Amt für Verkehr (AFV) des Kantons Zürich

Endbericht

Verkehrsmodell für den öffentlichen Verkehr des Kantons Zürich

November 2005
Verkehrsmodell für den öffentlichen Verkehr des Kantons Zürich

Amt für Verkehr des Kantons Zürich (AFV)

Verkehrsmodell für den öffentlichen Verkehr des Kantons Zürich

Auftragnehmer: Institut für Verkehrsplanung und Transportsysteme (IVT), ETH Zürich, Ernst Basler + Partner AG, Zürich und PTV AG, Karlsruhe

Projektleitung: Dr.-Ing. Milenko Vrtic

Institut für Verkehrsplanung und Transportsysteme (IVT), ETH Zürich
Dr.-Ing. Milenko Vrtic
Dipl.-Ing. Philipp Fröhlich
Dipl. Wi.-Ing. Nadine Schüssler
Prof. Dr. Kay Axhausen

Ernst Basler + Partner AG, Zürich
Dipl.-Ing. Pascal Kern
Dipl.-Ing. Fabienne Perret
Dipl.-Ing. Steven Pfisterer

PTV AG, Karlsruhe
Dipl.-Ing. Christoph Schulze
Dipl. Stat. Andrea Zimmerman
Dipl.Wi.-Ing. Udo Heidl
Inhaltsverzeichnis

1 Hintergründe und Ziele... 10
 1.1 Ausgangslage ... 11
 1.2 Problemanalyse und Ziele .. 12

2 Erläuterung des Arbeitsprogramms ... 14

3 Erstellung ÖV-Verkehrsangebot .. 17

4 Zonierung und Anbindungen... 30
 4.1 Zonierung .. 30
 4.2 Zonenanbindungen .. 34
 4.3 Zählanten .. 37
 4.4 MIV-Netz .. 38

5 SP-Befragung Durchführung und Modellschätzung 39
 5.1 Datenerhebung für die Modellschätzung 41
 5.2 Modellschätzung ... 52

6 Erzeugung der Quell-/Zielmatrizen .. 65
 6.1 Strukturdaten .. 67
 6.2 Erzeugungsmodell ... 79

7 Simultane Ziel- und Verkehrsmittelwahl-Schätzung 91

8 Matrixerstellung ... 98
 8.1 Die Erstellung und Eichung der Matrixstruktur (Binnenverkehrsmatrix) 101
 8.2 Vergleich der Matrixstruktur mit den Erhebungsdaten 105

9 Kalibration der Quell-Zielmatrizen auf die Querschnittszählungen 165

10 Schlussfolgerungen und Empfehlungen 194

11 Literatur .. 199
Tabellenverzeichnis

Tabelle 1 Grundaufbau der Angebotsdatenbank .. 19
Tabelle 2 Betriebskenngrößen nach Betreibern im Untersuchungsgebiet 27
Tabelle 3 Ausprägungen des Routenwahlmodells .. 45
Tabelle 4 Ausprägungen der Verkehrsmittelwahl .. 47
Tabelle 5 Soziodemographische Charakteristiken der Befragten............................... 50
Tabelle 6 Verteilung nach Fahrzweck ... 50
Tabelle 7 Stichprobenaufteilung .. 51
Tabelle 8 Verkehrsmittelwahl: Ergebnisse der Logit-Schätzung mit ganzen Datensatz ... 56
Tabelle 9 Verkehrsmittelwahl: Relative Bewertung der Einflussgrössen
(SP Schätzung) .. 58
Tabelle 10 Verkehrsmittelwahl: Ergebnisse der Logit-Schätzung für 2 Alternativen
(ohne LIV) mit Fahrzeiten unter 2.5h (reduzierter Datensatz) 60
Tabelle 11 Verkehrsmittelwahl: Nachfrageelastizitäten aus SP-Daten 61
Tabelle 12 Routenwahlmodell: Ergebnisse der SP-Schätzung (MNL) 63
Tabelle 13 Routenwahl: Relative Bewertung der Einflussgrössen (SP Schätzung) 64
Tabelle 14 Definition der Quell-Ziel-Gruppen .. 81
Tabelle 15 Massgebende Strukturgrössen und Quell-Ziel-Gruppen 83
Tabelle 16 Erzeugungsraten nach Quell-Ziel-Gruppen ... 85
Tabelle 17 Quell- und Zielverkehrsaufkommen nach QZG................................. 88
Tabelle 18 Vergleich der ermittelten Fahrzweckanteile (Binnenzonen) mit dem MZ 2000 .. 89
Tabelle 19 Ergebnisse der Modellschätzung für die simultane Ziel- und Verkehrsmittelwahl nach Quell-Ziel-Gruppen ... 96
Tabelle 20 Randsummenbedingungen bei der Berechnung der Quell-Ziel-Ströme 99
Tabelle 21 Eckwerte der erstellten Quell-Zielmatrizen .. 102
Tabelle 22 Verkehrsleistung der erstellten Quell-Zielmatrizen nach Fahrtzweck und Verkehrsmittel .. 103
Tabelle 23 Mittlere Reiseweite der erstellten Quell-Zielmatrizen nach Fahrtzwecken und Verkehrsmitteln .. 104
Tabelle 24 Anteile des intrazonalen Verkehrs [Wege innerhalb Zone; in %] 104
Tabelle 25 Vergleich der Modellergebnisse und des MZ (Hochrechnung): Anzahl interzionale Wege (Binnenströme) ... 105
Tabelle 26 Vergleich der Modellergebnisse und des MZ: Verkehrsmittelwahlanteile (Binnenströme) .. 106
Tabelle 27 Vergleich der Modellergebnisse und des MZ (Binnenströme): Fahrtzweck- und Verkehrsmittelwahlanteile im interzonalen Verkehr [%] 107
Tabelle 28 Vergleich der Modellergebnisse und der Volkszählung: Anzahl Wege (Binnenströme) .. 107
Tabelle 29 Verkehrsaufkommens- und verkehrsleistungsbezogene Verkehrsmittelwahlanteile nach Fahrtzwecken (in %) ... 108
Tabelle 30 Veränderung der Quell-Zielmatrix ... 169
Tabelle 31 Personenfahrten und Personenkilometer der kalibrierten Quell-Zielmatrix (Binnen- und Aussenströme) ... 169
Tabelle 32 Fahrtzweckanteile (in %) im Bezug auf die Personenfahrten und Personenkilometer der Kalibrierten Quell-Zielmatrix ... 170
Tabelle 33 Statistische Analyse: Modellbelastungen und Zähldaten 172
Abbildungsverzeichnis

Abbildung 1 Vorgehen bei der Erstellung des Modells ... 16
Abbildung 2 SBB-Grunddaten aus VIRIATO-Schnittstelle................................. 18
Abbildung 3 ÖV-Netzangebot im Kanton Zürich.. 24
Abbildung 4 Darstellung Tram-Linie 11 mit Haltestellennamen.......................... 25
Abbildung 5 Anzahl Linienvarianten differenziert nach Verkehrssystemen 28
Abbildung 6 Anzahl Linienfahrten differenziert nach Verkehrssystemen.......... 28
Abbildung 7 Anzahl bediente Haltestellen differenziert nach Verkehrssystemen. 29
Abbildung 8 Beispiel der Zonierung in der Stadt Zürich 31
Abbildung 9 Ausschnitt der Zonierung im Kanton Zürich (Glattal).................... 32
Abbildung 10 Zonierung auf Gemeindebasis im Kanton Aargau......................... 33
Abbildung 11 Schrittweises Vorgehen bei der Bestimmung von Zonenanbindungen .. 34
Abbildung 12 Schematische Darstellung des automatisierten Vorgehens.......... 36
Abbildung 13 Beispiel einer SP-Situation bei der Routenwahl-Befragung......... 46
Abbildung 14 Beispiel einer SP-Situation bei der Verkehrsmittelwahl-Befragung mit 3 Alternativen... 48
Abbildung 15 Rücklaufquote der Fragebögen... 49
Abbildung 16 Gemeindetypen ... 74
Abbildung 17 Bestand an PW pro Zone... 76
Abbildung 18 Parkplatzverfügbarkeit... 78
Abbildung 19 Spezifisches Verkehrsaufkommen – wohnungsgebundene (Quell-) Wege... 90
Abbildung 20 Spezifisches Verkehrsaufkommen – attraktionsgebundene (Ziel-) Wege... 90
Abbildung 21 Mehrdimensionale Alternativenmenge... 92
Abbildung 22 Vorgehen für die Matrixerstellung und Eichung der Matrixstruktur. 100
Abbildung 23 Reiseweiteverteilung: Modell und MZ 2000: Alle Wege............... 110
Abbildung 24 Reiseweiteverteilung: Modell und Volkszählung 2000: Fahrtzweck Arbeit.. 111
Abbildung 25 Reiseweiteverteilung: Modell und VZ 2000: Fahrtzweck Ausbildung112
Abbildung 26 Reiseweiteverteilung: Modell und MZ 2000: Fahrtzweck Nutzfahrt 113
Abbildung 27 Reiseweiteverteilung: Modell und MZ 2000: Fahrtzweck Einkauf... 114
Abbildung 28 Reiseweiteverteilung: Modell und MZ 2000: Fahrtzweck Freizeit... 115
Abbildung 29 Reiseweiteverteilung für den Fahrtzweck Arbeit: Vergleich MZ, Volkszählung und Modell ... 116
Abbildung 30 VISUM Parameter für die ÖV-Umlegung.. 118
Abbildung 31 Vergleich der Streckenbelastungen aus Modell und Zählung – MIV (ohne Kalibration) .. 120
Abbildung 32 Umlegungsergebnisse: MIV-Matrix (ohne Kalibration; Gesamtansicht)121
Abbildung 33 Vergleich Modell/Zählwerte: MIV-Matrix (ohne Kalibration; Gesamtansicht) ... 122
Abbildung 34 Vergleich Modell/Zählwerte: MIV-Matrix (ohne Kalibration; Gesamtansicht eingezoomt) ... 123
Abbildung 35 Vergleich Modell/Zählwerte: MIV-Matrix (ohne Kalibration; Stadt Zürich).. 124
Abbildung 36 Umlegungsergebnisse: ÖV-Matrix (ohne Kalibration; Gesamtansicht) 126
Abbildung 37 Umlegungsergebnisse: ÖV-Matrix (ohne Kalibration; Stadt Zürich)127
Abbildung 38 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, ohne Korrektur der Matrixstruktur; Gesamtansicht) 128
Abbildung 39 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, ohne Korrektur der Matrixstruktur; Stadt Zürich). 129
Abbildung 40 Vergleich der Streckenbelastungen aus Modell und Zählung – ÖV (ohne Kalibration) .. 131

Abbildung 41 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Gesamtansicht)............. 132

Abbildung 42 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Gesamtansicht eingezoomt) .. 133

Abbildung 43 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Stadt Zürich)....... 134

Abbildung 44 Vergleich Modell/Zählwerte ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Stadt Zürich eingezoomt)..... 135

Abbildung 45 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Zürich Innenstadt) 136

Abbildung 46 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Stadt Winterthur) 137

Abbildung 47 Vergleich Modell/Volkszählung: Streckenbelastungen aus der MIV-Matrix (Fahrzweck Arbeit) ... 139

Abbildung 48 Vergleich Modell/Volkszählung: Streckenbelastungen aus der ÖV-Matrix (Fahrzweck Arbeit) ... 140

Abbildung 49 Vergleich Modell/Volkszählung: Streckenbelastungen aus der ÖV-Matrix (Fahrzweck Arbeit) ... 141

Abbildung 50 Vergleich Pendlerströme MIV Volkszählung/Modell................. 142

Abbildung 51 Vergleich Pendlerströme MIV Volkszählung/Modell................. 143

Abbildung 52 Vergleich Pendlerströme ÖV Volkszählung/Modell.................. 144

Abbildung 53 Spinnenanalyse: MIV-Ausgangsmatrix (Schöneichtunnel) 145

Abbildung 54 Spinnenanalyse: MIV-Ausgangsmatrix (A1 bei Dietikon) 146

Abbildung 55 Spinnenanalyse: MIV-Ausgangsmatrix (Rosengartenstrasse)..... 147

Abbildung 56 Spinnenanalyse: MIV-Ausgangsmatrix (A3 Sihlholzli) 148
Abbildung 79 Vergleich Modell/Zählung: Streckenbelastungen (Gesamtansicht) 178
Abbildung 80 Vergleich Modell/Zählung: Streckenbelastungen (Gesamtansicht) 179
Abbildung 81 Vergleich Modell/Zählung: Streckenbelastungen (Gesamtansicht eingezoomt)..180
Abbildung 82 Vergleich Modell/Zählung: Streckenbelastungen (Gesamtansicht eingezoomt)..181
Abbildung 83 Vergleich Modell/Zählung: Streckenbelastungen (Stadt Zürich)..... 182
Abbildung 84 Vergleich Modell/Zählung: Streckenbelastungen (Stadt Zürich eingezoomt)..183
Abbildung 85 Vergleich Modell/Zählung: Streckenbelastungen (Stadt Zürich eingezoomt)..184
Abbildung 86 Vergleich Modell/Zählung: Streckenbelastungen (Stadt Zürich eingezoomt)..185
Abbildung 87 Vergleich Modell/Zählung: Streckenbelastungen (Winterthur)....... 186
Abbildung 88 Vergleich Modell/Zählung: Streckenbelastungen (Oerlikon/Kloten) 187
Abbildung 89 Vergleich Modell/Zählung: Streckenbelastungen (Uster/Wetzikon) 188
Abbildung 90 Vergleich Modell/Zählung: Streckenbelastungen (Knonau/Thalwil) 189
Abbildung 91 Vergleich Modell/Zählung: Streckenbelastungen (Pfäffikon/Bauma)190
Abbildung 92 Vergleich Modell/Zählung: Streckenbelastungen (Bülach / Andelfingen / Schaffhausen)...191
Abbildung 93 Vergleich Modell/Zählung: Streckenbelastungen (Oberglatt / Regensdorf)...192
Abbildung 94 Vergleich Modell/Zählung: Streckenbelastungen (Linkes und Rechtes Zürichseeufer) ...193
1 Hintergründe und Ziele

Der Kanton Zürich hat im Rahmen der Gesamtverkehrskonzeption die Strategien für die Entwicklung des Gesamtverkehrs festgelegt, die eine kohärente Planung der Infrastrukturprojekte voraussetzt. Diese Planung verlangt eine periodisch aktualisierte verkehrsmittelübergreifende Prognose des Gesamtverkehrs, die mit den heutigen kantonalen Verkehrsmodellen und den daraus verfügbaren Grundlagen nicht vollständig und nicht mit befriedigender Qualität möglich ist. Daher benötigt das Amt für Verkehr, das für die Umsetzung, Entwicklung und laufende Überprüfung (Gesamtverkehrscontrolling) der Gesamtverkehrskonzeption zuständig ist, ein Modellinstrumentarium für die Gesamtplanung unter Berücksichtigung konkurrierender Verkehrsmittel. Als Ergänzung zum bestehenden KVM-ZH, das nur bzgl. des MIV kalibrierte Belastungszustände beinhaltet, hat vor allem die Erstellung eines ÖV-Modells und die Schätzung des Verkehrsmittelwahl-Modells die höchste Priorität.

Aus diesem Grund hat das Amt für Verkehr das IVT (ETH Zürich), Ernst Basler+Partner AG (Zürich) und PTV AG (Karlsruhe) mit der Erstellung des Verkehrsmodells für den öffentlichen Verkehr des Kantons Zürich beauftragt.
1.1 Ausgangslage

Im Rahmen der Projektstudie Stadttunnel/Verkehr Zürich West wurde das MIV-Modell im Einflussbereich der zu prüfenden Varianten verfeinert. Die Zoneneinteilung und die Anbindungen sowie die Kapazitäten und Geschwindigkeiten im MIV-Netz werden in der Stadt Zürich überarbeitet. Dadurch kann der Einfluss der Entwicklungsgebiete und die effektiven Widerstände der lichtsignalgesteuerten Knoten wesentlich besser berücksichtigt werden. Diese
Arbeiten werden zurzeit beim Kantonalen Tiefbauamt durchgeführt. Somit steht für die Erstellung des ÖV-Modells ein aktualisiertes MIV-Netz zur Verfügung.

1.2 Problemanalyse und Ziele

Die Erstellung eines prognosefähigen und massnahmensensitiven Verkehrsmodells erfordert die Implementierung eines fahrplanfeinen Verkehrsangebots, eine mehrfache Zonenanbindung, fahrzweckspezifische Quell-Ziel-Matrizen, die Kalibrierung der Routenwahlparameter, und minimale Abweichungen des Modells gegenüber der erhobenen Verkehrsnachfrage. Dabei soll versucht werden, eine genügende Genauigkeit sowohl auf der Ebene der Streckenquerschnittsbelastungen als auch für die Quell-Ziel-Beziehungen zu erreichen.
Weiterhin ist es wichtig, dass das Routenwahlverhalten im Verkehrsmodell korrekt abgebildet und entsprechend kalibriert wird. Vor allem in städtischen Netzen sind die Nutzen- bzw. Kostenunterschiede zwischen den verschiedenen Alternativen (Routen) einer Quell-Ziel-Beziehung oft sehr klein, was zur Benutzung von mehreren Alternativen führt und damit eine entsprechende Kalibration des Routenwahlmodells verlangt. Dies soll durch die Schätzung der Modellparameter für den angewendeten Routenwahlansatz gewährleistet werden.

Die Hauptziele dieses Projekts sind:

- Erstellung eines prognosefähigen und massnahmensensitiven kantonalen ÖV-Modells für einen durchschnittlichen Werktag (Jahr 2003), einschließlich der Schätzung der Parameter des Routenwahlmodells
- Erstellung eines Verkehrsmittelwahlmodells unter Berücksichtigung des ÖV, MIV und LIV
2 Erläuterung des Arbeitsprogramms

Das Projekt hat zwei wesentliche Teile:

- Durchführung einer Stated-Preference-Befragung und die Schätzung des Routen- und Verkehrsmittelwahl-Modells (Teil 1)
- Erstellung eines ÖV-Modells für den DWV (Teil 2)

Die Erstellung des ÖV-Modells beinhaltet folgende Schritte:

- Abbildung des Vekehrsangebotes, Zonierung und Zonenanbindung
- Erzeugung und Überprüfung der Quell-/Zielmatrizen
- Abbildung von Routenwahlparameter und Umlegung
- Kalibrierung der Quell-/Zielmatrix im ÖV auf die Querschnittszählungen

Die Durchführung einer Stated-Preference-Befragung stellt die Grundlage für die Beschreibung des Routen- und Verkehrsmittelwahlverhaltens der Verkehrsteilnehmer innerhalb des betrachteten Untersuchungsgebiets dar.

Die wesentlichen Arbeitsschritte und das Vorgehen sind in Abbildung 1 dargestellt.
Abbildung 1 Vorgehen bei der Erstellung des Modells

Vorhandene Daten und Modelle: ZVV- und SBB Fahrpläne und weitere Angebotsdaten, soziodemographische Daten, Erhebungen (KEP, MZ 2000, Volkszählung, andere Befragungen), Querschnittszählungen, vorhandene Modelle (kantonales MIV-Modell, nationales MIV- und ÖV Modell), Statistiken usw.

- Systemabgrenzung (räumlich und zeitlich)
- Elektronische Fahrpläne, nationales Bahnmodell, weitere Angebotsdaten, kantonales MIV-Modell
- Fahrplanfeines Verkehrsangebot (ÖV), Zonierung und Zonenanbindung, soziodemographische Grundlage
- Stated Preference Befragung: Parameter für die Routenwahl (ÖV) und Verkehrsmittelwahl
- Schätzung des Simultanen Ziel- und Verkehrsmittelwahlmodells (Parameter)
- VISEVA Verkehrserzeugung, integrierte Verkehrsverteilung und -aufteilung
- Quell-/Zielmatrizen (MIV, ÖV)
- Überprüfung/Rückkoppelung (inkl. Umlegung und Vergleich mit Zählung)
- Verknüpfung mit nat. Bahnmatrix, Kalibrierung der ÖV-Matrix mit Querschnittszählungen
- Endgültiges ÖV-Umlegungsmodell
- Empfehlungen, Weiterentwicklung
3 Erstellung ÖV-Verkehrsangebot

3.1.1 Grundlagen

Die wesentliche Grundlage für die Abbildung des ÖV-Verkehrsangebots sind die vorhandenen Fahrplandaten aus dem Bezugsjahr 2003, welche in das bestehende MIV-Netzmodell eingearbeitet werden. Diese Angebotsabbildung umfasst die genaue Netzaufnahme (Haltestellen, Linienwege) sowie die Erfassung des Linienangebots mit linienfeinen Fahrplänen (ohne das Nachtangebot). Eine Linie im öffentlichen Verkehr besteht aus einer oder mehreren Linienvarianten (Unterlinien), die sich durch den Linienweg und/oder durch die Fahrzeiten zwischen den Haltestellen unterscheiden können. Eine Unterlinie wird definiert durch

- den Liniennamen,
- die Linienvariante,
- die Richtung,
- den Linienweg (bediente Haltestellenfolge) mit den Fahrzeiten zwischen den Haltestellen,
- den Fahrplan (Liste der Abfahrtszeiten) und
- betriebliche Daten, wie z.B. Betreibername und Fahrzeugtyp.

Differenziert nach Betreibern wurden mehrere ÖV-Verkehrssysteme definiert:

- Fernverkehr (Fernzüge),
- Regionalverkehr (Regionalzüge und S-Bahnen),
- Tram,
- Bus,
- Schiff und
- Bergbahn.

Bei der Netzaufnahme konnte einerseits für den Fern- und Regionalverkehr auf digitale Daten der Schweizerischen Bundesbahnen (SBB), welche im VISUM-Format vorlagen, zurückgegriffen werden, andererseits mussten die restlichen Daten vom Zürcher Verkehrsverbund (ZVV) in einer Datenbank zusammengestellt werden. Die Übernahme der SBB-Daten erfolgte über die VIRIATO-Schnittstelle, anhand derer die bedienten Haltestellen, sämtliche Li-

Abbildung 2 SBB-Grunddaten aus VIDIATO-Schnittstelle

det wurde sondern noch VISUM 8.1. Dies hat rein organisatorische und keine programm-

3.1.2 Datenaufbereitung

SBB-Daten

Um das VISUM-Netzmodell mit den SBB-Angebotsdaten in das bestehende kantonale MIV-

- Anpassung der Koordinaten (Division der x- und y-Koordinate durch 1000),

- Umnummerierung der Knoten- bzw. Haltestellennummern (Offset 200000; SBB-
Nummer plus 200000) zur Vermeidung von Überschneidungen mit den bestehenden
Knoten im MIV-Netz.

ZVV-Daten

Die ZVV-Angebotsdaten werden in einer Datenbank gepflegt, welche alle Informationen be-
züglich der relevanten Netz- und Fahrplandaten enthält. Die folgende Tabelle 1 gibt eine
Übersicht über die wesentlichen erforderlichen Datentabellen mit deren Inhalten.

Tabelle 1 Grundaufbau der Angebotsdatenbank

<table>
<thead>
<tr>
<th>Tabellenname</th>
<th>Tabelleninhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNOTEN</td>
<td>Nummer, Name und Koordinaten der Haltestellen</td>
</tr>
<tr>
<td>VSYS</td>
<td>Nummer und Name der Verkehrssysteme (z.B. Tram, Bus usw.)</td>
</tr>
<tr>
<td>BETREIBER</td>
<td>Nummer und Name der ÖV-Betreiber</td>
</tr>
<tr>
<td>FZGTYP</td>
<td>Nummer, Name und Kapazität der Fahrzeugtypen</td>
</tr>
<tr>
<td>UNTERLINIEN</td>
<td>ID der einzelnen Linienvarianten</td>
</tr>
<tr>
<td>LINWEG</td>
<td>Verlauf (Haltestellenfolge) der Linienvarianten mit Zeitprofilen</td>
</tr>
<tr>
<td>LINFNAHRT</td>
<td>Abfahrtzeiten der Linienvarianten</td>
</tr>
</tbody>
</table>

Die vom ZVV erstellte Datenbank besaß bereits diesen Grundaufbau, sodass lediglich die
Formatierung der einzelnen Datentabellen überarbeitet werden musste, um die Kompatibilität
to VISUM zu gewährleisten.
An den Daten selbst wurden darüber hinaus folgende Überarbeitungen vorgenommen:

- Anpassung der Koordinaten (Division der x- und y-Koordinate durch 1000),

Abgleich SBB- und ZVV-Daten

Um Konflikte zwischen den beiden Datengrundlagen hinsichtlich der Nummerierung der Betreiber und der Verkehrssysteme zu vermeiden, wurden die entsprechenden ZVV-Datentabellen angepasst.

3.1.3 Integration in MIV-Netzmodell

Fern- und Regionalzüge, S-Bahnen

Da die Linien dieser Verkehrssysteme überwiegend einen eigenen Gleiskörper außerhalb des MIV-Streckennetzes benutzen, wurden die Haltestellen nicht in die Strecken des MIV-Modells integriert. Die Strecken- und damit Linienverläufe konnten direkt aus dem SBB-Netzmodell übernommen werden.

Eine Ausnahme zu dieser Vorgehensweise stellt die S-Bahnlinie S18 dar, welche zwischen den Haltestellen Stadelhofen und Rehalp denselben Gleiskörper wie die Tram innerhalb des
MIV-Netzes benutzt. Deshalb wurden hier die Haltestellen wie im folgenden Kapitel beschrieben in das MIV-Netz integriert.

Die Linienverläufe der Fernzüge reichten teilweise bis ins angrenzende Ausland (z.B. Wien, Mailand). Bei diesen Linien wurden lediglich die Abschnitte innerhalb der Schweiz im Netzmodell berücksichtigt.

Die Längen der Linienverläufe der SBB-Linien wurden anhand der Streckenlängen im Modell ermittelt. Im Ausgangsnetz der SBB (Viriato) waren bereits die realen Längen angegeben. Für die S-Bahnen standen die genauen Längen vom ZVV zur Verfügung.

Tram und Busse

Schiffe und Bergbahnen

3.1.4 Nachbearbeitung

Haltestellen

Die Haltestelle Zürich Hauptbahnhof bestand in der ZVV-Datenbank lediglich aus einem Haltestellenknoten, welcher von sämtlichen Linien bedient wurde. In Realität besteht der Hauptbahnhof dagegen aus vier Haltestellen mit teilweise beträchtlichen Umsteigeentfernungen, was wiederum Auswirkungen auf die Anschlussqualität zwischen den unterschiedlichen Fahrteibiehungen hat. Um dies realitätsgetreu abzubilden, wurde der Hauptbahnhof in folgende vier Haltestellen aufgeteilt:

- Haupthalle,
- Sihlpost,
- SZU,
- Museumsbahnhof.

Linienverläufe

Fahrplandaten

Bei der Überprüfung der Verbindungsqualitäten im Netzmodell stellte sich heraus, dass im Verkehrsmodell oftmals Anschlussverbindungen nicht erreicht werden, welche in der Realität möglich sind. In solchen Fällen mussten die entsprechenden Fahrplandaten überprüft und überarbeitet werden. Folgende Problempunkte konnten hierbei identifiziert werden:
• Fehlerhafte Fahrtzeiten, welche zu verspäteter bzw. verfrühter Ankunft bzw. Abfahrt an Umsteigестellen führten,

• längere Wartezeiten an Haltestellen waren in der ZVV-Datenbank so abgebildet, dass die eigentliche Wartezeit zu der Fahrzeit von der davor liegenden Haltestelle addiert wurde, was zum Teil zu deutlich verspäteten Ankünften führte,

• bei Ringlinien (gleiche Start- und Zielhaltestelle) fehlte immer der letzte Linienabschnitt zur Zielhaltestelle, weshalb diese Linien unvollständig waren.

Anhand des Schweizer Kursbuches 2003 wurden die Fahrplandaten korrigiert, um die Anschlussmöglichkeiten zwischen einzelnen Linien zu gewährleisten.

Liniennamen

Zur eindeutigen Kennzeichnung der Liniennamen im VISUM-Modell wurde der eigentlichen Linienbezeichnung noch der Code des Verkehrssystems vorangestellt.

- Buslinien: B,
- Tramlinien: T,
- Schifffahrtsslinien: SCH,
- Bergbahnen: Y.

Die S-Bahnen sowie Fern- und Regionalzügen waren bereits in den Ausgangsdaten durch den Zugtyp (z.B. S, IC, EC, IR, RZ) im Liniennamen gekennzeichnet.

Fußwege

Die Fußwege an den Bahnhöfen konnten über die ZVV-Haltestellennummerierung automatisch erzeugt werden (z.B. Zürich Flughafen: Bahnhof Schiene Haltestellennummer 113027,
Bahnhof Bus Haltestellennummer 103027). Die restlichen Fußwege wurden manuell einge-pflegt.

Abbildung 3 ÖV-Netzangebot im Kanton Zürich
Bei künftigen Aktualisierungen des ÖV Angebots unterstützt VISUM den Benutzer, indem es anbietet, beim Einlesen bereits definierte Linienwege zu übernehmen.

Die Übernahme des vorhandenen Linienroutings führt insbesondere bei umfangreichen Liniendaten zu einer großen Zeiterüberspannungs beim Einlesen der Daten und erübrigt eine nochmalige Überprüfung des Linienroutings.

3.1.5 **Netzkenngrößen**

Das kantonale ÖV-Netzmodell besteht im Untersuchungsgebiet aus 2489 Haltestellen (außerdem weitere 233 SBB-Haltestellen außerhalb des Untersuchungsgebiets) sowie 373 Linien mit 1570 Unterlinien. Im gesamten Modell sind 2721 Haltestellen sowie 383 Linien mit
1579 Unterlinien enthalten. Die folgenden Auswertungen beziehen sich immer auf das Untersuchungsgebiet.

Die Linien verteilen sich wie folgt auf die einzelnen Verkehrssysteme:

- Fernverkehr: 49 Linien,
- Regionalverkehr: 67 Linien,
- Tram: 13 Linien,
- Bus: 236 Linien,
- Schiff: 5 Linien,
- Bergbahn: 3 Linien.

In der folgenden Tabelle 2 sind die Betriebskenngrößen Service-Kilometer, Anzahl Linienvarianten und Anzahl Linienfahrten differenziert nach Betreibern ersichtlich. Hinsichtlich der Service-km stellen die SBB (Fernverkehr, Regionalverkehr, S-Bahn) sowie die Verkehrsbetriebe Zürich (VBZ) mit einem Anteil von 34% bzw. 32% aller im Netz erbrachten Service-km größten ÖV-Anbieter dar. Betrachtet man die Anzahl der Linienvarianten sowie die Anzahl der Linienfahrten, sind die VBZ wegen ihrer dichtgetakteten Tram- und Buslinien im Stadtgebiet Zürich der mit Abstand bedeutendste Anbieter. So fallen 47% aller im Netz erbrachten Linienfahrten auf Linien, welche von den Verkehrsbetrieben Zürich bedient werden.

Die nachfolgenden Abbildungen (Abbildung 5, Abbildung 6 und Abbildung 7) zeigen die Anzahl der Linienvarianten, Linienfahrten sowie bedienten Haltestellen differenziert nach Verkehrssystemen. Bezüglich aller Kenngrößen liegt der Anteil des Verkehrssystems Bus bei ca. 70-80%. Während bei den Linienvarianten und den bedienten Haltestellen das Verkehrssystem Regionalverkehr mit rund 12% folgt, ist bei den Linienfahrten das Verkehrssystem Tram wegen der dichten Taktung der Linien mit ca. 15% aller Linienfahrten das zweitbedeutendste Verkehrssystem nach dem Bus. Die übrigen Verkehrssysteme Fernverkehr, Schiff und Bergbahn haben bezüglich der hier ausgewerteten Betriebskenngrößen Anteile zwischen 1 und 4%.
<table>
<thead>
<tr>
<th>Betreiber</th>
<th>Servike-km</th>
<th>Anzahl Linienvarianten</th>
<th>Anzahl Linienfahrten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBB (Fernverkehr)</td>
<td>40142</td>
<td>47</td>
<td>581</td>
</tr>
<tr>
<td>SBB (Regionalverkehr)</td>
<td>8643</td>
<td>23</td>
<td>358</td>
</tr>
<tr>
<td>SBB (S-Bahn)</td>
<td>41048</td>
<td>85</td>
<td>908</td>
</tr>
<tr>
<td>CIS (Fernverkehr)</td>
<td>117</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>KTU (Regionalverkehr)</td>
<td>3566</td>
<td>14</td>
<td>226</td>
</tr>
<tr>
<td>THURBO (Regionalverkehr)</td>
<td>2359</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>THURBO (S-Bahn)</td>
<td>7420</td>
<td>17</td>
<td>249</td>
</tr>
<tr>
<td>BD (S-Bahn)</td>
<td>1680</td>
<td>7</td>
<td>103</td>
</tr>
<tr>
<td>FB (S-Bahn)</td>
<td>2021</td>
<td>7</td>
<td>142</td>
</tr>
<tr>
<td>SOB (S-Bahn)</td>
<td>1742</td>
<td>10</td>
<td>121</td>
</tr>
<tr>
<td>SZU (Bus und S-Bahn)</td>
<td>7904</td>
<td>110</td>
<td>1301</td>
</tr>
<tr>
<td>VBG (Bus, Tram und Bergbahn)</td>
<td>83000</td>
<td>438</td>
<td>12640</td>
</tr>
<tr>
<td>VBG (Bus)</td>
<td>14026</td>
<td>180</td>
<td>2586</td>
</tr>
<tr>
<td>VZO (Bus)</td>
<td>11803</td>
<td>136</td>
<td>2170</td>
</tr>
<tr>
<td>WV (Bus)</td>
<td>13951</td>
<td>103</td>
<td>2268</td>
</tr>
<tr>
<td>Postauto Aargau (Bus)</td>
<td>2540</td>
<td>34</td>
<td>289</td>
</tr>
<tr>
<td>Postauto Zentralschweiz (Bus)</td>
<td>98</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Postauto Zürich (Bus)</td>
<td>19007</td>
<td>323</td>
<td>2007</td>
</tr>
<tr>
<td>SGG (Schiff)</td>
<td>16</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>ZSG (Schiff)</td>
<td>314</td>
<td>17</td>
<td>76</td>
</tr>
<tr>
<td>Zürichsee-Fähre Horgen-Meilen (Schiff)</td>
<td>701</td>
<td>2</td>
<td>214</td>
</tr>
<tr>
<td>Dolderbahn (Bergbahn)</td>
<td>221</td>
<td>2</td>
<td>168</td>
</tr>
<tr>
<td>UBS-Polybahn (Bergbahn)</td>
<td>74</td>
<td>2</td>
<td>502</td>
</tr>
<tr>
<td>Gesamt</td>
<td>262393</td>
<td>1568</td>
<td>27027</td>
</tr>
</tbody>
</table>
Abbildung 5 Anzahl Linienvarianten differenziert nach Verkehrssystemen

Abbildung 6 Anzahl Linienfahrten differenziert nach Verkehrssystemen
Abbildung 7 Anzahl bediente Haltestellen differenziert nach Verkehrssystemen
4 Zonierung und Anbindungen

4.1 Zonierung

Die Zoneneinteilung des ÖV-Modells für den Kanton Zürich basiert auf der Zonierung des aktuellsten Kantonalen Verkehrsmodells, KVM-ZH, das im Rahmen der Projektstudie Stadt- tunnel / Verkehr Zürich-West 2003 eingesetzt wurde. In den folgenden drei Kapiteln wird die Einteilung für die Stadt Zürich, den Kanton Zürich und die übrigen Kantone separat beschrieben.

4.1.1 Stadt Zürich

Auf Stadtgebiet bilden die Zonen ca. 300 kleine, funktionale Einheiten; diese mussten für das vorliegende kantonale ÖV-Modell teilweise geringfügig angepasst werden. Dabei wurden vor allem Grenzverläufe korrigiert und Zonennamen, resp. –nummern angepasst. Als Beispiel für die Einteilung der Zonen sei hier stellvertretend für die übrigen Stadtgebiete das Beispiel Zürich-West gezeigt:
4.1.2 Kanton Zürich

4.1.3 Übrige Kantone

4.1.4 Aussenzonen

4.2 Zonenanbindungen

4.2.1 Automatisiertes Vorgehen

Abbildung 11 zeigt das automatisierte Vorgehen bei der Zonenanbindung.
Siedlungsschwerpunkte

Anhand des Hektarrasters (Geostat, basierend auf Volkszählung 1990) mit den Einwohnerzahlen aus der Volkszählung 2000 wird der Siedlungsschwerpunkt von jeder Verkehrsmodellzone bestimmt. Dabei wird im GIS das Zentrum der Konzentration von Einwohner pro Zone ermittelt. Es wird pro Verkehrsmodellzone nur ein Schwerpunkt definiert; die Zonen sind grösstenteils so gewählt, dass dies der Realität entspricht.

Anbindung an nächstgelegene Haltestelle

Mit Suchalgorithmen wird in einem ersten Schritt jedem Siedlungsschwerpunkt die nächstgelegene Haltestelle, unabhängig vom angebotenen Verkehrsmittel, gesucht und angebunden. Dabei entspricht die Anbindungsdistanz je Haltestelle oder Bahnhof dem Mittelwert von allen mit der Bevölkerung gewichteten Distanzen zwischen den Siedlungspunkten und der Haltestelle.

Anbindung an weitere Haltestellen

In einem dritten Schritt wird die Verbindungen zwischen Siedlungsschwerpunkt und weitere Haltestellen nach bestimmten Kriterien hergestellt:

- Jede Bushaltestelle, die weniger als 300 Meter vom Siedlungsschwerpunkt entfernt ist, wird angebunden.

- Jeder Bahnhof, der in weniger als 750 Meter Entfernung vom Siedlungsschwerpunkt liegt, wird ebenfalls angeschlossen.

- Alle Haltestellen, die in einem Umkreis von 50 Meter um die Zonengrenze liegen, erhalten Anbindungen zum Siedlungsschwerpunkt. Dieses Kriterium wird insbesondere in der Stadt Zürich relevant, da die Zonen häufig blockweise (v.a. Zürich-West) definiert sind und so die Haltestellen auf den umliegenden Strassen nicht berücksichtigt werden können.

In einem weiteren Schritt wurde die Plausibilität der erstellten Anbindungen mit einem manuellen Vorgehen überprüft und angepasst.

In Abbildung 12 ist die Erstellung der Anbindungen an Haltestellen noch einmal schematisch dargestellt.
Anbindungszeit

Die Anbindungszeit wird unter Annahme einer Geschwindigkeit von 4 km/h in einen Zeitbedarf für die Erreichung der Haltestelle umgerechnet. Ab einer Entfernung von 500 Metern wird die Geschwindigkeit auf 6 km/h erhöht, damit auch die kürzere Zugangszeit von Fahrradfahrern berücksichtigt werden können.

4.2.2 Manuelle Abstimmung

Die automatisch generierten Anbindungen werden manuell überprüft und bei Bedarf korrigiert. Das gewählte Verfahren ist ausgerichtet auf die kleinen Zonen in städtischen Verhältnissen, daher ergeben sich insbesondere an den Modellrändern und bei grossen Verkehrsmodellzonen unerwünschte Effekte, die der Realität angepasst werden müssen:
• Zugangszeiten werden nach oben auf 20 Minuten beschränkt, um bei grossen Zonen mit inhomogener Siedlungsstruktur die Aufteilung der Ströme auf verschiedenen die Anbindungen zu gewährleisten.

• Sinnvolle Anbindungen an Haltestellen, die durch das automatisierte Verfahren nicht erstellt wurden, werden manuell ergänzt.

• Unsinnige Anbindungen, die durch das Verfahren gefunden wurden, werden wieder entfernt.

Aussenzonen

4.3 Zähldaten

Zähldaten ÖV

Die Zähldaten ÖV wurden beim ZVV und den SBB angefordert.

Zählldaten MIV

4.4 MIV-Netz

5 SP-Befragung Durchführung und Modellschätzung

In der bisherigen Praxis wurden die Verkehrsmittel- und Routenwahl vor allem auf Grundlage von Modellschätzungen mit RP-Daten berechnet.

Die aus dem beobachteten Verkehrsverhalten (revealed preference- (RP) - Daten) ermittelten Modelle sind oft mit vielen Unsicherheiten behaftet und daher in ihrer Nutzbarkeit eingeschränkt. Diese Unsicherheiten sind vor allem auf die für die Modellschätzung ungeeigneten bzw. nicht gezielt erhobenen Daten zurückzuführen.

Bei der Anwendung dieser Daten sind die geschätzten Modellparameter wegen der vorhandenen Korrelationen zwischen einzelnen unabhängigen Variablen (z.B. Reisezeit und Preis) und der aus den Netzmodellen berechneten Ausprägungen der Variablen mit vielen Unsicherheiten verbunden. Einige Komponenten wie Komfort, Zuverlässigkeit usw. können darüber hinaus nicht berücksichtigt werden.

Mit Hilfe der SP-Befragung sollen durch die Schätzung von Parametern die Verkehrsmittel- und Routenwahl modelliert werden. Damit wird die Bedeutung der einzelnen Einflussfaktoren wie Reisezeit, Preis, Komfort, etc. für diese Entscheidungen bestimmt bzw. quantifiziert.

Es werden zwei verschiedenen SPs durchgeführt:

- Verkehrsmittelwahl
- Routenwahl (aus Gründen der Vereinfachung und Einhaltung der allgemeingültigen Begriffe in der Verkehrsplanungs- und Modellierungspraxis wird diese auch im weiteren Text als Routenwahl bezeichnet, obwohl vor allem die Wahl der Verbindung betrachtet wird)

Die SP-Befragungen wurden als zweistufige Befragungen durchgeführt. Im ersten Schritt wurde das tatsächliche Verhalten der Reisenden erfasst. Im zweiten Schritt wurde es zur Konstruktion der SP-Befragung eingesetzt. Dafür wurde die laufende Kontinuierliche Erhebung
Personenverkehr (KEP)-Befragung der SBB als Ausgangsquelle benutzt. Da komplexe SP-Befragungen am Telefon nicht möglich sind, wurde die SP-Befragung als schriftliche Befragung durchgeführt.
5.1 Datenerhebung für die Modellschätzung

Bei der telefonischen KEP-Befragung über das durchgeführte Verkehrsverhalten (RP) wurde auch nach der Bereitschaft für die Teilnahme an einer weiteren schriftlichen SP-Befragung gefragt. Damit wurden die SP-Daten mit einer zweistufigen Befragung erhoben:

- Telefonische KEP-Befragung über das durchgeführt Verkehrsverhalten während einer Woche sowie die soziodemographischen Charakteristika der Person (RP)
- Schriftliche SP-Befragung auf Grundlage eines im KEP berichteten Weges

5.1.1 Revealed Preference Daten

Die SBB führen jedes Jahr kontinuierliche Erhebungen des Personenverkehr (KEP) durch. Der KEP ist eine telefonische Befragung der Verkehrsteilnehmer über das durchgeführte Verkehrsverhalten während der vergangenen Woche. Sie erfasst das Reiseverhalten der Schweizer Wohnbevölkerung im Alter zwischen 15 und 84 Jahren. In werktäglich durchgeführten telefonischen Interviews wird das Reiseverhalten der vorausgegangenen 7 Tage von rund 16’800 Personen im Jahr erhoben. Diese Stichprobe ist für die Grundgesamtheit repräsentativ. Alle Wege (über die Ortsgrenze) ab einer Gesamtdistanz von 3 km und mehr, die mit irgendeinem Verkehrsmittel unternommen wurden, werden nach vielfältigen Kriterien erfasst (Quelle und Ziel, Reisezeiten, Umsteigen, Wartezeiten, Zugangszeiten zum Bahnhof, Fahrtzweck, PKW-Verfügbarkeit, PKW-Besitz, Haushaltsgrösse, Beruf, Erwerbstätigkeit, Abonnementbesitz, usw.).

5.1.2 Stated Preference Befragung

In den letzten 20 Jahren wurde eine Vielzahl neuer Methoden und Techniken entwickelt, die alle darauf abzielen, das Verhalten verschiedener Akteure im Verkehrssektor besser zu verstehen. Die Werkzeuge, die heute für die Modellierung des Verkehrs eingesetzt werden, kommen aus verschiedenen Disziplinen, vor allem aus der Ökonomie, Psychologie, Sozialforschung und Statistik.

Die Methodik wurde ursprünglich in den USA entwickelt und in Europa zunächst in Großbritannien und in den Niederlanden weiterentwickelt. Heute gehören diese Methoden in vielen anderen europäischen Ländern zum „state-of-the-art“.

Die Stated Preference-Methoden lassen sich aufgrund folgender Charakteristika unterscheiden:

- Antwortform (transfer pricing, stated ranking, stated choice etc.)
- Form des Versuchsplans (Auswahl der Einflussgrössen und Ausprägungen, Festlegung des Versuchsplans)
- Befragungsform (schriftlich, telefonisch, mündlich, computerunterstützt)

Es ist vor allem vom Untersuchungsziel abhängig, welche Kombination von Ausprägungen dieser drei Dimensionen zur Anwendung kommt. Dabei spielen auch die Kosten eine wichtige Rolle.

Stichprobe

Die Verteilung der Basiswege, die für die Generierung der SP zugrunde liegen, soll bezüglich Wegdistanz, Verkehrsmittel und Wegezweck repräsentativ sein, dass heisst die reale Verteilung möglichst gut widerspiegeln. Aus diesem Grund wurde anhand des Microzensus 2000 eine Quotierung (Anzahl Wege pro Teilstichprobe) mit 6 Distanzklassen, 3 Verkehrsmitteln und 5 Wegezwecken errechnet. Insgesamt ergaben sich unter Beachtung einer notwendigen Minimalbesetzung je Zelle 23 Teilstichproben. Die Erfüllung der Quoten ist abhängig von den berichteten Wegen im KEP. Die LIV-Wege mit dem Zweck Freizeit sind in diesem Da-
tensatz nur unzureichend erfasst. Daher wurde bei der Auswahl der Wege auf die unterrepräsentierten Teilstichproben besonders beachtet und im Laufe der 25 Wochen wöchentlich der Erfüllungsgrad der Teilstichproben errechnet.

Einteilung SP

Für die Erstellung eines SP-Fragebogens für die Verkehrsmittelwahl und die Routenwahl wurde ein berichteter Weg aus dem KEP verwendet. Generell wurde bei der Erstellung der SPs zwei Arten verwendet:

a) Standardisierte bzw. synthetische SP

b) Situative SP

Für folgende Art von Wegen wurden Standardisierte SPs erstellt:

- Fuss, Rad, Bus und Tramwege, da im Rahmen des KEP für derartige Wege keine Quell- und Zielpostleitzahl erfasst wird.

- Für alle Wege, unabhängig vom Verkehrsmittel, unter 3 km, da hierfür im KEP nicht die konkrete Weglänge abgefragt wird.

- Wege, die innerhalb einer Postleitzahl zurückgelegt werden.

- Wege, für die kein ÖV-Routing gefunden werden kann.

Die situativen SPs wurden für Zugs- und MIV-Wege über 3 km verwendet.

SP Befragung: Durchführung

Diese Methode hat darüber hinaus den Vorteil, dass die Aufgabe den Befragten vertraut ist und sie deshalb als angenehm und einfach empfunden wird. Es ist deshalb möglich, die Alternativen mit einer relativ grossen Anzahl von Einflussgrössen zu beschreiben, ohne die Befragten zu überlasten (Axhausen, 1999).

Der Versuchsplan, d.h. die systematische Kombination der Ausprägungen der Einflussgrössen, wurde als Stichprobe mit einer bestimmten Anzahl von Entscheidungssituationen aus allen möglichen Kombinationen gewonnen. Die gewählte Stichprobe ermöglicht die Schätzung der Haupteffekte der Einflussgrössen. Die Ausprägungen wurden als prozentuelle oder absolute Abweichung von den Werten, die für den ausgewählten Weg in der KEP berichtet wurden, angegeben.

Die SP-Situationen sind so aufgebaut, dass sich die Befragten zwischen zwei bzw. drei dargestellten Alternativen entscheiden müssen. Die Alternativen sind:
- Verkehrsmittelwahl: ÖV oder Auto, bzw. ÖV, Auto oder LIV
- Routenwahl: Route 1 oder Route 2

Die Befragung ist so angelegt, dass bei jeder neuen Situation auch die Einflussvariablen im Vergleich zu der vorherigen oder berichteten Situation neu variert bzw. geändert wurden. Damit mussten die Befragten bei jeder neuen Situation diese Veränderung durch die Wahl der Alternative beurteilen.

Die Befragung zur Routenwahl beinhaltete die Variablen und ihre Ausprägungen wie in Tabelle 3 aufgeführt.
Tabelle 3 Ausprägungen des Routenwahlmodells

<table>
<thead>
<tr>
<th>Einflussgröße</th>
<th>Ausprägungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nur Route 2 wird variiert)</td>
<td></td>
</tr>
<tr>
<td>Komfort</td>
<td>Bus, Tram, S-Bahn, Regionalzug, Zug, ICN-Zug</td>
</tr>
<tr>
<td>Fahrtzeit</td>
<td>- 40%, - 20%, 0%, + 20%, + 40%</td>
</tr>
<tr>
<td>Umsteigehäufigkeit</td>
<td>- 1, 0, + 1</td>
</tr>
<tr>
<td>Umsteigezeit</td>
<td>- 30%, 0%, + 30%</td>
</tr>
<tr>
<td>Intervall</td>
<td>2 Stufen schlechter, 1 Stufe schlechter, gleich, eine Stufe besser, 2 Stufen besser</td>
</tr>
<tr>
<td>Preis</td>
<td>- 40%, - 20%, 0, + 20%, + 40%</td>
</tr>
<tr>
<td>Zugangszeit</td>
<td>- 40%, - 20%, 0, + 20%, + 40%</td>
</tr>
</tbody>
</table>

Der Versuchsplan für die Routenwahl, d.h. die systematische Kombination der Ausprägungen der Einflussgrössen, wurde in drei Versuchspläne aufgespaltet, da eine unterschiedliche Anzahl von Ausprägungen der Komfortvariablen in Abhängigkeit der Reiseweite vorgesehen war. Aus allen möglichen Kombinationen des Versuchsplans (28’125 = 3^2 * 5^5; zwei Einflussgrössen mit drei Ausprägungen und fünf Einflussgrössen mit fünf Ausprägungen) wurde eine Stichprobe von Kombinationen gewählt, die es ermöglicht, die Schätzung der Haupteffekte der Einflussgrössen abzubilden (Louviere, Hensher und Swait, 2000). Die Ausprägungen werden als prozentuale oder absolute Abweichung von den Werten, die für den ausgewählten Weg in der KEP berichtet wurden, angegeben.

Tabelle 4 Ausprägungen der Verkehrsmittelwahl

<table>
<thead>
<tr>
<th>Einflussgröße</th>
<th>Ausprägungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrzeit LIV</td>
<td>- 40%, - 20%, 0%, + 20%, + 40%</td>
</tr>
<tr>
<td>Zugangszeit (ÖV)</td>
<td>- 40%, - 20%, 0%, + 20%, + 40%</td>
</tr>
<tr>
<td>Fahrzeit im System (ÖV)</td>
<td>- 40%, - 15%, 0%, + 10%, + 30%</td>
</tr>
<tr>
<td>Fahrzeit (IV)</td>
<td>- 30%, - 10%, 0%, + 20%, + 40%</td>
</tr>
<tr>
<td>Umsteigehäufigkeit (ÖV)</td>
<td>-1 mal, 0 mal, + 1 mal</td>
</tr>
<tr>
<td>Intervall (ÖV)</td>
<td>2 Stufen schlechter, 1 Stufe schlechter, gleich, eine Stufe besser, 2 Stufen besser</td>
</tr>
<tr>
<td>Preis (ÖV)</td>
<td>- 20%, - 5%, 0%, + 20%, + 40%</td>
</tr>
<tr>
<td>Preis (IV)</td>
<td>- 15%, 0%, + 15%, + 30%, + 45%</td>
</tr>
<tr>
<td>Verlässlichkeit (ÖV)</td>
<td>Wahrscheinlichkeit einer Verspätung von 10 min</td>
</tr>
<tr>
<td></td>
<td>0%, + 10%, + 25%</td>
</tr>
<tr>
<td>Verlässlichkeit (IV)</td>
<td>Wahrscheinlichkeit einer Verspätung von 10 min</td>
</tr>
<tr>
<td></td>
<td>+ 5%, + 20%, + 30%</td>
</tr>
</tbody>
</table>

Im Unterschied zu den Routenwahl-Attributen wird bei den Verkehrsmittelwahl-Attributen auch die Verlässlichkeit berücksichtigt, da sie für die Verkehrsmittelwahl eine wichtige Variable ist. Die Verlässlichkeit ist definiert als die Wahrscheinlichkeit einer Verspätung von 10 min. Die Fahrzeit im ÖV-System beinhaltet die Fahrzeit im ÖV-Verkehrsmittel einschließlich der Umsteigezeit. Damit besteht die gesamte Reisezeit im ÖV aus der Zugangszeit zur Haltestelle bzw. zum Bahnhof (von der Tür bis zur Haltestelle für die Verkehrsmittel Bus oder Tram bzw. zum Bahnhof für das Verkehrsmittel Zug) und der Fahrzeit im ÖV-System.

Die Fahrzeit im MIV beinhaltet hingegen die gesamte Fahrzeit mit dem PW von der Quelle bis zum Ziel. Der Besitz von Mobilitätswerkzeugen (PW Verfügbarkeit und ÖV Abonnements) und die Komfortvariablen werden mit ja (1) oder nein (0) kodiert. Der Versuchsplan wurde als Stichprobe von 64 Entscheidungskombinationen beim Fall ohne LIV und im Fall mit LIV aus 81 Entscheidungskombinationen aus allen möglichen Kombinationen gewonnen (ohne LIV: 421’875 = 3³ 5⁶; drei Einflussgrössen mit drei Ausprägungen und sechs Einflussgrössen mit fünf Ausprägungen; mit LIV: 2’109’375 = 3³ 5⁷; drei Einflussgrössen mit drei Ausprägungen und sieben Einflussgrössen mit fünf Ausprägungen).

Es wurden bei jeder einzelnen Situation MIV, LIV und ÖV-Variablen entsprechend den Versuchsplänen variiert. Der Befragte soll unter Berücksichtigung der heutigen Verkehrssituation für die beiden bzw. drei Verkehrsmittel seine persönlichen Präferenzen zu einzelnen Variablen durch die Verkehrsmittelwahl darstellen. Aus den Unterschieden in den Werten der Vari-
ablen der vorgestellten Situationen und der gewählten Alternative werden Verkehrsmittelwahl-Parameter für die einzelnen Variablen berechnet.

Abbildung 14 Beispiel einer SP-Situation bei der Verkehrsmittelwahl-Befragung mit 3 Alternativen

Versand und Rücklauf

Die SP-Befragung wurde in zwei Teilen durchgeführt. Der erste Teil (Pretest) wurde innerhalb von vier Wochen (Kalenderwoche 20 bis 23 im Jahr 2004) vor allem mit dem Ziel durchgeführt, die Bereitschaft der Befragten zum Mitmachen zu testen und eventuelle Prob-
leme oder Fehler zu finden. Insgesamt wurde eine genügende Rücklaufquote erreicht. Die Hauptbefragung wurde zwischen Kalenderwoche 24 und 44 durchgeführt. Im Durchschnitt wurden pro Woche an 51 Personen Fragebögen verschickt.

Im Zeitraum von Kalenderwoche 20 bis Kalenderwoche 44 im Jahr 2004 wurden im Rahmen des KEP 1’480 Personen, die für den gegenständlichen Untersuchungsraum (im Kanton Zürich wohnhaft bzw. mit berichteten Wegen im Kanton Zürich) relevant sind und die Bereitschaft für eine SP angegeben hatten, befragt. An 1’229 Personen wurden für die SP Befragung Fragebögen verschickt. Davon würden von 871 Personen (70.87%) die Fragebögen an uns retouriniert. Von 828 Personen (67.37%) waren die Daten für die Verkehrsmittelwahl und von 806 (65.58%) Personen für die Routenwahl nach einer Plausibilitätsprüfung verwendbar.

Abbildung 15 Rücklaufquote der Fragebögen

Die Soziodemografie der Befragten in der Stichprobe wurde während der KEP-Befragung aufgenommen. In der schriftlichen Befragung wurden keine weiteren derartigen Daten erhoben.

Die soziodemografischen Charakteristika der Befragten der verwendbaren SPs entsprechen der KEP Stichprobe und sind damit auch für die Grundgesamtheit repräsentativ (Tabelle 5).
Auch die Verteilung der Fahrzwecke (Tabelle 6) und die Quotierung der 23 verschiedenen Teilstichproben (Tabelle 7) sind repräsentativ abgebildet.

Tabelle 5 Soziodemographische Charakteristiken der Befragten

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ausprägung</th>
<th>KEP Anteil [%]</th>
<th>verwendbare SP Anteil [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>Männlich</td>
<td>51.0</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>49.0</td>
<td>47.2</td>
</tr>
<tr>
<td>Abonnement-Besitz</td>
<td>GA*</td>
<td>8.4</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>Halbtax Abo.</td>
<td>20.8</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>Andere Abo.</td>
<td>10.2</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Keine ÖV Abo.</td>
<td>60.6</td>
<td>60.8</td>
</tr>
<tr>
<td>Erwerbstätigkeit</td>
<td>Vollzeit</td>
<td>49.3</td>
<td>51.1</td>
</tr>
<tr>
<td></td>
<td>Teilzeit</td>
<td>18.4</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>32.9</td>
<td>31.2</td>
</tr>
<tr>
<td>PKW-Verfügbarkeit</td>
<td>Immer</td>
<td>55.9</td>
<td>60.6</td>
</tr>
<tr>
<td></td>
<td>Gelegentlich</td>
<td>21.0</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>Nie</td>
<td>23.1</td>
<td>19.0</td>
</tr>
<tr>
<td>Altersstruktur</td>
<td>Unter 25 Jahre</td>
<td>16.5</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>25 – 45 Jahre</td>
<td>30.2</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>45 – 65 Jahre</td>
<td>34.1</td>
<td>36.1</td>
</tr>
<tr>
<td></td>
<td>> 65 Jahre</td>
<td>14.2</td>
<td>12.7</td>
</tr>
</tbody>
</table>

(*) GA = Jahresabonnement

Tabelle 6 Verteilung nach Fahrzweck

<table>
<thead>
<tr>
<th>Fahrzweck</th>
<th>Soll</th>
<th>verwendbare SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeit</td>
<td>28.6</td>
<td>23.9</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>2.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Einkauf</td>
<td>20.4</td>
<td>20.5</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>7.3</td>
<td>6.9</td>
</tr>
<tr>
<td>Freizeit</td>
<td>41.4</td>
<td>47.4</td>
</tr>
</tbody>
</table>
Tabelle 7 Stichprobenaufteilung

<table>
<thead>
<tr>
<th>SP-Klasse</th>
<th>SP-Klasse Name</th>
<th>Soll</th>
<th>verwendbare SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ÖV, Arbeit, = 10km</td>
<td>2.8%</td>
<td>2.6%</td>
</tr>
<tr>
<td>2</td>
<td>ÖV, Arbeit, > 10km</td>
<td>4.7%</td>
<td>6.7%</td>
</tr>
<tr>
<td>3</td>
<td>MIV, Arbeit, = 5km</td>
<td>4.1%</td>
<td>1.5%</td>
</tr>
<tr>
<td>4</td>
<td>MIV, Arbeit, > 5 = 10km</td>
<td>2.8%</td>
<td>2.1%</td>
</tr>
<tr>
<td>5</td>
<td>MIV, Arbeit, > 10 = 20km</td>
<td>3.4%</td>
<td>2.4%</td>
</tr>
<tr>
<td>6</td>
<td>MIV, Arbeit, > 20km</td>
<td>4.0%</td>
<td>2.7%</td>
</tr>
<tr>
<td>7</td>
<td>LIV, Arbeit</td>
<td>6.7%</td>
<td>6.4%</td>
</tr>
<tr>
<td>8</td>
<td>ÖV/MIV, Ausbildung</td>
<td>1.7%</td>
<td>1.2%</td>
</tr>
<tr>
<td>9</td>
<td>LIV, Ausbildung</td>
<td>0.6%</td>
<td>0.1%</td>
</tr>
<tr>
<td>10</td>
<td>ÖV, Einkauf</td>
<td>2.9%</td>
<td>2.3%</td>
</tr>
<tr>
<td>11</td>
<td>MIV, Einkauf, = 5km</td>
<td>4.6%</td>
<td>4.9%</td>
</tr>
<tr>
<td>12</td>
<td>MIV, Einkauf, > 5 = 10km</td>
<td>2.1%</td>
<td>2.4%</td>
</tr>
<tr>
<td>13</td>
<td>MIV, Einkauf, > 10km</td>
<td>2.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>14</td>
<td>LIV, Einkauf</td>
<td>7.9%</td>
<td>9.4%</td>
</tr>
<tr>
<td>15</td>
<td>ÖV, Nutzfahrt</td>
<td>1.0%</td>
<td>0.8%</td>
</tr>
<tr>
<td>16</td>
<td>MIV, Nutzfahrt</td>
<td>5.5%</td>
<td>5.0%</td>
</tr>
<tr>
<td>17</td>
<td>LIV, Nutzfahrt</td>
<td>0.8%</td>
<td>1.1%</td>
</tr>
<tr>
<td>18</td>
<td>ÖV, Freizeit, =10km</td>
<td>3.6%</td>
<td>2.3%</td>
</tr>
<tr>
<td>19</td>
<td>ÖV, Freizeit, > 10km</td>
<td>3.3%</td>
<td>5.6%</td>
</tr>
<tr>
<td>20</td>
<td>MIV, Freizeit, = 5km</td>
<td>6.3%</td>
<td>4.4%</td>
</tr>
<tr>
<td>21</td>
<td>MIV, Freizeit, > 5 = 10km</td>
<td>4.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>22</td>
<td>MIV, Freizeit, > 10km</td>
<td>9.9%</td>
<td>20.2%</td>
</tr>
<tr>
<td>23</td>
<td>LIV, Freizeit</td>
<td>14.3%</td>
<td>12.9%</td>
</tr>
</tbody>
</table>

Die aus dem Rücklauf erhaltenen Fragebögen wurden in einem nächsten Schritt in einer MS ACCESS Datenbank elektronisch kodiert. Sowohl die ermittelten Attribute des Ausgangsweges (auf Basis der KEP) als auch die generierten SP-Situationen mit allen Datengrundlagen zur Person und dem Weg wurden in der Datenbank gespeichert. Dazu wurden nach dem Rücklauf der Fragebogen nur noch die Auswahlentscheidungen der Befragten eingetragen.
Die so vorbereiteten Daten sind für die weiteren Auswertungen und die Modellschätzungen geeignet. Damit sind hier sowohl alle angebotsseitigen bzw. unabhängigen Variablen als auch die Entscheidungs- bzw. abhängigen Variablen vorhanden. Für die Modellschätzung wurden die aus den Fragebogen kodierten Entscheidungen und die Werte der Einflussgrössen mit den soziodemografischen Variablen ergänzt.

Bevor die Daten als Eingangsdaten für die Logit-Schätzungen verwendet werden können, musste eine Plausibilitätsprüfung durchgeführt werden. Dabei würden Daten von Fragebögen gelöscht, in denen nur ein oder zwei Antworten bei acht Situationen vorlagen. Auch wurde der Trade-Off zwischen den Alternativen berechnet und extrem unlogische Antworten gelöscht.

Für die Schätzung der Verkehrsmittelwahl lagen nach der Plausibilisierung 6'448 Fälle vor, wovon 4'473 standardisierte und 1'975 situative SPs sind. Von den gesamt 6'448 Fällen haben 3'256 zwei Alternativen und 3'192 Fälle haben 3 Alternativen (MIV, ÖV, LIV). Für die Schätzung der Routenwahl sind nach der Plausibilisierung 6'411 Fälle vorhanden, wovon 4'434 standardisierte und 1'977 situative Fälle sind.

5.2 Modellschätzung

5.2.1 Modellansatz
Mit den vorher beschriebenen SP-Daten wird im folgenden Schritt versucht, mit geeigneten statistischen Verfahren das Verkehrsverhalten der Verkehrsteilnehmer zu erklären. Dafür wird ein disaggregierter Modellansatz angewendet, der auf der Theorie des individuellen Verhaltens basiert. Betrachtet werden die Wahlentscheidungen bei sich wechselseitig beeinflussenden Alternativen. Für die individuellen Entscheidungen wird durch die Methode der Nutzenmaximierung eine bestimmte Wahrscheinlichkeit berechnet. Dabei wird für jede Alternative i ein bestimmter Nutzen \(V_i \) berechnet. Durch den berechneten Nutzen (oder die negativen Kosten) kann die Auswahlwahrscheinlichkeit \(P_i \) für die Auswahl einer Alternative bzw. eines Verkehrsmittels mit dem multinominalen Logit-Ansatz ermittelt werden.

Wenn das Individuum seine Nutzenfunktion und die Charakteristika der Alternative kennt, wählt es vernünftigerweise jene Alternative, die ihm den höchsten Nutzen ermöglicht. Dies ist die bekannte Annahme der Nutzenmaximierung unter der Nebenbedingung, dass die gewählte Alternative in der Alternativenmenge liegt:
\[a_{opt,n} = \left\{ a_{kn} \mid U(a_{kn}) \geq U(a_{k'n}) \right\}, \quad k'=1, \ldots, I_n, a_{kn} \in A_n \] (1)

Dies kann auch als die Aussage über die Wahlentscheidung des Individuums dargestellt werden d.h.:

\[a_{kn} = a_{opt,n} \] (2)

Aufgrund der Annahme des nutzenmaximierenden Verhaltens ist diese Aussage äquivalent zu der, dass der Nutzen der Alternative \(k \) am höchsten ist:

\[U_{kn} \geq U_{k'n} \quad k'=1, \ldots, I_n, a_{kn} \in A_n \] (3)

Solange das deterministische Nutzenkonzept angewendet wird, ist die Aussage (3) richtig oder falsch. Mit dem verwenden des Konzepts des Zufallsnutzens kann eine Wahrscheinlichkeitsaussage über das Zutreffen von (2) bzw. (3) wie folgt formuliert werden:

\[P(a_{kn} = a_{opt,n}) = \text{Prob}(U_{kn} \geq U_{k'n}) \quad k'=1, \ldots, I_n, a_{kn} \in A_n \] (4)

Die Wahrscheinlichkeit, dass das Individuum \(n \) Alternative \(k \) wählt, ist gleich der Wahrscheinlichkeit dafür, dass die Alternative \(i \) die höchsten (Zufalls-) Nutzen aufweist. Durch die Berücksichtigung sowohl deterministischer als auch stochastischer Nutzkomponenten kann die Gleichung (4) wie folgt geschrieben werden:

\[P_n(k) = \text{Prob}(V_{kn} + e_{kn} - V_{k'n} \geq e_{k'n}, k'=1, \ldots, I_n) \] (5)

\[= \text{Prob}(V_{kn} - V_{k'n} \geq e_{k'n} - e_{kn}, k'=1, \ldots, I_n) \] (6)

Gleichung (6) zeigt, dass die Nutzendifferenzen für die Entscheidung von Bedeutung sind. Mit unterschiedlichen Verteilungsannahmen können verschiedene Formen diskreter Entscheidungsmodelle abgeleitet werden.

Das Logit-Modell ist das am häufigsten angewandte multinominale diskrete Entscheidungsmodell. Bei diesem Modell wird die Annahme getroffen, dass die Störterme (Zufallsterme) unabhängig identisch gumbelverteilt sind.

Die Wahrscheinlichkeit, dass eine bestimmte Alternative \(k \) gewählt wird, ist gleich der Wahrscheinlichkeit, dass die Nutzen dieser Alternative \(U_{kn} \) grösser sind als die Nutzen \(U_{k'n} \) aller anderen Alternativen \(k' \)

\[U_{kn} \geq U_{kh}, \forall k', \] (7)
Dabei ist \(U_{kn} = V_{kn} + e_{kn} \)

wobei \(V \) eine systematische Nutzenkomponente, die deterministisch ist, darstellt und \(e \) eine stochastische Nutzenkomponente ist. Aus diesen beiden Komponenten setzt sich der gesamte Nutzen einer Alternative zusammen.

Daraus folgt, dass

\[
V_{kn} - V_{k'n} \geq e_{kn} - e_{k'n}, \forall k'
\]

bzw.

\[
P_n(k) = \text{Prob}(V_{kn} + e_{kn} \geq V_{k'n} + e_{k'n}, \forall k' \in K_n)
\]

\(P \) Wahrscheinlichkeit
\(\text{Prob} \) Wahrscheinlichkeitsfunktion
\(k, k' \) Alternativen
\(n \) Person
\(U \) Nutzen
\(K \) Alternativenmenge

Die systematischen Nutzen einer Alternative werden sowohl durch die Merkmale des Individuums \(s_n \) als auch den Vektor \(z_{kn} \) der Alternative beschrieben. Die beiden Vektoren werden durch eine Funktion \(h \) in einen Attributvektor \(x_n \) zusammengefasst (Ben-Akiva und Lehrman, 1985).

\[
x_{kn} = h(z_{kn}, s_n)
\]

wobei

\(x_{kn} \) entscheidungsbeeinflussende Attribute für Wahl der Alternative \(k \) durch Person \(n \)
\(h \) vektorwertige Transformationsfunktion
\(z_{kn} \) Attribute der Alternative \(k \) für Person \(n \)
\(s_n \) sozioökonomische Attribute der Person \(n \)

Die Funktion \(h \) kann linear, aber auch nichtlinear sein. In der Regel wird angenommen, dass die Nutzen bezüglich der Attribute \(x_{kn} \) linear sind mit einem Vektor unbekannter Parameter \(\beta \)

\[
V_{kn} = \beta_1 x_{kn1} + \beta_2 x_{kn2} + \ldots + \beta_N x_{knN} = \beta^t x_{kn}
\]
Der Nutzen V_k der einzelnen Verkehrsmittel wird aus dem Variablenwert (Zeit in h oder Preis in Fr., ...) und den ermittelten Parametern (Koeffizienten β_i) berechnet:

$$V_k = \beta_0 + \sum_{i}^{N} (\beta_i * \text{Variable}_i) \quad (12)$$

Durch die Parameter wird der Beitrag der einzelnen Variablen zum Nutzen abgebildet. Die Parameter beschreiben die Empfindlichkeit der Verkehrsmittelwahl gegenüber Änderungen der einzelnen Variablenwerte der Verkehrsmittel.

Durch die Bestimmung von β-Parametern im Verkehrsmittelwahl-Ansatz wird der Verlauf der Verkehrsmittelwahl-Funktion definiert, welche die Abhängigkeit des Verkehrsmittelwahl-Anteils eines Verkehrsmittels vom berechneten Nutzen (quantifiziertes Verkehrsangebot) beschreibt.

Beim multinominalen Logit Modell (MNL) wird die Auswahlwahrscheinlichkeit der Person n für die Alternative k wie folgt berechnet:

$$P_n(k) = \frac{\exp(V_{kn})}{\sum_{k'} \exp(V_{k'n})} = \frac{\exp(\beta' x_{kn})}{\sum_{k'} \exp(\beta' x_{k'n})} \quad (13)$$

wo x_{kn} und $x_{k'n}$ Vektoren für die Beschreibung der Attribute der Alternativen k und k’ sind.

Bei der Ermittlung der Parameter wird die Erklärungsgüte der abhängigen durch die unababhängigen Variablen mittels statistischen Kennziffern wie ρ^2, Signifikanz der Parameter (t Test), Log-Likelihood-Funktion etc. überprüft. Analysiert und ausgewertet werden verschiedene Kombinationen von unababhängigen Variablen in Abhängigkeit der Modell-Güte und der Plausibilität der ermittelten Parameter.
5.2.2 Modellergebnisse - Verkehrsmittelwahl

Tabelle 8 Verkehrsmittelwahl: Ergebnisse der Logit-Schätzung mit ganzen Datensatz

<table>
<thead>
<tr>
<th>Variable (1)</th>
<th>Modell Parameter (β)</th>
<th>Alle Fahrtzwecke</th>
<th>Pendler</th>
<th>Nutzfahrt</th>
<th>Einkauf</th>
<th>Freizeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIV Konstante</td>
<td>-6.768 * *</td>
<td>-6.160 *</td>
<td>-8.767 *</td>
<td>-2.769 *</td>
<td>-9.179 *</td>
<td></td>
</tr>
<tr>
<td>LIV Fahrzeit (h)</td>
<td>-5.120 *</td>
<td>-4.114 *</td>
<td>-8.743 *</td>
<td>-4.247 *</td>
<td>-6.683 *</td>
<td></td>
</tr>
<tr>
<td>MIV Fahrzeit (h)</td>
<td>-0.893 *</td>
<td>-1.654 *</td>
<td>-1.937 *</td>
<td>-2.496 *</td>
<td>-0.984 *</td>
<td></td>
</tr>
<tr>
<td>MIV Preis (SFr)</td>
<td>-0.050 *</td>
<td>-0.205 *</td>
<td>-0.030 *</td>
<td>-0.223 *</td>
<td>-0.067 *</td>
<td></td>
</tr>
<tr>
<td>MIV Verlässlichkeit</td>
<td>-0.892 *</td>
<td>-1.359</td>
<td>-4.593 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIV PW-Verfügbarkeit</td>
<td>1.094 *</td>
<td>0.637 *</td>
<td>0.805 *</td>
<td>2.752 *</td>
<td>1.043 *</td>
<td></td>
</tr>
<tr>
<td>ÖV Fahrzeit (h)</td>
<td>-0.609 *</td>
<td>-1.512 *</td>
<td>-1.208 *</td>
<td>-2.078 *</td>
<td>-0.728 *</td>
<td></td>
</tr>
<tr>
<td>ÖV Preis (SFr)</td>
<td>-0.050 *</td>
<td>-0.205 *</td>
<td>-0.030 *</td>
<td>-0.223 *</td>
<td>-0.067 *</td>
<td></td>
</tr>
<tr>
<td>ÖV Zugangszeit (h)</td>
<td>-2.093 *</td>
<td>-4.129 *</td>
<td>-2.469 *</td>
<td>-4.172 *</td>
<td>-1.218 *</td>
<td></td>
</tr>
<tr>
<td>ÖV Verlässlichkeit</td>
<td>-1.008 *</td>
<td>-1.729</td>
<td>-3.752 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Intervall (h)</td>
<td>-0.446 *</td>
<td>-0.638 *</td>
<td>-1.270</td>
<td>-0.393 *</td>
<td>-0.513 *</td>
<td></td>
</tr>
<tr>
<td>ÖV Umsteigezahl</td>
<td>-0.304 *</td>
<td>-0.451 *</td>
<td>-0.322 *</td>
<td>-0.302 *</td>
<td>-0.340 *</td>
<td></td>
</tr>
<tr>
<td>ÖV Alter^2 (Jahren)</td>
<td>0.00013 *</td>
<td>0.00019 *</td>
<td>0.00016 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV GA Besitz</td>
<td>1.948 *</td>
<td>2.604 *</td>
<td>2.767 *</td>
<td>3.182 *</td>
<td>1.100 *</td>
<td></td>
</tr>
<tr>
<td>ÖV Halbtax Besitz</td>
<td>0.993 *</td>
<td>1.602 *</td>
<td>1.442 *</td>
<td>0.880 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÖV Andere Abos</td>
<td>1.011 *</td>
<td>1.502 *</td>
<td>2.442 *</td>
<td>2.063 *</td>
<td>0.842 *</td>
<td></td>
</tr>
<tr>
<td>Skalierungsfaktor</td>
<td>0.076</td>
<td>0.127</td>
<td>0.060</td>
<td>0.220</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>Anzahl Beobachtungen</td>
<td>6448</td>
<td>1684</td>
<td>461</td>
<td>1348</td>
<td>2819</td>
<td></td>
</tr>
<tr>
<td>Adj. ρ²</td>
<td>0.1403</td>
<td>0.1626</td>
<td>0.1822</td>
<td>0.0630</td>
<td>0.1794</td>
<td></td>
</tr>
</tbody>
</table>

(*) signifikant α < 0.05
(1) Für die genaue Definition der Variablen siehe Kapitel 5.1.2
Die hier ermittelten adjusted $\rho^2 (\beta)$ zeigen, dass die Modelle eine genügend gute Erklärungskraft haben ($\rho^2 (\beta)$ sind durchwegs kleiner als R^2; ein $\rho^2 (\beta)$ von 0.3 stellt im Allgemeinen schon eine sehr gute Übereinstimmung dar). Wie im vorangegangenen Kapitel beschrieben, gibt es bei der Verkehrsmittelwahl Fälle mit 2 oder 3 Alternativen. Um diese unterschiedlichen Daten gemeinsam schätzen zu können, wurden sie als 2 Gruppen innerhalb des Logit-Modells definiert und ein zu schätzender Skalierungsfaktor eingeführt. Somit können die Parameter mit dem gesamten Datensatz ermittelt werden. Es zeigte sich aber, dass speziell der Parameter LIV-Fahrtzeit unrealistische Werte einnahm. Dies hängt wahrscheinlich mit der Erfassungsmethode des KEP und mit der grossen Varianz der Weglängen (vergleiche auch den Skalierungsfaktor) zusammen. Daher wurden zuerst die Daten mit 2 Alternativen geschätzt und die erhaltenen Ergebnisse der Parameter Preis, MIV-Fahrzeit und ÖV-Fahrzeit dann bei der Schätzung mit den Daten der 3 Alternativen fix gesetzt. Der daraus erhaltene Parameter für die LIV-Fahrt wurde dann im Modell mit den gesamten Daten fix vorgegeben und anschliessend alle anderen Parameter neu geschätzt.

Variablen, die nicht am 90%-Niveau signifikant waren, wurden aus dem Modell entfernt. Daher ist in Tabelle 8 für die Variablen mit einem geringeren Signifikantsniveau als 90% kein Parameterwert angegeben (z.B. Alter beim Fahrzweck Nutzfahrt).

Wie schon in bisherigen Untersuchungen zeigen die PW-Benutzer einen höheren Zeitwert als die ÖV Benutzer. Die relative Bewertung der Einflussgrössen ergibt sich aus dem Verhältnis der entsprechenden Modellparameter:

$$VOT = \frac{\beta_{\text{Fahrzeit}}}{\beta_{\text{Preis}}} \left[\frac{1}{\text{Preis}} \frac{1}{\text{Fahrzeit}} = \frac{\text{Preis}}{\text{Fahrzeit}} \right]$$
Der Zeitwert im MIV wird z. B. aus dem Verhältnis des Fahrzeitparameters zum Preisparameter (z.B. -0.893 / -0.050 = 17.9 CHF/h) berechnet.

Tabelle 9 Verkehrsmittelwahl: Relative Bewertung der Einflussgrössen (SP Schätzung)

<table>
<thead>
<tr>
<th>Fahrtzwecke</th>
<th>Alle</th>
<th>Pendler</th>
<th>Nutzfahrt</th>
<th>Einkauf</th>
<th>Freizeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitwert MIV-Fahrzeit [CHF/h]</td>
<td>17.9</td>
<td>8.1</td>
<td>64.6</td>
<td>10.7</td>
<td>14.7</td>
</tr>
<tr>
<td>Zeitwert ÖV-Fahrzeit [CHF/h]</td>
<td>12.2</td>
<td>7.4</td>
<td>40.3</td>
<td>9.3</td>
<td>10.9</td>
</tr>
<tr>
<td>Zeitwert Intervall [CHF/h]</td>
<td>8.9</td>
<td>3.1</td>
<td>42.3</td>
<td>1.8</td>
<td>7.7</td>
</tr>
<tr>
<td>Umsteigewert [CHF/Umsteige]</td>
<td>6.1</td>
<td>2.2</td>
<td>10.7</td>
<td>1.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Verlässlichkeit MIV* [CHF/Wahrschein.]</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verlässlichkeit ÖV* [CHF/Wahrschein.]</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative Verhältnisse der Parameter

Fahrzeit MIV / ÖV	1.5	1.1	1.6	1.2	1.4
Verlässlichkeit MIV / ÖV	0.9	0.8	1.2		
Umsteigekosten / Fahrzeit ÖV	29.9	17.9	16.0	8.7	28.0
Intervall / Fahrzeit ÖV	0.7	0.4	1.1	0.2	0.7
Zugangszeit ÖV / Fahrzeit ÖV	3.4	2.7	2.0	2.0	1.7

(*) Wahrscheinlichkeit für eine Verspätung von min. 10 min.

Beim Verhältnis von Umsteigekosten zur ÖV-Fahrzeit ist anzunehmen, dass die Befragten bei der vorgegebenen Umsteigekosten erwartungsgemäss auch eine minimale Umsteigekosten berücksichtigt haben. Einmal Umsteigen wird mit durchschnittlich 15 min. zusätzlicher Fahrzeit bewertet und zeigt sich beim Vergleich zwischen den Fahrzwecken relativ instabil. Insbesondere scheint der Wert für den Zweck Einkauf zu niedrig bzw. der Wert für den Zweck Freizeit

Aufgrund der vorher beschriebenen Probleme bei der Schätzung des LIV-Fahrzeitparameters und der Nichtberücksichtigung der Alternative LIV für die Elastizitätsberechnung, wurde für diese eine neue Logit-Schätzung vorgenommen. Dabei wurden nur die Fälle mit zwei Alternativen und Fahrzeit unter 2.5 Stunden berücksichtigt. Der Grund für die Einführung einer Zeitgrenze war, dass relativ wenige, aber sehr lange Fahrten die Schätzergebnisse beeinflussen.

Die erhaltenen Parameter (siehe Tabelle 10) für die zwei Alternativen (MIV und ÖV) unterscheiden sich zu den Parametern aus den vollständigen Datensatz (Tabelle 8) bei Fahrzeit und Preis. Die übrigen Angebots- und die Trägheitsparameter (Autobesitz, GA Besitz,...) haben sehr ähnliche Größenordnungen. Wie erwartet ist das adjusted $\rho^2(\hat{\beta})$ rund doppelt so gross wie bei der Schätzung mit dem gesamten Datensatz. Aufgrund der geringen Stichproben bei den Fahrzwecken Nutzfahrt und Einkauf konnten bei diesen nicht alle Parameter geschätzt werden.

Der Vergleich der hier ermittelten Modellparameter mit den früheren Untersuchungen zu diese Thema (Vrtic et al., 2003) bestätigt, dass das Verkehrsmittelwahlverhalten und die geschätzten Parameter auch von der Reiseweite abhängig sind. Die in diesem Projekt ermittelten Zeitwerte sind niedriger als die Zeitwerte von Vrtic et al., 2003 (MIV Fahrzeit 27.7 CHF/h, ÖV Fahrzeit 18.5 CHF/h), was vor allem auf die deutlich kürzere Weglänge der hier verwendeten SP-Stichprobe und der im Modell betrachteten Verkehrsströme zurückzuführen ist. Für die praktischen Anwendungen ist es wichtig, dass zwischen den ermittelten bzw. verwendeten Zeitwerten und den betrachteten Verkehrsströmen eine Konsistenz besteht. Dafür sollte die für die Schätzung der Zeitwerte verwendete Stichprobe eine ähnliche Reiseweiteverteilung besitzen, wie die Verkehrsströme des bei dem konkreten Projekt betrachteten Untersuchungsgebiets.
Tabelle 10 Verkehrsmittelwahl: Ergebnisse der Logit-Schätzung für 2 Alternativen (ohne LIV) mit Fahrzeiten unter 2.5h (reduzierter Datensatz)

<table>
<thead>
<tr>
<th>Variable (1)</th>
<th>Alle Fahrtzwecke</th>
<th>Pendler</th>
<th>Nutzfahrt</th>
<th>Einkauf</th>
<th>Freizeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrzeit (h)</td>
<td>-1.470*</td>
<td>-1.718*</td>
<td>-2.334*</td>
<td>-2.789*</td>
<td>-1.179*</td>
</tr>
<tr>
<td>Preis (SFr)</td>
<td>-0.121*</td>
<td>-0.265*</td>
<td></td>
<td></td>
<td>-0.107*</td>
</tr>
<tr>
<td>Verlässlichkeit</td>
<td>-0.599</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW-Verfügbarkeit</td>
<td>1.068*</td>
<td>0.498*</td>
<td></td>
<td>2.855*</td>
<td>1.170*</td>
</tr>
<tr>
<td>ÖV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrzeit (h)</td>
<td>-1.116*</td>
<td>-1.817*</td>
<td>-2.173*</td>
<td>-4.983*</td>
<td>-0.827*</td>
</tr>
<tr>
<td>Preis (SFr)</td>
<td>-0.121*</td>
<td>-0.265*</td>
<td></td>
<td>-0.745*</td>
<td>-0.107*</td>
</tr>
<tr>
<td>Zugangszeit (h)</td>
<td>-2.745*</td>
<td>-4.020*</td>
<td></td>
<td>-7.154*</td>
<td>-2.211*</td>
</tr>
<tr>
<td>Verlässlichkeit</td>
<td>-1.071*</td>
<td>-0.785*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervall (h)</td>
<td>-0.553*</td>
<td>-1.218*</td>
<td>-1.218*</td>
<td></td>
<td>-0.564*</td>
</tr>
<tr>
<td>Umsteigezahl</td>
<td>-0.316*</td>
<td>-0.352*</td>
<td>-0.882*</td>
<td></td>
<td>-0.391*</td>
</tr>
<tr>
<td>Alter*2 (Jahren)</td>
<td>0.00011*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA Besitz</td>
<td>1.696*</td>
<td>2.392*</td>
<td>3.289*</td>
<td>6.548*</td>
<td>0.789*</td>
</tr>
<tr>
<td>Halbtax Besitz</td>
<td>0.916*</td>
<td>1.566*</td>
<td>2.163*</td>
<td>0.783*</td>
<td></td>
</tr>
<tr>
<td>Andere Abos</td>
<td>0.949*</td>
<td>1.451*</td>
<td></td>
<td>7.894*</td>
<td>0.647*</td>
</tr>
</tbody>
</table>

Anzahl Beobachtungen |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2943</td>
</tr>
<tr>
<td>907</td>
</tr>
<tr>
<td>243</td>
</tr>
<tr>
<td>224</td>
</tr>
<tr>
<td>1569</td>
</tr>
</tbody>
</table>

Adj. ρ^2 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.257</td>
</tr>
<tr>
<td>0.298</td>
</tr>
<tr>
<td>0.347</td>
</tr>
<tr>
<td>0.350</td>
</tr>
<tr>
<td>0.246</td>
</tr>
</tbody>
</table>

(*) signifikant $\alpha < 0.05$
(1) Für die genaue Definition der Variablen siehe Kapitel 5.1.2

Für die Modellparameter des reduzierten Datensatzes (MIV und ÖV) aus Tabelle 10 wurden anschliessend die Elastizitäten berechnet (siehe Tabelle 11). Die Eigen- und Kreuzelastizität errechnen sich folgendermassen:

\[
\text{Eigenelastizität} = \frac{\text{Veränderung } - \text{ Anteil}[\%]}{\text{Veränderung } - \text{ Variable}[\%]} =
\]

\[
\frac{(P^1_j - P^0_j)}{X^1_j - X^0_j} \frac{\partial P_j}{P^0_j} = \beta_j \frac{X_{ij}}{P_j}
\]

\[
\beta_{kj} P_k (1 - P_j) \frac{X_{ij}}{P_j} = \beta_{kj} (1 - P_j) X_{ij}
\]

\[
\text{Kreuzelastizität} = -\beta_{ki} P_i X_{ki}
\]
wobei P_j die Auswahlwahrscheinlichkeit für die Alternative j und X_k der Mittelwert der Variable sind, wobei beide aus den SP-Daten ermittelt wurden.

Die berechneten Nachfrageelasticitäten bestätigen die Bedeutung der einzelnen Einflussfaktoren, die sich in der Analyse der Modellparameter zeigten. Die Ergebnisse stimmen weitgehend mit den neuesten Untersuchungen zu diesem Thema (Vrtic et al., 2003) überein. Die ermittelten Elastizitätswerte können wie folgt gelesen werden: die Variable Reisezeit MIV hat eine Eigenelasticität von -0.320 und eine Kreuzelasticität von 0.598. Wenn die Reisezeit im MIV um 10% erhöht wird, dann geht die MIV-Nachfrage um 3.2% zurück. Andererseits steigt durch eine 10%-Erhöhung der Reisezeit im MIV die Nachfrage im ÖV um 5.98%.

Tabelle 11 Verkehrsmittelwahl: Nachfrageelasticitäten aus SP-Daten

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nachfrage</th>
<th>Alle Fahrtzwecke</th>
<th>Pendler</th>
<th>Freizeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reisezeit MIV</td>
<td>MIV</td>
<td>-0.320</td>
<td>-0.346</td>
<td>-0.279</td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>0.598</td>
<td>0.513</td>
<td>0.578</td>
</tr>
<tr>
<td>Preis MIV</td>
<td>MIV</td>
<td>-0.311</td>
<td>-0.512</td>
<td>-0.322</td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>0.580</td>
<td>0.760</td>
<td>0.666</td>
</tr>
<tr>
<td>Fahrzeit ÖV</td>
<td>MIV</td>
<td>0.275</td>
<td>0.373</td>
<td>0.230</td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>-0.514</td>
<td>-0.554</td>
<td>-0.476</td>
</tr>
<tr>
<td>Preis ÖV</td>
<td>MIV</td>
<td>0.319</td>
<td>0.477</td>
<td>0.337</td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>-0.596</td>
<td>-0.709</td>
<td>-0.697</td>
</tr>
<tr>
<td>Zugangszeit ÖV</td>
<td>MIV</td>
<td>0.263</td>
<td>0.451</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>-0.492</td>
<td>-0.670</td>
<td>-0.417</td>
</tr>
<tr>
<td>Intervall ÖV</td>
<td>MIV</td>
<td>0.102</td>
<td>0.150</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>-0.191</td>
<td>-0.223</td>
<td>-0.228</td>
</tr>
<tr>
<td>Umsteigezahl ÖV</td>
<td>MIV</td>
<td>0.141</td>
<td>0.123</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>-0.264</td>
<td>-0.182</td>
<td>-0.398</td>
</tr>
<tr>
<td>Verlässlichkeit MIV</td>
<td>MIV</td>
<td>-0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>0.066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verlässlichkeit ÖV</td>
<td>MIV</td>
<td>0.037</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ÖV</td>
<td>-0.070</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2.3 Modellergebnisse - Routenwahl

Für die Verbesserung der Qualität des ÖV ist es nötig zu wissen, welche Einflussfaktoren bzw. Attribute die Qualität bestimmen und wie bedeutend diese für das Entscheidungsverhalten sind. Da verschiedene Massnahmen mit unterschiedlichem Kostenaufwand realisiert werden können, ist die Schätzung der Nachfragerreaktion auf die Angebotsveränderung eine wesentliche Voraussetzung bei der Planung des ÖV. In diesem Projekt werden neben der Veränderung der Verkehrsmittelwahl die Routenwahlsmodelle geschätzt. Im Gegensatz zum Individualverkehr, wo bei der Schätzung des Routenwahlsmodells vor allem Zeit- und Kostenattribute (angebotsbezogen) betrachtet werden, müssen im ÖV weitere quantitative und qualitative Attribute berücksichtigt werden. Bei den quantitativen Variablen sind dies insbesondere die Bedienungshäufigkeit (Wartezeit am Bahnhof, Verlässlichkeit...), Umsteigewahl und Umsteigezeit, bei den qualitativen Variablen der Komfort bzw. Zugtyp, Service usw.

Bei bisherigen Modellschätzungen wurden selten gemeinsame Modellschätzungen unter Berücksichtigung all dieser Variablen (sowohl qualitativer als auch quantitativer) durchgeführt. Dadurch wird vor allem die Bedeutung der qualitativen Einflussfaktoren vernachlässigt.

Die Parameter für das Routenwahlsmodell (ÖV) wurden ebenfalls mit dem MNL Modell geschätzt. Die Schätzung dieser Parameter ergibt die Grundlage für das Umlegungsmodell. Wie bei der Verkehrsmittelwahlschätzung wurde die Grundlage für das Umlegungsmodell, wo die Fahrtzwecke ermittelt. Wie bereits beschrieben, wurde die Datengrundlage für die Modellschätzung zusammen mit den SP-Befragungen über die Verkehrsmittelwahl erhoben. Die Ergebnisse der SP-Schätzung sind in Tabelle 12 dargestellt. Bei der Schätzung der Modellparameter wurden die Umsteigewahl und Umsteigezeit getrennt betrachtet.
Tabelle 12 Routenwahlmodell: Ergebnisse der SP-Schätzung (MNL)

<table>
<thead>
<tr>
<th>Variable**</th>
<th>Alle Fahrzwecke</th>
<th>Pendler</th>
<th>Einkauf</th>
<th>Nutzfahrt</th>
<th>Freizeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖV Fahrzeit (h)</td>
<td>-7.537 *</td>
<td>-7.128 *</td>
<td>-8.635 *</td>
<td>-6.058 *</td>
<td>-7.116 *</td>
</tr>
<tr>
<td>Preis (SFr(</td>
<td>-0.724 *</td>
<td>-0.766 *</td>
<td>-1.193 *</td>
<td>-0.343 *</td>
<td>-0.747 *</td>
</tr>
<tr>
<td>Intervall (h)</td>
<td>-3.705 *</td>
<td>-3.924 *</td>
<td>-5.082 *</td>
<td>-1.880 *</td>
<td>-3.539 *</td>
</tr>
<tr>
<td>Umsteigezahl</td>
<td>-1.357 *</td>
<td>-1.261 *</td>
<td>-1.477 *</td>
<td>-1.183 *</td>
<td>-1.494 *</td>
</tr>
<tr>
<td>Umsteigezeit (h)</td>
<td>-1.701 *</td>
<td>-3.087 *</td>
<td>-6.134 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugangszeit (h)</td>
<td>-8.036 *</td>
<td>-8.251 *</td>
<td>-7.082 *</td>
<td>-6.540 *</td>
<td>-8.635 *</td>
</tr>
<tr>
<td>Komfort Bus¹</td>
<td>0.191 *</td>
<td>0.236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komfort Tram¹</td>
<td>0.310 *</td>
<td>0.331 *</td>
<td>0.360 *</td>
<td>0.320 *</td>
<td></td>
</tr>
<tr>
<td>Komfort S-Bahn¹</td>
<td>0.182 *</td>
<td>0.305 *</td>
<td>0.230 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komfort Zug¹</td>
<td>0.210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komfort ICN-Zug¹</td>
<td>0.177</td>
<td>0.403</td>
<td>0.765</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N – Beobachtungen | 5617 | 1647 | 1327 | 452 | 2191
Adj. p^2 | 0.312 | 0.344 | 0.323 | 0.315 | 0.317

(*) signifikant $\alpha < 0.05$; ¹ im Verhältnis zum Regionalzug
(**) Für die genaue Definition der Variablen siehe Kapitel 5.1.2

Die entscheidende Variable für die Routenwahl ist, wie erwartet, die Fahrzeit. Als weitere wichtige Variable erweist sich die Umsteigezeit und die Zugangszeit. Die Parameter der Fahrzeit und der Zugangszeit haben ähnliche Grösse bei allen Fahrzwecken. Die Länge der War- tezeit beim Umsteigen wird höher bewertet als die Umsteighäufigkeit. Wie aus der Tabelle 13 ersichtlich, zeigen die geschätzten Modellparameter für den Komfort, wie gross die Zah-
die Zahlungsbereitschaft für diese Variable im Vergleich zu der schlechtesten Zugkategorie (in diesem Fall der Regionalzug) ist.

Tabelle 13 Routenwahl: Relative Bewertung der Einflussgrössen (SP Schätzung)

<table>
<thead>
<tr>
<th></th>
<th>Alle Zwecke</th>
<th>Fahrtzwecke</th>
<th>Pendler</th>
<th>Einkauf</th>
<th>Nutzfahrten</th>
<th>Freizeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitwert ÖV-Fahrzeit [CHF/h]</td>
<td>10.4</td>
<td>9.3</td>
<td>7.2</td>
<td>17.7</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Zeitwert Intervall [CHF/h]</td>
<td>5.1</td>
<td>5.1</td>
<td>4.3</td>
<td>5.5</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Zeitwert Umsteigzeit [CHF/h]</td>
<td>2.4</td>
<td>4.0</td>
<td>0.8</td>
<td>17.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umsteigewert [CHF/Umsteigen]</td>
<td>1.9</td>
<td>1.6</td>
<td>1.3</td>
<td>3.4</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Komfort Bus [CHF]*</td>
<td>0.3</td>
<td></td>
<td>0.2</td>
<td></td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Komfort Tram [CHF]*</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Komfort S-Bahn [CHF]*</td>
<td>0.3</td>
<td></td>
<td>0.4</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Komfort Zug [CHF]*</td>
<td>0.3</td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komfort ICN [CHF]*</td>
<td>0.3</td>
<td></td>
<td>0.5</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative Verhältnisse der Parameter

<table>
<thead>
<tr>
<th></th>
<th>Alle Zwecke</th>
<th>Fahrtzwecke</th>
<th>Pendler</th>
<th>Einkauf</th>
<th>Nutzfahrten</th>
<th>Freizeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umsteigezahl / Fahrzeit ÖV [min/Umsteigen]</td>
<td>10.8</td>
<td>10.7</td>
<td>10.3</td>
<td>11.7</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>Umsteigzeit / Fahrzeit ÖV</td>
<td>0.2</td>
<td>0.4</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervall / Fahrzeit ÖV</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

(*) Im Vergleich mit dem Regionalzug (Nahverkehrszug)

Zu beachten ist, dass im Gegensatz zum Verkehrsmittelwahlmodell die Umsteigezeit und Umsteigezahl als zwei getrennte Variablen betrachtet wurden. Damit ist für die Nutzenberechnung bei der Modellschätzung neben der Umsteigezeit die Umsteigezahl (ein Umsteigevorgang entspricht rund 11 min. Fahrzeit) als weitere Variable auch zu berücksichtigen.
6 Erzeugung der Quell-/Zielmatrizen

Für die Abbildung des Ist-Zustandes und damit auch für Verkehrsprognosen und die Berechnung von Nachfrageveränderungen sind realistische Quell-/Zielmatrizen die entscheidende Grundlage.

Basierend auf dem erstellten Verkehrsangebot und der Zonierung werden die nach Fahrztwecken getrennten Quell-/Ziel-Matrizen im ÖV, MIV und LIV für den durchschnittlichen Werktagsverkehr (DWV) geschätzt.

Die Erstellung der Matrizen basiert auf vier größeren Arbeitsschritten:

• Verkehrspotential: Verkehrserzeugung und Verkehrsanziehung der Zonen
• Schätzung von weiteren Modellparametern (neben den Verkehrsmittelwahlparametern aus der SP-Befragung) für die Nachfrageverteilung und -aufteilung
• Berechnung der Quell-Ziel-Matrizen
• Überprüfung und Rückkoppelung

Es werden folgende Fahrtzwecke unterschieden:

• Arbeit
• Ausbildung
• Nutzfahrt

Die Modellschätzungen werden ein simultanes Modell der Ziel- und Verkehrsmittelwahl ergeben, das in der Lage ist, die räumliche und modale Konkurrenz angemessen abzubilden. Die Schätzungen werden getrennt für die fünf Verkehrszwecke (Pendler, Ausbildung, Nutzverkehr, Einkauf, Freizeit und Sonstiges) vorgenommen.

Da sowohl Ziel- als auch Verkehrsmittelwahl-Entscheidungen der realen Verkehrsteilnehmer unter Berücksichtigung alternativer Verkehrsmittel getroffen werden, kann die Verkehrsverteilung und Verkehrsaufteilung (Verkehrsmittelwahl) nur unter Berücksichtigung alternativer Verkehrsmittel konsistent und plausibel modelliert werden. Damit ist die gleichzeitige Erstellung von Quell-Ziel-Matrizen aller Verkehrsträger eine grundlegende Voraussetzung. Es werden vollständige Matrizen, d.h. interzonale (Wege zwischen zwei Zonen) und intrazonale (Wege beginnen und enden innerhalb derselben Zone) Matrizen, für jede Quell-Ziel Gruppe erstellt. Insgesamt werden mit VISEVA 51 Matrizen erstellt, die in einem weiteren Schritt auf die Fahrtzwecke aggregiert werden.

Aus dieser Analyse folgt die Rückkoppelung und gegebenenfalls die Korrektur der Modellparameter oder unsicheren Eingangsgrössen der zuvor berechneten Quell-/Ziel-Matrizen (siehe weiter Kapitel 8). Im Folgenden werden die verwendeten Strukturdaten und Erzeugungsmodelle beschrieben.

6.1 Strukturdaten

6.1.1 Verkehrsproduktion

Wohnbevölkerung

Gesamtbevölkerung

nicht verfügbar war, mussten die Daten anders beschafft werden. Dabei wurde im Kanton Zürich und den übrigen Kantonen unterschiedlich vorgegangen.

Kanton Zürich

Übrige Kantone

Die Bevölkerungszahl 2003 je Verkehrsmodellzone für die übrigen Kantone wurde vom Statistischen Amt des Kantons Zürich zur Verfügung gestellt.

Altersstruktur

Die gesamte Wohnbevölkerung wird in fünf verschiedene Altersklassen unterteilt, da sich die Altersgruppen vor allem bezüglich der Produktion von Freizeit- und Einkaufsfahrten stark unterscheiden. Aus der Auswertung der Daten des Mikrozensus 2000 ergeben sich die folgenden zweckmässigen Altersklassen:

- < 15 Jahre
- 15 – 24 Jahre
- 25 – 59 Jahre
- 60 – 79 Jahre
- ≥ 80 Jahre

Erwerbstätige

6.1.2 Verkehrsattraktion

Beschäftigte

Kanton Zürich

Die Erhebung der Anzahl Beschäftigten pro Verkehrsmodellzone wurde vom Statistischen Amt des Kantons Zürich (Herr Dr. A. Herzog) basierend auf der Betriebszählung 2001 mit Gebäudedezution durchgeführt. Ermittelt hierzu wurde die Gesamtzahl an Vollzeit- und Teilzeitbeschäftigten in den Sektoren II und III und allen Branchen. Die Zuteilung zur entsprechenden Verkehrsmodellzone erfolgte über die Gebäude, in welchen die Beschäftigten tätig sind. Im Unterschied zur Auswertung der Wohnbevölkerung geschah aber keine Hoch-

Übrige Kantone

Die Anzahl Beschäftigten je Zone wurde vom Statistischen Amt des Kantons Zürich aufgrund der Betriebszählung 2001 (nur Sektoren II und III) abgeschätzt und in die Strukturdaten übernommen.

Ausbildungsplätze

Kulturangebot

Anzahl Einrichtungen

Das Kulturangebot ist ein weiterer bedeutender Hinweis auf die „Attraktivität“ einer Verkehrsmodellzone. Je mehr kulturelle Einrichtungen eine Zone aufweist, umso mehr Zielverkehr wird sie dadurch anziehen. Daten zum Kulturangebot standen für den Kanton Zürich und die übrigen Kantone nicht in derselben Genauigkeit zur Verfügung, was wiederum zwei verschiedene Auswertungsprozesse bedingte.
Kanton Zürich

Übrige Kantone

Anzahl Besucher

Verkaufsfläche

Auch die Anzahl und Grösse von Einkaufseinrichtungen hat eine zentrale Bedeutung für die Menge des angezogenen Verkehrs. Insbesondere Zonen mit grossen Einkaufszentren samt vielen Parkplätzen generieren sehr viel mehr Zielverkehr als ihre Nachbarzonen ohne solche Anlagen. Es wird für alle Kantone auf Daten der Firma Wüest&Partner über die Verkaufsflächen (inkl. Einkaufszentren) in Quadratmetern pro Gemeinde zugegriffen, diese Angaben sind flächendeckend einheitlich vorhanden und ein guter Indikator für den angezogenen Ziel-
verkehr. Eine Ausnahme hierbei bildet die Stadt Zürich. Vom Städtischen Amt für Statistik
ist auf der Homepage die Publikation „Die Quartiere der Stadt Zürich im Aufriss“ mit Anga-
ben über die Verkaufsfläche pro Quartier verfügbar. Wo die Auflösung der vorhandenen Da-
ten nicht fein genug ist (Stadt und Kanton Zürich), wurde die Verkaufsfläche proportional zu
der Anzahl Beschäftigten im Detailhandel (NOGA-Klasse 52) den Verkehrsmodellzonen zu-
geteilt.

Freizeit- und Erholungsanlagen

Neben den Anlagen für Kultur und Einkauf bilden auch alle anderen Einrichtungen für Frei-
zeit- und Erholungsaktivitäten eine wichtige Grundlage für die Attraktion von Zielverkehr.
Darunter versteht sich z.B. der Betrieb von Sportanlagen, botanischen Gärten, Zoos, Cam-
pingplätzen, Golfplätzen und Fitnesszentren, aber auch Grosseinrichtungen wie Stadien, Frei-
zeitparks etc.. Wiederum liegen die Daten für die Kantone aus unterschiedlichen Quellen vor.

Erholungs- und Grünanlagen, Grosseinrichtungen

Kanton Zürich

Die Anzahl der Betriebe in den betreffenden NOGA-Klassen (92.6.1A, 92.6.2B, 92.5.3A,
55.2.2A, 93.0.4B) werden nach dem gleichen Verfahren wie beim Kulturangebot aus der Be-
triebszählung 2001 ermittelt. Diese werden pro Verkehrsmodellzone aufsummiert zu einer
Gesamtanzahl von „kleineren Anlagen“. Die Grosseinrichtungen (v.a. Stadien) werden über
den gesamten Kanton manuell erfasst und den Zonen zugeordnet.

Übrige Kantone

Die Ermittlung der Zahl an kleinen und grossen Freizeitanlagen ausserhalb des Kantons Zü-
rich wird wiederum auf die beim IVT für das nationale Modell vorhandene Datenbank ge-
stützt. Die Angaben zu Erholungs- und Grünanlagen sowie Grosseinrichtungen werden über-
nommen zu einer Gesamtzahl von „kleineren Anlagen“, respektive „Grosseinrichtungen“ pro
Verkehrsmodellzone.

Anzahl Besucher

Auch für die Freizeit- und Erholungsanlagen wird eine durchschnittliche Besucherzahl benö-
tigt. Anhand der Datengrundlagen und des Erzeugungsmodells aus dem nationalen Modell
wird für „kleinere Anlagen“ ein durchschnittlicher täglicher Wert von 50 Besuchern pro
Werktag und Anlage angenommen. Die Grosseinrichtungen werden, sofern Daten vorhanden
sind, individuell auf ihre Besucherzahl untersucht. Für die Stadien Hallenstadion und Letzigrund, beide Stadt Zürich, sind im Statistischen Jahrbuch Angaben über die Anzahl Besucher vorhanden, für die Stadien Hardturm (Stadt Zürich) und Schluefweg Kloten werden Angaben über die Besucherzahl aus dem Internet beigezogen.

Gastronomie

Als letzter bedeutender Faktor für die Verkehrsanziehung werden gastronomische Betriebe, d.h. die Anzahl Hotels und Restaurants (inkl. Bars, Kantine, Tea-Rooms und Nachtcafes), ausgewiesen. Vergleichbar zu den Auswertungen zu Kultur, Freizeit und Einkauf liegen die Daten in dieser Genauigkeit nur für den Kanton Zürich vor.

Kanton Zürich

Übrige Kantone

Abbildung 16 Gemeindetypen

- Zentren
- Suburbane Gemeinden
- Einkommensstarke Gemeinden
- Periurbane Gemeinden
- Touristische Gemeinden
- Industrielle und tertiäre Gemeinden
- Ländliche Pendlergemeinden
- Agrar-genieschte Gemeinden
- Agrarische Gemeinden
Attraktionsdaten für Ziel- und Verkehrsmittelwahlmodell

Weitere Strukturdaten werden erhoben, um die simultane Ziel- und Verkehrsmittelwahl zu schätzen. Dazu gehören Faktoren wie der Bestand an Personenwagen, die Verfügbarkeit an Parkplätzen zu Hause und am Arbeitsplatz sowie der Besitz von Abonnements für den öffentlichen Verkehr (z.B. GA oder Halbtax).

Bestand an Personenwagen

Die Verfügbarkeit eines eigenen Autos wird mittels der Anzahl registrierter Personenwagen pro Verkehrsmodellzone abgebildet (vergleiche Abbildung 17). Daraus wird die Anzahl PW pro Einwohner berechnet.

Kanton Zürich

Übrige Kantone

Abbildung 17 Bestand an PW pro Zone

Anzahl PW pro EW
- 0.00 - 0.31
- 0.31 - 0.46
- 0.46 - 0.57
- 0.57 - 0.70
- 0.70 - 0.88
Parkplatzverfügbarkeit

Städte Zürich und Winterthur

Für die beiden Städte Zürich und Winterthur bestehen konkrete Angaben über die Anzahl Parkplätze auf privatem und öffentlichem Grund pro Quartier, respektive pro Stadtteil. Basierend auf dieser Gesamtzahl an Parkplätzen wird der Faktor „Parkplätze / Einwohner + Arbeitsplätze“ berechnet. Diese Formel ergibt für die Stadt Zürich Werte zwischen minimal 0.07 (Quartier Rathaus) und maximal 0.60 in Witikon. Der städtische Durchschnitt liegt bei 0.38. Für die Zentrumsgebiete der Stadt Winterthur resultiert ein Mittelwert von 0.35 (0.17 – 0.46). Diese Zahl wird in den Strukturdaten als „Parkplatzknappheit“ aufgeführt – wobei ein Wert von 1 „keine Knappheit, ausreichend Parkplätze verfügbar“ bedeutet und ein Nullwert besagt, dass keine Parkplätze vorhanden sind.

Übriges Modellgebiet

Ausgehend von dieser Skala von 0 bis 1 und der oben beschriebenen Gemeindetypisierung kann für jede Gemeinde ein Wert für die „Parkplatzknappheit“ abgeschätzt werden. Die den Gemeindetypen zugeordneten Werte variieren zwischen 0.38 (Zentren), 0.65 (Suburbane und/oder Arbeitsplatzgemeinden), 0.85 (Periurbane Gemeinden) und 1.00 für reiche, ländliche, industrielle, tertiäre, touristische und agrarische Gemeinden. Pro Verkehrsmodellzone wird dann der Mittelwert der enthaltenen Gemeinden berechnet.
Abbildung 18 Parkplatzverfügbarkeit
Abonnements-Besitz für den öffentlichen Verkehr

6.2 Erzeugungsmodell

Die hier verwendete Methodik für die Verkehrserzeugung basiert auf dem EVA Modell von Lohse (Schnabel und Lohse, 1997), welches in der Software VISEVA implementiert ist. Mit diesem Software-Tool werden die ersten drei Modellstufen (Verkehrserzeugung, Verkehrsverteilung und Verkehrsaufteilung) berechnet. Es versucht, reales Verkehrsverhalten von Menschen in Verkehrssystemen weitgehend adäquat nachzubilden. Der Modellansatz gehört...

Typ 1: Beginn (Quelle) der Ortsveränderung am "Heimatstandort"

Typ 2: Ende (Ziel) der Ortsveränderung am "Heimatstandort"

Typ 3: Beginn und Ende der Ortsveränderung nicht am "Heimatstandort"

Der Heimatstandort kann dabei die eigene Wohnung (1. Priorität) oder die eigene Arbeitsstätte (2. Priorität) sein.

Tabelle 14 Definition der Quell-Ziel-Gruppen

<table>
<thead>
<tr>
<th>Quell Ziel Gruppe</th>
<th>Wohnen</th>
<th>Arbeit</th>
<th>Bildung</th>
<th>Nutzfahrt</th>
<th>Einkauf</th>
<th>Freizeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnen</td>
<td>W</td>
<td>A</td>
<td>B</td>
<td>N</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>Arbeit</td>
<td>WA (1)</td>
<td>WB (1)</td>
<td>WN (1)</td>
<td>WE (1)</td>
<td>WS (1)</td>
<td></td>
</tr>
<tr>
<td>Bildung</td>
<td>BW (2)</td>
<td></td>
<td></td>
<td>AS, NS, ES, SA, SN, SE, SS (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>NW (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einkauf</td>
<td>EW (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freizeit</td>
<td>SW (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die folgenden Quell-Ziel-Gruppen werden betrachtet:
- Wohnen – Arbeit (WA)
- Arbeit – Wohnen (AW)
- Arbeit – Sonstiges (AS)
- Sonstiges – Arbeit (SA)
- Wohnen – Bildung (WB)
- Bildung – Wohnen (BW)
- Wohnen – Nutzfahrt (WN)
- Nutzfahrt – Wohnen (NW)
- Nutzfahrt – Sonstiges (NS)
- Sonstiges – Nutzfahrt (SN)
- Wohnen – Einkaufen (WE)
- Einkaufen – Wohnen (EW)
- Einkaufen – Sonstiges (ES)
- Sonstiges – Einkaufen (SE)
- Wohnen – Freizeit/Sonstiges (WS)
- Freizeit/Sonstiges – Wohnen (SW)
- Sonstiges/Freizeit – Sonstiges/Freizeit (SS)

Jede Quell-Ziel-Gruppe wurde so definiert, dass sie einem definierten Fahrtzweck zugeordnet werden kann. Die Zuordnung zu den Fahrtzwecken geschieht wie folgt:

- Arbeit: WA, AW, AS, SA
• Ausbildung: WB, BW
• Nutzfahrt: WN, NW, NS, SN
• Einkauf: WE, EW, ES, SE
• Freizeit, Sonstiges: WS, SW, SS

Durch die Bildung von Quell-Ziel-Gruppen werden die wesentlichen Verkehrsnachfragede-
bzw. Verkehrsmarktsegmente im Personenverkehr berücksichtigt. Sie können weiter diffe-
renziert werden und sind für die Marktanalyse und -prognose bzw. die verkehrsplanerischen
Verkehrsnachfrageberechnungen unerlässlich.

Die Bestimmung der Verkehrsaufkommen \(Q_i \) und \(Z_j \) sowie der Verkehrsströme \(v_{ij} \) bzw. \(v_{ijk} \)
zwischen den Quellen \(i \) und Zielen \(j \) mit dem Verkehrsmittel \(k \) ist stets getrennt nach den
Marktsegmenten bzw. Quell-Ziel-Gruppen durchzuführen, um systematische Fehler zu ver-
meiden. Durch die Quell-Ziel-Gruppen-Einteilung wird der Personenverkehr in weitgehend
elementare und homogene Teilmengen zerlegt, die folgende Merkmale enthalten:

• einen räumlich-funktionellen Bezug der Quellen und Ziele der Ortsveränderungen
zur Flächennutzung,
• einen soziodemographischen Bezug zu wesentlichen Personengruppen und
• einen verkehrssoziologischen Bezug zum Verkehrsgeschehen (Mobilitäts-
anforderungen).

So ist für die Quell-Ziel-Gruppen Wohnen-Arbeit (WA) und Arbeit-Wohnen (AW) allein die
Bezugspersonengruppe „Erwerbstätige“, die allerdings in weitere Untergruppen zerlegt wer-
den kann, massgebend, während für die Quell-Ziel-Gruppen Wohnen-Einkauf (WE) und Ein-
kauf-Wohnen (EW) im Allgemeinen alle Personengruppen berücksichtigt werden können.
Die Grössen aller massgebenden Personengruppen in den einzelnen Zonen bilden einen Teil
der Strukturgrössen, die für die Betrachtung einer bestimmten Quell-Ziel-Gruppe wesentlich
sind. Weitere massgebende Strukturgrössen werden durch die Aktivitäten an den Quellen
oder Zielen festgelegt. Die Zuordnung der gewählten Strukturgrössen zu den einzelnen Quell-
Ziel-Gruppen ist in Tabelle 15 dargestellt.
<table>
<thead>
<tr>
<th>QZG</th>
<th>Quell-Ziel-Gruppe</th>
<th>Strukturgrösse SQi der Quellverkehrszone i</th>
<th>Strukturgrösse SZj der Zielverkehrszone j</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>Wohnen - Arbeit</td>
<td>Erwerbstätige</td>
<td>Arbeitsplätze</td>
</tr>
<tr>
<td>WB</td>
<td>Wohnen - Bildung</td>
<td>Einwohner</td>
<td>Ausbildungsplätze</td>
</tr>
<tr>
<td>WN</td>
<td>Wohnen - Nutzfahrt</td>
<td>Erwerbstätige</td>
<td>Arbeitsplätze</td>
</tr>
<tr>
<td>WS</td>
<td>Wohnen – Freizeit</td>
<td>Einwohner nach Altersklassen</td>
<td>Kulturangebot, Erholungs- und Grünanlagen, Gastronomie, Grosseinrichtungen, Einwohner</td>
</tr>
<tr>
<td>WE</td>
<td>Wohnen - Einkauf</td>
<td>Einwohner nach Altersklassen</td>
<td>Verkaufsfläche</td>
</tr>
<tr>
<td>AW</td>
<td>Arbeit – Wohnen</td>
<td>Arbeitsplätze</td>
<td>Erwerbstätige</td>
</tr>
<tr>
<td>BW</td>
<td>Bildung - Wohnen</td>
<td>Ausbildungsplätze</td>
<td>Einwohner</td>
</tr>
<tr>
<td>NW</td>
<td>Nutzfahrt - Wohnen</td>
<td>Arbeitsplätze</td>
<td>Erwerbstätige</td>
</tr>
<tr>
<td>SW</td>
<td>Freizeit - Wohnen</td>
<td>Kulturangebot, Erholungs- und Grünanlagen, Gastronomie, Grosseinrichtungen, Einwohner</td>
<td>Einwohner nach Altersklassen</td>
</tr>
<tr>
<td>EW</td>
<td>Einkauf - Wohnen</td>
<td>Verkaufsfläche</td>
<td>Einwohner nach Altersklassen</td>
</tr>
<tr>
<td>AS</td>
<td>Arbeit - Sonstiges</td>
<td>Arbeitsplätze</td>
<td>Arbeitsplätze, Einwohner, Verkaufsfläche, Kulturangebot, Erholungs-, Grünanlagen</td>
</tr>
<tr>
<td>SA</td>
<td>Sonstiges - Arbeit</td>
<td>Arbeitsplätze, Einwohner, Verkaufsfläche, Kulturangebot, Erholungs-, Grünanlagen</td>
<td>Arbeitsplätze</td>
</tr>
<tr>
<td>ES</td>
<td>Einkauf - Sonstiges</td>
<td>Verkaufsfläche, Einkaufszentren</td>
<td>Arbeitsplätze, Einwohner Verkaufsfläche, Kulturangebot, Erholungs- und Grünanlagen</td>
</tr>
<tr>
<td>SE</td>
<td>Sonstiges – Einkauf</td>
<td>Arbeitsplätze, Einwohner Verkaufsfläche, Kulturangebot, Erholungs- und Grünanlagen</td>
<td>Verkaufsfläche, Einkaufszentren</td>
</tr>
<tr>
<td>NS</td>
<td>Nutzfahrt – Sonstiges</td>
<td>Arbeitsplätze</td>
<td>Arbeitsplätze, Einwohner Verkaufsfläche</td>
</tr>
<tr>
<td>SN</td>
<td>Sonstiges - Nutzfahrt</td>
<td>Arbeitsplätze, Einwohner Verkaufsfläche</td>
<td>Arbeitsplätze</td>
</tr>
<tr>
<td>SS</td>
<td>Sonstiges - Sonstiges</td>
<td>Arbeitsplätze, Einwohner Verkaufsfläche</td>
<td>Arbeitsplätze, Einwohner Verkaufsfläche</td>
</tr>
</tbody>
</table>

Die Erzeugungsraten (oft auch spezifische Verkehrsaufkommen genannt) werden für jede Quell-Ziel-Gruppe mit der massgebenden Strukturgröße festgelegt bzw. geschätzt. Erzeugungsraten sind definiert als die Anzahl an Ortsveränderungen pro Tag und Einheit der Strukturgrösse. Sie werden berechnet aus der Anzahl an Wegen, die in einer Quell-Ziel-Gruppe durch die Strukturgrössen verursacht werden, geteilt durch die Zahl der massgebenden Strukturgrössen der Quell-Ziel-Gruppe.

Tabelle 16 Erzeugungsraten nach Quell-Ziel-Gruppen

<table>
<thead>
<tr>
<th>QZG</th>
<th>Einwohner <15 J.</th>
<th>Einwohner 15<25 J.</th>
<th>Einwohner 25<59 J.</th>
<th>Einwohner 59<80 J.</th>
<th>Einwohner >80 J.</th>
<th>Erwerbstätige</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA, AW</td>
<td>0.814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.814</td>
</tr>
<tr>
<td>WB, BW</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>WN, NW</td>
<td></td>
<td>0.162</td>
<td></td>
<td></td>
<td></td>
<td>0.162</td>
</tr>
<tr>
<td>WE, EW</td>
<td>0.149</td>
<td>0.152</td>
<td>0.292</td>
<td>0.465</td>
<td>0.396</td>
<td></td>
</tr>
<tr>
<td>WS, SW</td>
<td>0.663</td>
<td>0.604</td>
<td>0.528</td>
<td>0.654</td>
<td>0.472</td>
<td></td>
</tr>
<tr>
<td>AS, SA</td>
<td></td>
<td></td>
<td>0.155</td>
<td></td>
<td></td>
<td>0.155</td>
</tr>
<tr>
<td>ES, ES</td>
<td>0.0165</td>
<td>0.0682</td>
<td>0.073</td>
<td>0.070</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>NS, SN</td>
<td></td>
<td></td>
<td>0.063</td>
<td></td>
<td></td>
<td>0.063</td>
</tr>
<tr>
<td>SS</td>
<td>0.147</td>
<td>0.470</td>
<td>0.315</td>
<td>0.268</td>
<td>0.129</td>
<td></td>
</tr>
</tbody>
</table>

Sie besagen, dass im Durchschnitt laut Mikrozensus Verkehr

- 1.94 Arbeitswege pro Erwerbstätigem und Werktag
- 0.40 Ausbildungswege pro Einwohner und Werktag
- 0.45 Nutzfahrtenwege pro Erwerbstätigem und Werktag
- 0.69 Einkaufswege pro Einwohner und Werktag
- 1.48 Freizeitwege pro Einwohner und Werktag
durchgeführt werden. Dies entspricht 3.93 Wege pro Werktag und Einwohner.

Im nächsten Schritt werden für jede Quell-Ziel-Gruppe aus den massgebenden Strukturdaten und den Erzeugungsraten die Quell- und Zielverkehrsaufkommen berechnet. Dabei müssen die Erzeugungsraten kalibriert werden, so dass die Summe der Quellaufkommen gleich der Summe der Zielaufkommen ist. Weiterhin muss zwischen den Quell- und Zielverkehrsaufkommen von zwei gegensätzlichen Quell-Ziel-Gruppen, z.B. WA und AW, vollständige

Ansatz

Die Ermittlung der Verkehrsaufkommen erfolgt für jede Quell-Ziel-Gruppe c stufenweise. Zunächst wird die Anzahl der durch die Bezugspersonen r der Verkehrsbezirke verursachten Ortsveränderungen bzw. das Quell-Verkehrsaufkommen (Verkehrsproduktion) nach folgenden Formeln ermittelt:

QZG c des Typs 1 mit quellseitig heimgebundenen Ortsveränderungen:

\[
Q^c = \sum_{e} SV^c_e \cdot BP^c_e \cdot u^e_r
\]

QZG c des Typs 2 mit zielseitig heimgebundenen Ortsveränderungen:

\[
Z^c = \sum_{e} SV^c_e \cdot BP^c_e \cdot u^e_r
\]

QZG c des Typs 3 mit nicht heimgebundenen Ortsveränderungen:

\[
V^c = \sum_{e} SV^c_e \cdot BP^c_e \cdot u^e_r
\]

Das Gesamtverkehrsaufkommen V wird auf die nicht heimgebundenen Zielverkehrsaufkommen und/oder auf die nicht heimgebundenen Quellverkehrsaufkommen der Verkehrsbezirke „konkurrierend“ je nach „Verkehrsattraktion“ aufgeteilt. Dafür wird zunächst das Attraktionspotential SP, des jeweiligen Verkehrsbezirkes e bestimmt

\[
SP^e = \sum_{i} ER^e_{is} \cdot SG^e_{is} \cdot v^e_i
\]

und anschließend das Verkehrsaufkommen für harte und weiche Randsummenbedingungen (RSB) ermittelt.

Das erzeugte Verkehrsaufkommen gilt zunächst allgemein für alle Verkehrarten gemeinsam, wenn nicht a priori eine Einschränkung vorgenommen wurde. Wie groß die einzelnen Aufkommen der Verkehrarten der Verkehrsbezirke sind, ergibt sich erst im Modellschritt Verkehrsverteilung/Verkehrsaufteilung aus den konkurrierenden Angeboten der Verkehrarten.

Tabelle 17 Quell- und Zielverkehrsaufkommen nach QZG

<table>
<thead>
<tr>
<th>QZG</th>
<th>Binnenzonen</th>
<th>Aussenzonen</th>
<th>Gesamtsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quellverkehr</td>
<td>Zielverkehr</td>
<td>Quellverkehr</td>
</tr>
<tr>
<td>WA</td>
<td>943'364</td>
<td>87966</td>
<td>87966</td>
</tr>
<tr>
<td>AW</td>
<td>943'364</td>
<td>87966</td>
<td>87966</td>
</tr>
<tr>
<td>WB</td>
<td>404'967</td>
<td>75'911</td>
<td>75'911</td>
</tr>
<tr>
<td>BW</td>
<td>404'967</td>
<td>75'911</td>
<td>75'911</td>
</tr>
<tr>
<td>WN</td>
<td>187'755</td>
<td>15'998</td>
<td>15'998</td>
</tr>
<tr>
<td>NW</td>
<td>187'755</td>
<td>15'998</td>
<td>15'998</td>
</tr>
<tr>
<td>WE</td>
<td>573'394</td>
<td>70'928</td>
<td>70'928</td>
</tr>
<tr>
<td>EW</td>
<td>573'394</td>
<td>70'928</td>
<td>70'928</td>
</tr>
<tr>
<td>WS</td>
<td>1'201'595</td>
<td>136'403</td>
<td>136'403</td>
</tr>
<tr>
<td>SW</td>
<td>1'201'595</td>
<td>136'403</td>
<td>136'403</td>
</tr>
<tr>
<td>AS</td>
<td>179'688</td>
<td>16'755</td>
<td>16'755</td>
</tr>
<tr>
<td>SA</td>
<td>179'688</td>
<td>16'755</td>
<td>16'755</td>
</tr>
<tr>
<td>NS</td>
<td>73'016</td>
<td>6'221</td>
<td>6'221</td>
</tr>
<tr>
<td>SN</td>
<td>73'016</td>
<td>6'221</td>
<td>6'221</td>
</tr>
<tr>
<td>ES</td>
<td>125'897</td>
<td>15'573</td>
<td>15'573</td>
</tr>
<tr>
<td>SE</td>
<td>125'897</td>
<td>15'573</td>
<td>15'573</td>
</tr>
<tr>
<td>SS</td>
<td>590'615</td>
<td>67'046</td>
<td>67'046</td>
</tr>
<tr>
<td>Total</td>
<td>7'969'968</td>
<td>918'558</td>
<td>918'558</td>
</tr>
</tbody>
</table>

Tabelle 18 Vergleich der ermittelten Fahrtzweckanteile (Binnenzonen) mit dem MZ 2000

<table>
<thead>
<tr>
<th>Berechnete Wege in Mio. und [%]</th>
<th>MZ 2000 [%] - Schweiz</th>
<th>MZ 2000 [%] - Zürich (Modell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausbildung</td>
<td>0.81 Mio. [10.2]</td>
<td>10.3</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>0.52 Mio. [6.5]</td>
<td>5.1</td>
</tr>
<tr>
<td>Einkauf</td>
<td>1.40 Mio. [17.6]</td>
<td>17.9</td>
</tr>
<tr>
<td>Freizeit, Sonstiges</td>
<td>2.99 Mio. [37.5]</td>
<td>38.5</td>
</tr>
<tr>
<td>Total</td>
<td>7.97 Mio. [100.0]</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Da der Aussenverkehr, d.h. die Verkehrsnachfrage, deren Quelle oder Ziel ausserhalb des kantonalen Modells liegt, durch Aussenzonen abgebildet wird, wurde das Verkehrsaufkommen dieser Aussenzonen aus den Querschnittszählungen, dem KVM und dem nationalen Verkehrsmodellen abgeleitet. Dafür wurden die Querschnittsbelastungen an den Grenzquerschnitts als Quell- bzw. Zielverkehrsaufkommen übernommen.
Abbildung 19 Spezifisches Verkehrsaufkommen – wohnungsgebundene (Quell-) Wege

Abbildung 20 Spezifisches Verkehrsaufkommen – attraktionsgebundene (Ziel-) Wege
7 Simultane Ziel- und Verkehrsmittelwahl-Schätzung

Die durch die Verkehrserzeugung berechneten Quell- und Zielverkehrsaufkommen werden in einem weiteren Schritt auf die Verkehrsmittel und die Zonen verteilt. Die Modelle der Verkehrsverteilung und Verkehrsaufteilung dienen der Ermittlung der Verkehrsströme \(v_{ijk} \) zwischen allen möglichen Quellen \(i \) und Zielen \(j \) mit den Verkehrsmitteln \(k \). Dafür müssen zunächst die Gesetzmäßigkeiten der Verkehrsverteilung (Zielwahl) und Verkehrsaufteilung (Verkehrsmittelwahl) bestimmt werden. Da die Zielwahl auch von der Verkehrsmittelverfügbarkeit und dem Verkehrsangebot abhängig ist, können diese zwei Modellschritte nicht getrennt behandelt werden. Aus diesem Grund muss bei einem sequentiellen Verfahren eine Rückkoppelung zwischen der Ziel- und der Verkehrsmittelwahl stattfinden. Da diese Rückkoppelungsschritte zu einer sehr komplexen Modellstruktur und zumeist auch nicht zu einer konsistenten Lösung führen, werden in diesem Projekt die Quell-Zielmatrizen mit Hilfe eines simultanen Ziel- und Verkehrsmittelwahlmodells erstellt.

Der Fall einer mehrdimensionalen Alternativenmenge ist in Abbildung 21 dargestellt. Auf der oberen Ebene wird das Verkehrsmittel (M für Mode) für eine Fahrt ausgewählt und auf der unteren Ebene wird die Entscheidung bezüglich des Ziels (D für Destination) gefällt. Die Alternativenmenge besteht aus drei Nestern, eines für jedes Verkehrsmittel, und jedes Nest enthält elf Zielwahlalternativen. Somit sind in diesem Beispiel insgesamt 33 Ziel-Verkehrsmittel-Kombinationen gegeben, von denen eine die tatsächlich gewählte Alternative ist.
Der Gesamtnutzen der multidimensionalen Alternativenmenge lässt sich aufteilen in:

\[U_{dm} = V_d + V_m + V_{dm} + e_d + e_m + e_{dm} \]

Der Ansatz des Nested-Logit-Modells verlangt nun, dass entweder die Varianz von \(e_d \) oder von \(e_m \) sehr klein relativ zu den anderen Störtermen ist und damit vernachlässigt werden kann. Hier wird nun angenommen, dass \(e_m \) klein genug ist, um ignoriert werden zu können.

\[U_{dm} = V_d + V_m + V_{dm} + e_d + e_{dm} \]

Die Auswahlwahrscheinlichkeit der sinnvollen Kombinationen von d und m, \(P_{dm} \), kann nun aufgeteilt werden in eine bedingte Entscheidung \(P(d|m) \), die angibt welches Ziel gewählt wird, wenn das Verkehrsmittel vorgegeben ist, sowie in eine marginale Entscheidung \(P(m) \). Damit gilt:

\[P_{dm} = P_{d|m} \cdot P_m \]

Die bedingte Wahrscheinlichkeit wird bestimmt mit:
\[P_{d|m} = \frac{\exp(\mu V_{dm})}{\sum_{v \in d} \exp(\mu V_{dm})} \]

Die marginale Wahrscheinlichkeit wird bestimmt mit:

\[P_m = \frac{\exp(\mu m I_m)}{\sum_{m'} \exp(\mu m I_m')} \]

Für den Inklusivwert \(I_m \) sind auch andere Bezeichnungen in Verwendung: *logsum-term*, *inclusiv price*, *measure of accessibility* oder *expected maximum perceived utility*. Für den Inklusivwert wird angenommen, dass der Entscheider aus der Alternativenmenge bzw. dem Nest die Alternative mit dem grössten erwarteten Nutzen auswählt.

\[I_m = E(\max_{m'} U_{m'}) \]

Der Inklusivwert stellt daher den erwarteten maximalen systematischen Nutzen aller Alternativen in einer Alternativenmenge bzw. in einem Nest dar:

\[I_m = \frac{1}{\mu} \ln \sum \exp(\mu V_{dm}) \]

Die Berechnung der Entscheidung bzw. der Wahl der Ziel-Verkehrsmittelwahl-Kombination erfolgt anhand der ermittelten Nutzendifferenz. Dafür wird eine dreistufige Nutzenfunktion mit soziodemographischen, Verkehrsmittel- und Attraktionscharakteristiken erstellt. Die folgenden Einflussfaktoren werden berücksichtigt:

- PW-Verfügbarkeit, Jahresabonnement – Besitz (GA), Halbtax-Besitz (HT), Alter
- MIV-Reisezeit, MIV-Kosten, ÖV-Reisezeit, ÖV-Kosten, Umsteigehäufigkeit, Angebotsintervall, Zugangszeit, LIV-Reisezeit
- Einwohnerzahl, Erwerbstätige, Arbeitsplätze, Ausbildungsplätze, Kulturanlage, Erholungs- und Grünanlagen, Freizeitpark und Grosseinrichtungen, Verkaufsflächen, Parkplatzangebot

Um die Modellschätzung durchzuführen, müssen neben den gewählten Alternativen auch andere, nicht gewählte Alternativen beschrieben und dargestellt werden. Dafür wurden aus den

Für jede der elf Alternativen wurden die Angebotsvariablen für die drei Verkehrsmitteln MIV, ÖV und LIV ermittelt. Damit wurden zu jeder gewählten Alternative (Ziel-Verkehrsmittel-Kombination) 32 nicht gewählte Alternativen zugespielt. Daraus wurde ein Modell mit drei Nestern (MIV, ÖV und LIV) mit jeweils elf Alternativen formuliert (siehe Abbildung 21). In der Modellschätzung wurden die Parameter gesucht, die die tatsächliche Entscheidung mit genügender Signifikanz erklären.

Da die Mikrozensus Verkehr Daten wegen der vorhandenen Korrelation zwischen den Variablen und der ungenügenden Variation für eine vollständige Modellschätzung nicht geeignet sind, werden nur die Attraktionsparameter (Zielwahl) neu geschätzt. Die soziodemographischen und Angebotsparameter der Verkehrsmittelwahl werden aus Kapitel 5.2.2 übernommen und als fix definiert.

Die Nutzenfunktion wird je nach Fahrtzweck unterschiedlich aufgestellt. Es sind sowohl die Parameter für das Verkehrsangebot und die Soziodemographie als auch die Attraktionsvariablen unterschiedlich. In der Nutzenfunktion wurden für die einzelnen Fahrtzwecke folgende Attraktionsvariablen betrachtet:

- Arbeit: Erwerbstätige und Arbeitsplätze
- Ausbildung: Einwohner und Ausbildungsplätze
• Geschäftsfahrt: Erwerbstätige und Arbeitsplätze
• Einkauf: Einwohner und Verkaufsflächen
• Freizeit, Sonstiges: Einwohner, Kulturangebot, Erholungs- und Grünanlagen und Grosseinrichtungen, Hotels und Gaststätten

Bei allen Fahrzwecken wurden die Parkplätze auch als Attraktionsvariable berücksichtigt.

Die Nutzenfunktion wird am Beispiel des Fahrtzwecks Arbeit wie folgt definiert:

\[
\text{Nutzen}_{pW} = \text{Konstante}_{pW} + \text{Zeit}_{pW} \cdot \beta_{pW-\text{Zeit}} + \text{Preis}_{pW} \cdot \beta_{pW-\text{Preis}} + \text{Verfügbarkeit}_{pW} \cdot \beta_{pW-\text{Verfügbarkeit}} + \text{Erwerbstätige} \cdot \beta_{\text{Erwerbstätige}} + \text{Arbeitsplätze} \cdot \beta_{\text{Arbeitsplätze}} + \text{Parkplätze} \cdot \beta_{\text{Parkplätze}} + \text{Intervall} \cdot \beta_{\text{Intervall}} + \text{Alter} \cdot \beta_{\text{Alter}} + G_A \cdot \beta_{G_A} + \text{Halbtax} \cdot \beta_{\text{Halbtax}} + \text{Omsteige} \cdot \beta_{\text{Umsteige}}
\]

\[
\text{Nutzen}_{oV} = \text{Zeit}_{oV} \cdot \beta_{oV-\text{Zeit}} + \text{Preis}_{oV} \cdot \beta_{oV-\text{Preis}} + \text{Zugangszeit} \cdot \beta_{\text{Zugangszeit}} + \text{Umsteigezahl} \cdot \beta_{\text{Umsteige}} + \text{Erwerbstätige} \cdot \beta_{\text{Erwerbstätige}} + \text{Arbeitsplätze} \cdot \beta_{\text{Arbeitsplätze}} + \text{Intervall} \cdot \beta_{\text{Intervall}} + \text{Alter} \cdot \beta_{\text{Alter}} + G_A \cdot \beta_{G_A} + \text{Halbtax} \cdot \beta_{\text{Halbtax}} + \text{Omsteige} \cdot \beta_{\text{Umsteige}}
\]

\[
\text{Nutzen}_{LIV} = \text{Konstante}_{LIV} + \text{Zeit}_{LIV} \cdot \beta_{LIV-\text{Zeit}} + \text{Erwerbstätige} \cdot \beta_{\text{Erwerbstätige}} + \text{Arbeitsplätze} \cdot \beta_{\text{Arbeitsplätze}}
\]

Das Ergebnis für die betrachteten Fahrtzwecke mit zusätzlicher Differenzierung von bzw. nach Wohnung ist in Tabelle 19 dargestellt.

Die Attraktionsvariablen sind in den folgenden Einheiten definiert:

• Einwohner, Arbeitsplätze, Erwerbstätige, Ausbildungsplätze als Anzahl
• Verkaufsfläche in m²
• Grosseinrichtungen als Anzahl Besucher
• Kulturangebot, Erholungs- und Grünanlagen, Hotels und Gaststätten als Anzahl
• Parkplätze als Auslastungsgrad (0 bis 1)

Für die Modellschätzung wurden die Attraktionsvariablen zusätzlich durch Tausend geteilt und logarithmiert, um den abnehmenden Grenznutzen abzubilden. Für die Angebotsvariablen werden die gleichen Einheiten wie im Verkehrsmittelwahlmodell verwendet.

Tabelle 19 Ergebnisse der Modellschätzung für die simultane Ziel- und Verkehrsmittelwahl nach Quell-Ziel-Gruppen

<table>
<thead>
<tr>
<th>Variable</th>
<th>WA</th>
<th>AW</th>
<th>WB</th>
<th>BW</th>
<th>WN</th>
<th>NW</th>
<th>WE</th>
<th>EW</th>
<th>WF</th>
<th>FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstante PW</td>
<td>1.609</td>
<td>1.602</td>
<td>2.653</td>
<td>2.864</td>
<td>0.731</td>
<td>1.228</td>
<td>1.008</td>
<td>1.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrzeit PW</td>
<td>-1.654</td>
<td>-1.654</td>
<td>-1.654</td>
<td>-1.654</td>
<td>-1.937</td>
<td>-2.496</td>
<td>-2.496</td>
<td>-0.984</td>
<td>-0.984</td>
<td></td>
</tr>
<tr>
<td>PW-Verfügbarkeit</td>
<td>0.637</td>
<td>0.637</td>
<td>0.637</td>
<td>0.637</td>
<td>0.805</td>
<td>0.805</td>
<td>2.752</td>
<td>2.752</td>
<td>1.043</td>
<td>1.043</td>
</tr>
<tr>
<td>Preis</td>
<td>-0.205</td>
<td>-0.205</td>
<td>-0.205</td>
<td>-0.205</td>
<td>-0.03</td>
<td>-0.223</td>
<td>-0.223</td>
<td>-0.067</td>
<td>-0.067</td>
<td></td>
</tr>
<tr>
<td>Intervall</td>
<td>-0.638</td>
<td>-0.638</td>
<td>-0.638</td>
<td>-0.638</td>
<td>-1.270</td>
<td>-1.270</td>
<td>-0.393</td>
<td>-0.393</td>
<td>-0.513</td>
<td>-0.513</td>
</tr>
<tr>
<td>Umsteigezahl</td>
<td>-0.451</td>
<td>-0.451</td>
<td>-0.451</td>
<td>-0.451</td>
<td>-0.322</td>
<td>-0.322</td>
<td>-0.302</td>
<td>-0.302</td>
<td>-0.340</td>
<td>-0.340</td>
</tr>
<tr>
<td>GA Besitz</td>
<td>2.604</td>
<td>2.604</td>
<td>2.604</td>
<td>2.604</td>
<td>2.767</td>
<td>2.767</td>
<td>3.182</td>
<td>3.182</td>
<td>1.100</td>
<td>1.100</td>
</tr>
<tr>
<td>Halbtax Besitz</td>
<td>1.602</td>
<td>1.602</td>
<td>1.602</td>
<td>1.602</td>
<td>2.442</td>
<td>2.442</td>
<td>1.442</td>
<td>1.442</td>
<td>0.880</td>
<td>0.880</td>
</tr>
<tr>
<td>Alter ^2</td>
<td>0.00019</td>
<td>0.00019</td>
<td>0.00019</td>
<td>0.00019</td>
<td>0.00016</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konstante LIV</td>
<td>2.886</td>
<td>2.886</td>
<td>2.886</td>
<td>2.886</td>
<td>3.775</td>
<td>3.775</td>
<td>4.188</td>
<td>4.188</td>
<td>3.532</td>
<td>3.532</td>
</tr>
<tr>
<td>Arbeitsplätze¹</td>
<td>0.303</td>
<td>0.302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erwerbstätige¹</td>
<td>0.273</td>
<td>0.253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausbildungspätze¹</td>
<td>0.103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einwohner¹</td>
<td>0.286</td>
<td>0.307</td>
<td>0.223</td>
<td>0.329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verkaufsfläche¹</td>
<td>0.277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freizeitangebot¹</td>
<td>0.138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parkplätze</td>
<td>0.867</td>
<td>0.246</td>
<td>0.385</td>
<td>1.663</td>
<td>0.822</td>
<td>0.513</td>
<td>0.201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n Beobachtungen</td>
<td>4319</td>
<td>4319</td>
<td>1252</td>
<td>1252</td>
<td>1062</td>
<td>1062</td>
<td>3681</td>
<td>3681</td>
<td>7139</td>
<td>7139</td>
</tr>
<tr>
<td>ρ²</td>
<td>0.124</td>
<td>0.096</td>
<td>0.145</td>
<td>0.030</td>
<td>0.162</td>
<td>0.158</td>
<td>0.207</td>
<td>0.190</td>
<td>0.070</td>
<td>0.068</td>
</tr>
</tbody>
</table>

(*) Kulturangebot, Erholungs- und Grünanlagen, Grosseinrichtungen, Hotels und Gaststätten
¹) Attraktionsvariablen = ln (Attraktionsvariable/1000)

Da hier eine simultane Modellschätzung mit gleichzeitiger Erklärung der Ziel- und Verkehrsmittelwahl angewendet wird, ist die ermittelte Signifikanz und Erklärungskraft des Modells mit Ausnahme des Fahrtzwecks Bildung (insbesondere Bildung/Wohnen) genügend. Die ermittelten ρ² sind durchweg kleiner als R²; ein ρ² von 0.3 stellt im Allgemeinen schon eine sehr gute Übereinstimmung dar. Es ist zu berücksichtigen, dass für die beiden Quell-
Ziel-Gruppen eines Fahrtzwecks (z.B. WA und AW) die gesamte Stichprobe eines Fahrtzwecks verwendet wurde. Damit wird bei der Modellschätzung der Rückweg durch die Attraktionsgrösse nicht erklärt. Die Berücksichtigung beider Variablen (z.B. Arbeitsplätze und Erwerbstätige) war wegen Korrelationen nicht möglich.

Unabhängig von dem sehr kleinen χ^2-Wert waren die Parameter für die neu geschätzten Variablen beim t-Test auf 95%-Niveau signifikant.

8 Matrixerstellung

Anhand der aus der Verkehrserzeugung ermittelten Quell- und Zielverkehrsaufkommen, der Angebots- und Attraktionsdaten sowie der geschätzten Modellparameter werden in einem weiteren Schritt mit der Planungssoftware VISEVA (Version 4.1) die Quell-Zielmatrizen bzw. die Verkehrsströme für die drei betrachteten Verkehrsmittel MIV, ÖV und LIV erstellt.

Vor der Erstellung der endgültigen Matrizen war es notwendig, verschiedene Testläufe durchzuführen. Diese sollten prüfen, wie plausibel die Eingangsdaten sind, und welcher Ansatz bei der Eichung des Modells die besten Ergebnisse liefert.

Auf diese Weise werden die mit VISEVA erstellten Aussenströme durch die entsprechenden Ströme aus dem nationalen Personenverkehrsmodell ersetzt.

8.1 Die Erstellung und Eichung der Matrixstruktur (Binnenverkehrsmatrix)

Bei der Erstellung der Binnenverkehrsmatrix wurde die Eichung der Matrixstruktur anhand der Mikrozensus Verkehr 2000 Daten und der Pendlerstatistik (Arbeit und Ausbildung) aus der Volkszählung 2000 durchgeführt. Hier wurde vor allem eine Überprüfung und Eichung

- der Reiseweiteverteilung
- der Modal-Split-Anteile und
- der Aufteilung zwischen inter- und intrazonalen Fahrten durchgeführt.

<table>
<thead>
<tr>
<th>Tabelle 21</th>
<th>Eckwerte der erstellten Quell-Zielmatrizen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIV-Wege</td>
</tr>
<tr>
<td>Alle Wege [in Mio.]</td>
<td></td>
</tr>
<tr>
<td>Arbeit</td>
<td>1,311</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>0,029</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>0,446</td>
</tr>
<tr>
<td>Einkauf</td>
<td>0,746</td>
</tr>
<tr>
<td>Freizeit</td>
<td>1,801</td>
</tr>
<tr>
<td>Summe</td>
<td>4,333</td>
</tr>
<tr>
<td>Interzonale Wege [in Mio.]</td>
<td></td>
</tr>
<tr>
<td>Arbeit</td>
<td>1,134</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>0,017</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>0,380</td>
</tr>
<tr>
<td>Einkauf</td>
<td>0,556</td>
</tr>
<tr>
<td>Freizeit</td>
<td>1,489</td>
</tr>
<tr>
<td>Summe</td>
<td>3,576</td>
</tr>
</tbody>
</table>

Die ermittelten Personenkilometer (Pkm) und die mittlere Reiseweite nach Fahrtzwecken und Verkehrsmitteln sind in den folgenden zwei Tabellen (Tabelle 22 und Tabelle 23) dargestellt. Es ist zu sehen, dass der größte Teil der Verkehrsleistung im MIV und ÖV für die betrachtete Zonierung im interzonalen Verkehr stattfindet.
Tabelle 23 Mittlere Reiseweite der erstellten Quell-Zielmatrizen nach Fahrtzwecken und Verkehrsmitteln

<table>
<thead>
<tr>
<th></th>
<th>MIV-Wege</th>
<th>OV - Wege</th>
<th>LIV – Wege</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Wege: Mittlere Reiseweite in km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeit</td>
<td>11,8</td>
<td>13,2</td>
<td>2,8</td>
<td>10,8</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>4,9</td>
<td>11,9</td>
<td>2,3</td>
<td>4,3</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>12,6</td>
<td>21,6</td>
<td>1,4</td>
<td>11,6</td>
</tr>
<tr>
<td>Einkauf</td>
<td>8,0</td>
<td>7,5</td>
<td>1,6</td>
<td>5,4</td>
</tr>
<tr>
<td>Freizeit</td>
<td>11,8</td>
<td>12,2</td>
<td>1,3</td>
<td>8,1</td>
</tr>
<tr>
<td>Summe</td>
<td>11,2</td>
<td>12,2</td>
<td>1,8</td>
<td>8,2</td>
</tr>
<tr>
<td>Interzonale Wege: Mittlere Reiseweite in km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeit</td>
<td>13,3</td>
<td>14,4</td>
<td>3,7</td>
<td>12,6</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>7,4</td>
<td>12,7</td>
<td>3,4</td>
<td>6,9</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>14,5</td>
<td>22,4</td>
<td>2,0</td>
<td>14,3</td>
</tr>
<tr>
<td>Einkauf</td>
<td>10,2</td>
<td>7,7</td>
<td>1,9</td>
<td>7,7</td>
</tr>
<tr>
<td>Freizeit</td>
<td>13,9</td>
<td>13,0</td>
<td>2,0</td>
<td>11,9</td>
</tr>
<tr>
<td>Summe</td>
<td>13,2</td>
<td>13,1</td>
<td>2,7</td>
<td>11,2</td>
</tr>
</tbody>
</table>

Tabelle 24 Anteile des intrazonalen Verkehrs [Wege innerhalb Zone; in %]

<table>
<thead>
<tr>
<th>[%]</th>
<th>MIV-Wege</th>
<th>OV - Wege</th>
<th>LIV – Wege</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeit</td>
<td>13,5</td>
<td>9,1</td>
<td>43,2</td>
<td>17,0</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>41,7</td>
<td>6,2</td>
<td>59,3</td>
<td>48,1</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>14,9</td>
<td>3,7</td>
<td>59,0</td>
<td>20,3</td>
</tr>
<tr>
<td>Einkauf</td>
<td>25,5</td>
<td>2,9</td>
<td>61,3</td>
<td>36,3</td>
</tr>
<tr>
<td>Freizeit</td>
<td>17,3</td>
<td>7,3</td>
<td>71,0</td>
<td>35,6</td>
</tr>
<tr>
<td>Summe</td>
<td>17,5</td>
<td>7,3</td>
<td>62,2</td>
<td>31,0</td>
</tr>
</tbody>
</table>
8.2 Vergleich der Matrixstruktur mit den Erhebungsdaten

Im Anschluss an die Eichung der Matrixstruktur auf den Mikrozensus und die Volkszählung 2000 werden die erstellten Quell-Zielmatrizen im Binnenverkehr mit folgendem Vorgehen und den nachstehenden Erhebungsdaten überprüft:

- Vergleich der Verkehrsmittel- und Fahrtzweckanteile mit dem Mikrozensus Verkehr 2000
- Überprüfung der Reiseweiteverteilung nach Fahrtzwecken und Verkehrsmitteln anhand des Mikrozensus Verkehr 2000
- Analyse der Reiseweiteverteilung der Arbeits- und Ausbildungswege nach Verkehrsmitteln im Vergleich mit der Pendlerstatistik aus der Volkszählung 2000
- Gegenüberstellung der ermittelten Querschnittsbelastungen und der Querschnittszählungen im Strassen- und Schienenverkehr
- Vergleich der Netzbelastungen der umgelegten Quell-Zielmatrix für den Fahrtzweck Arbeit aus dem Modell und der Pendlerstatistik aus der Volkszählung 2000
- Abgleich der Quell-Ziel-Ströme (Spinnenanalyse) auf einzelnen Querschnitten für den Fahrtzweck Arbeit aus dem Modell und der Pendlerstatistik aus der Volkszählung 2000
- Analyse der Quell-Ziel-Ströme (Spinnenanalyse) auf einzelnen Querschnitten
- Vergleich von Zähldaten und Umlegungsergebnissen der Ein- und Aussteiger an Haltestellen

Der Vergleich der ermittelten Verkehrsströme mit dem aus dem Mikrozensus Verkehr 2000 hochgerechneten Verkehrsmittel- und Fahrtzweckanteilen im interzonalen Verkehr ist in Tabelle 25 aufgezeigt.

Tabelle 25 Vergleich der Modellergebnisse und des MZ (Hochrechnung): Anzahl interzionale Wege (Binnenströme)

<table>
<thead>
<tr>
<th>Interzionale Wege [in Mio.]</th>
<th>MIV - Wege MZ</th>
<th>Modell</th>
<th>ÖV - Wege MZ</th>
<th>Modell</th>
<th>LIV - Wege MZ</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeit</td>
<td>1,009</td>
<td>1,001</td>
<td>0,434</td>
<td>0,610</td>
<td>0,248</td>
<td>0,217</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>0,048</td>
<td>0,015</td>
<td>0,130</td>
<td>0,151</td>
<td>0,155</td>
<td>0,286</td>
</tr>
<tr>
<td>Nutzfahren</td>
<td>0,312</td>
<td>0,334</td>
<td>0,032</td>
<td>0,033</td>
<td>0,027</td>
<td>0,032</td>
</tr>
<tr>
<td>Einkauf</td>
<td>0,630</td>
<td>0,519</td>
<td>0,233</td>
<td>0,187</td>
<td>0,334</td>
<td>0,229</td>
</tr>
<tr>
<td>Freizeit</td>
<td>1,335</td>
<td>1,266</td>
<td>0,431</td>
<td>0,260</td>
<td>0,532</td>
<td>0,336</td>
</tr>
<tr>
<td>Summe</td>
<td>3,334</td>
<td>3,135</td>
<td>1,259</td>
<td>1,241</td>
<td>1,296</td>
<td>1,101</td>
</tr>
</tbody>
</table>

Diese Auswertung zeigt, dass mit den ermittelten Verkehrsströmen die erhobenen Verkehrsmittel- und Fahrtzweckanteile sowie die gesamte Anzahl der Wege genügend genau reprodu-

Tabelle 26 Vergleich der Modellergebnisse und des MZ: Verkehrsmittelwahlanteile (Binnenströme)

<table>
<thead>
<tr>
<th></th>
<th>MIV -Wege</th>
<th>OV -Wege</th>
<th>LIV - Wege</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MZ</td>
<td>Modell</td>
<td>MZ</td>
</tr>
<tr>
<td>Interzonale Wege</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeit</td>
<td>59,6</td>
<td>54,7</td>
<td>25,7</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>14,4</td>
<td>3,3</td>
<td>39,1</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>84,2</td>
<td>83,6</td>
<td>8,5</td>
</tr>
<tr>
<td>Einkauf</td>
<td>52,6</td>
<td>55,5</td>
<td>19,5</td>
</tr>
<tr>
<td>Freizeit</td>
<td>58,1</td>
<td>68,0</td>
<td>18,7</td>
</tr>
<tr>
<td>Summe</td>
<td>56,6</td>
<td>57,2</td>
<td>21,4</td>
</tr>
</tbody>
</table>

Tabelle 27 Vergleich der Modellergebnisse und des MZ (Binnenströme): Fahrtzweck- und Verkehrsmittelwahlanteile im interzonalen Verkehr [%]

<table>
<thead>
<tr>
<th>Interzionale Wege</th>
<th>MIV - Wege</th>
<th>OV - Wege</th>
<th>LIV - Wege</th>
<th>Alle - Wege</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MZ Modell</td>
<td>MZ Modell</td>
<td>MZ Modell</td>
<td>MZ Modell</td>
</tr>
<tr>
<td>Arbeit</td>
<td>17,1</td>
<td>18,3</td>
<td>7,4</td>
<td>11,1</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>0,8</td>
<td>0,3</td>
<td>2,2</td>
<td>2,7</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>5,3</td>
<td>6,1</td>
<td>0,5</td>
<td>0,6</td>
</tr>
<tr>
<td>Einkauf</td>
<td>10,7</td>
<td>9,5</td>
<td>4,0</td>
<td>3,4</td>
</tr>
<tr>
<td>Freizeit</td>
<td>22,7</td>
<td>23,1</td>
<td>7,3</td>
<td>4,8</td>
</tr>
<tr>
<td>Summe</td>
<td>56,6</td>
<td>57,2</td>
<td>21,4</td>
<td>22,7</td>
</tr>
</tbody>
</table>

Tabelle 28 Vergleich der Modellergebnisse und der Volkszählung: Anzahl Wege (Binnenströme)

<table>
<thead>
<tr>
<th>Alle Wege [Mio.]</th>
<th>MIV - Wege</th>
<th>OV - Wege</th>
<th>LIV - Wege</th>
<th>Alle - Wege</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MZ Modell</td>
<td>MZ Modell</td>
<td>MZ Modell</td>
<td>MZ Modell</td>
</tr>
<tr>
<td>Arbeit</td>
<td>1,09</td>
<td>1,14</td>
<td>0,62</td>
<td>0,67</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>0,022</td>
<td>0,026</td>
<td>0,16</td>
<td>0,16</td>
</tr>
<tr>
<td>Interzionale Wege [Mio.]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeit</td>
<td>0,93</td>
<td>1,00</td>
<td>0,58</td>
<td>0,61</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>0,013</td>
<td>0,015</td>
<td>0,13</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Die ermittelten Verkehrsmittelwahlanteile in Bezug auf das Verkehrsaufkommen und die Verkehrsleistung sind in Tabelle 29 dargestellt. Aus dieser Tabelle können die Unterschiede in der Verkehrsmittelwahl sowie der Reiseweite zwischen den Fahrtzwecken abgelesen werden. Es ist zu sehen, dass bei allen Fahrtzwecken, sowohl im interzionalen Verkehr als auch unter Berücksichtigung aller Wege, bei der Verkehrsleistung die ÖV-Anteile höher sind als...

Tabelle 29 Verkehrsaufkommens- und verkehrsleistungsbezogene Verkehrsmittelwahlanteile (Binnen- und Aussenströme) nach Fahrtzwecken (in %)

<table>
<thead>
<tr>
<th></th>
<th>Personen Wege</th>
<th>Personen Kilometer (Pkm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIV</td>
<td>ÖV</td>
</tr>
<tr>
<td>Alle Wege</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeit</td>
<td>53,4</td>
<td>30,5</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>3,0</td>
<td>20,0</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>78,8</td>
<td>7,0</td>
</tr>
<tr>
<td>Einkauf</td>
<td>47,5</td>
<td>13,7</td>
</tr>
<tr>
<td>Freizeit</td>
<td>54,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Summe</td>
<td>48,7</td>
<td>17,2</td>
</tr>
<tr>
<td>Intezonale Wege</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeit</td>
<td>55,6</td>
<td>33,4</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>3,4</td>
<td>36,2</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>84,2</td>
<td>8,5</td>
</tr>
<tr>
<td>Einkauf</td>
<td>55,6</td>
<td>20,8</td>
</tr>
<tr>
<td>Freizeit</td>
<td>69,4</td>
<td>14,4</td>
</tr>
<tr>
<td>Summe</td>
<td>58,3</td>
<td>23,1</td>
</tr>
</tbody>
</table>
8.2.1 Reiseweiteverteilungen der Binnenströme

Abbildung 23 Reiseweiteverteilung: Modell und MZ 2000: Alle Wege
Abbildung 24 Reiseweiteverteilung: Modell und Volkszählung 2000: Fahrtzweck Arbeit
Abbildung 25 Reiseweiteverteilung: Modell und VZ 2000: Fahrtzweck Ausbildung
Abbildung 26 Reiseweiteverteilung: Modell und MZ 2000: Fahrtzweck Nutzfahrt
Abbildung 27 Reiseweiteverteilung: Modell und MZ 2000: Fahrtzweck Einkauf
Abbildung 28 Reiseweiteverteilung: Modell und MZ 2000: Fahrtzweck Freizeit
Es ist festzustellen, dass die hier ermittelten Verkehrsstrommatrizen bezüglich ihrer Reiseweitenverteilung die gleiche Struktur haben wie die Fahrten aus dem Mikrozensus Verkehr 2000 bzw. die Matrizen aus der Pendlerstatistik der Volkszählung 2000. Sowohl für die Fahrtzwecke Nutzfhart, Einkauf und Freizeit als auch für die Summe aller Wege weisen die Verläufe der Reiseweiteverteilungen der interzonalen Fahrten des Mikrozensus Verkehr 2000 und die der hier ermittelten Matrizen grosse Ähnlichkeiten auf.

Abbildung 29 Reiseweiteverteilung für den Fahrtzweck Arbeit: Vergleich MZ, Volkszählung und Modell
8.2.2 Netzbelastungen

\[P_j = \frac{e^{-\beta \left(\frac{W_j}{W^*} - 1 \right)}}{\sum_j e^{-\beta \left(\frac{W_j}{W^*} - 1 \right)}}. \]

Hierbei ist \(W^* = \min_j W_j \) der minimale auftretende Widerstand und \(\beta \) ein Parameter zur Streuung der Widerstandsempfindlichkeit.

Da das hier erstellte Modell sowohl kürzere (städtische) als auch längere Wege (Regional- und Fernverkehr) beinhaltet, wurde der Lohse Ansatz als die am besten geeignete Methode gewählt. Dieser Ansatz stellt eine Alternative zum Logit-Ansatz (Berechnung der Widerstandsverhältnisse, besser geeignet für Modelle mit kürzeren d.h. städtischen Wegen) und zum Kirchhoff-Ansatz (Berechnung der Widerstandsverhältnisse, besser geeignet für Modelle mit längeren Wegen d.h. für Regional- und Fernverkehrsmodelle) dar. Der Widerstand einer Verbindung wird hier zum minimalen Widerstand in Beziehung gesetzt, d.h., man misst die relativen Abweichungen vom Optimum. Aus mehreren Analysen der Umlegungsergebnisse, der Verteilung der Verkehrsströme auf die Route und der gesamten Abweichungen gegenüber den Querschnittszählungen wurde dafür ein \(\beta=4 \) kalibriert.

Zusätzlich zu dem in der folgenden Abbildung (Abbildung 30) dargestellten Angebotsparameter wurde in der Widerstandsfunktion auch ein Komfortfaktor berücksichtigt. Dafür wurden die aus der SP-Befragungen ermittelten Komfortparameter der Verkehrsmittel verglichen und ein zusätzlicher Malusfaktor von 0.12 mal Fahrzeit (Komfortparameter Tram, Komfortparameter Bus) für das Verkehrsmittel Bus berechnet. Eine weitere Differenzierung der Kom
fortparameter auf die Zugkategorien hat keine bedeutenden Verbesserungen der Umlegungsergebnisse gebracht.

Abbildung 30 VISUM Parameter für die ÖV-Umlegung

Die Umlegungsergebnisse und Querschnittsbelastungen (Abbildung 31 und Abbildung 40) zeigen ein sehr plausibles Ergebnis, vor allem, da es sich hier um eine auf die Querschnittszählungen nicht kalibrierte Matrix handelt. Diese Aussage wurde durch ein Vergleich der Umlegungsergebnisse mit den Querschnittszählungen nochmals bestätigt. Im Strassenverkehr wurden die Querschnittszählungen aus dem kantonalen MIV-Modell übernommen. Im ÖV wurden die Zähldaten von den SBB (Bahnstrecken) und dem ZVV (übrigen Strecken) zur Verfügung gestellt.

Die gesamte Quell-Ziel-Matrix wird aus zwei Teilmatrizen erstellt:
- Binnenverkehrs.matrix aus VISEVA
- Aussenmatrix (Quell-, Ziel- und Transitmatrix) aus dem nationalen Verkehrsmodell

Die aus dem nationalen Verkehrsmodell filtrierten Aussenströme mussten in einem ersten Schritt auf die kantonale Zonierung disaggregiert werden. Dies wurde mit Hilfe des in V-

Der Vergleich der Modellbelastungen mit den Zählwerten im MIV ist in Abbildung 31 dargestellt. In dieser Abbildung ist zu sehen, dass die Abweichungen zwischen Modellbelastung und Zählwert relativ klein sind. Da im Rahmen dieses Projekts eine Kalibration der MIV-Matrix auf die Querschnittszählungen nicht vorgesehen ist, werden die Ursachen sowie die Korrektur für die vorhandenen Abweichungen nicht weiter untersucht.
Abbildung 31 Vergleich der Streckenbelastungen aus Modell und Zählung – MIV (ohne Kalibration)

Es ist festzustellen, dass die Qualität der ermittelten MIV-Matrix gut ist und die Abweichungen gegenüber den Zähldaten sehr klein sind (Abbildung 32 bis Abbildung 35).
Abbildung 32 Umlegungsergebnisse: MIV-Matrix (ohne Kalibration; Gesamtansicht)
Abbildung 33 Vergleich Modell/Zählwerte: MIV-Matrix (ohne Kalibration; Gesamtansicht)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 34 Vergleich Modell/Zählwerte: MIV-Matrix (ohne Kalibration; Gesamtansicht eingezoomt)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 35 Vergleich Modell/Zählwerte: MIV-Matrix (ohne Kalibration; Stadt Zürich)
gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zahlwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zahlwert); vollständig rote Abschnitte = Zahlstelle nicht vorhanden

Diese Abweichungen wurden sehr wahrscheinlich durch die kleinere und weniger repräsentative ÖV-Stichprobe in den Mikrozensus Daten verursacht. Aus den Mikrozensusdaten werden für das im kantonalen Verkehrsmodell betrachtete Untersuchungsgebiet ca. 2’800 ÖV-Wege und 8’500 MIV-Wege berücksichtigt. Wie durch den Vergleich der Reiseweitenverteilungen des Mikrozensus und der Volkszählung gezeigt wurde, ist eine Verzerrung der Verteilung bei solchen Stichprobengrössen sehr wahrscheinlich.

Um die Abweichungen der ÖV-Matrix gegenüber den Querschnittszählungen zu reduzieren und die Verlässlichkeit der Matrixstruktur zu erhöhen, wurde die Struktur und die Reiseweiteverteilung der auf die Mikrozensus 2000 geeichte ÖV-Matrix für die Fahrzwecke Einkauf, Freizeit und Nutzfahrt in einem zusätzlichen Schritt überprüft und angepasst.
Abbildung 36 Umlegungsergebnisse: ÖV-Matrix (ohne Kalibration; Gesamtansicht)
Abbildung 37 Umlegungsergebnisse: ÖV-Matrix (ohne Kalibration; Stadt Zürich)
Abbildung 38 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, ohne Korrektur der Matrixstruktur; Gesamtansicht)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 39 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, ohne Korrektur der Matrixstruktur; Stadt Zürich)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden

Die anhand der so korrigierten Matrizen ermittelten Netzbelastungen und die Differenzen gegenüber den Zähldaten sind in den folgenden Abbildungen (Abbildung 41 bis Abbildung 46) dargestellt. Es ist zu sehen, dass durch die angepasste Matrixstruktur die Abweichungen gegenüber den Zähldaten weiter reduziert wurden.

Abbildung 40 Vergleich der Streckenbelastungen aus Modell und Zählung – ÖV (ohne Kalibration)
Abbildung 41 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Gesamtansicht)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 42 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Gesamtansicht eingezoomt)

gelb = Grundbelastung (keine Differenz), rot = relative positive Differenz (Modellbelastungen höher als Zählwert), grün = negative relative Differenz (Modellbelastungen tiefer als Zählnwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 43 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Stadt Zürich)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählewert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählewert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 44 Vergleich Modell/Zählwerte ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Stadt Zürich eingezoomt)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 45 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Zürich Innenstadt)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 46 Vergleich Modell/Zählwerte: ÖV-Matrix ohne Kalibration (VISEVA Ausgangsmatrix, Korrigierte Matrixstruktur; Stadt Winterthur)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
8.2.3 Vergleich mit der Pendlerstatistik aus der Volkszählung 2000

Neben der Überprüfung der ermittelten Streckenbelastung wurden auch die Quell-Ziel-Ströme auf einzelnen Querschnitten ausgewertet. Dafür wurde eine sogenannte „Spinnenanalyse“ der einzelnen Strecken durchgeführt. Es zeigte sich, dass die ermittelten Pendler-Ströme mit den erhobenen Strömen sehr gut übereinstimmen (Abbildung 50 bis Abbildung 52).
Abbildung 47 Vergleich Modell/Volkszählung: Streckenbelastungen aus der MIV-Matrix (Fahrzeck Arbeit)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert)
Abbildung 48 Vergleich Modell/Volkszählung: Streckenbelastungen aus der ÖV-Matrix (Fahrzweck Arbeit)

- Gelb = Grundbelastung (keine Differenz)
- Rot = relative positive Differenz (Modellbelastungen höher als Zählwert)
- Grün = negative relative Differenz (Modellbelastungen tiefer als Zählwert)
Abbildung 49 Vergleich Modell/Volkszählung: Streckenbelastungen aus der ÖV-Matrix (Fahrzweck Arbeit)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert)
Abbildung 50 Vergleich Pendlerströme MIV Volkszählung/Modell

Volkszählung 2000

Modell
Abbildung 51 Vergleich Pendlerströme MIV Volkszählung/Modell

Volkszählung 2000

Modell
Abbildung 52 Vergleich Pendlerströme ÖV Volkszählung/Modell

Volkszählung 2000

Modell
8.2.4 Quell-Zielströme / Spinnenanalyse

Abbildung 53 Spinnenanalyse: MIV-Ausgangsmatrix (Schöneichtunnel)
Abbildung 54 Spinnenanalyse: MIV-Ausgangsmatrix (A1 bei Dietikon)
Abbildung 55 Spinnenanalyse: MIV-Ausgangsmatrix (Rosengartenstrasse)
Abbildung 56 Spinnenanalyse: MIV-Ausgangsmatrix (A3 Sihlhölzli)
Abbildung 57 Spinnenanalyse: ÖV-Matrix (Stettbach-Stadelhofen)
Abbildung 58 Spinnenanalyse: ÖV-Matrix (Schaffhauserplatz-Beckenhof)
Abbildung 59 Spinnenanalyse: ÖV-Matrix (Central-Neumarkt)
Abbildung 60 Spinnenanalyse: ÖV-Matrix (Rüschlikon-Kilchberg)
Abbildung 61 Spinnenanalyse: ÖV-Matrix (Goldbach-Küsnacht)
Abbildung 62 Spinnenanalyse: ÖV-Matrix (Rennweg-Paradeplatz)
Abbildung 63 Spinnenanalyse: ÖV-Matrix (Bülach-Niederglatt)
Abbildung 64: Spinnenanalyse: ÖV-Matrix (Effretikon-Abzweigung Hürlistein)
Abbildung 65 Spinnenanalyse: ÖV-Matrix (Spreitenbach-Dietikon)
Abbildung 66 Spinnenanalyse: ÖV-Matrix (Uster-Nänikon)
Abbildung 68 Knotenspinne Zürich HB Gesamtansicht
Abbildung 69 Knotenspinne Bahnhof Zürich-Oerlikon
Abbildung 70 Knotenspinne Bahnhof Zürich-Oerlikon Gesamtansicht
Abbildung 71 Knotenspinne Bahnhof Winterthur
Kalibration der Quell-Zielmatrizen auf die Querschnittszählungen

Da der grösste Teil des Netzes durch die ZVV Daten abgedeckt wird, wurde die Analyse durch eine sehr enge Zusammenarbeit mit dem ZVV durchgeführt. Die erste Version der erhaltenen Daten hat sich grössten Teils als nicht plausibel gezeigt und wurde vom ZVV neu berechnet. Als problematisch haben sich vor allem die Zählwerte der Buslinien herausgestellt. Hier wurde gezeigt, dass die Plausibilität der Zähldaten sehr stark vom Erhebungskonzept und der Hochrechnungsmethode abhängig ist.

Neben plausiblen Zähldaten ist für die Kalibration der Matrix eine plausible bzw. fehlerfreie Abbildung des Routenwahlverhaltens eine wesentliche Voraussetzung. Ein verfälschtes Routenwahlverhalten wird in der Regel durch folgende Faktoren verursacht:

- Fehler im abgebildeten Verkehrsangebot
- Nicht der Realität entsprechende Zonenanbindungen
- Inkonsistenz in Netzgrösse und Zonendichte
- Unplausible Routenwahlparameter und Ansätze für die Nachfrageaufteilung

In dieser Untersuchung hat sich die Fehlersuche vor allem auf die Korrektur der ersten beiden Faktoren konzentriert: Verkehrsangebot und Zonenanbindungen. Es hat sich herausgestellt, dass durch die im KVM festgelegte Zonierung und die hier erstellten Netze eine Konsistenz
zwischen der Netzgröße und der Zonendichte nicht flächendeckend vorhanden ist. Dieses Problem konnte teilweise durch die Anpassung der Anbindungszeiten beseitigt werden.

Die weitere Reduktion der Abweichungen gegenüber den Zähldaten wurde durch die Berücksichtigung des Komfortfaktors erreicht. Es hat sich gezeigt, dass eine unterschiedliche Bewertung zwischen Bussen und anderen, schienengebundenen Verkehrsmitteln notwendig ist. Dafür wurde, wie im vorherigen Kapitel schon erwähnt, für die Busse ein zusätzlicher Malusfaktor von 0.12 mal der Fahrzeit berücksichtigt. Dies bedeutet, dass die Fahrzeit mit dem Verkehrsmittel Bus 12% schlechter bewertet wird als mit anderen Verkehrsmitteln.

Diese Art des Vorgehens ist allerdings nur möglich, wenn die Ausgangsstruktur der Matrix korrekt ist und die Differenzen zwischen den Umlegungsbelastungen und den Querschnittszählungen über das gesamte Netz konsistent sind. Dies bedeutet, dass durch die Korrektur der Teilmatrix auf einem Querschnitt die Differenzen zwischen der Umlegungsbelastung und dem Zählwert auf einem anderen Querschnitt nicht erhöht werden dürfen. Der Nachteil eines solchen Vorgehens ist, dass es einen sehr grossen Zeitaufwand erfordert.

Die Kalibration der Matrix wurde nur an den Binnenströmen durchgeführt. Die Aussenströme (die Ströme, die aus der Nationalen Personenverkehrsmodell übernommen wurden) wurden nicht weiter kalibriert.

Daran anschliessend wurde zur Korrektur der vorhandenen Differenzen zwischen den Umlegungsbelastungen und den Zählwerten eine Spinnenanalyse der einzelnen Querschnitte durchgeführt. Aus der Analyse der Verkehrsstromverteilung und dem Vergleich der Abweichungen auf anderen Zählstellen über die die Spinnenströme verlaufen, ist es möglich zu bestimmen, welche Ströme unter- bzw. überschätzt sind. Bei einer korrekten Matrixstruktur sollte, wie vorher bereits erwähnt wurde, durch die Korrektur aller über den Querschnitt fahrenden Ströme die Abweichungen auf anderen Querschnitten nicht erhöht werden. Wäre dies der Fall, dürften nur die Teilströme korrigiert werden.

Ergebnisse der Kalibration

Im folgenden Abschnitt werden die Ergebnisse der Kalibration sowie die dadurch ermittelten Veränderungen der Matrix und der Querschnittsbelastungen dargestellt. Dafür wurden die nachstehenden Auswertungen der kalibrierten bzw. endgültigen Matrizen durchgeführt:

- Eckwerte der einzelnen Matrizen und Reiseweiteverteilungen vor (Viseva-Ausgangsmatrix) und nach der Kalibration
- Netzbelastungen und Abweichungen gegenüber den Querschnittszählungen

Die Analyse der Quell-Ziel-Ströme bzw. die Spinnenanalyse auf einzelnen Querschnitten wurde im vorherigen Kapitel durchgeführt. Da wie im folgenden Kapitel gezeigt wird, die Matrixstruktur durch die Kalibration nicht verändert wurde, hat sich die Struktur der Quell-Ziel-Ströme zwischen den Quell-Ziel-Beziehungen und auf den einzelnen Querschnitten nicht verändert.

Eckwerte der einzelnen Matrizen und Reiseweiteverteilung

Wie in Tabelle 30 zu sehen ist, wurde die ÖV-Binnenmatrix um ca. 10% gegenüber der erstellten Ausgangsmatrix reduziert. Diese Veränderungen sind vor allem auf die Feinkorrektur der Streckenbelastungen auf lokalen Strecken zurückzuführen. Da eine Kalibration der MIV-Matrix in diesem Projekt nicht vorgesehen ist, kann auch nicht genau festgestellt werden, ob diese Differenz auf den Anteil des intrazonalen Verkehrs oder auf die Ziel- und Verkehrsmittelwahl-Anteile zurückzuführen ist.

Die gesamte Anzahl an Wegen sowie die berechneten Personenkilometer und die mittlere Reiseweite der kalibrierten Quell-Zielmatrix nach Fahrtzwecken sind in Tabelle 31 dargestellt. Die hier dargestellten Kenngrössen sind aus der Summe der Binnenverkehrsmatrix und der Aussenströme aus dem nationalen Verkehrsmodell berechnet. Durch die Berücksichtigung der Aussenströme aus dem nationalen Modell, die Anpassung der Matrixstruktur sowie die Kalibration auf die Querschnittszählungen haben sich die mittleren Reiseweiten einzelner Fahrtzwecke gegenüber der Ausgangsmatrix nur wenig verändert. Wie erwartet, sind die Nutzfahrten die längsten und die Einkauffahrten die kürzesten Wege.

Tabelle 30 Veränderung der Quell-Zielmatrix

<table>
<thead>
<tr>
<th>ÖV-Matrix</th>
<th>Ausgangsmatrix aus VISEVA</th>
<th>nach Kalibration</th>
<th>Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binnenströme</td>
<td>1‘242’126</td>
<td>1‘118’844</td>
<td>- 9.9%</td>
</tr>
<tr>
<td>Gesamte Matrix*</td>
<td>1’404’835</td>
<td>1’281’553</td>
<td>- 9.9%</td>
</tr>
</tbody>
</table>

(*) Mit Aussenströmen aus dem nationalen Modell

Tabelle 31 Personenfahrten und Personenkilometer der kalibrierten Quell-Zielmatrix (Binnen- und Aussenströme)

<table>
<thead>
<tr>
<th>ÖV-Matrix</th>
<th>Personen Wege (Mio. Wege)</th>
<th>Personen-km (Mio. Pkm)</th>
<th>mittlere Reiseweite (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeit</td>
<td>0,622</td>
<td>7,759</td>
<td>12,5</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>0,146</td>
<td>1,832</td>
<td>12,5</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>0,047</td>
<td>1,111</td>
<td>23,6</td>
</tr>
<tr>
<td>Einkauf</td>
<td>0,145</td>
<td>0,829</td>
<td>5,7</td>
</tr>
<tr>
<td>Freizeit</td>
<td>0,322</td>
<td>5,422</td>
<td>16,8</td>
</tr>
<tr>
<td>Summe</td>
<td>1,282</td>
<td>16,952</td>
<td>13,2</td>
</tr>
</tbody>
</table>
Die Fahrztweckanteile im Bezug auf das Verkehrsaufkommen und die Verkehrsleistungen sind in der folgenden Tabelle dargestellt. Hier ist zu berücksichtigen, dass die Verkehrsleistung des Aussenverkehrs nur ab der Modellgrenze und nicht als vollständiger Weg berechnet wird (z.B. der Weg Zürich-Bern aus dem nationalen Modell wird hier mit Personen-km nur zwischen Zürich und Aarau berechnet). Es ist festzustellen, dass 60% des Verkehrsaufkommens und 57% der Verkehrsleistung Pendlerfahrten (Arbeit und Ausbildung) sind.

Tabelle 32 Fahrztweckanteile (in %) im Bezug auf die Personenfahrten und Personenkilometer der Kalibrierten Quell-Zielmatrix

<table>
<thead>
<tr>
<th>ÖV-Matrix</th>
<th>Personen-Wege</th>
<th>Personen-km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeit</td>
<td>48,5</td>
<td>45,8</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>11,4</td>
<td>10,8</td>
</tr>
<tr>
<td>Nutzfahrt</td>
<td>3,7</td>
<td>6,6</td>
</tr>
<tr>
<td>Einkauf</td>
<td>11,3</td>
<td>4,9</td>
</tr>
<tr>
<td>Freizeit</td>
<td>25,1</td>
<td>32,0</td>
</tr>
<tr>
<td>Summe</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Für die Überprüfung der Matrixstruktur bzw. für die Analyse der Veränderung der Matrixstruktur durch die Kalibration auf die Querschnittszählungen, wurde ein Vergleich der Reiseweiteverteilungen vor und nach der Kalibration durchgeführt. Dieser Vergleich wie auch der Vergleich mit dem Mikrozensus Verkehr 2000 und der erstellten Ausgangsmatrix ist in Abbildung 73 dargestellt. Aus dieser Abbildung ist ersichtlich, dass sich die Struktur der Matrix durch die manuelle Kalibration auf die Querschnittszählung nur marginal verändert hat.

Damit wurde das Ziel dieses Arbeitsschrittes erreicht: die Qualität der Quell-Ziel-Matrix wurde sowohl durch die Reduzierung der Abweichungen zwischen den Querschnittszählung-
gen und den Umlegungsbelastungen als auch durch die zusätzliche Eichung der Matrixstruktur mit den Erhebungsdaten erhöht.

Abbildung 73 Veränderung der Reiseweiteverteilung: Alle Fahrtzwecke (Binnenströme)
Vergleich der Netzbelastungen mit den Querschnittszählungen

<table>
<thead>
<tr>
<th>Tabelle 33</th>
<th>Statistische Analyse: Modellbelastungen und Zähldaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖV-Modell</td>
<td></td>
</tr>
<tr>
<td>Anzahl Zählstellen</td>
<td>5916</td>
</tr>
<tr>
<td>Mittlere gewichtete Abweichung</td>
<td>8.2%</td>
</tr>
<tr>
<td>der Absolutwerte in %</td>
<td></td>
</tr>
<tr>
<td>Korrelationskoeffizient</td>
<td>0.996</td>
</tr>
</tbody>
</table>

Es muss beachtet werden, dass bei der Eichung des Modells alle Modellkomponenten soweit wie möglich realitätsentsprechend dargestellt werden. Dies bedeutet, dass sowohl Inputdaten, wie Netzattribute und Modellparameter, als auch die Matrixstruktur und daraus abgeleitete Streckenbelastungen korrekt abgebildet werden sollen. Die hier berechneten Differenzen sind eine weitere Bestätigung der genügenden Konsistenz des gesamten Modells.

Weiters ist zu beachten, dass bei der Erstellung von Netzmodellen eine vollständige Konsistenz mit allen Erhebungsdaten und damit auch mit den Querschnittszählungen kaum möglich ist. Die Unsicherheiten und die Fehler bei den Erhebungsdaten (sowohl bei den Zähldaten als auch bei den Angebots- und anderen Nachfragedaten) sowie die Inkonsistenz zwischen Ze-
nengrösse und Netzdichte führen in der Regel dazu, dass eine vollständige Konsistenz kaum zu erreichen ist. Zusätzlich müssen hier auch die Grenzen der aggregierten Modelle sowie die Vielseitigkeit des Verkehrsverhaltens berücksichtigt werden.

Der Vergleich der Modellbelastungen (Gesamtmatrix mit Binnen- und Aussenströmen) mit den Zählwerten ist in Abbildung 74 dargestellt. Die räumliche Verteilung der Streckenbelastungen und die Abweichungen gegenüber den Zähldaten zwischen den Netzbelastungen mit kalibrierten Quell-Zielmatrizen (Gesamtmatrix mit Binnen- und Aussenströmen) und den Querschnittszählungen ist in Abbildung 75 bis Abbildung 94 dargestellt. Es ist festzustellen, dass die relativen Abweichungen insgesamt nur gering sind. Sie betreffen vor allem Strecken mit lokaler Bedeutung innerhalb der Zonen, bei denen die Nachfrageaufteilung auf die Haltestellen mit den Querschnittszählungen inkonsistent ist. Wie im vorherigen Kapitel schon erwähnt wurde, könnte eine weitere Minimierung der Abweichungen vor allem durch Anpassung der Zonendichte zu der Netzdichte und eine Erhöhung der Verlässlichkeit der Zählwerte erreicht werden.

Abbildung 74 Vergleich der Streckenbelastungen aus Modell und Zählung - ÖV
Abbildung 75 Streckenbelastungen aus der ÖV-Matrix (40'000 Personenfahrten / 6mm; Gesamtansicht)
Abbildung 76 Streckenbelastungen aus der ÖV-Matrix (40'000 Personenfahrten / 6mm; Gesamtansicht eingezoomt)
Abbildung 77 Streckenbelastungen aus der ÖV-Matrix (40'000 Personenfahrten / 6mm; Stadt Zürich)
Abbildung 78 Streckenbelastungen aus der ÖV-Matrix (40'000 Personenfahrten / 6mm; Stadt Zürich eingezoomt)
Abbildung 79 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Gesamtansicht)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 80 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Gesamtansicht)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 81 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Gesamtansicht eingezoomt)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 82 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Gesamtansicht eingezoomt)

- gelb = Grundbelastung (keine Differenz)
- rot = relative positive Differenz (Modellbelastungen höher als Zählwert)
- grün = negative relative Differenz (Modellbelastungen tiefer als Zählwert)
- vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 83 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Stadt Zürich)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählestelle nicht vorhanden
Abbildung 84 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Stadt Zürich eingezoomt)

Gelb = Grundbelastung (keine Differenz), rot = relative positive Differenz (Modellbelastungen höher als Zählwert), grün = negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 85 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Stadt Zürich eingezoomt)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 86 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Stadt Zürich eingezoomt)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 87 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Winterthur)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 88 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Oerlikon / Kloten)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zähllwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zähllwert); vollständig rote Abschnitte = Zähllstelle nicht vorhanden
Abbildung 89 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Uster / Wetzikon)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 90 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Knonau / Thalwil)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 91 Vergleich Modell/Zählung: Streckenbelastungen (40’000 Personenfahrten / 6mm; Pfäffikon / Bauma)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 92 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Bülach / Andelfingen / Schaffhausen)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 93 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Oberglatt / Regensdorf)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
Abbildung 94 Vergleich Modell/Zählung: Streckenbelastungen (40'000 Personenfahrten / 6mm; Linkes und Rechtes Zürichseeufer)

gelb = Grundbelastung (keine Differenz), rot= relative positive Differenz (Modellbelastungen höher als Zählwert), grün= negative relative Differenz (Modellbelastungen tiefer als Zählwert); vollständig rote Abschnitte = Zählstelle nicht vorhanden
10 Schlussfolgerungen und Empfehlungen

Aus den ermittelten Modellergebnissen und der durchgeführten Plausibilitätsanalyse kann festgestellt werden, dass die Zielsetzungen dieses Projektes vollständig erreicht wurden:

1. die Erstellung eines prognosefähigen und massnahmensensitiven kantonalen ÖV-Modells und
2. die Grundlagen für ein Verkehrsmittelwahlmodell.

Durch die Erstellung und Plausibilisierung des ÖV-Modells (als Ergänzung zu dem bestehenden MIV-Modell des Kantonalen Verkehrsmodells) sowie die dafür notwendigen und hier durchgeführten Modellschätzungen wurden die zuvor fehlenden Grundlagen für die Berechnung von Verkehrsnachfrageveränderungen und -prognosen im Kanton Zürich geschaffen. Für die Abschätzung von bimodal- oder multimodal Nachfrageveränderungen im Personenverkehr ist die notwendige Voraussetzung, dass das bestehende MIV-Modell (KVM) konstant, prognosefähig und massnahmensensitiv ist, was zu prüfen aber nicht Gegenstand dieser Untersuchung war.

Die bisherigen Erfahrungen haben gezeigt, dass die Abweichungen einer modellmässig erstellten und auf die Querschnittszählungen nicht kalibrierten Matrix in der Regel deutlich grösser sind als die hier ermittelten Abweichungen. Die höhere Genauigkeit ist vor allem auf eine sehr detaillierte Segmentierung des Modells durch die Bildung von Quell-Ziel-Gruppen und die dementsprechend genau erstellten Erzeugungs-, Ziel- und Verkehrsmittelwahlmodelle zurückzuführen. Die wesentliche Voraussetzung für diesen Ansatz waren die Durch-

Die geschätzten Modellparameter, Zeitwerte und relative Bewertung der Einflussgrößen haben die Bedeutung der einzelnen Variablen für die ÖV-Routenwahl, die Verkehrsmittelwahl und die Zielwahl aufgezeigt. Mit diesen Parametern und der hier angewandten Methodik wurden die Grundlagen für die Berechnung von Nachfrageveränderungen infolge von Angebots-, soziodemographischen und räumlichen Veränderungen geschaffen.

Weiterentwicklung

- Für die zukünftigen Modellanwendungen wäre weiter zu empfehlen, anhand des hier erstellten Basismodells ein Prognosemodell (mit möglichen Szenarien) als Grundlage für die konkreten Massnahmenanwendungen aufzubauen. Dieses Modell sollte plausible Szenarien von soziodemographischen und räumlichen Veränderungen in den Prognosenjahren vorgeben und damit deren Auswirkungen schon berücksichtigen, so dass bei konkreten Massnahmen nur Angebotsauswirkungen zusätzlich berechnet werden müssen.

plausible und verlässliche Hochrechnungsmethodik ermittelt werden. Die Steigerung der Verlässlichkeit der Zähldaten ist wichtig, da mit den hier angewandten Modellansätzen die Abweichungen zwischen modellierten Querschnittsbelastungen und Zählwerten so weit gesenkt werden konnte, dass sie in der gleichen Größenordnung liegen dürften, wie die Unsicherheiten, die bei der Erhebung und Hochrechnung der Zählwerte selbst entstehen.

- Darüber hinaus sollten im Vorfeld der nächsten Aktualisierung des Modells eine Analyse der vorhandenen und notwendigen Datengrundlagen und ihrer Qualität durchgeführt werden. Damit würde die Projektplanung und -durchführung erleichtert sowie die Qualität der verwendeten Daten erhöht.

- Weiterhin sind für die Aktualisierung und Verifizierung des Modells neben den festgestellten Unsicherheiten bei den Querschnittszählungen, zusätzliche Erhebungen der Quell-Zielströme an ausgewählten Querschnitten (Spinnenerhebungen) empfehlenswert. Solche Erhebungsdaten sind vor allem für die Plausibilisierung des Modells eine sehr wichtige Grundlage. Die Anzahl der Querschnitte sollte in Abhängigkeit der vorhandenen Finanzmittel und der bestehenden Netz- und Zonendichte gewählt werden.

11 Literatur

