generation with roundtrip consis-
tency. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Lin-
guistics, pages 6168–6173.

Chris Alberti, Kenton Lee, and Michael Collins.
2019b. A bert baseline for the natural questions.
https://arxiv.org/abs/1901.08634.

Chris Alberti, Kenton Lee, and Michael Collins.
2019c. A BERT Baseline for the Natural Ques-
tions. https://arxiv.org/abs/1901.08634.

Marc G. Bellemare, Will Dabney, Robert Dadashi,
Adrien Ali Taiga, Pablo Samuel Castro, Nicolas
Le Roux, Dale Schuurmans, Tor Lattimore, and
Clare Lyle. 2019. A geometric perspective on op-
timal representations for reinforcement learning.
NeurIPS.

Christian Buck, Jannis Bulian, Massimiliano Cia-
ramita, Andrea Gesmundo, Neil Houlsby, Woj-
ciech Gajewski, and Wei Wang. 2018. Ask the
right questions: Active question reformulation
with reinforcement learning. In Proceedings of
ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Moonsu Han, Minki Kang, Hyunwoo Jung, and
Sung Ju Hwang. 2019. Episodic memory reader:
Learning what to remember for question an-
swering from streaming data. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4407–4417.

Max Jaderberg, Volodymyr Mnih, Wojciech Czar-
necki, Tom Schaul, Joel Z. Leibo, David Silver,
and Koray Kavukcuoglu. 2017. Reinforcement
learning with unsupervised auxiliary tasks. In
Proceedings of ICLR.

Robin Jia and Percy Liang. 2017. Adversarial
examples for evaluating reading comprehension
systems. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2021–2031.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia
Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin,
Matthew Kelcey, Jacob Devlin, Kenton Lee,
Kristina N. Toutanova, Llion Jones, Ming-Wei
Chang, Andrew Dai, Jakob Uszkoreit, Quoc
Le, and Slav Petrov. 2019. Natural questions:
a benchmark for question answering research.
Transactions of the Association of Computa-
tional Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina
Toutanova. 2019. Latent retrieval for weakly
supervised open domain question answering.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 6086–6096.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Gary Marchionini. 2006. Exploratory search:
From finding to understanding. Commun. ACM,
49(4).

Pramod Kaushik Mudrakarta, Ankur Taly,
Mukund Sundararajan, and Kedar Dhamdhere.
2018. Did the model understand the question?
In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1896–1906.

Yixin Nie, Songhe Wang, and Mohit Bansal.
2019. Revealing the importance of seman-
tic retrieval for machine reading at scale.
https://arxiv.org/abs/1909.08041.

Kosuke Nishida, Kyosuke Nishida, Masaaki Na-
gata, Atsushi Otsuka, Itsumi Saito, Hisako
Asano, and Junji Tomita. 2019. Answering while

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

summarizing: Multi-task learning for multi-hop
QA with evidence extraction. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2335–2345.

Timothy Niven and Hung-Yu Kao. 2019. Probing
neural network comprehension of natural lan-
guage arguments. In Proceedings of the 57th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 4658–4664.

Rodrigo Nogueira and Kyunghyun Cho. 2017.
Task-oriented query reformulation with rein-
forcement learning. In Proceedings of EMNLP.

Martin J. Osborne and Ariel Rubinstein. 1994. A
Course in Game Theory. MIT Press Books. The
MIT Press.

Pranav Rajpurkar, Robin Jia, and Percy Liang.
2018. Know what you don’t know: Unan-
swerable questions for SQuAD. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopy-
rev, and Percy Liang. 2016. SQuAD: 100,000+
questions for machine comprehension of text. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2383–2392.

Daniel M. Russell. 2019. The Joy of Search: A
Google Insider’s Guide to Going Beyond the Ba-
sics. The MIT Press.

Felipe Such, Vashish Madhavan, Rosanne Liu, Rui
Wang, Pablo Castro, Yulun Li, Jiale Zhi, Ludwig
Schubert, Marc Bellemare, Jeff Clune, and Joel
Lehman. 2019. An atari model zoo for analyzing,
visualizing, and comparing deep reinforcement
learning agents. In Proceedings of IJCAI 2019.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal.
2018. The fact extraction and VERification
(FEVER) shared task. In Proceedings of the
First Workshop on Fact Extraction and VER-
ification (FEVER).

Hong (Iris) Xie. 2002. Patterns between interac-
tive intentions and information-seeking strate-
gies. Inf. Process. Manage., 38(1):55–77.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua
Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. 2018. HotpotQA:
A dataset for diverse, explainable multi-hop
question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing.

