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So many people have come and gone
Their faces fade as the years go by
Yet I still recall as I wander on

As clear as the sun in the summer sky

Boston — More than a feeling



Abstract

The subject of this doctoral thesis is the class of barycentric metric spaces, which encom-
passes both Banach spaces and complete CAT(0) spaces. Encouraged by known results
as well as open questions in the context of CAT(0) spaces, we study similar objectives
in the framework of barycentric metric spaces. For example, we show that certain fixed
point properties, which are given in CAT(0) spaces, do not hold for some barycentric
metric spaces, and prove two fixed point results adapted to the new situation. These
results are phrased for the class of metric spaces that allow a conical bicombing; this is
no restriction, since the class of barycentric metric spaces agrees with this class. This
equality leads to a variety of questions regarding the existence and uniqueness of certain
classes of conical bicombings. In particular, we consider conical bicombings on open
subsets of normed vector spaces and show that these bicombings are locally given by
linear segments. This result implies that any open convex subset in a large class of
Banach spaces possesses a unique consistent conical bicombing.

Besides this, we consider various Lipschitz extension problems, where in some cases
any complete barycentric metric space may appear as target space. One such Lipschitz
extension problem involves the extension of a Lipschitz function to finitely many addi-
tional points. Our contribution consists of finding upper bounds for the distortion of
the Lipschitz constant, and we construct examples which demonstrate that we found the
best possible bounds in the case of an extension to one additional point. Many Lipschitz
extension constants may be computed by solving an associated linear extension problem,
which is why, in the last part, we turn our attention to absolute linear projection con-
stants of real Banach spaces. We succeeded in finding a formula for the maximal linear
projection constant amongst n-dimensional Banach spaces. By means of this formula,
we give another proof of the Griinbaum conjecture, which was first proven by Chalmers
and Lewicki in 2010.



Zusammenfassung

Der Gegenstand dieser Doktorarbeit ist die Klasse der baryzentrischen metrischen Riume,
die sowohl Banachrdume wie auch vollstandige CAT(0)-Raume umfasst. Motiviert durch
bekannte Siitze und offene Fragen im Kontext der CAT(0)-Réiume untersuchen wir Ahn-
liches im Rahmen der baryzentrischen Rdume. Beispielsweise zeigen wir, dass gewisse
Fixpunkteigenschaften, welche in CAT(0)-Rdumen gegeben sind, fiir manche baryzen-
trische Rdume nicht mehr gelten, und beweisen, angepasst an die neue Situation, zwei
Fixpunktsitze. Diese Sitze sind fiir die Klasse der metrischen Riume, die ein konis-
ches Bicombing zulassen, formuliert; dies ist keine Einschrinkung, da die Klasse der
baryzentrischen Raume mit dieser identisch ist. Diese Gleichheit 6ffnet die Tiir fiir ver-
schiedene Fragestellungen, welche die Eindeutigkeit und Existenz gewisser Klassen von
konischen Bicombings betreffen. Insbesondere betrachten wir konische Bicombings auf
offenen Teilmengen von normierten Vektorriumen und zeigen, dass diese Bicombings
lokal durch lineare Segmente gegeben sind. Dieses Resultat hat zur Folge, dass offene
konvexe Mengen in einer grossen Klasse von Banachridumen ein eindeutiges konsistentes
konisches Bicombing besitzen.

Unabhéngig davon betrachten wir verschiedene Lipschitz Erweiterungsprobleme, bei
denen teilweise jeder vollstindige baryzentrische Raum als Zielraum zugelassen ist. Eine
von uns untersuchte Problemstellung beinhaltet die Erweiterung einer Lipschitz Funk-
tion auf endlich viele zusédtzliche Punkte. Unser Beitrag besteht darin, obere Schranken
fiir die Verzerrung der Lipschitz Konstante anzugeben und wir konstruieren Beispiele, die
aufzeigen, dass unsere Schranken im Falle der Erweiterung auf einen Punkt bestmoglich
sind. Viele Lipschitz Erweiterungskonstanten lassen sich berechnen, indem man ein as-
soziiertes lineares Erweiterungsproblem 16st, weswegen wir uns zuletzt der absoluten
linearen Projektionskonstante eines reellen Banachraums zuwenden. Es ist uns gelun-
gen, eine Formel fiir die maximale Projektionskonstante n-dimensionaler Banachriume
herzuleiten. Mittels dieser Formel geben wir einen weiteren Beweis der Griinbaumschen

Vermutung, welche erstmals 2010 von Chalmers und Lewicki bewiesen wurde.
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1 Overview

Be it by accident or not, some of the methods and results from the realm of Banach
spaces transfer readily to CAT(0) spaces. Often, this transfer happens almost verbatim.
Moreover, several notions in the theory of CAT(0) spaces were motivated by a linear
role model. In view of these connections, the search for a reasonable definition of “space”
that includes both Banach and CAT(0) spaces seems natural. Barycentric metric spaces
form a class of metric spaces that achieves this objective, and they are the main objects
of study of the present doctoral thesis. They appear in two ways: first, we study
questions regarding their geometry, and secondly, they serve as target spaces in some of
the Lipschitz extension problems that are considered.

The family of barycentric metric spaces possesses useful structural properties: it is
closed under ultralimits and 1-Lipschitz projections. Furthermore, the lesser-studied
complete Busemann spaces and the injective metric spaces are barycentric metric spaces.
Due to the many members of the class of barycentric metric spaces and its structural
properties, one may wonder if a unified treatment of these spaces could be something
worth pursuing. Luckily, the presence of non-positive curvature, in the sense that every
barycentric metric space admits a conical geodesic bicombing, does indeed lead to many
interesting geometric questions. Some of these questions are answered in the first part
of the thesis.

The second part is more analytic in nature, as we study various Lipschitz extension
problems, of which some allow any complete barycentric metric space as target space. For
instance, we consider the problem of extending such Lipschitz maps defined on certain
F-transforms of a Hilbert space to finitely many additional points. The classical linear
projection constants of real Banach spaces are also studied in detail. We recall their
close connection to several well-known non-linear Lipschitz extension moduli and derive
a formula for the maximal linear projection constant amongst n-dimensional Banach
spaces. Using this formula we give an alternative proof of the Griinbaum conjecture,
which was first proven by Chalmers and Lewicki in 2010.

The bulk of this thesis is based on the articles [Bas18a; Bas18b; BM19| and |Bas19].

We proceed by presenting our results.



1.1 The geometry of barycentric metric spaces

1.1.1 — Following Sturm, cf. [Stu03, Remark 6.4], a 1-Lipschitz map 8: P,(X) — X
with 8(6,) = x for all x € X is called a contracting barycenter map. Here, (X,dx)
is a metric space and P;(X) denotes the set of all Radon probability measures on X
with finite first moment. We equip P;(X) with the 1-Wasserstein distance W;. A
barycentric metric space is a metric space (X, dx) that admits a contracting barycenter
map. Occasionally, we denote barycentric metric spaces by (X, dy, 3) to emphasize the
contracting barycenter map.

Every complete CAT(0) space admits a contracting barycenter map. Indeed, the
Cartan barycenter map is a contracting barycenter map, cf. [LPS00; Stu03]. Moreover,
Navas established that every complete Busemann space is a barycentric metric space,
cf. [Nav13|; see [Desl6] for a streamlined proof thereof. A contracting barycenter map 3
distinguishes a family {o,,(-) }+ 4ex of geodesics of X. Throughout the thesis, a geodesic
is a map o: [0,1] — X such that d(o(s),o(t)) = |s — t|d(c(0),0(1)) for all 0 < s, < 1.
For z,y € X we define the geodesic o,,(-) via

Ouy(t) = B((1 — t)0, + tdy), for all ¢t € [0, 1]. (1.1)

It is not hard to check that the map o: X x X x [0,1] — X given by (z,y,t) = 04,(%)

satisfies the following weak, but non-coarse, global non-positive curvature condition:

dx (Oay(t), Oary (1)) < (1 = t)dx (2, 2") +tdx(y,9), (1.2)

for all points x,y,2’,y’ € X and all real numbers ¢t € [0,1]. Thus, o is a conical geodesic
bicombing in the terminology of |[DL15|, see Section 2.1. Conversely, a complete metric

space with a conical geodesic bicombing also admits a contracting barycenter map:
Theorem 1.1. Let (X,dx) be a complete metric space. The following are equivalent:
1. X s a barycentric metric space.
2. X admits a conical geodesic bicombing.

The proof of Theorem 1.1 is given in Section 2.3. The key component in the proof is a
1-Lipschitz barycenter construction that traces back to A. Es-Sahib and H. Heinich, cf.
|[ESH99|, and A. Navas, cf. [Nav13|. Moreover, we use a result due to Miesch which allows
us to pass to a reversible conical bicombing starting from a conical geodesic bicombing,

cf. [Miel7a, p.87]. The class of complete CAT(0) spaces is closed under ultralimits and



1-Lipschitz retractions. Due to Theorem 1.1, one may readily verify that the class of
complete barycentric metric spaces enjoys the same properties. Recently, other classical
results from the theory of CAT(0) spaces have been transferred to barycentric metric
spaces, cf. [Des16; DL16; Miel7b; Kel19).

1.1.2 — Tt is well-known that if (X, dx) is a complete CAT(0) space, then every subgroup
of the isometry group of X with bounded orbits has a non-empty fixed point set, cf.
[BH99, Corollary I1.2.8]. Analogous results hold for a wide variety of metric spaces. For
example, the above statement holds if the metric space (X, dx) is an L-embedded Banach
space or an injective metric space, c¢f. [BGM12, Theorem A] and [Lanl3, Proposition
1.2|. Further results can be found in [KL.10; Ede64]. It turns out that if (X,dx) is a
complete Busemann space instead of a complete CAT(0) space, then there exists a fixed
point free isometry with bounded orbits. This is discussed in Section 2.7.

Let ¢: X — X be an isometry of (X,dx) and let o: X x X x [0,1] — X be a conical
geodesic bicombing. We say that o is p-equivariant if ¢ o 0,y = 0y @)e(y) for all points
x,y in X. Let X be a subsemigroup of the isometry group of X. We say that o is
X -equivariant if o is s-equivariant for every isometry s € X,

Let o: X x X x[0,1] — X be a conical geodesic bicombing and let A C X be a subset.
The o-convexr hull of A is the set conv,(A) := J;>, Ar, where the sequence (Ay),-, of

subsets of X is given by the recursive rule
A=A and Api1 = {amy(t) cx,y € Ay, t €10, 1]}, for all k > 1.

We use conv,(A) to denote the closure of the convex hull of A.

The main result of this paragraph reads as follows:

Theorem 1.2. Let (X,dx) denote a complete metric space, let X be a subsemigroup of
the isometry group of X, and let o0: X x X x [0,1] — X be a X-equivariant conical
geodesic bicombing. If there is a non-empty compact subset K C X such that s(K) = K
for all s € X, then there is a point x, in the closed o-convex hull conv,(K) such that

s(xy) = x4 for all s € X.

In [Nav13, p. 620], Navas introduced a simple geometric argument that implies The-
orem 1.2 if one requires additionally that the closed o-convex hull of K is compact.
Unfortunately, Navas’s method seems not to work without this additional assumption.
In |Gro93, p. 86|, Gromov stated the following question: “When is the closed convex hull

of a compact subset of a complete CAT(0) space compact?” To the author’s knowledge,



Gromov’s question is still completely open, even in the setting of complete barycentric
metric space.

The proof of Theorem 1.2 is given in Section 2.9. The proof strategy may be roughly
described as follows: We use Ryll-Nardzewski’s fixed point theorem to construct an
invariant Radon probability measure first, and then we use the equivariant contracting
barycenter map from Theorem 2.10 to obtain a fixed point.

Note that the assumption in Theorem 1.2 of the metric space (X, dx) having a conical
geodesic bicombing is necessary, as for instance the unit circle S* C R? clearly admits
isometries without fixed points. How restrictive is the assumption in Theorem 1.2 that
o is Y-equivariant? Clearly, the unique geodesic bicombing of a Busemann space X
is Iso(X)-equivariant. Moreover, Proposition 3.8 in [Lan13] asserts that every injective
metric space (X, dx) admits a conical geodesic bicombing o that is Iso(.X)-equivariant.
Furthermore, it follows from a generalised version of the Mazur-Ulam Theorem that for
every isometry ¢ of an open convex subset of a normed vector space the conical geodesic
bicombing o given by the linear geodesics is p-equivariant, c¢f. [Man72, p. 368|.

The subsequent result is a strengthened version of Theorem 1.2 for when the subsemi-

group X' is generated by a single isometry.

Theorem 1.3. Let (X, dx) denote a complete metric space, let p: X — X be an isometry
and let o: X x X x [0,1] = X be a p-equivariant conical geodesic bicombing. If there is
a point xg in X and a compact subset K C X such thal the strict inequality

k-1
1 .
lim sup (SHPE E ILK(@ZH(:EO))) >0 (1.3)
i=0

k—+4o0 >0
holds, then there is a point x, in ¢onu, ({cpk(:vo) k> O}) such that p(r,) = 4.

The function 1x: X — {0,1} in Theorem 1.3 denotes the indicator function of the
subset K C X.

Note that the left hand side of (1.3) is equal to the upper Banach density, cf. [Furl4,
Definition 3.7], of the set D := {k > 0: 1x,(¢"(z0)) = 1}. This fact allows us to invoke
a basic result from combinatorial number theory in order to show that the orbits of the
isometry ¢ are bounded, see Lemma 2.31. One key ingredient in the proof of Theorem
1.3 is a generalisation of a classical existence result for invariant Radon measures, see

Theorem 2.28; this result may be of independent interest.
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1.1.3 — It is a direct consequence of a result of Gahler and Murphy that the only
conical geodesic bicombing on a normed vector space is the one that consists of the
linear geodesics, cf. |GMS81, Theorem 1]. With a mild geometric assumption on the
norm, we show in Section 2.5 that already a conical geodesic bicombing on an open
subset of a normed vector space locally consists of linear geodesics. More generally, we

get the following result:

Theorem 1.4. Let (V. ||-||) be a normed vector space such that its closed unit ball is the
closed convex hull of its extreme points. Suppose that A C V is a subset that admits a
conical geodesic bicombing o0: A x A x [0,1] — A and let py € A be a point. If r > 0
is a real number such that the closed ball Bay.(po) is contained in A, then o(p,q,t) =
(1 —t)p + tq for all points p,q € B,(po) and all t € [0, 1].

We do not know if Theorem 1.4 remains true if we drop the assumption of the normed
vector space (V) ||-||) having the property that its closed unit ball is the closed convex
hull of its extreme points. But how common is this property?

By invoking the Banach-Alaoglu theorem and the Krein-Mil'man theorem one may
show that the closed unit ball of a dual Banach space has this property. Consequently, we
obtain in particular that Theorem 1.4 is valid in every reflexive Banach space. Moreover,
using a classification result due to Nachbin, Goodner, and Kelley, cf. [Kel52], and a result
of Goodner, cf. [Goob0, Theorem 6.4, it is readily verified that Theorem 1.4 also holds
for every injective Banach space.

Note that the classical Mazur-Ulam Theorem is a direct consequence of Theorem 1.4,
as every isometric isomorphism between two normed vector spaces extends to an iso-
metric isomorphism between their linear injective hulls, which by the above satisfy the
assumptions of Theorem 1.4.

We proceed with another application of Theorem 1.4. In [Miel7bh|, Miesch generalized
the classical Cartan-Hadamard theorem to metric spaces that locally admit a consistent
convex geodesic bicombing. A geodesic bicombing o: X x X X [0,1] — X is consistent
if for all points p,q in X it holds that im(o,,) C im(o,,) whenever p’ = o,,(s) and
¢ = o,(t) with 0 < s < ¢t < 1. For instance, the geodesic bicombing given by the
linear segments of a convex subset of a Banach space is consistent. Consistent geodesic
bicombings appear also in [FL08] and [HLO7]. With Theorem 1.4 at hand, it is possible to
use Miesch’s generalized Cartan-Hadamard Theorem to obtain the following uniqueness

result:

11



Theorem 1.5. Let (E, ||-]|) be a Banach space such that its closed unit ball is the closed
conver hull of its extreme points. Suppose that C C E is a closed convex subset with
non-empty interior. If o: C' x C x [0,1] — C is a consistent conical geodesic bicombing,

then o(p,q,t) = (1 —t)p + tq for all points p,q € C and all t € [0, 1].

Hence, for subsets C' C E as in Theorem 1.5 the geodesic bicombing given by the linear
segements of C'is the only consistent conical geodesic on C. The proof of Theorem 1.5 is
given in Section 2.6. In Example 2.20 we use a non-affine isometry originally introduced
by Schechtman to construct two distinct consistent conical geodesic bicombings on a
closed convex subset B C L'([0,1]) with empty interior. As it is possible to consider B
as a subset of the injective hull of L([0, 1]), it follows that the assumption in Theorem
1.5 of C' having non-empty interior is necessary.

Moreover, Theorem 1.5 is false if one considers only conical geodesic bicombings. A
counterexample is discussed in Section 2.6, see Example 2.21. This answers Question
1.6 from [BM19].

12



1.2 Lipschitz extensions for barycentric target spaces

1.2.1 — Lipschitz maps are generally considered as an indispensable tool in the study
of metric spaces. The need for a Lipschitz extension of a given Lipschitz map often
presents itself naturally. Deep extension results have been obtained by Johnson, Lin-
denstrauss, and Schechtman [JLS86|, Ball [Bal92|, Lee and Naor [LN05|, and Lang and
Schlichenmaier [LS05]. The literature surrounding Lipschitz extension problems is vast,
for a recent monograph on the subject see [BB11; BB12| and the references therein.
Before we explain our results in detail, we start with a short presentation of what we
will call the Lipschitz extension problem.

Let (X, px) be a quasi-metric space, that is, the function px: X x X — R is non-
negative, symmetric and vanishes on the diagonal, cf. [Sch38, p. 827]. Unfortunately, the
term “quasi-metric space” has several different meanings in the mathematical literature.
In this thesis, we stick to the definition given above. Let S C X be a subset and let
(Y, py) be a quasi-metric space. A Lipschitz map is a map f: S — Y such that the
quantity

Lip(f) :=inf {L > 0 : for all points z, 2" € S: py(f(x), f(2")) < Lpx(x,2")}

is finite. We use the convention inf @ = +o00. We consider the following Lipschitz

extension problem:

Question 1.6. Let (X, px) and (Y, py) be a quasi-metric spaces, and suppose that S C X
s a subset of X. Under what conditions on S, X and Y is there a real number D > 1

such that every Lipschitz map f: S — Y has a Lipschitz extension f: X — Y with
Lip (f) < DLip(f)?
Let e(S; X,Y) denote the infimum of the D’s satisfying the desired property in the
“Lipschitz extension problem”. Given integers n,m > 1, we define
en(X,Y) :=sup {e(S; X,Y): S C X, |S| <n},
e™(X,Y) :=sup {e(S; SUT,Y):S,TC X, S closed, |T| < m}.
We use |-| or card(-) to denote the cardinality of a set. We equip (X, px) with the
smallest topology that contains the sets {x € X : px(z,z0) < €} for all zop € X and
e> 0.
The Lipschitz extension modulus e,(X,Y’) has been studied intensively in various
settings. Nevertheless, many important questions surrounding e, (X,Y’) are still open,

cf. INR17] for a recent overview.

We are interested in an upper bound for e”(X,Y"). We get the following result.

13



Theorem 1.7. Let (X,dx) be a metric space and let (Y, py) be a quasi-metric space. If
m > 1 s an integer, then
e"(X,)Y)<m+1. (1.4)

A constructive proof of Theorem 1.1 is given in Section 3.5. The estimate (1.4) is opti-
mal. This follows from the following simple example. We set P, := {0,1,...,m,m +
1} C R and we consider the subset S :=Y :={0,m+1} C P,,4; and themap f: S - Y
given by x +— x. Suppose that F': P,.; — Y is a Lipschitz extension of f to P, .
Without effort it is verified that Lip(F) = (m + 1) Lip(f); hence, it follows that (1.4)
is sharp. The sharpness of Theorem 1.7 allows us to obtain a lower bound for the pa-
rameter a(w) of the dichotomy theorem for metric transforms [MN11, Theorem 1|, see
Corollary 3.4.

If the condition that the subset S C X has to be closed is removed in the definition
of €"(X,Y), then Theorem 1.7 is not valid. Indeed, if (X,dx) is not complete and
z € X is a point contained in the completion X of X such that z ¢ X, then the identity
map idy: X — X does not extend to a Lipschitz map idx: X U {z} — X if we equip
X U{z} C X with the subspace metric. This is a well-known obstruction. As pointed
out by Mendel and Naor, there is the following upper bound of €™ (X,Y) in terms of
en(X,Y) .

Lemma 1.8 (Claim 1 in [MN17]). Let (X,dx) and (Y,dy) be two metric spaces. If
m > 1 is an integer, then

e"(X,Y) <en(X,Y)+2.
By the use of Lemma 1.8 and [LN05, Theorem 1.10], one can deduce that if (X, dx)

is a metric space and (E, ||-||,) is a Banach space, then

(X, E) < log(m)

™ log (log(m))

for all integers m > 3, where the notation A < B means A < CB for some universal

constant C' € (0,400). As a result, for sufficiently large integers m > 3 the estimate in

Theorem 1.7 is not optimal if we restrict the target spaces to the class of Banach spaces.
In Section 3.1, we present an example that shows that for Banach space targets the

estimate (1.4) is sharp if m = 1. As a byproduct of the construction in Section 3.1, we

obtain the lower bound
6(62761) 2 \/57 (15)

where e({3, 1) := sup { e(S;ly,01) : S C Eg}. It is unknown if e({s, ¢1) is finite or infinite.
This question has been raised by Ball, cf. [Bal92].

14



1.2.2 — In this paragraph, we are interested in extending Lipschitz maps with values in
complete barycentric metric spaces to finitely many additional points. Given a quasi-

metric space (X, px) and a subset S C X, we define
€par (95 X)) := sup {e(S; X, Z) : Z complete barycentric metric space }

We are mainly interested in quasi-metric spaces of the following form: Let F': [0, +00) —
[0,400) be a map with F(0) = 0; The F-transform of X, denoted by F[X], is by
definition the quasi-metric space (X, F' o py). F-transforms of Hilbert spaces have been
studied in detail by Schoenberg in the 1930’s, cf. [Sch38]. Now, the main result of this

paragraph can be stated as follows:

Theorem 1.9. Let (H, (-,-),,) be a Hilbert space and let F': [0, +00) — [0, +00) be a map
such that the composition F(\/-) is a strictly-increasing concave function with F(0) = 0.
If S C X C F[H] are finite subsets, then

F(vm+ 1x)
epar(S; X) < sup Fa)

where m := card(X \ 9).

Theorem 1.9 is optimal if m = 1 and F(t) = ¢, see Proposition 3.1. Via this sharpness
result we obtain that certain F-transforms of ¢, for p > 2, do not isometrically embed
into /5, see Corollary 3.3.

Suppose that F': [0, +00) — [0,4+00) is a strictly-increasing continuous function such
that the F-transform of /5 embeds isometrically into a Hilbert space. By a celebrated
result of Schoenberg F'(1/-)? is a Bernstein function, cf. [Sch38, Theorem 6'[; thus, the
function F'(y/-) is concave and therefore satisfies the assumptions on F' in Theorem 1.9.
This provides a natural class of examples for which Theorem 1.9 may be applied. For
instance, by considering the function F'(t) = t*, with 0 < o < 1, we obtain the following

direct corollary of Theorem 1.9.

Corollary 1.10. Let (H,(-,-),,) be a Hilbert space, let (Z,dz) be a complete barycentric
metric space and let 0 < o <1 and L > 0 be real numbers. If X C H 1is a finite subset,
SCX,and f: S— Z is an (a, L)-Hélder map, then there is an extension f: X — Z
of f such that f is an («, L )-Hélder map with

Eg( m—i—l)a L,

where m = card(X \ 9).
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In Corollary 1.10, an (a, L)-Hdélder map is a map f: X — Y such that

dy (f(z), f(z')) < Ldx(z,2')*

for all points z,z2’ € X.
Along the lines of the proof of Claim 1 in [MN17]| one can show that if (X,dx) and

(Y, dy) are metric spaces, then for all integers m > 1 we have

(X, Y) < sup (X, Y) +2,

n>1

where
el (X,Y) :=sup{e(S;SUT,Y): S, T C X, |S| <n, |T| <m}.

Thus, by the use of Theorem 1.9, we may deduce that if H is a Hilbert space and F is

a Banach space, then

e"(H,E) <vm+1+2 (1.6)

for all integers m > 1. In [LNO5, Theorem 1.12], Lee and Naor demonstrate that
e,(H, E) S +/log(n) for all integers n > 2. Thus, via this estimate (and Lemma 1.8) it
is possible to obtain the upper bound

e (H, E) S +/log(m)

that has a better asymptotic behaviour than estimate (1.6). However, since Lee and
Naor use different (probabilistic) methods, we believe that our approach has its own

interesting aspects.

1.2.3 — For a quasi-metric space (X, px) and a subset S C X, we define
efin(S; X) := sup {e(S; X, E) : E finite-dimensional real Banach space}.
For every finite metric space (S, dg) we let
@(9) := sup {eq(9; X) : X metric space with S C X}

denote the absolute Lipschitz extendability constant of S.
Naor and Rabani, cf. [NR17], and Lee and Naor, cf. [LNO5], have shown that

_ ol — log(n)
log(n) S &(n) :=sup {&(S) : |S| =n} S m (1.7)
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provided that n > 3. The main result of this paragraph, see Theorem 1.11, is a formula
for &(S) using only linear Lipschitz extension moduli. Let (E,||-||) be a real Banach

space and let F' C E denote a finite-dimensional linear subspace. The number
II(F, E) :=inf {||P|| | P: E — F bounded surjective linear map with P> = P}

is called the relative projection constant of F' with respect to E. We get the following

connection from the non-linear to the linear world.

Theorem 1.11. Let (S,dg) denote a finite metric space. Then
2(S) = sup { II(F(S), F(X)) : X finite metric space such that S C X};

i particular,

2(5) < T(F(5), £oo(N)). (1.8)

We use F(X) to denote the Lipschitz-free space of a metric space X. Lipschitz-free
spaces have been introduced by Arens and Eells in the 1950s, cf. [AE56], and the term
“Lipschitz-free space” has been coined by Godefroy and Kalton, cf. |[GK03]. We recall
the construction of Lipschitz-free spaces in Section 3.6, cf. [Ost13] or [Wea99] for further
information. The proof of Theorem 1.11, given in Section 3.6, is a variant of the proof
of Theorem 1.2 in [BB07|, due to Brudnyi and Brudnyi.

The result from Section 3.9 tells us that for |S| = 3, the right hand side of (1.8) is
bounded by %; in Example 3.18, we construct a metric space S consisting of three points

such that @(S) > 3. For that reason, we obtain:

Corollary 1.12.

However, for large n > 1 the inequality (1.8) is not sharp. Indeed, for a finite weighted
tree T', Godard, cf. |[God10, Corollary 3.6|, proved that F(T') = ¢}, for n := |T| — 1;
thus a result of Griinbaum, cf. |[Grii60], tells us that for such a weighted tree 7" with
n+ 1 € 27 vertices, the right hand side of (1.8) equals

nl’ (%) 2n
VeV
For n > 1 large enough, this is strictly greater than the upper bound (1.7) due to Lee
and Naor. Hence, (1.8) cannot be sharp for n > 1 large enough.

The last two sections of this chapter are devoted to linear projection constants.
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1.2.4 — As a consequence of ideas developed by Lindenstrauss, cf. [Lin64|, for a finite-
dimensional Banach space E C ¢ (N) the smallest constant C' € [0, 400) such that £
is an C-absolute Lipschitz retract is completely determined by the linear theory of E.
Indeed, Rieffel, cf. [Rie06], established that it is equal to the linear projection constant
of E, which is the number II(E) € [0, +00] defined as

inf {||P|| | P: {(N) = E bounded surjective linear map with P> = P} .

Linear projections have been the object of study of many researchers and the literature
can be traced back to the classical book by Banach, cf. [Ban32, p.244-245|. The question
about the maximal value II,, of the linear projection constants of n-dimensional Banach
spaces has persisted and is a notoriously difficult one. We establish a formula that relates
I1,, with eigenvalues of certain two-graphs. This reduces the problem (in principle) to the

classification of certain two-graphs and thus allows the introduction of tools from graph
4
3
3.9, and we establish that the maximal relative projection constants of codimension n in

theory. Following this approach, we present an alternative proof of Il = %, see Section
(2 converge to 1+11,, as d — +o0, see Corollary 1.16. In the remainder of this overview,
we summarize the current state of the theory.

For n > 1, define Ban,, to be the set of linear isometry classes of n-dimensional Banach
spaces over the real numbers. The set Ban,, equipped with the Banach-Mazur distance
is a compact metric space, cf. |[TJ89|. Thus, the map logoll: Ban, — [0,+400) is

1-Lipschitz and consequently for all n > 1 the maximal projection constant of order n,
IL, := max {II(X) : X € Ban, },

is a well-defined real number. Apart from II; = 1, the only known value is Il = %,
due to Chalmers and Lewicki, ¢f. [CL10]. There is numerical evidence indicating that
IIs = (1 4+ +/5)/2, cf. [FS17, Appendix B|, but to the author’s knowledge, there is no

known candidate for II,, for all n > 4. From a result of Kadets and Snobar, cf. [KS71],

I, < V/n.

The above estimate has independently been obtained by Gromov, cf. [Gro83, Proposition
2.1.A|. Moreover, Konig, cf. [K6n85], has shown that this estimate is asymptotically the
best possible. Indeed, there exists a sequence (X, )x>1 of finite-dimensional real Banach
spaces such that dim(X,, ) = ny, where n; — +oo for k — +o00, and

I1(X,,
lim (—’“)

=1.
k—4o00 A/ Mk
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There are many non-isometric maximizers of the function II,,(-), cf. [KTJO03|.

A finite-dimensional Banach space is called polyhedral if its unit ball is a polytope.
Equivalently, a finite-dimensional Banach space (FE, ||-||) is polyhedral if there exists an
integer d > 1 such that (E,||-||) admits a linear isometric embedding into ¢¢ . Using
a result of Klee, cf. |Kle60, Proposition 4.7|, and elementary functional analysis, we
show that there exist maximizers of I, (-) that are polyhedral, see Theorem 1.17. In
the 1960s, Griinbaum, cf. [Grii60|, calculated II(¢7), TI(¢5) and II(E, ), where E,  is
the 2-plane with the hexagonal norm. In particular, II(E, ) = %,
conjectured to be the maximal value of II(-) amongst 2-dimensional Banach spaces.

which Griinbaum

In 2010, Chalmers and Lewicki presented an intricate proof of Griinbaum’s conjecture
employing the implicit function theorem and Lagrange multipliers, cf. [CL10].

Our main result, see Theorem 1.14, provides a characterization of the number II,
in terms of certain maximal sums of eigenvalues of two-graphs that are K, o-free. In
[FF84|, Frankl and Fiiredi give a full description of two-graphs that are Kj-free. Via
this description and Theorem 1.14 we can derive from first principles that II, = %. This
is done in Section 3.9.

Next, we introduce the necessary notions from the theory of two-graphs that are
needed to properly state our main result.

The subsequent definition of a two-graph via cohomology follows Taylor [Tay77], and
Higman [Hig73|; see also [Sei9l, Remark 4.10]. Let V' denote a finite set. For each

integer n > 0 we set
E,(V):={BcCV:|Bl=n} and &,(V):={f: E.(V)—Fs},

where 5 denotes the field with two elements. Elements of (V') are finite simple graphs.
If n is strictly greater than the cardinality of V', then &,(V') consists only of the empty
function @ — Fy. For each f € &,(V) the map 6f € &,,1(V) is given by

B Y f(B\{v}).
vEB
Clearly, it holds that od = 0, where 0 denotes the neutral element of the group &, o(V).

Two-graphs can be defined as follows.

Definition 1.13 (two-graph). A two-graph is a tuple T = (V,A), where V and A are
finite sets and there exists a map fr € E(V) such that 5fr = 0 and A = f;'(1). The
cardinality of V' is called the order of T
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Among other things, two-graphs naturally occur in the study of systems of equiangular
lines and 2-transitive permutation groups; authoritative surveys are [Sei91; Sei92|. Given

a two-graph T' = (V, A), the following set is always non-empty:

[T] = {f EQ(V) — IFQ : 5f = fT}

Each f € [T7] gives rise to a graph Gy := (V, f~1(1)). The Seidel adjacency matriz of a
graph G = (V, E) is the matrix S(G), which is the symmetric |V| x |V|-matrix given by

0 ifi=j
S(G);; =< —1 if i and j are adjacent
1 otherwise.

For each choice fi, fo € [T'] the matrices S(Gf,) and S(Gy,) have the same spectrum.
By definition, the eigenvalues of T = (V, A) are the real numbers

)\1(T) > ... > /\\m(T)

that are the eigenvalues of S(Gy) for f € [T'] (counted with multiplicity). This definition
is independent of f € [T].

We say that a two-graph T' = (V, A) is K,-free if there is no injective map ¢: {1,...,n} —
V such that {¢(v1), p(v2), p(vs)} € A for all distinct points vy, v, vs € V.

Our main result reads as follows:

Theorem 1.14. If n > 1 is an integer, then
1 n
I1,, = sup max {g + - Z Me(T) = T is a Kyyo-free two-graph of order d} .

To prove Theorem 1.14, we invoke a simple trick, see Lemma 3.20, that allows us to

greatly narrow down the matrices that need to be considered. This is done in Section
3.7.

1.2.5 — The following question has first been systematically addressed by Konig, Lewis,
and Lin in [KLL83|:

Question 1.15. Let n,d > 0 be integers. What is

II(n,d) := sup {I(E) : E C % is an n-dimensional Banach space}?
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By definition, sup @ = —oo. Clearly, II(d,d) = 1 and it is a direct consequence of the
classical Hahn-Banach theorem that II(1,d) = 1 for all integers d > 1. The quantity
II(d — 1,d) has been examined by Bohnenblust, cf. [Boh38|, where it is shown that
II(d — 1,d) < 2 — 2. In [CL09|, Chalmers and Lewicki determined the exact value of
I1(3,5). In [KLL83|, Konig, Lewis, and Lin established the general upper bound

e

with equality if and only if R" admits a system of d distinct equiangular lines. Thereby,

as R? admits a system of six equiangular lines, cf. [LS73, p. 496], it holds that

1++5

I1(3,6) = .
<7> 2
In light of
d
I1(4,6) = -
(4,6) =2,

which we demonstrate in [Basl19, Section 4.2], up to d = 6 all exact values of II(n, d) for

1 <n < d are now computed. It is well-known that
II(n,d) <II(n,d+1) and II(n,d) <II(n+1,d+1)

for all 1 < n < d, cf. [CL09]. Via Theorem 1.14, we infer the following asymptotic

relation between these two increasing sequences:
Corollary 1.16. For each integer n > 1 we have

L+, = lim T(d—n.d).

—+00

A proof of Corollary 1.16 is given in Section 3.7. If n = 1, then Corollary 1.16 follows
directly from the fact that Bohnenblust’s upper bound of II(d — 1, d) is sharp, cf. [CL09,
Lemma 2.6]. Recently, the special case n = 2 has been considered by Sokotowski in
[Sok17]. The upper bound

[(d—n,d) <1++/n
for d > n has been obtained by Garling and Gordon, cf. [GG71]|, by the use of John’s
Theorem.

Recall that II(1,d) = II(1,1) = 1 for all d > 1. The proof of Griinbaum’s conjecture,

cf. [CL10], shows that

4
I1(2,d) = 11(2,3) = 3 for all d > 3.

Numerical experiments, cf. [FS17, Appendix B|, suggest that if d € {6,...,10}, then
I1(3,d) = II(3,6). Since II,(-) admits a polyhedral maximizer, the sequence Il(n,-)

stabilizes eventually. This is the content of the subsequent theorem:
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Theorem 1.17. Let n > 1 be an integer. There exists a polyhedral n-dimensional Banach
space (Fy,,||-||) such that
I(F,) = 11,.

As a result, there is an integer D > 1 such that
II(n,d) = I(n, D)
for alld > D.

A proof of Theorem 1.17 can be found in Section 3.8. Unfortunately, the proof of
Theorem 1.17 is not constructive. Obtaining an explicit upper bound for the quantity

D seems out of reach at the moment.
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2 The geometry of barycentric
metric spaces

2.1 Preliminaries

2.1.1 — In this section, we collect some facts from the theory of optimal transportation.
Let (X, Tx) be a Hausdorff topological space. We denote by By the Borel o-algebra
of (X,7x) and by Kx the set that consists of all compact subsets of (X, Tx). A non-
negative Borel measure p: By — [0, +0o0] is called a Radon measure if u(K) < 400 for
all compact subsets K of (X, Tx) and

w(B) =sup {u(K): K C B,K € Kx}

for all Borel measurable sets B of (X, 7x). A signed finite Borel measure p: Bx — R is
called a signed finite Radon measure if the total variation |u| : Bx — [0, +00) is a Radon
measure. Let P(X) denote the set that consists of all non-negative Borel measures on
(X, Bx) that are Radon probability measures. Suppose that f: X — X is a continuous
map. We define the map

f.: P(X) = P(X)

- {f*u: Bx — [0,1]
B u(f1(B)).

The map f, is well-defined and for every p in P(X) the measure f.u is called the
pushforward of pn by f. A measure p in P(X) is called f-invariant if fopu = pu.

For the rest of this subsection let (X, dx) be a metric space. Suppose that the Borel
measure j: Bx — [0,1] is a Radon probability measure. The subset spt(u) of all points
x in X such that u(U) > 0 for all open neighborhoods of z is called the support of p.
We say that p has a finite first moment if there is a point o in X such that

/Xd(x,xo) p(der) < +oo.
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We let P;(X) be the set that consists of all measures of (X, Bx) that are Radon prob-
ability measures with a finite first moment. We denote by W': P;(X) x P(X) — R
the first Wasserstein distance on P;(X). Due to the Kantorovich-Rubinstein Duality

Theorem the first Wasserstein distance W is given by

Wi (u,v) :sup{/ fdu—/ fdv : f: X = R is 1-Lipschitz }
X X

and thus defines a metric on Py (X), c¢f. [Edwll]. We define

PQ(X) = {Zakéxk Tn > 1,20{k: 1, ay 6@20,$k EX}

k=1 k=1

On Py(X) there is an explicit formula for the first Wasserstein distance.

Proposition 2.1. Let (X,dx) denote a metric space. If n > 1 is an integer and x;,y;

fori=1,...,n are points in X, then we have
1 1 1 .
Wi - (0zy + -+ +0a,) - (Oyy -+ 0y,) | = ~ min > d(Tr, Yr(k))-
Proof. See [Vil03, p. 5. O

It turns out that the set Py(X) is Wi-dense in P;(X). This is the content of the

following proposition.

Proposition 2.2. Let (X, dx) be a metric space and let € > 0 be a positive real num-
ber. If the Borel measure pn: Bx — [0,1] is a Radon probability measure contained in
P (X), then there exists a measure v, contained in Po(X) with spt(ve) C spt(p) such
that Wi (p,ve) < €.

Proof. See Theorem 6.1 in [Edw11| and Theorem 6.18 in [Vil09]. O

Suppose that the map ¢: X — X is 1-Lipschitz. By the use of the Kantorovich-
Rubinstein Duality Theorem it is readily verified that the map ¢,: P (X) — Pi(X) is
well-defined and 1-Lipschitz as well. This functorial property gives rise to the subsequent

Lipschitz extension property.

Lemma 2.3. Let (B,dp) be a metric space, A C B be a subset and let L > 0 be a real
number. If there exists a L-Lipschitz map v: B — Pi(A) such that v(a) = 0, for all
a € A, then every 1-Lipschitz map from A to a barycentric metric space extends to an

L-Lipschitz map on B.
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Proof. Let (Z,dz) be a barycentric metric space, let ¢: A — Z be a 1-Lipschitz map
and let 8: Pi(Z) — Z be a contracting barycenter map. We set

@(b) = Blpu(e(b))) (b€ B),

where ¢, (¢(b)) denotes the pushforward of the measure ¢(b) by ¢. It holds that

dz(@(0),2(t')) < Wip.(¢(b)), @ (1(V))) < Wi(e(b), ¢(V)) < L (b, ')

for all b, € B. The second inequality follows directly from the Kantorovich-Rubinstein
duality theorem. By construction, (a) = ¢(a) for all @ € A. This completes the
proof. O

2.1.2 — In what follows, we briefly introduce injective metric spaces and injective hulls
of metric spaces. A metric space (X, dx) is injective if for every metric space (B, d) and
every 1-Lipschitz map f: A — X defined on a subset A C B, there exists a 1-Lipschitz
map f: B — X such that ?\A = f. Basic examples of injective metric spaces are the
real line with the standard metric, ¢ (1) for any index set I and all complete R-trees.
In [DP17], an explicit characterization of all injective subsets of ¢, () is obtained.

An injective hull of the metric space (X, d) is a pair (Y, e), where (Y, d) is an injective
metric space and e: X — Y is an isometric embedding with the property that if there is
a metric space (Z,d) and a 1-Lipschitz map f: Y — Z such that the composite map foe
is an isometric embedding, then the map f is an isometric embedding. Isbell showed that
every metric space possesses an essentially unique injective hull, cf. [Isb64]. We denote
the injective hull of (X, dx) by (FE(X),e). Isbell construction has been rediscovered
several times. We refer to [Lanl3] for a short overview.

The subsequent lemma tells us that every contracting barycenter map on a metric

space (X, dx) is induced by a contracting barycenter map on its injective hull (E(X),e).

Lemma 2.4. Let (X,dx) denote a metric space and let (E(X),e) the injective hull of
X. Let S C P(X) be a subset such that 6, € S for allz € X. If 5:S — X is

1-Lipschitz and 5(d,) = = for all x € X, then there exists a contracting barycenter map
Be: Pi(E(X)) — E(X) such that e(5(s)) = Pr(e«(s)) for all s € S.

Proof. The map e o [ is a 1-Lipschitz map and the push-forward map e, is an isometric
embedding. Therefore, there exists a 1-Lipschitz map fg: P (F(X)) — E(X) such that
eo 3 = Bgoeyls, as the metric space (E(X),dg) is injective. Thus, we are left to show
that Sg(d,) = z for all points z contained in E(X). Let i: E(X) — P(E(X)) denote
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the canonical isometric embedding given by the assignment z + 9,. The map ¢ := fgoi
is a 1-Lipschitz map from F(X) to E(X). By construction, we have p(e(z)) = e(x) for
all points  in X. Using [Lanl3, Theorem 3.3 (1)] we get that ¢ = idpg(x); thus, we infer
Br(d,) = z for all points z in E(X). This completes the proof. ]

Lemma 2.4 is the key component in the construction in Example 2.21.

2.1.3 — Here we collect all notions related to geodesic bicombings. We follow [DL15|

and define the notion of a geodesic bicombing on a metric space as follows.

Definition 2.5 (geodesic bicombing). Let (X, dx) denote a metric space. A map o: X X
X x [0,1] = X is called a geodesic bicombing, if for all points x,y € X and for all
s, t €10,1]:

d(o(z,y,s),0(z,y,t)) = |s — t|d(z,y), (2.1)

and o(z,y,0) = z,0(z,y,1) = y.

The term bicombing was coined by D. Epstein and W. Thurston in the context of
combinatorial group theory, cf. [Eps+92, p. 84]. Note that if o is a geodesic bicombing
on a metric space (X,dy), then we have o(x,z,t) = x for all points x in X and all ¢
in the interval [0,1]. We often use the notation o,,(¢) to denote the point o(z,y,t). A
map o,y [0,1] = X with 0,,(0) = = and 0,,(1) = y that satisfies (2.1) is called geodesic

from x to y.

Definition 2.6 (classes of geodesic bicombings). Let (X, dx) denote a metric space and

let o: X x X x[0,1] = X be a geodesic bicombing. We use the following terminology:
1. We say that o is conical if for all points x,y, 2,y € X and for all t € [0,1]:
d(00y(t), 00y (£)) < (1 = t)d(x, z") + td(y,y). (2.2)
This inequality is called the conical inequality.

2. We call o convez if we have for all points x,y, 2,y € X that the function [0,1] — R

gwen by the assignment t — d(04y(t), 04y (t)) is conver.

3. Assume that
Opg(A) = 04y (1 = X)s + At), (2.3)

whenever x,y € X, 0 < s <t <1, p:=0,(s), ¢ := 04(t), and X € [0,1]. Then

we call o consistent.
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4. If we have for all points x,y in X that
Oy(t) = 0y (1 —1t)  forallt €0,1], (2.4)
then we say that o is reversible.

5. We say that o has the midpoint property if

0ay(3) = 0ya(3) (2.5)
for all points x,y n X.

To the author’s knowledge, conical geodesic bicombings have first been considered by
[toh under the name W-convexity mappings that satisfy condition (IIT), cf. [Ito79]. It
is immediate that a consistent and conical geodesic bicombing is convex. But it is not
known that whenever the metric space (X,dx) admits a conical geodesic bicombing,
then X admits also a convex geodesic bicombing. For (X, dx) proper, this has been
established by Descombes and Lang, cf. [DL15, Theorem 1.1|. Note that if a geodesic
bicombing is reversible, then it has the midpoint property. In Section 2.4, we construct
a geodesic bicombing that has the midpoint property but is not reversible.

Basic examples of convex geodesic bicombings are the unique geodesics o,,: [0,1] —
X in a CAT(0) space or in a non-positively curved global Busemann space. Another
example for convex geodesic bicombings are the linear geodesics A, (t) = (1 —t)r +ty in
a normed vector space (V, ||-||). Moreover, the family of geodesic 7,,(t) = (1 — t)u + tv
on P;(X) constitute a consistent conical geodesic bicombing. As pointed out in [Ducl8,
Example 2.11|, the metric space GL(H)/O(H) for any Hilbert space H admits a convex
geodesic bicombing.

The subsequent lemma that tells us that the conical inequality implies in fact a slightly

stronger inequality.

Lemma 2.7. Let (X, dx) be a metric space, let A C X be a subset and let {0,y(-)}uyea
be a collection of geodesics o,y [0,1] — X such that 0,,(0) = x,0,,(1) =y and 04, (t) =
Oye(1 —1t) for allt € [0,1] and x,y € A. If

dx (ny(t)7 Ozz (t)) < th(ya Z)

for all x,y,z € A, then
dX(lexz (t)a Oy1y2 (t)) <W ((1 - t)5w1 + taxzﬁ (1 - t)éyl + t5y2>

for all 1, x9,y1,y2 € A.
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Proof. Without loss of generality, we may suppose that ¢ € [%, 1]. Proposition 2.1 tells
us that

Wi ((1 = )8z, + 04y, (1 — £)0y, + tdy,)

= 66%%&} (e(dx (w1, y2) + dx (Y1, 22)) + (t — €)dx (w2, y2) + ((1 — 1) — €)dx (x1,11))-

On the one hand, we compute

dx (lexz (t>7 Oy1y2 (t)) <dx (01E1:B2 (t)7 Ozyys (t)) +dx (Uyﬂl (1 - t)? Oyayn (1 - t))?

thus we get
Ax (0015 (1), 0y (1) < (1 = t)dx (1, 91) + tdx (2, 92),

but on the other hand, we estimate

dx (lexz (t)a Oy1ya (t))
<dx (022961 (1 - t)v Ozays (1 - t)) + dx (U$2y2 (1 - t)? Ozays (t)) + dx (0962y2 (t), Oy1ya (t))

and thus

dX(lewz (t)’ Oy1y2 (t))
< (1 —=t)dx (w1, y2) + (2t = V)dx (22, 92) + (1 — t)dx (22, 91).

Consequently, by putting everything together we conclude
dX(Ux1$2 (t)v Oy1ys (t)) < Wl((l - t)5x1 + t(sxz’ (1 - t)5y1 + t5y2)’
as desired. ]

A direct consequence of Lemma 2.4 and Lemma 2.7 is that every reversible conical

geodesic bicombing on X lifts to a reversible concial geodesic bicombing on E(X).

Proposition 2.8. Let (X,dx) be a metric space and let 0: X x X x [0,1] — X be
a conical geodesic bicombing. If o is reversible, then there exists a reversible conical
geodesic bicombing 7: E(X) x E(X) x [0,1] — E(X) on E(X) such that

Tay(t) = Tay (1)

for all z,y € X and t € [0,1].
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Proof. We set
S ={(1—=1)0, +to,: x,y € X,t €[0,1]}.

Because of Lemma 2.7 we have that the map

G: 58— X,

(1 —1t)0, + 1oy — 04y(2)
is 1-Lipschitz. Therefore, Lemma 2.4 tells us that there exists a contracting barycenter
map fBg: PI(E(X)) — E(X) such that Sg(e.(s)) = e(5(s)) for all s € S. Thus, the

conical geodesic bicombing & induced by (g has the desired property. This completes
the proof. 0

2.2 A 1-Lipschitz barycenter construction

In [ESH99|, Es-Sahib and Heinich developed a barycenter construction for non-empty
finite subsets of separable complete Busemann spaces. Es-Sahib and Heinich’s barycenter
construction translates with no effort to complete metric spaces that admit a conical

geodesic bicombing. This is the content of the subsequent proposition.

Proposition 2.9. Let (X, dx) be a complete metric space. If X admits a conical geodesic
bicombing o: X x X x [0,1] — X, then there exists a collection {b,: X" — X},>1 of

maps that satisfies the following four conditions:

1. (Locality) For all integers n > 1 and all points x := (x1,...,x,) in X" we have

that the point b,(x) is contained in conva({xl, . ,xn})

2. (Recursion) For all integers n > 3 and all points x := (z1,...,x,) in X" we have

bn(X) = bn<bn—1<xl)7 cee 7bn—1<xn))7
where Xy, := (T1, ..., Tr_1, Thtl,-- -, Ty) Jor all integers 1 < k < n.

3. (Nonezpansiveness) For all integers n > 1 and all points x = (x1,...,2,) and
V= (Y1, -, Yn) in X™ it holds

3

d(bn(x), bn(y)) d(wy, yr)-

k=1

IA
SN
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4. (Wi-Nonezpansiveness) If o has the midpoint property, then we have that

n

1

1
d(bn(%),bn(y)) < —min }  d(wy, yri)

for all integers n > 1 and all points x := (x1,...,2,) andy = (y1,...,Yn) in X"

Proof. Let b; denote the identity map of X and define the map by: X? — X through
the assignment (z,y) — 0,,(1/2). It is straightforward to show that the map b, satisfies
all four conditions. Now, we proceed by induction. Let n > 3 be an integer and suppose
that b,_; is defined and satisfies all four conditions. Let x := (z1,...,2,) be a point in

X". We define the sequence (x*));>¢ C X™ via the recursive rule

0 xEHD = (b, (), b (xB)),

0) ._
xV =X n

Y

where for each integer £ > 0 and each integer 1 <[ < n the (n—1)-tuple xl(k) is obtained

from the n-tuple x*) by deleting the I-th entry. From now on, let x?k) denote the [-th
entry of the n-tuple x*). For every integer k > 0 we set A, := conv, ({xgk), e ,x%k)})
and Dy, := diam(Ag). The definition of the closed o-convex hull conv, is given in
the introduction. Note that the sequence (Dy)r>o is non-increasing. We claim that
Dy < ng for all integers £ > 1. Let £ > 1 be an integer and suppose that
1 <1<l <n. We compute

@ (™, ) = d (b a (7), ba (xf7))
-1

1 (2k—2)) (2k—2)) 1
< — ;d (baa ), by (35 ) € —= Doy

Since taking the o-convex hull of a subset does not increase the diameter, we have shown
that Doy < —5Dogr—y). Hence, it follows that Dy, < ﬁDO for all integers k > 1. As
a result, we obtain that the intersection (., Ay consists precisely of one point which we
call z%°. For later use, observe that for eac_h integer 1 <[ < n we have that :z:l(k) — x>
as k — +oo. We define b,(x) := z*. It is readily verified that the map b, satisfies
the first two conditions. Next, we show that b, satisfies the nonexpansiveness condition.
Suppose that x := (z1,...,2,) and y := (y1,...,y,) are points in X". For each integer

k > 1, we compute

k k k—1 k—1
d (fvz( Ly )) =d (bn—1<X§ MY, b1 (v, )))
n (2.6)
T )

30



for all integers 1 < < n. By the use of (2.6) we obtain

S (o) < S (o0 )
=1 =1

for all integers k > 1. Hence, by passing to the limit k& — +00 we conclude that
n-d (IOO7 y00> S Z d('rla yl)7
1=1

as desired. Now, we are left to show that the map b, satisfies the WWi-nonexpansiveness
condition. Suppose that o has the midpoint property. Let 7 € S,_1 be a permutation.

Due to the Wi-nonexpansiveness of b,,_; we have that

d (bn71<x17 s wrnfl)a bnfl(xT(l)a s 7IT(TL—1)))
n—1
1

< min d(zg,x =0
< 7, min > d (2 20
k=1
for all points z1,...,x, in X. Consequently, we obtain that b,_; is invariant under
permutations, that is, b,_1(x1,...,Zn-1) = bp—1(2rq1), .., Tr(n—1)) for all permutations

7in S,,_1. Hence, it follows from the second condition that b, is invariant under permu-
tations as well. Thus, the fourth condition is a consequence of the third condition and

the permutation invariance of b,. The proposition follows. O

If the complete metric space (X, dx) in Proposition 2.9 is a Banach space and the
conical geodesic bicombing o: X x X x [0,1] — X is given by (x,y,t) — (1 — t)x + ty,
then it is readily verified that the collection {bar,: X™ — X}, >1, where for each integer

n > 1 the map bar, is given by the assignment
1
(X1, ..., 2p) |—>E(I1+~~~+xn),

satisfies all four conditions of Proposition 2.9.

Let (X,d) denote a complete metric space. Suppose that (X,dy) admits a coni-
cal geodesic bicombing o: X x X x [0,1] — X that has the midpoint property. Let
{bn: X™ — X},>1 denote the collection of maps that we have constructed in Proposi-
tion 2.9, let n > 1 be an integer and let x be a point in X™. For every integer & > 1
we denote by Q*(x) the element in X*" that is equal to (x,...,x). It is tempting to

assume that
bnkl(le (x)) = bn;Q(QkQ(x)) for all kq, ko > 1. (2.7)
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However, this is not necessarily true. A counterexample can be found on page 614 in
[Nav13|. Since the equality in (2.7) does not hold in general, one might ask: does at

least the limit
lim b (Q%(x)) (2.8)

exist? Navas showed that the limit (2.8) exists for all integers n > 1 and all points x
in X™ if X is a complete separable Busemann space, cf. [Nav13, Proposition 1.2]. As
Navas’s proof relies solely on the fact that the collection {b,: X" — X},,>1 satisfies the
recursion- and the Wj-nonexpansiveness condition, Navas’s proof translates verbatim
to collections {b,: X™ — X},>; that arose from complete metric spaces that admit a
conical geodesic bicombing with the midpoint property.

A streamlined version of Navas’s proof can be found in [Desl6| (or the authors mas-
ter thesis). If X satisfies a weak local compactness assumption, then it is possible to
draw the conclusion that the limit in (2.8) exists via a martingale convergence theorem,
cf. |ESH99, Theorem 2|. Navas used the existence of the limit (2.8) to construct a
contracting barycenter map for every complete separable Busemann space, cf. [Nav13|.
Essentially the same construction yields a contracting barycenter map for every complete

metric space that admits a conical geodesic bicombing that has the midpoint property.

Theorem 2.10. Let (X,dx) be a complete metric space and let o: X x X x [0,1] = X
denote a conical geodesic bicombing. If o has the midpoint property, then the map

Bo: Po(X) — X given by the assignment

= 5(511 o 0,) = lim bk (QF (2, .. ., 1)) (2.9)

k——+o0
is well-defined and extends uniquely to a contracting barycenter map By: Pi(X) — X
that has the following properties:
1. (Locality) For all measures ju in Py(X) we have that the point 5,(u) is contained
in conv, (spt(p)).
2. (Equivariance) If p: X — X is a 1-Lipschitz map and o is p-equivariant, then we
have that B, is p-equivariant, that is, it holds @ o By = By 0 @,.

Proof. 1t is readily verified that the map f5,: Po(X) — X is well-defined, that is, the
assignment (2.9) does not depend on the representation of u. Let p and v denote two

elements of Py(X). Note that there is an integer n > 1 and points (z1,...,z,) and
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(y1,---,Yn) in X" such that g = +(0y, + -+ +8,,) and v = £(d,, + --- + d,,). Due to

Equation (2.9), the Wi-nonexpansiveness condition and Proposition 2.1 we have

n

AR, 5o < i S ) = Wi

hence, the map ,: Po(X) — X is 1-Lipschitz. Proposition 2.2 tells us that Py(X) is
dense in (P, (X), W1); thus, as X is complete the map 5, : Pyp(X) — X extends uniquely
to the whole space P;(X). We denote this map again by /,. Note that the extended
map [, is 1-Lipschitz by construction and we have ,(d,) = x for all points = in X;
hence, the map S, is a contracting barycenter map on (X, dy).

The fact that the point 3, (p) is contained in conv, (spt(u)) for all measures p in Py (X)
is a direct consequence of Proposition 2.2.

To conclude the proof we show that if ¢p: X — X is a 1-Lipschitz and o is ¢-
equivariant, then we have that (3, is p-equivariant. As o is p-equivariant, we obtain
that @(ba(x,y)) = ba(p(x), p(y)) for all points z,y in X. A straightforward induction

shows for all integers n > 2 and all points x in X™ that

P(bn(x)) = bu(p(x)), (2.10)

where the map ¢: X" — X" is given by the assignment (z1,...,2,) — (p(z1),...,0(z,)).
Suppose that p is a measure in Py(X). There is an integer n > 1 and a point (z1,...,z,)
in X" such that p = 1(8,, + -+ 4 6,,). Note that .t = L (6pay) + -+ + Op(n)). We

compute

2.10)

90(50(”» = kggloo ¥ (bnk(Qk(X))) ( = kggloo bnk(Qk((p(X))) = BO(@*M)‘

Since the two 1-Lipschitz maps po 3, and (3,0, agree on the Wi-dense subset Py(X) C
P;(X), we obtain that they coincide on the whole space P;(X). The theorem follows. [

We call the map [, from Theorem 2.10 the contracting barycenter map associated to
o. The rest of this section is devoted to contracting barycenter maps on Banach spaces.
In the subsequent proposition we show that there is precisely one contracting barycenter

map on a Banach space.
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Proposition 2.11. Let (E, ||-||) be a Banach space, let \ be the conical geodesic bicombing
on E that consists of the linear geodesics and let By: Py(F) — E denote the contracting
barycenter map associated to A. It holds that the map By: Pi(FE) — E is given through

the assignment
s / zdp(z) (2.11)
E

and that the map By is the only contracting barycenter map on (E,|-]|).

Proof. Suppose that : P,(FE) — E is a contracting barycenter map on (E, ||-||). Let u
be a measure contained in P;(E). The point 3(u) satisfies

18G9~ < Wiloe.8) = [ la=slldute) Trallyer. (1)

It is well-known that spt(u) is separable and that u(E \ spt(p)) = 0; hence, the identity
map id: (F, Bg) — (E, Bg) is p-essentially separably valued. Now, Pettis Measurability
Theorem tells us that the identity map id is pu-measurable. Hence, we can use the
definition of P;(FE) and Bochner’s criterion for integrability to deduce that the identity
map id is Bochner integrable with respect to the measure p. Thus, as the point 5(u)
satisfies the inequality (2.12), Theorem 3.6 in [Mol06|, which is a direct consequence of

the strong law of large numbers, tells us that

B(y) = [E id(x) du(o). (2.13)

Since the map [, is a contracting barycenter map, we have shown that S, is given
through the assignment (2.13). Furthermore, as the contracting barycenter map [ was

arbitrary, we have also shown that [, is the unique contracting barycenter map on
(&, [I-- O

Having Theorem 2.10 and Proposition 2.11 on hand we can deduce the following

corollary.

Corollary 2.12. Let (E,||-||) be a Banach space. If u is a measure in Py(E), then the

Bochner integral [, xdu(x) is contained in the closure of the convex hull of spt(y).

Proof. This is a consequence of Theorem 2.10 and Proposition 2.11. m
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2.3 Proof of Theorem 1.1

In [Des16]|, Descombes established that every proper metric space with a conical geodesic
bicombing admits a reversible conical geodesic bicombing. Miesch generalized this result

to arbitrary complete metric spaces.

Proposition 2.13 (p. 87 in [Miel7a]). Let (X,dx) be a complete metric space with a

conical geodesic bicombing. Then X also admits a reversible, conical geodesic bicombing.

We construct an example of a non-reversible conical geodesic bicombing in Section

2.4. Now, we have everything at hand to prove Theorem 1.1.

Proof of Theorem 1.1. (1.) = (2.). The map o: X x X x [0,1] — X given by
(,y,t) = B((1 —t)d, + tdy)
is a geodesic bicombing. Indeed, for 0 < s <t <1 we compute

dX(:U7y)
< dx (7, 02y () + dx (0ay(s), 02y (1)) + dx 0wy (1), )
< sdx(z,y) + Wi((1 — )y + 56y, (1 — )0, + 1) + (1 — t)dx(x,y).

By the use of the Kantorovich-Rubinstein Duality Theorem, we obtain
Wi((1 = 8)dy + 50y, (1 — t)0, + t6,) = (t — $)W1 (94, 9y);

hence, by the estimate above it follows that o,,(-) is a geodesic from x to .
Next, we show the conical inequality. Let ¢ € [0, 1] be a real number and let (¢)x>1 C
[0,1] N Q be a sequence of rational numbers such that ¢, — ¢ for & — +o0o0. Using

Proposition 2.1 we get
Wl((l - tk)éa: + tkéya (]- - tk:)(s:v’ + tk(sy’) S (1 - tk)dX(p’p/> + tk:dX(qa q,)

for all points z,y, ',y € X. Hence, the map o: X x X x[0,1] — X given by (z,y,t) —
B((1 —1)é, + td,) satisfies inequality (1.2), as desired.

(2.) = (1.). By employing Proposition 2.13, we get that X admits a reversible
conical geodesic bicombing ¢. Now, the map S, from Theorem 2.10 is a contracting
barycenter map. Hence, X is a barycentric metric space, as was to be shown.

O
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2.4 Reversibility of conical geodesic bicombings

In this section, we construct a non-reversible conical geodesic bicombing. Afterwards, we
modify this non-reversible conical geodesic bicombing to satisfy the midpoint property.

Let s: 2 — (% denote the map given by (z,y) — (z,—y). We define
Xi:={(z.y) € o €[-2,1] and |o] -1 <y < [ja] - 1] },
Api={(zy) € Gt le+ 1] <y < 1)

and X, := s(Xj), Ay := s(Ay). The set X; U X5 is depicted in Figure 2.1. It is readily
verified that the map f: Xy — X; given by

(x,y), ifzel-1,1],
S {s(x,y), if v € [-2, 1]

is an isometry. Let f: X; U Xy, — X, be the map that is equal to idx, on X; and equal
to f on X,. Observe that the map f is 1-Lipschitz. We set Y}, := X, U Ay, for k € {1,2}.
Further, we define the map 7: Y; U Yy — X; U X5 through the assignment

(x,y) = (z,sgn(y) min { [y|, [[z] = 1] }) .

Observe that 7 is a 1-Lipschitz retraction that maps Y to Xy, for each k € {1,2}. Let
A: R? x R? x[0,1] — R? be the conical geodesic bicombing on R? that is given by the

linear geodesics.

Lemma 2.14. The map o: X; x Xy x [0,1] — X given by

7o A(p,q,t), if Pr < qu,

gt
S {fOWOA(f_l(p),f‘l(Q)J)a if 4o < po-

is a non-reversible conical geodesic bicombing on (Xi, |||loc)-

Proof. Observe that both maps
oW :=roXand 0@ := fomoAo (f’l x f71x |d[071])

define conical geodesic bicombings on X;. Thus, it follows that o: X3 x X; x[0,1] — X;
is a geodesic bicombing.
In the following, we show that o is conical. Let p,q,p’,¢ € X; be points. As both

(1)

maps oM and ¢(? are conical geodesic bicombings on X; with apé = 0](;(21) if pr,q. < —1
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—-1.5 +

Figure 2.1: The blue line corresponds to o,, and the red line corresponds to the image
of 0, under the isometry f~'.

or ps, ¢, > —1, it remains to check inequality (1.2) if (p,, ¢, < —1 and ¢,,p,, > —1) or
(P ¢e < —1and ¢, p, > —1).
Now, suppose that p,, ¢, < —1 and ¢,,p), > —1. The other case is treated analogously.

Since the map f o 7 is 1-Lipschitz, we compute
1004 (t) = Oy (t)lloo = [[f om0 XD, q,t) = fFomo AMF (), f(d), )low
<@ =0p = @)oo +tlla = F (@)l
for all t € [0,1]. By our assumptions on the points p, ¢, p’, ¢, it follows that
lp = f7 @)l = P = I,

lg = £ (@)llee = I1f (@) = FH(@)lloe = g — 'l|x-

By putting everything together, we obtain that ¢ is a conical geodesic bicombing on Xj.

By construction, it follows that o is non-reversible; see Figure 2.1. O]

Now, we use the conical geodesic bicombing from Lemma 2.14 to construct a non-

reversible conical geodesic bicombing that has the midpoint property.

Lemma 2.15. Let o: X; x X; x [0,1] — X; denote the map from Lemma 2.14. The
map T: X7 X X7 x [0,1] = X given by the assignment

o(p,5(alp,aq.3)+0o(gp3)),2t), ift €10,3],
gt
G {0 (3 (0(pa,3) +ola,p,3)) ¢, 2t = 1), ifte[3,1],
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—-1.5 +

Figure 2.2: The blue line corresponds to qu|[07%} and the red line corresponds to
the image of qu|[%,1} under the isometry f~!. The point m is equal to

% (gpq(%) + qu(%))'

is a non-reversible conical geodesic bicombing on (X1, ||"||s) that has the midpoint prop-

erty.

Proof. 1t is readily verified that 7 is a conical geodesic bicombing with the midpoint

property. To see that 7 is non-reversible, take for instance p := (—%, %), q = (0, %) and

observe that 7(p, ¢, 35) = (=%, §) # (—%, 1) = 7(¢, D, 15); compare Figure 2.2. O

2.5 Local behavior of conical geodesic bicombings

Let (V,||-]]) be a normed vector space, let pg € V be a point and let r > 0 be a real

number. We set
Ur(po) ={2€V: |po—z|| <7},
B.(po) ={2 €V : [lpo — 2l <r},
Sy(po) ={z€V:|po—z| =r}.

To ease notation, we abbreviate B, := B,(0) and S, := S,(0). The goal of this section
is to establish the following rigidity result.
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Theorem 2.16. Let (V,||]|) be a normed vector space. Suppose that A CV is a subset
of V' that admits a conical geodesic bicombing o: A x A x [0,1] — A and let p,q be
points of A. If there are points eq, ..., e, € By that are extreme points of By and a tuple
(A, ooy An) €10, 1) with Y77, Ax = 1 such that

r—q_llp—al
5 = 5 ;Akek and (2.14)

pta  |p—dl | <&
2 2
k=1

+ Z(—l)ek/\kek : (€1, ..., 6q) € {0, 1}”} C A, (2.15)

then it follows that o(p,q,t) = (1 —t)p + tq for all t € [0, 1].

Theorem 1.4 then is a direct consequence.

Proof of Theorem 1.4. Let p,q € B.(py) be two points. As 24 € B, (py) and ”p;q” <r,

the ball Bp—q (’%) is contained in A. Hence, since the unit ball of V' is the closed
convex hull of its extreme points, it follows that o(p, ¢, t) = (1 —t)p+tq for all t € [0, 1]
by Theorem 2.16 and a straightforward limit argument. O]

We will derive Theorem 2.16 via induction on the number of extreme points. For
this induction, we need some preparatory lemmas and definitions. We define the map
A: V xV x[0,1] = V via the assignment

(p,q,t) = (1 —t)p+tq.

It is readily verified that A is a conical geodesic bicombing. Let ¢t € [0,1] be a real
number and let p, ¢ be points in V. We define

MD(p,q):={zeV:|z=pl=tlp—ql.llz—aql =1 =t)p—q|}.

Clearly, o(p,q,t) € MY (p,q) for every geodesic bicombing o. Thus, if M®(p,q) is a
singleton, then o(p,q,t) = A(p,q,t). The first lemma of this section gives a sufficient
condition for the set M®(p, ) to be a singleton.

Lemma 2.17. Let (V,||||) be a normed vector space and let p € V' be a point. If p is an
extreme point of By, then M@ (p,—p) = {(1 —2t)p} for all t € [0,1].

Proof. By construction, we have

MO (p, —p) = (Sauppy +p) N (Sa-v21p| — P) ;
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hence,

1 11—t
57 (P =M (p,=p)) = Sy N (;P - TS”p> ) (2.16)

provided that ¢ € (0,1]. For each t € (0,1] we define the map E®: V — P(V) via the

assignment
11—t
P Sip) N (;P - Spn) :

Note that (V') denotes the power set of V. By the use of the identity (2.16) M® (p, —p) =
{(1—2t)p} if and only if E®(p) = {p}. Thus, we are left to show that if p is an extreme
point of By, then E®(p) = {p} for all t € (0,1). We argue by contraposition. Suppose
that there is a real number ¢ € (0, 1) and a point p’ € E®(p) with p’ # p. Asp’ € ED(p),
it follows that p’ € S|, and that there is a point ¢ € ) such that p’ = %p — %q.
Observe that g # p and

1 1-—-1t¢
(=04t = (= ta+ ¢ (o= 70) =

Hence the point p is not extreme in B, as desired. By putting everything together,

the lemma follows. O

Lemma 2.17 will serve as base case for the induction in the proof of Theorem 2.16.
The subsequent lemma is the key component for the inductive step in the proof of
Theorem 2.16.

Lemma 2.18. Let (V.||-||) be a normed vector space and let A C 'V be a subset that
admits a conical geodesic bicombing o: A x A x [0,1] — A. Let p be a point in A such
that —p € A. If there is a point z in 'V such that the points 2z —p and p—2z are contained
in A and such that o(p,p—2z,-) = X(p,p—2z,-) and 0(2z —p, —p,-) = A2z —p, —p, *),

then we have that
o(p.—p.t) € (L —2t)z + MY (p— 2,2 = p)).
for all real numbers t € [0, 1].

Proof. Let t € [0,1] be a real number. Using that o is conical, we compute

llo(p, —p,t) — AMp, p — 22,1)|| < 2t|[p — ||
lo(p, —p,t) — M2z — p, —p, )|| < 2(1 = t)|]p — 2]
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Note that |[A(p,p — 2z,t) — A(22 — p, —p, t)|| = 2||p — z||. Therefore, it follows that

o(p, —p,t) € MY (A(p,p — 22,1), (22 — p, —p, 1)) .

It is readily verified that M®(u + h,v + h) = h + M®(u,v) for all ¢ in [0,1] and
u,v, h € V. Consequently, we obtain that

MO (Mp,p —22,t), A2z —p,—p,t)) = (1 =2t)2+ MY (p — 2,2 — p).
Thus, the lemma follows. m

Suppose that A is a subset of a normed vector space (V, ||-||) and assume that A admits
a conical geodesic bicombing o: A x A x [0,1] — A. The translation 7,: A — T,(A)

about the vector z € V' given by the assignment z — x + z is an isometry and the map
(T.),0: T.(A) x T,(A) x [0,1] — T,(A) given by

(z,9,) = Te(o(T-2(x), T-=(y), 1)) (2.17)

is a conical geodesic bicombing on T,(A). Now, we have everything on hand to prove
Theorem 2.16.

Proof of Theorem 2.16. We proceed by induction on n > 1. If n = 1, then Lemma 2.17

tells us that
(T.0) o (u =g t) _(1-2P=1

for all ¢t € [0,1]. Thus, we obtain that o(p,q,t) = (1 — t)p + tq for all t € [0, 1].
Suppose now that n > 1 and that the statement holds for n — 1. We may assume

that A\ € (0,1). We define (N,..., A, ;) = ﬁ()\% oy An) and (e, ... €)=

(éa,...,€,). Observe that

n n—1
D eer = Aer+ (1= A1) > M. (2.18)
k=1 k=1
Further, note that
n—1 n
HZ N.ei|| = 1, as otherwise (2.18) implies HZ Agerl| < 1, (2.19)
k=1 k=1
which is not possible due to (2.14). We abbreviate r := ”p;qH and we set
n—1 p—q
zi=r(l—M\) ; A€ p = — q =p -2z
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Note that

/

n—1
p—q
5 =r(1 —)\1)2)\;6%.
k=1

Hence, by the use of (2.19) it follows that

r
”]72—‘]” —r(1—\). (2.20)
We have that
n n—1
+q p—q (2.14) (2.18)
5 =g T F = 7“;:;/\]‘;%—7”(1—)\1);:;/\1&6}C =" r\e;

and therefore

, 1

Prd I =l =, ni
5 T3 > (1) (er, . nr) € {0,137

2

. (2.15)
(2:20) r {)\161 + Z(_l)%)\k@k . (62 C ,En) € {0, 1}71—1} C T_M(A).
Thus, we can apply the induction hypothesis to p’, ¢ € T_pTﬂ(A) and obtain that

(T_%)*U @0 =2z, ) = AP —22,).
Similarly, we obtain
(Tega) o (22 =1 =0 ) = A (22—, 1),
Now, by the use of Lemma 2.18 it follows that
(T*%LU 0, -, t)e (1 —2t)z+ MO (g — 2,2 — P))
for all real numbers ¢ € [0, 1]; consequently, we get
<T7%>*0 ¥, —pt)=(1-2t)p,

since p’ — z = r\je; is an extreme point in B,,, and thus we can use Lemma 2.17 to
deduce that MO (p' — 2,z —p') = {(1 — 2t)(p' — 2)}. Hence, we have

P+q

o(p,q,t) = (T,%)*a (', —p'.t) + = (1—1t)p+1q,

as desired. ]
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2.6 Proof of Theorem 1.5

Before we start with the proof of Theorem 1.5, we recall some notions from [Miel7b].
Let (X,dx) be a metric space, let p € X be a point and let » > 0 be a real number.
We set U,.(p) = {q € X :d(p,q) <r}. Let U C X x X x[0,1] be a subset. A map
o: U — X is a convex local geodesic bicombing if for every point p € X there is a real

number r, > 0 such that

U= U D(U,,(p)), where D(U,,(p)) = U,,(p) x Uy, (p) x [0,1]

peX

and if the restriction o|pw,, p): D(Ur,(p)) — X is a consistent conical geodesic bi-

Tp
combing for each point p € X. Furthermore, we say that a geodesic c¢: [0,1] — X is
consistent with the convex local geodesic bicombing o if for each choice of real numbers

0 < 51 < s <1 with (¢c(s1),¢(s2)) € Uy, (p) x Uy, (p) for some point p € X, it holds
c((1 —1t)sy +tsg) = o(c(s1), c(s2), 1)

for all t € [0,1]. Consistent geodesics are uniquely determined by the local geodesic

bicombing, compare [Miel7b, Theorem 1.1| and the proof thereof:

Theorem 2.19. Let X be a complete, simply-connected metric space with a convez local
geodesic bicombing o. If we equip X with the length metric, then for every two points
p,q € X there is a unique geodesic from p to q which is consistent with o and the

collection of all such geodesics is a conver geodesic bicombing.

With Theorem 2.19 on hand it is possible to derive Theorem 1.5 by the use of Theorem
1.4.

Proof of Theorem 1.5. Let int(C') denote the interior of C' and let p, ¢ be two points in
int (C'). We abbreviate

p,ql = {1 —t)p+tq:te0,1]}.
As int (C) is convex, we have that [p, q] C int (C'). For each point z € C' we set

.: {min{”z—w” cw € [p,q]} if z€ C\int(C)
T Wit {|lz —w| rwe C\int(C)} if z € int(C).

Note that r, > 0 for all points z € C' and we have that U, (z)N[p,q] = @ if z € C\int(C).
Further, for every point z € int(C) it follows that B, (z) C C; thus, we may invoke
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Theorem 1.4 to deduce that if z € int(C'), then o,,.,(t) = (1 — t)z; + tz for all points
21,29 € B,_(z) and all real numbers ¢ € [0,1]. We define

U:= U D(U,,(2)).

zeC

Note that the map ¢'°¢ := |y defines a convex local bicombing on C. The geodesic o,,(-)
and the linear geodesic from p to ¢ are both consistent with the local bicombing o'°¢.
Hence, by Theorem 2.19, we conclude that o,,(-) must be equal to the linear geodesic
from p to ¢, that is, we have 0,,(t) = (1 — t)p + tq for all real numbers ¢ € [0, 1].

Now, suppose that p,q € C. As C is convex, it is well-known that C' = m, cf.
[AB06, Lemma 5.28]. Let (px)r>1, (qx)x>1 C int (C') be two sequences such that p, — p
and gy — ¢ with & — +o0. It is readily verified that o,,,, (1) = 0,(-) with k& — 400,
since ¢ is a conical geodesic bicombing. As a result, we obtain that the geodesic 0,,(-)

is equal to the linear geodesic from p to ¢, as desired. O

We conclude this section with two examples that show that the assumptions in The-

orem 1.5 cannot be dropped in general.

Example 2.20. The following construction is inspired by a similar construction due to
Schechtman. We define the set

A= {f: [0,1] = [0,1] : f(0) =0, f(1) =1, f is continuous and strictly increasing}.

We claim that the metric space (A, ||-|]|1) admits two distinct consistent conical geodesic
bicombings. Clearly, as A is convex, the map A: A x A x [0,1] — A given by (f,g,t) —
(1 —t)f + tg is a consistent conical geodesic bicombing on (A,|-[[1). Let p: A — A
denote the map given by f — f~!. The map ¢ is an isometry of (A, ||-||;). This is a

simple consequence of the identity

If — glly = voly ({(z,y) € [0,1]* : min{ f(z), g(2)} < y < max{f(z),g(z)}})

which holds true for all f,g € A and where vol, denotes the two dimensional Lebesgue
measure.

Let 7: Ax Ax[0,1] — A be the map where each map 7y,(-) is given by the horizontal
interpolation of the functions f,g € A, that is, the map 7 is given by the assignment
(fyg,t) = (1 —t)o(f) + tp(g)). As the map ¢ is an isometry, it follows that 7 is a

consistent conical geodesic bicombing. Indeed, it holds that 7 = ¢, \, here we use the
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notation introduced in (2.17). Furthermore, if f(z) := /2 and g(z) := z, then we have
that the map 7(f,g,t): [0,1] — [0,1] is given by

—t+ /41 — t)z + 12

2(1 — 1)

for all t € [0, 1], which is distinct from A(f, g,t) = (1—t) f+tg forallt € (0,1). Hence, the
metric space (A, ||||1) admits two distinct consistent conical geodesic bicombings. Let
B denote the closure of A C L'([0,1]). Note that A and 7 extend naturally to consistent
conical geodesic bicombings on B. Hence, we have found a closed convex subset of a
Banach space that admits two distinct consistent conical geodesic bicombings. It is

readily verified that B has empty interior.

Example 2.21. We consider the normed vector space (R?, ||-|ls), where ||-||o denotes
the maximum norm. Recall that ||-|.: R* — R is given by the assignment p = (s,t) ~>
|s| vV |t|. Throughout this example, we use a V b to denote the maximum of the two
quantities @ and b. We define the set C' := {(s,t) € R®* : t > 0}. The goal of this
example is to show that C' admits two distinct conical geodesic bicombings. To begin,
we define the points z; := (—1,0), 29 := (1,0) and b := (0,1) and we claim that

1
16— plloe < §(Hl’1 = Plloe + 72 = pllo) (2.21)

for all points p in C. In order to show that the inequality in (2.21) is true for all points

p € C' we introduce some auxiliary functions first. We define the functions

fri: R—=R fir: R=>R
s |1+ s s |1 —s].

Furthermore, we define the sets

CMi={peC:t>f(s),t>fi(s)}, CH:={peC:t<fi(s),t< fi(s)},

Chi={peC:t>[a(s),t< fi(s)}, C={peC:t< fa(s),t> fi(s)}.
Now, we distinguish three cases:

1. First, we suppose that the point p := (s, t) is contained in the set C™. We compute
|21 — plloo = |t], |21 — Pllee = [t] and ||b — p|loc = |1 — t|. Since we have t > 1, we
obtain that the point p satisfies (2.21).

2. Second, we suppose that the point p := (s,t) is contained in the set C+. We
compute [|z1—p|loe = |1+ |, [[z2—pllc = |1 — s|. Note that 5 (|1 + s| +[1 — s[) >
1 V |s|]. Thus, the point p satisfies (2.21), as ||b — plloc < 1 V5]
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3. Third, we suppose that the point p := (s,t) is contained in the union C™ U C¥'.
We compute [|b — pllc = |s|. Since we have that [s|] < (|]1+s|+]1—s]) <
2 (lz1 = pllso + |lz2 — pllso), we obtain that the point p satisfies (2.21).

Consequently, we may conclude that the estimate (2.21) is true for all points p in C.

Let 04,4, [0,1] — C denote the geodesic given by

N[

(1 —2t)x; + 2tb if t €0, 3]
21— t)b+ (2t — L)z, if t € [3,1].

Clearly, 0,,4,(-) is a geodesic from x; to z5. We claim that

102125 (8) = Plloo < (L =B)[[21 = Plloo + |22 = plloo (2.22)

1

for all p € C. Due to symmetry reasons, it suffices to consider the case t € [0, 35]. We

compute
1((1 = 2t)x1 4 2tb) — plloo < (1 = 2¢)[lz1 = plloc + 2¢[|b — Plloo;

hence, by the use of (2.21) we get

10212, (1) = Plloc < (1 =D)[21 = plloc + tl]22 = Plloc,
as claimed. Now, we set

S={6,:pe CLU{(1 —1t)0y, +td,, : t €[0,1]}

and we define the map §: S — C via

. P if s =4,
Opyay(t)  if s = (1 —1)0y, + td,,.

Because of (2.22), we deduce that § is 1-Lipschitz if we equip S with W;, Moreover,
by construction (d,) = p. Therefore, since the metric space (C,||-||o) is injective
there exists a contracting barycenter map 3: P,(C) — C that extends 8. Let o denote
the conical geodesic bicombing induced by 8. By construction, o is not equal to the
geodesic bicombing given by the linear segments. So C' admits two distinct conical

geodesic bicombings.
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2.7 A fixed-point free isometry of a Busemann space

In this section, we construct a bounded complete Busemann space that admits an isom-
etry without fixed points. As usual, let £'(Z) C R” denote the linear subspace of R”

that consists of all sequences x := (zy)rez such that
Il =) lak| < 4.
ke,

Now, we use a standard technique, cf. [JLO1, p. 786], to renorm the Banach space
((Y(Z), |I]l1) into a strictly convex Banach space. We define the map |-|,: ¢/(Z) — R

through the assignment

2
(Tk)kez (Z’%’) +Z|$k|2-
keZ keZ
It is straightforward to show that the map [-||, defines a norm on ¢*(Z). Elementary

estimates show that )
-l < Wl < UL
\/§H e < [l < -]
hence, the norms |[|-||; and |||, are equivalent. It follows that (¢*(Z),|||s) is a Banach
space. Recall that a normed vector space (V) ||]|y) is said to be strictly convez if for all
distinct points z,y in V' with ||z|ly = ||y||y = 1 and for all A in (0, 1) we have the strict

inequality ||(1 — Nz + \y|jv < 1.
Lemma 2.22. The Banach space ((*(Z), ||-||«) is strictly convex.

Proof. Let x and y denote two distinct points of ¢*(Z) that satisfy ||z], = ||y|lx = 1 and
let A in (0,1) be a real number. Since x and y are distinct, there is an integer ko such
that xy, # yg,. It follows that

(1= Nagy + Mygio)” < (1= Va2, + M2, (2.23)

2

as the real valued function f: R — R given by f(z) = z° is strictly convex. Now,

elementary estimates and the strict inequality in (2.23) imply that [[(1 — Xz + \y||? <
(1=MN)]|z|?+ A||ly||? = 1; hence, the Banach space (¢*(Z), ||-||.) is strictly convex, as was
to be shown. O

The shift map T: (*(Z) — ¢*(Z) given by the assignment

(Tr)kez = (Tr—1)rez
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is a linear map and an isometry of (X, ||-||s). Note that the zero sequence is the only
fixed point of T. Let zo € (*(Z) be the sequence that is equal to one if &k = 0 and equal
to zero if k # 0. We define the set A := {T%(20) : k € Z }. Let conv(A) denote the

convex hull of A.
Lemma 2.23. If x is an element of conv(A), then we have 1 < ||z, < v/2.

Proof. Let x be an element of conv(A). By the definition of conv(A), there is an integer
n > 0, an element (aq, ...,a,) in the n-dimensional standard simplex A" ¢ R™*! and
n + 1 distinct integers lo, . .., [, such that x = ayT"(xq) + - - + a, T (x9). We have for
every integer 0 < i < n that the sequence T%(xq) € (*(Z) is equal to one if k = [; and

equal to zero if k # [;. Therefore, we compute
2 " 2
() = (3] -
keZ i=0

n
Sfeuft = Y
1=0

kEZ

and

As a result, we obtain that

since we have a? < a; for all integers 0 < i < n. O

Let conv(A) denote the closure of conv(A). By the use of Lemma 2.23 we obtain
that 1 < ||z||, < V2 for all points z in conv(A). Thus, we have in particular that
the zero sequence is not an element of conv(A). A straightforward calculation shows
that T'(conv(A)) = conv(A); hence, the map T' is an isometry of the bounded metric
space (conv(A), ||-|lx) without fixed points. We claim that (conv(A), ||-||x) is a complete
Busemann space. It is well-known that every convex subset of a strictly convex normed
vector space is a Busemann space, cf. Proposition 8.1.6 and Proposition 8.1.5 in [Pap14].
Hence, it follows that (conv(A), ||-||«) is a Busemann space, as conv(A) is a convex subset
of ¢*(Z). Note that (conv(A), ||-||,) is complete. Thus, we have constructed a complete

bounded Busemann space that admits an isometry without fixed points.
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2.8 Existence of invariant measures

The primary result of this section is Theorem 2.28. Some of the results below are needed

in the proofs of Theorem 1.2 and Theorem 1.3.

2.8.1 — Let X denote a countable semigroup. A sequence (X%)g>1 of non-empty finite

subsets of X is a Falner sequence if

lim ———

=0
k—+o00 |Ek|

for all s in 2. Here the symbol A denotes the symmetric difference of two sets. Recall
that the sequence ({0,...,k — 1})x>1 is a Folner sequence of the semigroup of the non-

negative integers.

Definition 2.24 (generalised limit). Let X denote a countable semigroup. A gener-
alised limit is a positive linear functional ©: (*(X) — R such that O((1)sex) = 1
and O((xs)sex) = O(Tsys)sex) for all sg in X and x in (>°(X).

For convenience, we use the notation 1 := (1)sex and so.x := (25ys)sex for all spin X

and for all z in ¢>°(X'). The subsequent lemma is an extension of Theorem 1 in [Suc64].

Lemma 2.25. Let X be a countable semigroup and let (X )r>1 denote a Folner sequence
of X. Suppose that ©: (*°(X) — R is a linear functional. Then the following statements

are equivalent:
1. The linear functional ©: £>°(X) — R is positive and a generalised limit.

2. For all points x in (>°(X) we have

. 1
Oz) < lligligof (supm Z :chs> :

sex’ hex,

3. For all points x in (>°(X) we have

O(z) < limsup <sup L Z $h5> :

k—+o0 seX |2k| he,

Proof. We show that (1.) = (2.) = (3.) = (1.).
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(1.) = (2.). Let z in £°(X) be a point and let k£ > 1 be an integer. For every h in Xy
we have that ©(h.z) = O(z); hence, it follows that

1 1
O(x) = — O(h.z) < —_— s | ©(1
() A hgzk (h.r) < (11123 BN hgzk T ) (1)

Since ©(1) = 1, we have shown the desired inequality.
(2.) = (3.). This is trivial.

(3.) = (1.). To begin, we show that © is positive. Suppose that x in *°(X) is a point
with £ > 0. We have

1
O(—x) < limsup (Supm Z —xhs> <0;
k

k—+o0 seX heX,

hence, it follows that @(z) > 0. Next, we show that ©(1) = 1. Since ©(1) < 1 and
O(—1) < —1, we obtain that ©(1) = 1, as desired. To conclude, we show that © is left
XY-invariant. Let x in ¢>°(X) be a point and let sy be an element of X. We define the
point y := x — s¢.z. Note that y is contained in ¢*°(X). We claim that O(y) = 0. We

have that
heX, ) (224)

Ips)AXY
<[]0 lim sup (Sup [(505%5) ks|> |

k—+o0 sex |2k|

k—+o0 seX

[©(y)| < limsup (sup

1
m Z (xhs - gjsohs)

Let s be an element of Y. Observe that since (soX) U X%)s = soXks U Xys and (59X N
Xk)s C soXks N Xys, it follows that soXs A Xis C (soXk A Xk)s. As |(soXk A Xy)s| <
|so X A Xy|, we obtain |(soXks) A Xys| < |soXk A Xk|. Now, inequality (2.24) implies
that ©(y) = 0, since (X} )r>1 is a Folner sequence. Thus, we have shown that ©(s¢.x) =
O(z), as desired. O

We proceed with two immediate corollaries of Lemma 2.25.

Corollary 2.26. Let X denote a countable semigroup. If X admits a Folner sequence
X = (X})i>1, then for every point x* in (°(X) there is a generalised limit OF : (*(Y) —

R such that
. : 1 x
OF (z*) = limsup (sup Al E xhs> :

k—+o0 seX k| hes,
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Proof. Fix a vector x* in (*(X). Let U C ¢*°(X) denote the linear span of the vector
x* and let f: U — R denote the unique linear functional such that

f(z*) = limsup (sup BN Z l'hs) .

k——+o0 sex hexy

The Hahn-Banach Theorem tells us that there is a linear map ©%: (*(Y) — R such
that ©F|y = f and such that

67 (r) < limsup (sup A Z xhs>
k

k—+o00 seX hex,

for all points x € £*°(X). Due to Lemma 2.25 the map ©F is a generalised limit, hence

the corollary follows. O]

Corollary 2.27. Let X denote a countable semigroup. If X = (X)k>1 is a Folner
sequence of X, then we have that the map Lyx: (>°(X) — R given by the assignment

zr— lim |[su Ths
k—+o0 (sGIE) |Ek Z h)

heXy,

1s well-defined. Moreover, the equality Lsx, = Ly holds for all Folner sequences X =
(Ek:)lc21 and X' = (22)k21

Proof. This is a direct consequence of Lemma 2.25 and Corollary 2.26.
O

2.8.2 — Let (X,dx) be a complete separable metric space and let 7: X — X be a
homeomorphism of X. In [OU39|, J. Oxtoby and S. Ulam showed that if there is a point
xo in X and a compact subset Ky C X such that

lim sup ( ZHKO (m0) ) > 0,

k—4o00

then there exists a T-invariant Radon probability measure pu: Bx — [0,1] such that
w(Ko) > 0. In Oxtoby and Ulam’s proof, the measure p is obtained by the use of
Carathéodory’s extension theorem from a 7T-invariant metric outer measure, which is
constructed by the means of generalised limits. In [Ada89], Adamski used the well-
known construction of Radon measures via inner approximation due to Kisynski and
Topsge to generalise the result of Oxtoby and Ulam to Hausdorff topological spaces. In
the following we use Adamski’s approach to prove a further generalisation of Oxtoby

and Ulam’s result.
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Theorem 2.28. Let (X, Tx) be a Hausdorff topological space and let X be a countable
subsemigroup of the semigroup of continuous self-maps of (X, Tx). Suppose that X

admits a Folner sequence (Xy)k>1. If there is a point xo in X and a compact subset
Ky C X such that

1
lim sup (sup — Z Ig,(ho s(xo))> >0,

kotoo \ sex |2kl s

then there exists a X-invariant Radon probability measure p: Bx — [0,1] such that
pu(Ko) > 0.

Proof. We define the sequence xg := (1g,(s(70))),cx. By the virtue of Corollary 2.26
there exists a generalised limit @: ¢*°(X) — R such that

O(zp) = limsup (Supﬁ Z Ik, (ho s(a:o))> .

k—+o00 seX hexy,

The set function §: Tx — [0, 1] given by the assignment,

U+ O ((1y(s(xo)))sex)

satisfies B(@) = 0 and S(UNV)+(UNV) = B(U)+B(V) for all U,V in Tx. Moreover,
we have for all U,V in Tx that g(U) < 5(V), whenever U C V. Thus, Theorem 2 in
[Top70]| asserts that the map p: Bx — [0,1] given by the assignment

B+ sup inf S(U)

KCB, KCU,
KeKx UeTx

is a Radon measure. Note that p(U) < B(U) for all U in Tx. Let s be an element of
Y. We claim that s,u = p. Note that 8(s™(U)) = B(U) for all U in Tx. Let K be a
compact subset of (X, Ty). We compute

pls™ (K)) < inf p(s™(U) < inf B(s(U)) = inf AU = p(K).
KcCU, KcU, KU,
UeTx UeTx UeTx

As a result, we obtain that s.u < u, as p is a Radon measure. We have
(X)) = sep(X) = 5. u(B) + s, (X \ B) < p(B) + (X \ B) = pu(X)

for all B in Bx. Hence, it follows that s, = p, as claimed. By construction, we have
1(Koy) > 0. Thus, by rescaling p if necessary we obtain a Y-invariant Radon probability
measure on (X, Tx) such that pu(Ky) > 0, as desired. O
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2.9 Proofs of Theorem 1.2 and Theorem 1.3

We start with a simple lemma that will be used several times in this section.

Lemma 2.29. Let (X,dx) be a complete metric space and let X be a subsemigroup
of the wsometry group of X. If o is a X-equivariant conical geodesic bicombing on X,
then there exists a X-equivariant reversible conical geodesic bicombing 7 on X such that
conv, (A) C conv,(A) for all subsets A C X.

Proof. Let 7 be the reversible conical geodesic bicombing obtained from ¢ by the con-
struction of the proof of Proposition 1.1. in [Miel7a, p. 87]. Now, it follows readily
from the definition of 7 that it has the desired properties. n

We proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Throughout the following proof we employ the notation from
Section 2.1. Fix a measure po in P(K). Let M°(K) denote the vector space of all signed
finite Radon measures p: By — R such that u(K) = 0. The map |[-|lo: M°(K) — R

given by the assignment
/w—>sup{/ fdu : f: X = R is 1-Lipschitz }
K

defines a norm on M°(K), cf. [Edwll, Theorem 4.4]. Due to Theorem 4.1 in [Edw11]
we have that Wi (u,v) = || — v||o for all measures p and v in P(K); hence, the map
0: P(K) — M°(K) given by p — p — po is an isometric embedding. It is well-known
that the metric space (P(K),W;) is compact, cf. [Vil09, Remark 6.19]. As a result,
the set p(P(K)) is a non-empty compact convex subset of M°(K). Note that the
restriction map s|gx: K — K is an isometry of K. For each s in X we define the map
5: (P(K)) = ¢(P(K)) through the assignment p— po — (8|x)«pt — fto. Observe that s
is an affine isometry of p(K). Ryll-Nardzewski’s fixed-point theorem, cf. |[RN67|, asserts
that there is a point p, — po in p(P(K)) such that S(u, — o) = psx — po for all s in
Y. Hence, the probability measure pu,: Bx — [0,1] is s|g-invariant for all s in . Let
i: K < X denote the inclusion map. It is readily verified that the probability measure
ixfte: Bx — [0,1] is contained in P;(X). Furthermore, the measure 4,4, is X-invariant.

Lemma 2.29 tells us that there is a Y-equivariant reversible conical geodesic bicombing
7 on X such that conv, (K) C conv,(K). Let 5.: P;(X) — X denote the contracting
barycenter map associated to 7. We define the point z, := G, (i.p.). Clearly, as spt(i.u)

is a subset of K, Theorem 2.10 tells us that the point z, is contained in conv, (K). Hence,

93



x, € tonv, (K). Furthermore, we compute s(xy) = Br(Suisfts) = Br(ixpts) = x4 for all s

in Y, since 7 is Y-equivariant and i,u, is Y-invariant. The theorem follows. O

In order to derive Theorem 1.3 we establish two results, Theorem 2.30 and Lemma

2.31, whose combination will directly imply Theorem 1.3.

Theorem 2.30. Let (X,dx) denote a complete metric space and let o: X x X x [0,1] —
X be a conical geodesic bicombing that has the midpoint property. Suppose that X is a
countable subsemigroup of the semigroup of 1-Lipschitz self-maps of (X,dx) and that o
is X-equivariant. Suppose that X admits a Folner sequence (Xy)g>1. If there is a point
o in X and a compact subset Ky C X such that the set A .= {s(xo) 18 E Z]} s bounded
and the inequality

lim sup (sup w%l Z Ig,(ho s(xg))> >0 (2.25)

k—+o00 seXy hes,
holds, then there is a point x, in conv,(A) such that s(z,) = x, for all s in X.

Proof. The intersection ANK| is a compact subset of X. Theorem 2.28 tells us that there
is a Y-invariant Radon probability measure p: Bx — [0, 1] such that u(AN Kp) > 0. Tt

is readily verified that the Borel measure
i Bx — [0, 1]
1 _
p(A)
is a Radon probability measure. Note that A C s7!(A) for all s € ¥. Since p is X-
invariant, it follows that u(s~*(A) N A7) = 0 for all s in X. Now, it is straightforward
to show that s, is Y-invariant. By construction, the support spt(u,) is a subset of A.
Since the subset A is bounded, we obtain that the measure u, has a finite first moment
and is thus contained in P (X). Let 5,: Pi(X) — X denote the contracting barycenter
map associated to 0. We define the point x, := SB,(us). Clearly, as spt(u,) is a subset
of A, Theorem 2.10 tells us that the point , is contained in conv,(A) = conv,(A).
Furthermore, we compute s(z,) = By(Silts) = Bo(tx) = 4 for all s in X, since o is

J-equivariant and p, is Y-invariant. The theorem follows. O

Note that Corollary 2.27 asserts that the limit (2.25) does not depend on the Fglner

sequence (Xg)g>1.
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Lemma 2.31. Let (X, dx) be a metric space and let p: X — X be an isometry of X.
If there is a point x¢ in X and a bounded subset B C X such that

k

-1
1 .
lim sup (Sup— E ILB(QOH_Z(JZ()))) > 0,
=0

k——+o0 >0 k -

then ¢ has bounded orbits.

Proof. We define the set A := {¢"(zq) : k > 0}. Note that it suffices to show that
diam(A) < +o00. We define the set D := {k > 0: 1x,(¢*(z0)) = 1}. Theorem 3.19 (a)
in [Furl4] asserts that there is an integer ky > 1 such that for every integer k& > 0 at
least one of the integers k,k + 1,...,k + ko is contained in the set D — D := {d —d
d,d € D,d > d'}. We define the real number C' := max {d(zo, *(z0)) : 0 < k < ko }.
We claim that diam (A) < diam(B) + C. Let & > 0 be an integer. By the above there
is an integer 0 <[ < kg such that the integer k + [ is contained in D — D. We compute

d(zo, " (20)) < d(wo, " (wo)) + d(&"(w0), " (20)) < diam(B) + C.

This concludes the proof, since diam (A) < sup {d(zo, ¢*(z0)) : k > 0}. O

Proof of Theorem 1.3. Since the sequence ({0,...,k — 1})k>1 is a Fglner sequence of
the semigroup of the non-negative integers, so Theorem 1.3 is a direct consequence of
Lemma 2.29, Theorem 2.30 and Lemma 2.31. O
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3 Lipschitz extensions for
barycentric target spaces

3.1 Lower bounds for one point extensions of Banach
space valued maps

The collection of examples that we construct in this section is inspired by [Grii60]. We

define the sequence {W }x>o of matrices via the recursive rule

W() = 1,

Wi W,
Wi = (W: —vﬁ) .

The matrices W), are commonly known as Walsh matrices. For each integer k > 1 let
W denote the (2% — 1) x 2% matrix that is obtained from W}, by deleting the first row
of Wy,. Further, for each integer k > 1 and each integer £ € {1,...,2*} we set

v = f-th column of the matrix W}. (3.1)

By construction, vék) e R*! for all k > 1land £ € {1,...,2"}. Clearly, Uék) € {, for
all p € [1,+00] via the canonical embedding. The goal of this section is to prove the

following proposition.

Proposition 3.1. Let p € [1,400] be an element of the extended real numbers and let
k > 1 be an integer. If F: ({UY“),...,v;’,?}u{o}, H|\p> — (0, ||ll1) is a Lipschitz

extension of the function

fi (ol ) = ()

then it holds that

1

Lip(F) > (2 - %) " Lip(f),

where 1/p, :=1—1/p if p # 400 and 1/p, := 1 otherwise.
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Note that Proposition 3.1 implies in particular that e(ly, 1) > V2. The key compo-

nent in the proof of Proposition 3.1 is the following geometric lemma.

1

Lemma 3.2. Let k > 1 be an integer and suppose that w € R is q vector such that

ol —wlly < oy for ali 0 € {1,..., 2"}, (3.2)
then it holds that w = 0.

Proof. By the use of a simple induction it is straightforward to show that

2k
> o =o. (3.3)
/=1

Moreover, since vék) is a +1 vector, inequality (3.2) implies that

(w, vy

<0.

>R2k:_1 —

Equality (3.3) implies that none of these inequalities can be strict; thus, as (for instance)

the vectors vék), e ,vél,f) form a basis of R2k_1, we obtain w = 0, as desired. O

Having Lemma 3.2 at our disposal, Proposition 3.1 can readily be verified.

Proof of Proposition 3.1. To begin, we compute Lip(f). We claim that

Lip(f) = (2")7 (3.4

First, suppose that p € [1,4+00). A simple induction implies that two distinct columns
of W} are orthogonal to each other. Since the entries of W} consist only of plus and

minus one, we obtain that
vak) — UJ(»k)HZ = 2P card <{€ e{1,...,2F-1}: (Uz‘(k))é # ('Ug('k))é}) = 2P2F

where we use card(-) to denote the cardinality of a set. Hence, if p € [1,+00), then the
identity (3.4) follows. Since the p-norms ||-||, converge pointwise to the maximum norm
|||l if p — +00, the identity (3.4) follows also in the case p = 400, as was left to show.

By considering the contraposition of the statement in Lemma 3.2, we may deduce that
there is an index ¢ € {1,...,2%} such that

k k
o — FO)]1 > [[of 1.
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As a result, we obtain that

k k
lof? = FOl el

k — k
1o, o8,

1

(2% —1)7-.

Lip(F) =

Hence, it follows that

as desired. O

3.2 Embeddings and indices of F'—transforms

In this section we collect some applications of our main theorems. Let (X, px) and

(Y, py) be quasi-metric spaces and let f: X — Y be an injective map. We set dist(f) :=
Lip(f) Lip(f~") and

¢y (X) :=inf {dist(f) : f: X — Y injective }.

The sharpness of 1.9 if m = 1 allows us to derive a necessary condition for an F-transform

of an ¢,-space to embed into a Hilbert space.

Corollary 3.3. Let (H, (-,-),,) be a Hilbert space and suppose that F': [0, +00) — [0, 400)
is a function such that F(0) =0 and
F(z)

sup — < +00
x>0 T

If p € [1,400] is an extended real number and
1
sup {CH(A) : A C F[l,], A finite } < 2%  wheree€ [0, 5),

then p < (% — €>_1.

Proof. We retain the notation from Section 3.1. Let £ > 1 be an integer and let

k k
gr: ({70} F o) = (6,1

(k)

denote the map such that v The vectors v,

are given as in (3.1) and

interpreted as elements of ¢, via the canonical embedding. It is readily verified that

Lip (gr) = % Lip (gia) ,
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where A := ||vfk) - vj(-k)Hp. Now, let § > 0 be a real number. Using the assumptions in
Corollary 3.3 and Theorem 1.9 (for the map F(t) = t) it follows that there is a map
Gr: ({v@, . ,Ug;)} U{0},Fo HHP> — (€1, ]|-][1) that extends g such that

Lip (Gr) < (14 0)2°V2 Lip (gr) -

We define the map T ({v§’“>,...,v;’2>}u {01, ||-||p) S (0, |[1) via z = Gr(z). We
calculate P(A) F(B

Lip(T) < (1+6)2 V2 max {% %} Lip (gr),
where B := |[o" — 0||,. Since the map 7' is a Lipschitz extension of gq, Proposition 3.1

tells us that

Lip(T) > (2 5 ) "Lip (g - 5 (1= 3 ) U (o).

where 1/q :== 1 —1/p if p # 400 and 1/q := 1 otherwise. We set v := %. Thus, by

putting everything together and via a simple scaling argument, we obtain for all z > 0

v (1 - zik) FOm) (14 v maX{F(x), Foa) } |

YT x YT

Thus, since

we obtain 3
v 2 1 1 .

Consequently, as £ > 1 and 6 > 0 are arbitrary, we deduce p < (% — 6)71. This completes
the proof. O

If 2 < p < 400 is a real number and the F-transform F[(,] embeds isometrically into
a Hilbert space, then
0 =0
F(z) = F,(z) = { ’ where a > 0;
a x>0
this follows essentially by combining a result of Kuelbs [Kue73, Corollary 3.1] with a
classical result that relates isometric embeddings to positive definite functions, cf. for
example [WW75, Theorem 4.5|. Furthermore, by a result of Johnson and Randria-
narivony, ¢, with p > 2 does not admit a coarse embedding into (s, cf. [JR06; MNOS].
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Very recently, Eskenazis, Mendel, and Naor have shown that ¢, with p > 2 does not
coarsely embed into any complete CAT(0) space, cf. [EMN19].

We proceed with an application of Theorem 1.7. Let F: [0,4+00) — [0,+00) be a
function with F(0) = 0. Suppose that F' is subadditive and strictly increasing. We
define

for all & > 0. Clearly, the function Dg: [0, +00) — [0, 400) is finite, submutliplicative

and non-decreasing. Moreover,
F(az) < Dp(a)F(x)
for all real numbers z,a > 0. The upper index of F' is defined by

B(F) = lim '8(Prl@)

Jim (3.5)

The existence of the limit (3.5) may be deduced via the general theory of subadditive
functions, since Dy is submultiplicative and non-decreasing, cf. |[Mal85, Remark 1.3 (b)].
We have 0 < B(F') < 1, for F' is subadditive.

If (X,dx) is a metric space, we set
cp(X) == inf {cpp)(X) : (Y,dy) metric space }.

In [MN11, Theorem 1|, Mendel and Naor obtained a dichotomy theorem for the quantity
cr(X), if F'is concave and non-decreasing. The upper index of F' allows us to obtain
lower bounds for the rate of growth of cg(P,), where P, :={0,1,...,n} C R.

Corollary 3.4. Let F: [0,+00) — [0,+00) be a strictly-increasing subadditive function
with F(0) =0. If 0 < o < 1—[(F) is a real number, then there exists an integer N > 1
such that

n® < cp(P,)

for alln > N.

Proof. We may assume that S(F) < 1. Let (Y, py) be a quasi-metric space and let
(X, dx) be a metric space. We may employ Theorem 1.7 to conclude that

e"(F[X],Y) < sup M

SUp Flo) : (3.6)
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for all integers m > 0. We set Y,,, := {0, m} C P,,. Since
" (P, V) =m,
inequality (3.6) asserts that

< F(mzx)
m su
=5 Flo)

for all m > 1. Let € > 0 be a real number such that o < 1 — f(F') — e. By the virtue of
Theorem 1.2 in [Mal85] there exists a real number C' > 0 such that

DF(CY) < ofE)+e

for all « > C. Consequently, by the use of (3.7) we obtain for all n > N := [C] that

n® < n' =PI < cp(P),

as desired. O

As a consequence of Corollary 3.4, we conclude that if S(F) < 1, then the second
possibility of the dichotomy [MN11, Theorem 1| holds. Thus, there is the following
natural question: If B(F') = 1, is it true that, then cp(X) = 1 for all finite metric spaces
(X,dx)?

3.3 Minimum value of a certain quadratic form in
Hilbert space

Let (H,(-,-), ) be a Hilbert space, let I denote a finite set and let x: I — H be a map.
Suppose that A: I x I — R is a symmetric, non-negative function. Further, assume that

G: [0,400) — [0, +00) is a convex, non-decreasing function with G(0) = 0. We define

O(x,\,G) = Z (K, €) G(|Ix(k) = x(O)])

(k,0)elxI

and for each subset J C [ we set
m(x, A, G, J) := inf {@(z, A, G) : where z: I — H is a map such that z|;c = X]Jc}.

The remainder of this section is devoted to calculate the quantity m(x, A, id, J).
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Let J C I be a proper subset. We may suppose that J = {1, e

card(J). To ease notation, we set Ay := A(k,£) and we define the matrix

7m}, where m =

Z Ak + Z A1j —A12 —Aim
keJe
— o1 > Ao + Z A2j —Xom,
M(X, J) = hee 7 (3.8)
_>\m1 _)\m2 z )\mk + Z /\m]
L keJe

The matrices M (X, J) appear naturally in the proof of Theorem 1.9.
If the symmetric matrix M := M (X, J) is strictly diagonally dominant, that is, for
each integer 1 <17 < m, it holds

it follows via Gershgorin’s circle theorem that M is positive definite. As a result, the

matrix M (A, J) is non-singular if

Z)\ik>0 foralll1 <i<m.
keJe
Next, we deduce the minimum value of m(x, A, id, J). The following proposition has

been stated without a proof in [Bal92].

Proposition 3.5. Let (H, (-,-),,) be a Hilbert space, let I be a finite set and let x: I — H
be a map. Suppose that X: I x I — R s a symmetric, non-negative function and let
J C I be a proper subset. If the matriz M = M(X, J) given by (3.8) is strictly diagonally
dominant and Ay = 0 for all k, 0 € J¢, then

DN diehllx(k) = x(O)1? (3.9)

ied jed keJebeJe

m(x, A, id, J) =

where C' == M~'. Moreover,
||

ZCZ‘jZAjk =1

Jj=1 keJe

(3.10)

for all integers 1 <i <|J|.
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Proof. We set m := |J|. We may suppose that J = {1,...,m}. Since D"'Mj = j,
where 5 :=(1,...,1) € R™ and D := (d;;)1<ij<m is a diagonal matrix with

dij =Y g, forall1<i<m,

keJe
we obtain CDj = j, that is,
j=1  keJe

for all 1 < ¢ < m. Thus, (3.10) follows. Let the map ¢: H™ — R be given by the

assignment

(21, 2m) = 3> Aallz = x(R)]2 + ZZA,JH,ZZ Z2.

1=1 keJ¢ =1 j=1
Note that
2inf® = m(x, A, G, J).

Thus, to conclude the proof we calculate the minimum value of the map @. Let U C H

denote the span of the vectors (x(k)) Clearly, inf @|; = inf @. In the following, we

keJe
compute the minimal value of @|.

The subset U C H is linearly isometric to (R?, ||-||,) for some integer 1 < d < card(J°).
Consequently, we may suppose (by abuse of notation) for all k& € J¢ that x(k) € R?, sa

x(k) = (21, ..., Tra), and that the function |y : (RY)™ — R is given by the assignment

d m m m m
(P1, - Pm) = Z (Z Zpitmijpjt -2 Zpit Z AikTrk + Z Z Aik%?ﬂt) ;

i=1 j=1 i=1 keJe i=1 keJe

where p; := (pi1, . .., pia) for all integers 1 < i < m. Using elementary analysis, one can

deduce that the minimum value of @[y is equal to
d m m n n m n
( Z Z Z Z )\jscij)\irxstxm + Z Z )\,L'T.th> . (312)
1 j=1 r=1 s=1 i=1 r=1
Thus, via (3.12) and (3.11) we conclude that the minimum value of @ is equal to

i (i Em: SN Necighin (—zamn + xit)>

i=1 j=1 keJjcteJe

1 o= : 2
ST S e (S )

i=1 j=1 kcJe Lce t=1

— %Z Z Z Z Ajeci i [[x(0) = x (k)13

i=1 j=1 keJjecteJe

as claimed. This completes the proof. O]
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3.4 An inequality involving the entries of an
M-matrix and its inverse

A matrix M € Mat(m x m;R) with non-positive off-diagonal elements is said to be
an M-matriz if M is non-singular and each entry of M~! is non-negative, cf. [Mar72,
Definition 1.1]. There are several equivalent definitions of an M-matrix, cf. [FP62]|.
M-matrices and their matrix inverses are generally well understood, cf. [PB74; Joh82]
for a survey of the theory.

A primary example of M-matrices are matrices M := M (A, J). Indeed, such matrices
are strictly diagonally dominant (thus non-singular) and via Gauss elimination it is
straightforward to show that each entry of the inverse of M (XA, J) is non-negative.

It is worth to point out that a matrix M € Mat(m x m;R) with non-positive off-
diagonal elements is an M-matrix if and only if there are matrices W, D € Mat(m xm; R)
such that W is a strictly diagonally dominant M-matrix, D is a diagonal matrix with
positive diagonal elements and M = W D. This is a classical result of Fiedler and Ptak,
cf. [FP62, Theorem 4.3].

The following result will play a major role in the proof of Theorem 1.9.

Theorem 3.6. Let m > 2 and let M € Mat(m x m;R) be a symmetric invertible matriz
with non-positive off-diagonal elements. We set C := M~1. If M is an M-matriz, then

1 m m
5 Z Z |mij| |cikcie — Cjrcie] < (m— 1)cke (3.13)
i=1 j=1
for all integers 1 < k, ¢ < m with k # (.

The estimate in Theorem 3.6 is sharp. This is the content of the following example.

Example 3.7. Let m > 2 be an integer and let M € Mat(m x m;R) be the tridiagonal

matriz given by

3 ifi=7
)1 ifi=7—1
T S =g
0 otherwise.

Clearly, M is a symmetric M-matriz. As usual, we set C := M~'. Since det (M)C =
adj(M), where adj(M) is the adjugate matriz of M, it follows

1
Gm = det M~

(3.14)
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Furthermore, via Jacobi’s equality [Jacf1], see (3.19), we get

‘detM[[m]\{l,m}y[m] \{i,i—l—l}ﬂ _ 1

Ci1Cjm — Cj1Cim| = =
[Circim = j1Cim det M det M

(3.15)

for all pairs of integers (i, 7) with i = j — 1. By virtue of (3.14) and (3.15) we obtain

ZZ |mij (cinCjm — ¢j1cim)| = Wl (m — 1)cim.

i=1 j=1

DN | —

Consequently, the estimate (3.13) is best possible.

This section is structured as follows. To begin, we gather some information that is
needed to prove Theorem 3.6. At the end of the section, we establish Theorem 3.6.
We start with a lemma that calculates the sum in (3.13) if the absolute values from

the 2 X 2-minors are removed.

Lemma 3.8. Let m > 2 and let M € Mat(m xm;R) be an M-matriz. We set C := M.
If 1 < k, 0 < m are distinct integers, then

m

Z [mus| (crwcie — jncre) = cre, (3.16)
j=1

and for all integers 1 < i < m with i # k,/,
Z |mij| (circie — ¢jrcie) = 0. (3.17)

Proof. Since C' is the matrix inverse of M, we compute

m
E m;;CikCie = ditCit,

Jj=1
m
E mi;CikCit = dikCie
Jj=1

for all 1 <7 < m. As a result, we obtain

m
E :mij(cikcjé — CjiCit) = 0irCit, — OikCir.
j=1

Therefore, the desired equalities follow, since m;; < 0 for all distinct integers 1 <4, j <
m. O
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We proceed with the following corollary.

Corollary 3.9 (zero pattern of inverse M-matrices). Let m > 2 and let M € Mat(mxm;R)

be an invertible matriz with non-positive off-diagonal elements. We set C := M~t. If M

is an M-matriz and k, 0 € {1,...,m} are two distinct integers such that cyy = 0, then
1. for all integers i € {1,...,m}, my; =0 or ¢; = 0. In particular, my, = 0.
2. for all integersi € {1,...,m}, my; =0 or my = 0.

3. the matrix M has at least m — 1 zero entries.

Proof. Clearly, item 2 is a direct consequence of item 1 and item 3 is a direct consequence

of item 2. To conclude the proof we establish item 1. Lemma 3.8 tells us that

m

Z |mi| (ckrCie — Cincre) = 0.
i=1
Thus, we obtain
M| crrcie = 0 (3.18)

for all integers 1 < i < m. Since each principal submatrix of C' is the inverse matrix of
an M-matrix, cf. [Joh82, Corollary 3|, it follows ¢ # 0. Thus, via Equation (3.18) we

obtain my; = 0 or ¢;y =0 for all i € {1,...,m}, as desired. ]

Theorem 3.6 will be established via a density argument. As it turns out, it will be
beneficial to approximate C' by matrices with non-vanishing minors. To this end, we

need the following genericity condition.

Definition 3.10 (generic matrix). Let m > 1 be an integer and let A € Mat(m x m;R)
be a matriz. Suppose that 1 < k < m is an integer and let I,J C {1,...,m} be two
subsets such that card (I) = card (J) = k.

We use the notation A[l,J] € Mat(k x k;R) to denote the matriz that is obtained
from A by keeping the rows of A that belong to I and the columns of A that belong to J.
We say that A is generic if

det(A[I,J]) #0

for all non-empty subsets I, J C {1,...,m} with card (I) = card (J).

The subsequent lemma demonstrates that being generic is a 'generic property’ as used

in the context of algebraic geometry.
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Lemma 3.11. Let m > 1 be an integer and let A € Mat(m x m;R) be a matriz. The
following holds

1. if A is generic, then A™! is generic as well.
2. the set of generic matrices is open and dense in Mat(m x m;R).

Proof. The first item is a direct consequence of Jacobi’s equality, cf. [Jac4l],
|det(A™I, J]) det(A)| = |det (A[[m] \ J,[m] \ I])], (3.19)

where I,J C [m] := {1,...,m} with card (I) = card (J) and A[@, @] is by definition
equal to the identity matrix. Next, we establish the second item. A matrix A € Mat(m X

m;R) is generic if and only if

p(A)== [  det(A[I,J]) #0.
I1,JC[m],|I|=|J]|
Clearly, p is a non-zero polynomial in the entries of A. It is straightforward to show
that the complement of the zero set of a non-zero polynomial ¢: RY — R is an open
and dense subset of RY, for all N > 1. Therefore, the set of generic matrices is an open

and dense subset of Mat(m x m;R), as was to be shown. O

We proceed with the following lemma, which is the key component in the proof of
Theorem 3.6.

Lemma 3.12. Let m > 2 and let A € Mat(m x m;R) be a non-negative matriz. If A is
a generic matrix, then for all distinct integers 1 < k, £ < m the skew-symmetric matriz

A™Y € Mat(m x m;R) given by

(k)
Qi = QikGje — A5kQie,

has the property that each two rows of A®Y have a distinct number of positive entries.

Proof. We fix two distinct integers 1 < k, ¢ < m. If m = 2, then each two rows of A®*"
have a distinct number of positive entries, since A is generic. Now, suppose that m = 3.
The matrix A®” is skew-symmetric; hence, as A is generic we obtain that A®“ can

have 23 different sign patterns. If

(k0 (k8 (k0 (k) (k) (k)

Ay 093 03, >0 or ayy ,a95 ,a4 <0, (3.20)
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then each row of A®” has the same number of positive entries and the statement does
not hold. For the other 6 sign patterns it is straightforward to check that each row of
A®Y has a different number of positive entries.

In the following, we show that (3.20) cannot occur. For the sake of a contradiction,

(k6) (k&) (k,0) . (k.0) .
We SUppose a5 , 093 a3, > 0. Since a;5 > 0, we obtain

ay > 2 (3.21)
Qg

Since a;kl’é) > 0, we estimate via (3.21)

A2A1¢

askpQie > A1a3p > asy. (322)

A2y

Thus, (3.22) tells us that
a3kQ2¢ > A2k 03¢5

£) (k,2) (k,2) (k,2)
> 0. Hence, the case a1y ,a93 ,a3; > 0 cannot occur. The

which contradicts a;’;
other invalid sign pattern can be treated analogously . Therefore, (3.20) cannot occur,
as claimed. By putting everything together, we conclude that the statement is valid if
m = 3.

We proceed by induction. Let m > 4 be an integer and suppose that the statement is
valid for all 2 < m/ < m.

Before we proceed with the proof we introduce some notation. For every matrix
B € Mat(m x m;R) we denote by B;; € Mat((m — 1) x (m — 1); R) the matrix that is
obtained from B by deleting the i-th row and the j-th column of B. Moreover, for all
integers 1 < ¢,7 < m with ¢ # j we set

n; (B) := number of positive entries of the i-th row of B,
n;;(B) := number of positive entries of (b1, ... ,gz-;, ooy bim)-

We use 5; to indicate that the entry b;; is omitted.

Since the non-negative (m — 1) x (m — 1)-matrix A;; is generic for all 1 <1i,j < m,
we obtain via the induction hypothesis that each row of (A*?).. has a different number
of positive entries for all 1 < i < m.

For simplicity of notation, we abbreviate B := A®*® for the rest of this proof. We
have to show that each two rows of B have a distinct number of positive entries.

Let p € {1,...,m} \ {m} denote the unique integer such that n} (B) = (m —1)—1,

that is, the p-th row of B,,,, has the most positive entries.
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Suppose that by, > 0. This implies n;f(B) = m — 1. Consequently, the p-th column
of B has no positive entries; hence, as each two rows of B, have a distinct number of
positive entries and the number of positive entries of each row of B, is strictly smaller
than m — 1, we obtain that all rows of B have a distinct number of positive entries.
Hence, the statement follows if by, > 0.

Now, we suppose that by, < 0. This implies n;f (B) = m — 2. There is precisely one
integer ¢ € {1,...,m} \ {p} such that n; (B) = (m —1) — 1.

Suppose that ¢ = m. Since by, > 0, we obtain that n} (B) = m — 1. Thus, we
obtain as before via the induction hypothesis that all rows of B have a distinct number
of positive entries. Therefore, the statement follows if g = m

We are left with the case b,,, < 0 and g # m. Note that in this case

nt (B) =n; (B) =m —2 and b, < 0. (3.23)

As aresult, for each integer r € {1,...,m}\{p, ¢, m} both entries b, and b, are positive.
But via (3.23) this implies
nt. (B) =nf, (B)=m—3,

p?r

for all r € {1,...,m} \ {p,q, m} which is not possible due to the induction hypothesis.
Therefore, the case b,,, < 0 and ¢ # m cannot occur.

We have considered all cases and thus the statement follows by induction. The lemma
follows. O

We conclude this section with the proof of Theorem 3.6.

Proof of Theorem 3.6. Fix k,¢ € {1,...,m} with k # ¢. Lemma 3.11 and a diagonal
sequence argument tell us that there is a sequence {C,},>1, where C, = ( g))lgi'jgm,
of non-negative generic matrices such that C,, — C with » — +o00. By passing to a
subsequence (if necessary) we may assume that the matrices C’;M), defined in Lemma
3.12, all have the same sign pattern. For each integer r > 1 let T, € Mat(m x m;R) be

the matrix given by
(r) . () ) ( (r) (r)
b |m | (Czk C]e Cir Cig )

where M, := C ! Due to the first item in Lemma 3.11, it follows that m(r) # 0. Thus,
the matrices 7, and ¢, have the same sign pattern.
Therefore, by the virtue of Lemma 3.12, each row of T, has a distinct number of

positive entries. Fix an integer > 1. For each integer 1 < p < m let ¢(p) be the unique

69



integer such that the ¢(p)-th row of T, has exactly m — p positive entries. Since all

matrices T, have the same sign pattern, the definition of ¢ is independent of the integer

r > 1. The map c¢: {1,...,m} — {1,...,m} is a bijection and
10, <0 it je{e(l),....clp—1)}
) >0 if je{clp+1),...,c(m)}

for all integers r > 1. Let T' € Mat(m x m;R) be the matrix given by

tij == mij| (cixcje — cjxcie) -

Clearly, T,, — T with r — +00. As a result,

tepy <0 if j€{c(l),...,clp—1)}

- (3.21)
tey; =0 if je{cp+1),...,c(m)}.
By Lemma 3.8 and (3.24) we obtain that
p—1 m
Dt = D tetweti) (3.25)
=1 j=pt1

for all integers 1 < p < m with ¢(p) # k, ¢, since T is skew-symmetric.

In [Mar72, Theorem 3.1], Markham established that every almost principal minor of
C' is non-negative. Hence,

|| (crrcie — cjrcre) > 0 and  |my;| (copcje — cjrcee) <0

for all integers 1 < j < m. Consequently, we obtain that ¢(1) = k and ¢(m) = {. For
each integer 2 < h < m — 1 we compute via (3.25),

h m h p—1
Z Z te(p)e(y) = Z Le(j)e(p)
p=2 j=p+1 p=2 j=1
h h—1 h
= Ztcu)cu) + Z Z te(j)e(p) (3.26)
Jj=2 Jj=2 p=j+1
h h—1 m
< Ztcmco) + Z Z Le(p)e(s)
J=2 p=2 j=p+1

Note that
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Therefore, by the use of (3.26) we obtain

1M
5 Z Z ]m,-j (CikCﬂ — Cjkcil)’

i=1 j=1
m h m
<Y D e < (M =1) D teaye):
h=2 j=2 j=1
Lemma 3.8 tells us that .
Z Le(D)e(j) = Cre;
j=1
therefore, the theorem follows. n

3.5 Proofs of Theorem 1.7 and Theorem 1.9

3.5.1 — We begin with the proof of Theorem 1.7.

Proof of Theorem 1.7. Let S C X be a closed subset and let 7" C X be a finite subset
such that SNT = @ and |T| < m. Let f: S — Y be a Lipschitz map. In what follows
we construct for each e > 0 a map F,.: SUT — Y that is a Lipschitz extension of f to
S UT such that Lip(F,) < ((1 4 €)m + 1) Lip(f).

We start with a few definitions. Fix ¢ > 0. Let F' C S be a finite subset such that for
each point z € T' there is a point x € F' with

dx(z,x) < (14 €)dx(z,S). (3.27)
Since S is closed and T is finite, such a set F' clearly exists. We set
E:={{u,v} :u#vwith (wveT) or (weT,veF)}.

Let G := (V, E) denote the graph with vertex set V := F U T and edge set E. We say
that a subset E/ C E is admissible if the graph G’ := (V| E’) contains no cycles and has
the property that if v,v’ € F are distinct, then there is no path in G’ connecting them.

For each edge {u,v} € E we set w({u,v}) := dx(u,v). Furthermore, let N > 0
denote the cardinality of E. Let e: {1,..., N} — E be a bijective map such that the
composition w o e is a non-decreasing function. We construct the sequence {E,}Y, of

subsets of E via the following recursive rule:

{e(O)}yUE,—; if{e(f)} UE,_ is admissible

. (3.28)
E,_ otherwise.

EO = @, Eg = {
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We claim that for each point z € T there exists an integer L, > 1 and a unique injective
path v,: {1,..., L.} — Ey connecting z to a point x, in F. Indeed, the uniqueness part
of the claim follows directly, as F is admissible. Now, we show the existence part. Let
z € T be a point. Choose an arbitrary point x € F. If the edge {z, z} is contained in
FEn, then an injective path v, with the desired property surely exists. Suppose now that
{z,2} ¢ Ey. It follows from the recursive construction of Ey that in this case there
either exists a path in Ey from z to x of length greater than or equal to two or there
exists a path in Ey from z to a point 2’ € F distinct from z. Thus, in any case an
injective path ~, with the desired properties exists.
We define the map F.: SUT — Y as follows

F(z) = f(z) forallz € S

F(z):= f(x.) for all z € T.
In other words, F, = f o R, where R.: SUT — S is the retraction that maps z € T" to
r, € S. In what follows, we show that R, has Lipschitz constant smaller than or equal
to (1 + ¢)m + 1. This is the reason that enables us to put so low requirements onto

"distance’ in Y .

Now, let z € T and x € S be points. By the use of the triangle inequality, we compute

py (Fe(@), Fe(2)) = py (f(2), f(2.)) < Lip(f)dx (2, )

w(vz(ﬁ))) :

Y

. (3.29)
< Lip(f) (dX(x, z) +

(=1

Let 2’ € F be a point such that the pair (z,2') satisfies the estimate (3.27). By the
recursive construction of Ey, it follows that w(7.(¢)) < d(2/,z2) for all ¢ € {1,..., L.},

since the function w o e is non-decreasing. Hence, by the use of (3.29) we obtain

py (Fe(z), Fe(2))
< Lip(f) (dx(z, 2) + L.dx (2, 2))
< Lip(f) (1 + Lo(1 + €)) dx(z, 2)
< Lip(f) (1 +e)m+1)dx(x, z).
Now, let z,2" € T be points. If x, = x,/, then F.(z) = F.(2'), by construction. Suppose
now that x, # x,, . We compute
py (Fe(2), Fe(2)) = py(f(22), f(z2)) < Lip(f)dx (z2, 22)

L = 3.30
< Lip(f) (Z w(7:(0) +dx(2,2) + ZM%(@)) : 30

=1 /=1
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The edge {z, 2’} is not contained in Ey; thus, by the recursive construction of Ex we
obtain that w(v,(¢)) < w({z,2'}) for all £ € {1,..., L.} and w(y.(¢)) < w({z,2'}) for
all for all £ € {1,...,L.}. By virtue of (3.30) we deduce

py (Fe(2), FE(Z/>>
< Lip(f) (L, + 14 Ly)dx(z,2")
< Lip(f)(m + 1)dx(z, 2).

The last inequality follows, since E is admissible and the paths ~,,~., are injective;

thus, L, + L,» < m. We have considered all possible cases and we have established that
Lip(Fe) < ((1 4 €)m + 1) Lip(f),

as desired. This completes the proof. O

3.5.2 — In this paragraph, prove a simple lemma that allows us, in order to prove
Theorem 1.9, to restrict our attention to closed convex subsets of Banach spaces.
Given a quasi-metric space (X, px), a subset S C X and a Lipschitz map f: S — E
into a Banach space we use econ,(S; X, F, f) to denote the infimum over those D > 1
such that there exists Lipschitz map f: X — conv(f(S)) that extends f and satisfies

Lip(f) < D Lip(f). Accordingly, we set
€conv(5; X ) = sup {eCOHV(S; X, E, f): E Banach space, f: S — FE Lipschitz}.
[t turns out that ey (S; X) coincides with ep,; (S; X).

Lemma 3.13. Let (X, px) be a quasi-metric space and let S C X be a subset. Then
ecom}(‘s; X) = ebaT‘(S; X)

Proof. Clearly, econy(S;X) < epar(S; X). In what follows, we show the reversed in-
equality. To this end, we suppose that e.on,(S; X) < +oo. Let (Z,dz) be a complete
barycentric metric space and let f: S — Z be a Lipschitz map. Let @: Z — ((Z) de-
note the Kuratowski embedding. Choose a point zg € ¢ (Z) such that d(zy, ?(Z)) > 0
and abbreviate Zy := Z U {z}. The map ¢: Z — M"(Z,) given by z + §, — 0., is an
isometric embedding. There exists a map f: X — conv(c(Z)) that extends the map o f

such that Lip(f) < econy(S; X) Lip(f). Now, employing Proposition 2.2 and using the
fact that P;(Z) is complete, we may deduce that

conv(u(Z)) ={p— 0. :n€P(2)} = P(2).

Thus, we get epar(S; X) < econv(S; X), as was left to show. O
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3.5.3 — We proceed with the proof of Theorem 1.9.

Proof of Theorem 1.9. Let X := SUT, with SNT = @, be a finite subset of F[H] with
card(T') = m. Due to Lemma 3.13 it suffices to consider Lipschitz maps f: S — F,
where (E,||-||g) is a Banach space. Without loss of generality we may assume (by
scaling) that Lip(f) = 1. We set I := X and let the map x: I — H be given by the
identity.

Let G: [0, +00) — [0, 400) denote the function such that x = F(/G(x)) for all real
numbers = € [0,+00). Observe that the function G is convex, strictly-increasing and
G(0) = 0. We say that &: I x I — R lies above f if there is a map f: X — conv(f(S))
such that f(s) = f(s) for all s € S and

G (I (x() = F(x())l,) < €Gi.5)  foralli,j el

We use conv to denote the closed convex hull. Let £y C R be the set of all & € R/
that lie above f. Moreover, let v: I x I — R be the map given by

v(i, j) = [[x(i) = x(j)II5- (3.31)

Suppose that L € [1,+00) is a real number. If Lv € Ef, then the map f admits a
Lipschitz extension f: X — conv(f(S)) such that

Lip(f) < Slilg W

Indeed, if Lv € Ey, then (by definition) there exists a function f: X — conv(f(S)) such
that

G (IIf(x(1) = F(x()) ) < Lo(i,j) foralli,j e I;

consequently, by applying the function F (\f) on both sides, we obtain

- . —— : s F(v/Lx) : .
1700) = Tl < 7 (3 (2l %1 ) < sup = F(Ixi) - xG)l, )

for all 4,5 € I. Since X C F[H] the map f is a Lipschitz extension of f such that
Lip(f) has the desired upper bound. Thus, to prove the theorem it suffices to show that
if L > (m+1), then Lv € Ejy.

To this end, we suppose that Lv ¢ E; and we show that L < (m + 1). Since the

function G is strictly-increasing and convex, the set Ey is closed and convex; thus, by
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the hyperplane separation theorem we obtain a real number € > 0 and a non-zero vector
X € R such that

(Lo, N)gprxr + € < (§, AN)prxr for all § € Ey. (3.32)

We claim that each entry of A is non-negative. Indeed, if & € Ej, then the point
&1y &1y €k, Eors - - -, EN), where N := card (] x I), is contained in E'y for all integers
1 < k < N and real numbers ¢ € [1,+00). Hence, a simple scaling argument implies
that the k-th entry of A is non-negative for each integer 1 < k < N, as claimed.

In the following, we estimate (Lv, A)grx: from below. We may assume that X is
symmetric. By adjusting € > 0 if necessary, we may assume that ), <Ay # 0 for all
i € T. Let the matrix M := M (A, T) be given as in (3.8). Since each entry of the vector
A is non-negative and ), ¢ Aix # 0 for all ¢ € T, the matrix M (X, T) is non-singular.
We set C':= M~!. Proposition 3.5 tells us that

m :=m(x, A, id, T) ZZT] (r, s)|Ix(r) — x(s)[%, (3.33)
reS seS
where n: [ x I — R is given by
S) = )\rs + Z Z )\irci]’)\js.
i€T jeT
Clearly,
Lm < <L’U,>\>R1x1. (334)

Next, we estimate (Lv, A)gr«r from above. We set

< 1

X = A € A
1211,

for each ¢ € T, where A; := (A\ix)res. By (3.10),

Dol =) e Y A =1 (3.35)

JeET jeT kesS

for all 1 € T. For each i € T we define

w; 1= Zcij <Z Ajk) Yx,» Where y5 = Z j\jrf(r>

jeT kes res

Using (3.35) we obtain w; € conv(f(S)) for all i € T. Equation (3.32) tells us that

<L’U, )\>R1x1 <A+ B+, (3.36)
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where,

=23 > NG (If(r) —will,)

€T res
Bi= 3 ST NG (s — wll,)
€T jeT
C:=> 3 MG (IF(r) = f($)]l,) -
resS ses

By convexity of the strictly-increasing function G and the use of (3.35), we estimate

A+C

<23 > > NaclXlh G (1F() = ua,lls) +C

ieT reS jeT

<2 ) 0lrs)G(Ifr) = F9)ls)-

reS ses

Thus, if

B=> "> NG (lwi —wll,) < (m=1) Y>> mr,)G(If(r) = fs)ll,.), (337

€T jET reS ses

then we obtain via (3.36) and (3.34) that

Lm < (m+1) Y > n(r,s)G(If(r) = f(s)ll,,)-

reS seS

|f(r) = f(s)|l; < F(,/Hr — SH?H) for all r,s € S,

G f(r) = f(s)llp) < llr —sllf,  forallr,s €S;

Since
it follows

as a result, we obtain
Lm < (m+1)m

By virtue of Corollary 3.9 every entry of the matrix C' is positive, hence m > 0 and
consequently L < m + 1. Thus, to conclude the proof we are left to establish the
estimate (3.37). Tt is readily verified that

1
wi —wj =5 DO AR (cjecin — cacin) (s, — va,) -
keT (eT
Since

1
§ZZHM|M|NHI lejecin — ciecir] <D leal IMl D lesel 1A, =1,

keT LeT keT LerT
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we can use the triangle inequality, the convexity of the strictly-increasing map G and
G(0) = 0 to estimate

ieT jeT
1
<D0 g 20 DIl Il fesecie = cieciil G (lys, = yx, ) (3.38)
ieT jeT keT (eT '
1
= Al Al (5 D> Nijlewce — Cjkcz'd> G (lyx, = yalls) -
keT €T ieT jeT

As pointed out in the beginning of Section 3.4, M (A, T) is a symmetric M-matrix. Hence,

we may invoke Theorem 3.6 and obtain
1
3 >N N lewese — eipcil < (m = 1)exe
i€T jET
for all distinct k,¢ € T. Using (3.38) we deduce

>0 G (lw = will )

i€T jeT

< (m=13 > IAclilXeliere G (lys, = va,lls) -

keT (€T
By convexity,
G (lys, =y lle) <D A GIF(r) = f(5)ll,);
resS ses

thereby, the desired estimate (3.37) follows, as was left to show. This completes the
proof. n

3.6 Linear and non-linear Lipschitz extension moduli

3.6.1 — The following lemma is well established. Variants of it appear at various places
in the mathematical literature, cf. [Bal92, Lemma 1.1] and [Lin64, Theorem 5|.

Lemma 3.14. Let (X, px) be a quasi-metric space and let S C X be a finite subset.
Then
enn(S; X) = sup{eﬁn(S;X') : X' C X finite and S C X’}.
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Proof. We follow closely the proof given in [Bal92, Lemma 1.1]. Another approach is
sketched in [MN13, p. 168|. We abbreviate

K :=sup {eﬁn(S, X'): X' C X finite and S C X’}.

Let (E,||||z) be a finite-dimensional Banach space, let zo € S be a point and let
f:S — FE be a 1-Lipschitz map. Without loss of generality, we may suppose that
f(xg) = 0. For each point z € X we define

B,:={yc E: |yl < Kpx(z,7)}

and we set

B = HBI‘

rzeX
For each finite subset X’ C X that contains S there exists an extension fy,: X' — F
of the map f such that Lip(fy/) < K. We define the the point zx, € B via

folz) ifzeX,
(ZX,)m:{f () €

0 otherwise.

Now, Tychonoff’s Theorem tells us that the net (zx/), where X’ C X is a finite subset
that contains S, has a subnet that converges to a point z € B. Clearly, z, = f(z) for all
x € S. It is not hard to check that the map f: X — E given by x — 2, is a K-Lipschitz
extension of f: S — FE. This completes the proof. O

3.6.2 — In this paragraph, we collect some facts about Lipschitz free spaces. Through-

out, let (X, dx) denote a bounded non-empty metric space. We set
Lip(X) := {f: X = R: f is Lipschitz}
The map Lip(-): Lip(X) — R given by
f— Lip(f) :=inf {L € [0, +00) : f is L-Lipschitz }
is a semi-norm on X. Moreover, Lip(f + ¢) = Lip(f) for all f € Lip(X) and ¢ € R. Let
L(X) denote the quotient vector space obtained from Lip(X) by the equivalence relation

f ~ g if and only if the function f — g is constant. We equip L(X) with the quotient

norm
[f] = inf Lip(f + ¢).
The space L(X) is a dual space, cf. |[Kai78 p. 326]. This motivates the following

definition.
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Definition 3.15 (Lipschitz free space). Let (X,d) denote a bounded metric space. Let
(E.||-]l) be a Banach space. We say that E is a Lipschitz free space over X if the dual
space of E is isometric to L(X).

By a result of Weaver, it follows that if (£, ||-||) and (E’, ||-||) are Lipschitz free spaces
over X, then E and E’ are isometric, cf. [Wea99, Theorem 3.26]. Thus, the Lipschitz

free space over X is unique up to isometry.

3.6.3 — In this paragraph we retain the notation from Section 2.1. Our goal is to show
that the space of signed measures on a bounded non-empty metric space (X, dx) can be

equipped with a norm such that it is a Lipschitz free space over X. We set
M°(X) = {p: Bx = R : pis a signed finite Radon measure with p(X) = 0}.

It is not hard to check that M°(X) is a vector space and that for all y € M°(X):

/XdX(ac,xo) || (dz) < 400

for 7o € X, as X is bounded. The map ||| xr: M°(X) — R given by

,u»—>sup{/deu:f€Lip1(X)}.

defines a norm on M°(X), cf. [Edw11] for historical remarks. The following theorem
characterizes the dual space of (M°(X), ||||xr)-

Theorem 3.16. Let (X, d) denote a bounded metric space. Then (M°(X),||||xr) s a

Lipschitz free space over X.

A proof of Theorem 3.16 can be found in [Edw11, Theorem 7.3]. From now on, we set
F(X) := MY(X). Now, it is readily verified that every Lipschitz map f: X — Y induces
a linear map ¢: F(X) — F(Y) with ||¢|| = Lip(f) such that ¢(6z, —0z,) = dp(z1) — O f(ws)
for all x1, 25 € X.

3.6.4 — Using the result from the previous paragraph, we obtain the subsequent propo-

sition that relates linear and non-linear Lipschitz extension moduli.

Proposition 3.17. Let (X, dx) be a metric space and let S C X be a finite subset. Then

ean(S; X) = sup { II(F(S), F(X")) : X' C X finite and S C X'}.
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Proof. Due to Lemma 3.14, we may suppose that X is finite. Let S C X be a non-empty
subset and let zy € S be a point and let ev: S — L(S5)* denote the map given by

(3.39)

SH{ ev(s): L(S) = R
0] = £(s) — £(xo).

Further, let D denote the infimum over those D’ > 1 such that there exists a Lips-
chitz map ev: X — L(S)* that extends ev and satisfies Lip(ev) < D'Lip(ev). Clearly,
D < e4y(9;X). On the other hand, every map f: S — F induces a map linear map
L: F(S) — F(F) such that ||L|| = Lip(f) and Bg o L(ds — 0,,) = f(s) for all s € S;
consequently, since F(S) = L(S)*, we infer

eﬁn(S;X) =D.

Next, we show that D = II(F(S),F(X)). Let ¢: X — F(X) denote the isometric
embedding given by x — 0, — J,,; using this isometric embedding, it is readily verified
that D <II(F(S5), F(X)). Now, let €v: X — L(S)* be a Lipschitz extension of ev. The
linear map ¢: L(S) — L(X) given by

0 { Ao
x—ev(z)([l])

satisfies ¢([¢])(s) — o([¢])(x0) = £(s) — €(xp) for all [¢] € L(S) and s € S. Moreover,
a short calculation reveals that [|¢|| = Lip(ev). Let ¢*: F(X) — F(S) denote the
adjoint of ¢. By construction, ¢* is a linear projection of F(X) onto F(S). Since
lo*|l = ||¢|| = Lip(ev), we conclude II(F(S), F(X)) < D. This completes the proof. [

Proof of Theorem 1.11. The formula for &(S5) is a direct consequece of Proposition 3.17.
The estimate (1.8) follows readily from the first part and the classical fact that every

finite-dimensional Banach space admits a linear isometric embedding into £, (N). ]

3.6.5 — In this paragraph we construct a three-point metric space (5,dg) such that
®(5) > 3.

Example 3.18. Let S := {1, 2, 3} equipped with the discrete metric dg(i, j) = 2(1—d;;).
We let X := {0} US denote the metric space endowed with the metric

dx(0,0) := 0, dx(0,i) := 1 and dx(i,j) := ds(i, )
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for all i = 1,2,3. X is a metric tree with leaves S and branch point 0. Let h: S — £3
denote the map given by

1+ (0,0,0), 2 (1,0,1), 3 (0,1,1).

Clearly, h is 1-Lipschitz. Let E C ¢3 denote the linear span of h(S). We define the
map f: S — E via f(i) := h(i) for all i = 1,2,3. The unit ball of E is equal to the
closed convex hull of £5 f(2), £5f(3), £5(f(3) — f(2)); thus, E is linearly isometric to
R? equipped with the hexagonal norm (via the linear map determined by 3 f(2) — (1,0)
and 1£(3) (1 ﬁ) ). It follows that

2772
° 4
infir>0:( |B.(f(d g ==
inf {r > ﬂ (F@) # 2} = 3
Hence, for every Lipschitz extension f: X — E of f it holds that

.= 4
Llp(f) > 57

as desired.

3.7 A formula for II,
3.7.1 — Let d > 1 be an integer and set
Ag = {]ld + .5 : S is a Seidel adjacency matrix of a simple graph of order d}.

Moreover, we use Dy to denote the set of all diagonal d x d-matrices that have trace
equal to one and whose diagonal entries are non-negative.

For A € A; and D € D, we write )\1(\/514\/5) > > )\d(\/ﬁA\/ﬁ) for the eigen-
values of the symmetric matrix v DAvVD (counted with multiplicity). The subsequent
result, due to Chalmers and Lewicki, characterizes the values I1(n, d) in terms of maximal
sums of eigenvalues of matrices of the form v DAVD.

Theorem 3.19 (Theorem 2.3 in [CL10]). Let 1 < n < d be integers. The value Il(n,d)

18 attained and equals

max {i Ak (@A\/ﬁ) cAe Agand D € Dd} )
k=1
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3.7.2 — Let ¢« > 1 be an integer and consider the map

t
bl;: dLZJiAd — dglAd, A s bli(A) = { 2 Cf ]

where a; denotes the i-th row of A. By construction, the i-th row of bl;(A) and the last
row of bl;(A) coincide. We say that the matrix bl;(A) is a blow-up of A (with respect to
the i-th row).

If A e A;is amatrix and D € Dy is positive-definite, then all eigenvalues of AD are
real, for AD is equivalent to the symmetric matrix v DAvD. With a similar argument,
one can show that even if D is positive-semidefinite, then all eigenvalues of AD are real.

We use the notation

A(AD) = (M (AD), .., \(AD)),
where \j(AD) > ... > A\y(AD) are the eigenvalues of AD (counted with multiplicity).
The lemma below is the key step in the proof of Theorem 1.14.

Lemma 3.20. Let A" € Ay be a matriz, let A := bl;(A") for some integer 1 < i <
d —1 and let D := Diag(dy,...,dq) € Dy be an invertible matriz. We set D' :=
Diag(dy,...,di—1,d; + dg,dis1,...,dg—1). Then D' € D4y is invertible, N(AD) has a

zero entry and
MA'D') is obtained from N(AD) by deleting a zero entry .

Proof. For each integer 1 < k < d let s, denote the k-th row of A. By assumption,

Sd = S;-
Let A be an eigenvalue of A’D’ and let 2’ := (zy,...,24_1) € R%! be a corresponding
eigenvector. We define z := (xy,...,x4-1,2;). For all 1 <k < d we compute
d
<D8k, $>Rd = s;ﬂdm -+ skdddxi -+ Z Skgdgﬂjg
t£d,i
) (3.40)
= Skzdll’, + SkiddI,’ -+ Z Skgdgxg = <D,S§€, I/>Rd71.
G£d,i
Thus, for all 1 < k < d we have
(Dsg,z) , = (D'sp,2") , | = Axp.
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Furthermore,

(Dsg, ) , = (Dsi ), = Axg;

Rd
as a result, the vector z is an eigenvector of AD with corresponding eigenvalue \.

Next, we show that AD and A’D’ have the same rank. There exists a principal
submatrix 7" of A such that 7T is invertible and rk(A) = rk(7"). This is well-known,
cf. for example [Tho68, Theorem 5|. Clearly, T' cannot be obtained from A by keeping
the i-th and d-th column simultaneously; thus, 7" is also a principal submatrix of A’.
Therefore,

rk(A") <rk(A) =1k(T) < rk(A’)

and thereby rk(A) = rk(A’). Now, via Sylvester’s law of interia
rk(AD) = tk(VDAVD) = rk(A) = rk(A") = rk(A'D"),

as claimed. To summarize, AD and A’D’ have the same rank and if ) is an eigenvalue

of A’D’, then X is an eigenvalue of AD. This completes the proof. n

3.7.3 — Now, we have everything at hand to verify Theorem 1.14.

Proof of Theorem 1.14. We set

&, := sup max {é M(A) A€ Ad} .
k=1

d>1

First, we show for all d > n that
[I(n,d) < @,.

We abbreviate .
Ta(AD) := Y M\i(AD).
k=1

Due to Theorem 3.19, there exist matrices A € A; and D € D, such that
II(n,d) = m,(AD).

Choose a sequence Dy € Dy of invertible matrices with rational entries satisfying

M(n, d) < m(ADy) + 2—1k (3.41)
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This is possible since m,(AD) = 7,(vDAvD) and because the map m,(-) is continuous
on the set of symmetric matrices, cf. [OW92, p. 44]. Fix k > 1. By finding a common

denominator, we may write
1
Dy = — Diag(ny, ..., nq),
m
wheren;, >1foralll <i<dand m=n; +---+ng. We set
Ap = DIg D (e (b1 (A)) ),

where we use the convention bl’(A4) = A. Note that A; € A,,. By applying Lemma 3.20
repeatedly, we get that A\(ADy) is obtained from A (Ak%lm) by deleting exactly (m —d)

zero entries. As a result,

T (Ag)
m

Thus, by combining (3.42) with (3.41), we obtain

<, (3.42)

I(n,d) < ®,.

It is well-known that
II, = lim I(n,d).

d—+00
Hence,
I, <o,.

The inequality @,, < I, is a direct consequence of Theorem 3.19. Putting everything
together, we conclude
I, = &,.

We are left to show that it suffices to consider K, o-free two-graphs. To this end, fix
an integer d > n and let A € A, be a matrix such that

Tn(A) = max {m,(A") : A" € Ay}

As the symmetric matrix A is orthogonally diagonalizable, there are orthonormal vectors
ui, . .., u, € R such that

7 (A) = tr(AUUY),
where U is the matrix that has the vectors u; as columns. Let r, for 1 < k < d be
the rows of the matrix U. We use eq,...,eq € R? to denote the standard basis. Fix
1 <1i,7 <dand let € € R be a real number. We set

A, jie) == {6 sgn ((ri, 1)z )eiey i (ri;ry) # 0

t otherwise

€eie;
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and .
A=A+ §(A(i,j; €) + A(j, i;€)).

Clearly, A\e is symmetric. Hereafter, we show that (r;,7;) # 0. To this end, suppose that
(ri,rj) = 0.

We set €, := —4 sgn(a;;), and we observe that fL* € A, Further, we abbreviate
A:= A, It holds that

Ta(A) = tr (AUUY) = tr </A1UUt> — €xsgn ((ry, 7)) (ri, ;). (3.43)

Via von Neumann’s trace inequality, cf. [Mir75], we obtain

-~

tr (EUUt) < (A) < ma(A);

thus,

tr (EUUt) = 1,(A) = m,(A).
The equality case of von Neumann’s trace inequality occurs. Therefore, the diagonal-
izable matrices UU* and A are simultaneously orthogonally diagonalizable and thereby
commute. This implies that UU? and %(A(z', Jy€) + A(g,4; e*)) commute; as a result, we
get that

(risri) = (rj,mj),
(ri,mx) =0, for all k # i with k € {1,...d},
(rj,me) =0, for all k # j with k € {1,...d}.

By applying the same argument to (r;, ) = 0 for every k # ¢,k € {1,...,d}, we may
conclude that the vectors ri,...,rqy € R"™ are orthogonal and none of them is equal to
the zero vector. However, this is only possible if n = d. Therefore, we have shown for
d > n that (r;,r;) # 0 for all integers 1 <i,5 <d.

We claim that

aij = sgn ((ri, 7)) (3.44)
for all 1 <4,5 < d. Because (r;,7;) # 0, this is a direct consequence of the maximality
of m,(A) and equality (3.43). Hence, we have shown that A and UU" have the same sign
pattern, which allows us to invoke [CW13, Lemma 2.1]. From this result we see that A
does not have a principal (n + 2) x (n + 2)-submatrix which has only —1 as off-diagonal
elements. Such a matrix is the Seidel adjacency matrix of the complete graph on n + 2
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This completes the proof. n
We conclude this section with the proof of Corollary 1.16.

Proof of Corollary 1.16. Let Jy € A, denote the all-ones matrix. For every A € Ay,
the matrix A ® Jy is contained in A,y, where ® denotes the Kronecker product of
matrices. Moreover, since the eigenvalues of A ® J, are precisely all possible products
of an eigenvalue of A (counted with multiplicity) and an eigenvalue of J, (counted with

multiplicity), it is readily verified that
T(A)  m(A® Jp)

d 2d

Let (e¢)e>1 be a sequence of positive real numbers that converges to zero. Due to Theorem

1.14 and the above, there exists a strictly increasing sequence (dy)s>1 of integers and

matrices A, € Ay, such that

A
Hn < ﬂ-n( Z) + €.
dy
We have
dp dp—n
Tn(Ag) = dy — Z Me(Ae) = do + Z Me(—Ap);
k=n-+1 k=1
thus,
dp—n
Ta(Ae) = do+ Y Me(Ap) — (de — )2,
k=1
where A, = 21,4, — A,. Consequently,
2n Td fn<A_£)
I, < — -1+ "2 .
= + d; + €

Since A; € Aq, , we obtain
I, < Z—Z 1+ TI(dy — n,dy) + e
Proposition 2 in [FS17] tells us that
II(d —n,d) <II, + 1
for all d > 1. Thus,

2 2
Hng n_1+H(d€_n7d)+€€§Hn+ n+€Z;
dg dﬁ

for that reason, the desired result follows. n
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3.8 Polyhedral maximizers of I1,()

3.8.1 — Let (E,||-||) be a Banach space and let V' C E and F' C E* denote linear

subspaces. We set
VO={leE*: ((v)=0forallveV} CE

and
Fo:={z€E: f(x)=0forall fe F}CE"

Suppose that U C E is a linear subspace such that £ =V @ U. The map
Pl:E—=V, vtu—v

is a linear projection onto V. In the subsequent lemma we gather classical results from

functional analysis.
Lemma 3.21. Let (E,||-||) be a Banach space.

1. If there exist closed linear subspaces V,U C E such that V is finite-dimensional
and E=V & U, then E* =V’ @ U°, dim(U°) = dim(V),

(V9o =V and (U°)y = U.
2. If there exist closed linear subspaces F',G C E* such that F s finite-dimensional
and E* = F & G, then E = Fy & Gy, dim(Gy) = dim(F),
(Fp)" = F and (Gy)’ =G.
3. If there exist closed linear subspaces V.U C E such that V is finite-dimensional

and E =V @ U, then
0
P71 = (1P |-

Proof. The first two items follow from elementary properties of the annihilator of a linear

subspace. The third item is a straightforward computation. O]

It is worth to point out that [CL14, Theorem 3.2] may be established via the first and
the third item of Lemma 3.21.
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3.8.2 — The following theorem translates the calculation of relative projection constants

to second preduals (if such a space exists).

Theorem 3.22. Let (E, ||||) be a Banach space and let F C E denote a finite-dimensional
linear subspace. If (X, ||-||) is @ Banach space such that E = X**, then there ezist a linear
subspace V. C X with dim(V') = dim(F') and

II(F, F) =11V, X).
Proof. 1t is not hard to check that
II(F,E) :==inf {||Pf||: E= F®G,G C E closed linear subspace }.

We set V' := (Fp)o. On the one hand, using the second and third item of Lemma 3.21,
we obtain

I(V, X) < II(F, E);
on the other hand, using the first and third item of Lemma 3.21, we infer
I(F FE) <II(V, X).
This completes the proof. O
We conclude this section with the proof of Theorem 1.17.

Proof of Theorem 1.17. Let F' C {, be an n-dimensional linear subspace with
I, =TI(F, {).
Via Theorem 3.22, there exists an n-dimensional linear subspace V' C ¢j such that
I(F ls) = TI(V, co).

As II(V, ¢o) < TI(V), we get
T, = II(V).

This completes the proof, since due to a result of Klee, cf. [Kle60, Proposition 4.7],

every finite-dimensional subspace of ¢ is polyhedral. O]
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Figure 3.1: The graph that has Ag — 15 as Seidel adjacency matrix.

3.9 Computation of Il

3.9.1 — Let n > 1 be an integer, let Ry,.1 C R? be a regular (2n + 1)-gon centred at
the origin and let V' (Ry,41) denote the vertices of Ro,41. Further, we let 73,1 denote
the two-graph that has V(Ra,41) as vertex set and {vy,vs,v3} C V(Rani1) is an edge
if and only if the origin is contained in the closed convex hull of vy, vy, v3. Tt is readily
verified that 6(Ro,11 — Lops1) = Tongy for
1 jt _jt
Ropi1 = j In Jp—2L, |,
—j J,—2Lt

where ;7 € R" is the all-ones vector, J, is the all-ones n x n-matrix and L, is the

(L) {—1 i >

n X n-matrix given by

0 otherwise .

Note that L, has only —1’s below the diagonal and only 0’s above the first sub-diagonal.
We set

1 1 1 1 1 1
1 1 1 1 -1 -1
1 1 1 -1 1 =1
A 1= 1 1 -1 1 -1 1
1 -1 1 -1 1 1

1 -1 -1 1 1 1
One can check that Ag — 14 is the Seidel adjacency matrix of the graph depicted in
Figure 3.1. We abbreviate

()= {S S is a principal submatrix of Ag — ]16} U {R2n+1 —lopsq :n > 1}.
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In |[FF84|, Frankl and Fiiredi showed that each non-empty K4-free two-graph belongs to
the set
5(£2)U{4(B): B is a blow-up of a matrix in 2}.

3.9.2 — Given a matrix A € A,, we denote by Stab(A) the set

{Q € 04Z): A=QAQ'}.

We use Oy4(Z) to denote the group of orthogonal d X d-matrices with integer entries.
Every @@ € Stab(A) has a unique decomposition () = PD, where P is a permutation
matrix and D is a diagonal matrix consisting only of 1’s and —1’s. We write P, := P
if the permutation matrix P is associated to the permutation 7, that is, Pj; = (e,@));-
The group Stab(A) acts on {1,...,d} via

(P,D. k) — 7(k).

Two Seidel adjacency matrices Sy and S, are called switching equivalent if 6(f) =
d(g). This gives rise to an equivalence relation, equivalence classes are called switch-
ing classes. The lemma below tells us that the orbit decomposition of the action
Stab(A) ~ {1,...,d} may be obtained by determining the switching class of every

principal (d — 1)—dimensional submatrix of A.

Lemma 3.23. Let A € Ay be a mairiz, let 1 < 1,7 < d be two integers and for k =1, ]
let Ty, denote the submatriz of A — 14 obtained by deleting the k-th column and the k-th
row of A — 14.

Then, the matrices T; and T; are switching equivalent if and only if the integers i and
J lie in the same orbit under the action Stab(A) ~{1,...,d}.

Proof. This is a straightforward consequence of the definitions. m

Let M be a diagonalizable d x d-matrix over the real numbers. We set

(M) = > (M)
k=1
for each integer 1 < n < d. The following lemma simplifies the calculation of the

maximum value of the function D — m,(AD) if the action Stab(A) ~ {1,...,d} is

transitive.
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Lemma 3.24. Let A € Ay be a matriz and let 1 < n < d be an integer. If A € Dy is a
invertible matriz such that
Tn(AA) = Inax T (AD),
then
Q°AQ*) =4
for all Q € Stab(A). In particular, if d is odd and the action Stab(A) ~ {1,...,d} is

transitive, then A = é]ld.
Proof. For each @) € Stab(A) we have

QVAAVAQ = Q'VAQAQWVAQ = /A A\/Aq,
where Ag := QAQ". Consequently,

T VAAVA) = 1 (VAgrAVAQ) = ma (AV/Agy/Aqr) .

Thus, using that A is a maximizer, we get

1<t (VAgy/Ag).

Via the Cauchy-Schwarz inequality, we deduce

tr (\/@ \/A_Qt> <1
as a result, there exists a real number o > 0 such that
Ag = alge.
Since tr(Ag) = tr(Ag:) = 1, we get a = 1 and thus
Ag = Agt,
which is equivalent to
Ag2 = A.

Now, suppose that d is odd and assume that the action Stab(A) ~ {1,...,d} is tran-
sitive. We claim that A = é]ld. The statement follows via elementary group theory.
Indeed, let H denote the subgroup of Stab(A) generated by the squares. By basic al-
gebra, H is normal and the action of Stab(A)/H on the orbits of H ~ {1,...,d} is
transitive. Since |Stab(A)/H| = 2* for some integer k > 0, the action H ~ {1,...,d}
has either one orbit or an even number of orbits. Because d is odd and the orbits of
H ~ {1,...,d} all have the same cardinality, we may conclude that H ~ {1,...,d} is

transitive. This completes the proof. O]
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3.9.3 — In the following we retain the notation from the first paragraph of this section.
By the use of Theorem 1.14, Lemma 3.20 and the classification of all K -free two-graphs,
we obtain

II, = max max m(AD).
(A-1)e DED,

Clearly, all induced sub-graphs of 75,1 that are obtained by deleting one vertex are
isomorphic (as two-graphs) to each other. Thus, via Lemma 3.23 and Lemma 3.24, we
get that

_ 1
gle%)}i T2 (R2n+1D) = T2 (mRQn—i-l) .

Moreover, if B is a principal submatrix of Ag, then it is not hard to see that

max To(BD) < max {m (:Rs) ,m2 (3R3) };

thereby,

1__[2 = Imax 7y (;RQ 1) .
n>1 2n+1" 2N+

Thus, we are left to consider the eigenvalues of the matrices Ry, for n > 1. Due to

the following lemma it suffices to calculate the eigenvalues of Rj.

Lemma 3.25. Let n' > n > 1 be integers. It holds

72 (g Rons1) = T2 (57 Row 1) - (3.45)

Proof. We abbreviate N := 2n + 1. Let Ry denote the 2n x 2n-matrix that is obtained
from Ry by deleting the second row and second column. Clearly, R, is a blow-up of
Ry _9; thus, via Lemma 3.20, we obtain

max (R D) < ma(Ry_2).

If for all integers k > 1
T2 (Rakt1) = 2M1 (Raks1) (3.46)

then
™ (Byy) =2\ (Byys) 55 < 20 (Byvays) 5
and thus (3.45) follows. We are left to show that (3.46) holds.
Suppose that A\;(Ry) has multiplicity one. Below, we show that this leads to a con-
tradiction.
Let 2 € RY be an eigenvector of Ry associated to the eigenvalue A\;(Ry). As we

assume that A\;(Ry) has multiplicity one, we get Qz = = or Qz = —x for each Q €

92



Stab(Ry). We know that the action Stab(Ry) ~ {1,..., N} is transitive; thus all
entries of = differ only by a sign. Without loss of generality we may suppose the entries
of x consist only of 1’s and —1’s. For each integer 1 < i < N let A; denote the matrix
that is obtained from Ry by replacing the i-th column with z. Cramers rule tells us
that

z;det(Ry) = det(A;)

for all 1 <i < N. It is easy to see (via the definition of Ry) that for all n <i < N: if
Zi—nt1 and z;_, have the same sign, then det(A;) = 0. But this is impossible; for that

reason, for all n < i < N we have x;_,, = —x;_,,+1. Similarly,

Titn = Ti4n—1

forall 2 <i<n+1and x; = —2,41, o = —xx. Thus, if we suppose that ; = 1, then
r=(1,-1,1,-1,1,...1,—-1,1,-1,1,-1,...,—1,1) if nis odd
nt??nes nt??nes
and

x=(1,1,-1,1,-1,...,1,-1,1,-1,1,—1,...,1,—1) if n is even.

) ) Y )
>
~~ ~
n times n times

Therefore, if j € RY denotes the all-ones vector we obtain
(,7) =1,
and consequently it holds that

—1 ifnisodd

1 if n is even.

)\1 (RN) — {

This is a contradiction, since tr(Ry) = N and we assume that A\;(Ry) has multiplicity
one. Hence, we have shown that the eigenvalue \;(Ry) has multiplicity greater than
or equal to two. As a result, (3.46) holds, which was left to show. This completes the
proof. ]

Employing Lemma 3.25, we get

4

Iy = my (%Rg) = (3 - >\3<R3>) - 57

Wl =

(2>\1<R3)) =

Wl =

as conjectured by Griinbaum.
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