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So many people have come and gone

Their faces fade as the years go by

Yet I still recall as I wander on

As clear as the sun in the summer sky

Boston � More than a feeling
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Abstract

The subject of this doctoral thesis is the class of barycentric metric spaces, which encom-

passes both Banach spaces and complete CAT(0) spaces. Encouraged by known results

as well as open questions in the context of CAT(0) spaces, we study similar objectives

in the framework of barycentric metric spaces. For example, we show that certain �xed

point properties, which are given in CAT(0) spaces, do not hold for some barycentric

metric spaces, and prove two �xed point results adapted to the new situation. These

results are phrased for the class of metric spaces that allow a conical bicombing; this is

no restriction, since the class of barycentric metric spaces agrees with this class. This

equality leads to a variety of questions regarding the existence and uniqueness of certain

classes of conical bicombings. In particular, we consider conical bicombings on open

subsets of normed vector spaces and show that these bicombings are locally given by

linear segments. This result implies that any open convex subset in a large class of

Banach spaces possesses a unique consistent conical bicombing.

Besides this, we consider various Lipschitz extension problems, where in some cases

any complete barycentric metric space may appear as target space. One such Lipschitz

extension problem involves the extension of a Lipschitz function to �nitely many addi-

tional points. Our contribution consists of �nding upper bounds for the distortion of

the Lipschitz constant, and we construct examples which demonstrate that we found the

best possible bounds in the case of an extension to one additional point. Many Lipschitz

extension constants may be computed by solving an associated linear extension problem,

which is why, in the last part, we turn our attention to absolute linear projection con-

stants of real Banach spaces. We succeeded in �nding a formula for the maximal linear

projection constant amongst n-dimensional Banach spaces. By means of this formula,

we give another proof of the Grünbaum conjecture, which was �rst proven by Chalmers

and Lewicki in 2010.
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Zusammenfassung

Der Gegenstand dieser Doktorarbeit ist die Klasse der baryzentrischen metrischen Räume,

die sowohl Banachräume wie auch vollständige CAT(0)-Räume umfasst. Motiviert durch

bekannte Sätze und o�ene Fragen im Kontext der CAT(0)-Räume untersuchen wir Ähn-

liches im Rahmen der baryzentrischen Räume. Beispielsweise zeigen wir, dass gewisse

Fixpunkteigenschaften, welche in CAT(0)-Räumen gegeben sind, für manche baryzen-

trische Räume nicht mehr gelten, und beweisen, angepasst an die neue Situation, zwei

Fixpunktsätze. Diese Sätze sind für die Klasse der metrischen Räume, die ein konis-

ches Bicombing zulassen, formuliert; dies ist keine Einschränkung, da die Klasse der

baryzentrischen Räume mit dieser identisch ist. Diese Gleichheit ö�net die Tür für ver-

schiedene Fragestellungen, welche die Eindeutigkeit und Existenz gewisser Klassen von

konischen Bicombings betre�en. Insbesondere betrachten wir konische Bicombings auf

o�enen Teilmengen von normierten Vektorräumen und zeigen, dass diese Bicombings

lokal durch lineare Segmente gegeben sind. Dieses Resultat hat zur Folge, dass o�ene

konvexe Mengen in einer grossen Klasse von Banachräumen ein eindeutiges konsistentes

konisches Bicombing besitzen.

Unabhängig davon betrachten wir verschiedene Lipschitz Erweiterungsprobleme, bei

denen teilweise jeder vollständige baryzentrische Raum als Zielraum zugelassen ist. Eine

von uns untersuchte Problemstellung beinhaltet die Erweiterung einer Lipschitz Funk-

tion auf endlich viele zusätzliche Punkte. Unser Beitrag besteht darin, obere Schranken

für die Verzerrung der Lipschitz Konstante anzugeben und wir konstruieren Beispiele, die

aufzeigen, dass unsere Schranken im Falle der Erweiterung auf einen Punkt bestmöglich

sind. Viele Lipschitz Erweiterungskonstanten lassen sich berechnen, indem man ein as-

soziiertes lineares Erweiterungsproblem löst, weswegen wir uns zuletzt der absoluten

linearen Projektionskonstante eines reellen Banachraums zuwenden. Es ist uns gelun-

gen, eine Formel für die maximale Projektionskonstante n-dimensionaler Banachräume

herzuleiten. Mittels dieser Formel geben wir einen weiteren Beweis der Grünbaumschen

Vermutung, welche erstmals 2010 von Chalmers und Lewicki bewiesen wurde.
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1 Overview

Be it by accident or not, some of the methods and results from the realm of Banach

spaces transfer readily to CAT(0) spaces. Often, this transfer happens almost verbatim.

Moreover, several notions in the theory of CAT(0) spaces were motivated by a linear

role model. In view of these connections, the search for a reasonable de�nition of �space�

that includes both Banach and CAT(0) spaces seems natural. Barycentric metric spaces

form a class of metric spaces that achieves this objective, and they are the main objects

of study of the present doctoral thesis. They appear in two ways: �rst, we study

questions regarding their geometry, and secondly, they serve as target spaces in some of

the Lipschitz extension problems that are considered.

The family of barycentric metric spaces possesses useful structural properties: it is

closed under ultralimits and 1-Lipschitz projections. Furthermore, the lesser-studied

complete Busemann spaces and the injective metric spaces are barycentric metric spaces.

Due to the many members of the class of barycentric metric spaces and its structural

properties, one may wonder if a uni�ed treatment of these spaces could be something

worth pursuing. Luckily, the presence of non-positive curvature, in the sense that every

barycentric metric space admits a conical geodesic bicombing, does indeed lead to many

interesting geometric questions. Some of these questions are answered in the �rst part

of the thesis.

The second part is more analytic in nature, as we study various Lipschitz extension

problems, of which some allow any complete barycentric metric space as target space. For

instance, we consider the problem of extending such Lipschitz maps de�ned on certain

F -transforms of a Hilbert space to �nitely many additional points. The classical linear

projection constants of real Banach spaces are also studied in detail. We recall their

close connection to several well-known non-linear Lipschitz extension moduli and derive

a formula for the maximal linear projection constant amongst n-dimensional Banach

spaces. Using this formula we give an alternative proof of the Grünbaum conjecture,

which was �rst proven by Chalmers and Lewicki in 2010.

The bulk of this thesis is based on the articles [Bas18a; Bas18b; BM19] and [Bas19].

We proceed by presenting our results.
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1.1 The geometry of barycentric metric spaces

1.1.1 � Following Sturm, cf. [Stu03, Remark 6.4], a 1-Lipschitz map β : P1(X) → X

with β(δx) = x for all x ∈ X is called a contracting barycenter map. Here, (X, dX)

is a metric space and P1(X) denotes the set of all Radon probability measures on X

with �nite �rst moment. We equip P1(X) with the 1-Wasserstein distance W1. A

barycentric metric space is a metric space (X, dX) that admits a contracting barycenter

map. Occasionally, we denote barycentric metric spaces by (X, dX , β) to emphasize the

contracting barycenter map.

Every complete CAT(0) space admits a contracting barycenter map. Indeed, the

Cartan barycenter map is a contracting barycenter map, cf. [LPS00; Stu03]. Moreover,

Navas established that every complete Busemann space is a barycentric metric space,

cf. [Nav13]; see [Des16] for a streamlined proof thereof. A contracting barycenter map β

distinguishes a family {σxy(·)}x,y∈X of geodesics of X. Throughout the thesis, a geodesic

is a map σ : [0, 1]→ X such that d(σ(s), σ(t)) = |s− t| d(σ(0), σ(1)) for all 0 ≤ s, t ≤ 1.

For x, y ∈ X we de�ne the geodesic σxy(·) via

σxy(t) := β((1− t)δx + tδy), for all t ∈ [0, 1]. (1.1)

It is not hard to check that the map σ : X ×X × [0, 1]→ X given by (x, y, t) 7→ σxy(t)

satis�es the following weak, but non-coarse, global non-positive curvature condition:

dX(σxy(t), σx′y′(t)) ≤ (1− t)dX(x, x′) + tdX(y, y′), (1.2)

for all points x, y, x′, y′ ∈ X and all real numbers t ∈ [0, 1]. Thus, σ is a conical geodesic

bicombing in the terminology of [DL15], see Section 2.1. Conversely, a complete metric

space with a conical geodesic bicombing also admits a contracting barycenter map:

Theorem 1.1. Let (X, dX) be a complete metric space. The following are equivalent:

1. X is a barycentric metric space.

2. X admits a conical geodesic bicombing.

The proof of Theorem 1.1 is given in Section 2.3. The key component in the proof is a

1-Lipschitz barycenter construction that traces back to A. Es-Sahib and H. Heinich, cf.

[ESH99], and A. Navas, cf. [Nav13]. Moreover, we use a result due to Miesch which allows

us to pass to a reversible conical bicombing starting from a conical geodesic bicombing,

cf. [Mie17a, p.87]. The class of complete CAT(0) spaces is closed under ultralimits and
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1-Lipschitz retractions. Due to Theorem 1.1, one may readily verify that the class of

complete barycentric metric spaces enjoys the same properties. Recently, other classical

results from the theory of CAT(0) spaces have been transferred to barycentric metric

spaces, cf. [Des16; DL16; Mie17b; Kel19].

1.1.2 � It is well-known that if (X, dX) is a complete CAT(0) space, then every subgroup

of the isometry group of X with bounded orbits has a non-empty �xed point set, cf.

[BH99, Corollary II.2.8]. Analogous results hold for a wide variety of metric spaces. For

example, the above statement holds if the metric space (X, dX) is an L-embedded Banach

space or an injective metric space, cf. [BGM12, Theorem A] and [Lan13, Proposition

1.2]. Further results can be found in [KL10; Ede64]. It turns out that if (X, dX) is a

complete Busemann space instead of a complete CAT(0) space, then there exists a �xed

point free isometry with bounded orbits. This is discussed in Section 2.7.

Let ϕ : X → X be an isometry of (X, dX) and let σ : X ×X × [0, 1]→ X be a conical

geodesic bicombing. We say that σ is ϕ-equivariant if ϕ ◦ σxy = σϕ(x)ϕ(y) for all points

x, y in X. Let Σ be a subsemigroup of the isometry group of X. We say that σ is

Σ-equivariant if σ is s-equivariant for every isometry s ∈ Σ.

Let σ : X×X× [0, 1]→ X be a conical geodesic bicombing and let A ⊂ X be a subset.

The σ-convex hull of A is the set convσ(A) :=
⋃
k≥1Ak, where the sequence (Ak)k≥1 of

subsets of X is given by the recursive rule

A1 := A and Ak+1 :=
{
σxy(t) : x, y ∈ Ak, t ∈ [0, 1]

}
, for all k ≥ 1.

We use convσ(A) to denote the closure of the convex hull of A.

The main result of this paragraph reads as follows:

Theorem 1.2. Let (X, dX) denote a complete metric space, let Σ be a subsemigroup of

the isometry group of X, and let σ : X × X × [0, 1] → X be a Σ-equivariant conical

geodesic bicombing. If there is a non-empty compact subset K ⊂ X such that s(K) = K

for all s ∈ Σ, then there is a point x? in the closed σ-convex hull convσ(K) such that

s(x?) = x? for all s ∈ Σ.

In [Nav13, p. 620], Navas introduced a simple geometric argument that implies The-

orem 1.2 if one requires additionally that the closed σ-convex hull of K is compact.

Unfortunately, Navas's method seems not to work without this additional assumption.

In [Gro93, p. 86], Gromov stated the following question: �When is the closed convex hull

of a compact subset of a complete CAT(0) space compact?� To the author's knowledge,
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Gromov's question is still completely open, even in the setting of complete barycentric

metric space.

The proof of Theorem 1.2 is given in Section 2.9. The proof strategy may be roughly

described as follows: We use Ryll-Nardzewski's �xed point theorem to construct an

invariant Radon probability measure �rst, and then we use the equivariant contracting

barycenter map from Theorem 2.10 to obtain a �xed point.

Note that the assumption in Theorem 1.2 of the metric space (X, dX) having a conical

geodesic bicombing is necessary, as for instance the unit circle S1 ⊂ R2 clearly admits

isometries without �xed points. How restrictive is the assumption in Theorem 1.2 that

σ is Σ-equivariant? Clearly, the unique geodesic bicombing of a Busemann space X

is Iso(X)-equivariant. Moreover, Proposition 3.8 in [Lan13] asserts that every injective

metric space (X, dX) admits a conical geodesic bicombing σ that is Iso(X)-equivariant.

Furthermore, it follows from a generalised version of the Mazur-Ulam Theorem that for

every isometry ϕ of an open convex subset of a normed vector space the conical geodesic

bicombing σ given by the linear geodesics is ϕ-equivariant, cf. [Man72, p. 368].

The subsequent result is a strengthened version of Theorem 1.2 for when the subsemi-

group Σ is generated by a single isometry.

Theorem 1.3. Let (X, dX) denote a complete metric space, let ϕ : X → X be an isometry

and let σ : X ×X × [0, 1]→ X be a ϕ-equivariant conical geodesic bicombing. If there is

a point x0 in X and a compact subset K ⊂ X such that the strict inequality

lim sup
k→+∞

(
sup
l≥0

1

k

k−1∑
i=0

1K(ϕi+l(x0))

)
> 0 (1.3)

holds, then there is a point x? in convσ
({
ϕk(x0) : k ≥ 0

})
such that ϕ(x?) = x?.

The function 1K : X → {0, 1} in Theorem 1.3 denotes the indicator function of the

subset K ⊂ X.

Note that the left hand side of (1.3) is equal to the upper Banach density, cf. [Fur14,

De�nition 3.7], of the set D :=
{
k ≥ 0 : 1K0(ϕ

k(x0)) = 1
}
. This fact allows us to invoke

a basic result from combinatorial number theory in order to show that the orbits of the

isometry ϕ are bounded, see Lemma 2.31. One key ingredient in the proof of Theorem

1.3 is a generalisation of a classical existence result for invariant Radon measures, see

Theorem 2.28; this result may be of independent interest.
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1.1.3 � It is a direct consequence of a result of Gähler and Murphy that the only

conical geodesic bicombing on a normed vector space is the one that consists of the

linear geodesics, cf. [GM81, Theorem 1]. With a mild geometric assumption on the

norm, we show in Section 2.5 that already a conical geodesic bicombing on an open

subset of a normed vector space locally consists of linear geodesics. More generally, we

get the following result:

Theorem 1.4. Let (V, ‖·‖) be a normed vector space such that its closed unit ball is the

closed convex hull of its extreme points. Suppose that A ⊂ V is a subset that admits a

conical geodesic bicombing σ : A × A × [0, 1] → A and let p0 ∈ A be a point. If r ≥ 0

is a real number such that the closed ball B2r(p0) is contained in A, then σ(p, q, t) =

(1− t)p+ tq for all points p, q ∈ Br(p0) and all t ∈ [0, 1].

We do not know if Theorem 1.4 remains true if we drop the assumption of the normed

vector space (V, ‖·‖) having the property that its closed unit ball is the closed convex

hull of its extreme points. But how common is this property?

By invoking the Banach-Alao§lu theorem and the Kre��n-Mil'man theorem one may

show that the closed unit ball of a dual Banach space has this property. Consequently, we

obtain in particular that Theorem 1.4 is valid in every re�exive Banach space. Moreover,

using a classi�cation result due to Nachbin, Goodner, and Kelley, cf. [Kel52], and a result

of Goodner, cf. [Goo50, Theorem 6.4], it is readily veri�ed that Theorem 1.4 also holds

for every injective Banach space.

Note that the classical Mazur-Ulam Theorem is a direct consequence of Theorem 1.4,

as every isometric isomorphism between two normed vector spaces extends to an iso-

metric isomorphism between their linear injective hulls, which by the above satisfy the

assumptions of Theorem 1.4.

We proceed with another application of Theorem 1.4. In [Mie17b], Miesch generalized

the classical Cartan-Hadamard theorem to metric spaces that locally admit a consistent

convex geodesic bicombing. A geodesic bicombing σ : X ×X × [0, 1]→ X is consistent

if for all points p, q in X it holds that im(σp′q′) ⊂ im(σpq) whenever p′ = σpq(s) and

q′ = σpq(t) with 0 ≤ s ≤ t ≤ 1. For instance, the geodesic bicombing given by the

linear segments of a convex subset of a Banach space is consistent. Consistent geodesic

bicombings appear also in [FL08] and [HL07]. With Theorem 1.4 at hand, it is possible to

use Miesch's generalized Cartan-Hadamard Theorem to obtain the following uniqueness

result:
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Theorem 1.5. Let (E, ‖·‖) be a Banach space such that its closed unit ball is the closed

convex hull of its extreme points. Suppose that C ⊂ E is a closed convex subset with

non-empty interior. If σ : C ×C × [0, 1]→ C is a consistent conical geodesic bicombing,

then σ(p, q, t) = (1− t)p+ tq for all points p, q ∈ C and all t ∈ [0, 1].

Hence, for subsets C ⊂ E as in Theorem 1.5 the geodesic bicombing given by the linear

segements of C is the only consistent conical geodesic on C. The proof of Theorem 1.5 is

given in Section 2.6. In Example 2.20 we use a non-a�ne isometry originally introduced

by Schechtman to construct two distinct consistent conical geodesic bicombings on a

closed convex subset B ⊂ L1([0, 1]) with empty interior. As it is possible to consider B

as a subset of the injective hull of L1([0, 1]), it follows that the assumption in Theorem

1.5 of C having non-empty interior is necessary.

Moreover, Theorem 1.5 is false if one considers only conical geodesic bicombings. A

counterexample is discussed in Section 2.6, see Example 2.21. This answers Question

1.6 from [BM19].
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1.2 Lipschitz extensions for barycentric target spaces

1.2.1 � Lipschitz maps are generally considered as an indispensable tool in the study

of metric spaces. The need for a Lipschitz extension of a given Lipschitz map often

presents itself naturally. Deep extension results have been obtained by Johnson, Lin-

denstrauss, and Schechtman [JLS86], Ball [Bal92], Lee and Naor [LN05], and Lang and

Schlichenmaier [LS05]. The literature surrounding Lipschitz extension problems is vast,

for a recent monograph on the subject see [BB11; BB12] and the references therein.

Before we explain our results in detail, we start with a short presentation of what we

will call the Lipschitz extension problem.

Let (X, ρX) be a quasi-metric space, that is, the function ρX : X × X → R is non-

negative, symmetric and vanishes on the diagonal, cf. [Sch38, p. 827]. Unfortunately, the

term �quasi-metric space� has several di�erent meanings in the mathematical literature.

In this thesis, we stick to the de�nition given above. Let S ⊂ X be a subset and let

(Y, ρY ) be a quasi-metric space. A Lipschitz map is a map f : S → Y such that the

quantity

Lip(f) := inf {L ≥ 0 : for all points x, x′ ∈ S : ρY (f(x), f(x′)) ≤ LρX(x, x′)}

is �nite. We use the convention inf ∅ = +∞. We consider the following Lipschitz

extension problem:

Question 1.6. Let (X, ρX) and (Y, ρY ) be a quasi-metric spaces, and suppose that S ⊂ X

is a subset of X. Under what conditions on S,X and Y is there a real number D ≥ 1

such that every Lipschitz map f : S → Y has a Lipschitz extension f : X → Y with

Lip
(
f
)
≤ D Lip(f)?

Let e(S;X, Y ) denote the in�mum of the D's satisfying the desired property in the

�Lipschitz extension problem�. Given integers n,m ≥ 1, we de�ne

en(X, Y ) := sup
{
e(S;X, Y ) : S ⊂ X, |S| ≤ n

}
,

em(X, Y ) := sup
{
e(S;S ∪ T, Y ) : S, T ⊂ X, S closed, |T | ≤ m

}
.

We use | · | or card(·) to denote the cardinality of a set. We equip (X, ρX) with the

smallest topology that contains the sets {x ∈ X : ρX(x, x0) < ε} for all x0 ∈ X and

ε > 0.

The Lipschitz extension modulus en(X, Y ) has been studied intensively in various

settings. Nevertheless, many important questions surrounding en(X, Y ) are still open,

cf. [NR17] for a recent overview.

We are interested in an upper bound for em(X, Y ). We get the following result.
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Theorem 1.7. Let (X, dX) be a metric space and let (Y, ρY ) be a quasi-metric space. If

m ≥ 1 is an integer, then

em(X, Y ) ≤ m+ 1. (1.4)

A constructive proof of Theorem 1.1 is given in Section 3.5. The estimate (1.4) is opti-

mal. This follows from the following simple example. We set Pm+1 := {0, 1, . . . ,m,m+

1} ⊂ R and we consider the subset S := Y := {0,m+1} ⊂ Pm+1 and the map f : S → Y

given by x 7→ x. Suppose that F : Pm+1 → Y is a Lipschitz extension of f to Pm+1.

Without e�ort it is veri�ed that Lip(F ) = (m + 1) Lip(f); hence, it follows that (1.4)

is sharp. The sharpness of Theorem 1.7 allows us to obtain a lower bound for the pa-

rameter α(ω) of the dichotomy theorem for metric transforms [MN11, Theorem 1], see

Corollary 3.4.

If the condition that the subset S ⊂ X has to be closed is removed in the de�nition

of em(X, Y ), then Theorem 1.7 is not valid. Indeed, if (X, dX) is not complete and

z ∈ X is a point contained in the completion X of X such that z /∈ X, then the identity

map idX : X → X does not extend to a Lipschitz map idX : X ∪ {z} → X if we equip

X ∪ {z} ⊂ X with the subspace metric. This is a well-known obstruction. As pointed

out by Mendel and Naor, there is the following upper bound of em(X, Y ) in terms of

em(X, Y ) .

Lemma 1.8 (Claim 1 in [MN17]). Let (X, dX) and (Y, dY ) be two metric spaces. If

m ≥ 1 is an integer, then

em(X, Y ) ≤ em(X, Y ) + 2.

By the use of Lemma 1.8 and [LN05, Theorem 1.10], one can deduce that if (X, dX)

is a metric space and (E, ‖·‖
E

) is a Banach space, then

em(X,E) .
log(m)

log
(

log(m)
)

for all integers m ≥ 3, where the notation A . B means A ≤ CB for some universal

constant C ∈ (0,+∞). As a result, for su�ciently large integers m ≥ 3 the estimate in

Theorem 1.7 is not optimal if we restrict the target spaces to the class of Banach spaces.

In Section 3.1, we present an example that shows that for Banach space targets the

estimate (1.4) is sharp if m = 1. As a byproduct of the construction in Section 3.1, we

obtain the lower bound

e(`2, `1) ≥
√

2, (1.5)

where e(`2, `1) := sup
{
e(S; `2, `1) : S ⊂ `2

}
. It is unknown if e(`2, `1) is �nite or in�nite.

This question has been raised by Ball, cf. [Bal92].
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1.2.2 � In this paragraph, we are interested in extending Lipschitz maps with values in

complete barycentric metric spaces to �nitely many additional points. Given a quasi-

metric space (X, ρX) and a subset S ⊂ X, we de�ne

ebar(S;X) := sup
{
e(S;X,Z) : Z complete barycentric metric space

}
.

We are mainly interested in quasi-metric spaces of the following form: Let F : [0,+∞)→
[0,+∞) be a map with F (0) = 0; The F -transform of X, denoted by F [X], is by

de�nition the quasi-metric space (X,F ◦ ρX). F -transforms of Hilbert spaces have been

studied in detail by Schoenberg in the 1930's, cf. [Sch38]. Now, the main result of this

paragraph can be stated as follows:

Theorem 1.9. Let (H, 〈·, ·〉
H

) be a Hilbert space and let F : [0,+∞)→ [0,+∞) be a map

such that the composition F (
√
·) is a strictly-increasing concave function with F (0) = 0.

If S ⊂ X ⊂ F [H] are �nite subsets, then

ebar(S;X) ≤ sup
x>0

F (
√
m+ 1x)

F (x)
,

where m := card(X \ S).

Theorem 1.9 is optimal if m = 1 and F (t) = t, see Proposition 3.1. Via this sharpness

result we obtain that certain F -transforms of `p, for p > 2, do not isometrically embed

into `2, see Corollary 3.3.

Suppose that F : [0,+∞)→ [0,+∞) is a strictly-increasing continuous function such

that the F -transform of `2 embeds isometrically into a Hilbert space. By a celebrated

result of Schoenberg F (
√
·)2 is a Bernstein function, cf. [Sch38, Theorem 6′]; thus, the

function F (
√
·) is concave and therefore satis�es the assumptions on F in Theorem 1.9.

This provides a natural class of examples for which Theorem 1.9 may be applied. For

instance, by considering the function F (t) = tα, with 0 < α ≤ 1, we obtain the following

direct corollary of Theorem 1.9.

Corollary 1.10. Let (H, 〈·, ·〉
H

) be a Hilbert space, let (Z, dZ) be a complete barycentric

metric space and let 0 < α ≤ 1 and L ≥ 0 be real numbers. If X ⊂ H is a �nite subset,

S ⊂ X, and f : S → Z is an (α,L)-Hölder map, then there is an extension f : X → Z

of f such that f is an (α,L )-Hölder map with

L ≤
(√

m+ 1
)α

L,

where m := card(X \ S).
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In Corollary 1.10, an (α,L)-Hölder map is a map f : X → Y such that

dY (f(x), f(x′)) ≤ LdX(x, x′)α

for all points x, x′ ∈ X.

Along the lines of the proof of Claim 1 in [MN17] one can show that if (X, dX) and

(Y, dY ) are metric spaces, then for all integers m ≥ 1 we have

em(X, Y ) ≤ sup
n≥1

emn (X, Y ) + 2,

where

emn (X, Y ) := sup
{
e(S;S ∪ T, Y ) : S, T ⊂ X, |S| ≤ n, |T | ≤ m

}
.

Thus, by the use of Theorem 1.9, we may deduce that if H is a Hilbert space and E is

a Banach space, then

em(H,E) ≤
√
m+ 1 + 2 (1.6)

for all integers m ≥ 1. In [LN05, Theorem 1.12], Lee and Naor demonstrate that

en(H,E) .
√

log(n) for all integers n ≥ 2. Thus, via this estimate (and Lemma 1.8) it

is possible to obtain the upper bound

em(H,E) .
√

log(m)

that has a better asymptotic behaviour than estimate (1.6). However, since Lee and

Naor use di�erent (probabilistic) methods, we believe that our approach has its own

interesting aspects.

1.2.3 � For a quasi-metric space (X, ρX) and a subset S ⊂ X, we de�ne

e�n(S;X) := sup
{
e(S;X,E) : E �nite-dimensional real Banach space

}
.

For every �nite metric space (S, dS) we let

æ(S) := sup
{
e�n(S;X) : X metric space with S ⊂ X

}
denote the absolute Lipschitz extendability constant of S.

Naor and Rabani, cf. [NR17], and Lee and Naor, cf. [LN05], have shown that√
log(n) . æ(n) := sup

{
æ(S) : |S| = n

}
.

log(n)

log
(

log(n)
) (1.7)
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provided that n ≥ 3. The main result of this paragraph, see Theorem 1.11, is a formula

for æ(S) using only linear Lipschitz extension moduli. Let (E, ‖·‖) be a real Banach

space and let F ⊂ E denote a �nite-dimensional linear subspace. The number

Π(F,E) := inf
{
‖P‖ | P : E → F bounded surjective linear map with P 2 = P

}
is called the relative projection constant of F with respect to E. We get the following

connection from the non-linear to the linear world.

Theorem 1.11. Let (S, dS) denote a �nite metric space. Then

æ(S) = sup
{

Π(F(S),F(X)) : X �nite metric space such that S ⊂ X
}

;

in particular,

æ(S) ≤ Π(F(S), `∞(N)). (1.8)

We use F(X) to denote the Lipschitz-free space of a metric space X. Lipschitz-free

spaces have been introduced by Arens and Eells in the 1950s, cf. [AE56], and the term

�Lipschitz-free space� has been coined by Godefroy and Kalton, cf. [GK03]. We recall

the construction of Lipschitz-free spaces in Section 3.6, cf. [Ost13] or [Wea99] for further

information. The proof of Theorem 1.11, given in Section 3.6, is a variant of the proof

of Theorem 1.2 in [BB07], due to Brudnyi and Brudnyi.

The result from Section 3.9 tells us that for |S| = 3, the right hand side of (1.8) is

bounded by 4
3
; in Example 3.18, we construct a metric space S consisting of three points

such that æ(S) ≥ 4
3
. For that reason, we obtain:

Corollary 1.12.

æ(3) =
4

3
.

However, for large n ≥ 1 the inequality (1.8) is not sharp. Indeed, for a �nite weighted

tree T , Godard, cf. [God10, Corollary 3.6], proved that F(T ) ∼= `n1 , for n := |T | − 1;

thus a result of Grünbaum, cf. [Grü60], tells us that for such a weighted tree T with

n+ 1 ∈ 2Z vertices, the right hand side of (1.8) equals

nΓ
(
n
2

)
√
πΓ
(
n+1

2

) ∼√2n

π
.

For n ≥ 1 large enough, this is strictly greater than the upper bound (1.7) due to Lee

and Naor. Hence, (1.8) cannot be sharp for n ≥ 1 large enough.

The last two sections of this chapter are devoted to linear projection constants.
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1.2.4 � As a consequence of ideas developed by Lindenstrauss, cf. [Lin64], for a �nite-

dimensional Banach space E ⊂ `∞(N) the smallest constant C ∈ [0,+∞) such that E

is an C-absolute Lipschitz retract is completely determined by the linear theory of E.

Indeed, Rie�el, cf. [Rie06], established that it is equal to the linear projection constant

of E, which is the number Π(E) ∈ [0,+∞] de�ned as

inf
{
‖P‖ | P : `∞(N)→ E bounded surjective linear map with P 2 = P

}
.

Linear projections have been the object of study of many researchers and the literature

can be traced back to the classical book by Banach, cf. [Ban32, p.244-245]. The question

about the maximal value Πn of the linear projection constants of n-dimensional Banach

spaces has persisted and is a notoriously di�cult one. We establish a formula that relates

Πn with eigenvalues of certain two-graphs. This reduces the problem (in principle) to the

classi�cation of certain two-graphs and thus allows the introduction of tools from graph

theory. Following this approach, we present an alternative proof of Π2 = 4
3
, see Section

3.9, and we establish that the maximal relative projection constants of codimension n in

`d∞ converge to 1+Πn as d→ +∞, see Corollary 1.16. In the remainder of this overview,

we summarize the current state of the theory.

For n ≥ 1, de�ne Bann to be the set of linear isometry classes of n-dimensional Banach

spaces over the real numbers. The set Bann equipped with the Banach-Mazur distance

is a compact metric space, cf. [TJ89]. Thus, the map log ◦Π: Bann → [0,+∞) is

1-Lipschitz and consequently for all n ≥ 1 the maximal projection constant of order n,

Πn := max
{

Π(X) : X ∈ Bann
}
,

is a well-de�ned real number. Apart from Π1 = 1, the only known value is Π2 = 4
3
,

due to Chalmers and Lewicki, cf. [CL10]. There is numerical evidence indicating that

Π3 = (1 +
√

5)/2, cf. [FS17, Appendix B], but to the author's knowledge, there is no

known candidate for Πn for all n ≥ 4. From a result of Kadets and Snobar, cf. [KS71],

Πn ≤
√
n.

The above estimate has independently been obtained by Gromov, cf. [Gro83, Proposition

2.1.A]. Moreover, König, cf. [Kön85], has shown that this estimate is asymptotically the

best possible. Indeed, there exists a sequence (Xnk
)k≥1 of �nite-dimensional real Banach

spaces such that dim(Xnk
) = nk, where nk → +∞ for k → +∞, and

lim
k→+∞

Π(Xnk
)

√
nk

= 1.
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There are many non-isometric maximizers of the function Πn(·), cf. [KTJ03].
A �nite-dimensional Banach space is called polyhedral if its unit ball is a polytope.

Equivalently, a �nite-dimensional Banach space (E, ‖·‖) is polyhedral if there exists an
integer d ≥ 1 such that (E, ‖·‖) admits a linear isometric embedding into `d∞. Using

a result of Klee, cf. [Kle60, Proposition 4.7], and elementary functional analysis, we

show that there exist maximizers of Πn(·) that are polyhedral, see Theorem 1.17. In

the 1960s, Grünbaum, cf. [Grü60], calculated Π(`n1 ), Π(`n2 ) and Π(E
hex

), where E
hex

is

the 2-plane with the hexagonal norm. In particular, Π(E
hex

) = 4
3
, which Grünbaum

conjectured to be the maximal value of Π(·) amongst 2-dimensional Banach spaces.

In 2010, Chalmers and Lewicki presented an intricate proof of Grünbaum's conjecture

employing the implicit function theorem and Lagrange multipliers, cf. [CL10].

Our main result, see Theorem 1.14, provides a characterization of the number Πn

in terms of certain maximal sums of eigenvalues of two-graphs that are Kn+2-free. In

[FF84], Frankl and Füredi give a full description of two-graphs that are K4-free. Via

this description and Theorem 1.14 we can derive from �rst principles that Π2 = 4
3
. This

is done in Section 3.9.

Next, we introduce the necessary notions from the theory of two-graphs that are

needed to properly state our main result.

The subsequent de�nition of a two-graph via cohomology follows Taylor [Tay77], and

Higman [Hig73]; see also [Sei91, Remark 4.10]. Let V denote a �nite set. For each

integer n ≥ 0 we set

En(V ) :=
{
B ⊂ V : |B| = n

}
and En(V ) :=

{
f : En(V )→ F2

}
,

where F2 denotes the �eld with two elements. Elements of E2(V ) are �nite simple graphs.

If n is strictly greater than the cardinality of V , then En(V ) consists only of the empty

function ∅→ F2. For each f ∈ En(V ) the map δf ∈ En+1(V ) is given by

B 7→
∑
v∈B

f(B \ {v}).

Clearly, it holds that δ◦δ = 0, where 0 denotes the neutral element of the group En+2(V ).

Two-graphs can be de�ned as follows.

De�nition 1.13 (two-graph). A two-graph is a tuple T = (V,∆), where V and ∆ are

�nite sets and there exists a map fT ∈ E3(V ) such that δfT = 0 and ∆ = f−1
T (1). The

cardinality of V is called the order of T .
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Among other things, two-graphs naturally occur in the study of systems of equiangular

lines and 2-transitive permutation groups; authoritative surveys are [Sei91; Sei92]. Given

a two-graph T = (V,∆), the following set is always non-empty:

[T ] :=
{
f : E2(V )→ F2 : δf = fT

}
.

Each f ∈ [T ] gives rise to a graph Gf := (V, f−1(1)). The Seidel adjacency matrix of a

graph G = (V,E) is the matrix S(G), which is the symmetric |V | × |V |-matrix given by

S(G)ij =


0 if i = j

−1 if i and j are adjacent

1 otherwise.

For each choice f1, f2 ∈ [T ] the matrices S(Gf1) and S(Gf2) have the same spectrum.

By de�nition, the eigenvalues of T = (V,∆) are the real numbers

λ1(T ) ≥ . . . ≥ λ|V |(T )

that are the eigenvalues of S(Gf ) for f ∈ [T ] (counted with multiplicity). This de�nition

is independent of f ∈ [T ].

We say that a two-graph T = (V,∆) isKn-free if there is no injective map ϕ : {1, . . . , n} →
V such that

{
ϕ(v1), ϕ(v2), ϕ(v3)

}
∈ ∆ for all distinct points v1, v2, v3 ∈ Vn.

Our main result reads as follows:

Theorem 1.14. If n ≥ 1 is an integer, then

Πn = sup
d≥1

max

{
n

d
+

1

d

n∑
k=1

λk(T ) : T is a Kn+2-free two-graph of order d

}
.

To prove Theorem 1.14, we invoke a simple trick, see Lemma 3.20, that allows us to

greatly narrow down the matrices that need to be considered. This is done in Section

3.7.

1.2.5 � The following question has �rst been systematically addressed by König, Lewis,

and Lin in [KLL83]:

Question 1.15. Let n, d ≥ 0 be integers. What is

Π(n, d) := sup
{

Π(E) : E ⊂ `d∞ is an n-dimensional Banach space
}

?
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By de�nition, sup∅ = −∞. Clearly, Π(d, d) = 1 and it is a direct consequence of the

classical Hahn-Banach theorem that Π(1, d) = 1 for all integers d ≥ 1. The quantity

Π(d − 1, d) has been examined by Bohnenblust, cf. [Boh38], where it is shown that

Π(d − 1, d) ≤ 2 − 2
d
. In [CL09], Chalmers and Lewicki determined the exact value of

Π(3, 5). In [KLL83], König, Lewis, and Lin established the general upper bound

Π(n, d) ≤ n

d
+

√(
d− 1

)n
d

(
1− n

d

)
with equality if and only if Rn admits a system of d distinct equiangular lines. Thereby,

as R3 admits a system of six equiangular lines, cf. [LS73, p. 496], it holds that

Π(3, 6) =
1 +
√

5

2
.

In light of

Π(4, 6) =
5

3
,

which we demonstrate in [Bas19, Section 4.2], up to d = 6 all exact values of Π(n, d) for

1 ≤ n ≤ d are now computed. It is well-known that

Π(n, d) ≤ Π(n, d+ 1) and Π(n, d) ≤ Π(n+ 1, d+ 1)

for all 1 ≤ n ≤ d, cf. [CL09]. Via Theorem 1.14, we infer the following asymptotic

relation between these two increasing sequences:

Corollary 1.16. For each integer n ≥ 1 we have

1 + Πn = lim
d→+∞

Π (d− n, d) .

A proof of Corollary 1.16 is given in Section 3.7. If n = 1, then Corollary 1.16 follows

directly from the fact that Bohnenblust's upper bound of Π(d−1, d) is sharp, cf. [CL09,

Lemma 2.6]. Recently, the special case n = 2 has been considered by Sokoªowski in

[Sok17]. The upper bound

Π (d− n, d) ≤ 1 +
√
n

for d ≥ n has been obtained by Garling and Gordon, cf. [GG71], by the use of John's

Theorem.

Recall that Π(1, d) = Π(1, 1) = 1 for all d ≥ 1. The proof of Grünbaum's conjecture,

cf. [CL10], shows that

Π(2, d) = Π(2, 3) =
4

3
, for all d ≥ 3.

Numerical experiments, cf. [FS17, Appendix B], suggest that if d ∈ {6, . . . , 10}, then
Π(3, d) = Π(3, 6). Since Πn(·) admits a polyhedral maximizer, the sequence Π(n, ·)
stabilizes eventually. This is the content of the subsequent theorem:
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Theorem 1.17. Let n ≥ 1 be an integer. There exists a polyhedral n-dimensional Banach

space (Fn, ‖·‖) such that

Π(Fn) = Πn.

As a result, there is an integer D ≥ 1 such that

Π(n, d) = Π(n,D)

for all d ≥ D.

A proof of Theorem 1.17 can be found in Section 3.8. Unfortunately, the proof of

Theorem 1.17 is not constructive. Obtaining an explicit upper bound for the quantity

D seems out of reach at the moment.
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2 The geometry of barycentric

metric spaces

2.1 Preliminaries

2.1.1 � In this section, we collect some facts from the theory of optimal transportation.

Let (X, TX) be a Hausdor� topological space. We denote by BX the Borel σ-algebra

of (X, TX) and by KX the set that consists of all compact subsets of (X, TX). A non-

negative Borel measure µ : BX → [0,+∞] is called a Radon measure if µ(K) < +∞ for

all compact subsets K of (X, TX) and

µ(B) = sup
{
µ(K) : K ⊂ B,K ∈ KX

}
for all Borel measurable sets B of (X, TX). A signed �nite Borel measure µ : BX → R is

called a signed �nite Radon measure if the total variation |µ| : BX → [0,+∞) is a Radon

measure. Let P (X) denote the set that consists of all non-negative Borel measures on

(X,BX) that are Radon probability measures. Suppose that f : X → X is a continuous

map. We de�ne the map

f∗ : P (X)→ P (X)

µ 7→

{
f∗µ : BX → [0, 1]

B 7→ µ(f−1(B)).

The map f∗ is well-de�ned and for every µ in P (X) the measure f∗µ is called the

pushforward of µ by f . A measure µ in P (X) is called f -invariant if f∗µ = µ.

For the rest of this subsection let (X, dX) be a metric space. Suppose that the Borel

measure µ : BX → [0, 1] is a Radon probability measure. The subset spt(µ) of all points

x in X such that µ(U) > 0 for all open neighborhoods of x is called the support of µ.

We say that µ has a �nite �rst moment if there is a point x0 in X such that∫
X

d(x, x0)µ(dx) < +∞.
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We let P1(X) be the set that consists of all measures of (X,BX) that are Radon prob-

ability measures with a �nite �rst moment. We denote by W 1 : P1(X) × P1(X) → R
the �rst Wasserstein distance on P1(X). Due to the Kantorovich-Rubinstein Duality

Theorem the �rst Wasserstein distance W1 is given by

W1(µ, ν) = sup

{∫
X

f dµ−
∫
X

f dν : f : X → R is 1-Lipschitz

}
and thus de�nes a metric on P1(X), cf. [Edw11]. We de�ne

PQ(X) :=

{
n∑
k=1

αkδxk : n ≥ 1,
n∑
k=1

αk = 1, αk ∈ Q≥0, xk ∈ X

}
.

On PQ(X) there is an explicit formula for the �rst Wasserstein distance.

Proposition 2.1. Let (X, dX) denote a metric space. If n ≥ 1 is an integer and xi, yi

for i = 1, . . . , n are points in X, then we have

W1

(
1

n
(δx1 + · · ·+ δxn) ,

1

n
(δy1 + · · ·+ δyn)

)
=

1

n
min
τ∈Sn

n∑
k=1

d(xk, yτ(k)).

Proof. See [Vil03, p. 5].

It turns out that the set PQ(X) is W1-dense in P1(X). This is the content of the

following proposition.

Proposition 2.2. Let (X, dX) be a metric space and let ε > 0 be a positive real num-

ber. If the Borel measure µ : BX → [0, 1] is a Radon probability measure contained in

P1(X), then there exists a measure νε contained in PQ(X) with spt(νε) ⊂ spt(µ) such

that W1(µ, νε) < ε.

Proof. See Theorem 6.1 in [Edw11] and Theorem 6.18 in [Vil09].

Suppose that the map ϕ : X → X is 1-Lipschitz. By the use of the Kantorovich-

Rubinstein Duality Theorem it is readily veri�ed that the map ϕ∗ : P1(X) → P1(X) is

well-de�ned and 1-Lipschitz as well. This functorial property gives rise to the subsequent

Lipschitz extension property.

Lemma 2.3. Let (B, dB) be a metric space, A ⊂ B be a subset and let L ≥ 0 be a real

number. If there exists a L-Lipschitz map ι : B → P1(A) such that ι(a) = δa for all

a ∈ A, then every 1-Lipschitz map from A to a barycentric metric space extends to an

L-Lipschitz map on B.
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Proof. Let (Z, dZ) be a barycentric metric space, let ϕ : A → Z be a 1-Lipschitz map

and let β : P1(Z)→ Z be a contracting barycenter map. We set

ϕ(b) := β(ϕ∗(ι(b))) (b ∈ B),

where ϕ∗(ι(b)) denotes the pushforward of the measure ι(b) by ϕ. It holds that

dZ(ϕ(b), ϕ(b′)) ≤ W1(ϕ∗(ι(b)), ϕ∗(ι(b
′))) ≤ W1(ι(b), ι(b′)) ≤ LdB(b, b′)

for all b, b′ ∈ B. The second inequality follows directly from the Kantorovich-Rubinstein

duality theorem. By construction, ϕ(a) = ϕ(a) for all a ∈ A. This completes the

proof.

2.1.2 � In what follows, we brie�y introduce injective metric spaces and injective hulls

of metric spaces. A metric space (X, dX) is injective if for every metric space (B, d) and

every 1-Lipschitz map f : A→ X de�ned on a subset A ⊂ B, there exists a 1-Lipschitz

map f : B → X such that f |A = f . Basic examples of injective metric spaces are the

real line with the standard metric, `∞(I) for any index set I and all complete R-trees.
In [DP17], an explicit characterization of all injective subsets of `∞(I) is obtained.

An injective hull of the metric space (X, d) is a pair (Y, e), where (Y, d) is an injective

metric space and e : X → Y is an isometric embedding with the property that if there is

a metric space (Z, d) and a 1-Lipschitz map f : Y → Z such that the composite map f ◦e
is an isometric embedding, then the map f is an isometric embedding. Isbell showed that

every metric space possesses an essentially unique injective hull, cf. [Isb64]. We denote

the injective hull of (X, dX) by (E(X), e). Isbell construction has been rediscovered

several times. We refer to [Lan13] for a short overview.

The subsequent lemma tells us that every contracting barycenter map on a metric

space (X, dX) is induced by a contracting barycenter map on its injective hull (E(X), e).

Lemma 2.4. Let (X, dX) denote a metric space and let (E(X), e) the injective hull of

X. Let S ⊂ P1(X) be a subset such that δx ∈ S for all x ∈ X. If β : S → X is

1-Lipschitz and β(δx) = x for all x ∈ X, then there exists a contracting barycenter map

βE : P1(E(X))→ E(X) such that e(β(s)) = βE(e∗(s)) for all s ∈ S.

Proof. The map e ◦ β is a 1-Lipschitz map and the push-forward map e∗ is an isometric

embedding. Therefore, there exists a 1-Lipschitz map βE : P1(E(X))→ E(X) such that

e ◦ β = βE ◦ e∗|S, as the metric space (E(X), dE) is injective. Thus, we are left to show

that βE(δz) = z for all points z contained in E(X). Let i : E(X) → P1(E(X)) denote
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the canonical isometric embedding given by the assignment z 7→ δz. The map ϕ := βE ◦i
is a 1-Lipschitz map from E(X) to E(X). By construction, we have ϕ(e(x)) = e(x) for

all points x in X. Using [Lan13, Theorem 3.3 (1)] we get that ϕ = idE(X); thus, we infer

βE(δz) = z for all points z in E(X). This completes the proof.

Lemma 2.4 is the key component in the construction in Example 2.21.

2.1.3 � Here we collect all notions related to geodesic bicombings. We follow [DL15]

and de�ne the notion of a geodesic bicombing on a metric space as follows.

De�nition 2.5 (geodesic bicombing). Let (X, dX) denote a metric space. A map σ : X×
X × [0, 1] → X is called a geodesic bicombing, if for all points x, y ∈ X and for all

s, t ∈ [0, 1]:

d(σ(x, y, s), σ(x, y, t)) = |s− t| d(x, y), (2.1)

and σ(x, y, 0) = x, σ(x, y, 1) = y.

The term bicombing was coined by D. Epstein and W. Thurston in the context of

combinatorial group theory, cf. [Eps+92, p. 84]. Note that if σ is a geodesic bicombing

on a metric space (X, dX), then we have σ(x, x, t) = x for all points x in X and all t

in the interval [0, 1]. We often use the notation σxy(t) to denote the point σ(x, y, t). A

map σxy : [0, 1]→ X with σxy(0) = x and σxy(1) = y that satis�es (2.1) is called geodesic

from x to y.

De�nition 2.6 (classes of geodesic bicombings). Let (X, dX) denote a metric space and

let σ : X ×X × [0, 1]→ X be a geodesic bicombing. We use the following terminology:

1. We say that σ is conical if for all points x, y, x′, y′ ∈ X and for all t ∈ [0, 1]:

d(σxy(t), σx′y′(t)) ≤ (1− t)d(x, x′) + td(y, y′). (2.2)

This inequality is called the conical inequality.

2. We call σ convex if we have for all points x, y, x′, y′ ∈ X that the function [0, 1]→ R
given by the assignment t 7→ d(σxy(t), σx′y′(t)) is convex.

3. Assume that

σpq(λ) = σxy((1− λ)s+ λt), (2.3)

whenever x, y ∈ X, 0 ≤ s ≤ t ≤ 1, p := σxy(s), q := σxy(t), and λ ∈ [0, 1]. Then

we call σ consistent.
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4. If we have for all points x, y in X that

σxy(t) = σyx(1− t) for all t ∈ [0, 1], (2.4)

then we say that σ is reversible.

5. We say that σ has the midpoint property if

σxy(
1
2
) = σyx(

1
2
) (2.5)

for all points x, y in X.

To the author's knowledge, conical geodesic bicombings have �rst been considered by

Itoh under the name W -convexity mappings that satisfy condition (III), cf. [Ito79]. It

is immediate that a consistent and conical geodesic bicombing is convex. But it is not

known that whenever the metric space (X, dX) admits a conical geodesic bicombing,

then X admits also a convex geodesic bicombing. For (X, dX) proper, this has been

established by Descombes and Lang, cf. [DL15, Theorem 1.1]. Note that if a geodesic

bicombing is reversible, then it has the midpoint property. In Section 2.4, we construct

a geodesic bicombing that has the midpoint property but is not reversible.

Basic examples of convex geodesic bicombings are the unique geodesics σxy : [0, 1] →
X in a CAT(0) space or in a non-positively curved global Busemann space. Another

example for convex geodesic bicombings are the linear geodesics λxy(t) = (1− t)x+ ty in

a normed vector space (V, ‖·‖). Moreover, the family of geodesic τµν(t) = (1− t)µ + tν

on P1(X) constitute a consistent conical geodesic bicombing. As pointed out in [Duc18,

Example 2.11], the metric space GL(H)/O(H) for any Hilbert space H admits a convex

geodesic bicombing.

The subsequent lemma that tells us that the conical inequality implies in fact a slightly

stronger inequality.

Lemma 2.7. Let (X, dX) be a metric space, let A ⊂ X be a subset and let {σxy(·)}x,y∈A
be a collection of geodesics σxy : [0, 1]→ X such that σxy(0) = x, σxy(1) = y and σxy(t) =

σyx(1− t) for all t ∈ [0, 1] and x, y ∈ A. If

dX(σxy(t), σxz(t)) ≤ tdX(y, z)

for all x, y, z ∈ A, then

dX(σx1x2(t), σy1y2(t)) ≤ W1

(
(1− t)δx1 + tδx2 , (1− t)δy1 + tδy2

)
for all x1, x2, y1, y2 ∈ A.
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Proof. Without loss of generality, we may suppose that t ∈ [1
2
, 1]. Proposition 2.1 tells

us that

W1

(
(1− t)δx1 + tδx2 , (1− t)δy1 + tδy2

)
= min

ε∈[0,1−t]

(
ε(dX(x1, y2) + dX(y1, x2)) + (t− ε)dX(x2, y2) + ((1− t)− ε)dX(x1, y1)

)
.

On the one hand, we compute

dX(σx1x2(t), σy1y2(t)) ≤ dX(σx1x2(t), σx1y2(t)) + dX(σy2x1(1− t), σy2y1(1− t)),

thus we get

dX(σx1x2(t), σy1y2(t)) ≤ (1− t)dX(x1, y1) + tdX(x2, y2),

but on the other hand, we estimate

dX(σx1x2(t), σy1y2(t))

≤ dX(σx2x1(1− t), σx2y2(1− t)) + dX(σx2y2(1− t), σx2y2(t)) + dX(σx2y2(t), σy1y2(t))

and thus

dX(σx1x2(t), σy1y2(t))

≤ (1− t)dX(x1, y2) + (2t− 1)dX(x2, y2) + (1− t)dX(x2, y1).

Consequently, by putting everything together we conclude

dX(σx1x2(t), σy1y2(t)) ≤ W1

(
(1− t)δx1 + tδx2 , (1− t)δy1 + tδy2

)
,

as desired.

A direct consequence of Lemma 2.4 and Lemma 2.7 is that every reversible conical

geodesic bicombing on X lifts to a reversible concial geodesic bicombing on E(X).

Proposition 2.8. Let (X, dX) be a metric space and let σ : X × X × [0, 1] → X be

a conical geodesic bicombing. If σ is reversible, then there exists a reversible conical

geodesic bicombing σ : E(X)× E(X)× [0, 1]→ E(X) on E(X) such that

σxy(t) = σxy(t)

for all x, y ∈ X and t ∈ [0, 1].
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Proof. We set

S := {(1− t)δx + tδy : x, y ∈ X, t ∈ [0, 1]}.

Because of Lemma 2.7 we have that the map

β : S → X,

(1− t)δx + tδy 7→ σxy(t)

is 1-Lipschitz. Therefore, Lemma 2.4 tells us that there exists a contracting barycenter

map βE : P1(E(X)) → E(X) such that βE(e∗(s)) = e(β(s)) for all s ∈ S. Thus, the

conical geodesic bicombing σ induced by βE has the desired property. This completes

the proof.

2.2 A 1-Lipschitz barycenter construction

In [ESH99], Es-Sahib and Heinich developed a barycenter construction for non-empty

�nite subsets of separable complete Busemann spaces. Es-Sahib and Heinich's barycenter

construction translates with no e�ort to complete metric spaces that admit a conical

geodesic bicombing. This is the content of the subsequent proposition.

Proposition 2.9. Let (X, dX) be a complete metric space. If X admits a conical geodesic

bicombing σ : X × X × [0, 1] → X, then there exists a collection {bn : Xn → X}n≥1 of

maps that satis�es the following four conditions:

1. (Locality) For all integers n ≥ 1 and all points x := (x1, . . . , xn) in Xn we have

that the point bn(x) is contained in convσ
({
x1, . . . , xn

})
.

2. (Recursion) For all integers n ≥ 3 and all points x := (x1, . . . , xn) in Xn we have

bn(x) = bn(bn−1(x1), . . . , bn−1(xn)),

where xk := (x1, . . . , xk−1, xk+1, . . . , xn) for all integers 1 ≤ k ≤ n.

3. (Nonexpansiveness) For all integers n ≥ 1 and all points x := (x1, . . . , xn) and

y := (y1, . . . , yn) in Xn it holds

d(bn(x), bn(y)) ≤ 1

n

n∑
k=1

d(xk, yk).
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4. (W1-Nonexpansiveness) If σ has the midpoint property, then we have that

d(bn(x), bn(y)) ≤ 1

n
min
τ∈Sn

n∑
k=1

d(xk, yτ(k))

for all integers n ≥ 1 and all points x := (x1, . . . , xn) and y := (y1, . . . , yn) in Xn.

Proof. Let b1 denote the identity map of X and de�ne the map b2 : X2 → X through

the assignment (x, y) 7→ σxy(1/2). It is straightforward to show that the map b2 satis�es

all four conditions. Now, we proceed by induction. Let n ≥ 3 be an integer and suppose

that bn−1 is de�ned and satis�es all four conditions. Let x := (x1, . . . , xn) be a point in

Xn. We de�ne the sequence (x(k))k≥0 ⊂ Xn via the recursive rule

x(0) := x, x(k+1) := (bn−1(x
(k)
1 ), . . . , bn−1(x(k)

n )),

where for each integer k ≥ 0 and each integer 1 ≤ l ≤ n the (n−1)-tuple x(k)
l is obtained

from the n-tuple x(k) by deleting the l-th entry. From now on, let x(k)
l denote the l-th

entry of the n-tuple x(k). For every integer k ≥ 0 we set Ak := convσ
({
x

(k)
1 , . . . , x

(k)
n

})
and Dk := diam(Ak). The de�nition of the closed σ-convex hull convσ is given in

the introduction. Note that the sequence (Dk)k≥0 is non-increasing. We claim that

D2k ≤ 1
(n−1)k

D0 for all integers k ≥ 1. Let k ≥ 1 be an integer and suppose that

1 ≤ l < l′ ≤ n. We compute

d
(
x

(2k)
l , x

(2k)
l′

)
= d

(
bn−1(x

(2k−1)
l ), bn−1(x

(2k−1)
l′ )

)
≤ 1

n− 1

l′−1∑
i=l

d
(
bn−1(x

(2k−2))
i ), bn−1(x

(2k−2))
i+1 )

)
≤ 1

n− 1
D2(k−1).

Since taking the σ-convex hull of a subset does not increase the diameter, we have shown

that D2k ≤ 1
n−1

D2(k−1). Hence, it follows that D2k ≤ 1
(n−1)k

D0 for all integers k ≥ 1. As

a result, we obtain that the intersection
⋂
k≥0Ak consists precisely of one point which we

call x∞. For later use, observe that for each integer 1 ≤ l ≤ n we have that x(k)
l → x∞

as k → +∞. We de�ne bn(x) := x∞. It is readily veri�ed that the map bn satis�es

the �rst two conditions. Next, we show that bn satis�es the nonexpansiveness condition.

Suppose that x := (x1, . . . , xn) and y := (y1, . . . , yn) are points in Xn. For each integer

k ≥ 1, we compute

d
(
x

(k)
l , y

(k)
l

)
= d

(
bn−1(x

(k−1)
l ), bn−1(y

(k−1)
l )

)
≤ 1

n− 1

n∑
i=1,i 6=l

d
(
x

(k−1)
i , y

(k−1)
i

) (2.6)
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for all integers 1 ≤ l ≤ n. By the use of (2.6) we obtain

n∑
l=1

d
(
x

(k)
l , y

(k)
l

)
≤

n∑
l=1

d
(
x

(k−1)
l , y

(k−1)
l

)
for all integers k ≥ 1. Hence, by passing to the limit k → +∞ we conclude that

n · d (x∞, y∞) ≤
n∑
l=1

d(xl, yl),

as desired. Now, we are left to show that the map bn satis�es the W1-nonexpansiveness

condition. Suppose that σ has the midpoint property. Let τ ∈ Sn−1 be a permutation.

Due to the W1-nonexpansiveness of bn−1 we have that

d
(
bn−1(x1, . . . , xn−1), bn−1(xτ(1), . . . , xτ(n−1))

)
≤ 1

n− 1
min
ρ∈Sn−1

n−1∑
k=1

d
(
xk, xτ(ρ(k))

)
= 0

for all points x1, . . . , xn in X. Consequently, we obtain that bn−1 is invariant under

permutations, that is, bn−1(x1, . . . , xn−1) = bn−1(xτ(1), . . . , xτ(n−1)) for all permutations

τ in Sn−1. Hence, it follows from the second condition that bn is invariant under permu-

tations as well. Thus, the fourth condition is a consequence of the third condition and

the permutation invariance of bn. The proposition follows.

If the complete metric space (X, dX) in Proposition 2.9 is a Banach space and the

conical geodesic bicombing σ : X ×X × [0, 1]→ X is given by (x, y, t) 7→ (1− t)x+ ty,

then it is readily veri�ed that the collection {barn : Xn → X}n≥1, where for each integer

n ≥ 1 the map barn is given by the assignment

(x1, . . . , xn) 7→ 1

n
(x1 + · · ·+ xn) ,

satis�es all four conditions of Proposition 2.9.

Let (X, d) denote a complete metric space. Suppose that (X, dX) admits a coni-

cal geodesic bicombing σ : X × X × [0, 1] → X that has the midpoint property. Let

{bn : Xn → X}n≥1 denote the collection of maps that we have constructed in Proposi-

tion 2.9, let n ≥ 1 be an integer and let x be a point in Xn. For every integer k ≥ 1

we denote by Qk(x) the element in Xkn that is equal to (x, . . . ,x). It is tempting to

assume that

bnk1(Q
k1(x)) = bnk2(Q

k2(x)) for all k1, k2 ≥ 1. (2.7)
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However, this is not necessarily true. A counterexample can be found on page 614 in

[Nav13]. Since the equality in (2.7) does not hold in general, one might ask: does at

least the limit

lim
k→+∞

bnk(Q
k(x)) (2.8)

exist? Navas showed that the limit (2.8) exists for all integers n ≥ 1 and all points x

in Xn if X is a complete separable Busemann space, cf. [Nav13, Proposition 1.2]. As

Navas's proof relies solely on the fact that the collection {bn : Xn → X}n≥1 satis�es the

recursion- and the W1-nonexpansiveness condition, Navas's proof translates verbatim

to collections {bn : Xn → X}n≥1 that arose from complete metric spaces that admit a

conical geodesic bicombing with the midpoint property.

A streamlined version of Navas's proof can be found in [Des16] (or the authors mas-

ter thesis). If X satis�es a weak local compactness assumption, then it is possible to

draw the conclusion that the limit in (2.8) exists via a martingale convergence theorem,

cf. [ESH99, Theorem 2]. Navas used the existence of the limit (2.8) to construct a

contracting barycenter map for every complete separable Busemann space, cf. [Nav13].

Essentially the same construction yields a contracting barycenter map for every complete

metric space that admits a conical geodesic bicombing that has the midpoint property.

Theorem 2.10. Let (X, dX) be a complete metric space and let σ : X ×X × [0, 1]→ X

denote a conical geodesic bicombing. If σ has the midpoint property, then the map

βσ : PQ(X)→ X given by the assignment

µ =
1

n
(δx1 + · · ·+ δxn) 7→ lim

k→+∞
bnk(Q

k((x1, . . . , xn)) (2.9)

is well-de�ned and extends uniquely to a contracting barycenter map βσ : P1(X) → X

that has the following properties:

1. (Locality) For all measures µ in P1(X) we have that the point βσ(µ) is contained

in convσ(spt(µ)).

2. (Equivariance) If ϕ : X → X is a 1-Lipschitz map and σ is ϕ-equivariant, then we

have that βσ is ϕ-equivariant, that is, it holds ϕ ◦ βσ = βσ ◦ ϕ∗.

Proof. It is readily veri�ed that the map βσ : PQ(X) → X is well-de�ned, that is, the

assignment (2.9) does not depend on the representation of µ. Let µ and ν denote two

elements of PQ(X). Note that there is an integer n ≥ 1 and points (x1, . . . , xn) and

32



(y1, . . . , yn) in Xn such that µ = 1
n
(δx1 + · · · + δxn) and ν = 1

n
(δy1 + · · · + δyn). Due to

Equation (2.9), the W1-nonexpansiveness condition and Proposition 2.1 we have

d(βσ(µ), βσ(ν)) ≤ 1

n
min
τ∈Sn

n∑
k=1

d(xk, yτ(k)) = W1(µ, ν);

hence, the map βσ : PQ(X) → X is 1-Lipschitz. Proposition 2.2 tells us that PQ(X) is

dense in (P1(X),W1); thus, as X is complete the map βσ : PQ(X)→ X extends uniquely

to the whole space P1(X). We denote this map again by βσ. Note that the extended

map βσ is 1-Lipschitz by construction and we have βσ(δx) = x for all points x in X;

hence, the map βσ is a contracting barycenter map on (X, dX).

The fact that the point βσ(µ) is contained in convσ(spt(µ)) for all measures µ in P1(X)

is a direct consequence of Proposition 2.2.

To conclude the proof we show that if ϕ : X → X is a 1-Lipschitz and σ is ϕ-

equivariant, then we have that βσ is ϕ-equivariant. As σ is ϕ-equivariant, we obtain

that ϕ(b2(x, y)) = b2(ϕ(x), ϕ(y)) for all points x, y in X. A straightforward induction

shows for all integers n ≥ 2 and all points x in Xn that

ϕ(bn(x)) = bn(ϕ(x)), (2.10)

where the mapϕ : Xn → Xn is given by the assignment (x1, . . . , xn) 7→ (ϕ(x1), . . . , ϕ(xn)).

Suppose that µ is a measure in PQ(X). There is an integer n ≥ 1 and a point (x1, . . . , xn)

in Xn such that µ = 1
n
(δx1 + · · · + δxn). Note that ϕ∗µ = 1

n

(
δϕ(x1) + · · ·+ δϕ(xn)

)
. We

compute

ϕ(βσ(µ)) = lim
k→+∞

ϕ
(
bnk(Q

k(x))
) (2.10)

= lim
k→+∞

bnk(Q
k(ϕ(x))) = βσ(ϕ∗µ).

Since the two 1-Lipschitz maps ϕ◦βσ and βσ ◦ϕ∗ agree on theW1-dense subset PQ(X) ⊂
P1(X), we obtain that they coincide on the whole space P1(X). The theorem follows.

We call the map βσ from Theorem 2.10 the contracting barycenter map associated to

σ. The rest of this section is devoted to contracting barycenter maps on Banach spaces.

In the subsequent proposition we show that there is precisely one contracting barycenter

map on a Banach space.
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Proposition 2.11. Let (E, ‖·‖) be a Banach space, let λ be the conical geodesic bicombing

on E that consists of the linear geodesics and let βλ : P1(E)→ E denote the contracting

barycenter map associated to λ. It holds that the map βλ : P1(E) → E is given through

the assignment

µ 7→
∫
E

x dµ(x) (2.11)

and that the map βλ is the only contracting barycenter map on (E, ‖·‖).

Proof. Suppose that β : P1(E)→ E is a contracting barycenter map on (E, ‖·‖). Let µ
be a measure contained in P1(E). The point β(µ) satis�es

‖β(µ)− y‖ ≤ W1(µ, δy) =

∫
E

‖x− y‖ dµ(x) for all y ∈ E. (2.12)

It is well-known that spt(µ) is separable and that µ(E \ spt(µ)) = 0; hence, the identity

map id : (E,BE)→ (E,BE) is µ-essentially separably valued. Now, Pettis Measurability

Theorem tells us that the identity map id is µ-measurable. Hence, we can use the

de�nition of P1(E) and Bochner's criterion for integrability to deduce that the identity

map id is Bochner integrable with respect to the measure µ. Thus, as the point β(µ)

satis�es the inequality (2.12), Theorem 3.6 in [Mol06], which is a direct consequence of

the strong law of large numbers, tells us that

β(µ) =

∫
E

id(x) dµ(x). (2.13)

Since the map βλ is a contracting barycenter map, we have shown that βλ is given

through the assignment (2.13). Furthermore, as the contracting barycenter map β was

arbitrary, we have also shown that βλ is the unique contracting barycenter map on

(E, ‖·‖).

Having Theorem 2.10 and Proposition 2.11 on hand we can deduce the following

corollary.

Corollary 2.12. Let (E, ‖·‖) be a Banach space. If µ is a measure in P1(E), then the

Bochner integral
∫
E
x dµ(x) is contained in the closure of the convex hull of spt(µ).

Proof. This is a consequence of Theorem 2.10 and Proposition 2.11.
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2.3 Proof of Theorem 1.1

In [Des16], Descombes established that every proper metric space with a conical geodesic

bicombing admits a reversible conical geodesic bicombing. Miesch generalized this result

to arbitrary complete metric spaces.

Proposition 2.13 (p. 87 in [Mie17a]). Let (X, dX) be a complete metric space with a

conical geodesic bicombing. Then X also admits a reversible, conical geodesic bicombing.

We construct an example of a non-reversible conical geodesic bicombing in Section

2.4. Now, we have everything at hand to prove Theorem 1.1.

Proof of Theorem 1.1. (1.) =⇒ (2.). The map σ : X ×X × [0, 1]→ X given by

(x, y, t) 7→ β((1− t)δx + tδy)

is a geodesic bicombing. Indeed, for 0 ≤ s ≤ t ≤ 1 we compute

dX(x, y)

≤ dX(x, σxy(s)) + dX(σxy(s), σxy(t)) + dX(σxy(t), y)

≤ sdX(x, y) +W1((1− s)δx + sδy, (1− t)δx + tδy) + (1− t)dX(x, y).

By the use of the Kantorovich-Rubinstein Duality Theorem, we obtain

W1((1− s)δx + sδy, (1− t)δx + tδy) = (t− s)W1(δx, δy);

hence, by the estimate above it follows that σxy(·) is a geodesic from x to y.

Next, we show the conical inequality. Let t ∈ [0, 1] be a real number and let (tk)k≥1 ⊂
[0, 1] ∩ Q be a sequence of rational numbers such that tk → t for k → +∞. Using

Proposition 2.1 we get

W1

(
(1− tk)δx + tkδy, (1− tk)δx′ + tkδy′

)
≤ (1− tk)dX(p, p′) + tkdX(q, q′)

for all points x, y, x′, y′ ∈ X. Hence, the map σ : X×X× [0, 1]→ X given by (x, y, t) 7→
β((1− t)δx + tδy) satis�es inequality (1.2), as desired.

(2.) =⇒ (1.). By employing Proposition 2.13, we get that X admits a reversible

conical geodesic bicombing σ. Now, the map βσ from Theorem 2.10 is a contracting

barycenter map. Hence, X is a barycentric metric space, as was to be shown.
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2.4 Reversibility of conical geodesic bicombings

In this section, we construct a non-reversible conical geodesic bicombing. Afterwards, we

modify this non-reversible conical geodesic bicombing to satisfy the midpoint property.

Let s : `2
∞ → `2

∞ denote the map given by (x, y) 7→ (x,−y). We de�ne

X1 :=
{

(x, y) ∈ `2
∞ : x ∈ [−2, 1] and |x| − 1 ≤ y ≤ ||x| − 1|

}
,

A1 :=
{

(x, y) ∈ `2
∞ : |x+ 1| ≤ y ≤ 1

}
.

and X2 := s(X1), A2 := s(A1). The set X1 ∪X2 is depicted in Figure 2.1. It is readily

veri�ed that the map f : X2 → X1 given by

(x, y) 7→

{
(x, y), if x ∈ [−1, 1],

s(x, y), if x ∈ [−2,−1]

is an isometry. Let f̄ : X1 ∪X2 → X1 be the map that is equal to idX1 on X1 and equal

to f on X2. Observe that the map f̄ is 1-Lipschitz. We set Yk := Xk ∪Ak for k ∈ {1, 2}.
Further, we de�ne the map π : Y1 ∪ Y2 → X1 ∪X2 through the assignment

(x, y) 7→
(
x, sgn(y) min

{
|y| , ||x| − 1|

})
.

Observe that π is a 1-Lipschitz retraction that maps Yk to Xk for each k ∈ {1, 2}. Let
λ : R2×R2×[0, 1] → R2 be the conical geodesic bicombing on R2 that is given by the

linear geodesics.

Lemma 2.14. The map σ : X1 ×X1 × [0, 1]→ X1 given by

(p, q, t) 7→

{
π ◦ λ(p, q, t), if px ≤ qx,

f ◦ π ◦ λ (f−1(p), f−1(q), t) , if qx ≤ px.

is a non-reversible conical geodesic bicombing on (X1, ‖·‖∞).

Proof. Observe that both maps

σ(1) := π ◦ λ and σ(2) := f ◦ π ◦ λ ◦
(
f−1 × f−1 × Id[0,1]

)
de�ne conical geodesic bicombings on X1. Thus, it follows that σ : X1×X1× [0, 1]→ X1

is a geodesic bicombing.

In the following, we show that σ is conical. Let p, q, p′, q′ ∈ X1 be points. As both

maps σ(1) and σ(2) are conical geodesic bicombings on X1 with σ
(1)
pq = σ

(2)
pq if px, qx ≤ −1
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Figure 2.1: The blue line corresponds to σpq and the red line corresponds to the image
of σqp under the isometry f−1.

or px, qx ≥ −1, it remains to check inequality (1.2) if (px, q′x ≤ −1 and qx, p′x ≥ −1) or

(p′x, qx ≤ −1 and q′x, px ≥ −1).

Now, suppose that px, q′x ≤ −1 and qx, p′x ≥ −1. The other case is treated analogously.

Since the map f̄ ◦ π is 1-Lipschitz, we compute

‖σpq(t)− σp′q′(t)‖∞ = ‖f̄ ◦ π ◦ λ(p, q, t)− f̄ ◦ π ◦ λ(f−1(p′), f−1(q′), t)‖∞
≤ (1− t)‖p− f−1(p′)‖∞ + t‖q − f−1(q′)‖∞

for all t ∈ [0, 1]. By our assumptions on the points p, q, p′, q′, it follows that

‖p− f−1(p′)‖∞ = ‖p− p′‖∞,

‖q − f−1(q′)‖∞ = ‖f−1(q)− f−1(q′)‖∞ = ‖q − q′‖∞.

By putting everything together, we obtain that σ is a conical geodesic bicombing on X1.

By construction, it follows that σ is non-reversible; see Figure 2.1.

Now, we use the conical geodesic bicombing from Lemma 2.14 to construct a non-

reversible conical geodesic bicombing that has the midpoint property.

Lemma 2.15. Let σ : X1 × X1 × [0, 1] → X1 denote the map from Lemma 2.14. The

map τ : X1 ×X1 × [0, 1]→ X1 given by the assignment

(p, q, t) 7→

{
σ
(
p, 1

2

(
σ(p, q, 1

2
) + σ(q, p, 1

2
)
)
, 2t
)
, if t ∈ [0, 1

2
],

σ
(

1
2

(
σ(p, q, 1

2
) + σ(q, p, 1

2
)
)
, q, 2t− 1

)
, if t ∈ [1

2
, 1],
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Figure 2.2: The blue line corresponds to τpq|[0, 1
2

] and the red line corresponds to
the image of τqp|[ 1

2
,1] under the isometry f−1. The point m is equal to

1
2

(
σpq(

1
2
) + σqp(

1
2
)
)
.

is a non-reversible conical geodesic bicombing on (X1, ‖·‖∞) that has the midpoint prop-

erty.

Proof. It is readily veri�ed that τ is a conical geodesic bicombing with the midpoint

property. To see that τ is non-reversible, take for instance p := (−3
2
, 1

2
), q := (0, 1

2
) and

observe that τ(p, q, 5
12

) = (−7
8
, 1

8
) 6= (−7

8
, 1

48
) = τ(q, p, 7

12
); compare Figure 2.2.

2.5 Local behavior of conical geodesic bicombings

Let (V, ‖·‖) be a normed vector space, let p0 ∈ V be a point and let r ≥ 0 be a real

number. We set

Ur(p0) := {z ∈ V : ‖p0 − z‖ < r},

Br(p0) := {z ∈ V : ‖p0 − z‖ ≤ r},

Sr(p0) := {z ∈ V : ‖p0 − z‖ = r}.

To ease notation, we abbreviate Br := Br(0) and Sr := Sr(0). The goal of this section

is to establish the following rigidity result.
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Theorem 2.16. Let (V, ‖·‖) be a normed vector space. Suppose that A ⊂ V is a subset

of V that admits a conical geodesic bicombing σ : A × A × [0, 1] → A and let p, q be

points of A. If there are points e1, . . . , en ∈ B1 that are extreme points of B1 and a tuple

(λ1, . . . , λn) ∈ [0, 1]n with
∑n

k=1 λk = 1 such that

p− q
2

=
‖p− q‖

2

n∑
k=1

λkek and (2.14)

p+ q

2
+
‖p− q‖

2

{
n∑
k=1

(−1)εkλkek : (ε1, . . . , εn) ∈ {0, 1}n
}
⊂ A, (2.15)

then it follows that σ(p, q, t) = (1− t)p+ tq for all t ∈ [0, 1].

Theorem 1.4 then is a direct consequence.

Proof of Theorem 1.4. Let p, q ∈ Br(p0) be two points. As p+q
2
∈ Br(p0) and ‖p−q‖

2
≤ r,

the ball B ‖p−q‖
2

(p+q
2

) is contained in A. Hence, since the unit ball of V is the closed

convex hull of its extreme points, it follows that σ(p, q, t) = (1− t)p+ tq for all t ∈ [0, 1]

by Theorem 2.16 and a straightforward limit argument.

We will derive Theorem 2.16 via induction on the number of extreme points. For

this induction, we need some preparatory lemmas and de�nitions. We de�ne the map

λ : V × V × [0, 1]→ V via the assignment

(p, q, t) 7→ (1− t)p+ tq.

It is readily veri�ed that λ is a conical geodesic bicombing. Let t ∈ [0, 1] be a real

number and let p, q be points in V . We de�ne

M (t)(p, q) :=
{
z ∈ V : ‖z − p‖ = t‖p− q‖, ‖z − q‖ = (1− t)‖p− q‖

}
.

Clearly, σ(p, q, t) ∈ M (t)(p, q) for every geodesic bicombing σ. Thus, if M (t)(p, q) is a

singleton, then σ(p, q, t) = λ(p, q, t). The �rst lemma of this section gives a su�cient

condition for the set M (t)(p, q) to be a singleton.

Lemma 2.17. Let (V, ‖·‖) be a normed vector space and let p ∈ V be a point. If p is an

extreme point of B‖p‖, then M
(t)(p,−p) = {(1− 2t)p} for all t ∈ [0, 1].

Proof. By construction, we have

M (t)(p,−p) =
(
S2t‖p‖ + p

)
∩
(
S(1−t)2‖p‖ − p

)
;
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hence,
1

2t

(
p−M (t)(p,−p)

)
= S‖p‖ ∩

(
1

t
p− 1− t

t
S‖p‖

)
, (2.16)

provided that t ∈ (0, 1]. For each t ∈ (0, 1] we de�ne the map E(t) : V → P(V ) via the

assignment

p 7→ S‖p‖ ∩
(

1

t
p− 1− t

t
S‖p‖

)
.

Note that P(V ) denotes the power set of V . By the use of the identity (2.16)M (t)(p,−p) =

{(1−2t)p} if and only if E(t)(p) = {p}. Thus, we are left to show that if p is an extreme

point of B‖p‖, then E(t)(p) = {p} for all t ∈ (0, 1). We argue by contraposition. Suppose

that there is a real number t ∈ (0, 1) and a point p′ ∈ E(t)(p) with p′ 6= p. As p′ ∈ E(t)(p),

it follows that p′ ∈ S‖p‖ and that there is a point q ∈ S‖p‖ such that p′ = 1
t
p − 1−t

t
q.

Observe that q 6= p and

(1− t)q + tp′ = (1− t)q + t

(
1

t
p− 1− t

t
q

)
= p.

Hence the point p is not extreme in B‖p‖, as desired. By putting everything together,

the lemma follows.

Lemma 2.17 will serve as base case for the induction in the proof of Theorem 2.16.

The subsequent lemma is the key component for the inductive step in the proof of

Theorem 2.16.

Lemma 2.18. Let (V, ‖·‖) be a normed vector space and let A ⊂ V be a subset that

admits a conical geodesic bicombing σ : A × A × [0, 1] → A. Let p be a point in A such

that −p ∈ A. If there is a point z in V such that the points 2z−p and p−2z are contained

in A and such that σ(p, p− 2z, ·) = λ(p, p− 2z, ·) and σ(2z− p,−p, ·) = λ(2z− p,−p, ·),
then we have that

σ(p,−p, t) ∈
(
(1− 2t)z +M (t) (p− z, z − p)

)
.

for all real numbers t ∈ [0, 1].

Proof. Let t ∈ [0, 1] be a real number. Using that σ is conical, we compute

‖σ(p,−p, t)− λ(p, p− 2z, t)‖ ≤ 2t‖p− z‖

‖σ(p,−p, t)− λ(2z − p,−p, t)‖ ≤ 2(1− t)‖p− z‖.
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Note that ‖λ(p, p− 2z, t)− λ(2z − p,−p, t)‖ = 2‖p− z‖. Therefore, it follows that

σ(p,−p, t) ∈M (t) (λ(p, p− 2z, t), λ(2z − p,−p, t)) .

It is readily veri�ed that M (t)(u + h, v + h) = h + M (t)(u, v) for all t in [0, 1] and

u, v, h ∈ V . Consequently, we obtain that

M (t) (λ(p, p− 2z, t), λ(2z − p,−p, t)) = (1− 2t)z +M (t) (p− z, z − p) .

Thus, the lemma follows.

Suppose that A is a subset of a normed vector space (V, ‖·‖) and assume that A admits

a conical geodesic bicombing σ : A × A × [0, 1] → A. The translation Tz : A → Tz(A)

about the vector z ∈ V given by the assignment x 7→ x+ z is an isometry and the map

(Tz)∗σ : Tz(A)× Tz(A)× [0, 1]→ Tz(A) given by

(x, y, t) 7→ Tz(σ(T−z(x), T−z(y), t)) (2.17)

is a conical geodesic bicombing on Tz(A). Now, we have everything on hand to prove

Theorem 2.16.

Proof of Theorem 2.16. We proceed by induction on n ≥ 1. If n = 1, then Lemma 2.17

tells us that (
T− p+q

2

)
∗
σ

(
p− q

2
,−p− q

2
, t

)
= (1− 2t)

p− q
2

for all t ∈ [0, 1]. Thus, we obtain that σ(p, q, t) = (1− t)p+ tq for all t ∈ [0, 1].

Suppose now that n > 1 and that the statement holds for n − 1. We may assume

that λ1 ∈ (0, 1). We de�ne (λ′1, . . . , λ
′
n−1) := 1

1−λ1 (λ2, . . . , λn) and (e′1, . . . , e
′
n−1) :=

(e2, . . . , en). Observe that

n∑
k=1

λkek = λ1e1 + (1− λ1)
n−1∑
k=1

λ′ke
′
k. (2.18)

Further, note that

‖
n−1∑
k=1

λ′ke
′
k‖ = 1, as otherwise (2.18) implies ‖

n∑
k=1

λkek‖ < 1, (2.19)

which is not possible due to (2.14). We abbreviate r := ‖p−q‖
2

and we set

z := r(1− λ1)
n−1∑
k=1

λ′ke
′
k, p′ :=

p− q
2

, q′ := p′ − 2z.
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Note that
p′ − q′

2
= r(1− λ1)

n−1∑
k=1

λ′ke
′
k.

Hence, by the use of (2.19) it follows that

‖p′ − q′‖
2

= r(1− λ1). (2.20)

We have that

p′ + q′

2
=
p− q

2
− z (2.14)

= r
n∑
k=1

λkek − r(1− λ1)
n−1∑
k=1

λ′ke
′
k

(2.18)
= rλ1e1

and therefore

p′ + q′

2
+
‖p′ − q′‖

2

{
n−1∑
k=1

(−1)εkλ′ke
′
k : (ε1, . . . , εn−1) ∈ {0, 1}n−1

}
(2.20)
= r

{
λ1e1 +

n∑
k=2

(−1)εkλkek : (ε2 . . . , εn) ∈ {0, 1}n−1

}
(2.15)
⊂ T− p+q

2
(A).

Thus, we can apply the induction hypothesis to p′, q′ ∈ T− p+q
2

(A) and obtain that(
T− p+q

2

)
∗
σ (p′, p′ − 2z, ·) = λ (p′, p′ − 2z, ·) .

Similarly, we obtain (
T− p+q

2

)
∗
σ (2z − p′,−p′, ·) = λ (2z − p′,−p′, ·) .

Now, by the use of Lemma 2.18 it follows that(
T− p+q

2

)
∗
σ (p′,−p′, t) ∈

(
(1− 2t)z +M (t) (p′ − z, z − p′)

)
for all real numbers t ∈ [0, 1]; consequently, we get(

T− p+q
2

)
∗
σ (p′,−p′, t) = (1− 2t)p′,

since p′ − z = rλ1e1 is an extreme point in Brλ1 and thus we can use Lemma 2.17 to

deduce that M (t)(p′ − z, z − p′) = {(1− 2t)(p′ − z)}. Hence, we have

σ(p, q, t) =
(
T− p+q

2

)
∗
σ (p′,−p′, t) +

p+ q

2
= (1− t)p+ tq,

as desired.
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2.6 Proof of Theorem 1.5

Before we start with the proof of Theorem 1.5, we recall some notions from [Mie17b].

Let (X, dX) be a metric space, let p ∈ X be a point and let r > 0 be a real number.

We set Ur(p) := {q ∈ X : d(p, q) < r}. Let U ⊂ X × X × [0, 1] be a subset. A map

σ : U → X is a convex local geodesic bicombing if for every point p ∈ X there is a real

number rp > 0 such that

U =
⋃
p∈X

D(Urp(p)), where D(Urp(p)) := Urp(p)× Urp(p)× [0, 1]

and if the restriction σ|D(Urp (p)) : D(Urp(p)) → X is a consistent conical geodesic bi-

combing for each point p ∈ X. Furthermore, we say that a geodesic c : [0, 1] → X is

consistent with the convex local geodesic bicombing σ if for each choice of real numbers

0 ≤ s1 ≤ s2 ≤ 1 with (c(s1), c(s2)) ∈ Urp(p)× Urp(p) for some point p ∈ X, it holds

c((1− t)s1 + ts2) = σ(c(s1), c(s2), t)

for all t ∈ [0, 1]. Consistent geodesics are uniquely determined by the local geodesic

bicombing, compare [Mie17b, Theorem 1.1] and the proof thereof:

Theorem 2.19. Let X be a complete, simply-connected metric space with a convex local

geodesic bicombing σ. If we equip X with the length metric, then for every two points

p, q ∈ X there is a unique geodesic from p to q which is consistent with σ and the

collection of all such geodesics is a convex geodesic bicombing.

With Theorem 2.19 on hand it is possible to derive Theorem 1.5 by the use of Theorem

1.4.

Proof of Theorem 1.5. Let int(C) denote the interior of C and let p, q be two points in

int(C). We abbreviate

[p, q] :=
{

(1− t)p+ tq : t ∈ [0, 1]
}
.

As int(C) is convex, we have that [p, q] ⊂ int (C). For each point z ∈ C we set

rz :=

{
min{‖z − w‖ : w ∈ [p, q]} if z ∈ C \ int(C)
1
2

inf {‖z − w‖ : w ∈ C \ int(C)} if z ∈ int(C).

Note that rz > 0 for all points z ∈ C and we have that Urz(z)∩[p, q] = ∅ if z ∈ C\int(C).

Further, for every point z ∈ int(C) it follows that B2rz(z) ⊂ C; thus, we may invoke
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Theorem 1.4 to deduce that if z ∈ int(C), then σz1z2(t) = (1 − t)z1 + tz2 for all points

z1, z2 ∈ Brz(z) and all real numbers t ∈ [0, 1]. We de�ne

U :=
⋃
z∈C

D(Urz(z)).

Note that the map σloc := σ|U de�nes a convex local bicombing on C. The geodesic σpq(·)
and the linear geodesic from p to q are both consistent with the local bicombing σloc.

Hence, by Theorem 2.19, we conclude that σpq(·) must be equal to the linear geodesic

from p to q, that is, we have σpq(t) = (1− t)p+ tq for all real numbers t ∈ [0, 1].

Now, suppose that p, q ∈ C. As C is convex, it is well-known that C = int (C), cf.

[AB06, Lemma 5.28]. Let (pk)k≥1, (qk)k≥1 ⊂ int (C) be two sequences such that pk → p

and qk → q with k → +∞. It is readily veri�ed that σpkqk(·) → σpq(·) with k → +∞,

since σ is a conical geodesic bicombing. As a result, we obtain that the geodesic σpq(·)
is equal to the linear geodesic from p to q, as desired.

We conclude this section with two examples that show that the assumptions in The-

orem 1.5 cannot be dropped in general.

Example 2.20. The following construction is inspired by a similar construction due to

Schechtman. We de�ne the set

A :=
{
f : [0, 1]→ [0, 1] : f(0) = 0, f(1) = 1, f is continuous and strictly increasing

}
.

We claim that the metric space (A, ‖·‖1) admits two distinct consistent conical geodesic

bicombings. Clearly, as A is convex, the map λ : A×A× [0, 1]→ A given by (f, g, t) 7→
(1 − t)f + tg is a consistent conical geodesic bicombing on (A, ‖·‖1). Let ϕ : A → A

denote the map given by f 7→ f−1. The map ϕ is an isometry of (A, ‖·‖1). This is a

simple consequence of the identity

‖f − g‖1 = vol2
({

(x, y) ∈ [0, 1]2 : min{f(x), g(x)} ≤ y ≤ max{f(x), g(x)}
})

which holds true for all f, g ∈ A and where vol2 denotes the two dimensional Lebesgue

measure.

Let τ : A×A× [0, 1]→ A be the map where each map τfg(·) is given by the horizontal

interpolation of the functions f, g ∈ A, that is, the map τ is given by the assignment

(f, g, t) 7→ ϕ((1 − t)ϕ(f) + tϕ(g)). As the map ϕ is an isometry, it follows that τ is a

consistent conical geodesic bicombing. Indeed, it holds that τ = ϕ∗λ, here we use the
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notation introduced in (2.17). Furthermore, if f(x) :=
√
x and g(x) := x, then we have

that the map τ(f, g, t) : [0, 1]→ [0, 1] is given by

x 7→
−t+

√
4(1− t)x+ t2

2(1− t)

for all t ∈ [0, 1], which is distinct from λ(f, g, t) = (1−t)f+tg for all t ∈ (0, 1). Hence, the

metric space (A, ‖·‖1) admits two distinct consistent conical geodesic bicombings. Let

B denote the closure of A ⊂ L1([0, 1]). Note that λ and τ extend naturally to consistent

conical geodesic bicombings on B. Hence, we have found a closed convex subset of a

Banach space that admits two distinct consistent conical geodesic bicombings. It is

readily veri�ed that B has empty interior.

Example 2.21. We consider the normed vector space (R2, ‖·‖∞), where ‖·‖∞ denotes

the maximum norm. Recall that ‖·‖∞ : R2 → R is given by the assignment p = (s, t) 7→
|s| ∨ |t|. Throughout this example, we use a ∨ b to denote the maximum of the two

quantities a and b. We de�ne the set C := {(s, t) ∈ R2 : t ≥ 0}. The goal of this

example is to show that C admits two distinct conical geodesic bicombings. To begin,

we de�ne the points x1 := (−1, 0), x2 := (1, 0) and b := (0, 1) and we claim that

‖b− p‖∞ ≤
1

2

(
‖x1 − p‖∞ + ‖x2 − p‖∞

)
(2.21)

for all points p in C. In order to show that the inequality in (2.21) is true for all points

p ∈ C we introduce some auxiliary functions �rst. We de�ne the functions

f−1 : R→ R f1 : R→ R
s 7→ |1 + s| s 7→ |1− s| .

Furthermore, we de�ne the sets

C↑↑ := {p ∈ C : t ≥ f−1(s), t ≥ f1(s)}, C↓↓ := {p ∈ C : t ≤ f−1(s), t ≤ f1(s)},
C↑↓ := {p ∈ C : t ≥ f−1(s), t ≤ f1(s)}, C↓↑ := {p ∈ C : t ≤ f−1(s), t ≥ f1(s)}.

Now, we distinguish three cases:

1. First, we suppose that the point p := (s, t) is contained in the set C↑↑. We compute

‖x1 − p‖∞ = |t| , ‖x1 − p‖∞ = |t| and ‖b− p‖∞ = |1− t|. Since we have t ≥ 1, we

obtain that the point p satis�es (2.21).

2. Second, we suppose that the point p := (s, t) is contained in the set C↓↓. We

compute ‖x1−p‖∞ = |1 + s| , ‖x2−p‖∞ = |1− s|. Note that 1
2

(|1 + s|+ |1− s|) ≥
1 ∨ |s|. Thus, the point p satis�es (2.21), as ‖b− p‖∞ ≤ 1 ∨ |s|.
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3. Third, we suppose that the point p := (s, t) is contained in the union C↑↓ ∪ C↓↑.
We compute ‖b − p‖∞ = |s|. Since we have that |s| ≤ 1

2
(|1 + s|+ |1− s|) ≤

1
2

(‖x1 − p‖∞ + ‖x2 − p‖∞), we obtain that the point p satis�es (2.21).

Consequently, we may conclude that the estimate (2.21) is true for all points p in C.

Let σx1x2 : [0, 1]→ C denote the geodesic given by

t 7→

{
(1− 2t)x1 + 2tb if t ∈ [0, 1

2
]

2(1− t)b+ (2t− 1)x2 if t ∈ [1
2
, 1].

Clearly, σx1x2(·) is a geodesic from x1 to x2. We claim that

‖σx1x2(t)− p‖∞ ≤ (1− t)‖x1 − p‖∞ + t‖x2 − p‖∞ (2.22)

for all p ∈ C. Due to symmetry reasons, it su�ces to consider the case t ∈ [0, 1
2
]. We

compute

‖((1− 2t)x1 + 2tb)− p‖∞ ≤ (1− 2t)‖x1 − p‖∞ + 2t‖b− p‖∞;

hence, by the use of (2.21) we get

‖σx1x2(t)− p‖∞ ≤ (1− t)‖x1 − p‖∞ + t‖x2 − p‖∞,

as claimed. Now, we set

S =
{
δp : p ∈ C

}
∪
{

(1− t)δx1 + tδx2 : t ∈ [0, 1]
}

and we de�ne the map β : S → C via

s 7→

{
p if s = δp

σx1x2(t) if s = (1− t)δx1 + tδx2 .

Because of (2.22), we deduce that β is 1-Lipschitz if we equip S with W1, Moreover,

by construction β(δp) = p. Therefore, since the metric space (C, ‖·‖∞) is injective

there exists a contracting barycenter map β : P1(C)→ C that extends β. Let σ denote

the conical geodesic bicombing induced by β. By construction, σ is not equal to the

geodesic bicombing given by the linear segments. So C admits two distinct conical

geodesic bicombings.
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2.7 A �xed-point free isometry of a Busemann space

In this section, we construct a bounded complete Busemann space that admits an isom-

etry without �xed points. As usual, let `1(Z) ⊂ RZ denote the linear subspace of RZ

that consists of all sequences x := (xk)k∈Z such that

‖x‖1 :=
∑
k∈Z

|xk| < +∞.

Now, we use a standard technique, cf. [JL01, p. 786], to renorm the Banach space

(`1(Z), ‖·‖1) into a strictly convex Banach space. We de�ne the map ‖·‖? : `1(Z) → R
through the assignment

(xk)k∈Z 7→

√√√√(∑
k∈Z

|xk|

)2

+
∑
k∈Z

|xk|2.

It is straightforward to show that the map ‖·‖? de�nes a norm on `1(Z). Elementary

estimates show that
1√
2
‖·‖? ≤ ‖·‖1 ≤ ‖·‖?;

hence, the norms ‖·‖1 and ‖·‖? are equivalent. It follows that (`1(Z), ‖·‖?) is a Banach

space. Recall that a normed vector space (V, ‖·‖V ) is said to be strictly convex if for all

distinct points x, y in V with ‖x‖V = ‖y‖V = 1 and for all λ in (0, 1) we have the strict

inequality ‖(1− λ)x+ λy‖V < 1.

Lemma 2.22. The Banach space (`1(Z), ‖·‖?) is strictly convex.

Proof. Let x and y denote two distinct points of `1(Z) that satisfy ‖x‖? = ‖y‖? = 1 and

let λ in (0, 1) be a real number. Since x and y are distinct, there is an integer k0 such

that xk0 6= yk0 . It follows that(
(1− λ)xk0 + λyk0

)2
< (1− λ)x2

k0
+ λy2

k0
, (2.23)

as the real valued function f : R → R given by f(x) = x2 is strictly convex. Now,

elementary estimates and the strict inequality in (2.23) imply that ‖(1− λ)x + λy‖2
? <

(1−λ)‖x‖2
? +λ‖y‖2

? = 1; hence, the Banach space (`1(Z), ‖·‖?) is strictly convex, as was

to be shown.

The shift map T : `1(Z)→ `1(Z) given by the assignment

(xk)k∈Z 7→ (xk−1)k∈Z
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is a linear map and an isometry of (X, ‖·‖?). Note that the zero sequence is the only

�xed point of T . Let x0 ∈ `1(Z) be the sequence that is equal to one if k = 0 and equal

to zero if k 6= 0. We de�ne the set A :=
{
T k(x0) : k ∈ Z

}
. Let conv(A) denote the

convex hull of A.

Lemma 2.23. If x is an element of conv(A), then we have 1 ≤ ‖x‖? ≤
√

2.

Proof. Let x be an element of conv(A). By the de�nition of conv(A), there is an integer

n ≥ 0, an element (α0, . . . , αn) in the n-dimensional standard simplex ∆n ⊂ Rn+1 and

n+ 1 distinct integers l0, . . . , ln such that x = α0T
l0(x0) + · · ·+ αnT

ln(x0). We have for

every integer 0 ≤ i ≤ n that the sequence T li(x0) ∈ `1(Z) is equal to one if k = li and

equal to zero if k 6= li. Therefore, we compute(∑
k∈Z

|xk|

)2

=

(
n∑
i=0

|αi|

)2

= 1

and ∑
k∈Z

|xk|2 =
n∑
i=0

α2
i .

As a result, we obtain that

1 ≤ ‖x‖? =

√√√√1 +
n∑
i=0

α2
i ≤
√

2,

since we have α2
i ≤ αi for all integers 0 ≤ i ≤ n.

Let conv(A) denote the closure of conv(A). By the use of Lemma 2.23 we obtain

that 1 ≤ ‖x‖? ≤
√

2 for all points x in conv(A). Thus, we have in particular that

the zero sequence is not an element of conv(A). A straightforward calculation shows

that T (conv(A)) = conv(A); hence, the map T is an isometry of the bounded metric

space (conv(A), ‖·‖?) without �xed points. We claim that (conv(A), ‖·‖?) is a complete

Busemann space. It is well-known that every convex subset of a strictly convex normed

vector space is a Busemann space, cf. Proposition 8.1.6 and Proposition 8.1.5 in [Pap14].

Hence, it follows that (conv(A), ‖·‖?) is a Busemann space, as conv(A) is a convex subset

of `1(Z). Note that (conv(A), ‖·‖?) is complete. Thus, we have constructed a complete

bounded Busemann space that admits an isometry without �xed points.
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2.8 Existence of invariant measures

The primary result of this section is Theorem 2.28. Some of the results below are needed

in the proofs of Theorem 1.2 and Theorem 1.3.

2.8.1 � Let Σ denote a countable semigroup. A sequence (Σk)k≥1 of non-empty �nite

subsets of Σ is a Følner sequence if

lim
k→+∞

|sΣk∆Σk|
|Σk|

= 0

for all s in Σ. Here the symbol ∆ denotes the symmetric di�erence of two sets. Recall

that the sequence ({0, . . . , k − 1})k≥1 is a Følner sequence of the semigroup of the non-

negative integers.

De�nition 2.24 (generalised limit). Let Σ denote a countable semigroup. A gener-

alised limit is a positive linear functional Θ : `∞(Σ) → R such that Θ((1)s∈Σ) = 1

and Θ((xs)s∈Σ) = Θ((xs0s)s∈Σ) for all s0 in Σ and x in `∞(Σ).

For convenience, we use the notation 1 := (1)s∈Σ and s0.x := (xs0s)s∈Σ for all s0 in Σ

and for all x in `∞(Σ). The subsequent lemma is an extension of Theorem 1 in [Suc64].

Lemma 2.25. Let Σ be a countable semigroup and let (Σk)k≥1 denote a Følner sequence

of Σ. Suppose that Θ : `∞(Σ)→ R is a linear functional. Then the following statements

are equivalent:

1. The linear functional Θ : `∞(Σ)→ R is positive and a generalised limit.

2. For all points x in `∞(Σ) we have

Θ(x) ≤ lim inf
k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

xhs

)
.

3. For all points x in `∞(Σ) we have

Θ(x) ≤ lim sup
k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

xhs

)
.

Proof. We show that (1.) =⇒ (2.) =⇒ (3.) =⇒ (1.).
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(1.) =⇒ (2.). Let x in `∞(Σ) be a point and let k ≥ 1 be an integer. For every h in Σk

we have that Θ(h.x) = Θ(x); hence, it follows that

Θ(x) =
1

|Σk|
∑
h∈Σk

Θ(h.x) ≤

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

xhs

)
Θ(1)

Since Θ(1) = 1, we have shown the desired inequality.

(2.) =⇒ (3.). This is trivial.

(3.) =⇒ (1.). To begin, we show that Θ is positive. Suppose that x in `∞(Σ) is a point

with x ≥ 0. We have

Θ(−x) ≤ lim sup
k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

−xhs

)
≤ 0;

hence, it follows that Θ(x) ≥ 0. Next, we show that Θ(1) = 1. Since Θ(1) ≤ 1 and

Θ(−1) ≤ −1, we obtain that Θ(1) = 1, as desired. To conclude, we show that Θ is left

Σ-invariant. Let x in `∞(Σ) be a point and let s0 be an element of Σ. We de�ne the

point y := x − s0.x. Note that y is contained in `∞(Σ). We claim that Θ(y) = 0. We

have that

|Θ(y)| ≤ lim sup
k→+∞

(
sup
s∈Σ

∣∣∣∣∣ 1

|Σk|
∑
h∈Σk

(xhs − xs0hs)

∣∣∣∣∣
)

≤ ‖x‖∞ lim sup
k→+∞

(
sup
s∈Σ

|(s0Σks)∆Σks|
|Σk|

)
.

(2.24)

Let s be an element of Σ. Observe that since (s0Σk ∪Σk)s = s0Σks ∪Σks and (s0Σk ∩
Σk)s ⊂ s0Σks ∩Σks, it follows that s0Σks∆Σks ⊂ (s0Σk∆Σk)s. As |(s0Σk∆Σk)s| ≤
|s0Σk∆Σk|, we obtain |(s0Σks)∆Σks| ≤ |s0Σk∆Σk|. Now, inequality (2.24) implies

that Θ(y) = 0, since (Σk)k≥1 is a Følner sequence. Thus, we have shown that Θ(s0.x) =

Θ(x), as desired.

We proceed with two immediate corollaries of Lemma 2.25.

Corollary 2.26. Let Σ denote a countable semigroup. If Σ admits a Følner sequence

Σ := (Σk)k≥1, then for every point x? in `∞(Σ) there is a generalised limit ΘΣ
? : `∞(Σ)→

R such that

ΘΣ
? (x?) = lim sup

k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

x?hs

)
.
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Proof. Fix a vector x? in `∞(Σ). Let U ⊂ `∞(Σ) denote the linear span of the vector

x? and let f : U → R denote the unique linear functional such that

f(x?) = lim sup
k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

x?hs

)
.

The Hahn-Banach Theorem tells us that there is a linear map ΘΣ
? : `∞(Σ) → R such

that ΘΣ
? |U = f and such that

ΘΣ
? (x) ≤ lim sup

k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

xhs

)

for all points x ∈ `∞(Σ). Due to Lemma 2.25 the map ΘΣ
? is a generalised limit, hence

the corollary follows.

Corollary 2.27. Let Σ denote a countable semigroup. If Σ := (Σk)k≥1 is a Følner

sequence of Σ, then we have that the map LΣ : `∞(Σ)→ R given by the assignment

x 7→ lim
k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

xhs

)
is well-de�ned. Moreover, the equality LΣ = LΣ′ holds for all Følner sequences Σ :=

(Σk)k≥1 and Σ′ := (Σ ′k)k≥1.

Proof. This is a direct consequence of Lemma 2.25 and Corollary 2.26.

2.8.2 � Let (X, dX) be a complete separable metric space and let T : X → X be a

homeomorphism of X. In [OU39], J. Oxtoby and S. Ulam showed that if there is a point

x0 in X and a compact subset K0 ⊂ X such that

lim sup
k→+∞

(
1

k

k∑
i=1

1K0(T
i(x0))

)
> 0,

then there exists a T -invariant Radon probability measure µ : BX → [0, 1] such that

µ(K0) > 0. In Oxtoby and Ulam's proof, the measure µ is obtained by the use of

Carathéodory's extension theorem from a T -invariant metric outer measure, which is

constructed by the means of generalised limits. In [Ada89], Adamski used the well-

known construction of Radon measures via inner approximation due to Kisy«ski and

Topsøe to generalise the result of Oxtoby and Ulam to Hausdor� topological spaces. In

the following we use Adamski's approach to prove a further generalisation of Oxtoby

and Ulam's result.
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Theorem 2.28. Let (X, TX) be a Hausdor� topological space and let Σ be a countable

subsemigroup of the semigroup of continuous self-maps of (X, TX). Suppose that Σ

admits a Følner sequence (Σk)k≥1. If there is a point x0 in X and a compact subset

K0 ⊂ X such that

lim sup
k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

1K0(h ◦ s(x0))

)
> 0,

then there exists a Σ-invariant Radon probability measure µ : BX → [0, 1] such that

µ(K0) > 0.

Proof. We de�ne the sequence x0 := (1K0(s(x0)))s∈Σ. By the virtue of Corollary 2.26

there exists a generalised limit Θ : `∞(Σ)→ R such that

Θ(x0) = lim sup
k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

1K0(h ◦ s(x0))

)
.

The set function β : TX → [0, 1] given by the assignment

U 7→ Θ ((1U(s(x0)))s∈Σ)

satis�es β(∅) = 0 and β(U ∩V )+β(U ∩V ) = β(U)+β(V ) for all U, V in TX . Moreover,

we have for all U, V in TX that β(U) ≤ β(V ), whenever U ⊂ V . Thus, Theorem 2 in

[Top70] asserts that the map µ : BX → [0, 1] given by the assignment

B 7→ sup
K⊂B,
K∈KX

inf
K⊂U,
U∈TX

β(U)

is a Radon measure. Note that µ(U) ≤ β(U) for all U in TX . Let s be an element of

Σ. We claim that s∗µ = µ. Note that β(s−1(U)) = β(U) for all U in TX . Let K be a

compact subset of (X, TX). We compute

µ(s−1(K)) ≤ inf
K⊂U,
U∈TX

µ(s−1(U)) ≤ inf
K⊂U,
U∈TX

β(s−1(U)) = inf
K⊂U,
U∈TX

β(U) = µ(K).

As a result, we obtain that s∗µ ≤ µ, as µ is a Radon measure. We have

µ(X) = s∗µ(X) = s∗µ(B) + s∗µ(X \B) ≤ µ(B) + µ(X \B) = µ(X)

for all B in BX . Hence, it follows that s∗µ = µ, as claimed. By construction, we have

µ(K0) > 0. Thus, by rescaling µ if necessary we obtain a Σ-invariant Radon probability

measure on (X, TX) such that µ(K0) > 0, as desired.
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2.9 Proofs of Theorem 1.2 and Theorem 1.3

We start with a simple lemma that will be used several times in this section.

Lemma 2.29. Let (X, dX) be a complete metric space and let Σ be a subsemigroup

of the isometry group of X. If σ is a Σ-equivariant conical geodesic bicombing on X,

then there exists a Σ-equivariant reversible conical geodesic bicombing τ on X such that

convτ (A) ⊂ convσ(A) for all subsets A ⊂ X.

Proof. Let τ be the reversible conical geodesic bicombing obtained from σ by the con-

struction of the proof of Proposition 1.1. in [Mie17a, p. 87]. Now, it follows readily

from the de�nition of τ that it has the desired properties.

We proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Throughout the following proof we employ the notation from

Section 2.1. Fix a measure µ0 in P (K). LetM0(K) denote the vector space of all signed

�nite Radon measures µ : BK → R such that µ(K) = 0. The map ‖·‖0 : M0(K) → R
given by the assignment

µ 7→ sup

{∫
K

f dµ : f : X → R is 1-Lipschitz

}
de�nes a norm on M0(K), cf. [Edw11, Theorem 4.4]. Due to Theorem 4.1 in [Edw11]

we have that W1(µ, ν) = ‖µ − ν‖0 for all measures µ and ν in P (K); hence, the map

ϕ : P (K) → M0(K) given by µ 7→ µ − µ0 is an isometric embedding. It is well-known

that the metric space (P (K),W1) is compact, cf. [Vil09, Remark 6.19]. As a result,

the set ϕ(P (K)) is a non-empty compact convex subset of M0(K). Note that the

restriction map s|K : K → K is an isometry of K. For each s in Σ we de�ne the map

s : ϕ(P (K))→ ϕ(P (K)) through the assignment µ−µ0 7→ (s|K)∗µ−µ0. Observe that s

is an a�ne isometry of ϕ(K). Ryll-Nardzewski's �xed-point theorem, cf. [RN67], asserts

that there is a point µ? − µ0 in ϕ(P (K)) such that s(µ? − µ0) = µ? − µ0 for all s in

Σ. Hence, the probability measure µ? : BK → [0, 1] is s|K-invariant for all s in Σ. Let

i : K ↪→ X denote the inclusion map. It is readily veri�ed that the probability measure

i∗µ? : BX → [0, 1] is contained in P1(X). Furthermore, the measure i∗µ? is Σ-invariant.

Lemma 2.29 tells us that there is a Σ-equivariant reversible conical geodesic bicombing

τ on X such that convτ (K) ⊂ convσ(K). Let βτ : P1(X) → X denote the contracting

barycenter map associated to τ . We de�ne the point x? := βτ (i∗µ?). Clearly, as spt(i∗µ?)

is a subset ofK, Theorem 2.10 tells us that the point x? is contained in convτ (K). Hence,
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x? ∈ convσ(K). Furthermore, we compute s(x?) = βτ (s∗i∗µ?) = βτ (i∗µ?) = x? for all s

in Σ, since τ is Σ-equivariant and i∗µ? is Σ-invariant. The theorem follows.

In order to derive Theorem 1.3 we establish two results, Theorem 2.30 and Lemma

2.31, whose combination will directly imply Theorem 1.3.

Theorem 2.30. Let (X, dX) denote a complete metric space and let σ : X×X× [0, 1]→
X be a conical geodesic bicombing that has the midpoint property. Suppose that Σ is a

countable subsemigroup of the semigroup of 1-Lipschitz self-maps of (X, dX) and that σ

is Σ-equivariant. Suppose that Σ admits a Følner sequence (Σk)k≥1. If there is a point

x0 in X and a compact subset K0 ⊂ X such that the set A :=
{
s(x0) : s ∈ Σ

}
is bounded

and the inequality

lim sup
k→+∞

(
sup
s∈Σ

1

|Σk|
∑
h∈Σk

1K0(h ◦ s(x0))

)
> 0 (2.25)

holds, then there is a point x? in convσ(A) such that s(x?) = x? for all s in Σ.

Proof. The intersection A∩K0 is a compact subset ofX. Theorem 2.28 tells us that there

is a Σ-invariant Radon probability measure µ : BX → [0, 1] such that µ(A ∩K0) > 0. It

is readily veri�ed that the Borel measure

µ? : BX → [0, 1]

B 7→ 1

µ(A)
µ(A ∩B)

is a Radon probability measure. Note that A ⊂ s−1(A) for all s ∈ Σ. Since µ is Σ-

invariant, it follows that µ(s−1(A) ∩ Ac) = 0 for all s in Σ. Now, it is straightforward

to show that µ? is Σ-invariant. By construction, the support spt(µ?) is a subset of A.

Since the subset A is bounded, we obtain that the measure µ? has a �nite �rst moment

and is thus contained in P1(X). Let βσ : P1(X)→ X denote the contracting barycenter

map associated to σ. We de�ne the point x? := βσ(µ?). Clearly, as spt(µ?) is a subset

of A, Theorem 2.10 tells us that the point x? is contained in convσ(A) = convσ(A).

Furthermore, we compute s(x?) = βσ(s∗µ?) = βσ(µ?) = x? for all s in Σ, since σ is

Σ-equivariant and µ? is Σ-invariant. The theorem follows.

Note that Corollary 2.27 asserts that the limit (2.25) does not depend on the Følner

sequence (Σk)k≥1.
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Lemma 2.31. Let (X, dX) be a metric space and let ϕ : X → X be an isometry of X.

If there is a point x0 in X and a bounded subset B ⊂ X such that

lim sup
k→+∞

(
sup
l≥0

1

k

k−1∑
i=0

1B(ϕi+l(x0))

)
> 0,

then ϕ has bounded orbits.

Proof. We de�ne the set A :=
{
ϕk(x0) : k ≥ 0

}
. Note that it su�ces to show that

diam(A) < +∞. We de�ne the set D :=
{
k ≥ 0 : 1K0(ϕ

k(x0)) = 1
}
. Theorem 3.19 (a)

in [Fur14] asserts that there is an integer k0 ≥ 1 such that for every integer k ≥ 0 at

least one of the integers k, k + 1, . . . , k + k0 is contained in the set D −D :=
{
d − d′ :

d, d′ ∈ D, d ≥ d′
}
. We de�ne the real number C := max

{
d(x0, ϕ

k(x0)) : 0 ≤ k ≤ k0

}
.

We claim that diam (A) ≤ diam(B) + C. Let k ≥ 0 be an integer. By the above there

is an integer 0 ≤ l ≤ k0 such that the integer k + l is contained in D −D. We compute

d(x0, ϕ
k(x0)) ≤ d(x0, ϕ

k+l(x0)) + d(ϕk+l(x0), ϕk(x0)) ≤ diam(B) + C.

This concludes the proof, since diam (A) ≤ sup
{
d(x0, ϕ

k(x0)) : k ≥ 0
}
.

Proof of Theorem 1.3. Since the sequence ({0, . . . , k − 1})k≥1 is a Følner sequence of

the semigroup of the non-negative integers, so Theorem 1.3 is a direct consequence of

Lemma 2.29, Theorem 2.30 and Lemma 2.31.
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3 Lipschitz extensions for

barycentric target spaces

3.1 Lower bounds for one point extensions of Banach

space valued maps

The collection of examples that we construct in this section is inspired by [Grü60]. We

de�ne the sequence {Wk}k≥0 of matrices via the recursive rule

W0 := 1,

Wk+1 :=

(
Wk Wk

Wk −Wk

)
.

The matrices Wk are commonly known as Walsh matrices. For each integer k ≥ 1 let

W ′
k denote the (2k − 1) × 2k matrix that is obtained from Wk by deleting the �rst row

of Wk. Further, for each integer k ≥ 1 and each integer ` ∈ {1, . . . , 2k} we set

v
(k)
` := `-th column of the matrix W ′

k. (3.1)

By construction, v(k)
` ∈ R2k−1 for all k ≥ 1 and ` ∈ {1, . . . , 2k}. Clearly, v(k)

` ∈ `p for

all p ∈ [1,+∞] via the canonical embedding. The goal of this section is to prove the

following proposition.

Proposition 3.1. Let p ∈ [1,+∞] be an element of the extended real numbers and let

k ≥ 1 be an integer. If F :
(
{v(k)

1 , . . . , v
(k)

2k
} ∪ {0}, ‖·‖p

)
→ (`1, ‖·‖1) is a Lipschitz

extension of the function

f :
(
{v(k)

1 , . . . , v
(k)

2k
}, ‖·‖p

)
→ (`1, ‖·‖1)

v
(k)
` 7→ v

(k)
` ,

then it holds that

Lip(F ) ≥
(

2− 1

2k−1

) 1
p?

Lip(f),

where 1/p? := 1− 1/p if p 6= +∞ and 1/p? := 1 otherwise.
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Note that Proposition 3.1 implies in particular that e(`2, `1) ≥
√

2. The key compo-

nent in the proof of Proposition 3.1 is the following geometric lemma.

Lemma 3.2. Let k ≥ 1 be an integer and suppose that w ∈ R2k−1 is a vector such that

‖v(k)
` − w‖1 ≤ ‖v(k)

` ‖1 for all ` ∈ {1, . . . , 2k}, (3.2)

then it holds that w = 0.

Proof. By the use of a simple induction it is straightforward to show that

2k∑
`=1

v
(k)
` = 0. (3.3)

Moreover, since v(k)
` is a ±1 vector, inequality (3.2) implies that

〈w, v(k)
` 〉R2k−1

≤ 0.

Equality (3.3) implies that none of these inequalities can be strict; thus, as (for instance)

the vectors v(k)
2 , . . . , v

(k)

2k
form a basis of R2k−1, we obtain w = 0, as desired.

Having Lemma 3.2 at our disposal, Proposition 3.1 can readily be veri�ed.

Proof of Proposition 3.1. To begin, we compute Lip(f). We claim that

Lip(f) =
(
2k−1

) 1
p? . (3.4)

First, suppose that p ∈ [1,+∞). A simple induction implies that two distinct columns

of Wk are orthogonal to each other. Since the entries of Wk consist only of plus and

minus one, we obtain that

‖v(k)
i − v

(k)
j ‖pp = 2p card

({
` ∈ {1, . . . , 2k − 1} : (v

(k)
i )` 6= (v

(k)
j )`

})
= 2p2k−1,

where we use card(·) to denote the cardinality of a set. Hence, if p ∈ [1,+∞), then the

identity (3.4) follows. Since the p-norms ‖·‖p converge pointwise to the maximum norm

‖·‖∞ if p→ +∞, the identity (3.4) follows also in the case p = +∞, as was left to show.

By considering the contraposition of the statement in Lemma 3.2, we may deduce that

there is an index ` ∈ {1, . . . , 2k} such that

‖v(k)
` − F (0)‖1 ≥ ‖v(k)

` ‖1.

57



As a result, we obtain that

Lip(F ) ≥ ‖v
(k)
` − F (0)‖1

‖v(k)
` ‖p

≥ ‖v
(k)
` ‖1

‖v(k)
` ‖p

= (2k − 1)
1
p? .

Hence, it follows that

Lip(F )

Lip(f)
≥ (2k − 1)

1
p?

(2k−1)
1
p?

=

(
2− 1

2k−1

) 1
p?

;

as desired.

3.2 Embeddings and indices of F−transforms

In this section we collect some applications of our main theorems. Let (X, ρX) and

(Y, ρY ) be quasi-metric spaces and let f : X → Y be an injective map. We set dist(f) :=

Lip(f) Lip(f−1) and

cY (X) := inf
{
dist(f) : f : X → Y injective

}
.

The sharpness of 1.9 ifm = 1 allows us to derive a necessary condition for an F -transform

of an `p-space to embed into a Hilbert space.

Corollary 3.3. Let (H, 〈·, ·〉
H

) be a Hilbert space and suppose that F : [0,+∞)→ [0,+∞)

is a function such that F (0) = 0 and

sup
x>0

F (x)

x
< +∞.

If p ∈ [1,+∞] is an extended real number and

sup
{
cH(A) : A ⊂ F [`p], A �nite

}
≤ 2ε, where ε ∈

[
0,

1

2

)
,

then p ≤
(

1
2
− ε
)−1

.

Proof. We retain the notation from Section 3.1. Let k ≥ 1 be an integer and let

gF :
(
{v(k)

1 , . . . , v
(k)

2k
}, F ◦ ‖·‖p

)
→ (`1, ‖·‖1)

denote the map such that v(k)
i 7→ v

(k)
i . The vectors v(k)

i are given as in (3.1) and

interpreted as elements of `p via the canonical embedding. It is readily veri�ed that

Lip (gF ) =
A

F (A)
Lip (gid) ,
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where A := ‖v(k)
i − v

(k)
j ‖p. Now, let δ > 0 be a real number. Using the assumptions in

Corollary 3.3 and Theorem 1.9 (for the map F (t) = t) it follows that there is a map

GF :
(
{v(k)

1 , . . . , v
(k)

2k
} ∪ {0}, F ◦ ‖·‖p

)
→ (`1, ‖·‖1) that extends gF such that

Lip (GF ) ≤ (1 + δ) 2ε
√

2 Lip (gF ) .

We de�ne the map T :
(
{v(k)

1 , . . . , v
(k)

2k
} ∪ {0}, ‖·‖p

)
→ (`1, ‖·‖1) via x 7→ GF (x). We

calculate

Lip(T ) ≤ (1 + δ) 2ε
√

2 max

{
F (A)

A
,
F (B)

B

}
Lip (gF ) ,

where B := ‖v(k)
i − 0‖p. Since the map T is a Lipschitz extension of gid, Proposition 3.1

tells us that

Lip(T ) ≥
(

2− 1

2k−1

) 1
q

Lip (gid) =
A

B

(
1− 1

2k

)
Lip (gid) ,

where 1/q := 1 − 1/p if p 6= +∞ and 1/q := 1 otherwise. We set γ := A
B
. Thus, by

putting everything together and via a simple scaling argument, we obtain for all x > 0

γ

(
1− 1

2k

)
F (γx)

γx
≤ (1 + δ)2ε

√
2 max

{
F (x)

x
,
F (γx)

γx

}
.

Thus, since

sup
x>0

F (x)

x
< +∞

we obtain
q
√

2

p

√
1− 1

2k

(
1− 1

2k

)
= γ

(
1− 1

2k

)
≤ (1 + δ)2ε

√
2.

Consequently, as k ≥ 1 and δ > 0 are arbitrary, we deduce p ≤
(

1
2
− ε
)−1

. This completes

the proof.

If 2 < p < +∞ is a real number and the F -transform F [`p] embeds isometrically into

a Hilbert space, then

F (x) = Fa(x) =

{
0 x = 0

a x > 0
where a ≥ 0;

this follows essentially by combining a result of Kuelbs [Kue73, Corollary 3.1] with a

classical result that relates isometric embeddings to positive de�nite functions, cf. for

example [WW75, Theorem 4.5]. Furthermore, by a result of Johnson and Randria-

narivony, `p with p > 2 does not admit a coarse embedding into `2, cf. [JR06; MN08].
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Very recently, Eskenazis, Mendel, and Naor have shown that `p with p > 2 does not

coarsely embed into any complete CAT(0) space, cf. [EMN19].

We proceed with an application of Theorem 1.7. Let F : [0,+∞) → [0,+∞) be a

function with F (0) = 0. Suppose that F is subadditive and strictly increasing. We

de�ne

DF (α) = sup
x>0

F (αx)

F (x)

for all α ≥ 0. Clearly, the function DF : [0,+∞) → [0,+∞) is �nite, submutliplicative

and non-decreasing. Moreover,

F (αx) ≤ DF (α)F (x)

for all real numbers x, α ≥ 0. The upper index of F is de�ned by

β(F ) = lim
α→+∞

log(DF (α))

log(α)
. (3.5)

The existence of the limit (3.5) may be deduced via the general theory of subadditive

functions, since DF is submultiplicative and non-decreasing, cf. [Mal85, Remark 1.3 (b)].

We have 0 ≤ β(F ) ≤ 1, for F is subadditive.

If (X, dX) is a metric space, we set

cF (X) := inf
{
cF [Y ](X) : (Y, dY ) metric space

}
.

In [MN11, Theorem 1], Mendel and Naor obtained a dichotomy theorem for the quantity

cF (X), if F is concave and non-decreasing. The upper index of F allows us to obtain

lower bounds for the rate of growth of cF (Pn), where Pn := {0, 1, . . . , n} ⊂ R.

Corollary 3.4. Let F : [0,+∞) → [0,+∞) be a strictly-increasing subadditive function

with F (0) = 0. If 0 ≤ α < 1−β(F ) is a real number, then there exists an integer N ≥ 1

such that

nα ≤ cF (Pn)

for all n ≥ N .

Proof. We may assume that β(F ) < 1. Let (Y, ρY ) be a quasi-metric space and let

(X, dX) be a metric space. We may employ Theorem 1.7 to conclude that

em
(
F [X], Y

)
≤ sup

x>0

F
(
(m+ 1)x

)
F (x)

, (3.6)
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for all integers m ≥ 0. We set Ym := {0,m} ⊂ Pm. Since

em−1
(
Pm, Ym

)
= m,

inequality (3.6) asserts that

m ≤ sup
x>0

F (mx)

F (x)
cF (Pm) = DF (m)cF (Pm) (3.7)

for all m ≥ 1. Let ε > 0 be a real number such that α < 1− β(F )− ε. By the virtue of

Theorem 1.2 in [Mal85] there exists a real number C ≥ 0 such that

DF (α) ≤ αβ(F )+ε

for all α ≥ C. Consequently, by the use of (3.7) we obtain for all n ≥ N := dCe that

nα ≤ n1−β(F )−ε ≤ cF (Pn),

as desired.

As a consequence of Corollary 3.4, we conclude that if β(F ) < 1, then the second

possibility of the dichotomy [MN11, Theorem 1] holds. Thus, there is the following

natural question: If β(F ) = 1, is it true that, then cF (X) = 1 for all �nite metric spaces

(X, dX)?

3.3 Minimum value of a certain quadratic form in

Hilbert space

Let (H, 〈·, ·〉
H

) be a Hilbert space, let I denote a �nite set and let x : I → H be a map.

Suppose that λ : I×I → R is a symmetric, non-negative function. Further, assume that

G : [0,+∞)→ [0,+∞) is a convex, non-decreasing function with G(0) = 0. We de�ne

Φ(x,λ, G) :=
∑

(k,`)∈I×I

λ
(
k, `
)
G
(
‖x(k)− x(`)‖2

H

)
and for each subset J ⊂ I we set

m(x,λ, G, J) := inf
{
Φ(z,λ, G) : where z : I → H is a map such that z|Jc = x|Jc

}
.

The remainder of this section is devoted to calculate the quantity m(x,λ, id, J).
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Let J ⊂ I be a proper subset. We may suppose that J =
{

1, . . . ,m
}
, where m :=

card(J). To ease notation, we set λk` := λ(k, `) and we de�ne the matrix

M(λ, J) :=



∑
k∈Jc

λ1k +
m∑
j=1

λ1j −λ12 . . . −λ1m

−λ21

∑
k∈Jc

λ2k +
m∑
j=1

λ2j . . . −λ2m

...
...

. . .
...

−λm1 −λm2 . . .
∑
k∈Jc

λmk +
m∑
j=1

λmj


. (3.8)

The matrices M(λ, J) appear naturally in the proof of Theorem 1.9.

If the symmetric matrix M := M(λ, J) is strictly diagonally dominant, that is, for

each integer 1 ≤ i ≤ m, it holds

|mii| >
m∑
j 6=i

|mij| ,

it follows via Gershgorin's circle theorem that M is positive de�nite. As a result, the

matrix M(λ, J) is non-singular if∑
k∈Jc

λik > 0 for all 1 ≤ i ≤ m.

Next, we deduce the minimum value of m(x,λ, id, J). The following proposition has

been stated without a proof in [Bal92].

Proposition 3.5. Let (H, 〈·, ·〉
H

) be a Hilbert space, let I be a �nite set and let x : I → H

be a map. Suppose that λ : I × I → R is a symmetric, non-negative function and let

J ⊂ I be a proper subset. If the matrixM := M(λ, J) given by (3.8) is strictly diagonally

dominant and λk` = 0 for all k, ` ∈ J c, then

m(x,λ, id, J) =
∑
i∈J

∑
j∈J

∑
k∈Jc

∑
`∈Jc

λikcijλj`‖x(k)− x(`)‖2
H (3.9)

where C := M−1. Moreover,
|J |∑
j=1

cij
∑
k∈Jc

λjk = 1 (3.10)

for all integers 1 ≤ i ≤ |J |.
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Proof. We set m := |J |. We may suppose that J = {1, . . . ,m}. Since D−1Mj = j,

where j := (1, . . . , 1) ∈ Rm and D := (dij)1≤i,j≤m is a diagonal matrix with

dii :=
∑
k∈Jc

λik, for all 1 ≤ i ≤ m,

we obtain CDj = j, that is,
m∑
j=1

cij
∑
k∈Jc

λjk = 1 (3.11)

for all 1 ≤ i ≤ m. Thus, (3.10) follows. Let the map Φ : Hm → R be given by the

assignment

(z1, . . . , zm) 7→
m∑
i=1

∑
k∈Jc

λik‖zi − x(k)‖2
H

+
1

2

m∑
i=1

m∑
j=1

λij‖zi − zj‖2
H
.

Note that

2 inf Φ = m(x,λ, G, J).

Thus, to conclude the proof we calculate the minimum value of the map Φ. Let U ⊂ H

denote the span of the vectors
(
x(k)

)
k∈Jc . Clearly, inf Φ|U = inf Φ. In the following, we

compute the minimal value of Φ|U .
The subset U ⊂ H is linearly isometric to (Rd, ‖·‖2) for some integer 1 ≤ d ≤ card(J c).

Consequently, we may suppose (by abuse of notation) for all k ∈ J c that x(k) ∈ Rd, say

x(k) = (xk1, . . . , xkd), and that the function Φ|U : (Rd)m → R is given by the assignment

(p1, . . . , pm) 7→
d∑
t=1

(
m∑
i=1

m∑
j=1

pitmijpjt − 2
m∑
i=1

pit
∑
k∈Jc

λikxrk +
m∑
i=1

∑
k∈Jc

λikx
2
kt

)
,

where pi := (pi1, . . . , pid) for all integers 1 ≤ i ≤ m. Using elementary analysis, one can

deduce that the minimum value of Φ|U is equal to
d∑
t=1

(
−

m∑
i=1

m∑
j=1

n∑
r=1

n∑
s=1

λjscijλirxstxrt +
m∑
i=1

n∑
r=1

λirx
2
rt

)
. (3.12)

Thus, via (3.12) and (3.11) we conclude that the minimum value of Φ is equal to
d∑
t=1

(
m∑
i=1

m∑
j=1

∑
k∈Jc

∑
`∈Jc

λj`cijλik
(
−x`txkt + x2

kt

))

=
1

2

m∑
i=1

m∑
j=1

∑
k∈Jc

∑
`∈Jc

λj`cijλik

(
d∑
t=1

(x`t − xkt)2

)

=
1

2

m∑
i=1

m∑
j=1

∑
k∈Jc

∑
`∈Jc

λj`cijλik‖x(`)− x(k)‖2
H
,

as claimed. This completes the proof.
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3.4 An inequality involving the entries of an

M-matrix and its inverse

A matrix M ∈ Mat(m × m;R) with non-positive o�-diagonal elements is said to be

an M-matrix if M is non-singular and each entry of M−1 is non-negative, cf. [Mar72,

De�nition 1.1]. There are several equivalent de�nitions of an M-matrix, cf. [FP62].

M-matrices and their matrix inverses are generally well understood, cf. [PB74; Joh82]

for a survey of the theory.

A primary example of M-matrices are matrices M := M(λ, J). Indeed, such matrices

are strictly diagonally dominant (thus non-singular) and via Gauss elimination it is

straightforward to show that each entry of the inverse of M(λ, J) is non-negative.

It is worth to point out that a matrix M ∈ Mat(m × m;R) with non-positive o�-

diagonal elements is an M-matrix if and only if there are matricesW,D ∈ Mat(m×m;R)

such that W is a strictly diagonally dominant M-matrix, D is a diagonal matrix with

positive diagonal elements and M = WD. This is a classical result of Fiedler and Pták,

cf. [FP62, Theorem 4.3].

The following result will play a major role in the proof of Theorem 1.9.

Theorem 3.6. Let m ≥ 2 and let M ∈ Mat(m×m;R) be a symmetric invertible matrix

with non-positive o�-diagonal elements. We set C := M−1. If M is an M-matrix, then

1

2

m∑
i=1

m∑
j=1

|mij| |cikcj` − cjkci`| ≤ (m− 1)ck` (3.13)

for all integers 1 ≤ k, ` ≤ m with k 6= `.

The estimate in Theorem 3.6 is sharp. This is the content of the following example.

Example 3.7. Let m ≥ 2 be an integer and let M ∈ Mat(m ×m;R) be the tridiagonal

matrix given by

mij :=


3 if i = j

−1 if i = j − 1

−1 if i = j + 1

0 otherwise.

Clearly, M is a symmetric M-matrix. As usual, we set C := M−1. Since det (M)C =

adj(M), where adj(M) is the adjugate matrix of M , it follows

c1m =
1

detM
. (3.14)
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Furthermore, via Jacobi's equality [Jac41], see (3.19), we get

|ci1cjm − cj1cim| =
∣∣detM

[
[m] \ {1,m}, [m] \ {i, i+ 1}

]∣∣
detM

=
1

detM
(3.15)

for all pairs of integers (i, j) with i = j − 1. By virtue of (3.14) and (3.15) we obtain

1

2

m∑
i=1

m∑
j=1

|mij (ci1cjm − cj1cim)| = m− 1

detM
= (m− 1)c1m.

Consequently, the estimate (3.13) is best possible.

This section is structured as follows. To begin, we gather some information that is

needed to prove Theorem 3.6. At the end of the section, we establish Theorem 3.6.

We start with a lemma that calculates the sum in (3.13) if the absolute values from

the 2× 2-minors are removed.

Lemma 3.8. Let m ≥ 2 and letM ∈ Mat(m×m;R) be an M-matrix. We set C := M−1.

If 1 ≤ k, ` ≤ m are distinct integers, then

m∑
j=1

|mkj| (ckkcj` − cjkck`) = ck`, (3.16)

and for all integers 1 ≤ i ≤ m with i 6= k, `,

m∑
j=1

|mij| (cikcj` − cjkci`) = 0. (3.17)

Proof. Since C is the matrix inverse of M , we compute

m∑
j=1

mijcikcj` = δi`cik,

m∑
j=1

mijcjkci` = δikci`

for all 1 ≤ i ≤ m. As a result, we obtain

m∑
j=1

mij(cikcj` − cjkci`) = δi`cik − δikci`.

Therefore, the desired equalities follow, since mij ≤ 0 for all distinct integers 1 ≤ i, j ≤
m.
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We proceed with the following corollary.

Corollary 3.9 (zero pattern of inverse M-matrices). Let m ≥ 2 and letM ∈ Mat(m×m;R)

be an invertible matrix with non-positive o�-diagonal elements. We set C := M−1. If M

is an M-matrix and k, ` ∈ {1, . . . ,m} are two distinct integers such that ck` = 0, then

1. for all integers i ∈ {1, . . . ,m}, mki = 0 or ci` = 0. In particular, mk` = 0.

2. for all integers i ∈ {1, . . . ,m}, mki = 0 or mi` = 0.

3. the matrix M has at least m− 1 zero entries.

Proof. Clearly, item 2 is a direct consequence of item 1 and item 3 is a direct consequence

of item 2. To conclude the proof we establish item 1. Lemma 3.8 tells us that

m∑
i=1

|mki| (ckkci` − cikck`) = 0.

Thus, we obtain

|mki| ckkci` = 0 (3.18)

for all integers 1 ≤ i ≤ m. Since each principal submatrix of C is the inverse matrix of

an M-matrix, cf. [Joh82, Corollary 3], it follows ckk 6= 0. Thus, via Equation (3.18) we

obtain mki = 0 or ci` = 0 for all i ∈ {1, . . . ,m}, as desired.

Theorem 3.6 will be established via a density argument. As it turns out, it will be

bene�cial to approximate C by matrices with non-vanishing minors. To this end, we

need the following genericity condition.

De�nition 3.10 (generic matrix). Let m ≥ 1 be an integer and let A ∈ Mat(m ×m;R)

be a matrix. Suppose that 1 ≤ k ≤ m is an integer and let I, J ⊂ {1, . . . ,m} be two

subsets such that card (I) = card (J) = k.

We use the notation A[I, J ] ∈ Mat(k × k;R) to denote the matrix that is obtained

from A by keeping the rows of A that belong to I and the columns of A that belong to J .

We say that A is generic if

det(A[I, J ]) 6= 0

for all non-empty subsets I, J ⊂ {1, . . . ,m} with card (I) = card (J).

The subsequent lemma demonstrates that being generic is a 'generic property' as used

in the context of algebraic geometry.
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Lemma 3.11. Let m ≥ 1 be an integer and let A ∈ Mat(m ×m;R) be a matrix. The

following holds

1. if A is generic, then A−1 is generic as well.

2. the set of generic matrices is open and dense in Mat(m×m;R).

Proof. The �rst item is a direct consequence of Jacobi's equality, cf. [Jac41],∣∣det(A−1[I, J ]) det(A)
∣∣ =

∣∣det
(
A
[
[m] \ J, [m] \ I

])∣∣ , (3.19)

where I, J ⊂ [m] := {1, . . . ,m} with card (I) = card (J) and A[∅,∅] is by de�nition

equal to the identity matrix. Next, we establish the second item. A matrix A ∈ Mat(m×
m;R) is generic if and only if

p(A) :=
∏

I,J⊂[m],|I|=|J |

det(A[I, J ]) 6= 0.

Clearly, p is a non-zero polynomial in the entries of A. It is straightforward to show

that the complement of the zero set of a non-zero polynomial q : RN → R is an open

and dense subset of RN , for all N ≥ 1. Therefore, the set of generic matrices is an open

and dense subset of Mat(m×m;R), as was to be shown.

We proceed with the following lemma, which is the key component in the proof of

Theorem 3.6.

Lemma 3.12. Let m ≥ 2 and let A ∈ Mat(m×m;R) be a non-negative matrix. If A is

a generic matrix, then for all distinct integers 1 ≤ k, ` ≤ m the skew-symmetric matrix

A(k,`) ∈ Mat(m×m;R) given by

a
(k,`)

ij := aikaj` − ajkai`,

has the property that each two rows of A(k,`) have a distinct number of positive entries.

Proof. We �x two distinct integers 1 ≤ k, ` ≤ m. If m = 2, then each two rows of A(k,`)

have a distinct number of positive entries, since A is generic. Now, suppose that m = 3.

The matrix A(k,`) is skew-symmetric; hence, as A is generic we obtain that A(k,`) can

have 23 di�erent sign patterns. If

a
(k,`)

12 , a
(k,`)

23 , a
(k,`)

31 > 0 or a
(k,`)

12 , a
(k,`)

23 , a
(k,`)

31 < 0, (3.20)
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then each row of A(k,`) has the same number of positive entries and the statement does

not hold. For the other 6 sign patterns it is straightforward to check that each row of

A(k,`) has a di�erent number of positive entries.

In the following, we show that (3.20) cannot occur. For the sake of a contradiction,

we suppose a
(k,`)

12 , a
(k,`)

23 , a
(k,`)

31 > 0. Since a
(k,`)

12 > 0, we obtain

a1k >
a2ka1`

a2`

. (3.21)

Since a
(k,`)

31 > 0, we estimate via (3.21)

a3ka1` > a1ka3` >
a2ka1`

a2`

a3`. (3.22)

Thus, (3.22) tells us that

a3ka2` > a2ka3`;

which contradicts a
(k,`)

23 > 0. Hence, the case a
(k,`)

12 , a
(k,`)

23 , a
(k,`)

31 > 0 cannot occur. The

other invalid sign pattern can be treated analogously . Therefore, (3.20) cannot occur,

as claimed. By putting everything together, we conclude that the statement is valid if

m = 3.

We proceed by induction. Let m ≥ 4 be an integer and suppose that the statement is

valid for all 2 ≤ m′ < m.

Before we proceed with the proof we introduce some notation. For every matrix

B ∈ Mat(m×m;R) we denote by Bij ∈ Mat((m− 1)× (m− 1);R) the matrix that is

obtained from B by deleting the i-th row and the j-th column of B. Moreover, for all

integers 1 ≤ i, j ≤ m with i 6= j we set

n+
i (B) := number of positive entries of the i-th row of B,

n+
i,j(B) := number of positive entries of (bi1, . . . , b̂ij, . . . , bim).

We use b̂ij to indicate that the entry bij is omitted.

Since the non-negative (m − 1) × (m − 1)-matrix Aij is generic for all 1 ≤ i, j ≤ m,

we obtain via the induction hypothesis that each row of (A(k,`) )ii has a di�erent number

of positive entries for all 1 ≤ i ≤ m.

For simplicity of notation, we abbreviate B := A(k,`) for the rest of this proof. We

have to show that each two rows of B have a distinct number of positive entries.

Let p ∈ {1, . . . ,m} \ {m} denote the unique integer such that n+
p,m(B) = (m− 1)− 1,

that is, the p-th row of Bmm has the most positive entries.
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Suppose that bpm > 0. This implies n+
p (B) = m − 1. Consequently, the p-th column

of B has no positive entries; hence, as each two rows of Bpp have a distinct number of

positive entries and the number of positive entries of each row of Bpp is strictly smaller

than m − 1, we obtain that all rows of B have a distinct number of positive entries.

Hence, the statement follows if bpm > 0.

Now, we suppose that bpm < 0. This implies n+
p (B) = m − 2. There is precisely one

integer q ∈ {1, . . . ,m} \ {p} such that n+
q,p(B) = (m− 1)− 1.

Suppose that q = m. Since bmp > 0, we obtain that n+
m (B) = m − 1. Thus, we

obtain as before via the induction hypothesis that all rows of B have a distinct number

of positive entries. Therefore, the statement follows if q = m.

We are left with the case bpm < 0 and q 6= m. Note that in this case

n+
p (B) = n+

q (B) = m− 2 and bqp < 0. (3.23)

As a result, for each integer r ∈ {1, . . . ,m}\{p, q,m} both entries bpr and bqr are positive.
But via (3.23) this implies

n+
p,r (B) = n+

q,r (B) = m− 3,

for all r ∈ {1, . . . ,m} \ {p, q,m} which is not possible due to the induction hypothesis.

Therefore, the case bpm < 0 and q 6= m cannot occur.

We have considered all cases and thus the statement follows by induction. The lemma

follows.

We conclude this section with the proof of Theorem 3.6.

Proof of Theorem 3.6. Fix k, ` ∈ {1, . . . ,m} with k 6= `. Lemma 3.11 and a diagonal

sequence argument tell us that there is a sequence {Cr}r≥1, where Cr := (c
(r)
ij )

1≤i,j≤m
,

of non-negative generic matrices such that Cr → C with r → +∞. By passing to a

subsequence (if necessary) we may assume that the matrices C
(k,`)

r , de�ned in Lemma

3.12, all have the same sign pattern. For each integer r ≥ 1 let Tr ∈ Mat(m×m;R) be

the matrix given by

t
(r)
ij := |m(r)

ij |
(
c

(r)
ik c

(r)
j` − c

(r)
jk c

(r)
i`

)
,

where Mr := C−1
r . Due to the �rst item in Lemma 3.11, it follows that m(r)

ij 6= 0. Thus,

the matrices Tr and C
(k,`)

r have the same sign pattern.

Therefore, by the virtue of Lemma 3.12, each row of Tr has a distinct number of

positive entries. Fix an integer r ≥ 1. For each integer 1 ≤ p ≤ m let c(p) be the unique
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integer such that the c(p)-th row of Tr has exactly m − p positive entries. Since all

matrices Tr have the same sign pattern, the de�nition of c is independent of the integer

r ≥ 1. The map c : {1, . . . ,m} → {1, . . . ,m} is a bijection and t
(r)
c(p)j < 0 if j ∈ {c(1), . . . , c(p− 1)}

t
(r)
c(p)j > 0 if j ∈ {c(p+ 1), . . . , c(m)}

for all integers r ≥ 1. Let T ∈ Mat(m×m;R) be the matrix given by

tij := |mij| (cikcj` − cjkci`) .

Clearly, Tr → T with r → +∞. As a result, tc(p)j ≤ 0 if j ∈ {c(1), . . . , c(p− 1)}

tc(p)j ≥ 0 if j ∈ {c(p+ 1), . . . , c(m)}.
(3.24)

By Lemma 3.8 and (3.24) we obtain that

p−1∑
j=1

tc(j)c(p) =
m∑

j=p+1

tc(p)c(j) (3.25)

for all integers 1 ≤ p ≤ m with c(p) 6= k, `, since T is skew-symmetric.

In [Mar72, Theorem 3.1], Markham established that every almost principal minor of

C is non-negative. Hence,

|mkj| (ckkcj` − cjkck`) ≥ 0 and |m`j| (c`kcj` − cjkc``) ≤ 0

for all integers 1 ≤ j ≤ m. Consequently, we obtain that c(1) = k and c(m) = `. For

each integer 2 ≤ h ≤ m− 1 we compute via (3.25),

h∑
p=2

m∑
j=p+1

tc(p)c(j) =
h∑
p=2

p−1∑
j=1

tc(j)c(p)

=
h∑
j=2

tc(1)c(j) +
h−1∑
j=2

h∑
p=j+1

tc(j)c(p)

≤
h∑
j=2

tc(1)c(j) +
h−1∑
p=2

m∑
j=p+1

tc(p)c(j).

(3.26)

Note that
1

2

m∑
i=1

m∑
j=1

|mij (cikcjl − cjkcil)| =
m∑
p=1

m∑
j=p+1

tc(p)c(j).
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Therefore, by the use of (3.26) we obtain

1

2

m∑
i=1

m∑
j=1

|mij (cikcjl − cjkcil)|

≤
m∑
h=2

h∑
j=2

tc(1)c(j) ≤ (m− 1)
m∑
j=1

tc(1)c(j).

Lemma 3.8 tells us that
m∑
j=1

tc(1)c(j) = ck`;

therefore, the theorem follows.

3.5 Proofs of Theorem 1.7 and Theorem 1.9

3.5.1 � We begin with the proof of Theorem 1.7.

Proof of Theorem 1.7. Let S ⊂ X be a closed subset and let T ⊂ X be a �nite subset

such that S ∩ T = ∅ and |T | ≤ m. Let f : S → Y be a Lipschitz map. In what follows

we construct for each ε > 0 a map Fε : S ∪ T → Y that is a Lipschitz extension of f to

S ∪ T such that Lip(Fε) ≤ ((1 + ε)m+ 1) Lip(f).

We start with a few de�nitions. Fix ε > 0. Let F ⊂ S be a �nite subset such that for

each point z ∈ T there is a point x ∈ F with

dX(z, x) ≤ (1 + ε)dX(z, S). (3.27)

Since S is closed and T is �nite, such a set F clearly exists. We set

E :=
{
{u, v} : u 6= v with (u, v ∈ T ) or (u ∈ T, v ∈ F )

}
.

Let G := (V,E) denote the graph with vertex set V := F ∪ T and edge set E. We say

that a subset E ′ ⊂ E is admissible if the graph G′ := (V,E ′) contains no cycles and has

the property that if v, v′ ∈ F are distinct, then there is no path in G′ connecting them.

For each edge {u, v} ∈ E we set ω({u, v}) := dX(u, v). Furthermore, let N ≥ 0

denote the cardinality of E. Let e : {1, . . . , N} → E be a bijective map such that the

composition ω ◦ e is a non-decreasing function. We construct the sequence {E`}N`=0 of

subsets of E via the following recursive rule:

E0 := ∅, E` :=

{
{e(`)} ∪ E`−1 if {e(`)} ∪ E`−1 is admissible

E`−1 otherwise.
(3.28)
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We claim that for each point z ∈ T there exists an integer Lz ≥ 1 and a unique injective

path γz : {1, . . . , Lz} → EN connecting z to a point xz in F . Indeed, the uniqueness part

of the claim follows directly, as EN is admissible. Now, we show the existence part. Let

z ∈ T be a point. Choose an arbitrary point x ∈ F . If the edge {x, z} is contained in

EN , then an injective path γz with the desired property surely exists. Suppose now that

{x, z} /∈ EN . It follows from the recursive construction of EN that in this case there

either exists a path in EN from z to x of length greater than or equal to two or there

exists a path in EN from z to a point x′ ∈ F distinct from x. Thus, in any case an

injective path γz with the desired properties exists.

We de�ne the map Fε : S ∪ T → Y as follows

Fε(x) := f(x) for all x ∈ S

Fε(z) := f(xz) for all z ∈ T.

In other words, Fε = f ◦Rε, where Rε : S ∪ T → S is the retraction that maps z ∈ T to

xz ∈ S. In what follows, we show that Rε has Lipschitz constant smaller than or equal

to (1 + ε)m + 1. This is the reason that enables us to put so low requirements onto

'distance' in Y .

Now, let z ∈ T and x ∈ S be points. By the use of the triangle inequality, we compute

ρY (Fε(x), Fε(z)) = ρY (f(x), f(xz)) ≤ Lip(f)dX(x, xz)

≤ Lip(f)

(
dX(x, z) +

Lz∑
`=1

ω(γz(`))

)
.

(3.29)

Let x′ ∈ F be a point such that the pair (z, x′) satis�es the estimate (3.27). By the

recursive construction of EN , it follows that ω(γz(`)) ≤ d(x′, z) for all ` ∈ {1, . . . , Lz},
since the function ω ◦ e is non-decreasing. Hence, by the use of (3.29) we obtain

ρY (Fε(x), Fε(z))

≤ Lip(f) (dX(x, z) + LzdX(x′, z))

≤ Lip(f) (1 + Lz(1 + ε)) dX(x, z)

≤ Lip(f) ((1 + ε)m+ 1) dX(x, z).

Now, let z, z′ ∈ T be points. If xz = xz′ , then Fε(z) = Fε(z
′), by construction. Suppose

now that xz 6= xz′ . We compute

ρY (Fε(z), Fε(z
′)) = ρY (f(xz), f(xz′)) ≤ Lip(f)dX(xz, xz′)

≤ Lip(f)

(
Lz∑
`=1

ω(γz(`)) + dX(z, z′) +

Lz′∑
`=1

ω(γz′(`))

)
.

(3.30)

72



The edge {z, z′} is not contained in EN ; thus, by the recursive construction of EN we

obtain that ω(γz(`)) ≤ ω({z, z′}) for all ` ∈ {1, . . . , Lz} and ω(γz′(`)) ≤ ω({z, z′}) for

all for all ` ∈ {1, . . . , Lz′}. By virtue of (3.30) we deduce

ρY (Fε(z), Fε(z
′))

≤ Lip(f) (Lz + 1 + Lz′) dX(z, z′)

≤ Lip(f)(m+ 1)dX(z, z′).

The last inequality follows, since EN is admissible and the paths γz, γz′ are injective;

thus, Lz +Lz′ ≤ m. We have considered all possible cases and we have established that

Lip(Fε) ≤ ((1 + ε)m+ 1) Lip(f),

as desired. This completes the proof.

3.5.2 � In this paragraph, prove a simple lemma that allows us, in order to prove

Theorem 1.9, to restrict our attention to closed convex subsets of Banach spaces.

Given a quasi-metric space (X, ρX), a subset S ⊂ X and a Lipschitz map f : S → E

into a Banach space we use econv(S;X,E, f) to denote the in�mum over those D ≥ 1

such that there exists Lipschitz map f : X → conv(f(S)) that extends f and satis�es

Lip(f) ≤ D Lip(f). Accordingly, we set

econv(S;X) = sup
{
econv(S;X,E, f) : E Banach space, f : S → E Lipschitz

}
.

It turns out that econv(S;X) coincides with ebar(S;X).

Lemma 3.13. Let (X, ρX) be a quasi-metric space and let S ⊂ X be a subset. Then

econv(S;X) = ebar(S;X).

Proof. Clearly, econv(S;X) ≤ ebar(S;X). In what follows, we show the reversed in-

equality. To this end, we suppose that econv(S;X) < +∞. Let (Z, dZ) be a complete

barycentric metric space and let f : S → Z be a Lipschitz map. Let Φ : Z → `∞(Z) de-

note the Kuratowski embedding. Choose a point z0 ∈ `∞(Z) such that d(z0, Φ(Z)) > 0

and abbreviate Z0 := Z ∪ {z}. The map ι : Z 7→ M0(Z0) given by z 7→ δz − δz0 is an

isometric embedding. There exists a map f : X → conv(ι(Z)) that extends the map ι◦f
such that Lip(f) ≤ econv(S;X) Lip(f). Now, employing Proposition 2.2 and using the

fact that P1(Z) is complete, we may deduce that

conv(ι(Z)) =
{
µ− δz0 : µ ∈ P1(Z)

} ∼= P1(Z).

Thus, we get ebar(S;X) ≤ econv(S;X), as was left to show.
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3.5.3 � We proceed with the proof of Theorem 1.9.

Proof of Theorem 1.9. Let X := S ∪T , with S ∩T = ∅, be a �nite subset of F [H] with

card(T ) = m. Due to Lemma 3.13 it su�ces to consider Lipschitz maps f : S → E,

where (E, ‖·‖E) is a Banach space. Without loss of generality we may assume (by

scaling) that Lip(f) = 1. We set I := X and let the map x : I → H be given by the

identity.

Let G : [0,+∞) → [0,+∞) denote the function such that x = F (
√
G(x)) for all real

numbers x ∈ [0,+∞). Observe that the function G is convex, strictly-increasing and

G(0) = 0. We say that ξ : I × I → R lies above f if there is a map f : X → conv(f(S))

such that f(s) = f(s) for all s ∈ S and

G
(
‖f
(
x(i)

)
− f

(
x(j)

)
‖
H

)
≤ ξ(i, j) for all i, j ∈ I.

We use conv to denote the closed convex hull. Let Ef ⊂ RI×I be the set of all ξ ∈ RI×I

that lie above f . Moreover, let v : I × I → R be the map given by

v(i, j) := ‖x(i)− x(j)‖2
H
. (3.31)

Suppose that L ∈ [1,+∞) is a real number. If Lv ∈ Ef , then the map f admits a

Lipschitz extension f : X → conv(f(S)) such that

Lip(f) ≤ sup
x>0

F (
√
Lx)

F (x)
.

Indeed, if Lv ∈ Ef , then (by de�nition) there exists a function f : X → conv(f(S)) such

that

G
(
‖f
(
x(i)

)
− f

(
x(j)

)
‖
H

)
≤ Lv(i, j) for all i, j ∈ I;

consequently, by applying the function F
(√
·
)
on both sides, we obtain

‖f
(
x(i)

)
− f

(
x(j)

)
‖
H
≤ F

(√(
L‖x(i)− x(j)‖2

H

))
≤ sup

x>0

F (
√
Lx)

F (x)
F
(
‖x(i)− x(j)‖

H

)
for all i, j ∈ I. Since X ⊂ F [H] the map f is a Lipschitz extension of f such that

Lip(f) has the desired upper bound. Thus, to prove the theorem it su�ces to show that

if L ≥ (m+ 1), then Lv ∈ Ef .
To this end, we suppose that Lv /∈ Ef and we show that L < (m + 1). Since the

function G is strictly-increasing and convex, the set Ef is closed and convex; thus, by
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the hyperplane separation theorem we obtain a real number ε > 0 and a non-zero vector

λ ∈ RI×I such that

〈Lv,λ〉RI×I + ε < 〈ξ,λ〉RI×I for all ξ ∈ Ef . (3.32)

We claim that each entry of λ is non-negative. Indeed, if ξ ∈ Ef , then the point

(ξ1, . . . , ξk−1, cξk, ξk+1, . . . , ξN), where N := card(I×I), is contained in Ef for all integers

1 ≤ k ≤ N and real numbers c ∈ [1,+∞). Hence, a simple scaling argument implies

that the k-th entry of λ is non-negative for each integer 1 ≤ k ≤ N , as claimed.

In the following, we estimate 〈Lv,λ〉RI×I from below. We may assume that λ is

symmetric. By adjusting ε > 0 if necessary, we may assume that
∑

k∈S λik 6= 0 for all

i ∈ T . Let the matrix M := M(λ, T ) be given as in (3.8). Since each entry of the vector

λ is non-negative and
∑

k∈S λik 6= 0 for all i ∈ T , the matrix M(λ, T ) is non-singular.

We set C := M−1. Proposition 3.5 tells us that

m := m(x,λ, id, T ) =
∑
r∈S

∑
s∈S

η(r, s)‖x(r)− x(s)‖2
H
, (3.33)

where η : I × I → R is given by

η(r, s) := λrs +
∑
i∈T

∑
j∈T

λircijλjs.

Clearly,

Lm ≤ 〈Lv,λ〉RI×I . (3.34)

Next, we estimate 〈Lv,λ〉RI×I from above. We set

λ̄i :=
1

‖λi‖1
λi ∈ ∆card(S)−1

for each i ∈ T , where λi := (λik)k∈S. By (3.10),∑
j∈T

cij‖λi‖1 =
∑
j∈T

cij
∑
k∈S

λjk = 1 (3.35)

for all i ∈ T . For each i ∈ T we de�ne

wi :=
∑
j∈T

cij

(∑
k∈S

λjk

)
yλ̄j

, where yλ̄j
=
∑
r∈S

λ̄jrf(r).

Using (3.35) we obtain wi ∈ conv(f(S)) for all i ∈ T . Equation (3.32) tells us that

〈Lv,λ〉RI×I < A+B + C; (3.36)
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where,

A := 2
∑
i∈T

∑
r∈S

λirG (‖f(r)− wi‖E) ,

B :=
∑
i∈T

∑
j∈T

λijG (‖wi − wj‖E) ,

C :=
∑
r∈S

∑
s∈S

λrsG (‖f(r)− f(s)‖
E

) .

By convexity of the strictly-increasing function G and the use of (3.35), we estimate

A+ C

≤ 2
∑
i∈T

∑
r∈S

∑
j∈T

λircij‖λj‖1 G
(
‖f(r)− yλ̄j

‖
E

)
+ C

≤ 2
∑
r∈S

∑
s∈S

η(r, s)G (‖f(r)− f(s)‖
E

) .

Thus, if

B =
∑
i∈T

∑
j∈T

λijG (‖wi − wj‖E) ≤ (m− 1)
∑
r∈S

∑
s∈S

η(r, s)G (‖f(r)− f(s)‖
E

) , (3.37)

then we obtain via (3.36) and (3.34) that

Lm < (m+ 1)
∑
r∈S

∑
s∈S

η(r, s)G (‖f(r)− f(s)‖
E

) .

Since

‖f(r)− f(s)‖
E
≤ F

(√
‖r − s‖2

H

)
for all r, s ∈ S,

it follows

G(‖f(r)− f(s)‖
E

) ≤ ‖r − s‖2
H

for all r, s ∈ S;

as a result, we obtain

Lm < (m+ 1)m.

By virtue of Corollary 3.9 every entry of the matrix C is positive, hence m > 0 and

consequently L < m + 1. Thus, to conclude the proof we are left to establish the

estimate (3.37). It is readily veri�ed that

wi − wj =
1

2

∑
k∈T

∑
`∈T

‖λk‖1‖λ`‖1 (cj`cik − ci`cjk)
(
yλ̄k
− yλ̄`

)
.

Since

1

2

∑
k∈T

∑
`∈T

‖λk‖1‖λ`‖1 |cj`cik − ci`cjk| ≤
∑
k∈T

|cik| ‖λk‖1
∑
`∈T

|cj`| ‖λ`‖1 = 1,
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we can use the triangle inequality, the convexity of the strictly-increasing map G and

G(0) = 0 to estimate

B =
∑
i∈T

∑
j∈T

λijG (‖wi − wj‖E)

≤
∑
i∈T

∑
j∈T

λij
1

2

∑
k∈T

∑
`∈T

‖λk‖1‖λ`‖1 |cj`cik − ci`cjk| G
(
‖yλ̄k

− yλ̄`
‖
E

)
=
∑
k∈T

∑
`∈T

‖λk‖1‖λ`‖1

(
1

2

∑
i∈T

∑
j∈T

λij |cikcj` − cjkci`|

)
G
(
‖yλ̄k

− yλ̄`
‖
E

)
.

(3.38)

As pointed out in the beginning of Section 3.4,M(λ, T ) is a symmetric M-matrix. Hence,

we may invoke Theorem 3.6 and obtain

1

2

∑
i∈T

∑
j∈T

λij |cikcj` − cjkci`| ≤ (m− 1)ck`

for all distinct k, ` ∈ T . Using (3.38) we deduce∑
i∈T

∑
j∈T

λijG (‖wi − wj‖E)

≤ (m− 1)
∑
k∈T

∑
`∈T

‖λk‖1‖λ`‖1ck` G
(
‖yλ̄k

− yλ̄`
‖
E

)
.

By convexity,

G
(
‖yλ̄k

− yλ̄`
‖
E

)
≤
∑
r∈S

∑
s∈S

λ̄krλ̄`rG
(
‖f(r)− f(s)‖

E

)
;

thereby, the desired estimate (3.37) follows, as was left to show. This completes the

proof.

3.6 Linear and non-linear Lipschitz extension moduli

3.6.1 � The following lemma is well established. Variants of it appear at various places

in the mathematical literature, cf. [Bal92, Lemma 1.1] and [Lin64, Theorem 5].

Lemma 3.14. Let (X, ρX) be a quasi-metric space and let S ⊂ X be a �nite subset.

Then

e�n(S;X) = sup
{
e�n(S;X ′) : X ′ ⊂ X �nite and S ⊂ X ′

}
.
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Proof. We follow closely the proof given in [Bal92, Lemma 1.1]. Another approach is

sketched in [MN13, p. 168]. We abbreviate

K := sup
{
e�n(S,X ′) : X ′ ⊂ X �nite and S ⊂ X ′

}
.

Let (E, ‖·‖E) be a �nite-dimensional Banach space, let x0 ∈ S be a point and let

f : S → E be a 1-Lipschitz map. Without loss of generality, we may suppose that

f(x0) = 0. For each point x ∈ X we de�ne

Bx :=
{
y ∈ E : ‖y‖ ≤ KρX(x, x0)

}
and we set

B :=
∏
x∈X

Bx.

For each �nite subset X ′ ⊂ X that contains S there exists an extension fX′ : X
′ → E

of the map f such that Lip(fX′) ≤ K. We de�ne the the point zX′ ∈ B via

(zX′)x =

{
fX′(x) if x ∈ X ′,
0 otherwise.

Now, Tychono�'s Theorem tells us that the net (zX′), where X ′ ⊂ X is a �nite subset

that contains S, has a subnet that converges to a point z ∈ B. Clearly, zx = f(x) for all

x ∈ S. It is not hard to check that the map f : X → E given by x 7→ zx is a K-Lipschitz

extension of f : S → E. This completes the proof.

3.6.2 � In this paragraph, we collect some facts about Lipschitz free spaces. Through-

out, let (X, dX) denote a bounded non-empty metric space. We set

Lip(X) :=
{
f : X → R : f is Lipschitz

}
.

The map Lip(·) : Lip(X)→ R given by

f 7→ Lip(f) := inf {L ∈ [0,+∞) : f is L-Lipschitz }

is a semi-norm on X. Moreover, Lip(f + c) = Lip(f) for all f ∈ Lip(X) and c ∈ R. Let
L(X) denote the quotient vector space obtained from Lip(X) by the equivalence relation

f ∼ g if and only if the function f − g is constant. We equip L(X) with the quotient

norm

[f ] 7→ inf
c∈R

Lip(f + c).

The space L(X) is a dual space, cf. [Kai78, p. 326]. This motivates the following

de�nition.

78



De�nition 3.15 (Lipschitz free space). Let (X, d) denote a bounded metric space. Let

(E, ‖·‖) be a Banach space. We say that E is a Lipschitz free space over X if the dual

space of E is isometric to L(X).

By a result of Weaver, it follows that if (E, ‖·‖) and (E ′, ‖·‖) are Lipschitz free spaces
over X, then E and E ′ are isometric, cf. [Wea99, Theorem 3.26]. Thus, the Lipschitz

free space over X is unique up to isometry.

3.6.3 � In this paragraph we retain the notation from Section 2.1. Our goal is to show

that the space of signed measures on a bounded non-empty metric space (X, dX) can be

equipped with a norm such that it is a Lipschitz free space over X. We set

M0(X) :=
{
µ : BX → R : µ is a signed �nite Radon measure with µ(X) = 0

}
.

It is not hard to check that M0(X) is a vector space and that for all µ ∈M0(X):∫
X

dX(x, x0) |µ| (dx) < +∞

for x0 ∈ X, as X is bounded. The map ‖·‖KR : M0(X)→ R given by

µ 7→ sup

{∫
X

f dµ : f ∈ Lip1(X)

}
.

de�nes a norm on M0(X), cf. [Edw11] for historical remarks. The following theorem

characterizes the dual space of (M0(X), ‖·‖KR).

Theorem 3.16. Let (X, d) denote a bounded metric space. Then (M0(X), ‖·‖KR) is a

Lipschitz free space over X.

A proof of Theorem 3.16 can be found in [Edw11, Theorem 7.3]. From now on, we set

F(X) := M0(X). Now, it is readily veri�ed that every Lipschitz map f : X → Y induces

a linear map φ : F(X)→ F(Y ) with ‖φ‖ = Lip(f) such that φ(δx1−δx2) = δf(x1)−δf(x2)

for all x1, x2 ∈ X.

3.6.4 � Using the result from the previous paragraph, we obtain the subsequent propo-

sition that relates linear and non-linear Lipschitz extension moduli.

Proposition 3.17. Let (X, dX) be a metric space and let S ⊂ X be a �nite subset. Then

e�n(S;X) = sup
{

Π(F(S),F(X ′)) : X ′ ⊂ X �nite and S ⊂ X ′
}
.
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Proof. Due to Lemma 3.14, we may suppose that X is �nite. Let S ⊂ X be a non-empty

subset and let x0 ∈ S be a point and let ev : S → L(S)∗ denote the map given by

s 7→

{
ev(s) : L(S)→ R
[`] 7→ `(s)− `(x0).

(3.39)

Further, let D denote the in�mum over those D′ ≥ 1 such that there exists a Lips-

chitz map ev : X → L(S)∗ that extends ev and satis�es Lip(ev) ≤ D′ Lip(ev). Clearly,

D ≤ e�n(S;X). On the other hand, every map f : S → E induces a map linear map

L : F(S) → F(E) such that ‖L‖ = Lip(f) and βE ◦ L(δs − δx0) = f(s) for all s ∈ S;
consequently, since F(S) ∼= L(S)∗, we infer

e�n(S;X) = D.

Next, we show that D = Π(F(S),F(X)). Let ι : X → F(X) denote the isometric

embedding given by x 7→ δx − δx0 ; using this isometric embedding, it is readily veri�ed

that D ≤ Π(F(S),F(X)). Now, let ev : X → L(S)∗ be a Lipschitz extension of ev. The

linear map φ : L(S)→ L(X) given by

[`] 7→

{
X → R
x 7→ ev(x)([`])

satis�es φ([`])(s) − φ([`])(x0) = `(s) − `(x0) for all [`] ∈ L(S) and s ∈ S. Moreover,

a short calculation reveals that ‖φ‖ = Lip(ev). Let φ∗ : F(X) → F(S) denote the

adjoint of φ. By construction, φ∗ is a linear projection of F(X) onto F(S). Since

‖φ∗‖ = ‖φ‖ = Lip(ev), we conclude Π(F(S),F(X)) ≤ D. This completes the proof.

Proof of Theorem 1.11. The formula for æ(S) is a direct consequece of Proposition 3.17.

The estimate (1.8) follows readily from the �rst part and the classical fact that every

�nite-dimensional Banach space admits a linear isometric embedding into `∞(N).

3.6.5 � In this paragraph we construct a three-point metric space (S, dS) such that

æ(S) ≥ 4
3
.

Example 3.18. Let S := {1, 2, 3} equipped with the discrete metric dS(i, j) = 2(1−δij).
We let X := {0} ∪ S denote the metric space endowed with the metric

dX(0, 0) := 0, dX(0, i) := 1 and dX(i, j) := dS(i, j)
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for all i = 1, 2, 3. X is a metric tree with leaves S and branch point 0. Let h : S → `3
1

denote the map given by

1 7→ (0, 0, 0), 2 7→ (1, 0, 1), 3 7→ (0, 1, 1).

Clearly, h is 1-Lipschitz. Let E ⊂ `3
1 denote the linear span of h(S). We de�ne the

map f : S → E via f(i) := h(i) for all i = 1, 2, 3. The unit ball of E is equal to the

closed convex hull of ±1
2
f(2),±1

2
f(3),±1

2
(f(3) − f(2)); thus, E is linearly isometric to

R2 equipped with the hexagonal norm (via the linear map determined by 1
2
f(2) 7→ (1, 0)

and 1
2
f(3) 7→

(
1
2
,
√

3
2

)
). It follows that

inf
{
r ≥ 0 :

3⋂
i=1

Br(f(i)) 6= ∅
}

=
4

3
.

Hence, for every Lipschitz extension f : X → E of f it holds that

Lip(f) ≥ 4

3
,

as desired.

3.7 A formula for Πn

3.7.1 � Let d ≥ 1 be an integer and set

Ad :=
{
1d + S : S is a Seidel adjacency matrix of a simple graph of order d

}
.

Moreover, we use Dd to denote the set of all diagonal d × d-matrices that have trace

equal to one and whose diagonal entries are non-negative.

For A ∈ Ad and D ∈ Dd we write λ1(
√
DA
√
D) ≥ . . . ≥ λd(

√
DA
√
D) for the eigen-

values of the symmetric matrix
√
DA
√
D (counted with multiplicity). The subsequent

result, due to Chalmers and Lewicki, characterizes the values Π(n, d) in terms of maximal

sums of eigenvalues of matrices of the form
√
DA
√
D.

Theorem 3.19 (Theorem 2.3 in [CL10]). Let 1 ≤ n ≤ d be integers. The value Π(n, d)

is attained and equals

max

{
n∑
k=1

λk

(√
DA
√
D
)

: A ∈ Ad and D ∈ Dd

}
.
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3.7.2 � Let i ≥ 1 be an integer and consider the map

bli :
⋃
d≥i

Ad →
⋃

d≥i+1

Ad, A 7→ bli(A) :=

[
A ati
ai 1,

]
where ai denotes the i-th row of A. By construction, the i-th row of bli(A) and the last

row of bli(A) coincide. We say that the matrix bli(A) is a blow-up of A (with respect to

the i-th row).

If A ∈ Ad is a matrix and D ∈ Dd is positive-de�nite, then all eigenvalues of AD are

real, for AD is equivalent to the symmetric matrix
√
DA
√
D. With a similar argument,

one can show that even if D is positive-semide�nite, then all eigenvalues of AD are real.

We use the notation

λ(AD) := (λ1(AD), . . . , λd(AD)),

where λ1(AD) ≥ . . . ≥ λd(AD) are the eigenvalues of AD (counted with multiplicity).

The lemma below is the key step in the proof of Theorem 1.14.

Lemma 3.20. Let A′ ∈ Ad−1 be a matrix, let A := bli(A
′) for some integer 1 ≤ i ≤

d − 1 and let D := Diag(d1, . . . , dd) ∈ Dd be an invertible matrix. We set D′ :=

Diag(d1, . . . , di−1, di + dd, di+1, . . . , dd−1). Then D′ ∈ Dd−1 is invertible, λ(AD) has a

zero entry and

λ(A′D′) is obtained from λ(AD) by deleting a zero entry .

Proof. For each integer 1 ≤ k ≤ d let sk denote the k-th row of A. By assumption,

sd = si.

Let λ be an eigenvalue of A′D′ and let x′ := (x1, . . . , xd−1) ∈ Rd−1 be a corresponding

eigenvector. We de�ne x := (x1, . . . , xd−1, xi). For all 1 ≤ k < d we compute

〈Dsk, x〉Rd = skidixi + skdddxi +
d∑

` 6=d,i

sk`d`x`

= skidixi + skiddxi +
d∑

` 6=d,i

sk`d`x` = 〈D′s′k, x′〉Rd−1
.

(3.40)

Thus, for all 1 ≤ k < d we have

〈Dsk, x〉Rd = 〈D′s′k, x′〉Rd−1
= λxk.
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Furthermore,

〈Dsd, x〉Rd = 〈Dsi, x〉Rd = λxi;

as a result, the vector x is an eigenvector of AD with corresponding eigenvalue λ.

Next, we show that AD and A′D′ have the same rank. There exists a principal

submatrix T of A such that T is invertible and rk(A) = rk(T ). This is well-known,

cf. for example [Tho68, Theorem 5]. Clearly, T cannot be obtained from A by keeping

the i-th and d-th column simultaneously; thus, T is also a principal submatrix of A′.

Therefore,

rk(A′) ≤ rk(A) = rk(T ) ≤ rk(A′)

and thereby rk(A) = rk(A′). Now, via Sylvester's law of interia

rk(AD) = rk(
√
DA
√
D) = rk(A) = rk(A′) = rk(A′D′),

as claimed. To summarize, AD and A′D′ have the same rank and if λ is an eigenvalue

of A′D′, then λ is an eigenvalue of AD. This completes the proof.

3.7.3 � Now, we have everything at hand to verify Theorem 1.14.

Proof of Theorem 1.14. We set

Φn := sup
d≥1

max

{
1

d

n∑
k=1

λk(A) : A ∈ Ad

}
.

First, we show for all d ≥ n that

Π(n, d) ≤ Φn.

We abbreviate

πn(AD) :=
n∑
k=1

λk(AD).

Due to Theorem 3.19, there exist matrices A ∈ Ad and D ∈ Dd such that

Π(n, d) = πn(AD).

Choose a sequence Dk ∈ Dd of invertible matrices with rational entries satisfying

Π(n, d) ≤ πn(ADk) +
1

2k
. (3.41)
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This is possible since πn(AD) = πn(
√
DA
√
D) and because the map πn(·) is continuous

on the set of symmetric matrices, cf. [OW92, p. 44]. Fix k ≥ 1. By �nding a common

denominator, we may write

Dk =
1

m
Diag(n1, . . . , nd),

where ni ≥ 1 for all 1 ≤ i ≤ d and m = n1 + · · ·+ nd. We set

Ak := bl
(nd−1)
d (· · · (bl

(n1−1)
1 (A)) · · · ),

where we use the convention bl0i (A) = A. Note that Ak ∈ Am. By applying Lemma 3.20

repeatedly, we get that λ(ADk) is obtained from λ
(
Ak

1
m
1m

)
by deleting exactly (m−d)

zero entries. As a result,

πn(ADk) ≤
πn(Ak)

m
≤ Φn. (3.42)

Thus, by combining (3.42) with (3.41), we obtain

Π(n, d) ≤ Φn.

It is well-known that

Πn = lim
d→+∞

Π(n, d).

Hence,

Πn ≤ Φn.

The inequality Φn ≤ Πn is a direct consequence of Theorem 3.19. Putting everything

together, we conclude

Πn = Φn.

We are left to show that it su�ces to consider Kn+2-free two-graphs. To this end, �x

an integer d > n and let A ∈ Ad be a matrix such that

πn(A) = max
{
πn(A′) : A′ ∈ Ad

}
.

As the symmetric matrix A is orthogonally diagonalizable, there are orthonormal vectors

u1, . . . , un ∈ Rd such that

πn(A) = tr(AUU t),

where U is the matrix that has the vectors ui as columns. Let rk for 1 ≤ k ≤ d be

the rows of the matrix U . We use e1, . . . , ed ∈ Rd to denote the standard basis. Fix

1 ≤ i, j ≤ d and let ε ∈ R be a real number. We set

A(i, j; ε) :=

{
ε sgn

(
〈ri, rj〉Rn

)
eie

t
j if 〈ri, rj〉 6= 0

ε eie
t
j otherwise
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and

Âε := A+
1

2

(
A(i, j; ε) + A(j, i; ε)

)
.

Clearly, Âε is symmetric. Hereafter, we show that 〈ri, rj〉 6= 0. To this end, suppose that

〈ri, rj〉 = 0.

We set ε? := −4 sgn(aij), and we observe that Âε? ∈ Ad. Further, we abbreviate

Â := Âε? . It holds that

πn(A) = tr
(
AUU t

)
= tr

(
ÂUU t

)
− ε? sgn

(
〈ri, rj〉

)
〈ri, rj〉. (3.43)

Via von Neumann's trace inequality, cf. [Mir75], we obtain

tr
(
ÂUU t

)
≤ πn(Â) ≤ πn(A);

thus,

tr
(
ÂUU t

)
= πn(Â) = πn(A).

The equality case of von Neumann's trace inequality occurs. Therefore, the diagonal-

izable matrices UU t and Â are simultaneously orthogonally diagonalizable and thereby

commute. This implies that UU t and 1
2

(
A(i, j; ε?) +A(j, i; ε?)

)
commute; as a result, we

get that

〈ri, ri〉 = 〈rj, rj〉,

〈ri, rk〉 = 0, for all k 6= i with k ∈ {1, . . . d},

〈rj, rk〉 = 0, for all k 6= j with k ∈ {1, . . . d}.

By applying the same argument to 〈ri, rk〉 = 0 for every k 6= i, k ∈ {1, . . . , d}, we may

conclude that the vectors r1, . . . , rd ∈ Rn are orthogonal and none of them is equal to

the zero vector. However, this is only possible if n = d. Therefore, we have shown for

d > n that 〈ri, rj〉 6= 0 for all integers 1 ≤ i, j ≤ d.

We claim that

aij = sgn
(
〈ri, rj〉Rn

)
(3.44)

for all 1 ≤ i, j ≤ d. Because 〈ri, rj〉 6= 0, this is a direct consequence of the maximality

of πn(A) and equality (3.43). Hence, we have shown that A and UU t have the same sign

pattern, which allows us to invoke [CW13, Lemma 2.1]. From this result we see that A

does not have a principal (n+ 2)× (n+ 2)-submatrix which has only −1 as o�-diagonal

elements. Such a matrix is the Seidel adjacency matrix of the complete graph on n+ 2

vertices. For that reason, we have shown that

1

d
πn(A) = max

{
n

d
+

1

d

n∑
k=1

λk(T ) : T is a Kn+2-free two-graph of order d

}
.
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This completes the proof.

We conclude this section with the proof of Corollary 1.16.

Proof of Corollary 1.16. Let J2 ∈ A2 denote the all-ones matrix. For every A ∈ Ad,
the matrix A ⊗ J2 is contained in A2d, where ⊗ denotes the Kronecker product of

matrices. Moreover, since the eigenvalues of A ⊗ J2 are precisely all possible products

of an eigenvalue of A (counted with multiplicity) and an eigenvalue of J2 (counted with

multiplicity), it is readily veri�ed that

πn(A)

d
=
πn(A⊗ J2)

2d
.

Let (ε`)`≥1 be a sequence of positive real numbers that converges to zero. Due to Theorem

1.14 and the above, there exists a strictly increasing sequence (d`)`≥1 of integers and

matrices A` ∈ Ad` such that

Πn ≤
πn(A`)

d`
+ ε`.

We have

πn(A`) = d` −
d∑̀

k=n+1

λk(A`) = d` +

d`−n∑
k=1

λk(−A`);

thus,

πn(A`) = d` +

d`−n∑
k=1

λk(A`)− (d` − n)2,

where A` = 21d` − A`. Consequently,

Πn ≤
2n

d`
− 1 +

πd`−n(A`)

d`
+ ε`.

Since A` ∈ Ad` , we obtain

Πn ≤
2n

d`
− 1 + Π(d` − n, d`) + ε`.

Proposition 2 in [FS17] tells us that

Π(d− n, d) ≤ Πn + 1

for all d ≥ 1. Thus,

Πn ≤
2n

d`
− 1 + Π(d` − n, d) + ε` ≤ Πn +

2n

d`
+ ε`;

for that reason, the desired result follows.
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3.8 Polyhedral maximizers of Πn(·)

3.8.1 � Let (E, ‖·‖) be a Banach space and let V ⊂ E and F ⊂ E∗ denote linear

subspaces. We set

V 0 :=
{
` ∈ E∗ : `(v) = 0 for all v ∈ V

}
⊂ E

and

F0 :=
{
x ∈ E : f(x) = 0 for all f ∈ F

}
⊂ E∗.

Suppose that U ⊂ E is a linear subspace such that E = V ⊕ U . The map

PU
V : E → V, v + u 7→ v

is a linear projection onto V . In the subsequent lemma we gather classical results from

functional analysis.

Lemma 3.21. Let (E, ‖·‖) be a Banach space.

1. If there exist closed linear subspaces V, U ⊂ E such that V is �nite-dimensional

and E = V ⊕ U , then E∗ = V 0 ⊕ U0, dim(U0) = dim(V ),

(V 0)0 = V and (U0)0 = U.

2. If there exist closed linear subspaces F,G ⊂ E∗ such that F is �nite-dimensional

and E∗ = F ⊕G, then E = F0 ⊕G0, dim(G0) = dim(F ),

(F0)0 = F and (G0)0 = G.

3. If there exist closed linear subspaces V, U ⊂ E such that V is �nite-dimensional

and E = V ⊕ U , then
‖PU

V ‖ = ‖P V 0

U0 ‖.

Proof. The �rst two items follow from elementary properties of the annihilator of a linear

subspace. The third item is a straightforward computation.

It is worth to point out that [CL14, Theorem 3.2] may be established via the �rst and

the third item of Lemma 3.21.
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3.8.2 � The following theorem translates the calculation of relative projection constants

to second preduals (if such a space exists).

Theorem 3.22. Let (E, ‖·‖) be a Banach space and let F ⊂ E denote a �nite-dimensional

linear subspace. If (X, ‖·‖) is a Banach space such that E = X∗∗, then there exist a linear

subspace V ⊂ X with dim(V ) = dim(F ) and

Π(F,E) = Π(V,X).

Proof. It is not hard to check that

Π(F,E) := inf
{
‖PG

F ‖ : E = F ⊕G,G ⊂ E closed linear subspace
}
.

We set V := (F0)0. On the one hand, using the second and third item of Lemma 3.21,

we obtain

Π(V,X) ≤ Π(F,E);

on the other hand, using the �rst and third item of Lemma 3.21, we infer

Π(F,E) ≤ Π(V,X).

This completes the proof.

We conclude this section with the proof of Theorem 1.17.

Proof of Theorem 1.17. Let F ⊂ `∞ be an n-dimensional linear subspace with

Πn = Π(F, `∞).

Via Theorem 3.22, there exists an n-dimensional linear subspace V ⊂ c0 such that

Π(F, `∞) = Π(V, c0).

As Π(V, c0) ≤ Π(V ), we get

Πn = Π(V ).

This completes the proof, since due to a result of Klee, cf. [Kle60, Proposition 4.7],

every �nite-dimensional subspace of c0 is polyhedral.
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Figure 3.1: The graph that has A6 − 16 as Seidel adjacency matrix.

3.9 Computation of Π2

3.9.1 � Let n ≥ 1 be an integer, let R2n+1 ⊂ R2 be a regular (2n + 1)-gon centred at

the origin and let V (R2n+1) denote the vertices of R2n+1. Further, we let T2n+1 denote

the two-graph that has V (R2n+1) as vertex set and {v1, v2, v3} ⊂ V (R2n+1) is an edge

if and only if the origin is contained in the closed convex hull of v1, v2, v3. It is readily

veri�ed that δ(R2n+1 − 12n+1) = T2n+1 for

R2n+1 :=

 1 jt −jt
j Jn Jn − 2Ln
−j Jn − 2Ltn Jn

 ,

where j ∈ Rn is the all-ones vector, Jn is the all-ones n × n-matrix and Ln is the

n× n-matrix given by

(Ln)ij :=

{
−1 i > j

0 otherwise .

Note that Ln has only −1's below the diagonal and only 0's above the �rst sub-diagonal.

We set

A6 :=



1 1 1 1 1 1

1 1 1 1 −1 −1

1 1 1 −1 1 −1

1 1 −1 1 −1 1

1 −1 1 −1 1 1

1 −1 −1 1 1 1

 .

One can check that A6 − 16 is the Seidel adjacency matrix of the graph depicted in

Figure 3.1. We abbreviate

Ω :=
{
S : S is a principal submatrix of A6 − 16

}
∪
{
R2n+1 − 12n+1 : n ≥ 1

}
.
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In [FF84], Frankl and Füredi showed that each non-empty K4-free two-graph belongs to

the set

δ(Ω) ∪
{
δ(B) : B is a blow-up of a matrix in Ω

}
.

3.9.2 � Given a matrix A ∈ Ad, we denote by Stab(A) the set{
Q ∈ Od(Z) : A = QAQt

}
.

We use Od(Z) to denote the group of orthogonal d × d-matrices with integer entries.

Every Q ∈ Stab(A) has a unique decomposition Q = PD, where P is a permutation

matrix and D is a diagonal matrix consisting only of 1's and −1's. We write Pτ := P

if the permutation matrix P is associated to the permutation τ , that is, Pij = (eτ(i))j.

The group Stab(A) acts on {1, . . . , d} via

(PτD, k) 7→ τ(k).

Two Seidel adjacency matrices Sf and Sg are called switching equivalent if δ(f) =

δ(g). This gives rise to an equivalence relation, equivalence classes are called switch-

ing classes. The lemma below tells us that the orbit decomposition of the action

Stab(A) y {1, . . . , d} may be obtained by determining the switching class of every

principal (d− 1)−dimensional submatrix of A.

Lemma 3.23. Let A ∈ Ad be a matrix, let 1 ≤ i, j ≤ d be two integers and for k = i, j

let Tk denote the submatrix of A− 1d obtained by deleting the k-th column and the k-th

row of A− 1d.
Then, the matrices Ti and Tj are switching equivalent if and only if the integers i and

j lie in the same orbit under the action Stab(A) y {1, . . . , d}.

Proof. This is a straightforward consequence of the de�nitions.

Let M be a diagonalizable d× d-matrix over the real numbers. We set

πn(M) :=
n∑
k=1

λk(M)

for each integer 1 ≤ n ≤ d. The following lemma simpli�es the calculation of the

maximum value of the function D 7→ πn(AD) if the action Stab(A) y {1, . . . , d} is

transitive.
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Lemma 3.24. Let A ∈ Ad be a matrix and let 1 < n ≤ d be an integer. If Λ ∈ Dd is a
invertible matrix such that

πn(AΛ) = max
D∈Dd

πn(AD),

then

Q2Λ(Q2)t = Λ

for all Q ∈ Stab(A). In particular, if d is odd and the action Stab(A) y {1, . . . , d} is
transitive, then Λ = 1

d
1d.

Proof. For each Q ∈ Stab(A) we have

Qt
√
ΛA
√
ΛQ = Qt

√
ΛQAQt

√
ΛQ =

√
ΛQtA

√
ΛQ,

where ΛQ := QΛQt. Consequently,

πn(
√
ΛA
√
Λ) = πn

(√
ΛQtA

√
ΛQ

)
= πn

(
A
√
ΛQ
√
ΛQt

)
.

Thus, using that Λ is a maximizer, we get

1 ≤ tr
(√

ΛQ
√
ΛQt

)
.

Via the Cauchy-Schwarz inequality, we deduce

tr
(√

ΛQ
√
ΛQt

)
≤ 1;

as a result, there exists a real number α ≥ 0 such that

ΛQ = αΛQt .

Since tr(ΛQ) = tr(ΛQt) = 1, we get α = 1 and thus

ΛQ = ΛQt ,

which is equivalent to

ΛQ2 = Λ.

Now, suppose that d is odd and assume that the action Stab(A) y {1, . . . , d} is tran-
sitive. We claim that Λ = 1

d
1d. The statement follows via elementary group theory.

Indeed, let H denote the subgroup of Stab(A) generated by the squares. By basic al-

gebra, H is normal and the action of Stab(A)/H on the orbits of H y {1, . . . , d} is

transitive. Since |Stab(A)/H| = 2k for some integer k ≥ 0, the action H y {1, . . . , d}
has either one orbit or an even number of orbits. Because d is odd and the orbits of

H y {1, . . . , d} all have the same cardinality, we may conclude that H y {1, . . . , d} is
transitive. This completes the proof.
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3.9.3 � In the following we retain the notation from the �rst paragraph of this section.

By the use of Theorem 1.14, Lemma 3.20 and the classi�cation of all K4-free two-graphs,

we obtain

Π2 = max
(A−1)∈Ω

max
D∈Dd

π2(AD).

Clearly, all induced sub-graphs of T2n+1 that are obtained by deleting one vertex are

isomorphic (as two-graphs) to each other. Thus, via Lemma 3.23 and Lemma 3.24, we

get that

max
D∈Dd

π2 (R2n+1D) = π2

(
1

2n+1
R2n+1

)
.

Moreover, if B is a principal submatrix of A6, then it is not hard to see that

max
D∈Dd

π2(BD) ≤ max
{
π2

(
1
5
R5

)
, π2

(
1
3
R3

) }
;

thereby,

Π2 = max
n≥1

π2

(
1

2n+1
R2n+1

)
.

Thus, we are left to consider the eigenvalues of the matrices R2n+1 for n ≥ 1. Due to

the following lemma it su�ces to calculate the eigenvalues of R3.

Lemma 3.25. Let n′ ≥ n ≥ 1 be integers. It holds

π2

(
1

2n+1
R2n+1

)
≥ π2

(
1

2n′+1
R2n′+1

)
. (3.45)

Proof. We abbreviate N := 2n+ 1. Let R′N denote the 2n× 2n-matrix that is obtained

from RN by deleting the second row and second column. Clearly, R′N is a blow-up of

RN−2; thus, via Lemma 3.20, we obtain

max
D∈D2n

π2(R′ND) ≤ π2(RN−2).

If for all integers k ≥ 1

π2 (R2k+1) = 2λ1 (R2k+1) , (3.46)

then

π2

(
RN

1
N

)
= 2λ1

(
R′N

1
N−1

)
N−1
N
≤ 2λ1

(
RN−2

1
N−2

)
N−1
N

and thus (3.45) follows. We are left to show that (3.46) holds.

Suppose that λ1(RN) has multiplicity one. Below, we show that this leads to a con-

tradiction.

Let x ∈ RN be an eigenvector of RN associated to the eigenvalue λ1(RN). As we

assume that λ1(RN) has multiplicity one, we get Qx = x or Qx = −x for each Q ∈
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Stab(RN). We know that the action Stab(RN) y {1, . . . , N} is transitive; thus all

entries of x di�er only by a sign. Without loss of generality we may suppose the entries

of x consist only of 1's and −1's. For each integer 1 ≤ i ≤ N let Ai denote the matrix

that is obtained from RN by replacing the i-th column with x. Cramers rule tells us

that

xi det(RN) = det(Ai)

for all 1 ≤ i ≤ N . It is easy to see (via the de�nition of RN) that for all n < i < N : if

xi−n+1 and xi−n have the same sign, then det(Ai) = 0. But this is impossible; for that

reason, for all n < i < N we have xi−n = −xi−n+1. Similarly,

xi+n = xi+n−1

for all 2 < i ≤ n+ 1 and x1 = −xn+1, x2 = −xN . Thus, if we suppose that x1 = 1, then

x = (1,−1, 1,−1, 1, . . . 1,−1︸ ︷︷ ︸
n times

, 1,−1, 1,−1, . . . ,−1, 1︸ ︷︷ ︸
n times

) if n is odd

and

x = (1, 1,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
n times

, 1,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
n times

) if n is even.

Therefore, if j ∈ RN denotes the all-ones vector we obtain

〈x, j〉 = 1,

and consequently it holds that

λ1(RN) =

{
−1 if n is odd

1 if n is even.

This is a contradiction, since tr(RN) = N and we assume that λ1(RN) has multiplicity

one. Hence, we have shown that the eigenvalue λ1(RN) has multiplicity greater than

or equal to two. As a result, (3.46) holds, which was left to show. This completes the

proof.

Employing Lemma 3.25, we get

Π2 = π2

(
1
3
R3

)
=

1

3

(
2λ1(R3)

)
=

1

3

(
3− λ3(R3)

)
=

4

3
,

as conjectured by Grünbaum.
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