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1 Introduction

There is an interesting relation between quivers and open topological strings that was first

observed in applications to knot theory [1, 2]. In [3] we discussed the underlying geometry

and physics, in terms of counts of open holomorphic curves ending on a knot conormal LK ,

and in terms of the 3d N = 2 physics on an M5-brane wrapping LK × S1 × R2.

In the present paper we explore further aspects. We relate counts of open holomorphic

curves, quivers, and certain 3d N = 2 quantum field theories, in a way that takes simple

properties of one theory to highly nontrivial statements in the others. This leads to new

results both on the mathematical and physical sides, including mechanisms for generating

classes of distinct quivers (with different number of nodes) that determine the same physics,

multi-cover skein relations, and a large class of 3d N = 2 dualities. The results are not

limited to the original knot theory setting of [1, 2] but give connections between quivers

and open topological strings also in many other situations.

1.1 Physics and geometry of the knots-quivers correspondence

In order to introduce the main results of this paper, we first recall our previous work [3].

The motivation and starting point was the observation in [1, 2] that the generating series

of the symmetrically colored HOMFLY-PT polynomials of a knot K can be written as

the partition function (motivic generating series) of a symmetric quiver. A symmetric

quiver Q is a finite graph with a set of nodes connected by undirected edges.1 In [3]

we found a geometric interpretation of the nodes of Q as basic holomorphic disks ending

1Equivalently one can consider directed edges (arrows) with a condition that the number of arrows from

vertex i to j, i 6= j is equal to the number of arrows from vertex j to i. In this paper we switch between

these two pictures: an undirected edge between two distinct vertices corresponds to a pair of arrows in

opposite directions, whereas loops remain unchanged.
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on LK ≈ S1 × R2, the knot conormal Lagrangian in the resolved conifold associated to

a knot K, see [4]. The number of edges between two nodes of Q was identified with a version

of the linking number between corresponding disk boundaries, defined via bounding chains

as in [5, 6].

We showed that if one assumes that all holomorphic curves with boundary on LK are

multiple covers of the basic holomorphic disks, then — using the multiple cover formula

for generic disks together with the definition of generalized holomorphic curves in [6] —

the wave function of LK counting generalized holomorphic curves agrees with the quiver

partition function.

For the corresponding physical setting, consider M-theory on the resolved conifold

times S1 ×R4 with an M5-brane on LK × S1 ×R2. Then each basic holomorphic disk can

be wrapped by an M2-brane ending on the M5. The quiver representation theory computes

the spectrum of BPS M2-branes in terms of a finite set of basic BPS states that correspond

to the M2-branes that are wrapped on the basic disks. The geometric setup in M-theory

has a field-theoretic counterpart in the flat spacetime directions. In [7], it was observed

that the spectrum of BPS M2-branes descends to the spectrum of BPS vortices in a 3d

N = 2 theory T [LK ] on the M5 worldvolume in the transverse flat S1 × R2. The quiver

description of the vortex spectrum leads to a simple dual Lagrangian description for this

theory, denoted by T [QK ]. This picture indicates that the whole spectrum of BPS vortices,

or higher-genus holomorphic curves, can be generated completely by a finite set of linked

basic genus-zero curves (disks).

1.2 Multi-cover skein relations and quivers

From the perspective of topological strings it is natural to view holomorphic curves in

a Calabi-Yau 3-fold with boundary on a Lagrangian L as deforming Chern-Simons theory

on L, see [8]. In [9] this perspective was used to give a new mathematical approach to open

curve counts: 1-dimensional defects in Chern-Simons theory of L are links in L modulo

isotopy and the framed skein relation (the defining relation of the framed HOMFLY-PT

polynomial). The resulting module of 1-dimensional defects is called the framed skein

module of L.

The central idea in [9] is to count holomorphic curves with boundary in L by the

elements represented by their boundaries in the framed skein module of L and a key point

in that approach is to separate contributions of zero symplectic area curves from those of

positive area curves, i.e., separate instanton contributions from perturbative contributions.

More geometrically, in order to count holomorphic curves, one must take into account

contributions from constant maps. The approach in [9] leading to the skein relation is to

keep the constants unperturbed, focus on curves without components of symplectic area

zero (called bare), add the contributions to the counts from constants attached to a bare

curve ‘by hand’, and show that this separation of bare and constant curves does not change

in generic 1-parameter families.

The total contribution of a bare curve comes from the first (non-multiple) part of

the well-known multiple cover formula for holomorphic curves: the local contribution to

the open string or Gromov-Witten partition function from a curve of Euler characteristic χ,

– 2 –
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Figure 1. Multi-cover skein relations on linking disks and dual quiver description.

with generic normal bundle, and representing the homology class a is

exp

(∑
d>0

1

d

ad

(qq − q−d)χ

)
, q = e

1
2
gs . (1.1)

The first term in the expansion of this formula says that at degree one the contribution is

simply (q−q−1)−χ and counting bare curves with this contribution one finds that the count

is indeed invariant in the framed skein. In other words the framed skein relation is a ‘bi-

furcation’ identity for bare curves:

??__
=

??__
+ (q − q−1)

oo //
. (1.2)

From the holomorphic curve perspective this paper studies the same bifurcation, taking

into account all multiple covers with constant curves attached. Our first result is that

when the boundaries of two basic disks cross, they can be glued into a new disk and,

taking the multiple covers of this new disk into account, the partition function counting

generalized holomorphic curves remains unchanged. This means that one can then use this

bifurcation to trade two linked basic holomorphic disks for two unlinked basic disks plus

a new basic disk obtained from gluing them, see the upper part of figure 1. Before unlinking,

the glued disk is part of the boundstate spectrum. After unlinking the boundstate spectrum

is trivial (because the disks do not link anymore) and the new disk should be a part of

the new basic set. We call the invariance of generalized holomorphic curve counts under

bifurcations of basic disks the multi-cover skein relation.

Interpreted in terms of quivers, the multi-cover skein relation changes an edge into an

extra node (with a loop), as shown in the lower part of figure 1. The invariance of the

count of generalized curves then implies that the corresponding quiver partition function

should also remain unchanged. We verify that this is indeed the case and observe that it

extends to a large class of dualities on quivers generated by multi-cover skein relations in

the dual geometric setting. We classify ‘quiver multi-cover skein moves’ and prove that

they leave the partition function unchanged.

The multi-cover skein moves — which are rather natural in the context of holomorphic

curves — give relations among quivers with different numbers of nodes which are nontrivial

from the viewpoint of quiver representation theory.

Finally, from the holomorphic curve perspective it is natural to ask whether there are

corresponding multi-cover skein formulas also for higher genus curves. In general the answer

– 3 –
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is no, but the formulas for disks can be used to derive more involved formulas for higher

genus curves. As an illustration, we discuss bifurcations for the annulus in appendix A.

1.3 3d N = 2 dualities

A quiver Q encodes the data of a 3d N = 2 theory T [Q], see [3]. Each node corresponds to

a U(1) gauge group with a charged chiral multiplet attached to it and arrows encode effec-

tive mixed Chern-Simons couplings. Then the partition function of quiver representation

theory equals the partition function of T [Q] on R2 ×q S1.

Applying the multi-cover skein relation to the quiver Q transforms it to a new quiver Q′

with a different number of nodes and arrows. Consequently, the corresponding gauge the-

ories T [Q] and T [Q′] have different gauge groups, matter content, and couplings. Never-

theless, the R2 ×q S1 partition functions of T [Q] and T [Q′] must coincide since the dual

quiver partition functions do (with suitable identifications of couplings). This appears to

give a new class of dualities among 3d N = 2 theories, generated by the quiver version of

the multi-cover skein relation. A basic instance of this type of dualities is closely related

to the well-known SQED-XYZ mirror duality [10].

1.4 Quantum torus algebra and wall-crossing

The geometric idea underlying the relation between quivers and open topological strings,

that the whole BPS spectrum of open holomorphic curves is generated by a finite set of

basic disks, is not evident from the standard form of quiver partition functions. Here

the BPS spectrum is encoded by motivic DT invariants, the exponents in the factorization

of the quiver partition function

PQ(x, q) =
∏
d,j

Ψq(q
jxd)(−1)jΩd,j , (1.3)

where Ψq is the quantum dilogarithm (see below for a definition), components of x =

(x1, . . . , xm) are variables associated to quiver nodes that keep track of the charges of BPS

states, and d = (d1 . . . dm) is the dimension vector.

We introduce a new formalism, allowing us to write down the partition function as

a finite product of basic contributions

PQ = Ψq(Xm) ·Ψq(Xm−1) · . . . · Ψq(X1) . (1.4)

Now Xi are non-commutative variables, valued in a quantum torus algebra XiXj =

q±2lk(i,j)XjXi obtained by a certain anti-symmetrization of the quiver linking matrix.

The new partition function PQ is therefore valued in the quantum torus algebra, and

it reduces to PQ by an operation of normal ordering which we define.

This new presentation of the quiver partition function has several nice features. On

the one hand, it makes manifest the fact that the whole spectrum is generated by multi-

covers (quantum dilogarithms) of a finite set of basic disks (quiver nodes) through their

interactions, encoded by the quiver linking matrix interpreted in the quantum torus algebra

of the Xi. Here the quiver with m nodes and no edges corresponds to commutative variables

– 4 –
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Xj = xj and the partition function is an actual product. To get non-commutative variables

we introduce duals yj of xj with yjxj = qδijxjyj and define Xi = xi
∏m
j=1 y

lk(i,j)
j . Normal

ordering then corresponds to moving all yj-variables to the right. Thus, starting from

the product partition function and applying normal ordering, we see that the quantum torus

algebra keeps track of how linking between basic disks propagates to counts of generalized

holomorphic curves involving all their multi-covers and boundstates.

This formalism relates to work on wall-crossing by Kontsevich and Soibelman [11]. We

show in particular that dualities induced by quiver multi-cover skein relations reduce in

simple cases to wall-crossing identities. For example, the skein relation of figure 1 translates

into the following equality of quantum partition functions

Ψq(X2)Ψq(X1) = Ψq(X1)Ψq(−q X1X2)Ψq(X2) (1.5)

which is an instance of the pentagon identity. More generally, quiver skein relations pre-

dicts many more involved identities for products of dilogarithms with arguments valued

in quantum torus algebras. Although we collectively refer to these as ‘wall-crossing iden-

tities’ (by analogy with the work of Kontsevich-Soibelman), we point out that they have

a somewhat different structure in general.

1.5 Gauge theory on branes and quantum Lagrangian correspondences

Geometrically (1.4) can be understood as deformations of U(1) Chern-Simons theory on

a Lagrangian L ≈ S1 × R2. It is clear from the path integral that the quantization of

U(1) Chern-Simons theory gives a quantum torus, x = eξ, y = eη, where η = gs
∂
∂ξ and

the equation for the wave function: (1 − y)Ψ(x) = 0, which means Ψ = 1. Consider

now instead L with one holomorphic disk attached. This disk deforms the Chern-Simons

theory and leads to the equation for quantum variables on a small torus surrounding it:

(1 − xi − yi)Ψ(xi) = 0. The global wave function is then obtained by x = xi. Consider

next attaching several disks which are mutually linked. Then the above implies that the

wave function is a product of quantum dilogarithms of Xi = eξie
∑
j lk(i,j)ηj , where the

variables correspond to unlinked disks, and after normal ordering we get a function of local

longitudes xi that should be substituted by corresponding powers of the global longitude x.

In the terminology of [5] this means that we build a D-model associated to the local tori

surrounding the boundaries of the basic disks. The D-model is then an open topological

string in (C∗×C∗)m with one factor and quantum torus coordinates (xi, yi) = (eξi , eηi) for

each i = 1, . . . ,m. In (C∗×C∗)m there is the space filling coistropic brane and a Lagrangian

brane which is simply a product Lagrangian in the coordinates (xi, yi) and a product

wave function Ψ(x1, . . . , xm) =
∏m
i=1 Ψq(xi). We obtain the wave function and quantum

curve for the composite system on all of LK by pushing the product Lagrangian through

the Lagrangian correspondence in (C∗ × C∗)m × (C∗ × C∗), where the last factor with

coordinates (x, y) = (eξ, eη) corresponds to the torus which is the ideal boundary of LK ,

determined by the linking of the disks via

ξ = ξ1 −
∑
j

lk(1, j)ηj = · · · = ξm −
∑
j

lk(m, j)ηj , η =
∑
j

ηj . (1.6)

– 5 –
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At the full quantum level, this corresponds to (1.4), which in the semi-classical limit (count-

ing only disks) is closely related to the reasoning in the Atiyah-Floer conjecture, and here

leads to a symplectic reduction formula for the disk potential of LK .

Organization of the paper

In section 2 we collect background on the relation between quivers and counts of holo-

morphic curves in the knot theory setting. Section 3 describes how to generalize this cor-

respondence to counts of holomorphic curves in more general toric Calabi-Yau threefolds

with Lagrangian insertions. In section 4 we introduce quiver multi-cover skein relations,

describing their form and proving invariance of partition functions. Physical implications

are studied in section 5, where the relations are reformulated as dualities of 3d N = 2 the-

ories. In section 6 we study connections with wall-crossing, show how the quantum torus

algebra can be used to organize holomorphic curve counts, and present the multi-cover

skein relation in this language.

2 Background

In this section we recall relevant aspects of the knots-quivers correspondence and of counts

of open curves.

2.1 Knots-quivers correspondence

If K ⊂ S3 is a knot then its HOMFLY-PT polynomial PK(a, q) [12, 13] is a 2-variable poly-

nomial that is easily calculated from a knot diagram (a projection of K with over/under

information at crossings) via the skein relation. The polynomial is a knot invariant, i.e., in-

variant under isotopies and in particular independent of diagrammatic presentation. More

generally, the colored HOMFLY-PT polynomials PKR (a, q) are similar polynomial knot in-

variants depending also on a representation R of the Lie algebra u(N). Also the colored

version admits a diagrammatic description: it is given by a linear combination of the stan-

dard polynomial of certain satellite links of K. (In this setting, the original HOMFLY-PT

corresponds to the standard representation.) In order to simplify the notation, we will

write the HOMFLY-PT polynomial also when we refer to the more general colored version.

From the physical point of view, the HOMFLY-PT polynomial is the expectation value

of the knot viewed as a Wilson line in U(N) Chern-Simons gauge theory on S3 [14] which

then depends on a choice of representation R for the Lie algebra u(N). Here we will

restrict attention to symmetric representations R = Sr corresponding to Young diagrams

with a single row of r boxes. For each r-box representation we get a polynomial PKr (a, q)

and we consider the HOMFLY-PT generating series in the variable x:

PK(x, a, q) =
∞∑
r=0

PKr (a, q)xr . (2.1)

In this setting, the Labastida-Mariño-Ooguri-Vafa (LMOV) invariants [4, 15, 16] are

certain numbers assembled into the LMOV generating function:

NK(x, a, q) =
∑
r,i,j

NK
r,i,jx

raiqj (2.2)

– 6 –
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that gives the following expression for the HOMFLY-PT generating series

PK(x, a, q) = Exp

(
NK(x, a, q)

1− q2

)
. (2.3)

Exp is the plethystic exponential, if f =
∑

n ant
n, a0 = 0 then

Exp
(
f
)
(t) = exp

(∑
k

1
kf(tk)

)
=
∏
n

(1− tn)an . (2.4)

According to the LMOV conjecture [4, 15, 16], NK
r,i,j are integer numbers.

The knots-quivers (KQ) correspondence introduced in [1, 2] and mentioned in the pre-

vious section provides a new approach to HOMFLY-PT polynomials and LMOV invariants

as follows.

A quiver Q is an oriented graph with a finite number of vertices connected by finitely

many arrows (oriented edges). We denote the set of vertices by Q0 and the set of arrows

by Q1. A dimension vector for Q is a vector in the integral lattice with basis Q0, d ∈ ZQ0.

We number the vertices of Q by 1, 2, . . . ,m = |Q0|. A quiver representation with dimension

vector d = (d1, . . . , dm) is the assignment of a vector space of dimension di to the node

i ∈ Q0 and of a linear map γij : Cdi → Cdj to each arrow from vertex i to vertex j.

The adjacency matrix of Q is the m×m integer matrix with entries Cij equal to the number

of arrows from i to j. A quiver is symmetric if its adjacency matrix is.

Quiver representation theory studies moduli spaces of stable quiver representations

(see e.g. [17] for an introduction to this subject). While explicit expressions for invariants

describing those spaces are hard to find in general, they are quite well understood in

the case of symmetric quivers [11, 18–21]. Important information about the moduli space

of representations of a symmetric quiver with trivial potential is encoded in the motivic

generating series defined as

PQ(x, q) =
∑

d1,...,dm≥0

(−q)
∑

1≤i,j≤m Cijdidj

m∏
i=1

xdii
(q2; q2)di

(2.5)

where the denominator is the so-called q-Pochhammer symbol

(z; q2)r =

r−1∏
s=0

(1− zq2s) . (2.6)

Sometimes we will call PQ(x, q) the quiver partition function. We also point out that

the quiver representation theory involves the choice of an element, the potential, in the path

algebra of the quiver and that the trivial potential is the zero element.

Furthermore, for the quiver Q there exist so called motivic Donaldson-Thomas (DT)

invariants ΩQ
d,s = ΩQ

(d1,...,dm),s. They can be assembled into the DT generating function

ΩQ(x, q) =
∑
d,s

ΩQ
d,sx

dqs(−1)|d|+s+1, xd =
∏
i

xdii , (2.7)

– 7 –
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which is related to the motivic generating series in the following way

PQ(x, q) = Exp

(
ΩQ(x, q)

1− q2

)
. (2.8)

The DT invariants have two geometric interpretations, either as the intersection homol-

ogy Betti numbers of the moduli space of all semi-simple representations of Q of dimension

vector d, or as the Chow-Betti numbers of the moduli space of all simple representations

of Q of dimension vector d, see [20, 21]. In [19] there is a proof that these invariants are

positive integers.

The most basic version of the conjectured knot-quiver correspondence is the statement

that for each knot K there is a quiver QK and integers {ai, qi}i∈QK0
, such that

PQK (x, q)
∣∣
xi=xaaiqqi−Cii

= PK(x, a, q) . (2.9)

We call xi = xaaiqqi−Cii the KQ change of variables. In [1, 2] there are also refined versions

of the KQ correspondence. The correspondence on the level of LMOV and DT invariants

is obtained by substituting (2.3) and (2.8) into (2.9)

ΩQK (x, q)
∣∣
xi=xaaiqqi−Cii

= NK(x, a, q) . (2.10)

Since DT invariants are integer, this equation implies the LMOV conjecture.

We stress that the KQ correspondence is conjectural, and that it is currently not known

how to construct the quiver QK from a given knot K. Evidence for the conjecture includes

checks on infinite families of torus and twist knots. A proof for 2-bridge knots appeared

recently in [22], whereas [23] explores the relation to combinatorics of counting paths. On

the other hand [24] proposes a relation between quivers and topological strings on various

Calabi-Yau manifolds and [25] contains many explicit formulas obtained in the context of

LMOV invariants.

2.2 Physics — 3d N = 2 theories

The physical intepretation of the KQ correspondence is a duality between two 3d N = 2

theories: one determined by the knot and the other by the quiver [3].

The theory associated to the knot K arises from the M-theory on the resolved coni-

fold X with a single M5-brane wrapping the conormal Lagrangian of the knot LK :

space-time : R4 × S1 ×X
∪ ∪

M5 : R2 × S1 × LK .
(2.11)

The compactification on X leads to 3d N = 2 effective theory on R2 × S1, which we

denote T [LK ]. The twisted superpotential of T [LK ] is encoded by the combined large-color

and gs → 0 limit of the HOMFLY-PT generating series. The structure of the theory T [QK ]

can be read off from the analogous limit of the motivic generating series. The exact form

of the duality is given by the change of variables required by the KQ correspondence. It

– 8 –
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amounts to identifying the Fayet-Ilioupoulos couplings of T [QK ] with specific combinations

of the physical fugacities in T [LK ]. After this identification T [QK ] has the same moduli

space of supersymmetric vacua as T [LK ], by construction. Among the many dual descrip-

tions of T [LK ], the existence of a quiver QK provides a specific choice. The structure of

3d N = 2 theories associated to quivers will be revisited in detail in section 5.

We consider the duality between T [LK ] and T [QK ] also from the perspective of the

spectra of BPS vortices: BPS states of T [LK ] are counted by LMOV invariants, BPS states

of T [QK ] are counted by (quiver) DT invariants, and (2.10) is a manifestation of the duality

between the two theories.

2.3 Geometry — holomorphic disks

In the previous secion we saw that T [LK ] arises from M-theory as the effective theory on

the surface of the M5-brane, and that its BPS particles originate from M2-branes ending on

the M5. From the symplectic geometric point of view BPS states correspond to generalized

holomorphic curves with boundary on the Lagrangian submanifold LK .

We recall the definition of generalized holomorphic curves in the resolved conifold X

with boundary on a knot conormal LK ⊂ X (as defined in [3, 6]) from the skeins on branes

approach to open curve counts in [9]. The key observation in [9] is that the count of bare

curves (i.e., curves without constant components) counted by the values of their boundaries

in the skein module remains invariant under deformations. The count of such curves also

requires the choice of a 4-chain CK . Intersections of the interior of a holomorphic curve

and the 4-chain contribute to the framing variable a in the skein module. For generalized

curves there is a single brane on LK and then a = q. When a = q then the map from

the skein module to ‘homology class and linking’ is well-defined and thus counting curves

this way, less refined than the U(1)-skein, also remains invariant. In LK ≈ S1×R2 one can

define such a map that depends on the choice of a framing of the torus at infinity. More

precisely, one fixes bounding chains for the holomorphic curve boundaries that agree with

multiples of the longitude at infinity and replace linking with intersections between curve

boundaries and bounding chains. In [6] an explicit construction of such bounding chains

and compatible 4-chain CK from a certain Morse function of LK was described.

Consider now holomorphic disks with boundary in a multiple of the basic homol-

ogy class. Such disks are generically embedded and for suitable representatives of the

knot conormal can never be further decomposed under deformations. Assuming, in line

with [26, 27], that all actual holomorphic curves with boundary on LK lie in neighborhoods

of such holomorphic disks attached to the conormal, it would then follow that all gener-

alized holomorphic curves are combinations of branched covers of the basic disks. Using

the multiple cover formula (1.1) the count of generalized curves then agrees with the quiver

partition function with nodes at the basic disks and with arrows according to linking and

additional contributions to the vertices given by 4-chain intersections.

From this point of view, the theory T [QK ] can be thought of as changing the perspec-

tive and treating the basic holomorphic disks with a small tubular neighborhood at their

boundaries as independent objects glued into (or attached to) the Lagrangian.

– 9 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
8

3 Quiver description of open Gromov-Witten invariants

The geometric interpretation of the quiver nodes and edges in [3], see also [24], indicates

that the knots-quivers correspondence is a special instance of a more general phenomenon.

There appears to be a quiver description not only of knot invariants, related to basic

holomorphic disks on knot conormals in the resolved conifold, but more generally of BPS

states in the open topological string for a larger class of Lagrangian branes in toric Calabi-

Yau 3-folds, where both the physical and geometric underlying principles apply. In this

section we expand on this viewpoint and discuss general features of the quiver description

of BPS states of open topological strings.

We consider a Lagrangian brane L with topology S1 × R2 inside a toric Calabi-Yau

threefold X and the partition function Ztop(X,L) of open topological strings in X with

boundaries on L or in other words the generating function counting generalized holomorphic

curves with boundary on L.

We observe that in many cases this partition function can be recast in the form of

the partition function Zquiv(Q) of a symmetric quiver Q (such as (2.5)). The knot-quiver

correspondence is the special case when L is a knot conormal and X the resolved conifold.

In the case when L is a toric brane and X is a ‘strip geometry’, this follows from results

in [24]. Here we propose that this picture is valid more generally.

Besides the identification of partition functions, the relation between Ztop(X,L) and

Zquiv(Q) suggests the existence of a configuration for L ⊂ X, where the whole spectrum

of holomorphic curves counted comes from combinations of multiple covers of a finite set

of basic holomorphic disks. Here each quiver node corresponds to a basic holomorphic

disk in X with boundary γ along L, wrapping a certain number of times around S1 and

a certain number of times around closed 2-cycles. The disk boundaries have mutual linking

numbers which can be viewed as intersections of the basic disk boundaries with bounding

chains constructed from a Morse flow on L. Using a 4-chain C with ∂C = 2L, as explained

in [3], one defines also self-linking. These linking and self-linking numbers correspond to

quiver arrows. Any generalized holomorphic curve would then be a map from a worldsheet

Riemann surface Σ to a union of the basic disks. Linking of the basic disks gives linking

on the boundary of such a map, which can then give rise to many formally connected

generalized curves.

Such a decomposition of generalized holomorphic curves into basic disks induces a grad-

ing of the former, which corresponds precisely to the quiver dimension vector (d1, . . . , dm).

The relevant geometric data of all curves in the spectrum includes the homology classes of

their boundaries (refined in this way by the dimension vector) and the relative homology

classes of these curves in (X,L), as well as the self-linking and intersections with the 4-

chain. We observe that in many cases the following open-string/quiver relation holds:

The spectrum of generalized holomorphic curves (holomorphic worldsheet instantons),

with the above defined quantum numbers, is entirely encoded by a finite set of basic holomor-

phic disks as follows. The disks correspond to the quiver nodes. The arrows of the quiver

and the values of the quiver variables of the disks are determined by their self-linking, mutual

linking, 4-chain intersections and relative homology in (X,L). The quiver representation

theory completely determines the full spectrum.
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It is an interesting problem to find conditions ensuring that the open-string/quiver

relation holds. From the behavior of knot and link conormals one might speculate that it

holds when the Lagrangian can be continuously deformed to a controlled cover of a special

Lagrangian S1 × R2. For a quiver with many nodes we expect this to resemble roughly

a multiple branched covering of the C3 toric brane, possibly with different framings on

distinct sheets, and with basic disks arising as combinations of the basic disks on the un-

derlying S1×R2-brane. The motivation behind this picture will become clear in section 6.5.

Existence of such geometric configurations in the moduli space of Lagrangians is an open

problem.

When the open-string/quiver relation holds, the mirror curve of the system (X,L)

admits a ‘decomposition’ into the quiver A-polynomials introduced in [3]. At the quantum

level, this translates into the statement that Ztop(x) admits a refinement to PQ(x) which is

annihilated by the quantum version of the quiver A-polynomials, which we introduce below.

A less obvious consequence that follows from our previous work [3] is that the 3d N = 2

low energy effective theory on an M5-brane wrapping L is a theory of type T [Q]. These are

abelian Chern-Simons matter theories with a very special structure. In particular, their

BPS vortex spectrum coincides with the spectrum of open topological strings in the sense

that the R2×qS1 partition function of T [Q] agrees exactly with PQ, the motivic generating

series of the quiver Q.

Besides these direct consequences, there are others that give rise to new dualities. The

rest of this paper is devoted to exploring these in more detail.

4 Multi-cover skein relations and birth/death for quivers

The open-string/quivers relation, where quiver nodes are identified with basic holomorphic

disks and arrows encode linking (see section 3), suggests a skein property for quivers.

More precisely, deforming L may cause two basic disks to intersect and linking numbers

to change. However the topological string partition function, as well as the disk potential,

remain invariant. This follows from the invariance of curve counts in the U(1)-skein and

projection to generalized holomorphic curves, as explained in section 1.2. At instances

where disk boundaries cross, the boundstates of the two disks also change, since their

linking does. As we shall see below, previous bound states turn into contributions from

a new basic disk which is obtained by gluing the two crossing disks. This then means that

there should be a new quiver, with one extra node and with DT spectrum the same as

the previous one after a suitable specialization of the quiver variables. We will study this

in a simple example in section 4.1 and prove the general relation in section 4.2.

Similarly, deformations of the Lagrangian L may lead to birth/death bifurcations in

the moduli space of basic disks. Near this point there are two new basic disks of opposite

sign. The partition function of covers of a negative disk is the inverse of the partition

function of the corresponding disk. It turns out that the partition function for a disk

with self-linking of positive sign and 4-chain intersection of opposite sign equals that of

a negative sign disk. This then leads to a stabilization operation on quivers where two
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Figure 2. The effect of disk boundary crossing on a simple quiver corresponding to two disks

linking once. Since we use only symmetric quivers, we simplify pictures and let an unoriented line

between nodes denote a pair of arrows in opposite directions.

canceling nodes are added. We study this in a simple example and the general case in

section 4.3.

As it turns out, orientations of moduli spaces play an important role in this study. More

precisely, when disks cross, the local linking number changes from positive to negative or

vice versa. The oriention sign of the glued disk depends on the orientation sign and to

get quiver formulas for the direction where the joined disk would disappear for the natural

orientation we use canceling disks and birth/deaths as just described.

In section 4.6 we collect these holomorphic disk bifurcations into a set of moves on

quivers that leaves the partition function invariant.

4.1 Simple unlinking

Let us consider two disks whose boundaries in L link once, as in the left hand side of fig-

ure 2. As the disk boundaries cross, the disks stay intact and end up in a new position with

boundaries unlinked. There is also a new disk born. It is obtained by gluing the two initial

disks and its boundary has one self-crossing. Thus, after the crossing instant, the configu-

ration of the disk boundaries is as in the right hand side of figure 2 where neither of the old

disks link with the new disk.

Consider now the quiver Q with two nodes on the left hand side of figure 2, corre-

sponding to basic disks as explained above. Unlinking these circles gives a new quiver Q′

with three nodes, as on the right hand side of figure 2. The adjacency matrix of the quiver

transforms as

C =

(
0 1

1 0

)
 C ′ =

 0 0 0

0 0 0

0 0 1

 . (4.1)

To see that the entries in the new quiver matrix C ′ are as claimed, we argue as follows.

In the 2 × 2 top left corner we see self-linking and linking of the old disks. Self-linking

stays unchanged as the disks move, but the linking decreases by one. Since we started

from self-linking zero and linking one, we end up with zeros only. The last entry on

the diagonal of C ′ is one. It corresponds to the self-crossing left from the two original

positive crossings giving the linking between the two original disks. Remaining entries
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Figure 3. The quivers Q and Q′ related by unlinking.

measure linking between the old disks in their new position and the glued disk. There are

two crosssings: one near the self-intersection of the glued disk and one near the resolved

crossing. They have opposite signs and hence the linking numbers are zero. In pictures,

quivers Q and Q′ are shown in figure 3.

We next verify that the two quivers Q and Q′ have identical partition functions after

a suitable identification of variables. We first compute the motivic generating series and

the BPS spectrum of the quiver Q

PQ(x1, x2, q) =
∑

d1,d2≥0

(−q)2d1d2 xd11

(q2; q2)d1

xd22

(q2; q2)d2

=

( ∞∑
n=0

xn1
(q2; q2)n

)( ∞∑
m=0

xm2
(q2; q2)m

)( ∞∑
k=0

(−1)kqk(k−1)(x1x2)k

(q2; q2)k

)
= (x1; q2)−1

∞ (x2; q2)−1
∞ (x1x2; q2)+1

∞

= Exp

(
x1 + x2 − x1x2

1− q2

)
,

(4.2)

where we used (2.5) and the following identities

q2ab

(q2; q2)a(q2; q2)b
=

min(a,b)∑
k=0

qk
2−k(−1)k

(q2; q2)a−k(q2; q2)b−k(q2; q2)k
, (4.3)

(x, q2)∞ =
∏
i≥0

(1− xq2i) =
∞∑
n=0

(−1)nqn(n−1)

(1− q2) · · · (1− q2n)
xn ,

1

(x, q2)∞
=
∏
i≥0

(1− xq2i)−1 =

∞∑
n=0

1

(1− q2) · · · (1− q2n)
xn .

(4.4)

Comparing (4.2) with (2.7) and (2.8), we see that the whole BPS spectrum is just

Ω(1,0),0 = Ω(0,1),0 = Ω(1,1),0 = 1 . (4.5)

We next compute the motivic generating series of the quiver Q′

PQ
′
(x1, x2, x3, q) =

∑
d1,d2,d3≥0

(−q)d23 xd11

(q2; q2)d1

xd22

(q2; q2)d2

xd33

(q2; q2)d3

= (x1; q2)−1
∞ (x2; q2)−1

∞ (qx3; q2)+1
∞ = Exp

(
x1 + x2 − qx3

1− q2

)
,

(4.6)
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which reduces to (4.2) for

x3 = q−1x1x2. (4.7)

We can see that the BPS spectrum of Q′ is

Ω(1,0,0),0 = Ω(0,1,0),0 = Ω(0,0,1),1 = 1 , (4.8)

which agrees with (4.5) after relabelling.2

4.2 Proof of invariance for general quivers: unlinking

We prove the invariance of the motivic generating series under unlinking for general sym-

metric quivers. Without loss of generality we can assume that Q has three nodes: two for

which we change the linking and one spectator — we can erase it or add more spectators

if necessary. Therefore the adjacency matrix can be written as

C =

 r k a

k s b

a b c

 , (4.9)

which gives

PQ(x1, x2, x3, q) =
∑

d1,d2,d3≥0

(−q)
∑
i,j Cijdidj

xd11

(q2; q2)d1

xd22

(q2; q2)d2

xd33

(q2; q2)d3
,

∑
i,j

Cijdidj = rd2
1 + sd2

2 + cd2
3 + 2(kd1d2 + ad1d3 + bd2d3) .

(4.10)

We will show that the motivic generating series of the quiver Q′ given by

C ′ =


r k − 1 a r + k − 1

k − 1 s b s+ k − 1

a b c a+ b

r + k − 1 s+ k − 1 a+ b r + s+ 2k − 1

 (4.11)

is equal to PQ (after appropriate change of variables). We can see that the annihilation

of one link is compensated by the creation of the new node which self-linking and linking

with old vertices depends on initial arrows, see figure 4.

The motivic generating series of Q′ reads

PQ
′
(x1, x2, x3, x4, q) =

∑
δ1,δ2,δ3,δ4≥0

(−q)
∑
i,j C

′
ijδiδjxδ11 x

δ2
2 x

δ3
3 x

δ4
4

(q2; q2)δ1(q2; q2)δ2(q2; q2)δ3(q2; q2)δ4
, (4.12)

where∑
i,j

C ′ijδiδj =rδ2
1 + sδ2

2 + cδ2
3 + (r + s+ 2k − 1)δ2

4 + 2(k − 1)δ1δ2 + 2aδ1δ3

+ 2bδ2δ3 + 2(r + k − 1)δ1δ4 + 2(a+ b)δ3δ4 + 2(s+ k − 1)δ2δ4 .

(4.13)

2The reader might be worried that the spin of the BPS states seems to shift, but in our conventions

the spin is given by s + |d| − 1 so in (4.5) and (4.8) we have two states of spin 0 and one state of spin 1.
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Figure 4. Unlinking — general case. Numbers next to lines and loops denote the number of pairs

of arrows and the number of loops respectively.

After the change of variables

d1 = δ1 + δ4, d2 = δ2 + δ4, d3 = δ3, d4 = δ4, x4 = q−1x1x2 (4.14)

we obtain

PQ
′
(x1, x2, x3, x4, q)

∣∣∣
x4=q−1x1x2

=
∑

d1,d2,d3≥0

(−q)
∑
i,j Cijdidj−2d1d2 x

d1
1 x

d2
2 x

d3
3

(q2; q2)d3

×
min(d1,d2)∑
d4=0

(−1)d4qd
2
4−d4

(q2; q2)d1−d4(q2; q2)d2−d4(q2; q2)d4
,

(4.15)

where
∑

i,j Cijdidj is given by (4.10). Using (4.3), we immediately have

PQ
′
(x1, x2, x3, x4, q)

∣∣∣
x4=q−1x1x2

= PQ(x1, x2, x3, q) , (4.16)

which we wanted to show.

Note that the example from section 4.1 was a special case of this reasoning for k = 1,

r = s = 0, and without the spectator node.

4.3 Redundant pairs of nodes

Redundant pairs of nodes were observed first in [1, 2]. We start in the simplest case of

the two node quiver in figure 5. Note that the partition function of this quiver factorizes into∑
d1

xd11

(q2; q2)d1

∑
d2

(−q)d22 xd22

(q2; q2)d2

 = (x1; q2)−1
∞ (qx2; q2)∞ , (4.17)

which is trivial (equals 1) if we set x2 = q−1x1.

The geometric interpretation of this quiver is the following. The first node correspond-

ing to x1 is a disk with no self-linking. The second one is a disk with one unit of self-linking

as well as a negative shift of the 4-chain intersection compared to the first one (which leads
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Figure 5. Redundant pair of nodes.

to x2 = q−1x1, see [3]), as depicted in figure 5. We note that these two canceling nodes

resemble the unknot nodes [1, 2] with the important difference that the different pow-

ers of a (the conifold Kähler modulus) are now the same, leading to cancellation of their

contributions.

We next show that a redunant pair of disks that link in the same way to all other

nodes does not affect the partition function. Since

n∑
α=0

(−1)αqα
2−α (q2; q2)n

(q2; q2)α(q2; q2)n−α
= (1; q2)n =

{
1 n = 0

0 n ≥ 1
(4.18)

we can write

1 =
∑
n≥0

(1; q2)n(−q)a0n2+2(a1+...+am)n(d1+...+dm) xn

(q2; q2)n

=
∑
n≥0

∑
dm+1+dm+2=n

(−1)dm+2qd
2
m+2−dm+2

(q2; q2)n
(q2; q2)dm+2(q2; q2)dm+1

× (−q)a0n2+2(a1+...+am)n(d1+...+dm) xn

(q2; q2)n

=
∑

dm+1,dm+2≥0

(−q)a0(dm+1+dm+2)2+d2m+2+2(a1+...+am)(dm+1+dm+2)(d1+...+dm)

× xdm+1(q−1x)dm+2

(q2; q2)dm+1(q2; q2)dm+2

.

(4.19)

If we multiply this unit by the motivic generating series of an arbitrary quiver Q with

m vertices and adjacency matrix C and set

x = xm+1 = qxm+2 , (4.20)

we obtain the motivic generating series of the new quiver Q′′

PQ
′′
(x1, . . . , xm+2, q) =

∑
d1,...,dm+2≥0

(−q)C
′′
ijdidj

m+2∏
i=1

xdii
(q2; q2)di

, (4.21)
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where

C ′′ =


a1 a1

C
...

...

am am
a1 . . . am a0 a0

a1 . . . am a0 a0 + 1

 . (4.22)

We find that for xm+1 = qxm+2 nodes m+ 1 and m+ 2 are indeed redundant and

PQ
′′
(x1, . . . , xm, xm+1, xm+2, q)

∣∣∣
xm+1=qxm+2

= PQ(x1, . . . , xm, q). (4.23)

4.4 Simple linking

We next consider linking instead of unlinking, as in section 4.1. This case is more in-

volved than unlinking. (Reversing the orientation of the Lagrangian would switch the roles

between linking and unlinking.) We start from a basic case of two unlinked disks that

correspond to a quiver Q with adjacency matrix

C =

(
0 0

0 0

)
. (4.24)

The motivic generating series is

PQ(x1, x2, q) =
∑

d1,d2≥0

xd11

(q2; q2)d1

xd22

(q2; q2)d2

= (x1; q2)−1
∞ (x2; q2)−1

∞ = Exp

(
x1 + x2

1− q2

)
,

(4.25)

so the whole BPS spectrum is just

Ω(1,0),0 = Ω(0,1),0 = 1 . (4.26)

From the unlinking case in section 4.4, we know that these two disks — alongside

a glued disk with self-linking one — arise from unlinking linked versions of the two disks.

We would now like to run time backwards in this process. This however requires the

presence of the glued disk that we do not have. To remedy this, we create a pair of canceling

glued disks and carry the one with negative orientation compared to the unlinking case to

the other side. Effectively we obtain the unlinking case amended by the presence of a disk

with a negative orientation sign. This anti-disk may be exchanged for a regular disk with

self-linking and 4-chain intersection, as observed in section 4.3. The geometric process is

depicted in figure 6.

We need to interpret this as an adjacency matrix. To this end, we note that the anti-

disk links with the two original disks exactly as the corresponding disk and hence we find

that the last entries in the first two rows and the first two colums are zero. For the anti-disk

the diagonal entry is again as for the disk, which means it is a one. Finally, changing the
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Figure 6. Starting from the standard unlinking based on the skein relation (upper picture), we

add a red anti-disk on both sides (middle picture) and then the disk/anti-disk pair is annihilated,

whereas the red anti-disk on the left can be exchanged for a regular blue disk with self-linking and

4-chain intersection (lower picture).

anti-disk to a disk with self-linking and 4-chain intersection decreases the total self-linking

to zero and we get the following adjacency matrix

C ′ =

 0 1 0

1 0 0

0 0 0

 . (4.27)

The motivic generating series of Q′ is

PQ
′
(x1, x2, x3, q) =

∑
d1,d2,d3≥0

(−q)2d1d2 xd11

(q2; q2)d1

xd22

(q2; q2)d2

xd33

(q2; q2)d3

= (x1; q2)−1
∞ (x2; q2)−1

∞ (x3; q2)−1
∞ (x1x2; q2)+1

∞

= Exp

(
x1 + x2 + x3 − x1x2

1− q2

)
,

(4.28)

which reduces to (4.25) for

x3 = x1x2. (4.29)

From the point of view of the BPS spectrum this identification causes a cancellation

between the basic state coming from the third node and the boundstate of the two old disk

in their new linked position. Consequently, the spectrum

Ω(1,0,0),0 = Ω(0,1,0),0 = Ω(0,0,1),0 = Ω(1,1,0),0 = 1 (4.30)

reduces to (4.26).

The quivers Q and Q′ are presented in figure 7.
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Figure 7. The quivers Q and Q′ related by linking.

4.5 Proof of invariance for general quivers: linking

We next prove the invariance under the introduction of additional linking between two

nodes. More precisely, we will show we can add a redundant pair of nodes to Q in such

a way that the new quiver Q′′ can be obtained by the unlinking of some other quiver Q′.

This is equivalent to the statement that Q′ is the result of linking of Q and PQ
′

= PQ

(after appropriate change of variables).

In analogy to section 4.2 it is sufficient to focus on Q given by

C =

 r k a

k s b

a b c

 . (4.31)

We can enlarge it by a redundant pair of nodes using (4.22) with a1 = r + k, a2 = s + k,

a3 = a+ b, a0 = r + s+ 2k. Then

C ′′ =


r k a r + k r + k

k s b s+ k s+ k

a b c a+ b a+ b

r + k s+ k a+ b r + s+ 2k r + s+ 2k

r + k s+ k a+ b r + s+ 2k r + s+ 2k + 1

 (4.32)

and we know that

PQ
′′
(x1, x2, x3, x4, x5, q)

∣∣∣
x4=qx5

= PQ(x1, x2, x3, q) . (4.33)

On the other hand we can obtain Q′′ by unlinking of the quiver Q′ given by

C ′ =


r k + 1 a r + k

k + 1 s b s+ k

a b c a+ b

r + k s+ k a+ b r + s+ 2k

 . (4.34)

Since

PQ
′
(x1, x2, x3, x4, q) = PQ

′′
(x1, x2, x3, x4, x5, q)

∣∣∣
x5=q−1x1x2

, (4.35)

we have

PQ
′
(x1, x2, x3, x4, q)

∣∣∣
x4=x1x2

= PQ(x1, x2, x3, q) . (4.36)

Therefore if we define the linking of Q given by (4.31) as Q′ given by (4.34), then (4.36)

guarantees the invariance of the motivic generating series under this transformation.
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1 

Figure 8. Linking — general case.

The quivers Q and Q′ are presented in figure 8.

The example from section 4.4 was a special case of this reasoning for r = k = s = 0

with the spectator node erased.

4.6 Equivalence of quivers

We will refer to the linking and unlinking operations introduced above, together with

the addition/removal of redundant pairs of nodes, collectively as quiver multi-cover skein

relations. Since these relations produce an infinite number of quivers with the same parti-

tion functions (upon suitable identification of quiver variables xi), we use them to define

an equivalence relation on the set of quivers with variables as follows.

Definition 4.1. Let Q, Q′ be quivers with m and m′ nodes respectively. We say that Q

and Q′ are equivalent under multi-cover skein relations

Q ∼ Q′ (4.37)

if there exists a sequence of multi-cover skein relations that takes Q into Q′ and vice versa.

If (4.37) holds, then there exist two sets of variables (x1 . . . xm) and (x′1 . . . x
′
m′), related

in a specific way to each other, such that

PQ(x1 . . . xm) = PQ
′
(x′1 . . . x

′
m′) . (4.38)

This equivalence relation contains the one defined in [1, 2] but generates a much larger

equivalence class. For example for the figure-eight knot one can find (on the ground of

the KQ correspondence) two different quivers of the same size which have the same motivic

generating series. We show in appendix B that they are related through multi-cover skein

relations.

Finally, we remark that there is another natural operation on quivers: the change

of framing. This acts on quivers by shifting the adjacency matrix by an overall integer

constant Cij → Cij + f . This equivalence relation is on a different footing since it does

not preserve the partition function and, as explained in [3], has a direct counterpart for

generalized holomorphic curves: the curves are unchanged but the bounding chains changes

and the count changes accordingly.
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5 3d N = 2 dualities of multi-cover skein type

In the context of the knots-quivers correspondence, the generating function of symmetri-

cally colored HOMFLY-PT polynomials (2.1) coincides with the K-theoretic vortex parti-

tion function (or, more properly, the R2 ×q S1 partition function) of a 3d N = 2 theory

T [LK ] arising on the world-volume of an M5-brane wrapped on the knot conormal LK [4, 7].

In [3] we showed that T [LK ] is dual to a theory T [QK ] whose structure is encoded by the

quiver QK corresponding to the knot K. We have argued in section 4 that there is no

unique quiver associated to a Lagrangian like LK , but rather an equivalence class built on

the multi-cover skein relations. This suggests the existence of a corresponding duality web

for theories of type T [QK ].

Furthermore, we conjectured in section 3 that quivers describe not only knot invariants,

but also BPS spectra of open topological strings on a larger class of Lagrangians L in

Calabi-Yau threefolds X. As mentioned there, this extension of the quiver description

implies a corresponding extension of the duality between T [L] and T [Q].

In this section we spell out the details of such dualities in the physical language. We

will focus entirely on quivers and the associated 3d N = 2 theories of type T [Q]. The only

condition we impose on the quiver Q is that it is symmetric, or in other words that for

any pair of vertices (i, j) it has an equal number of arrows i→ j as in the opposite direc-

tion j → i. For the purpose of this section it will not matter whether such a quiver arises

from a geometry or not. Accordingly, we will not assume any relation among the formal

variables xi associated to nodes of Q. In this way, all statements we are going to make will

be of rather general nature. In particular, they will automatically carry over to the gen-

eral geometric setting outlined in section 3, as well as to the more specialized context of

the knots-quivers correspondence, by simply specializing variables.

5.1 General theories of quiver type

For a given symmetric quiver Q we consider a 3d N = 2 theory T [Q] on R2 × S1. This is

an abelian Chen-Simons-matter theory with gauge group

Ggauge = U(1)g,1 × · · · × U(1)g,m , (5.1)

where m is the number of nodes in Q. The matter content is a collection of chiral multi-

plets {φi} i=1,...,m, with charges Q
(j)
i = δij under U(1)g,j . The flavor symmetry is maximally

gauged, there are no residual axial symmetries. On the other hand there is an abelian dual

group of topological symmetries

Gtop = U(1)t,1 × · · · × U(1)t,m . (5.2)

The conserved current of Gtop is j ∼ ?dA, therefore conserved charges are given by the first

Chern class for the gauge connection and correspond to vortex numbers (d1, . . . , dm). Mass

parameters for U(1)t,i correspond to Fayet-Iliopoulos (FI) couplings and will be denoted

by log xi. The central charge of a vortex with global topological charge d is

Z(d) =
∑
i

di log xi = log xd , (5.3)
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where x = (x1, . . . , xm) is the collection of FI couplings and d = (d1, . . . , dm) is that of

vortex charges. Finally, T [Q] has mixed Chern-Simons couplings Cij ∈ Z. More precisely,

these are the effective couplings related to the bare ones by 1-loop contributions of chiral

multiplets [10]

Cij = κij +
1

2

m∑
k=1

Q
(k)
i Q

(k)
j = κij +

1

2
δij . (5.4)

At the level of a classical description, we always work on the Coulomb branch where all

chirals are massive due to the VEVs acquired by vector multiplets of Gg. Therefore we

always work with effective Chern-Simons couplings, which must be integers.

We consider T [Q] on R2 ×q S1 with q = e~ parametrizing a rotation of R2 around

the S1. This localizes BPS vortices to the origin of R2, and confers the latter an effective

volume 1
2~ . (For applications to topological strings recall that q2 = egs .) The K-theoretic

vortex partition function of T [Q] coincides with the generating function of stable quiver

representations [3]

Zvortex
T [Q] (x, q) = PQ(x, q) (5.5)

where q = e~. Recall that the quiver partition function is explicitly known in terms of the

adjacency matrix Cij

PQ(x, q) =
∑

d1,...,dm≥0

(−q)
∑

1≤i,j≤m Cijdidj

m∏
i=1

xdii
(q2; q2)di

, (5.6)

therefore vortex partition functions of theories T [Q] are completely under control. Once

again, let us stress that we are not imposing any constraint on the FI parameters x. They

are all independent.

5.2 Semiclassical description

In the semiclassical limit ~→ 0, the partition function takes the universal form

PQ(x, q)
~→0−→

q2di→yi

∫ m∏
i=1

dyi
yi

exp

[
1

2~

(
W̃T [Q](x,y) +O(~)

)]
W̃T [Q](x,y) =

∑
i

Li2(yi) + log
(
(−1)Ciixi

)
log yi +

∑
i,j

Cij
2

log yi log yj .

(5.7)

Here yi are fugacities for Gg and log yi descend from the top components of vector mul-

tiplets via localization. Strictly speaking, the xi appearing above are not the same as

the FI couplings considered in section 5.1, but are related to them by an overall rescaling

of log xi
log xi → 2πR · log xi , (5.8)

with R being the radius of compactification of the theory on S1 × R2. Only after this

rescaling the FI coupling log xi becomes dimensionless and this is what appears in (5.7).

An analogous statement applies to the relation between gauge fugacities and the top com-

ponent of gauge vector multiplets. We will generally suppress 2πR except where necessary.
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The structure of the twisted superpotential therefore reflects the Lagrangian descrip-

tion of T [Q], where each dilogarithm corresponds to the 1-loop contribution of a chiral

multiplet with dynamical mass log yi.

5.3 Quantum moduli space of vacua on S1 × R2

In this section we highlight some properties of the quantum moduli spaces of vacua of

theories of type T [Q]. Readers interested only in the statement on dualities induced by

multi-cover skein relations may skip ahead to section 5.4.

The semiclassical description (5.7) is formulated on the Coulomb branch. On R3

the Higgs branch and Coulomb branch are generically separated, joining only at singulari-

ties (although exceptions to this are known, for example in the case of non-Abelian gauge

theories [10]). The details of this picture can be however modified in several ways, for

example by turning on mass deformations which can lift, partially or completely, the Higgs

branch. Moreover when working on R2×S1, BPS vortices wrapping S1 produce instanton

corrections for the Kähler potential of the order e−2πR·Z(d). The effect of these is to smooth

out the quantum moduli space, merging several branches together. At the quantum level,

and with a circle of finite radius, there is no invariant distinction between branches that

would otherwise be separated on R3.

5.3.1 An example — SQED

Let us illustrate these effects through a concrete example. To this end, we will consider

a model that is not of the type T [Q] but closely related, as will become clear later on.

We consider a U(1)g gauge theory with a chiral u with charge +1 and a chiral ũ with

charge -1. There is an axial symmetry U(1)a under which both chirals have charge +1, we

may turn on a mass deformation for this with fugacity denoted by µ = e2πRm. We also

include the possibility to turn on a FI coupling which corresponds to the twisted mass of

the topological symmetry U(1)t. This model is known as Nf = 1 SQED.

When this theory is considered on R3, its moduli space of vacua is the set of minima

of the potential

VSQED =
e2

2

(
|u|2 − |ũ|2 − ζ

)2
+ (σ +m)2|u|2 + (σ −m)2|ũ|2 . (5.9)

Here σ and ζ are respectively the VEV of the top component in the gauge multiplet and

the FI coupling, e is the gauge coupling. The quantum moduli space of this theory is

well-known [10]. If µ = 1, it consists of a Higgs branch parameterized by the meson π = uũ

for ζ 6= 0 and a two-component Coulomb branch parameterized by VEVs of monopole

operators m± at σ > 0 and σ < 0 for ζ = 0. The Higgs branch has the structure of

a cone, due to the fact that the meson operator π = uũ can be assigned a gauge-invariant

phase. Likewise for the gauge-invariant monopole operators, conferring the two halves of

the Coulomb branch a cone structure as well (see figure 9a).

If we turn on the axial mass µ = e2πRm, this breaks the Higgs branch: now VSQED = 0

requires either σ = −m and ũ = 0 or σ = m and u = 0. In both cases π = uũ = 0.

However it is still possible to turn on a nonzero ζ: if σ = −m and ζ > 0, then u can
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(a) Theory on R3 with µ = 1. (b) Theory on R3 with µ 6= 1.

Figure 9. Vacua of Nf = 1 SQED on R3.

be set to |u| = ζ1/2 to minimize the potential. Likewise for σ = +m and ζ < 0 one can

always take |ũ| = (−ζ)1/2 to minimize the potential. Overall, there are now discrete vacua

for different values of (ζ, σ). The moduli space has a structure which is the one shown

schematically in figure 9b.

When the theory is compactified on a circle of radius R, both σ and ζ get complexified

and it is convenient to introduce coordinates (x, y) ∈ C∗ ×C∗, related to the original ones

by 2πRσ ∼ Re log y and −2πRζ ∼ Re log x. The partition function of this theory can be

written down in the semiclassical limit by a mild generalization of formula (5.7)

Z(x, µ, ~) ∼∫
dy

y
exp

[
1

2~

(
Li2(µy) + Li2(µy−1) + log(−x) log y +

1

2
(log y)2 +O(~)

)]
.

(5.10)

The vacuum manifold is then

µx− xy + µy − 1 = 0 . (5.11)

This is a sphere with four punctures at positions

(x, y) ∈ {(0, µ−1), (µ−1, 0), (µ,∞), (∞, µ)} . (5.12)

Noting that these position correspond exactly to the asymptotics of the vacua on R3 in

figure 9b, we deduce that the moduli spaces now has the form shown in figure 10b. If we

set µ = 1, the curve factorizes into two copies of C∗ touching at the point x = y = 1 as

shown in figure 10a

(y − 1)(x− 1) = 0 . (5.13)

In the compactification from R3 to R2 × S1 the asymptotics of σ and ζ just gain a circle,

but deep inside the moduli space nontrivial corrections take place. In 3d N = 2 language

these come from vortices wrapping the S1, and they are responsible for smoothing out

the trivalent junctions of figure 9b into the smooth curve in figure 10b.

5.3.2 SQED and the theory on the unknot conormal

The resemblance of the moduli space of vacua of the theory on a circle and the mirror curve

of the resolved conifold has a simple explanation. SQED is the worldvolume theory T [L]
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(a) Theory on R2×S1 with µ = 1. (b) Theory on R2×S1 with µ 6= 1.

Figure 10. Vacua of Nf = 1 SQED on R2 × S1.

that arises on the toric brane L in the conifold [7, 28, 29]. Incidentally, this brane essentially

coincides with the unknot conormal L01 [4] and the mirror curve of L01 is the augmentation

curve of the unknot [5]. The BPS vortices of T [L] descend from M2-branes wrapping

holomorphic curves with boundary on L, resulting in the equality of the open Gromov-

Witten partition function on L and the K-theoretic vortex partition function of T [L] [7].

However, the unknot theory and the theory on the toric brane in the conifold (SQED)

are almost the same, but not quite the same. To be precise, let us compare (5.10) with

the twisted effective superpotential for T [L01 ] in ([3], eq. (5.26)). Here we report it with

t = −1 (to work in the unrefined case), use standard identities for dilogarithms [30], and

neglect constant terms

W̃T [L01 ] = Li2 (y)− Li2
(
a2y
)

+ Li2
(
a2
)

+ log x log y

= Li2 (y) + Li2
(
a−2y−1

)
+

1

2
log(−a2y)2 + Li2

(
a2
)

+ log x log y .
(5.14)

Performing a rescaling of variables y → µy, x→ µx and identifying a = µ−1 gives a theory

with matter content defined by three dilogarithms: Li2(µy±1) and Li2(µ−2). While the first

two coincide with terms from SQED (5.10), the last term is an extra gauge-neutral particle

with axial charge −2. This particle is better reinterpreted through the identity Li2
(
µ−2

)
+

1
2 log(−µ−2)2 = −Li2(µ2) where the minus sign, and the fact that it is gauge-neutral,

suggest that we view this as a particle in a dual theory. Indeed SQED theory is dual to

the XYZ model, a theory of three free chirals [10]. One of them is the meson π = uũ which

is gauge-neutral and has axial charge +2 (like the new dilogarithm). The other two are

the monopole operators, which appear in the Gromov-Witten disk potential of the unknot

(see [3], eq. (5.30)).

To summarize, SQED differs from the unknot theory: the latter features an extra

neutral particle with axial charge −2. In the context of SQED, this particle is ‘swapped’

into the dual XYZ model where it is identified with the meson of SQED. This subtle

difference does not affect the moduli space of vacua since the particle carries neither gauge

charge nor topological charge, only the axial charge. For this reason, the moduli space

of SQED coincides with that of the unknot theory. This is an example of two different

theories with the same moduli space of vacua. Geometrically, the dilogarithm Li2(a2) may

be interpreted as arising in the semiclassical limit from the net contribution of two multi-
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covers of the sphere with single units of 4-chain intersection of opposite signs (that is:

replacing a with q±1a2 in (1.1), taking the ratio, and putting gs → 0).

5.3.3 General moduli spaces of vacua

To conclude, let us remark on how this picture generalizes to theories of type T [Q]. In fact,

the SQED theory we just analyzed is of type T [Q] since it corresponds to the unknot [3].

The quiver adjacency matrix in this case is

C =

(
0 0

0 1

)
. (5.15)

The moduli space of vacua of this theory is determined by the quiver A-polynomials intro-

duced in [3] (see also [23, 24, 31]). For the matrix C they are given by

A1(x,y) = 1− y1 − x1 = 0 , A2(x,y) = 1− y2 + x2y2 = 0 , (5.16)

see (5.19). Together with the identification of variables

x1 = µx , x2 = µ−1x , y1y2 = µy , (5.17)

they reproduce (5.11).

This brings us to another general fact about theories of type T [Q]: if we did not

enforce the specialization of variables (5.17), the moduli space of vacua would be 2-complex-

dimensional, hence a complex surface rather than a complex curve. The extra dimension

is hiding in m ∼ log µ in figure 10. In other words, the full quantum moduli space of

the theory T [Q] would be the total space of the fibration of the augmentation curve over

the complex parameter space with local coordinates (x, µ) ∼ (x1, x2). This is a general

feature of quiver-type theories: the quantum moduli spaces of vacua of T [Q] on R2×S1 is

an m-dimensional algebraic variety

MQ := {AQi (x,y) = 0 , 1 ≤ i ≤ m} ⊂
m∏
i=1

C∗xi × C∗yi (5.18)

defined by the quiver A-polynomials

AQi (x,y) = 1− yi − (−1)Ciixi

m∏
j=1

y
Cij
j . (5.19)

The variety MQ is middle-dimensional and Lagrangian with respect to the standard sym-

plectic form on the 2m-dimensional algebraic torus. In fact it is a higher-dimensional

analogue of the augmentation variety (or its specialization, the A-polynomial). In the con-

text of the KQ correspondence, or its generalization introduced in section 3, the latter

would be recovered by imposing m− 1 relations among the xi variables.
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5.4 3d N = 2 multi-cover skein dualities

In section 4 we presented a new class of dualities among quivers. The basic operation

consists of modifying Q by removing a link between two nodes and adding a new node

linked in a particular way to others to obtain a new quiver Q′. With a suitable identification

between parameters xi and x′i we then found that the partition functions of Q andQ′ exactly

match. Due to the vortex interpretation of quiver partition functions (5.5), this duality

can be translated into the language of 3d N = 2 quiver type theories on R2 ×q S1. This

leads us to conjecture an infrared duality between the following theories:

Theory T [Q]. This is a theory of quiver type defined by a quiver Q with m nodes.

The gauge group is

G(Q)
gauge = U(1)g,1 × · · · × U(1)g,m , (5.20)

with mixed gauge Chern-Simons couplings fixed by the quiver adjacency matrix Cij , as

in (5.4). The mass deformations of this theory consist entirely of FI couplings x1, . . . , xm,

or twisted masses for the topological symmetry group

G
(Q)
top = U(1)t,1 × · · · × U(1)t,m . (5.21)

Theory T [Q′]. This is a theory of quiver type defined by a quiver Q′ with m+ 1 nodes.

The gauge group is

G(Q′)
gauge = U(1)g,1 × · · · × U(1)g,m+1 , (5.22)

with mixed gauge Chern-Simons couplings fixed by the quiver adjacency matrix C ′ij . The

quiver Q′ is related to Q by deletion of a link between nodes a and b. Therefore C ′ab =

C ′ba = Cab − 1, while C ′ij = Cij for all other (i, j) 6= (a, b), (b, a) and i, j ≤ m. In addition,

C ′ij also encodes mixed gauge Chern-Simons couplings for the new gauge group, labeled by

i = m+ 1. Its mass deformations consist entirely of FI couplings x′1 . . . x
′
m+1. This theory

also has a monopole potential

WQ′ = mm+1mamb , (5.23)

where mi are monopole operators with charges

ma mb mm+1

U(1)g,i 0 0 0

U(1)t,a −1 0 0

U(1)t,b 0 −1 0

U(1)t,m+1 0 0 1

U(1)t,i 6=a,b,m+1 0 0 0

(5.24)

Evidence. The monopole potential (5.23) breaks the topological symmetry group of

theory T [Q′], reducing its rank by one

G
(Q′)
top = U(1)t,1 × · · · × U(1)t,m . (5.25)

In fact the potential enforces

x′m+1 = q−1x′ax
′
b , (5.26)
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and we claim that the duality between T [Q] and T [Q′] holds with (5.26) supplemented by

x′i = xi i = 1, . . . ,m . (5.27)

The fact that we can match global continuous symmetries of the two theories is already

a good piece of evidence for the duality. Let us mention that, although the FI couplings of

the first m coincide, this is generally not the case for the gauge fugacities. Later we will

see examples of this.

Another piece of evidence for this duality includes the equality of K-theoretic vortex

partition functions. This follows from (5.5) and (4.16)

Zvortex
T [Q′] (x′, q) = Zvortex

T [Q] (x, q) (5.28)

provided (5.26) and (5.27) hold.

Moreover, it follows from the semiclassical limit ~ → 0 of (5.28) that T [Q] and T [Q′]

have the same quantum moduli space of vacua. However, the dimensions ofMQ andMQ′ ,

defined as in (5.18), do not seem to match: dimCMQ′ = dimCMQ + 1. The equation

we need to supply is a relation for the gauge fugacities. Motivated by the geometric

interpretation in terms of holomorphic disks, we supply in fact two equations:

ya = y′ay
′
m+1 , yb = y′by

′
m+1 . (5.29)

With these, the algebraic varieties are equivalent:

MQ 'MQ′ . (5.30)

The geometric interpretation of (5.29) is rather simple: when the multi-cover skein

relation in figure 2 is applied, the meridian holonomy of basic disks Da and Db is broken

up into that of the unlinked disks D′a, D
′
b plus that of the (now basic) boundstate D′m+1.

This counting is based on the interpretation of meridian holonomies as the effective result

of the infinite towers of multi-coverings of basic disks [4]. The multi-cover skein relation

reorganizes these towers and these changes of variables simply follow. On the other hand,

algebraically imposing these two equations is nontrivial, since it potentially overconstrains

the problem. Their consistency is predicted by the geometric picture, below it will be

verified in some examples. In order to describe these operations at the level of moduli

spaces appropriately, we need a framework of Lagrangian correspondences, which will be

reviewed in section 6.8.

5.5 A basic example: pentagon duality

The fundamental multi-cover skein duality relates the quivers with adjacency matrices

C =

(
0 1

1 0

)
C ′ =

 0 0 0

0 0 0

0 0 1

 . (5.31)

The corresponding quivers are

Q = Q′ = . (5.32)
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We proved the equality of the partition functions of Q and Q′ in section 4.1. Here we

discuss the description of the corresponding 3d N = 2 theories, and the corresponding

semi-classical picture.

Theory T [Q]. The gauge group is

G(Q)
gauge = U(1)g,1 ×U(1)g,2 , (5.33)

with effective mixed gauge Chern-Simons coupling C12 = 1. Both FI couplings x1, x2 are

turned on, the corresponding topological symmetry group is

G
(Q)
top = U(1)t,1 ×U(1)t,2 . (5.34)

The semiclassical limit of the K theoretic vortex partition function is

ZQ(x1, x2, ~) ∼
∫
dy1

y1

dy2

y2
e

1
2~W̃Q ,

W̃Q = Li2(y1) + Li2(y2) + log x1 log y1 + log x2 log y2 + log y1 log y2 +O(~) .

(5.35)

The vacuum manifold of this theory is

MQ : {1− y1 − x1y2 = 0 , 1− y2 − x2y1 = 0} ⊂ (C∗ × C∗)2 . (5.36)

Theory T [Q′]. The gauge group is

G(Q′)
gauge = U(1)′g,1 ×U(1)′g,2 ×U(1)′g,3 , (5.37)

the only nonzero effective gauge Chern-Simons coupling is C ′33 = 1. The FI couplings of

this theory are x′1, x
′
2, x
′
3. Finally, this theory has a monopole potential

WQ′ = m1m2m3 , (5.38)

where mi are monopole operators with charges

m1 m2 m3

U(1)′g,i 0 0 0

U(1)′t,1 −1 0 0

U(1)′t,2 0 −1 0

U(1)′t,3 0 0 1

(5.39)

This potential enforces x′3 = x′1x
′
2 at the classical level. Taking this into account, the semi-

classical limit of the K theoretic vortex partition function is

ZQ′(x
′
1, x
′
2, ~) ∼

∫
dy′1
y′1

dy′2
y′2

dy′3
y′3

e
1
2~W̃Q′ ,

W̃Q′ = Li2(y′1) + Li2(y′2) + Li2(y′3) +
1

2

(
log y′3

)2
+ log x′1 log y′1 + log x′2 log y′2 + log(−x′1x′2) log y′3 +O(~) .

(5.40)
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The vacuum manifold of this theory is

MQ′ : {1− y′1 − x′1 = 0 , 1− y′2 − x′2 = 0 , 1− y′3 + x′1x
′
2 y
′
3 = 0} ⊂ (C∗ × C∗)3 . (5.41)

Let us check the equivalence of the vacuum manifolds. Solving for y′3 gives y′3 = (1−x′1x′2)−1.

Then we use the map (5.27) to set x′1 = x1, x
′
2 = x2. Next we solve for y′1, y

′
2 and use

the map (5.29) to obtain

y1 = y′1y
′
3 =

1− x1

1− x1x2
, y2 = y′2y

′
3 =

1− x2

1− x1x2
. (5.42)

It can be easily checked that this agrees with the description of MQ in (5.36).

5.6 Relation to other known dualities

In general, multi-cover skein dualities of 3d N = 2 theories appear to give new relations.

However, in special cases, multi-cover skein dualities coincide with known dualities of 3d

N = 2 theories. One example is the SQED-XYZ ‘mirror symmetry’.

5.6.1 Pentagon duality and SQED — XYZ mirror symmetry

Let us consider the pentagon duality illustrated above. We start from Theory T [Q]: taking

the saddle point with respect to y1 in (5.35) localizes the integral to y1 = 1− x1y2:∫
dy2

y2
e

1
2~ (Li2(1−x1y2)+Li2(y2)+log(1−x1y2) log y2+log x1 log(1−x1y2)+log x2 log y2)

= e
1
2~

(
+ 1

2
[log(−x1)]2+log x2 log x

−1/2
1

)

×
∫
dy

y
e

1
2~

(
Li2(x

−1/2
1 y−1)+Li2(x

−1/2
1 y)+log y log(−x1/21 x2)+ 1

2
(log y)2

)
,

(5.43)

where we introduced the effective (or shifted) gauge fugacity y = y2x
1/2
1 , and used standard

dilogarithm identities. The resulting integrand is exactly that of SQED theory. If we

identify (y, x
−1/2
1 , x2 x

1/2
1 ) as the fugacities of U(1)g×U(1)a×U(1)t, this integral coincides

precisely with (5.10).

Next we can check what happens on the other side. In Theory T [Q′] we can directly

perform the integrals (5.40) to get

exp

[
1

2~
(
Li2(x−1

1 ) + Li2(x−1
2 ) + Li2(x1x2) + . . .

)]
, (5.44)

where ellipses refer to usual squares of logarithms, which can be computed using standard

identities for Li2. This signals the presence of three chirals with the following charges

U(1)a U(1)t

π 2 0

m− −1 −1

m+ −1 1

(5.45)

These correspond to the meson and the two monopole operators in the XYZ dual descrip-

tion of SQED (compare, for example, charge assignments with those in [32], section 3).

Therefore after integrating out some of the gauge fugacities, the pentagon multi-cover

skein duality is related to SQED-XYZ mirror symmetry.
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Figure 11. Chain of dualities obtained by unlinking. Numbers next to edges denote multiplicity.

5.6.2 Beyond the pentagon

So far we have focused on a single example of multi-cover skein duality: the pentagon.

General multi-cover skein dualities are harder to describe in terms of known 3d N = 2

dualities, in particular since they generate infinite sets of dual theories.

As an example, consider the quiver with two nodes and two pairs of arrows:

Q = , C =

(
0 2

2 0

)
. (5.46)

The gauge group is once again

G(Q)
gauge = U(1)g,1 ×U(1)g,2 , (5.47)

however now the effective mixed gauge Chern-Simons coupling is C12 = 2. Both FI cou-

plings x1, x2 are turned on, the corresponding topological symmetry group is

G
(Q)
top = U(1)t,1 ×U(1)t,2 . (5.48)

The semiclassical limit of the K-theoretic vortex partition function is

ZQ(x1, x2, ~) ∼
∫
dy1

y1

dy2

y2
e

1
2~W̃Q ,

W̃Q = Li2(y1) + Li2(y2) + log x1 log y1 + log x2 log y2 + 2 log y1 log y2 +O(~) ,

(5.49)

and the vacuum manifold of the theory is

MQ : {1− y1 − x1y
2
2 = 0 , 1− y2 − x2y

2
1 = 0} ⊂ (C∗ × C∗)2 . (5.50)

Applying multi-cover quiver skein dualities successively we obtain more and more compli-

cated theories. The first few in the family are shown in figure 11.

As we continue with this operation the gauge theory description becomes more com-

plicated, involving larger gauge groups, more matter fields, more Chern-Simons couplings,

and more monopole potential terms. The dualities produced by multi-cover skein relations

can be quite nontrivial: given one of these more complicated theories, it would be very

hard to guess that it admits a simple dual such as (5.49). It would also be important to

determine whether this chain of dualities, and more generally multi-cover skein dualities,

can be obtained by combination of known 3d N = 2 dualities, such as described in [32].
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6 Operator-valued partition functions, wall-crossing, and multi-cover

skein relations

We have shown above that there is a whole family of quivers associated to a knot. They are

generated by creation and destruction of quiver links accompanied by addition of suitable

nodes. From the viewpoint of counts of holomorphic curves each node corresponds to

a basic disk. The multi-cover skein relation induces a change in the set of basic disks

that generate the BPS spectrum without changing the partition function which counts all

generalized holomorphic curves with boundary on LK .

In this section we will give a more quantitative description of the change in the set of

basis disks at the level of rather explicit formulas for partition functions that make it more

manifest which holomorphic curves are basic, which ones are boundstates, which ones are

multi-covers, etc. For this purpose we will introduce an appropriate formalism which leads

to interesting connections to work on wall-crossing by Kontsevich and Soibelman [11].

6.1 Quantum torus algebra

The partition function of quiver representations obeys functional identities associated to

quantum quiver A-polynomials

Âi(x,y)PQ(x, q) = 0 . (6.1)

These arise as straightforward quantizations of the classical quiver A-polynomials as ex-

plained in [3].3 More precisely, if C is the adjacency matrix of the quiver, the general

formula for its quantum quiver A-polynomial reads

Âi(x,y) = 1− ŷi − x̂i(−qŷi)Cii
∏
j 6=i

ŷ
Cij
j . (6.2)

The operators x̂i and ŷi are defined by

x̂if(x1, . . . , xm, y1, . . . , ym) = xi f(x1, . . . , xm, y1, . . . , ym) ,

ŷif(x1, . . . , xm, y1, . . . , ym) = f(x1, . . . , q
2xi, . . . , xm, y1, . . . , ym) ,

(6.3)

They generate a quantum torus algebra

x̂ix̂j = x̂j x̂i , ŷiŷj = ŷj ŷi ,

ŷix̂j = q2δi,j x̂j ŷi .
(6.4)

For knot conormals LK this is the algebra that arises by deformation-quantization on

the moduli space of flat abelian connections on LK \ {Li} i=1,...,m, the knot conormal where

we excise the tubular neighborhood Li of the boundary of each basic disk. In the semi-

classical limit (q → 1) x̂i and ŷi tend to longitude and meridian on T 2
i = ∂Li. This is also

consistent with the identification yi ∼ q2di in the semiclassical limit of PQ(x, q), see [3].

3We have been informed by H. Larraguivel, D. Noshchenko, M. Panfil, and P. Sulkowski that quan-

tum quiver A-polynomials have been independently obtained in their upcoming work which focuses on

the topological recursion.
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6.2 Assembling a quiver

In this section we explain how to write the partition function of any symmetric quiver as

a simple product in non-commutative variables in the quantum torus algebra. Consider

a symmetric quiver Q and suppose that we wish to add to it a new node labeled by 0 to

obtain another quiver Q′. Let ` be the number of loops on the new node and let vi be

the number of links between the zeroth node and the i-th node of Q. The quiver partition

function changes as follows

PQ
′
(x0,x, q) =

∑
d0,d

(−q)d·C·d+2d0 v·d+` d0
2 xdxd00

(q2; q2)d(q2; q2)d0

=
∑
d0

(−q)` d0
2 xd00

(q2; q2)d0

∑
d

(−q)d·C·d (−q)2d0 v·dxd

(q2; q2)d

=

∑
d0≥0

(−q)` d02

(q2; q2)d0
x̂d00

(∏
i

ŷi
vi
)d0PQ(x, q)

(6.5)

where d · C · d =
∑

i,j Cijdidj , v · d =
∑

i vidi, xd =
∏
i x

di
i , and (q2; q2)d =

∏
i(q

2; q2)di .

Now notice that

(x̂0ŷ
k
0 )n = x̂n0 ŷ

nk
0 q(n2−n)k (6.6)

(see section 6.2.2 for a geometric interpretation) and recall the definition of the quantum

dilogarithm:

Ψq(ξ) :=
∑
n=0

qn

(q2, q2)n
ξn . (6.7)

Then the addition of a node to the quiver (as above) corresponds to the action of the fol-

lowing q-difference operator:

PQ
′
(x0,x, q) = Ψq

(
(−1)` q`−1 x̂0 ŷ

`
0

∏
i

ŷvii

)
PQ(x, q) . (6.8)

By iteration, one may construct the partition function of any quiver in this way, starting

from the empty quiver Q = ∅ with P∅(q) = 1, and adding all nodes with appropriate

linking data successively. If we define4

Xi = (−1)Cii qCii−1 x̂i ŷ
Cii
i

∏
j<i

ŷj
Cij (6.9)

for i = 1, . . . ,m, we get the following compact expression for the quiver partition function:

PQ = Ψq(Xm) ·Ψq(Xm−1) · . . . · Ψq(X1) . (6.10)

More precisely, PQ is an operator in the quantum torus algebra that encodes the quiver

partition function. There is one quantum dilogarithm Ψq for each node of the quiver, and

the variables Xi are non-commutative. In fact

XiXj = q2AijXjXi , (6.11)

4Note that this is similar, but not identical, to the expressions appearing in the Âi.
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where Aij is a skew-symmetric matrix

Aij =


Cij (i > j)

0 (i = j)

−Cij (i < j)

. (6.12)

We point out that we made a choice of ordering of the quiver nodes. Different orderings

give different definitions of Xi as well as different presentations (6.10). However, they

are all equivalent and involve the same number of dilogarithms equal to the number of

nodes in Q.

6.2.1 Normal ordering

The quiver partition function written as in (6.10) stands in striking contrast to the factor-

ization that defines the motivic DT invariants (2.8). In both cases the partition function

is a product of q-Pochhammers, however in (6.10) the product is finite and all powers are

equal to −1, whereas in (2.8) the factorization typically involves infinitely many nonzero

motivic DT invariants.

The relation between the two can be described by a simple operation that we call

the normal ordering. Given a formal series in x̂ and ŷ, the normal ordering is defined

as the operation of reordering each monomial so that all ŷi are brought to the right and

removed. Since ŷi act as the identity on the constant function 1, this just corresponds to

the result of acting by the operator on the function 1.

Applying the normal ordering to (6.10) results in a formal series that coincides by

definition with PQ(x, q), as written in (2.5), with factorization that yields (2.8).

6.2.2 Self-linking

Let us comment on the geometric interpretation of the q-shift induced by the addition

of loops on single nodes, accounted by formula (6.6) through the quantum torus algebra.

Loops on a node correspond to ‘self-linking’ of the basic disk dual to that node. Geomet-

rically, this can be thought of as a local kink of the disk boundary, with a compensating

4-chain intersection of the opposite sign [3]. For the basic disk these two give canceling

powers of q. However, multi-covers counted by xdii picks up a power of qn
2

for di = n,

because with the kink the disk boundary must cross (a copy of) itself n2 times, see sec-

tion 3. Apart from this, the multi-cover also pick up n intersections with the 4-chain.

The combination of these effects explains the factor qn
2−n in (6.6).

6.3 Review of wall-crossing

We briefly recall the basic setup of the Kontsevich-Soibelman wall-crossing formula [11].

Let Γ be a Poisson lattice endowed with a skew-symmetric integral pairing 〈 · , · 〉. We

define the quantum torus algebra C[Γ] by

XγXγ′ = q〈γ,γ
′〉Xγ+γ′ . (6.13)

Note that this implies XγXγ′ = q2〈γ,γ′〉Xγ′Xγ .
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Let Z ∈ Hom(Γ,C) be the central charge homomorphism that associates γ 7→ Zγ ∈ C.

We denote by B the space of such homomorphisms and by u a point in B. Therefore u fixes

a choice of Zγ for all γ, in particular if fixes the relative partial ordering of arg Zγ .

The BPS spectrum at u is encoded by a collection of Laurent polynomials Ω(γ, q, u) ∈
Z[q, q−1]. We denote by Ωj(γ, u) the coefficient of (−q)j . Let us fix a sector ^ of the unit

circle and consider

U^(u) :=

x∏
Zγ∈^

Ψq((−1)j+1qjXγ)Ωj(γ,u) (6.14)

where the product is taken over all BPS states with charge γ whose central charge Zγ has

phase within this sector with increasing ordering of argZ from right to left.

We can now state the content of the wall-crossing formula. Let u0, u1 ∈ B be two

points connected by a smooth path u(t) ⊂ B, such that no Zγ crosses the boundary of ^
if Ω(γ, u(t)) 6= 0. However, the phase-ordering of central charges within ^ may reshuffle

arbitrarily along the path. Then

U^(u1) = U^(u0) . (6.15)

This turns out to fix entirely Ω(γ, q, u1) in terms of Ω(γ, q, u0).

The most basic example of a wall-crossing formula involves a rank-two lattice γ1Z⊕γ2Z
with 〈γ2, γ1〉 = 1. Let u0 correspond to argZγ1 < argZγ2 and u1 to the opposite ordering.

Given the BPS spectrum Ω(γ1, q, u0) = Ω(γ2, q, u0) = 1, the wall-crossing formula

Ψq(−Xγ2)Ψq(−Xγ1) = Ψq(−Xγ1)Ψq(−Xγ1+γ2)Ψq(−Xγ2) (6.16)

predicts the BPS spectrum at u1, namely Ω(γ1, q, u1) = Ω(γ2, q, u1) = Ω(γ1 +γ2, q, u1) = 1,

corresponding to the factorization on the right hand side.

6.4 Wall-crossing as multi-cover skein relations: the pentagon

Let us now return to the basic example of link removal studied in detail in section 4.1.

The two equivalent quivers, related by application of skein relations, are depicted in figure 3.

The first quiver consists of two nodes with one link between them. Let us assemble this

quiver as explained in section 6.2. Variables (6.9) and their algebra (6.12) in this case are:

X1 = q−1x̂1 , X2 = q−1x̂2ŷ1 ,

X1X2 = q−2X2X1 .
(6.17)

By (6.10) the partition function is therefore

P = Ψq(X2)Ψq(X1) . (6.18)

The second quiver of figure 3 has three nodes, no links among them, and one loop on

the third node. The non-commutative variables and their algebra are now

X ′1 = q−1x̂1 , X ′2 = q−1x̂2 , X ′3 = −x̂3ŷ3 ,

X ′iX
′
j = X ′jX

′
i .

(6.19)

– 35 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
8

By (6.10) the partition function can be expressed as

P = Ψq(X
′
1)Ψq(X

′
3)Ψq(X

′
2) , (6.20)

where we have reshuffled the arguments using the fact that of X ′i mutually commute. Recall

from (4.7) that x3 = q−1x1x2. We can view the above partition function as the normal-

ordered version of

P = Ψq(q
−1x̂1)Ψq(−q−1x̂1x̂2ŷ1)Ψq(q

−1x̂2ŷ1)

= Ψq(X1)Ψq(−q X1X2)Ψq(X2) .
(6.21)

Here we simply inserted ŷ1 inside the last dilogarithm (which does nothing upon normal

ordering), and traded ŷ3 for ŷ1 in the second factor. This latter modification is also allowed

since upon normal ordering it provides the same q-power as x̂3ŷ3, thanks to the simulta-

neous presence of x̂1.

The multi-cover quiver skein relation guarantees that

P = P . (6.22)

More precisely, the multi-cover quiver skein relations gives this statement at the level of

representation theory of symmetric quivers. This means that one first applies normal-

ordering to each side of (6.22) and after that identifies variables as in (4.7). Here, we

promoted this statement to an operator identity valued in the quantum torus algebra.

Identifying Xi = −Xγi and using qXγ1Xγ2 = Xγ1+γ2 it is clear that (6.22) is nothing

but the pentagon identity (6.16). This is a basic example of the following more general

principle, that will be further illustrated below:

Skein relations on symmetric quivers generate wall-crossing identities.

The emergence of the wall-crossing formalism here is strongly reminiscent of another

setting in which BPS states arise from holomorphic curves wrapped by M2 branes in

the context of class S theories [33, 34]. The analogy with the present work is quite tight in

some ways. On the one hand it was pointed out by [35, 36] that quivers compute 4d N = 2

BPS spectra. It was then observed in [37] that in the context of class S theories the nodes

of those quivers correspond to basic holomorphic disks arising from edges of BPS graphs.

Boundstates of basic disks generate the whole BPS spectrum. The counterpart of PQ is

the Kontsevich-Soibelman invariant, or motivic spectrum generator. Just like the former

is determined by the linking data of basic disks, it was shown in [38] that the motivic

spectrum generator is likewise encoded by the linking data (more precisely the BPS graph)

of the corresponding set of basic disks. In this vein, the expression (6.10) for the R2 ×q S1

partition function is also reminiscent of conjectural relations between motivic spectrum

generators and Schur indices of 4d N = 2 theories [39–41]. A possible interpretation of

this may be obtained via a coupled 3d-4d system such as those considered in [42, 43].5

5We thank the anonymous referee for drawing this point to our attention.
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6.5 Operator form of the multi-cover skein relation

In this section we reformulate the multi-cover skein relation for quivers, see section 4.6, in

the operator language introduced above.

We start with unlinking and linking. Consider a pair of disks with linking number k

corresponding to two nodes of a quiver Q with m− 1 nodes. Write the partition function

of Q in the product form as in (6.10)

PQ = Ψq(Xm) · . . . ·Ψq(X4)Ψq(X2)Ψq(X1), (6.23)

with the last factors Ψq(X2)Ψq(X1) corresponding to the two nodes in the pair. Perform

either the unlinking multi-cover skein move (k → k − 1) or the linking multi-cover skein

move (k → k + 1) on the two nodes in the pair to obtain a new quiver Q′. The partition

functions of Q and Q′ are equal, as explained in sections 4.2 and 4.5, but the factorization

transforms as follows:

PQ = Ψq(Xm) · . . . ·Ψq(X4)Ψq(X2)Ψq(X1) (6.24)

= Ψq(Xm) · . . . ·Ψq(X4)Ψq(X
′
1)Ψq(X

′
3)Ψq(X

′
2) = PQ

′
.

In order to understand the relation between variables, let start from x̂j , ŷj — the fun-

damental operators associated to the torus boundary of a tubular neighborhood of the

boundary of the jth disk. Then in the unlinking case we have

x̂′1 = x̂1, x̂′2 = x̂2, x̂′3 = q−1x̂1x̂2, ŷ1 = ŷ′1ŷ
′
3, ŷ2 = ŷ′2ŷ

′
3, (6.25)

X ′1 = X1ŷ
k−1
2 , X ′3 = −q2k−1X1X2ŷ

k−1
2 , X ′2 = X2,

and in the linking case

x̂′1 = x̂1, x̂′2 = x̂2, x̂′3 = x̂1x̂2, ŷ1 = ŷ′1ŷ3, ŷ2 = ŷ′2ŷ3, (6.26)

X ′1 = X1ŷ
′
2
k+1ŷ′3

k , X ′3 = q2k+1X1X2 , X ′2 = X2 .

We give a detailed derivation of these formulas in appendix C.

Consider next the case of redundant nodes. Here we add two new nodes to a quiver Q

with m − 2 nodes and produce a new quiver Q′ without changing the partition function.

Then

PQ = Ψq(Xm) · . . . ·Ψq(X3) (6.27)

= Ψq(Xm) · . . . ·Ψq(X3)Ψq(X2)Ψq(X1) = PQ
′
,

where

x̂2 = qx̂1, ŷ2 = ŷ−1
1 , X2 = x̂2

m∏
j=3

ŷ
lj
j , X1 = q−1X2ŷ1. (6.28)

This is a straightforward consequence of the discussion in section 4.3.

From the viewpoint of disks, (6.24) expresses how multi-coverings of basic disks get re-

organized when basic disks undergo boundary crossings and (6.27) when they undergo

birth/death (pair production/annihilation). Each quantum dilogarithm, taken alone,

counts multi-covers of a single disk without taking into account linking and the quantum

torus algebra encodes the generalized curves produced from these multi-covers.

– 37 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
8

6.6 Quantum torus algebra and holomorphic curve counting

The relation between wall-crossing identities and skein relations arises naturally once we

write the quiver partition function as an ordered product of quantum dilogarithms val-

ued in the quantum torus algebra. In this section we show that this way of expressing

the quiver partition function contains more information. In particular, it encodes a consis-

tent description of the spectrum of basic disks and of their boundstates for each of the two

quivers appearing on either side of the pentagon relation (6.22). By consistent we mean

that this description reflects precisely the occurrence of the unlinking by multi-cover skein

relation from the left hand side to the right hand side.

To see how this works, we expand both sides of (6.22)

P = 1 +X1
q

1− q2
+X2

q

1− q2

+X2X1
q2

(1− q2)2
+X2

1

q2

(1− q2)(1− q4)
+X2

2

q2

(1− q2)(1− q4)

+X2
2X1

q3

(1− q2)2(1− q4)
+X2X

2
1

q3

(1− q2)2(1− q4)
+ . . .

(6.29)

P = 1 +X1
q

1− q2
+X2

q

1− q2

−X1X2
q2

(1− q2)︸ ︷︷ ︸
(0,0,1)

+X1X2
q2

(1− q2)2︸ ︷︷ ︸
(1,1,0)

+X2
1

q2

(1− q2)(1− q4)
+X2

2

q2

(1− q2)(1− q4)

−X2
1X2

q3

(1− q2)2︸ ︷︷ ︸
(1,0,1)

+X2
1X2

q3

(1− q2)2(1− q4)︸ ︷︷ ︸
(2,1,0)

−X1X
2
2

q3

(1− q2)2︸ ︷︷ ︸
(0,1,1)

+X1X
2
2

q3

(1− q2)2(1− q4)︸ ︷︷ ︸
(1,2,0)

+ . . .

(6.30)

where we included labels (n1, n2, n3) to keep track of the origin of each term in the product

of expansions of the three quantum dilogarithms. This is important since each dilogarithm

corresponds to a node and therefore to a basic holomorphic disk. It is easy to check that

the two sides match using the non-commutative product rule (6.17).

Now recall that q2 = egs , and that powers of gs correspond to Euler characteristics

of the generalized holomorphic curves counted by the partition function. Compare terms

in red:

X2X1
q2

(1− q2)2︸ ︷︷ ︸
two linked disks

= −X1X2
q2

(1− q2)︸ ︷︷ ︸
(0,0,1)=fused disks

+X1X2
q2

(1− q2)2︸ ︷︷ ︸
(1,1,0)=disjoint disks

. (6.31)

On the left we have two linked disks since the coefficient diverges like (gs)
−2 and since this

term comes from the quiver where each node is a basic disk linked to the other one. On
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Figure 12. Skein relation for multi-covers.

the right we also have a term (the second one) which coefficient diverges like (gs)
−2 but

this one comes from the product of monomials in Ψ1(X1) and Ψ1(X2) in different order.

We interpret it as corresponding to two disjoint disks coming from unlinking. The first

term on the right instead comes from the expansion of Ψ1(−qX1X2): this node arises by

fusing the two disks according to the multi-cover skein relations, as also evident from (4.7).

Another confirmation that this term corresponds to a single fused disk comes from the fact

that its coefficient diverges like (gs)
−1. Therefore identity (6.31), valid in the quantum

torus algebra, matches the multi-cover skein relation (1.2) on the basic disks shown in

figure 2. (The apparent q-power mismatch will be clarified in section 6.5.)

The generating function of quiver representations contains much more information

than this. We illustrate it here by looking at the simplest multi-covers. Consider the terms

in blue:

X2
2X1

q3

(1− q2)2(1− q4)
disk 1 linked to two copies of disk 2

=

−X1X
2
2

q3

(1− q2)2︸ ︷︷ ︸
(0,1,1)

disk 3=‘1+2’ and one copy of disk 2

+X1X
2
2

q3

(1− q2)2(1− q4)︸ ︷︷ ︸
(1,2,0)

disk 1 and two copies of disk 2, all unlinked

(6.32)

The interpretation of each of these terms is evident again by keeping track of their labeling

(n1, n2, n3) and the power of g−χs . Once again, we observe that the identity (6.32) is nothing

but a way to write down the multi-cover skein relation depicted in figure 12.

The close parallel between quantum torus algebra and skein relations goes on to all or-

ders in the identity (6.22). Reformulating the quiver partition function in non-commutative

form leads to extra information comparing to the usual form of the partition function (2.5).

Expanding the non-commutative version of the partition function order by order encodes

exactly how holomorphic curves are obtained as boundstates of basic disks and their cov-

ers, and the rules of quantum torus algebra reproduce precisely the identities predicted

by multi-cover skein relations. The key ingredient is equation (6.22) — an identity of

wall-crossing type which relates different presentations of the form (6.10) corresponding to

distinct ‘phases’ for the ensemble of holomorphic curves.
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6.7 Beyond the pentagon

The pentagon relation (6.16) is only the most basic example of a wall-crossing formula.

For instance, if we change the pairing 〈γ2, γ1〉 = 2, then the formula reads

Ψq(−Xγ2)Ψq(−Xγ1) =Ψq(−Xγ1)Ψq(−Xγ1+(γ1+γ2)) · . . . ·Ψq(−Xγ1+n(γ1+γ2)) · . . .
. . . ·Ψq(q

−1Xγ1+γ2)−1Ψq(qXγ1+γ2)−1 · . . .
. . . ·Ψq(−Xγ2+n(γ1+γ2)) · . . . ·Ψq(−Xγ2+(γ1+γ2))Ψq(−Xγ2) .

(6.33)

For 〈γ2, γ1〉 > 2 the formula becomes much more complicated and there is an interesting

structure in the motivic DT invariants appearing on the right hand side [44–46]. Howerver,

the universal feature of wall-crossing formulas is that they always take the form of products

of quantum dilogarithms with integer powers and with arguments valued in a suitable

quantum torus algebra.

It follows that any identity of this type can be interpreted, through (6.10), as a relation

between two quiver partition functions (which are recovered by applying normal ordering).

These will in general feature a different number of nodes and therefore should be related

by appropriate multi-cover skein relations.

We note that multi-cover skein relations and wall crossing formulas encode information

in different ways. For example, consider the quiver . This corresponds to the wall-

crossing identity (6.33) in the sense outlined above. Here, the wall-crossing identity imme-

diately leads to infinitely many nodes, whereas the quiver multi-cover skein relation of link

removal increases the number of nodes by one at a time, as illustrated in figure 11. Thus

the multi-cover skein relation follows the different phases of the ensemble of holomorphic

curves more closely than standard wall-crossing identities.

The relation between wall-crossing and multi-cover skein is very interesting and should

be systematically studied, we leave this to future work.

6.8 Quantum gluing of 3-manifolds along tori

The quiver-assembling construction of the partition function can be given an interpretation

in terms of gluing together 3-manifolds along tori. In the case under consideration, the basic

building block is a solid torus S1 × D2 with a Wilson line inserted on its central circle

S1×{0}. Such solid tori can be glued together into a system of linked Wilson lines through

the formalism leading to formula (6.10) which expresses the quantum partition function

associated to the resulting 3-manifold. This is similar to well-known constructions in Floer

theory related to the Atiyah-Floer conjecture, see e.g. [47, 48].

To understand the geometric interpretation of (6.10), we start by recalling the general

geometric setup in section 3. Each quiver node is a basic holomorphic disk with boundary

on a Lagrangian L. Each factor Ψq in the formula for PQ is associated to such a disk

and specifically accounts for all higher-genus multi-covers. We can think of building a 3-

manifold L as follows. We start with L = R2 × S1, without any Wilson lines (no disks).

Its partition function is just P∅ = 1 and operators x̂ and ŷ, corresponding to the longitude

and the meridian at infinity, arise from the quantization of U(1) Chern-Simons theory on

the solid torus.
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Each factor Ψq modifies the geometry by cutting out a small solid torus around the cen-

tral curve of L and gluing in a new solid torus with a Wilson line along its central circle.

Such operations change the partition function. Furthermore, if we glue in several unlinked

parallel Wilson lines, the partition function changes in the obvious way, the Ψq-factors com-

mute and the whole spectrum of generalized holomorphc curves consists of multi-covers of

the basic disks.

This becomes more involved when the disk boundaries are linked, as there are non-

trivial generalized holomorphic curves (bound states). The quantum torus algebra intro-

duced by the variables (6.9) keeps track of multi-cover linking and successive multiplication

of Ψq-factors with non-commutative arguments correctly produce the partition function of

all bound states.

6.8.1 Semi-classical limit, disk potentials, and Lagrangian correspondences

We give a geometric interpretation of the discussion about A-polynomials and associated

disk potentials in ([3], section 3) in our current setup. In the next section we discuss how

this generalizes to the full partition function.

Let L ≈ S1 × R2 and write T∞ for the ideal torus boundary of L. Cut out a tubular

neighborhoods of two disk boundaries in L. Write Nj , j = 1, . . . ,m, for the neighborhoods

of the disk boundaries and Tj for their boundary tori. Consider L∗ = L \ (
⋃
j Nj). Flat

connections on L∗ have a (complexified) phase space determined by the boundary ∂L∗ =⋃
j Tj ∪ T∞:

Ptot =
∏
j

Pj × P∞ = (C∗ × C∗)m+1 . (6.34)

This comes with coordinates (x, y) = (eξ, eη) on P∞ and coordinates (xj , yj) = (eξj , eηj )

on Pj . We also have symplectic forms dξ∧dη and dξj∧dηj corresponding to intersections of

longitudes and meridians thought of as ideal boundaries of bounding chains and projections

πj and π∞ to factors.

Homology relations between longitudes and meridians give a Lagrangian subvariety

Ltot ⊂ Ptot defined by the m+ 1 equations

ξ = ξ1 +
∑
k

C1kηk = · · · = ξm +
∑
k

Cmkηm, η = −
∑
j

ηj ,

where linking of disks boundaries is measured by Cij = Cji and self-linking by Cjj . Here

the negative signs on
∑

j ηj come from viewing Tj as the boundary of L∗ rather than Nj .

Note that acting by the exponential on these relations gives monodromy relations for flat

U(1)-connections on L∗.

We now consider the disk potential counting generalized holomorphic disks that are

combinations of multiple covers of the basic disks. In Nj we have

Ψq(q
−1xj) =

∑
n≥0

xnj
(q2; q2)n

∼ exp

(
− 1

gs
Li2(x) + . . .

)
, (6.35)
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therefore the disk potential is W = −Li2(xj) and the semi-classical moduli space Lj ⊂ Pj
is given by

yj = exp

(
∂W

∂ξj

)
= 1− xj . (6.36)

For a geometric model, think of the toric Lagrangian brane of C3 [29].

To compute the disk potential of L we reinterpret the reasoning in [3]: the disk potential

of L is obtained by transporting the product Lagrangian
∏
j Lj ⊂

∏
j Pj , given by the

individual disk potentials in Nj , through the Lagrangian correspondence Ltot. In other

words, we define the Lagrangian L∞ ⊂ P∞ as

L∞ = π∞(((L1 × L2)× P∞) ∩ Ltot) (6.37)

and then the disk potential W of L is the local defining function y = ∂W
∂x of L∞.

6.8.2 The quantized Lagrangian correspondence

In this section we give a conjectural interpretation of the operator formula (6.10) for

the quiver partition function in the spirit of section 6.8.1. We use notation as there and give

an interpretation in terms of the D-model [5]. At the full quantum level we first consider

the ambient space complex symplectic space P =
∏
j Pj with the Lagrangian L =

∏
j Lj in

it. The D-model is the A-model topological string in P with a Lagrangian brane on L and

a coisotropic space filling brane. The wave function of this D-model is simply the product

Ψ =
∏
j

Ψq(xj).

The above discussion about Lagrangian correspondences suggests that one should

view (6.10) as the result of carrying the Lagrangian L and the space filling brane along P
via Ltot at the quantum level to get a D-model in P∞, which is then the usual B-model

with wave function given by the operator form of the quiver partition function.
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A Multi-cover skein relations beyond disks

In section 4 we showed how the usual skein relation on basic disks extend to the multi-

cover skein relation, which relates two disks to three, and which counts all generalized

holomorphic curves coming from multi-covers of the disks before and after gluing/crossing.

Here the orientation of the moduli space of the glued disk played a role and gave rise to

different quiver relations for linking and unlinking. To revert the unlinking we needed to

introduce a disk/anti-disk pair and use the linking skein relation.

In this section we show on the example of the annulus that there will not be a simple

two-to-three curve multi-cover skein for higher genus curves. Our approach to the annulus

is to write it as a combination of disks and then use the multi-cover skein that we already

know. One could approach curves of all genera in this way and obtain (finite) wall-crossing

formulas. It would be very interesting to understand these formulas from a mathematical

perspective using obstruction bundles near embedded nodal curves.

To derive the formula we first observe that a single annulus can be expressed in terms

of two disks with opposite 4-chain intersection. Geometrically, the annulus appear when

we glue a constant disk in the Lagrangian to the 1-parameter family of holomorphic curves

intersecting it generically. Counting multicovers we have:

exp

(∑
d

1

d

(qx)d

qd − q−d

)
= exp

(∑
d

1

d

(q−1x)d

qd − q−d

)
· exp

(∑
d

1

d
xd

)
In our treatment below we will rewrite this as

exp

(∑
d

1

d

(qx)d

qd − q−d

)
· exp

(
−
∑
d

1

d

(q−1x)d

qd − q−d

)
= exp

(∑
d

1

d
xd

)
,

and then replace the anti-disk factor using redundant pairs. More precisely, we compute

as follows. Trading the annulus for a pair of disks with shifted 4-chain intersections, as

described above, we get the partition function of a disk-annulus (d.a.) pair that links once:

Pd.a. ≡ 1

1− x̂2ŷ1
(x̂1; q2)−1

∞ = Ψq(q
2X2)−1Ψq(X2)Ψq(X1), (A.1)

where the variables are as in (6.9), X2X1 = q2X1X2. We then use the pentagon identity

between (6.18) and (6.21), which we write in two ways:

Ψq(X2)Ψq(X1) = Ψq(X1)Ψq(−qX1X2)Ψq(X2)

Ψq(X2)−1Ψq(X1) = Ψq(X1)Ψq(X2)−1Ψq(−qX1X2)−1 .
(A.2)

Using these we rewrite the disk-annulus partition function as follows

Pd.a. = Ψq(q
2X2)

−1
Ψq(X1)Ψq(−qX1X2)Ψq(X2)

= Ψq(X1)Ψq(q
2X2)−1Ψq(−q3X1X2)−1Ψq(−qX1X2)Ψq(X2)

(A.3)

Next we trade the multi-covers of disks encoded by the third and fourth factor for an an-

nulus (the reverse of what was done for the original annulus):

Pd.a. = Ψq(X1)Ψq(q
2X2)−1 1

1 + q2X1X2
Ψq(X2) . (A.4)
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Figure 13. Disk-annulus multi-covering skein relation.

After normal ordering this becomes

Pd.a.  
∑
d1...d4

(−q)d22+d23+2d2d3 (x1)d1

(q2; q2)d1

(qx2)d2

(q2; q2)d2
(q−1x1x2)d3

xd42

(q2; q2)d4
. (A.5)

This has the form of a (generalized) quiver partition function, involving three disks and

one annulus. Variables of the new quiver are related to the old ones by

x′1 = x1 , x′2 = qx2 , x′3 = q−1x1x2 , x′4 = x2 , (A.6)

see figure 13.

Geometrically, the process of unlinking the disk and annulus can be described as fol-

lows. First the annulus was replaced by two disks (nodes 2′ and 4′). One of them (node 4′)

has no intersection with the 4-chain, the other one (node 2′) has a positive 4-chain in-

tersection. We then create an annulus (node 3′) by combining two disks, this is clearly

a boundstate of the original disk and annulus. Both the new annulus and the disk corre-

sponding to node 2′ have a unit of self-linking. In addition, the new annulus has a negative

unit of 4-chain intersection and links with the disk encoded by node 2′.

For comparison, we consider what a two-to-three term ansatz to wall-crossing would

give in this case. We have

Pd.a. ≡ 1

1− x̂2ŷ1
(x̂1; q2)−1  

∑
d1d2

q2d1d2xd22

xd11

(q2; q2)d1
. (A.7)

Applying the naive skein relation to the basic objects and then taking their multi-

covering partition functions, one gets a new copy of the disk and the annulus (now mutually

unlinked), as well as a new annulus arising from their boundstate and carrying a self-

intersection. Denoting the holonomy of the boundstate by x3 = σqαx1x2 (σ = ±1 and

α ∈ Z are to be determined) we can write the partition function as

Pd.a.a. ≡ 1

1− x̂2
(x̂1; q2)−1

∑
d3

(x̂3ŷ3)d3

 
∑
d1,d2

xd22

xd11

(q2; q2)d1

∑
d3

qd3(d3−1)(σqαx1x2)d3 .

(A.8)

Matching with quadratic terms in (A.7) fixes σ = −1, α = 0. Nevertheless, higher terms

will not match. For example the terms of the order x1x
2
2 are

Pd.a. ⊃ x1x
2
2 q

4

1− q2
6= x1x

2
2

1− q2
− x1x

2
2 ⊂ Pd.a.a. . (A.9)

We learn from this that the basic skein relation does not carry over to a multi-covering

formula for annuli. The correct formula is written in quiver language in figure 13.
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B Nonuniqueness of the quiver for a given knot — 41 example

The invariance properties of the quiver partition function under linking and unlinking,

shown in section 4, turn out to explain neatly some puzzling observations. For example

for the figure-eight knot one can find two quivers of the same size which have the same

motivic generating series.6 One is given by [1]

C41 =


0 0 −1 0 −1

0 2 0 1 −1

−1 0 −1 0 −2

0 1 0 1 −1

−1 −1 −2 −1 −2

 , (B.1)

the second differs only by a permutation of 4 entries (which cannot be obtained by vertices’

relabelling)

C̃41 =


0 0 −1 0 −1

0 2 0 1 0

−1 0 −1 −1 −2

0 1 −1 1 −1

−1 0 −2 −1 −2

 . (B.2)

We can obtain C̃41 from C41 by unlinking and the inverse of unlinking. In order to see it,

let us relabel vertices of Q41such that

C41 ∼


−1 0 −2 0 −1

0 1 −1 1 0

−2 −1 −2 −1 −1

0 1 −1 2 0

−1 0 −1 0 0

 . (B.3)

Now we apply the unlinking for the first two nodes (top left corner of the matrix) with

the remaining three being spectators. In the notation from the section 4.2 we have

r = −1, s = 1, k = 0 ,

so the unlinking k → k − 1 leads to

C41 ∼



−1 −1 −2 0 −1 −2

−1 1 −1 1 0 0

−2 −1 −2 −1 −1 −3

0 1 −1 2 0 1

−1 0 −1 0 0 −1

−2 0 −3 1 −1 −1


. (B.4)

6Note that quivers in this appendix correspond to the reduced normalization. This property translates

automatically to the unreduced normalization as well, but in that case quivers would be very big.
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Now we can relabel vertices again to have

C41 ∼



−2 −1 −2 −1 −1 −3

−1 2 0 1 0 1

−2 0 −1 −1 −1 −2

−1 1 −1 1 0 0

−1 0 −1 0 0 −1

−3 1 −2 0 −1 −1


. (B.5)

This matrix matches the structure of (4.11) for

r = −2, s = 2, k = 0 ,

so it can be simplified (by the inverse of unlinking) to

C41 ∼


−2 0 −2 −1 −1

0 2 0 1 0

−2 0 −1 −1 −1

−1 1 −1 1 0

−1 0 −1 0 0

 . (B.6)

Relabelling again we obtain

C41 ∼


0 0 −1 0 −1

0 2 0 1 0

−1 0 −1 −1 −2

0 1 −1 1 −1

−1 0 −2 −1 −2

 = C̃41 , (B.7)

therefore quivers given by (B.1) and (B.2) are in the same equivalence class, as expected.

C Details of generalized multi-cover skein identities

Here we fill in the details on the variables appearing in the general multi-cover skein

identity (6.24). Let us start with the case in which Q′ is obtained from Q by unlinking. We

assume that disk 1 has s units of self-linking, disk 2 has r units, and both have arbitrary

amounts of linking with other basic disks. We suppress factors of ŷj for j 6= 1, 2, 3 that

would arise from linking to other nodes of the quiver, these can be simply inserted into our

formulas as necessary. Then, according to conventions set out in (6.9), for Q we have:

X1 = (−1)sqs−1x̂1ŷ
s
1 , X2 = (−1)rqr−1x̂2ŷ

r
2ŷ
k
1 , (C.1)

and for Q′:

X ′1 = (−1)sqs−1x̂′1ŷ
′
1
sŷ′2

k−1ŷ′3
s+k−1 ,

X ′2 = (−1)rqr−1x̂′2ŷ
′
2
r ,

X ′3 = (−1)r+s+2k−1qr+s+2k−2x̂′3ŷ
′
3
r+s+2k−1ŷ′2

r+k−1 .

(C.2)
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Recall from (4.16) and (5.29) that

x′1 = x1 , x′2 = x2 , x′3 = q−1x1x2 ,

y1 = y′1y
′
3 , y2 = y′2y

′
3 .

(C.3)

This implies that

X ′1 = X1ŷ
k−1
2 , X ′3 = −q2k−1X1X2ŷ

k−1
2 , X ′2 = X2 , (C.4)

where we inserted ‘by hand’ a factor of ŷ′1
s+k into X3 and a factor ŷ′3

r into X2 since they

are innocuous in (6.24) due to ordering (recall a similar trick in (6.21)). As claimed, this

reduces the multi-cover skein identity (6.24) to the pentagon identity (6.22) for k = 1.

If there are additional ‘spectator’ nodes, their Xj variables remain unchanged. In

notation from (4.11), this can be understood as follows. After unlinking one would need

to modify Xj by removing factors of ŷa1 , ŷ
b
2 and replacing them with ŷ′1

aŷ′2
bŷ′3

a+b. But due

to (5.29) this operation is trivial.

Next we consider linking. Similarly to the previous case, we assume that disks 1 and 2

have s and r units of self-linking respectively, and arbitrary amounts of linking with other

basic disks. We still suppress factors of ŷj for j 6= 1, 2, 3 which can be inserted into our

formulas if necessary. Then, according to conventions set out in (6.9), for Q we have

the same variables as in (C.1), while for Q′ we now have

X ′1 = (−1)sqs−1x̂′1ŷ
′
1
sŷ′2

k+1ŷ′3
s+k ,

X ′2 = (−1)rqr−1x̂′2ŷ
′
2
r ,

X ′3 = (−1)r+s+2kqr+s+2k−1x̂′3ŷ
′
3
r+s+2kŷ′2

r+k .

(C.5)

Recall from (4.36) that

x′1 = x1 , x′2 = x2 , x′3 = x1x2 . (C.6)

For yi variables we need a bit more care. Let us focus on (4.35): here we have an equivalence

between the quiver Q′ where two nodes have one additional units of linking, and a quiver Q′′

which has yet an extra node which is ‘dual’ to the one created by linking (they form

a redundant pair of nodes). Since Q′ and Q′′ are related by standard unlinking, we can

immediately infer that

y′1 = y′′1y
′′
5 = y′′1y

′′
4
−1 , y′2 = y′′2y

′′
5 = y′′2y

′′
4
−1 , (C.7)

where we used (the semiclassical limit of) (4.17) to claim that y′′4y
′′
5 = 1 for the redundant

pair (as should be obvious from the definition of such a pair). Returning to the case

considered here, we map y′′1 7→ y1, y′′2 7→ y2, y′′4 7→ y3, while obviously y′1, y
′
2 are already

the correct labels as considered here. This implies

y1 = y′1y3 , y2 = y′2y3 . (C.8)

Therefore we can reexpress X ′i variables in terms of Xi as follows:

X ′1 = X1ŷ
′
2
k+1ŷ′3

k , X ′3 = q2k+1X1X2 , X ′2 = X2 , (C.9)
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where we inserted ‘by hand’ a factor of ŷ′1
s+k into X3 and a factor ŷ′3

r into X2 since they

are innocuous in (6.24) due to ordering. As a check, for k = 0 this reduces the multi-cover

skein identity precisely to the expected formula for the case studied in section 4.4. As for

the case of unlinking, the same argument shows that Xj variables of spectator nodes do

not change.
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