
ETH Library

Data-driven outdoor and indoor
temperature prediction for energy-
efficient building operation

Conference Paper

Author(s):
Peng, Yuzhen; Schlueter, Arno

Publication date:
2019-08

Permanent link:
https://doi.org/10.3929/ethz-b-000397612

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000397612
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Selection and peer-review under responsibility of the scientific committee of the 11th Int. Conf. on Applied Energy (ICAE2019). 
Copyright © 2019 ICAE  

 

International Conference on Applied Energy 2019 
Aug 12-15, 2019, Västerås, Sweden 

Paper ID: 433 

DATA-DRIVEN OUTDOOR AND INDOOR TEMPERATURE PREDICTION FOR 
ENERGY-EFFICIENT BUILDING OPERATION 

 
 

Yuzhen Peng1*, Arno Schlüter 1 

1 Architecture and Building Systems, Institute of Technology in Architecture, Department of Architecture, ETH Zürich, Switzerland 
 

 
ABSTRACT 

Outdoor and indoor temperature prediction of local 
buildings is important for optimal building operation and 
energy-demand management. This study collects data 
from a commercial building, covering outdoor and 
indoor climate, and variables of occupants and building 
system operation. Based on the selected data, two 
different data-driven methodologies using machine 
learning techniques are proposed to predict local 
outdoor and indoor temperatures at a high resolution. 
The proposed data-driven models with learning 
capabilities are based on k-nearest neighbor and artificial 
neural networks, showing good prediction performance 
for the case study building.  
  
Keywords: data-driven modeling, temperature 
prediction, machine learning, energy efficiency, smart 
buildings 

NOMENCLATURE 

Abbreviations 

HVAC Heating, ventilation, and air conditioning  
ANN Artificial neural networks 
KNN k-nearest neighbor 

NLARX Nonlinear autoregressive with 
exogenous input 

Symbols  

𝑇𝑇𝑜𝑜𝑜𝑜 Outdoor air temperature   
𝑇𝑇𝑖𝑖𝑖𝑖 Indoor air temperature   

𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚 Local measured 𝑇𝑇𝑜𝑜𝑜𝑜 at 10-minute 
intervals 

𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,ℎ Local measured 𝑇𝑇𝑜𝑜𝑜𝑜 at hourly intervals 

𝑇𝑇𝑜𝑜𝑜𝑜.𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,ℎ Online weather forecast at hourly 
intervals 

𝑇𝑇𝑜𝑜𝑜𝑜.𝑚𝑚𝑚𝑚,ℎ Daily merged 𝑇𝑇𝑜𝑜𝑜𝑜 at hourly intervals 

𝑇𝑇𝑜𝑜𝑜𝑜.𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚 Local predicted 𝑇𝑇𝑜𝑜𝑜𝑜 at 10-minute 
intervals 

1. INTRODUCTION 
Buildings have a significant impact on worldwide 

energy use, accounting for around one-third of total final 
energy usage [1]. Outdoor and indoor temperatures are 
two of the key factors influencing the energy 
consumption of building systems and the comfort of the 
built environment. In pursuit of energy-efficient and 
comfortable buildings, outdoor and indoor temperature 
prediction is required by energy- and comfort-optimal 
operation [2] and demand management [3].  

To control building systems of heating, ventilation, 
air conditioning (HVAC), artificial neural networks (ANN), 
dealing with non-linear problems, were used to predict 
the outdoor air temperature (𝑇𝑇𝑜𝑜𝑜𝑜) in [4,5]. The data used 
by them included horizontal global solar radiation, 𝑇𝑇𝑜𝑜𝑜𝑜, 
and humidity. Standard deviations of prediction errors in 
[4] ranged from 0.45°C to 1.31°C for 6 time horizons. For 
a similar purpose, the Hammerstein-Wiener model was 
employed to predict the hourly local 𝑇𝑇𝑜𝑜𝑜𝑜  in [6]. Its 
minimal and maximal prediction errors were 0.2°C and 
2.4°C. To model the energy load of buildings in the study 
of [3], the hourly forecast of 𝑇𝑇𝑜𝑜𝑜𝑜 was generated by daily 
probabilistic minimum and maximum temperature.  

In a similar manner of predicting 𝑇𝑇𝑜𝑜𝑜𝑜, ANN was also 
used by the studies of [4,5] to predict indoor air 
temperature (𝑇𝑇𝑖𝑖𝑖𝑖) based on the data of 𝑇𝑇𝑜𝑜𝑜𝑜, humidity, 
global solar radiation, and 𝑇𝑇𝑖𝑖𝑖𝑖  setpoint. Standard 
deviations of prediction errors in [4] ranged from 0.10°C 
to 0.47°C for 6 time horizons. Root mean squared errors 
in [5] spanned from 0.06°C to 0.65°C within the defined 
horizon. In another study, Afroz et al. [7] used more 
variables to model indoor temperature using ANN. The 
variables were extracted from outdoor and indoor 
climate, HVAC equipment, air handling and variable air 
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volume control units. The maximal mean squared error 
is 0.08. Different to the above studies, Cui et al. [8] used 
hybrid modeling (RC network and supervised learning 
algorithms) to predict the average 𝑇𝑇𝑖𝑖𝑖𝑖  and the 
temperature difference between the downstairs and 
upstairs for two-story houses. The 14 variables used 
consisted of weather data, building properties, and 
measured\estimated data from a building. The achieved 
root mean squared errors ranged from 0.50°C to 0.77°C 
for seven models. 

For similar research purposes, this paper proposes 
two different data-driven methodologies to predict both 
local outdoor and indoor temperatures. Features are 
extracted from time of day, outdoor and indoor climate, 
occupant-related variable, and HVAC operation 
parameters. Both models are evaluated using actual data 
measured from a commercial building.  

2. METHODOLOGY 
In this study, two types of machine learning 

algorithms (i.e. k-nearest neighbor and artificial neural 
networks) are selected to predict outdoor and indoor 
temperatures based on the defined prediction problems 
and our prior research on the data-driven modeling. 

According to the building control purpose, the time 
horizon of the prediction is defined to 2 hours at a 
resolution of 10-minute intervals.  

2.1 Case study building and data 

The case study building located in Singapore is used 
as an office building. Singapore has a tropical climate 
with warm outdoor temperature [9]. Room temperature 
of the case study space is controlled by a water-based 
chilled ceiling system [10]. Sensor data is transformed at 
10-minute intervals, measuring from the case study 
building and an on-site weather station. All sensors are 
off-the-shelf products calibrated by the suppliers before 
the study.  

2.2 Outdoor temperature prediction  

The online weather forecast provided by weather 
websites is delivered hourly, a resolution of which is 
lower than building operation cycles that are in minutes. 
Additionally, the weather measurement for the online 
weather forecast is located on a different site, away from 
local buildings (i.e. target buildings). The distance 
between them and the surroundings of buildings cause 
temperature errors. To improve prediction resolution 
and reduce prediction errors for local buildings, this 
subsection presents a learning-based method to predict 
local 𝑇𝑇𝑜𝑜𝑜𝑜 . As shown in Fig 1, this prediction includes 

three parts: 1) data of the current day, 2) historical 
database, and 3) module of the local 𝑇𝑇𝑜𝑜𝑜𝑜 prediction.  

The data in the current day consists of two types of 
information. Online weather forecast is read from 
AccuWeather via REST API, updating the hourly forecast 
for the next 12 hours. The outdoor weather of the local 
building is monitored from an on-site weather station, 
including outdoor air temperature and rain status. Local 
measured 𝑇𝑇𝑜𝑜𝑜𝑜 of the past minutes of the current day is 
transformed at a 1-hour resolution (𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,ℎ) from 10-
minute intervals ( 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚 ), averaging sampled 
𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚 for each past hour. As online forecasted 𝑇𝑇𝑜𝑜𝑜𝑜 
provided at hourly intervals (𝑇𝑇𝑜𝑜𝑜𝑜,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,ℎ), a daily merged 
𝑇𝑇𝑜𝑜𝑜𝑜  (𝑇𝑇𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚,ℎ ) required by the local 𝑇𝑇𝑜𝑜𝑜𝑜  prediction 
module is formatted to a vector with 24 elements to 
store hourly  𝑇𝑇𝑜𝑜𝑜𝑜  data: two sectional vectors record 
𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,ℎ and 𝑇𝑇𝑜𝑜𝑜𝑜,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,ℎ, respectively. 

The historical database comprises of historical 𝑇𝑇𝑜𝑜𝑜𝑜 
measured by the on-site weather station. It stores the 
daily local 𝑇𝑇𝑜𝑜𝑜𝑜 at two data resolutions: 10-minute and 
1-hour intervals. In the last sample cycle of a weekday, 
the local measured 𝑇𝑇𝑜𝑜𝑜𝑜 is updated automatically to the 
historical dataset for the prediction on the next day.  

Based on the prepared data, the module of local 𝑇𝑇𝑜𝑜𝑜𝑜 
prediction deduces local 𝑇𝑇𝑜𝑜𝑜𝑜  for the next 2 hours in 
three steps. First, k-nearest neighbor is used to find 𝑘𝑘 
days on which 𝑇𝑇𝑜𝑜𝑜𝑜 are most similar to 𝑇𝑇𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚,1ℎ from 
the historical data at 1-hour intervals, computing 
Euclidean distances between them. Second, according to 
the identified dates, corresponding daily 𝑇𝑇𝑜𝑜𝑜𝑜  are 
extracted from the historical dataset at 10-minute 
intervals. The segments of their next 2-hour 𝑇𝑇𝑜𝑜𝑜𝑜  are 
computed into 3 vectors at the same resolution, 
representing the minimum, average, and maximum 

Coming hoursPast hours

Local Toa prediction moduleHistorical 
database

Online  forecasted Toa 
(Toa,olPd,h)

Data in the current day

Local predicted Toa (Toa,lcPd,m)

Local measured 
rain status

1

2 3

Toa,lcMs,h

Daily merged Toa (Toa,mg,h)

Local measured Toa 
(Toa,lcMs,m) 

 
 

Fig 1. Local 𝑇𝑇𝑜𝑜𝑜𝑜 prediction 
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values, respectively. Lastly, the final local predicted 𝑇𝑇𝑜𝑜𝑜𝑜 
(𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚 ) for the next 2 hours is selected from the 
above vectors based on the current rain status and 
outdoor temperature of the local building. 

2.3 Indoor temperature prediction  

To model indoor temperature, this study considers 
the impacts from five categories of features: time of day, 
outdoor climate, indoor climate, occupant-related 
factor, and HVAC operation parameters. The features, 
collected from the sensor network of the case study 
building, are listed in Table 1. 

 

Table 1. Description of features 
Category Features 
Time Hour of day 
Outdoor climate Outdoor air temperature (°C) 
Indoor climate Indoor air temperature (°C) 
Occupant-related 
variable 

Room carbon dioxide 
concentration (ppm) 

HVAC operation 
parameters 

Room temperature setpoint (°C) 
Water supply temperature of 
chilled beams (°C)  

 

Nonlinear Autoregressive with Exogenous input 
(NLARX) aims to predict time series values from past data 
streams. For this reason, this study employs NLARX to 
predict 𝑇𝑇𝑖𝑖𝑖𝑖  using the features listed in Table 1. 
Predicted value at time t  is regressed from delayed 
input (u(t)) and output (y(t)) variables, as shown in Eq. 
1. And, a two-layer feedforward network is used as a 
nonlinearity estimator for NLARX, which is trained by 
Bayesian regularization backprogation.  

 

𝑦𝑦(𝑡𝑡) = 𝐹𝐹(𝑦𝑦(𝑡𝑡 − 1), … ,𝑦𝑦(𝑡𝑡 − 𝑑𝑑), … ,𝑢𝑢(𝑡𝑡 − 1), … ,𝑢𝑢(𝑡𝑡 − 𝑑𝑑))  (1)  

3. RESULTS AND DISCUSSION 

3.1 Prediction results of outdoor temperature 

The historical dataset included around 1-year 
𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚 and 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,ℎ data measured by the on-site 
weather station. And, the proposed methodology was 
conducted to predict local 𝑇𝑇𝑜𝑜𝑜𝑜  of the case study 
building from mid-April to August 2018.  

For the 𝑇𝑇𝑜𝑜𝑜𝑜  prediction, Fig. 2 summarizes 
𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚 , 𝑇𝑇𝑜𝑜𝑜𝑜,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,ℎ , and 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚  during the 4-
month experiment. The period of the daily prediction 
follows the HVAC operation schedule of the building, 
displayed by two dotted lines as shown in Fig 2 a). This 
subfigure also presents the range of 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚  during 
the experiment (the grey area) and indicates that the 
means of 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚  (blue line) predicted by the 
proposed model is closer to the means of actual 𝑇𝑇𝑜𝑜𝑜𝑜 
(black line) than 𝑇𝑇𝑜𝑜𝑜𝑜,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,ℎ  (red line). Different from 
𝑇𝑇𝑜𝑜𝑜𝑜,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,ℎ drifting up to 2°C compared to 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚, Fig 
2 b) presents that the local predicted 𝑇𝑇𝑜𝑜𝑜𝑜 is kept in the 
range of the actual 𝑇𝑇𝑜𝑜𝑜𝑜. As shown in Fig 2 c), the majority 
of errors between 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚  and observed 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚 
are reduced to a small band (less  than 0.6°C) as 
compared to around 2°C generated by the online 
weather forecast. Furthermore, the mean squared error 
of 𝑇𝑇𝑜𝑜𝑜𝑜,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚  is reduced to 1 °C as compared to 2.9°C 
when predicted by the online weather forecast. 

For the 𝑇𝑇𝑜𝑜𝑜𝑜 measurement, positions of the weather 
station for a building might cause different values. To 
reduce such difference, the local weather station in this 
study was installed based on the standard requirement. 

3.2 Prediction results of indoor temperature 

In this study, the time-series data for input features 
and outputs consisted of over 1-year high-quality sensor 
values collected from the case study building. Such data 
was divided into two portions: training dataset (75%) and 

 
Fig 2.Outdoor temperature prediction. a) Means, b) distributions of 𝑇𝑇𝑜𝑜𝑜𝑜, c) distributions of prediction errors.     
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test dataset (25%). Fig. 3 presents the regression results 
of training, test, and the combined datasets for a thermal 
zone. R values indicate correlations between predicted 
and observed 𝑇𝑇𝑖𝑖𝑖𝑖 , which show good performance of 
regression for the 3 datasets. The mean squared errors 
are around 0.002. 

4. CONCLUSIONS 
In this paper, we presented two data-driven models 

with learning capabilities to predict outdoor and indoor 
temperatures. The studies in the literature review 
showed different prediction performance due to various 
methodologies, datasets, resolution of the prediction, 
and assessment methods. Overall, the performance 
evaluated in this study tracks the actual data well. 

The proposed models can not only be used to 
optimize building operation, but also for load 
management. To improve the energy-efficient building 
operation, the proposed prediction models have been 
integrated into a predictive HVAC control system to 
optimize indoor temperature based on outdoor and 
indoor climate, and human behavior. The related 
evaluation will be presented in our future study. 
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