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ABSTRACT
Developing machine learning (ML) applications is similar to devel-
oping traditional software — it is often an iterative process in which
developers navigate within a rich space of requirements, design de-
cisions, implementations, empirical quality, and performance. In
traditional software development, software engineering is the field
of study which provides principled guidelines for this iterative pro-
cess. However, as of today, the counterpart of “software engineer-
ing for ML” is largely missing — developers of ML applications
are left with powerful tools (e.g., TensorFlow and PyTorch) but lit-
tle guidance regarding the development lifecycle itself.

In this paper, we view the management of ML development life-
cycles from a data management perspective. We demonstrate two
closely related systems, ease.ml/ci and ease.ml/meter,
that provide some “principled guidelines” for ML application de-
velopment: ci is a continuous integration engine for ML models
and meter is a “profiler” for controlling overfitting of ML mod-
els. Both systems focus on managing the “statistical generalization
power” of datasets used for assessing the quality of ML applica-
tions, namely, the validation set and the test set. By demonstrating
these two systems we hope to spawn further discussions within our
community on building this new type of data management systems
for statistical generalization.
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1. INTRODUCTION
Recent years have witnessed the rapid adaption of machine learn-

ing (ML) techniques to a diverse range of real-world applications.
Part of this trend is enabled by the recent research on scalable ML
training (e.g., [10]) and AutoML (e.g., [9, 11]), which significantly
improve the usability of ML systems. Training a single ML model
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becomes faster and more automatic, and the portfolio of ML de-
velopers extends beyond ML experts. However, new challenges of
usability arise, as developing ML applications, similar to develop-
ing traditional software, is an iterative process: ML systems should
not only support the development of a single model, but also the it-
erative process as a whole.

(Motivating Examples) This work is motivated by our experience
of supporting developers, most of whom are not ML experts, in
building a range of ML applications [4, 7, 14, 15, 16, 17] over
the last three years. Specifically, we are motivated by the strug-
gles that our users face even after they have access to an AutoML
system [11] with a scalable and efficient training engine [18] —
when training an ML model becomes easier, users start to seek sys-
tematic guidelines, which, if followed step by step, can lead to the
right model. This shift of focus is not dissimilar to what software
engineering tries to provide for traditional software development.
Typical questions that our users frequently asked include:

(Q1) Is my new model really better than my old model?

(Q2) How large does my validation set need to be? Is my current
validation set still representative?

(Q3) How large does my test set need to be? Is my current test set
still representative?

(Data Management for Statistical Generalization) These ques-
tions are essentially asking about the statistical generalization (abil-
ity) of a data set. Let M be a model, Dtest be a test set, and
let Dtest be the (unknown) true underlying data distribution from
whichDtest is drawn. The questions posed above can be answered
(see Section 2) if the system has access to a representative test
score S(M,Dtest) that is similar to the “true” score S(M,Dtest).
The fundamental challenge is that the “statistical power” of Dtest

may fade once it has been used to provide an answer (i.e., Dtest

starts to overfit). As a result, any system we build to answer these
three questions must be able to automatically manage the statistical
power of a given dataset. This leads to a new type of data manage-
ment system which, instead of managing the (relational) querying
of the data, manages the statistical generalization of the data.1

(Summary of Demonstration Plans) In this proposal, we plan to
demonstrate ease.ml/ci and ease.ml/meter, two closely
related systems that we have built to manage the statistical power
1A user of this new genre of data management system operates
under a resource constraint (Dtest) managed by the systems and
wants to optimally use that resource for building ML applications.
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Figure 1: User interfaces of ci (left) and meter (right).

of a test set to facilitate developer’s understanding of the motivating
questions from above. Specifically, we will focus on the following
aspects in our demonstration:

1. A demonstration of multiple real-world use cases that moti-
vate the development of both systems;

2. A demonstration of the overfitting problem if we do not take
a data management view when building these systems;

3. A demonstration of the functionality of both systems using
real development traces of multiple ML applications;

4. Interaction with the audience to test the system with syn-
thetic development traces provided interactively;

5. Discussion with the audience about future research direc-
tions in data management for statistical generalization.

2. SYSTEM OVERVIEW
Building ease.ml/ci and ease.ml/meter is not trivial –

the technical details are mainly developed and covered in our lat-
est full research papers [8, 12]. In this section we provide a brief
overview of both systems.

Figure 1 illustrates the interfaces of both systems. One can think
about the common abstraction of both systems as “GitHub for ML”
– developers commit a stream of ML models and get feedback sig-
nals for each model committed. All data sets (e.g., training, vali-
dation, and test) are managed by the systems — developers (who
develop ML models) do not have access to the test set, while la-
belers (who provide test sets) have full access to the test set. Apart
from providing signals to developers, the systems also asks labelers
for new labels if required.2 We next describe the interaction model
of ease.ml/ci and ease.ml/meter in more detail.

2.1 Ease.ml/ci: Functionality
Figure 2 illustrates how users interact with ease.ml/ci. Simi-

lar to traditional systems for continuous integration, ease.ml/ci
allows developers to define test conditions that specify quality as-
sertions of ML models. Examples of such assertions include:

(A) The new version n of the ML model must be at least 2% more
accurate than the old version o.

Unlike traditional test assertions that raise a binary “pass/fail” sig-
nal, quality assertions in ease.ml/ci are not deterministic, due
to the statistical nature of quantifying the model’s power to gener-
alize. Instead, we provide rigorous probabilistic guarantees for the
2We assume that in both systems developers do not “collude” with
labelers, e.g., labelers cannot send a copy of the test set to develop-
ers without having the systems know it.
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Figure 2: User interaction with ease.ml/ci.
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Figure 3: User interaction with ease.ml/meter.
assertions. Developers can specify the error tolerance of a test con-
dition following an (ε, δ)-reliability paradigm: The test condition
holds within the ε-error-bound with probability at least 1− δ.
ease.ml/ci supports various forms of assertions based on a

novel scripting language that enables user interactions in a declar-
ative manner. Figure 2 also presents an example script, specifying
the same assertion (A) but with error bound ε = 0.01 and reliability
(confidence) 0.9999 (i.e., δ = 0.0001).

2.2 Ease.ml/meter: Functionality
Figure 3 illustrates user interactions with ease.ml/meter. A

human developer starts from an initial ML applicationH0, and per-
forms the following two steps in each development iteration t:

1. Error Analysis. The developer looks at the current valida-
tion set, and conducts error analysis on all errors currently
being made by Ht;

2. Development. The developer then makes changes on the
current ML application Ht, for example, by adding new fea-
tures, adding more labeling functions, trying a different hyper-
parameter setting, etc., to produce a new version of the ML
application Ht+1.

Upon receiving the latest submission Ht, ease.ml/meter eval-
uates its accuracy over the (hidden) test set and returns an over-
fitting signal to the developer indicating the degree of overfitting
of Ht.3 Specifically, ease.ml/meter employs an overfitting
meter for delivering overfitting signals to developers. The me-
ter consists of m overfitting intervals {[

¯
ri, r̄i]}mi=1 that partitions

the range [0, 1] (e.g., m = 5 for the meter in Figure 3). Each
range Ri = [

¯
ri, r̄i] is further associated with an εi (0 < εi < 1)

that indicates the error bound of the estimated overfitting. Similar
to the probabilistic guarantee (i.e., the (ε, δ)-reliability) provided
by ease.ml/ci for test conditions, ease.ml/meter provides
probabilistic guarantee for the overfitting signal it returns: The de-
gree of overfitting is bounded by [

¯
ri − εi, r̄i + εi] with probability

(confidence) at least 1−δ, if the meter returns signal i (1 ≤ i ≤ m).
3Following standard ML theory and practice, we define the degree
of overfitting as the gap between training accuracy (computed using
a validation set) and true accuracy (estimated using a test set).
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(a) (SemEval 2018) (b) (SemEval 2019)

Figure 4: Real-world ML application development.

2.3 Core Technical Challenges and Solutions
The key (common) technical challenge faced by both systems,

ease.ml/ci and ease.ml/meter, is to ensure probabilistic
guarantees (for either test assertions in ease.ml/ci or overfitting
signals in ease.ml/meter) via the (ε, δ)-reliability paradigm.
A naive approach is to draw a new test set every time a new version
of the ML application was submitted. Unfortunately, this “resam-
pling” approach is often unfeasible in practice due to its reliance on
a huge amount of labeled test data.

Specifically, to address the challenge in a generic setting, one has
to deal with dependencies between subsequent submissions during
the development lifecycle, due to the presence of adaptive anal-
ysis: The performance of the tth model submission ft({Xi}) on
the test set {Xi} is reported back to the developer indirectly via a
feedback/reporting function g(·). The developer can then take an
adaptive action by picking the next submission ft+1({Xi}) based
on the value returned by g(·). As was shown by recent work [5,
6], such kind of adaptive analysis can accelerate overfitting on the
test set. As a result, to maintain the same level of statistical gen-
eralization power, one needs a larger test set (compared to the case
where all submissions are independent). The technical contribu-
tion of both systems is a collection of novel statistical estimators
that decreases the required test set size by two orders of magnitude
— this reduction is critical for the viability of both systems. For
more details, see Renggli et al. [12].

3. DEMONSTRATION SCENARIOS
We present details of the scenarios that we plan to demonstrate

with ease.ml/ci and ease.ml/meter. We will use real-
world development traces of two ML applications that we devel-
oped over the last two years. Each trace contains eight sequential
learning models from the ML application construction. Figure 4
illustrates the evolution of validation/test accuracy of these models.

Trace 1: Relation Extraction. The first example trace comes
from our submission to the “Semantic Relation Extraction and Clas-
sification in Scientific Papers” task in SemEval 2018 [13]. It is the
top-ranked system for three out of four subtasks. This task aims
to identify concepts from scientific documents and recognize se-
mantic relationships that hold between the concepts. In particular,
it requires semantic relation extraction and classification into six
categories specific to scientific literature. The development history
involves eight intermediate models before reaching the final sys-
tem. Figure 4(a) plots the accuracy on the training set (using 5-fold
cross validation) and the test set, respectively, in each step.

Trace 2: Emotion Detection. The second example comes
from the development history of our submission to the “EmoCon-
text” task in SemEval 2019. This task aims to detect emotions from
text, leveraging contextual information, which is deemed challeng-
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Figure 5: Continuous Integration Steps in ease.ml/ci.

ing due to the lack of facial expressions and voice modulations.4

It took developers eight iterations before delivering the final ver-
sion. Changes in each individual step include adding word rep-
resentations such as ELMo and GloVe, which lead to significant
performance increase/drop. Figure 4(b) plots the accuracy on the
validation set and the test set for in each step, respectively (assum-
ing that the accuracy on the test set were reported to the user in
every development step).

3.1 Scenario 1: Without-Data Management
We will start by highlighting the importance of data management

in ML application development lifecycles. We plan to showcase a
couple of scenarios, where developers, intentionally or not, over-
fitted to the test set. In particular, we focus on demonstrating the
following aspects: (1) If there is no data management system and
the developers have full access to the test set, overfitting on the
test set occurs easily in continuous development; (2) Even if we
control its direct access, overfitting on the test set may still occur
easily if the developers have access to the test result. We hope
that this part would convince the audience of the motivation behind
ease.ml/ci and ease.ml/meter.

3.2 Scenario 2: Ease.ml/ci
We then showcase the functionality of ease.ml/ci by using

trace data from real-world ML application development activities.
Figure 5 presents some example traces.

The development history in Figure 5 involves eight individual
steps and three different scripts expressing test assertions. The first
two assertions test whether the new model is better than the previ-
ous one by at least 2% (in terms of accuracy) in a non-adaptive set-
ting, i.e., by assuming the models are independent. fp-free and
fn-free further represent different modes that ease.ml/ci is
operating on, enforcing elimination of false positives and false neg-
atives, respectively. Meanwhile, the third assertion further mimics
the scenario where developers can get feedback in each commit
without false negatives. All these three scripting queries can be
supported (in a rigorous manner) with about 5.5K test samples.

3.3 Scenario 3: Ease.ml/meter
We then showcase the functionality of ease.ml/meter by us-

ing the same trace data. Figure 6 illustrates the signals that the
developer would get during the development process, using differ-
ent modes of ease.ml/meter. By putting together the qual-
ity characteristics of both traces (Figure 4) and the signals from
ease.ml/meter (Figure 6) we will guide the audience through
different instances of overfitting behavior and elaborate how the

4https://competitions.codalab.org/
competitions/19790
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Figure 6: An illustration of using ease.ml/meter in Real-
world ML application development (SemEval 2019).

Figure 7: Comparison of Sample Size Estimators.

signals from ease.ml/meter can support developers during the
development process.

3.4 Scenario 4: Technical Demonstration
In this part, we highlight the technical differences between base-

line approaches and ci/meter in terms of sample complexity. As
an example, Figure 7 compares the estimated error with the empiri-
cal error in ease.ml/ci, for a model with accuracy around 98%.
We refer the readers to Renggli et al. [12] for more details.

3.5 Scenario 5: Interactions with Audience
In this part, we would like to invite our audience to interact

with the systems, optionally using their own synthetic develop-
ment traces. We plan to provide some data generator to assist
the audience to specify their trace data. We can then illustrate
how ease.ml/ci and ease.ml/meter would work on these
customized instances. For example, we can rerun the test condi-
tions designed for the demonstration of ease.ml/ci, or show-
case overfitting signals reported by ease.ml/meter, on these
customized trace data. Also, by interactively adopting the config-
urations for both ease.ml/ci and ease.ml/meter, we show
how this directly affects the number of required labeled samples
the user needs to provide. We believe that this kind of personal-
ized engagement provides an incentive to reflect upon current ML
practices and has the potential to initiate in-depth conversations.

4. RELATED WORK
AutoML Systems. There is a great deal of recent work on devel-
oping automatic machine learning (AutoML) systems that provide
“declarative” ML services to alleviate development efforts.

In a typical AutoML system, users only need to upload their
datasets and provide high-level specifications of their machine learn-
ing tasks (e.g., schemata of inputs/outputs, task categories such as
binary classification/multi-class classification/regression, loss func-
tions to be minimized, etc.), and the system can take over the rest
via automated pipeline execution (e.g., training/validating/testing),
infrastructure support (e.g., resource allocation, job scheduling),
and performance-critical functionality such as model selection and
hyperparameter tuning. Examples of AutoML services include sys-
tems built by major cloud service providers, such as Amazon [1],

Microsoft [3], and Google [2], as well as systems developed by
academic institutions, such as the Northstar system developed at
MIT [9] and our own recent effort on the ease.ml service [11].
In this paper, we focus on the struggles that our users have even af-
ter they have access to these AutoML systems, and hope to provide
more systematic (and automatic) guidelines to help users use these
powerful AutoML systems better.
Adaptive Analysis. Recent theoretic work [6] has revealed how
adaptive analysis increases the risk of false conclusions reached by
statistical methods (known as “false discovery” in the literature).

Intuitively, adaptive analysis makes it more likely to draw con-
clusions tied to the specific data set used in a statistical study, rather
than conclusions that can be generalized to the underlying distribu-
tion that governs data generation. Our work in this paper can be
viewed as an application of this theoretical observation to a novel,
important scenario emerging from the field of ML application de-
velopment lifecycle management and quality control.

5. CONCLUSION
We have demonstrated ease.ml/ci and ease.ml/meter,

two systems for managing statistical generalization of test data sets
in continuous ML application development activities. We view our
current work as a first step towards data management in lifecycle
control and quality insurance of ML applications, an emerging yet
promising area that has not been paid enough attention to by the
database community. We hope that our work offers some insights
into this fertile ground and provides interesting scenarios that could
inspire future research.
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