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Abstract 

Recent years have seen a dramatic increase in the volumes of data that are produced, 
stored, and analyzed. This advent of big data has led to commercial success stories, for 
example in recommender systems in online shops. However, scientific research in var-
ious disciplines including environmental and climate science will likely also benefit 
from increasing volumes of data, new sources for data, and the increasing use of algo-
rithmic approaches to analyze these large datasets. This thesis uses tools from philoso-
phy of science to conceptually address epistemological questions that arise in the 
analysis of these increasing volumes of data in environmental science with a special 
focus on data-driven modeling in climate research. Data-driven models, here, are de-
fined as models of phenomena that are built with machine learning. While epistemolog-
ical analyses of machine learning exist, these have mostly been conducted for fields 
characterized by a lack of hierarchies of theoretical background knowledge. Such 
knowledge is often available in environmental science and especially in physical climate 
science, and it is relevant for the construction, evaluation, and use of data-driven models. 
This thesis investigates predictions, uncertainty, and understanding from data-driven 
models in environmental and climate research and engages in in-depth discussions of 
case studies. These three topics are discussed in three topical chapters. 

The first chapter addresses the term “big data”, and rationales and conditions for the use 
of big-data elements for predictions. Namely, it uses a framework for classifying case 
studies from climate research and shows that “big data” can refer to a range of different 
activities. Based on this classification, it shows that most case studies lie in between 
classical domain science and pure big data. The chapter specifies necessary conditions 
for the use of big data and shows that in most scientific applications, background 
knowledge is essential to argue for the constancy of the identified relationships. This 
constancy assumption is relevant both for new forms of measurements and for data-
driven models. Two rationales for the use of big-data elements are identified. Namely, 
big-data elements can help to overcome limitations in financial, computational, or time 
resources, which is referred to as the rationale of efficiency. Big-data elements can also 
help to build models when system understanding does not allow for a more theory-
guided modeling approach, which is referred to as the epistemic rationale.  

The second chapter addresses the question of predictive uncertainties of data-driven 
models. It highlights that existing frameworks for understanding and characterizing un-
certainty focus on specific locations of uncertainty, which are not informative for the 
predictive uncertainty of data-driven models. Hence, new approaches are needed for this 
task. A framework is developed and presented that focuses on the justification of the 
fitness-for-purpose of the models for the specific kind of prediction at hand. This frame-
work uses argument-based tools and distinguishes between first-order and second-order 
epistemic uncertainty. First-order uncertainty emerges when it cannot be conclusively 
justified that the model is maximally fit-for-purpose. Second-order uncertainty emerges 



 

vii 
 

when it is unclear to what extent the fitness-for-purpose assumption and the underlying 
assumptions are justified. The application of the framework is illustrated by discussing 
a case study of data-driven projections of the impact of climate change on global soil 
selenium concentrations. The chapter also touches upon how the information emerging 
from the framework can be used in decision-making.  

The third chapter addresses the question of scientific understanding. A framework is 
developed for assessing the fitness of a model for providing understanding of a phenom-
enon. For this, the framework draws from the philosophical literature on scientific un-
derstanding and focuses on the representational accuracy, the representational depth, 
and the graspability of a model. Then, based on the framework, the fitness of data-driven 
and process-based climate models for providing understanding of phenomena is com-
pared. It is concluded that data-driven models can, under some conditions, be fit to serve 
as vehicles for understanding to a satisfactory extent. This is specifically the case when 
sufficient background knowledge is available such that the coherence of the model with 
background knowledge provides good reasons for the representational accuracy of the 
data-driven model, which can be assessed e.g. through sensitivity analyses. This point 
is illustrated by discussing a case study from atmospheric physics in which data-driven 
models are used to better understand the drivers of a specific type of clouds. 

The work of this thesis highlights that while big data is no panacea for scientific re-
search, data-driven modeling offers new tools to scientists that can be very useful for a 
variety of questions. All three studies emphasize the importance of background 
knowledge for the construction and evaluation of data-driven models as this helps to 
obtain models that are representationally accurate. The importance of domain-specific 
background knowledge and the technical challenges of implementing data-driven mod-
els for complex phenomena highlight the importance of interdisciplinary work. Previous 
philosophical work on machine learning has stressed that the problem framing makes 
models theory-laden. This thesis shows that in a field like climate research, the model 
evaluation is strongly guided by theoretical background knowledge, which is also im-
portant for the theory-ladenness of data-driven modeling. The results of the thesis are 
relevant for a range of methodological questions regarding data-driven modeling and 
for philosophical discussions of models that go beyond data-driven models.   
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Zusammenfassung 

In den vergangenen Jahren ist die Menge an neu generierten, gespeicherten und analy-
sierten Daten stark angestiegen. «Big Data», wie diese Datenströme genannt werden, 
hat im Privatsektor zu kommerziellen Erfolgen geführt, beispielsweise in der Form von 
personalisierten Empfehlungen in Online-Shops. Big Data ist aber auch für die For-
schung von Bedeutung, beispielsweise in den Umwelt- und Klimawissenschaften, da 
grössere Datenvolumen, neue Datenquellen und die zunehmende Verwendung von al-
gorithmischen Instrumenten zur Analyse dieser Datenströme neue wissenschaftliche 
Möglichkeiten bieten. Diese Doktorarbeit befasst sich konzeptionell mit epistemologi-
schen Fragen, die bei der Analyse von immer grösseren Datenvolumen in den Umwelt-
wissenschaften entstehen. Ein spezieller Fokus liegt auf der datengetriebenen 
Modellierung in der Klimaforschung. Der Begriff «datengetriebene Modelle» steht da-
bei für Modelle von Phänomenen, die mittels maschinellen Lernens konstruiert werden. 
Abhandlungen zu epistemologischen Fragen des maschinellen Lernens fokussierten bis-
her meist auf Disziplinen ohne Hierarchien von theoretischem Hintergrundwissen. Sol-
ches Wissen ist in den Umwelt- und vor allem in den physikalischen 
Klimawissenschaften aber oft vorhanden und für das Konstruieren, Bewerten und An-
wenden von datengetriebenen Modellen wichtig. In der vorliegenden Arbeit werden 
spezifisch für die Umwelt- und Klimawissenschaften Vorhersagen und Unsicherheiten 
von datengetriebenen Modellen sowie das wissenschaftliche Verständnis, das aus sol-
chen Modellen gewonnen werden kann, untersucht und anhand von Fallstudien vertieft 
diskutiert. Diese drei Themen werden in je einem eigenen Kapitel abgehandelt. 

Das erste Kapitel beschäftigt sich einerseits mit dem Begriff «Big Data» und anderer-
seits mit den Voraussetzungen für erfolgreiche Vorhersagen mit Big-Data-Elementen 
und den Gründen für deren Verwendung. Anhand einer Klassifikation von Fallstudien 
aus der Klimaforschung wird gezeigt, dass eine Reihe verschiedener Aktivitäten im wei-
testen Sinne unter den Begriff «Big Data» fällt, wobei die meisten Studien im Bereich 
zwischen der klassischen Wissenschaft und reinem Big Data liegen. Wir schlagen not-
wendige Bedingungen für das Anwenden von Big-Data-Elementen vor und zeigen, dass 
Hintergrundwissen in vielen wissenschaftlichen Anwendungen zentral ist, um die Kon-
stanz der identifizierten Beziehungen zu begründen. Diese Konstanzannahme ist sowohl 
für neue Formen von Messungen wie auch für die datengetriebene Modellierung wich-
tig. In unserer Analyse kristallisieren sich zwei Gründe für das Verwenden von Big-
Data-Elementen heraus. Einerseits können diese Elemente nützlich sein, wenn be-
schränkte Ressourcen – seien es finanzielle Ressourcen, die Zeit oder Rechenleistung – 
andere Ansätze erschweren. Dies ist der Effizienzgrund für das Verwenden von Big 
Data. Andererseits können Big-Data-Elemente die Modellierung von Phänomenen er-
möglichen, wenn aufgrund des Systemverständnisses keine stärker auf Theorien basie-
rende Modellierung möglich ist. Dies ist der epistemische Grund für das Verwenden 
von Big Data. 
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Das zweite Kapitel widmet sich der Unsicherheit der Vorhersagen aus datengetriebenen 
Modellen. Etablierte Ansätze zur Charakterisierung von Unsicherheiten setzen bei den 
Stellen im Modellierungsprozess an, an denen die Unsicherheit auftritt. Für die Unsi-
cherheit datengetriebener Modelle sind diese Stellen aber nicht informativ, weshalb 
neue Ansätze nötig sind. Wir schlagen einen Ansatz vor, der auf die Rechtfertigung der 
Eignung des Modelles für einen bestimmten prädiktiven Zweck fokussiert und diese 
mittels einer Argumentanalyse untersucht. Dabei wird zwischen epistemischen Unsi-
cherheiten erster und zweiter Ordnung unterschieden. Unsicherheiten erster Ordnung 
treten auf, wenn nicht zwingend begründet werden kann, dass das Modell maximal für 
den anvisierten Zweck geeignet ist. Unsicherheiten zweiter Ordnung treten auf, wenn 
unklar ist, in welchem Grad die Annahme der Eignung des Modells und weitere dieser 
Annahme zugrundeliegende Annahmen gerechtfertigt sind. Der Ansatz wird mit einer 
Fallstudie zu datengetriebenen Vorhersagen der Klimaauswirkungen auf die globale 
Konzentration von Selen in Böden illustriert. Zudem wird diskutiert, wie die Informa-
tion aus diesem Ansatz für Entscheidungssituationen verwendet werden kann. 

Das dritte Kapitel behandelt das wissenschaftliche Verständnis von Phänomenen. Kon-
kret wird ein Ansatz entwickelt, um die Eignung von Modellen für das Verstehen von 
Phänomenen zu beurteilen. Dieser Ansatz baut auf der philosophischen Literatur zum 
Thema wissenschaftliches Verstehen auf und beurteilt Modelle anhand ihrer repräsen-
tationalen Genauigkeit, ihrer repräsentationalen Tiefe und ihrer Intelligibilität. Anhand 
dieses Ansatzes vergleichen wir die Eignung von prozessbasierten und datengetriebenen 
Modellen als Vehikel für das Verstehen von Phänomenen. Es zeigt sich, dass datenge-
triebene Modelle unter bestimmten Voraussetzungen hinreichend geeignet sein können, 
um Verständnis zu liefern. Dies verlangt allerdings, dass das Phänomen bereits soweit 
verstanden ist, dass die Kohärenz des Modells mit dem Hintergrundwissen gute Gründe 
für die repräsentationale Genauigkeit des Modells liefert. Diese Beurteilung kann zum 
Beispiel mithilfe von Sensitivitätsanalysen durchgeführt werden. Diese Punkte illustrie-
ren wir mit einer Fallstudie aus der Atmosphärenphysik, in der datengetriebene Modelle 
von Wolken zu einem besseren Verständnis der Einflussfaktoren dieser Wolken führen. 

Die vorliegende Doktorarbeit unterstreicht, dass Big Data zwar kein Allheilmittel für 
wissenschaftliche Probleme ist, die datengetriebene Modellierung aber für viele wissen-
schaftliche Fragen nützlich sein kann. In allen drei Kapiteln wird die Bedeutung des 
theoretischen Hintergrundverständnisses für das Konstruieren und Evaluieren von da-
tengetriebenen Modellen betont, da dies nötig ist, um Modelle zu entwickeln, die ihr 
Zielsystem hinreichend genau abbilden. Aus diesem Grund ist die interdisziplinäre Zu-
sammenarbeit wichtig. Bestehende philosophische Arbeiten betonen, dass mittels ma-
schinellen Lernens konstruierte Modelle aufgrund des Problemframings theoriegeladen 
sind. Die Resultate dieser Arbeit zeigen, dass in Disziplinen wie der Klimaforschung 
auch die stark vom Hintergrundverständnis getriebene Modellevaluation wichtig ist. Die 
hier erarbeiteten Resultate sind für eine Reihe methodologischer Fragen bezüglich der 
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datengetriebenen Modellierung sowie für die philosophischen Diskussionen von Mo-
dellen, die über datengetriebene Modelle hinausgehen, von Bedeutung. 
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1. Introduction 

The volumes and complexity of data that society produces and stores have been increas-
ing dramatically over recent decades. Technological innovations have created opportu-
nities to efficiently handle these massive datasets and to draw useful inferences from 
them, but as the pace of data generation keeps increasing, so does the need for techno-
logical innovation (National Research Council 2013). There are numerous examples of 
successful predictions made based on big-data analysis, many of which have taken place 
in the private sector. These include e-commerce platforms which use data on their cus-
tomers to provide individual recommendations based on past purchases (Mayer-Schön-
berger and Cukier 2013), social media platforms where content is prioritized based on a 
user’s interests, and image and speech recognition (National Research Council 2013). 

Big data becomes more and more important for scientific research, too, in the form of 
increasing volumes of data and new methods to analyze them. As Pietsch and Wernecke 
(2017) have argued, scientific research is currently experiencing a move away from 
more complex models that are rooted in scientific theory and use comparatively little 
data, towards simpler models that are not explicitly rooted in theory but use lots of data. 
Hence, comparatively theory-free, data-driven models constructed with machine learn-
ing could become increasingly more important in scientific research (see Lyon 2015). 
However, even if such models are not constructed by prescribing the relationships be-
tween the variables based on theory, some aspects of model construction are still guided 
by theory, for example the choice of variables (Pietsch 2015). The same might hold true 
also for the evaluation and use of models for specific purposes. This changing role of 
scientific theory in data-driven modeling implies important epistemological shifts re-
garding the construction, evaluation, and use of models and the justification of model 
results, which requires in-depth analysis. 

The fact that data-driven modeling techniques become more and more relevant in sci-
entific research seems particularly relevant for the broad field of environmental science 
in general and for climate science in particular. There are several reasons for this. First, 
more and more data is available to Earth scientists (Reichstein et al. 2019) and climate 
scientists (Overpeck et al. 2011). Second, research in environmental science is 
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inherently interdisciplinary. This interdisciplinary character often requires that hetero-
geneous datasets be linked, which is one of the features typically associated with big 
data (Sun and Scanlon 2019). This is also relevant for environmental social sciences, 
where human behavior can be analyzed using new forms and sources of data, e.g., in the 
wake of natural disasters. Social media data, for example, has already been analyzed to 
understand the response to a number of different disasters (see, e.g., Preis et al. 2013; 
Shelton et al. 2014; Kryvasheyeu et al. 2016). Third, there are many examples of data-
driven modeling techniques and new forms of data used in environmental and climate 
research (for overviews, see Huntingford et al. 2019; Reichstein et al. 2019; Sun and 
Scanlon 2019). Thus, environmental and climate science offer many big-data case stud-
ies, and these are likely to be particularly interesting to study epistemological shifts due 
to big data. The reason for this is that classical models in environmental science are 
constructed based on equations that describe system behavior. Accordingly, model eval-
uation in environmental science also considers the degree to which models are coherent 
with background knowledge (for climate models, in-depth discussions of this point can 
be found in Baumberger, Knutti, and Hirsch Hadorn 2017; Knutti 2018; Carrier and 
Lenhard 2019). The evaluation of data-driven models, in contrast, cannot consider the 
coherence of models with background knowledge in the same way since the modeled 
relationships are not derived from theory (Pietsch 2015). Hence, comparing data-driven 
models with classical process-based environmental models can offer interesting insights 
about model construction, evaluation, and use. 

Big-data case studies in environmental and climate science have tackled a number of 
scientific problems. They include the downscaling of results from numerical climate 
models with machine learning (Mearns et al. 2018) or machine learning predictions of 
extreme weather events (Gagne II et al. 2012; 2017; McGovern et al. 2014; 2017). Such 
machine learning applications are often developed in interdisciplinary teams in order to 
construct models that make ideal use of the available data and are at the same time 
physically plausible (see Faghmous and Kumar 2014; Gibert, Horsburgh, et al. 2018; 
McGovern et al. 2019; Reichstein et al. 2019; see also Karpatne et al. 2017). Big-data 
case studies in environmental and climate science have also used new forms of data, 
e.g., from social media or cell phone GPS signals. For example, different studies have 
used social-media data to assess the damages from natural disasters (e.g., Shelton et al. 
2014; Kryvasheyeu et al. 2016) or GPS signals to detect climate adaptation (Lu et al. 
2016). Consequently, there have been calls for the use of this kind of big data for re-
searching and measuring climate adaptation (Ford et al. 2016) and natural disaster man-
agement (Yu, Yang, and Li 2018). Furthermore, crowdsourcing data has been used to 
measure environmental conditions, for example urban temperatures (Overeem et al. 
2013; Elmore et al. 2014; Muller et al. 2015). 

This thesis aims to explore epistemological aspects of data-driven modeling techniques 
in environmental and climate science in more detail. For this, it uses tools from philos-
ophy of science to analyze the construction, evaluation, and use of data-driven models 
but also the use of big data more generally in environmental science. The focus of the 
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thesis is on climate research, ranging from physical climate science to environmental 
and social impacts of climate change. Such epistemological issues have, thus far, not 
been addressed specifically for these fields. This thesis aims to fill this gap in a way that 
is relevant for an interdisciplinary audience, particularly for environmental scientists, 
data scientists, and philosophers of science.  

The remainder of this introductory chapter begins by outlining the objectives of this 
thesis in section 1.1. Then, section 1.2 introduces the methodological, conceptual, and 
philosophical background to this thesis. Three individual studies are presented in the 
form of self-contained papers in chapters 2, 3, and 4. Finally, in chapter 5, I first sum-
marize the central findings of the thesis and then conclude by discussing the implications 
of these findings and by providing an outlook to open research questions. 

1.1. Thesis’ Context and Objectives  

The advent of big data has led to many open scientific, technological, legal, ethical, and 
conceptual questions. This led the Swiss National Science Foundation to launch a Na-
tional Research Program on big data (NRP75). The goal of this program is to obtain a 
better understanding of big data and the challenges and opportunities it brings to society 
from the point of view of various disciplines.1 This thesis is part of a project funded 
under the NRP75 that investigates big data from a perspective that lies at the interface 
of philosophy of science and climate science. The ongoing trend of increasing genera-
tion and storage of data in environmental and climate science motivates three main ob-
jectives related to big data and data-driven modeling, which this thesis tackles in three 
individual studies presented in chapters 2, 3, and 4, respectively. The first of these three 
studies (chapter 2) looks at predictions in the context of big data. It aims to clarify what 
big data is and where in climate research it can most fruitfully be applied and for what 
reasons. A special focus of this study is on the conditions for successful predictions and 
the role of domain-specific background knowledge. The second and third study take a 
narrower perspective. They investigate data-driven modeling and try to assess important 
epistemological questions that have received attention for process-based models. The 
second study (chapter 3) looks more closely at the conclusions of chapter 2 and intro-
duces a framework to assess the uncertainty of the predictions from data-driven models. 
The third study (chapter 4), finally, addresses the question of what makes a model fit for 
providing understanding of climate phenomena and then evaluates to what extent data-
driven models are fit for this purpose.  

  

                                            
1 See the website of the NRP 75: http://www.nfp75.ch/en/the-nrp, accessed on January 16, 
2020. 
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1.1.1. Discussing Big-Data Elements and Predictions 

in Climate Research 

Original publication: 
Benedikt Knüsel, Marius Zumwald, Christoph Baumberger, Gertrude Hirsch Ha-
dorn, Erich M. Fischer, David N. Bresch, Reto Knutti. Applying Big Data Beyond 
Small Problems in Climate Research. Nature Climate Change 9, no. 3 (2019): 196-
202. 

The term “big data” lacks a clear definition (see section 1.2.2). While some clear-cut 
cases of big data exist, for example commercial applications like recommender systems 
(see Mayer-Schönberger and Cukier 2013), it remains unclear what big-data elements 
can be used in scientific research and what problems they can help to address. Ap-
proaches that are related to big data and data-intensive science have already been applied 
in various contexts in climate research. However, their relation to “classical” domain 
science and big data has not been discussed. Chapter 2 has several objectives. It aims to 
highlight which big-data elements are used for which kind of questions in climate re-
search and why. It further aims to clarify the conditions under which big-data elements 
can be used for successful predictions. For this, we develop a framework to categorize 
case studies based on three dimensions, namely the measurements, the datasets, and the 
models. We use this framework to show what different elements of big data are used in 
climate research. Based on the application of this framework, we draw conclusions re-
garding the conditions for predictions based on big-data elements and the problems with 
the biggest potential for the application of big-data elements.  

1.1.2. Developing a Framework for Characterizing the Predictive Un-

certainty of Data-Driven Models 

Original publication: 
Benedikt Knüsel, Christoph Baumberger, Marius Zumwald, David N. Bresch, Reto 
Knutti. Assessment of Predictive Uncertainty of Data-Driven Environmental Mod-
els. Submitted for publication to Environmental Modelling & Software. 

The topic of uncertainty has been widely discussed for model-based decision support 
(see section 1.2.5). All of these established tools for uncertainty classification focus, 
among other dimensions, on specific locations of uncertainty like the model structure 
and model parameters. These dimensions cannot be readily applied to understand pre-
dictive uncertainties of data-driven models (see chapter 3 for a detailed discussion on 
this point). Chapter 3 aims to develop a framework to characterize the predictive uncer-
tainty of data-driven models. For this, we first highlight why existing frameworks are 
not readily applicable to data-driven models. We then develop a framework for as-
sessing and characterizing the uncertainty of predictions from data-driven models. We 
illustrate the application of the framework using a case study from environmental 
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science. Furthermore, we outline some implications of the uncertainty assessment with 
this framework for scientific decision-support. 

1.1.3. Assessing the Fitness of Data-Driven Models for Providing Un-

derstanding of Climate Phenomena 

Original publication: 
Benedikt Knüsel and Christoph Baumberger. Understanding Climate Phenomena 
with Data-Driven Models. Submitted for publication to Studies in History and Phi-
losophy of Science. 

Big-data proponents have argued that in the age of big data, the what may be more 
important than the why, and that hence, understanding of phenomena is only of minor 
interest (see, e.g., Mayer-Schönberger and Cukier 2013). However, this seems unlikely 
to be the case in science since understanding is seen as an important epistemic aim of 
science (Dellsén 2016; de Regt 2017, see section 1.2.6). However, whether data-driven 
models can be useful tools for understanding or whether they are merely tools for pre-
dictions is unclear. Philosophers and scientists have questioned the achievability of un-
derstanding with machine learning, specifically because of the lack of interpretability of 
machine learning algorithms (Ratti and López-Rubio 2018; López-Rubio and Ratti 
2019), but also because it can be difficult to link models built with machine learning to 
a phenomenon of interest (Sullivan 2019). Chapter 4 aims to clarify the fitness of data-
driven models to serve as vehicles for understanding phenomena in the climate system. 
We address this issue by developing a framework to evaluate models in terms of their 
fitness for providing understanding. We then apply the framework to both process-based 
and data-driven climate models. Based on this, chapter 4 discusses the extent to which 
data-driven models can provide scientists with understanding of phenomena in the cli-
mate system, and how this compares to process-based models. 

1.2.  Methodological, Conceptual, and Philosophical Background 

In this section, I introduce and discuss methodological, conceptual, and philosophical 
topics relevant for this thesis. In section 1.2.1, I provide a short introduction to argument 
analysis as this method will be important in chapter 3 and, to some extent in chapters 2 
and 4. In the more general sections 1.2.2 and 1.2.3, I introduce conceptual and philo-
sophical issues concerning big data and data-intensive science and relevant topics from 
the philosophy of climate science, respectively. Sections 1.2.4, 1.2.5, and 1.2.6 are more 
specific. They each provide the background to the topic of one of the three studies pre-
sented in this thesis, namely predictions, uncertainty, and scientific understanding, re-
spectively.  
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1.2.1. Argument Analysis 

In chapter 3, we present a framework for assessing the uncertainty of predictions made 
with data-driven models. This framework is based on an analysis of arguments that can 
be made to support the assumption that a given model is fit-for-purpose. Argument anal-
ysis is also important in chapters 2 and 4 although there, we engage with the method 
less explicitly. That an analysis of arguments is important for assessing the adequacy of 
models for certain purposes has, for example, been argued by Baumberger, Knutti, and 
Hirsch Hadorn (2017). In this section, I provide a short introduction to the method of 
argument analysis and focus on those aspects that will be relevant in later chapters. This 
section is based on Brun and Betz (2016) and Brun and Hirsch Hadorn (2014). 

The first step in argument analysis consists in reconstructing the arguments. This means 
that individual arguments in favor or against a proposition need to be identified and 
stated as inferences. By doing so, it becomes clear which propositions are to be justified 
and which propositions perform this justification. The former ones are called “conclu-
sions” and the latter ones are called “premises”. If and only if the relation between the 
premises and the conclusion is a correct inference, the premises justify the conclusion. 
Then, the relationship between the different individual arguments of the complex argu-
mentation is reconstructed. This highlights whether the conclusion of one argument 
functions as a premise in a different argument, or whether the conclusion of one argu-
ment attacks or supports the premises of a different argument. It is also possible that 
several arguments that are based on different premises all support the same conclusion. 
This complex argumentation can for example be presented in an argument map that 
gives an overview of how the individual arguments are related to each other. 

The second step of argument analysis consists in evaluating the arguments. In the eval-
uation step of argument analysis, the goal is to assess the quality of an argumentation. 
For this, the truth and acceptability of individual premises has to be evaluated. Further-
more, the validity or strength of individual arguments needs to be assessed, as well as 
the contribution of individual arguments to the overall argumentation. For determining 
the validity or strength of individual arguments, one needs to assess the relationship 
between the premises and the conclusion of an argument and identify whether the argu-
ment is deductively valid or non-deductively correct. An argument is deductively valid 
if the following condition holds: if all the premises are true, the conclusion must be true, 
too. A climate-related example of a deductively valid argument is the following (this 
example is taken from Baumberger, Knutti, and Hirsch Hadorn 2017, 7):  

P1 If a model is adequate for projecting X for the far future, then the model relia-
bly indicates X for past and present. 

P2 Model M does not reliably indicate X for past and present. 
C Hence, M is not adequate for projecting X for the far future. 
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In contrast to deductively valid arguments, non-deductively correct arguments are risky 
in the sense that even if all the premises are true, the conclusion need not necessarily be 
true, too. Instead, the evaluation focuses on whether the premises provide sufficiently 
good (but not conclusive) reasons for the truth of the conclusion. Hence, the focus of 
the evaluation of non-deductive arguments is not on the validity of the argument, but on 
the strength of the argument. In this thesis, inductive arguments are the most important 
form of non-deductive arguments. Other forms of non-deductive arguments include 
analogies or inferences to the best explanation. An example of an inductive argument is 
the following (this example is also taken from Baumberger, Knutti, and Hirsch Hadorn 
2017, 7):  

P1 Model M reliably indicates X and climate quantities upon which X depends for 
past and present. 

C So probably, M is adequate for projecting X for the near future. 
 

If an argument is deductively valid and has true premises, that argument is referred to 
as “sound”. A non-deductively correct argument whose premises are true is referred to 
as “cogent” (Baumberger, Knutti, and Hirsch Hadorn 2017). 

1.2.2. Big Data and Data-Driven Modeling 

The volumes and complexity of data that society produces and stores have been increas-
ing dramatically over recent decades. According to an IBM blog post (Jacobson 2013), 
2.5 exabytes of data (2.5·1018 bytes) were created every day in 2013. Technological 
progress has created opportunities to handle, store, and analyze these massive datasets 
efficiently and to draw useful inferences from them (National Research Council 2013). 
In this section, I introduce conceptual and epistemological issues regarding big data and 
then regarding machine learning and data-driven modeling.  

Big Data and Data-Intensive Science 
The term “big data” is often used to describe massive datasets with fine-grained infor-
mation on individuals and new technological tools to analyze these datasets (Durán 
2018, chap. 6.2). However, there is no generally accepted definition of “big data”. Most 
attempts at defining the term have focused on characteristics of datasets. Often, big data 
is characterized by a number of V-words, most notably the volume, velocity, and variety 
of data (see Kitchin and McArdle 2016). The high volume refers to the size of the da-
tasets, the velocity refers to the pace with which new data is created, and the variety 
refers to the diversity of data types and structures (Laney 2001). Some authors have 
added further characteristics besides these three Vs such as the veracity of the data 
(Lukoianova and Rubin 2014) or value, exhaustivity, relationality, and others (see 
Kitchin and McArdle 2016). However, while all of these characteristics of big data have 
intuitive appeal, focusing on such characteristics is unlikely to yield a satisfactory defi-
nition. Namely, as Floridi (2012) has argued, these characteristics are relative concepts. 
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If a definition is based on such relative concepts, what counts as big data today need not 
be considered big data in the future. This concern certainly holds for each of the three 
V-words listed above (Pietsch 2016). More importantly, focusing on the data only might 
yield an incomplete picture. The change brought about by big data lies not only in 
greater data availability, but also in how the datasets are made use of with analytic meth-
ods like machine learning (see Veltri 2017).  

Although a clear-cut definition of the term “big data” is lacking, most authors seem to 
agree on certain characteristics of big data. One of these characteristics is the size and 
complexity of the datasets (see, Floridi 2012; Mayer-Schönberger and Cukier 2013; 
Kitchin 2014; De Mauro, Greco, and Grimaldi 2016; Pietsch 2016; Holmes 2017; North-
cott 2019). Another characteristic that has often been referred to is the use of machine 
learning and data mining as techniques to analyze these large volumes of data (see, Boyd 
and Crawford 2012; Kitchin 2014; Pietsch 2015; 2016; Holmes 2017; Veltri 2017; 
Northcott 2019). In a recent book on big data in the series Very Short Introductions by 
Oxford University Press, Holmes (2017) illustrates these two aspects nicely. She ex-
plains, first, how the size and the complexity of datasets inhibit the storage in traditional, 
relational databases, and what technical challenges one faces when handling such mas-
sive datasets. Then she goes on to illustrate how big data analytics based on machine 
learning works to extract value from these datasets. More work is needed to clarify the 
term “big data” (and potentially, related terms like “data-intensive science” and “data 
science”). While this thesis does not explicitly contribute to clarifying the term, chapter 
2 provides an overview of scientific studies that use certain big-data elements and pro-
vides a framework to classify the studies. By doing so, the study highlights the range of 
activities that fall under the term “big data” in some sense. 

The ubiquity of increasing volumes of data has led to a veritable hype around big data, 
including a widespread belief that increasing volumes of data can automatically contrib-
ute to objective insights about phenomena that were previously not accessible (Boyd 
and Crawford 2012). This concerns not only commercial big-data applications, but also 
scientific research due to the increasing volumes of data available to scientists.2 In fact, 
various disciplines experience rapidly increasing volumes of data, ranging from biology 
(see Callebaut 2012; Canali 2016) to particle physics (see Radovic et al. 2018), to Earth 
science (see Reichstein et al. 2019), to the social sciences and humanities (Kitchin 

                                            
2 This belief was perhaps most strongly expressed in a now-infamous editorial by then-editor-
in-chief of Wired magazine, Chris Anderson, which appeared in 2008. Anderson (2008) argued 
that the ever increasing volumes of available data allow us to predict essentially every aspect 
of interest to us. As Anderson claims, “[w]ith enough data, the numbers speak for themselves”. 
This would, as the provocative title of Andersons’s editorial claimed, result in “the end of the-
ory” and “make the scientific method obsolete”. Scholars from a range of disciplines were quick 
to highlight the flaws in Anderson’s argument, and, as Google Director of Research Peter 
Norvig wrote in his blog (see https://norvig.com/fact-check.html, accessed on November 18, 
2019) at the time, Anderson never really endorsed the position he described in his editorial. 
Rather, he was aiming to provoke a conversation. 
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2014). Pietsch (2016) has argued that in scientific contexts, the term “big data” merely 
describes that science has more data available. Hence, he has suggested to focus on the 
term “data-intensive science” instead. According to Leonelli (2012, 1), the two charac-
teristic features of data-intensive science (or “data-driven science”, as she calls it) are 
the central role of inductive inference from data and the importance of automation, as 
machines are used to automatically extract useful information from data.3 The method-
ological techniques used in data-intensive science can be divided into methods for data 
acquisition, data storage, and data analysis (Pietsch 2016).  

The availability of massive volumes of data brings about interesting epistemological 
issues with respect to all three methodological aspects, i.e., data acquisition, data stor-
age, and data analysis. Epistemological issues regarding data acquisition arise due to the 
possibility for scientists to increasingly collect data in novel ways. For example, data 
gathered in citizen science and crowdsourcing projects (see, for example, Overeem et 
al. 2013; Elmore et al. 2014; Muller et al. 2015) could be met with concerns regarding 
data quality. Furthermore, the participants in a citizen science project could potentially 
influence the data collection based on non-epistemic motives (Elliott and Rosenberg 
2019). Further issues with respect to data acquisition concern the modeling activities 
necessary to obtain an adequate dataset (Bokulich 2018; Leonelli 2019a) and related to 
that, whether data obtained from computer simulations should be considered on a par 
with observation-based data (Lusk 2016; Parker 2016; 2017). Epistemological issues 
regarding data storage could arise for example because increasing volumes of data 
stored on distributed servers could impact the portability of the data, which is essential 
for the data to serve as prospective evidence for or against scientific claims (Leonelli 
2015). This might be exacerbated by data produced and owned by private companies 
and institutions (see Leonelli 2019b). Furthermore, scientists may have to be increas-
ingly selective about which parts of the massive streams of data they should retain as 
the volumes of data can become too large to be stored. Finally, epistemological issues 
regarding data analysis concern, for example, the sense in which models built with ma-
chine learning can be considered theory-free (Callebaut 2012; Lyon 2015; Pietsch 2015) 
and the importance of interpretability and transparency of algorithms for different pur-
poses (Krishnan 2019; Creel, forthcoming). 

Machine Learning and Data-Driven Modeling 
The focus of this thesis lies on issues that relate to data analysis and data-driven model-
ing, i.e., the third class of methodological techniques mentioned above. Throughout this 
thesis, a model of a phenomenon built with machine learning is called a “data-driven 

                                            
3 Pietsch (2015) agrees with these two aspects but specifies that data-intensive science is par-
ticularly concerned with a specific kind of inductive reasoning, namely eliminative induction. 
This is related to the method of difference proposed by John Stuart Mill. For an explanation of 
eliminative induction, see Pietsch (2015, 909–11). 
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model”.4 Machine learning is a set of methods at the interface of computer science and 
statistics, with which useful information can be extracted from a dataset. In this thesis, 
the focus lies on the application of supervised regression methods for the modeling of 
environmental phenomena. Supervised methods are ones in which a dependent variable 
is provided, which can be either a categorical variable in classification tasks or a con-
tinuous variable in regression tasks. Supervised machine learning algorithms extract in-
formation from a dataset to predict the dependent variable based on the independent 
variables. In contrast to supervised machine learning, unsupervised methods aim to ex-
tract useful patterns in a dataset without being provided a dependent variable (Hastie, 
Tibshirani, and Friedman 2008, chap. 1; James et al. 2013, chap. 2). Unsupervised ma-
chine learning will not be further discussed in this thesis. 

A range of different supervised machine learning algorithms exist, ranging from simple 
linear regression and regularized techniques that perform a variable selection before fit-
ting a linear model, to non-linear methods including neural networks and ensemble ap-
proaches like random forest (James et al. 2013, chap. 2). In recent years, deep learning, 
i.e., neural networks with multiple hidden layers of neurons (see Buckner 2019 for a 
philosophical introduction to deep learning), have become increasingly popular, includ-
ing in environmental science (Reichstein et al. 2019). While more complex methods are 
very flexible and can learn highly non-linear behavior from the data, this increase in 
flexibility generally comes at the expense of model interpretability. This is because in 
contrast to simpler linear approaches, complex methods do not provide an equation that 
could be studied to learn about the behavior of the model (James et al. 2013, chap. 2).  

When constructing a data-driven model, a modeler usually splits the available dataset 
into a training dataset, to which a model is fit, and a test or validation dataset, which is 
used to select a best-fitting model or to estimate the error rate of the model (James et al. 
2013, chaps. 2, 5). Because the machine learning algorithm learns the relationships be-
tween the variables directly from the training dataset, the modeler need not know these 
relationships in advance. Hence, data-driven models can be considered theory-free in 
the sense that the relationships between the variables are not derived from some back-
ground theory (Lyon 2015; Pietsch and Wernecke 2017). However, this does not make 
data-driven modeling a theory-free activity. Rather, as Pietsch (2015) has argued, these 
models are theory-laden in a different way than rule-based or process-based models. 
Because the relationships between the variables are not prescribed from theory, data-
driven models are not internally theory-laden. However, data-driven models are theory-
laden in an external sense because of the theory-guided problem framing, including the 
selection of input variables (Pietsch 2015; see also Hosni and Vulpiani 2018). Data-
driven modeling is further theory-laden because of the theory-ladenness of observational 

                                            
4 A more detailed discussion of the term “data-driven model” is provided in chapter 4.2 of this 
thesis. 
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data and because of the interpretation of results in terms of the target system (Callebaut 
2012). 

Machine learning models can provide reliable predictions of phenomena. According to 
Pietsch (2016), this predictive success is rooted in the causal nature of data-driven mod-
eling. As he argues, machine learning is able to identify the causal relevance of factors 
for a given phenomenon and hence, to extract the underlying causal structure of a phe-
nomenon when some conditions are fulfilled. Namely, first, the terms on which the var-
iables are based need to be well-defined; second, all relevant variables need to be 
included; third, data on all relevant configurations of the target system need to be avail-
able; and fourth, the background conditions need to be sufficiently constant. Northcott 
(2019) has suggested that additional conditions might be required, for example, he sug-
gests that appropriate methods to handle the data need to be available. 

The conditions developed by Pietsch and Northcott indicate under what conditions mod-
els built with machine learning can be adequate for predictive purposes. However, these 
conditions were specifically developed for disciplines without generalized theoretical 
laws (see Pietsch 2016, 160). In environmental and climate science, however, this kind 
of background knowledge is available for many processes and phenomena. It is an open 
question what the availability of this background knowledge means for successful pre-
dictions based on big-data elements. We address this question in chapter 2. Background 
knowledge can also be helpful in assessing the predictive uncertainty of data-driven 
models, which, to the best of my knowledge, has not been discussed in the literature, 
thus far (see section 1.2.5). This issue is addressed in chapter 3. Pietsch (2016, 168) has 
argued that due to the absence of general theoretical laws, models in data-intensive sci-
ence cannot typically be used to derive phenomena from theoretical laws. Hence, data-
driven models cannot provide explanations that achieve unification (Pietsch 2016, 168). 
Again, this is likely different in a field in which data-driven models can be constructed 
against a wealth of theoretical background knowledge. Hence, the role that data-driven 
models can play as vehicles for understanding in a field like climate science deserves 
attention. This issue is addressed in chapter 4. 

1.2.3. Philosophy of Climate Science 

The Summary for Policy-Makers of the Fifth Assessment Report by Working Group 1 
of the Intergovernmental Panel on Climate Change (IPCC 2013, 4) states that “[w]arm-
ing of the climate system is unequivocal, and since the 1950s, many of the observed 
changes are unprecedented over decades to millennia.” The dominant factor for this ob-
served warming trend in global temperatures since the mid-20th century has been human 
influence (IPCC 2013). These changes will continue as long as humans keep emitting 
greenhouse gases to the atmosphere. Hence, “[l]imiting climate change will require sub-
stantial and sustained reductions of greenhouse gas emissions” (IPCC 2013, 19). In 
2015, most countries of the world agreed to limit global warming to well below 2°C 
above preindustrial levels in the Paris Climate Agreement (United Nations 2015). 
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However, fast, substantial, and sustained reductions of greenhouse gas emissions are 
required if these goals are to be met. And even if the goals are met, societies will have 
to respond to various impacts of climate change with adaptation measures as the world 
has already warmed considerably (IPCC 2018). 

Quotes like the ones presented in the previous paragraph show that climate science is a 
highly policy-relevant discipline. However, confidently basing policy decisions on sci-
entific claims like these requires a good understanding of their epistemic foundations 
and reliability. At the same time, climate science relies on large computer models to 
simulate the behavior of the Earth’s climate system. These computer-intensive methods 
raise many interesting epistemological questions. Both because of the policy-relevance 
and the complex methodological approaches of the discipline, philosophers have taken 
increasing interest in climate science (Winsberg 2018b, chap. 1). In recent years, the 
philosophy of climate science has become an active subdiscipline of philosophy of sci-
ence. For example, over the year 2018, this subdiscipline has produced an anthology 
(Lloyd and Winsberg 2018), a monograph (Winsberg 2018b), and an entry in the Stan-
ford Encyclopedia of Philosophy (Parker 2018).  

The philosophy of climate science has tackled a multitude of issues. By far the most 
philosophical attention has been directed at climate models and issues relating to them 
(for an overview, see Frigg, Thompson, and Werndl 2015b). However, philosophers 
have addressed many other questions, too, regarding for example the theoretical foun-
dations of climate science, such as how to define key concepts like “climate” and how 
to draw the system boundaries of the climate system (Werndl 2016; Katzav and Parker 
2018). Climate data have attracted philosophical interest, too. Many forms of climate 
data are obtained through extensive modeling and processing. As these activities can 
introduce errors and uncertainty, disagreements between climate models and climate 
data have to be inspected carefully since the disagreements need not necessarily reflect 
a problem with the models (Winsberg 2018b, chap. 2; for a case study investigating such 
discrepancies, see Lloyd 2012). Finally, philosophers have also addressed questions re-
lated to social epistemology, for example, whether dissent in climate science, especially 
in the context of climate denialism, is epistemically detrimental (Biddle and Leuschner 
2015), and concerning the value of the scientific consensus regarding the anthropogenic 
origin of global warming (Oreskes 2018).  

A full review of the topics of philosophy of climate science is beyond the scope of this 
introduction. Interested readers are referred to the good, comprehensive introductions to 
these topics provided elsewhere (Frigg, Thompson, and Werndl 2015a; 2015b; Parker 
2018; Winsberg 2018b). The remainder of this section will introduce topics from the 
philosophical literature on climate models that are relevant for the purpose of this thesis. 

Climate Models and Computer Simulation 
Different things can serve as scientific models, for example concrete objects or sets of 
differential equations (see Frigg and Hartmann 2012; Weisberg 2013). Many scientific 
models represent some real-world target in an idealized way (Contessa 2011; Frigg and 
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Hartmann 2012). Idealizations are characterized as either Aristotelian or Galilean. An 
idealization is Aristotelian if the act of idealizing consists in deliberately abstracting 
from real-world properties and focusing on those aspects of the real world that are 
deemed to be most important. An example from classical physics is when a real-world 
object is represented as having only a mass and a shape and all other properties are 
ignored. An idealization is Galilean if an aspect of the real world is presented in a de-
liberately distorted manner in the model for the purpose of tractability. An example from 
classical mechanics is to represent the movement of a real-world object as the movement 
of a point mass on a frictionless plane. These two types of idealizations are not mutually 
exclusive, and many models contain both (see Frigg and Hartmann 2012, where these 
and further examples of the two kinds of idealizations are presented). An important 
question with respect to representation is what standards exist to assess the representa-
tional accuracy of a model (Frigg and Nguyen 2016). In chapters 3 and 4, this question 
will be addressed specifically for data-driven models of phenomena in the climate sys-
tem. 

Due to their complexity, some models cannot be solved by an unaided human agent in 
reasonable time. This is for example the case for models in meteorology and climate 
science, where the models rely on coupled differential equations that describe processes 
such as the dynamics of the atmosphere. Due to the complexity and spatiotemporal na-
ture of these equations, approximating the solution of the equations by hand would be 
prohibitively expensive. Instead, the equations are implemented on a computer that nu-
merically approximates a solution (see Parker 2014). The program that performs this 
approximation to the solution of a mathematical model is called a “computer simulation” 
(at least in a narrow definition of the term “computer simulation”, see Winsberg 2019). 
While some view the use of computers to approximate the solution of model equations 
as a practical nuisance (Frigg and Reiss 2009; Knutti 2018), others argue that it has 
important epistemological consequences. For example, Humphreys (2004; 2009) argues 
that computer simulations suffer from epistemic opacity because it is not possible to 
have knowledge of all epistemically relevant details of computer simulations. Issues 
concerning the opacity of simulations and the transparency of computational systems 
more generally will be addressed in section 1.2.6 on scientific understanding. 

State-of-the art climate models are among the largest simulation models in use today 
(Parker 2018). At the core of these models is a set of coupled differential equations. 
These equations represent, for example, the flow of air masses through the atmosphere 
and heat-transfer processes. The equations are discretized on a three-dimensional grid. 
Certain important processes take place on scales smaller than the grid size, for example 
cloud formation. To account for the effect of these processes, so-called “parameteriza-
tions” are implemented in climate models (Winsberg 2018b, chap. 4). Parameterizations 
also allow to include processes like vegetation for which no equations are available 
(Knutti 2018). State-of-the-art climate models consist of different sub-models, repre-
senting for example the atmosphere, the ocean, or land surfaces (Winsberg 2018b, chap. 
4). Depending on which sub-models they contain, climate models are referred to as 
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general circulation models (GCMs) or Earth system models (ESMs). While GCMs re-
solve the general circulation of the Earth’s atmosphere and ocean, ESMs resolve addi-
tional processes, for example chemical and biogeochemical ones. These models are run 
on powerful supercomputers (Parker 2018). Due to their complexity, today’s climate 
models have been developed over a long time by adding new submodules. This path-
dependency of climate model development makes it difficult to clearly identify which 
parts or sub-models of a climate model are responsible for the success or failure of a 
given simulation (Lenhard and Winsberg 2010). 

Climate Model Evaluation 
In order to establish confidence in the results of climate models, the models need to be 
evaluated. An important question regarding climate model evaluation is what the target 
of confirmation should be. Lloyd (2009) has argued that many instances of fit between 
climate model results and empirical data as well as robustness considerations confirm 
the models. This is in line with an influential account of model evaluation by Oreskes 
et al. (1994). Oreskes et al. have argued that scientific models cannot be verified in the 
sense of establishing their truth or the truth of their results since verification is only 
possible in a closed system. Nor can models be conclusively validated (Oreskes et al. 
1994). Rather, instances of fit between model results and observational data should be 
understood as confirming, but not verifying or conclusively validating, the model. How-
ever, Parker (2009) has argued that the hypotheses about the climate system’s inner 
workings embedded in climate models are not plausible candidates for truth. The reason 
for this is that models contain hypotheses that are known to be false from the outset, and 
hence, they should not be seen as the target of confirmation. Rather, Parker argues, what 
should be confirmed is the hypothesis that a given model is adequate for some specific 
purpose. 

This change of perspective from confirming the models to confirming hypotheses about 
the model’s adequacy for a purpose has important implications because it can be diffi-
cult to assess what exactly makes a climate model adequate for a given purpose (Parker 
2009). Baumberger, Knutti, and Hirsch Hadorn (2017) have developed a framework to 
assess the adequacy of climate models for long-term projections (i.e., predictions of fu-
ture climate depending on socioeconomic boundary conditions, see section 1.2.4). Ac-
cording to their framework, models should be evaluated not only based on their 
empirical accuracy, but also based on the robustness of model results, i.e., the agreement 
between different models or model versions. Furthermore, their framework stresses the 
importance of the coherence of the models with background knowledge, which should 
also be considered when evaluating their adequacy for long-term projections. A similar 
point has been made by Knutti (2018), who has emphasized the importance of qualita-
tive process understanding to establish the adequacy of climate models for long-term 
projections. Examples of how to evaluate models in terms of their coherence with back-
ground knowledge are provided by Carrier and Lenhard (2019). The three aspects (i.e., 
empirical accuracy, robustness, and coherence with background knowledge) empha-
sized by Baumberger, Knutti, and Hirsch Hadorn (2017) are specifically relevant 
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because they are all related to the representational accuracy of a model, i.e., to how 
accurately a model represents processes that are important for some purpose (e.g., long-
term projections of temperature values). However, aspects other than representational 
accuracy may be relevant for the adequacy of a model for a given purpose. As Parker 
(forthcoming) argues in a general account of model evaluation, practical considerations 
such as sufficient computational power can be relevant, too. The topic of adequacy-for-
purpose will return in chapters 3 and 4, where the issues of predictive uncertainty and 
scientific understanding are addressed, respectively. Note that in these chapters, the term 
“fitness-for-purpose” will be used rather than “adequacy-for-purpose” since fitness-for-
purpose admits of degrees (Parker, forthcoming).  

As has been argued above, the empirical accuracy and the robustness of climate model 
results are important aspects for evaluating the representational accuracy of climate 
models. In other words, climate model evaluation considers how well model results 
agree with observational data (empirical accuracy) and how well the results from differ-
ent climate models or model versions agree with each other (robustness) (see 
Baumberger, Knutti, and Hirsch Hadorn 2017). However, neither empirical accuracy 
nor robustness provide straightforward support of the representational accuracy of cli-
mate models in every instance. As both of these considerations are relevant for the eval-
uation of fitness-for-purpose in chapters 3 and 4, I provide a brief overview of the 
concerns surrounding the two criteria in the next two paragraphs. 

Empirical accuracy can provide support of the representational accuracy of a model only 
to the extent that the agreement between models and data occurs for the right reasons. 
This is why the topic of model tuning has received attention in the philosophy of climate 
science. Parameter values related to parameterizations mentioned above are often not 
well constrained. Hence, their values are determined such that the model as a whole 
behaves in accordance with available observational data (Frigg, Thompson, and Werndl 
2015b; Winsberg 2018b, chaps. 4, 10). Due to this process of model tuning (or calibra-
tion), the models are forced, to some extent, to reproduce observations. An intuitive 
position is that data that has been used to tune climate models should not also be used 
to evaluate the models as this would essentially be double-counting. Although the dis-
tinction between model tuning and model evaluation may not be so clear (Steele and 
Werndl 2013), most philosophers and scientists agree that independent data provides a 
better benchmark for model evaluation (Frisch 2015; Schmidt and Sherwood 2015; see 
also Lloyd 2010 who emphasizes the importance of results for which climate models 
cannot be tuned). Traditional model selection criteria, for example cross-validation, give 
importance to use-novel data for model evaluation, too, but they permit some double-
counting (Steele and Werndl 2016). Thus, the intuitive view about double-counting 
should be expressed with more nuance (Steele and Werndl 2018). This debate about 
use-novel data for model evaluation is specifically important in chapter 4 of this thesis, 
where empirical accuracy is a criterion used to evaluate the representational accuracy of 
a model.  



16 | Introduction 

 

Like empirical accuracy, the robustness of climate model results is a criterion to assess 
the representational accuracy of the models (see Baumberger, Knutti, and Hirsch 
Hadorn 2017). As Lloyd (2009; 2010; 2015) has argued, if a number of models share a 
common causal core and their outputs show a similar behavior, this confirms the causal 
core of the models under some conditions. Namely, this confirmation depends on 
whether there is independent observational and experimental evidence for the shared 
causal core as well as for other model assumptions and for the behavior of the models. 
This is the kind of robustness consideration that is relevant for evaluating the represen-
tational accuracy of models in chapters 3 and 4. However, there is a worry that climate 
models might agree for the wrong reasons, specifically because of the interdependence 
of climate models (see Parker 2011). Baumberger, Knutti, and Hirsch Hadorn (2017) 
acknowledge this and consequently suggest that the independency and diversity of cli-
mate models should be increased to strengthen these robustness considerations.5 

1.2.4. Predictions 

Predictions are an important topic in chapter 2 of this thesis. In the philosophical litera-
ture, predictions have mostly been discussed in the context of the confirmation of theo-
ries and hypotheses (see M. Forster 2010). However, both in the context of climate 
science and big data, predictions are important goals of model construction that are not 
tied to the confirmation of theories or models, at least not exclusively. Climate models 
are often used to make predictions of the future climate conditional on some boundary 
conditions (i.e., a kind of what-if inference is performed). These conditional predictions 
are made, among other things, to convey to decision-makers what the future climatic 
conditions on Earth will be in response to a certain level of greenhouse gas emissions. 
The term “climate projection” is used to denote these conditional predictions (Knutti 
2018).  

In the context of big data, prediction is often seen as the main goal of modeling 
(Northcott 2019). As has been discussed above in section 1.2.2, Pietsch (2015) and 
Northcott (2019) have suggested that models in data-intensive science can extract the 
causal structure of a phenomenon and make reliable predictions about it if certain con-
ditions are met. These conditions imply that more data and algorithms to analyze the 
data do not necessarily lead to better predictions. For example, the openness of the sys-
tem, chaotic behavior, and non-stationarity can limit predictability (Northcott 2019). 
Pietsch (2016) has argued that the suggested conditions are specifically important for 
scientific applications for which no well-established theoretical laws are available. For 
many climate phenomena, theoretical background knowledge of this kind is available. 

                                            
5 Note that robustness considerations to confirm hypotheses indicated by model outputs are not 
discussed in detail in this thesis. The focus, here, solely lies on robustness considerations to 
confirm hypothesis about the shared causal core of the models. For overviews regarding robust-
ness considerations in climate science, see Parker (2011), Lloyd (2015), and Winsberg (2018b, 
chaps. 11, 12). 
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Hence, the role of background knowledge for big-data predictions deserves investiga-
tion. This is one of the topics that we discuss in chapter 2. Specifically, we contrast 
“classical” big-data predictions with climate projections and identify conditions for suc-
cessful predictions based on big-data elements. A focus of this analysis lies on the role 
of background knowledge for the justification of confidence in the predictions. 

1.2.5. Uncertainty in Model-Based Decision Support 

Uncertainty of model-based scientific inferences is the topic of chapter 3, where we 
develop and present a framework for assessing predictive uncertainties of data-driven 
models. Although uncertainty is a central concept in many scientific areas, it remains a 
poorly understood one as Frigg, Thompson, and Werndl (2015b) note with respect to 
climate models. In a general decision situation, there are various reasons for uncertainty, 
for example concerning the available actions from which to choose, the consequences 
of each course of action, the values that are attached to each potential outcome, and the 
rule with which to choose between the different courses of action (Hirsch Hadorn et al. 
2015; Bradley and Drechsler 2014; Hansson and Hirsch Hadorn 2018). In such decision 
situations, it is common to differentiate between situations of risk and situations of un-
certainty. According to this distinction, a decision under risk is one in which precise 
probabilities of different outcomes are known, whereas a decision under uncertainty is 
one in which information on outcomes is not available in the form of precise probabili-
ties (Hansson 2007). As Hansson (2009) argues, hardly any real-world decision situation 
has probabilities that are known with precision, underlining why uncertainty is a central 
topic for many practical applications. 

Conceptual work for uncertainty assessments has aimed to provide a full account of 
what kinds of uncertainty emerge in a generic decision situation and for what reasons. 
Recently, philosophers have suggested to take an “argumentative turn” in policy analy-
sis and approach the topic of uncertainty and decision support with a rigorous analysis 
of arguments (Hansson and Hirsch Hadorn 2016; 2018). The framework for uncertainty 
assessment introduced in chapter 3 follows this approach. This argument-based ap-
proach to uncertainty analysis consists of strategies to handle several sorts of uncertainty 
(Hansson 2016; Hirsch Hadorn 2016), for example strategies to evaluate the framing of 
a problem (Grüne-Yanoff 2016), and strategies to characterize different kinds of uncer-
tainty such as value uncertainty, e.g., uncertainty about which values are at stake (Möller 
2016), and uncertainty regarding what the actual or potential states of the world are 
(Betz 2016a). 

In this thesis, the focus will be on the last of these kinds of uncertainties, namely uncer-
tainties concerning the actual and potential states of the world. This is specifically rele-
vant in policy analysis because, as Betz (2016a, 138) has put it, an analysis of policy 
options requires a balancing act of basing decisions on “no more and no less than what 
one actually knows”. In scientific policy advice, information of this kind is often derived 
from model-based inferences. Uncertainty is inherent to such model-based inferences 
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because models are idealized representations of their target systems, as has been dis-
cussed in section 1.2.3 above.  

Philosophers, policy analysists, and scientists have suggested ways to characterize and 
categorize uncertainties of model-based inferences. Uncertainty is routinely character-
ized as either aleatory or epistemic. Aleatory uncertainty is due to the inherent variability 
of the target system, and epistemic uncertainty arises because of our imperfect 
knowledge about the target system (Walker et al. 2003). However, more refined char-
acterizations are possible. For example, Walker et al. (2003) have suggested that uncer-
tainty be characterized along three dimensions that can be arranged as an uncertainty 
matrix, namely the location of uncertainty (where in the research process does the un-
certainty arise?), the nature of uncertainty (is the uncertainty aleatory or epistemic?), 
and the severity of uncertainty (how uncertain is the information on the spectrum from 
determinism to total ignorance?). This framework has been very influential and has been 
adapted and applied by many researchers (see Kwakkel, Walker, and Marchau 2010). 
This uncertainty matrix aims to make explicit what kinds of uncertainties there are and 
why they emerge before any attempt is undertaken to quantify them. By carefully con-
sidering all sources and kinds of uncertainties, it can be avoided that uncertainty quan-
tification results in overconfident estimates that disregard important sources of 
uncertainty that are difficult to quantify (Walker et al. 2003; Bradley and Drechsler 
2014). 

Predictive uncertainties have also been a topic in the philosophy of climate science (for 
an overview of characterizations of uncertainties in climate science, see Frigg, 
Thompson, and Werndl 2015b). Different locations of uncertainty (in the parlance of 
Walker et al. 2003) of climate model projections have been identified, namely, the 
model structure, the numerical approximation of the model equations, the choice of pa-
rameter values, the internal variability of the climate system, the available observations, 
and natural and socioeconomic boundary conditions (Knutti 2018; Winsberg 2018b, 
chap. 7). Uncertainty from the first three sources is often referred to by climate scientist 
as “model uncertainty” (see, e.g., Hawkins and Sutton 2009). However, it is important 
to recognize that climate models themselves are strictly speaking not uncertain, but the 
relationship between the models and the real climate system is. In other words, what is 
commonly referred to as “model uncertainty” should be understood as “representational 
uncertainty” (Parker 2010a; Knutti 2018). 

As the process of model construction is a non-unique one (Frigg and Hartmann 2012), 
this representational uncertainty can be estimated by considering different models of the 
same target system (see Parker 2010a for a discussion of this in the context of weather 
predictions and climate projections). Such ensemble methods for uncertainty quantifi-
cation are routinely used in climate science. Specifically, climate scientists can run mod-
els with different initial conditions or employ an ensemble of models that have a 
different model structure or different parameter values. The spread of the model results 
can then be used as a basis to quantify uncertainty (Parker 2010b). However, the spread 
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of a climate model ensemble is recognized to be smaller than the actual uncertainty 
because the available models do not sample from the entire space of possible model 
structures or parameter values. This is partly due to model interdependence, which was 
briefly mentioned in section 1.2.3 when discussing robustness considerations in climate 
science. Hence, the spread of model ensembles cannot be readily turned into a probabil-
ity density function (Parker 2010b). Remedies to this issue can be to weight climate 
models according to their performance and independence (Knutti, Baumberger, and 
Hirsch Hadorn 2019) or to use structured expert elicitation (Thompson, Frigg, and 
Helgeson 2016). 

In the IPCC reports, uncertainty about specific scientific statements is expressed using 
a two-dimensional terminology. Namely, the IPCC expresses uncertainty using both a 
quantitative likelihood and a qualitative confidence metric (Mastrandrea et al. 2010). 
This practice has attracted criticism due to the inconsistent use by IPCC authors and 
because the relationship between the two metrics is not clear (Adler and Hirsch Hadorn 
2014; Wüthrich 2017). Nevertheless, Winsberg (2018a) has argued that it is a good prac-
tice to express uncertainty using two metrics. These two metrics should be understood, 
Winsberg argues, as first-order uncertainty statements that provide imprecise probabil-
ities and second-order qualifications of the first-order uncertainty estimate depending 
on the quality and consistency of evidence. Winsberg argues that the two metrics allow 
scientists to deliver information that is useful for policy-makers by communicating ei-
ther narrower uncertainty bands with larger second-order uncertainty or vice versa. 
Which of these approaches the scientists choose is partly based on value judgments (see 
also Winsberg 2018b, chap. 9). 

Due to the increasing use of data-driven modeling techniques, uncertainties of infer-
ences from data-driven models are an important topic. However, to the best of my 
knowledge, no accounts exist that offer suggestions on how to understand and charac-
terize the predictive uncertainty of data-driven models. Chapter 3 of this thesis offers a 
discussion of this topic and highlights why existing frameworks that characterize uncer-
tainty from process-based models in terms of different locations, as outlined above, can-
not be readily applied to data-driven models. It then discusses how representational 
uncertainty should be assessed for data-driven models using argument-based tools. The 
framework considers first-order and second-order uncertainty, similarly to the uncer-
tainty estimates provided by the IPCC (as discussed in the previous paragraph). 

1.2.6. Scientific Understanding 

In chapter 4 of this thesis, we address the topic of scientific understanding and specifi-
cally the question whether data-driven models can contribute to scientific understanding 
of phenomena in the climate system. Understanding is considered an important epis-
temic aim of science (Dellsén 2016; de Regt 2017). Different types of understanding are 
distinguished. Often, one distinguishes between interrogative understanding (under-
standing why something is the case or understanding how something came about), 
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objectual understanding (understanding a system or a subject matter), and propositional 
understanding (understanding that something is the case) (see Baumberger 2014). Un-
derstanding-why, one type of interrogative understanding, is also described as “under-
standing a phenomenon” and is tied to having an explanation of that phenomenon (de 
Regt 2009; 2017), although some have suggested that it is possible to understand phe-
nomena without having an explanation of them (see Lipton 2009; Gijsbers 2013). 

Understanding a real-world phenomenon requires some theory or model that serves as 
vehicle for understanding. There are different positions on what qualities make a theory 
or model adequate for serving as a vehicle for understanding. De Regt (2009; 2015; 
2017) has argued that an epistemic agent needs to be able to use a theory in order for 
that theory to provide understanding of a phenomenon. In his words, the theory needs 
to be intelligible. Intelligibility of a theory is relevant for understanding because epis-
temic agents need to be able to apply the theory to a concrete phenomenon in order 
explain that phenomenon, and it is generally not obvious how a general theory can be 
applied to a phenomenon.6 De Regt (2009) suggests that a theory is intelligible if a sci-
entist can qualitatively anticipate the consequences of that theory without performing 
any calculations.  

Other authors took issue with the focus on the relationship between the scientist and the 
theory or model that is to serve as vehicle for understanding. Instead, they argued that 
the important relationship to be considered is that between the theory and the target. 
E.g., according to Strevens (2013), understanding consists in grasping a true explanation 
of a phenomenon. Hence, understanding requires an explanation that is true of the world. 
Similarly, Khalifa (2012) holds that even the most promising accounts of scientific un-
derstanding can be reduced to insights gained in the literature on scientific explanation. 

Wilkenfeld (2017) has taken a middle position in this debate and argued that both the 
relationship between a model or theory and the target system on the one hand, and the 
relationship between the model or theory and the epistemic agent on the other hand are 
important for an account of understanding. Thus, understanding according to Wilken-
feld should be taken to be a multidimensional concept. According to this account, intel-
ligibility and representational accuracy are good-making features of understanding, 
meaning that both factors determine what degree of understanding can be obtained from 
a model or theory. A similar approach was taken by Baumberger (2019), who has pro-
vided an explication of objectual understanding which considers three dimensions. 
Namely, understanding, according to his account, depends on the extent to which an 
agent grasps a theory or model (which is related to intelligibility), the extent to which 

                                            
6 De Regt (2009) discusses two ways of applying a theory to a phenomenon. One is to construct 
an explanation according to the deductive-nomological model. A different approach is to con-
struct a model for a model-based explanation. Both of these approaches, according to de Regt, 
require that the epistemic agent can use the theory.  
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the theory or model answers to the facts (which is related to representational accuracy), 
and the degree to which the agent’s commitment to the theory or model is justified.7 

It has not only been discussed under what conditions a model can give scientists under-
standing of phenomena, but also what kind of understanding they can obtain with dif-
ferent models. What kind of understanding a model can provide an agent with depends 
on the relationship between the model and its target. Even highly idealized models can 
be used to obtain how-possibly understanding of a phenomenon, meaning that they can 
show possible causal mechanisms that should be considered as hypotheses to explain 
actual instances of the phenomenon (Ylikoski and Aydinonat 2014). This is possible 
even if the models are largely autonomous from a scientific theory (Reutlinger, 
Hangleiter, and Hartmann 2018). Reutlinger, Hangleiter, and Hartmann (2018) have ar-
gued that highly idealized models can also provide scientists with how-actually under-
standing of phenomena, i.e., with an actual explanation for a specific instance of a 
phenomenon. For this, the models need to be embedded in a theoretical framework. 
Parker (2014) has discussed the distinction between how-possibly and how-actually un-
derstanding for climate models. Considering hypothesis tests, she has argued that cli-
mate models can provide how-possibly understanding if the relationships between the 
candidate causal factors considered in the model are represented accurately. Climate 
models can also give how-actually understanding of a phenomenon if all candidate 
causal factors are considered in the model. 

As discussed above, according to many accounts of scientific understanding (e.g., de 
Regt 2009; Ylikoski 2014; Baumberger 2019), the degree to which a model or theory is 
intelligible to an agent is relevant to determine to what degree the agent can understand 
a phenomenon through that model or theory. As I have mentioned in section 1.2.3, many 
scientific models including climate models have to be implemented and run on comput-
ers as simulation models due to their complexity and the spatiotemporal resolution. 
However, computer simulations have inherent features that are relevant for a discussion 
of model intelligibility. Namely, as Humphreys (2004; 2009) has argued, computer sim-
ulations are epistemically opaque. The epistemic opacity of computer simulations arises 
because it is not generally possible for a human agent to know all the epistemically 
relevant aspects of a simulation. This is due to the many steps involved in running a 
simulation, but also for example due to emerging patterns that could not be anticipated 
from microlevel behavior in agent-based simulations. Furthermore, not only character-
istics of the simulation run itself seem relevant for the epistemic opacity of simulation 
models, but also characteristics of the underlying model such as its complexity and its 
modularity (Beisbart, in preparation; Lenhard and Winsberg 2010). Model opacity may 

                                            
7 Note that whereas de Regt (2009) holds that theories need to be intelligible in order to con-
struct a model from the theory, according to Baumberger’s (2019) account, both theories and 
models can serve as vehicles for understanding and hence, need to be graspable. Note further 
that Baumberger also argues that the agent’s commitment to the model or theory is a necessary 
condition for understanding. This point is not important for the present purposes. 
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reduce the extent to which a model is intelligible, even if it does not make the model 
entirely unintelligible. 

State-of-the-art climate models are certainly affected by a lack of intelligibility because 
of their complexity and modularity. As has been mentioned in section 1.2.3, climate 
models are not routinely built from scratch. Rather, existing models are used for a vari-
ety of purposes and are extended with new submodules over time. This makes it difficult 
to assess which parts of a model are responsible for the success or failure of a climate 
model (Lenhard and Winsberg 2010). Consequently, in an essay entitled “The Gap Be-
tween Simulation and Understanding in Climate Modeling”, climate scientist Isaac Held 
(2005) has claimed that the tendency to make climate models increasingly more com-
plex by adding processes and increasing their resolution has made it more difficult to 
understand the models, and accordingly, phenomena in the climate system through the 
models. Nevertheless, Parker (2014) has argued that climate simulations can contribute 
to scientific understanding. They can do so by allowing climate scientists to actually use 
available theories that would be too complex to an unaided human, by providing surro-
gate observational data, by allowing to run hypothesis tests with counterfactuals, and by 
allowing to explore model hierarchies (a point that has also been suggested by Held 
2005). All of these activities, Parker (2014) argues, provide scientists with explanatory 
information which contributes to scientific understanding. In chapter 4, we explicitly 
address how the difficulty in grasping climate models affects their fitness to serve as 
vehicles for understanding. 

The worry about model intelligibility seems even more acute for data-driven models. 
Machine learning algorithms, especially complex ones like deep learning, are notori-
ously difficult to interpret (Krishnan 2019; Creel, forthcoming). This has led to some 
skepticism about the role that data-driven models can play for obtaining explanations, 
at least if these explanations are to be mechanistic. Namely, Ratti and López-Rubio 
(2018) and López-Rubio and Ratti (2019) have argued that modeling complex phenom-
ena with machine learning requires that the data-driven models take a complex form, 
too. However, this increase in complexity leads to a decrease in model intelligibility. 
Hence, obtaining explanations from machine learning models might not be possible, 
they argue. In contrast, Sullivan (2019) has argued that what can prevent deep learning 
from providing a model user with understanding of a phenomenon is not model inter-
pretability, but rather “link uncertainty”. With this term, Sullivan refers to the lack of 
evidence available that model users have to link the model to the phenomenon of inter-
est. Hence, for Sullivan, the main problem lies not in the relationship between the model 
and the model user, but in the relationship between the model and its target phenomenon 
(or more specifically, in the justification of this relationship). 

More work is needed that assesses data-driven models in terms of their ability to provide 
understanding of phenomena and what factors make this understanding better or worse. 
In chapter 4, we contribute to this debate. We do this by developing a framework that 
explicitly assesses different types of climate models in terms of their fitness for serving 
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as vehicles for understanding phenomena. We then apply this framework to data-driven 
models of climate phenomena and compare them to process-based models.  
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Preface 

Commercial success of big data has led to speculation that big-data-like reasoning could 
partly replace theory-based approaches in science. Big data typically has been applied 
to “small problems”, well-structured cases characterized by repeated evaluation of pre-
dictions. Here, we show that in climate research, intermediate categories exist between 
classical domain science and big data, and that big-data elements have also been applied 
without the possibility of repeated evaluation. Big-data elements can be useful for cli-
mate research beyond small problems if combined with more traditional approaches 
based on domain-specific knowledge. The biggest potential for big-data elements, we 
argue, lies in socioeconomic climate research.
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Big data affects increasingly many aspects of our lives. The large volumes of data gath-
ered and stored are the basis of the recommendations we receive when shopping online 
and the way in which we connect to people all over the world via social media (Mayer-
Schönberger and Cukier 2013). Naturally, this has led to debates about how increasing 
volumes of data and new analytic tools might impact scientific research. An emerging 
view is that largely theory-free data-driven models will supplant models that explicitly 
start from theory (Lyon 2015; Pietsch and Wernecke 2017). Big data could have a big 
potential in various scientific disciplines (Karpatne et al. 2017) including climate re-
search (Faghmous and Kumar 2014; Ford et al. 2016), but it remains unclear what ques-
tions big data can potentially help to answer. The usefulness of big data and the 
associated epistemological shifts are of particular importance for climate research for 
three reasons. First, the already large volumes of current climate data are expected to 
increase further in both volume and complexity over the coming years and decades 
(Overpeck et al. 2011). Second, approaches typically associated with big data have al-
ready entered climate research (Faghmous and Kumar 2014; for examples see Caldwell 
et al. 2014; Kryvasheyeu et al. 2016; Sprenger et al. 2017). And third, climate models 
are rooted in scientific theory, which is one of the key reasons for confidence in their 
projections (Baumberger, Knutti, and Hirsch Hadorn 2017). This makes climate re-
search an interesting test case for the suggested shift from process-based to largely the-
ory-free modeling. 

A prevailing problem concerning big data is the fuzziness around the terminology. To 
date, there is no consensus definition of big data or related concepts such as data-inten-
sive science, data-driven science, and big-data science. Based on suggested definitions 
of these terms (Boyd and Crawford 2012; De Mauro, Greco, and Grimaldi 2016), we 
adopt a conception of big data that focuses on the characteristics of data and the tools 
used to analyze them. The data are often voluminous streams of partly unstructured and 
heterogeneous data (characterized by the so-called three Vs, volume, velocity, and va-
riety) and can be noisy and uncertain compared to more standardized datasets (indicated 
by a fourth V, veracity) (Kitchin and McArdle 2016; Lukoianova and Rubin 2014). The 
tools used to analyze them are machine learning and data mining, ranging from simple 
linear regression tools to complex non-linear models in deep learning (Hastie, Tibshi-
rani, and Friedman 2008; LeCun, Bengio, and Hinton 2015). 

2.1. Small Problems 

Many commercial problems are solved using pure big data approaches; a typical exam-
ple is the problem of predicting online consumer preferences such as online book rec-
ommendations with pure big data, which use data on how customers react to different 
books. An algorithm analyzes these data and automatically identifies similar books. 
Both successful and unsuccessful recommendations inform future recommendations 
(Mayer-Schönberger and Cukier 2013). The problem of recommending the right books 
to the right customers constitutes a well-posed problem with a clear measure of success 
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and fast evaluation of the predictions: the customer looks at the book or buys it. As 
wrong predictions are hard to avoid and contribute to improving the predictions, pure 
big data is usually applied when the impact or the probability of wrong predictions is 
small. Due to their narrow scope, their clear measure of success, the small impact of 
wrong predictions, and the repeated evaluation of the predictions, we refer to such prob-
lems as “small problems”, even if the statistical techniques may be complex and the 
computational and storage cost may be very large. The following set of conditions is 
necessary for reliably solving small problems with big data:  

1. The system is predictable for the questions of interest. 
2. Sufficient data is available for the initial training of the model. 
3. Sufficient new data is available to periodically evaluate the predictions against 

observations and make adjustments to the relationships if necessary. 

Condition 1 is necessary for any kind of reliable prediction. If book choices were fun-
damentally unpredictable, an algorithmic prediction could not outperform a random 
book recommendation. Condition 2 is necessary to identify and train an initial model 
for predicting a given variable of interest. In the case of online book recommendations, 
data engineers can employ a so-called “item-to-item” approach which uses individual 
books as the unit of comparison rather than other traditional recommender systems (Lin-
den, Smith, and York 2003).  

While conditions 1 and 2 are not unique to our notion of “small problems”, condition 3 
is. In small problems, the repeated evaluation of the predictions and the consequent ad-
aptation has an important epistemic function as it allows to detect and correct relation-
ships between variables that are not represented adequately. In the example of book 
recommendations, two books with a large shared readership today will not necessarily 
also be read by the same people in the future. Furthermore, new books are released for 
which no data is available. Thus, the predictions need continuous evaluation and adap-
tation.  

The notion of small problems introduced here is closely related to the kind of problems 
solved by narrow (or weak) artificial intelligence (Goertzel and Pennachin 2007). Note 
that characterizing a problem as a “small problem” does neither imply that it is unim-
portant, nor that it is easy to solve. In fact, building a well-functioning machine learning 
model, the so-called training step, can be technically challenging in terms of data col-
lection, preparation and storage, modeling, and computation. While we acknowledge 
the challenges associated with these issues (Manogaran and Lopez 2018; Manogaran, 
Lopez, and Chilamkurti 2018), we do not elaborate on them here because our focus lies 
on making predictions for new cases using an already developed model, the so-called 
inference step. 

Also, some problems falling under our category of “small problems” can be very com-
plex (such as speech recognition). Other big-data applications, such as personalized 
medicine, are not small problems because the impact of wrong predictions can be large. 
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We will return to these cases in a later section. What is common to “small problems” is 
that their solutions have a clearly defined purpose, and that success can periodically be 
measured against new observations in order to evaluate and improve predictions. In 
many scientific applications, this is not possible because it is not clear what constitutes 
a successful prediction and because the time horizon is too long to wait for observational 
data to test the prediction. 

2.2. Contrasting Domain Science and Big Data  

In this section, we introduce a conceptual framework to better understand to what extent 
big-data elements have already been applied in climate research and to classify case 
studies. The framework components are introduced by contrasting, on the one hand, 
how scientists construct and use general circulation models (GCMs) to project future 
states of the climate system as an example of classical domain science, and, on the other 
hand, the case of online book recommendations, introduced in the previous section, as 
an example of pure big data. This comparison is also intended to resolve some confusion 
about the difference between big data and “lots of data” common among domain scien-
tists who are experienced in handling large volumes of data. 

2.2.1. Measurements 

In classical domain science, the measurements assign numerical values to phenomena 
described by theory-based concepts. For example, cloud albedo values indicate the frac-
tion of reflected radiation by clouds based on calibrated satellite readings. In most cli-
mate datasets, this operationalization is complex and involves modeling, hence domain-
specific knowledge is required for domain-science measurements. This differs from 
online book recommendations. In this case, internet traces are analyzed that assess 
whether a customer has clicked on a given book recommendation and whether she has 
proceeded to actually buying the book. These features are engineered based on everyday 
reasoning, which is the foundation of measurements in pure big data. 

2.2.2. Datasets 

Climate scientists use datasets to determine the initial conditions of variables of interest 
(McGuffie and Henderson-Sellers 2005) and to determine the values of certain parame-
ters whose values are insufficiently constrained by theoretical considerations (Müller 
2010), a process usually referred to as tuning or calibration. These datasets can be quite 
large in volume but they are fixed sets of data fitting into a pre-defined structure, for 
example a relational table. In the case of online book recommendations, the datasets are 
used for identifying a suitable model structure as well as for training the model. Further-
more, since periodic evaluation of the predictions is needed to correct the relationships 
between variables if necessary, a flow of new data is required. Hence, in this case, a data 
stream is analyzed rather than a fixed set. The constant inflow of new data and its 
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ongoing analysis is often referred to as its velocity, a typical characteristic associated 
with big data. Furthermore, in pure big data applications, the data are often partly un-
structured. 

2.2.3. Models 

In the case of climate model construction, the phenomena are described in terms of the-
ory-based concepts, such as temperature, air pressure, and condensation. The relation-
ships between these variables are whenever possible established from theory, for 
example from physical equations (Knutti 2008), although empirical parameterizations 
are necessary for certain processes. For online book recommendations, the phenomena 
that are put into relation to each other are based on everyday language concepts, such as 
which of the recommended books a customer clicks on. The relationships between dif-
ferent books are automatically detected, typically by a machine learning algorithm, ra-
ther than imposed from theory. 

The three components of this framework also highlight differences between classical 
statistical approaches and pure big data. Classical statistical approaches usually handle 
fixed sets of theory-based measurements. Also, classical statistics makes strict assump-
tions regarding the distribution of the data or the residuals and hence the model. This is 
not the case in pure big data, where the data are more important. We do note, however, 
that there is some overlap between regression analysis and machine learning tools, and 
even more so when considering non-parametric statistical modeling (Pietsch and Wer-
necke 2017). 

2.3. Big-Data Elements in Climate Research  

We applied our conceptual framework to categorize scientific studies from atmospheric 
science, climate science, and climate impact research. A total of 45 studies were re-
viewed that we obtained through the search terms “big data weather”, “big data climate”, 
“data mining weather”, “data mining climate”, “machine learning weather”, and “ma-
chine learning climate” in ISI web of science and Google Scholar, published between 
January 2006 and April 2017. However, the goal was to provide an overview of big-
data elements in the climate science literature rather than a full review. Hence, we ex-
cluded weather-related technical applications such as data-driven forecasting of renew-
able energy production from wind or solar power, and weather and climate impacts on 
biodiversity and agriculture to contain the set of studies to a manageable size.  

Table 1 provides an overview of the categories and indicates which studies fall into the 
respective categories. In between the two extreme cases of classical domain science and 
pure big data, we identify four intermediate categories, each of which we present below 
using an illustrative case study.   
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Table 1: Categories of climate-related research employing big-data elements. Notable exam-
ples are listed in the last column. The top row corresponds to classical domain science, the 
bottom row to pure big data. 

  models datasets measurements examples 

constructing and 
using theory-
based models 

theory-based con-
cepts and rela-
tionsa 

structured and 
fixed seta 

measurements of 
theory-based con-
ceptsa 

  

identifying some 
model relations 
with machine 
learning 

theory-based con-
cepts, some auto-
matically detected 
correlationsb 

structured and 
fixed seta 

measurements of 
theory-based con-
ceptsa 

(Caldwell et al. 
2014; Krasno-
polsky and Fox-
Rabinovitz 2006) 

identifying all 
model relations 
with machine 
learning 

theory-based con-
cepts, automati-
cally detected 
correlationsc 

structured and 
fixed seta 

measurements of 
theory-based con-
ceptsa 

1 

finding proxies for 
missing data 

theory-based con-
cepts and rela-
tionsa 

structured and 
fixed seta 

measurements of 
theory-based con-
cepts, some 
measurements 
based on every-
day reasoningb 

(Tapia et al. 2017) 

theory-structured 
big-data analysis 

partly everyday 
language con-
cepts, partly auto-
matically detected 
correlationsb 

partly unstruc-
tured data streamc 

measurements 
based on every-
day reasoningc 

(Shelton et al. 
2014; Castelli et 
al. 2016) 

big-data analysis 

everyday lan-
guage concepts, 
automatically de-
tected correla-
tionsc 

partly unstruc-
tured data streamc 

measurements 
based on every-
day reasoningc 

(Kryvasheyeu et 
al. 2016; Lu et al. 
2016; Preis et al. 
2013; Tkachenko, 
Jarvis, and 
Procter 2017) 

a use theory-based background knowledge  
b use only partially theory-based background knowledge 
c do not use theory-based background knowledge 
1 examples of studies in which all model relations are identified with machine learning: (Sprenger 
et al. 2017; Tripathi, Srinivas, and Nanjundiah 2006; Ghosh and Mujumdar 2008; Mendes and 
Marengo 2010; Chen, Yu, and Tang 2010; Wenzel and Schröter 2010; Chadwick, Coppola, and 
Giorgi 2011; Raje and Mujumdar 2011; Abbot and Marohasy 2012; Gagne II et al. 2012; Rasouli, 
Hsieh, and Cannon 2012; Mekanik et al. 2013; Merz, Kreibich, and Lall 2013; Nasseri, Tavakol-
Davani, and Zahraie 2013; Tavakol-Davani, Nasseri, and Zahraie 2013; Abbot and Marohasy 
2014; McGovern et al. 2014; Abbot and Marohasy 2015; Deo and Şahin 2015; Mohammadi et al. 
2015; Patil and Deka 2016; Salcedo-Sanz et al. 2016; Andersen et al. 2017; Das, Chakraborty, 
and Maitra 2017; Dayal, Deo, and Apan 2017; Eghdamirad, Johnson, and Sharma 2017; Majdza-
deh Moghadam 2017; Kashiwao et al. 2017; Park et al. 2017; Rahmati and Pourghasemi 2017; 
Roodposhti, Safarrad, and Shahabi 2017; Wu et al. 2013; Zhou et al. 2017) 
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2.3.1. Identifying Some Model Relations with Machine Learning 

A study (Krasnopolsky and Fox-Rabinovitz 2006) exemplifying this category created a 
“hybrid general circulation model”. The parameterizations for longwave and shortwave 
radiation were replaced by a machine learning emulator, namely artificial neural net-
works. This made the simulation process substantially more efficient without adversely 
affecting the model’s accuracy. While the datasets and the measurements correspond to 
classical domain science, the modeling partly depends on automatically detected corre-
lations. The variables are, however, still theory-based concepts. Hence, the models lie 
in between classical domain science and pure big data. Another type of studies falling 
into this category uses machine learning for hypothesis creation as suggested by Cald-
well et al. (2014).  

2.3.2. Identifying All Model Relations with Machine Learning 

This is the category to which we attributed most of the considered case studies. For 
example, one study (Sprenger et al. 2017) created real-time warm wind (“Foehn”) fore-
casting in the Swiss alps using a machine learning algorithm. Two types of forecasts 
were compared, one of them using 133 predictors from reanalysis datasets, the other one 
using the air pressure gradients between all surrounding stations, leading to approxi-
mately 2,500 predictors. Both approaches worked with a reasonable accuracy. In this 
category, while the measurements and the datasets correspond to classical domain sci-
ence, the model is built entirely upon automatically detected correlations between the 
variables. Hence, the models lie between classical domain science and pure big data. 
Other examples for this category include the use of machine learning for downscaling 
of GCM results to a finer spatial or temporal scale (Tripathi, Srinivas, and Nanjundiah 
2006; Chadwick, Coppola, and Giorgi 2011; Tavakol-Davani, Nasseri, and Zahraie 
2013; Nasseri, Tavakol-Davani, and Zahraie 2013); and for predicting climatic variables 
such as rainfall (Abbot and Marohasy 2012; 2014) and drought (Deo and Şahin 2015). 

2.3.3. Finding Proxies for Missing Data 

An example for this category is a study (Tapia et al. 2017) which created an indicator to 
measure the vulnerability of European cities to different climate risks. Background 
knowledge suggested citizens’ awareness of climate change and climate-induced risks 
should be included, but no data existed. Thus, the authors used standardized frequency 
with which a city name in combination with the specific climate risks was searched for 
on Google as a proxy for this variable. The models and datasets correspond to classical 
domain science because the model relies on domain-specific knowledge for the relations 
used to construct the indicator, and the datasets are fixed sets with a pre-defined struc-
ture. However, the measurements were partly based on everyday reasoning due to the 
inclusion of data from the Google search. 
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2.3.4. Theory-Structured Big-Data Analysis 

An example for this category is a study (Shelton et al. 2014) that sought to estimate 
impacts from Hurricane Sandy in 2012 in New York City using Twitter data but struc-
tured the data analysis according to a theoretical framework from human geography, 
focusing on territory, place, scale, and network. This analysis revealed that while there 
is a good correlation between hurricane impacts and changes in Twitter activity, this 
correlation is scale-dependent. The framework allowed the authors to take a critical look 
at big data for such analyses and also to embed their research into the body of existing 
literature from human geography. Studies in this category analyze streams of unstruc-
tured data and the measurements are based on everyday reasoning. The model relies on 
automatically detected correlations, but model construction is partly informed by do-
main-specific scientific knowledge. Other examples belonging to this category use new 
forms of data, e.g., from video cameras, in order to detect meteorological phenomena 
such as fog (Castelli et al. 2016). 

2.3.5. Big-Data Analysis 

Few reviewed studies fall into the category of pure big data. An example is a further 
study linking Twitter data to impacts from Hurricane Sandy (Kryvasheyeu et al. 2016). 
Unlike the study in the previous section, it did not structure the analysis according to a 
theory-based framework but relied fully on automatically detected correlations between 
everyday-language concepts for the modeling. The study concludes that social media 
data might provide a useful tool for rapid post-disaster assessment of impacts due to the 
good correlation of changes in Twitter activity and hurricane impacts. Hence, in this 
study, the modeling was guided by everyday reasoning without appeal to scientific the-
ory. Of course, the authors hypothesized in advance that social media activity and natu-
ral disaster impacts might be correlated, but this is based on an everyday rather than a 
theory-based understanding of the system. 

2.3.6. General Findings 

Some reviewed studies (Overeem et al. 2013; Elmore et al. 2014) relied on so-called 
crowdsourced weather information. Crowdsourcing refers to the process of collecting 
data from a large number of people (Muller et al. 2015). This is potentially relevant in 
the context of big data because crowdsourced data typically constitute streams of data 
with measurements based on everyday reasoning. However, these studies can still fall 
into different categories because the datasets could still be analyzed with different types 
of models. 

The reviewed studies reveal that big data enters scientific research with individual ele-
ments such as machine learning methods and new forms of data. While machine learning 
is already a well-established tool in climate research, new forms of data such as 
crowdsourced weather data and social media data have rarely been used so far. Based 
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on the studies evaluated, we identify two rationales for inclusion of big-data elements. 
First, they are included when a more theory-based modeling or data collection would 
have been too time-consuming, or computationally or financially expensive. Examples 
include studies that used machine learning to speed up the simulation of GCMs, or when 
missing data was proxied using big data, even if in principle it could also have been 
collected in a classical way. We refer to this as the rationale of efficiency. Second, big-
data elements were used when the understanding of the target system prohibited a more 
theory-based modeling approach or measurement process. Examples include the appli-
cation of machine learning to weather nowcasting, or the analysis of social media data 
for climate impact assessment studies, as it is unclear how social media activity relates 
to natural disaster damages. We refer to this as the epistemic rationale. Hence, big data 
can support an analysis when facing limitations in resources and/or limitations in scien-
tific understanding. 

As noted above, we have not categorized data-driven studies dealing with weather-re-
lated technical applications or analyzing climate impacts upon agriculture. We believe 
that including these studies would not change the insights gained from the overview 
provided above. For example, a study (Bunn et al. 2015) assessing coffee production in 
a warmer climate has relied on data from Google Earth and used machine learning meth-
ods to identify suitable production locations. Hence, the study combines the categories 
“finding proxies for missing data” and “identifying all model relations with machine 
learning”. While our review contains no such a category, the study corroborates our 
findings about how big-data elements are used in research. Furthermore, the rationales 
are the same, proxy data are used for efficiency reasons, machine learning is used for 
efficiency and epistemic reasons (Bunn et al. 2015).  

Further studies used machine learning to assess climate change impacts on the global 
distribution of selenium in soils (Jones et al. 2017) and for the prediction of power output 
from wind (Foley et al. 2012) and solar power (Inman, Pedro, and Coimbra 2013) based 
on weather parameters. In these three studies, fixed sets of classical variables that were 
hypothesized to be relevant were related to the target variable using automatically de-
tected correlations, meaning that they fall into the category “identifying all model rela-
tions with machine learning”.  

In conclusion, we believe that the sample of categorized studies is sufficiently broad to 
give an overview of how and why big-data elements are used in climate research. While 
some studies might fall into categories lying in-between those in Table 1, they are un-
likely to yield major new insights. 

2.4. Conditions for Adequacy 

There are numerous issues in climate research where researchers are confronted with 
limitations in either resources or scientific understanding of the target system, indicating 
potential for big-data elements. However, most of the problems faced by climate 
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researchers do not fall into the realm of “small problems” because repeated evaluation 
of predictions is not possible. The reasons for this include the long lead times of climate 
predictions, for instance when using machine learning for downscaling climate model 
outputs (Tripathi, Srinivas, and Nanjundiah 2006; Ghosh and Mujumdar 2008; Mendes 
and Marengo 2010; Chen, Yu, and Tang 2010; Chadwick, Coppola, and Giorgi 2011; 
Raje and Mujumdar 2011; Nasseri, Tavakol-Davani, and Zahraie 2013; Tavakol-Da-
vani, Nasseri, and Zahraie 2013), or the wide scope of the analyzed problems with un-
clear measures of success, as Shelton et al. (2014) demonstrate when using a theoretical 
framework in the analysis of social media activity and hurricane impacts. Yet, as our 
review of case studies has highlighted, big-data elements have been employed in climate 
research also when repeated evaluation was not possible. In these cases, confidence in 
the predictions is established not through constant evaluation of predictions against new 
data but by assuming that the identified relationships remain constant over the forecast-
ing horizon, an assumption often only made implicitly. The adapted conditions for suc-
cessfully applying big-data elements are as follows: 

1. The system is predictable for the questions of interest. 
2. Sufficient data is available to train the algorithm. 
3. The identified relationships between the variables remain sufficiently constant 

over the relevant configurations of the target system (a), or sufficient new data is 
available to periodically evaluate the predictions against observations and make 
adjustments to the relationships if necessary (b). 

These conditions are necessary for successfully applying big-data elements for predic-
tions, and we assume that they are also jointly sufficient for this purpose. Big data can 
thus reliably be used beyond “small problems” if scientists have arguments in favor of 
condition 3a. This condition is quite straightforward and corresponds to an intuition 
many scientists have concerning statistical tools. Since there is no repeated evaluation, 
and hence no adaptation of the predictions, the identified relationships need to remain 
constant over the temporal and spatial horizon of interest. For machine learning algo-
rithms, this is fairly obvious. The constancy assumption is, however, also crucial for 
other big-data elements, namely for new forms of data. Also, the constancy of the rela-
tionships identified do not affect the first and the second condition, as the target system 
still needs to be predictable, and sufficient data for fitting the algorithm is still needed.  

The necessary condition for going beyond small problems has important epistemologi-
cal implications. Contrary to the repeated evaluation (3b), the constancy assumption (3a) 
cannot be made based on the data. Rather, the constancy assumption relies on the rele-
vant background knowledge about the target system. Scientists can appeal to notions of 
a system’s linearity or argue that the training dataset at hand covered sufficiently many 
states of the target system to assume that the relationship identified are of causal nature 
and hence remain constant (Pietsch 2016), at least over configurations of the target sys-
tem sufficiently similar to the ones covered by the training dataset. When applying big-
data elements in such cases, background knowledge is crucial for ensuring robust 
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measurements and reliable model results. Hence, in order to profit from the advantages 
of big-data elements, namely that they can help to handle limitations in resources and 
scientific understanding, an optimal path consists in combining theory and more classi-
cal scientific approaches with new data-science tools (Karpatne et al. 2017).  

2.5. Going Beyond Small Problems 

Classical domain science can be applied beyond problems that require continuous eval-
uation of the predictions because the theory embedded into its measurements and mod-
els justifies extrapolations beyond the observed range. In pure big data however, each 
component is largely detached from domain-specific scientific theory. This makes it 
very difficult, and in many cases even impossible, to argue for the constancy assump-
tion. Hence, pure big data is mainly applicable to what we have defined as “small prob-
lems”. However, our review of case studies shows that in climate research, big-data 
elements have been applied beyond “small” problems. Based on our considerations, this 
is justified when these elements are combined with theory-based approaches, which 
helps to argue for the constancy of the identified relationships. But for which specific 
areas of climate research could big-data elements be useful? The two rationales identi-
fied above suggest that they can be useful whenever scientists face limitations in their 
resources or their understanding of the target system. The review of case studies shows 
that the most common big-data element in climate research is machine learning used 
with standard climate data, but we believe that other interesting but yet unexploited ap-
plications for big-data elements exist. In the following, we speculate on where specifi-
cally we see the biggest potential. 

2.5.1. Analyzing Increasing Volumes of Climate Data 

The volume and complexity of data produced and stored are large and expected to fur-
ther increase (Overpeck et al. 2011). Increasingly, scientists will face difficulties in an-
alyzing these data following more traditional methodological pathways. Machine 
learning can help scientists to find patterns in large volumes of data from climate models 
or satellites and potentially to formulate hypotheses (Caldwell et al. 2014). However, 
this requires appropriate background knowledge to distinguish between potentially 
meaningful and meaningless patterns (Masson and Knutti 2013). This is especially true 
for datasets with a very large number of variables.  

2.5.2. Climate Impact Research 

As the drivers and physical consequences of climate change are better understood, re-
searchers increasingly turn to socio-economic impacts of climate change. Big-data ele-
ments could prove useful in this area of research because for such target systems, there 
are no well-confirmed universal theories. Hence the ability to construct theory-based 
impact models is limited, but researchers still have some understanding of how the target 
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system works. Pertinent background knowledge might be sufficient for making the con-
stancy assumption regarding the identified relationships for certain timescales and spa-
tial scales. 

There are different ways in which big-data elements could improve climate impact mod-
eling. New forms of data are useful for calibrating impact models. Data from 
crowdsourcing and crowdsensing specifically collected for a given purpose might be 
useful as the constancy assumption can be justified by appealing to the user basis. An 
example for such a study would be the use of GPS data from phones to track where and 
how people move (Lu et al. 2016). Furthermore, machine learning might be a promising 
choice of method for assessing the impacts of extreme weather events on technical and 
other complex systems. For instance, machine learning could be used to assess asset 
damages from severe weather events and extrapolate these results into future climatic 
regimes given that scientists have some understanding of the relationships between these 
variables and might hence be able to justify the constancy assumption in impact pro-
cesses. Studies on asset damages from severe weather events typically use damage 
curves to link the weather parameters and the damages to exposed assets such as insured 
financial losses (Welker et al. 2016). Using machine learning instead of simpler damage 
curves could lead to a more fine-grained and more accurate analysis. While in such cli-
mate impact studies, adaptation measures can run contrary to the constancy assumption 
(Arbuthnott et al. 2016), the constancy assumption could still be fulfilled for the estima-
tion of a ceteris paribus baseline scenario. 

2.5.3. Climate Services 

Increasing volumes of climate data make it possible to provide more tailored infor-
mation to users, often referred to as “climate services” (Vaughan and Dessai 2014). In 
order for climate scientists to deliver information that fits users’ needs, big-data ele-
ments could become increasingly important. There are several case studies employing 
machine learning for downscaling of GCM results to a more local scale. It has already 
been suggested that large volumes of climate data could improve climate services in this 
way (Benestad et al. 2017). However, one could go one step further by combining these 
localized variables with user-specific data and thus providing tailor-made climate ser-
vices to users as is being developed in personalized medicine. For example, farmers’ 
decisions on specific farming practices depend on climatological variables. A useful 
climate service would be to partly automate this decision by considering a few key var-
iables that can be predicted at the time of planting seeds. Such variables could be iden-
tified by combining climatological data with observed data at the farm level with 
machine learning. Decision trees can help to identify crop diseases in plants (Wahabzada 
et al. 2016). Similarly, machine learning and a dense network of climate and weather 
data might render farming practices more efficient (Walter et al. 2017), and hence con-
tribute to more climate-resilient agriculture (often labeled “climate-smart agriculture”, 
Lipper et al. 2014). In such cases, the understanding of the target system might justify 
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the constancy assumption especially when the forecasting horizon is comparatively 
short. 

2.5.4. Small Problems in Climate Research  

Finally, there is also room for solving relevant “small” problems in climate research, 
which neither implies that they are unimportant, nor that they are easy to solve. For 
instance, it has been suggested to compare forecasts from high-resolution models to ob-
servations when they become available and make corrections either to model output or 
to parameterizations in these models if necessary (Katzav and Parker 2015). This ap-
proach could be assisted by machine learning (Schneider et al. 2017). This would essen-
tially solve a small problem within the framework of a very complex problem.  

2.6. Conclusion 

In this article, we have reviewed case studies from climate research and shown that 
many categories exist between classical domain science and pure big data. While pure 
big data requires constant evaluation of the predictions, combining big-data elements 
with more classical theory-driven approaches can help to justify the constancy assump-
tion that allows going beyond “small problems.” Hence, big-data elements can poten-
tially be beneficial to overcome limitations in resources and scientific understanding in 
climate research but most likely not replace approaches based on theory and understand-
ing. Many of the points raised in this article can be extended beyond climate research 
and transferred to research domains investigating complex phenomena with increasing 
volumes of stored data. Certain aspects of climate research make the use of big data 
particularly challenging, in particular the long forecasting lead times relative to the short 
periods for which data is available. However, we expect that the framework used here, 
as well as the rationales and conditions for using big data could be fruitfully used by 
other fields. 

Acknowledgments 

We thank Claus Beisbart, Anna Merrifield, Sebastian Sippel, Rosemarie McMahon, and 
Johan Lilliestam for discussions and comments which have improved the quality of this 
manuscript. The research was supported by the Swiss National Science Foundation, Na-
tional Research Programme 75 Big Data, project No 167215. 

Author Contributions 

B.K. reviewed and classified the studies and led the writing with contributions from all 
authors. All authors contributed to the framing and the development of the ideas of the 
paper. 





 

 

3. Assessment of Predictive Uncertainty of 
Data-Driven Environmental Models 

Benedikt Knüsel1,2, Christoph Baumberger1, Marius Zumwald1,2, 
David N. Bresch1,3, Reto Knutti2 

1 Institute for Environmental Decisions, ETH Zurich 

2 Institute for Atmospheric and Climate Science, ETH Zurich 

3 Swiss Federal Office of Meteorology and Climatology MeteoSwiss, Zurich 

 

(Submitted for publication to Environmental Modelling & Software) 

 

Abstract 

Increasing volumes of data allow environmental scientists to use machine learning to 
construct data-driven models of phenomena. These models can provide decision-rele-
vant predictions, but confident decision-making requires that the involved uncertainties 
are understood. We argue that existing frameworks for characterizing uncertainties are 
not appropriate for data-driven models because of their focus on distinct locations of 
uncertainty. We propose a framework for uncertainty assessment that uses argument 
analysis to assess the justification of the assumption that the model is fit for the predic-
tive purpose at hand. Its flexibility makes the framework applicable to data-driven mod-
els. The framework is illustrated using a case study from environmental science. We 
show that data-driven models can be subject to substantial second-order uncertainty, i.e., 
uncertainty in the assessment of the predictive uncertainty, because they are often ap-
plied to ill-understood problems. We close by discussing the implications of the predic-
tive uncertainties of data-driven models for decision-making. 
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3.1. Introduction 

Real-world policy decisions are taken in light of great uncertainties. Several aspects of 
a decision situation can be uncertain, including the problem framing, the available op-
tions from which to choose, the actual or potential states of the world, and the values 
that decision-makers attach to these states of the world (see Bradley and Drechsler 2014; 
Hirsch Hadorn et al. 2015; Hansson and Hirsch Hadorn 2016). In this paper, we are 
concerned with uncertainty about the actual or potential states of the world. Often, this 
uncertainty is related to uncertainty of scientific information on which a decision is to 
be based. This information relates to what the world will be like, either in the form of a 
prediction of environmental conditions, such as a severe weather forecast, or in the form 
of the conditional prediction (so-called projection) of environmental conditions in re-
sponse to a policy measure, such as climatic conditions in response to a certain socioec-
onomic pathway and associated greenhouse gas emissions. In order to take decisions 
under uncertainty, the uncertainty should be analyzed and, if possible, quantified. An 
important part of the uncertainty analysis is the characterization of what kind of uncer-
tainty emerges because of which features of the research process. Only such a thorough 
treatment of uncertainties can help to ensure that societal decisions are based on “no 
more and no less than what one actually knows” (Betz 2016a, 138).  

Recent years have seen large increases in data produced and stored. This trend is also 
apparent in the sciences in general and in the environmental sciences in particular (e.g., 
in climate sciences, see Overpeck et al. 2011). The increase in the availability of data 
about environmental systems enables the use of machine learning to analyze the data 
and to construct data-driven models of phenomena using machine learning (see Gibert, 
Horsburgh, et al. 2018; Gibert, Izquierdo, et al. 2018). In this paper, we will discuss 
applications of machine learning for the data-driven modeling of a phenomenon. In con-
trast to a process-based model, in which the relationships between variables are pre-
scribed in the form of equations specified by an expert, a data-driven model is 
constructed by algorithmically inferring the relationships or parameters from a dataset 
using machine learning (for a more detailed distinction on process-based and data-
driven models, see Knüsel and Baumberger, under review). There have been numerous 
applications of machine learning in the environmental sciences (see, e.g., Reichstein et 
al. 2019). If predictions from data-driven models are reliable, which seems to be the 
case at least under certain conditions (see Pietsch 2015; Northcott 2019), these predic-
tions are potentially useful for decision-making related to the modeled phenomena. One 
of the advantages of data-driven models is that they can be constructed when the pro-
cesses producing a phenomenon are not fully understood. Hence, they might provide 
decision-relevant information specifically about phenomena which are quantitatively 
not understood well enough to construct process-based models. However, no tools to 
appropriately evaluate data-driven models in terms of their uncertainties are available 
to date, which reduces their usefulness for decision-making. 
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In this paper, we address the characterization of uncertainties of predictions from data-
driven models. The focus of the present paper lies on uncertainties of predictions, and 
we will not distinguish between “pure” predictions of environmental conditions, such 
as a forecast of severe weather conditions, and predictions of the environmental re-
sponse conditional on a human intervention, such as climatic conditions in response to 
a certain path of greenhouse gas emissions. The approach presented here is fairly general 
and can be applied in both situations, equally. In section 3.2, we argue that existing 
frameworks for the characterization of the uncertainties of model-based predictions are 
not appropriate for predictions from data-driven models. We hence introduce a new, 
more general approach in section 3.3. It focuses on the justification of the assumptions 
underlying a prediction that is possible based on the available data and background 
knowledge. The assumptions that need to be justified include the fitness-for-purpose of 
the used model. In sections 3.4 and 3.5, we demonstrate the application of this frame-
work to a toy example and to a case study from environmental science. In section 3.6, 
we discuss the implications of this framework for the quantification of uncertainties and 
for decision-making more generally. We conclude in section 3.7.  

3.2. Existing Frameworks 

Existing frameworks for model-based decision-support and specifically uncertainty 
analysis have been developed for process-based models. An influential framework to 
analyze uncertainties of model-based predictions is due to Walker et al. (2003). It dis-
tinguishes three different dimensions of uncertainty that are arranged as an uncertainty 
matrix, namely the location (where in the modeling complex does the uncertainty man-
ifest itself?), the nature (is the uncertainty due to the inherent variability of the phenom-
enon or due to imperfect knowledge of it?), and the level of uncertainty (how severe is 
the uncertainty, ranging from complete certainty to complete ignorance?). Several vari-
ations of this matrix have been developed (see e.g. Refsgaard et al. 2007), and versions 
of it have been applied in different contexts (see Kwakkel, Walker, and Marchau 2010). 
The locations of uncertainty introduced by Walker et al. (2003) are the context, the 
model structure and the technical model, the driving forces and the system data, the 
parameters, and finally the model outcomes, which obtain their uncertainty from the 
preceding locations. Kwakkel, Walker, and Marchau (2010) have synthesized adapta-
tions and criticism of the uncertainty matrix introduced by Walker et al. and have, 
amongst other things, suggested that some of the dimensions, including the locations of 
uncertainty, be rearranged.  

Similar locations of uncertainty have been discussed in specific disciplines. For climate 
models, for example, Knutti (2018) suggests that the relevant locations of uncertainty 
are model structural uncertainty, numerical approximations, parameterizations, natural 
variability due to initial conditions, emission scenario, boundary conditions, and obser-
vational data uncertainty, all of which have an analog in the locations discussed above. 
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Similar locations of uncertainty have been discussed for climate models by other authors 
(Winsberg 2018b, chap. 7). 

What the approaches presented above have in common is that they suggest that different 
model-related aspects, the locations of uncertainty, are investigated in order to charac-
terize the uncertainty of the model results. Namely, at each location, aspects should be 
identified that are either intrinsically or epistemically uncertain, i.e., uncertain due to 
system properties or due to our imperfect understanding of the system, and the level of 
this uncertainty should be determined. Then, this uncertainty is propagated in order to 
characterize the uncertainty of the processed model outputs. 

Thinking about uncertainty in terms of specific locations is not informative for data-
driven models for three reasons. First, for many data-driven models the model structure 
cannot readily be tied to processes in the target system or be interpreted in terms of the 
target system. Yet, model structure is one of the locations of uncertainty common to the 
established frameworks. This is especially obvious for models based on neural networks 
or bagging approaches like random forest. While neural networks have a model structure 
consisting of a number of neurons and layers, this structure cannot be interpreted in 
terms of the target system in a straightforward way. For bagging approaches like random 
forest, it is unclear what the relevant model structure would be because they make pre-
dictions based on the average of multiple individual estimators. For process-based mod-
els, structural model uncertainty arises because different model specifications might 
seem equally plausible and it is unclear how to best represent the target system for a 
specific purpose. This representational uncertainty is related to predictive uncertainty 
(see Parker 2010a). The best model setup can be more radically underdetermined in the 
case of data-driven models since a very large number of model setups can be consistent 
with the available training data. Hence, the best model setup for a specific purpose has 
to be chosen based on background knowledge. As data-driven models are often em-
ployed when processes are ill-understood (see Knüsel et al. 2019), the model setup of 
data-driven models and the resulting representational uncertainty of a target seem rele-
vant for an analysis of predictive uncertainty even though the model structure, if there 
is an accessible model structure, cannot directly be tied to the target system. However, 
it is unclear how exactly representational uncertainty and predictive uncertainty are re-
lated for data-driven models. Second, similar to the model structure, model parameters 
are not an obvious location of uncertainty either for many data-driven models. Some 
machine learning approaches like random forest are non-parametric and hence, this lo-
cation of uncertainty is simply not defined for them. Such non-parametric approaches 
do have meta-parameters, e.g., the number of trees or the number of considered variables 
at every split in a random forest model, but these, again, cannot readily be interpreted in 
terms of the target system. Other machine learning approaches like deep neural networks 
can have an overwhelming number of parameters. As for the model structure, many of 
the model parameters have no obvious interpretation in terms of the target system, and 
the uncertainty in each parameter does not directly translate to predictive uncertainty in 
the same sense. Third, machine learning is, at least sometimes, preoccupied mainly with 
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good predictions and less with the reasons for these predictions. But as we will see be-
low, for some predictions, the reasons for the predictions can matter, too. A framework 
for assessing predictive uncertainties of data-driven models should thus reflect this pur-
pose-dependence of the representational character of the model.  

Thus, while existing typologies of uncertainty provide a good starting point to think 
about the uncertainty of predictions from data-driven models, they do not seem adequate 
as analytical tools. From the above discussion, two requirements become clear for an 
analytic framework for the predictive uncertainties of data-driven models. First, such a 
framework needs to do justice to the fact that under some, but not all, circumstances, a 
data-driven model has an instrumental character in the sense that modelers are preoccu-
pied only with the predictive success of data-driven models and not with the reasons for 
this success. Second, in cases in which a modeler is not only preoccupied with the pre-
dictions but also with the reasons for predictive success, the representational accuracy 
of data-driven models needs to be assessed even though, as we have argued above, nei-
ther the model structure nor model parameters can readily be interpreted in terms of the 
target system, at least not for models with many degrees of freedom. In these cases, 
model users will be forced to adopt a more realistic interpretation of the model in order 
to justify confidence in model predictions. Hence, a framework to characterize the un-
certainty from these predictions should allow to assess representational uncertainty 
without directly interpreting the model structure or the model parameters in terms of the 
target system. However, as outlined above, the representational uncertainty of a data-
driven model should not be inferred from the underdetermination of its structure or its 
parameters. Specifically, this means that the framework needs to be able to assess to 
what extent the behavior (as opposed to the structure or the parameters) of the data-
driven model is coherent with background knowledge and to what extent it is possible 
to argue from the coherence with background knowledge to representational accuracy.  

Uncertainty has also been a topic in the computer science literature on machine learning. 
To the best of our knowledge, the literature on uncertainties in machine learning has 
mainly discussed the role of Bayesian approaches in order to quantify uncertainty (see 
Blundell et al. 2015; Ghahramani 2015; Gal and Ghahramani 2016). Kendall and Gal 
(2017) have explicitly distinguished between epistemic and aleatory uncertainty in the 
context of Bayesian deep learning for computer vision – a distinction we will take up in 
later sections. These Bayesian approaches are certainly useful for some contexts, such 
as computer vision and for cases in which uncertainty can be characterized easily be-
cause it only comes from certain sources, such as noisy data. However, for the present 
purposes, they seem insufficient as a basis of the uncertainty assessment of data-driven 
environmental models as it is unclear how they can be used to assess representational 
uncertainty in cases in which a relatively realistic interpretation of the model is adopted. 
However, we will return to how these methods could complement the ideas presented 
in our framework in section 3.6. 
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3.3. An Argument-Based Framework for Uncertainty Analysis 

Above, we have argued that a framework for analyzing the predictive uncertainty of 
data-driven models needs to do justice to the fact that some, but not all, data-driven 
models have a purely instrumental character. Hence, the framework necessarily has to 
be more general than existing frameworks in order to allow for different representational 
characters in different contexts. Here, we put forward such a framework. The framework 
suggests to analyze uncertainties in three steps. The first step consists in reconstructing 
what assumptions have to be made when using a model for a specific purpose and how 
these assumptions can be justified. The second step consists in evaluating how well jus-
tified the assumptions are. The third step consists in assessing the uncertainty based on 
the previous two steps. The basic assumption that has to be justified in any modeling 
application is an assumption regarding the fitness-for-purpose of the model used. As 
Parker (2009) has argued for climate models, the goal of model evaluation should not 
be to confirm the model itself, generally, but rather to confirm that a model is adequate 
for a specific purpose. In this paper, we use the term “fitness-for-purpose”, which, in 
contrast to adequacy-for-purpose, admits of various degrees of fitness (meaning that 
models are not just fit-for-purpose or not, but fit-for-purpose to a larger or smaller 
degree, see Parker, forthcoming). 

For the present purposes, a model is considered maximally fit for a specific predictive 
purpose if it can reliably predict the variable of interest with errors lying in some small 
range. If a model is maximally fit for purpose, this range, here, should be understood to 
depend solely on the inherent variability of the target system, meaning that it arises due 
to aleatory uncertainty. In other words, the model skill converges toward the theoretical 
limit of predictability of the system as the fitness-for-purpose increases. An example of 
such a fitness-for-purpose assumption would be: Model M is fit for predicting the total 
precipitation amount of the next 24 hours at location L with errors in some small range. 
If it can be conclusively justified that the model is maximally fit-for-purpose in this 
sense, the model predictions exhibit no epistemic uncertainty. If the degree of fitness-
for-purpose is lower, the range will increase, and this will be due to epistemic uncer-
tainty. Hence, according to the framework presented here, epistemic uncertainty arises 
because of factors that reduce the fitness-for-purpose to a lower degree than maximal 
fitness-for-purpose or factors that make it unclear what degree of fitness-for-purpose a 
model has. 

In the following, we will introduce the three steps of the framework in more detail. The 
first step is the reconstruction of the assumptions and their possible justifications. In 
order to do this, the following two questions have to be addressed: First, what modeling 
assumptions does a prediction rely on? Second, how can these assumptions be justified? 
As noted above, the basic assumption is a fitness-for-purpose assumption concerning 
the model that was used to produce a prediction. Depending on the circumstances, the 
fitness of the model for the predictive task at hand will be justified differently. If the 
justification is itself (partly) based on assumptions that require further justification, the 
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two questions above need to be addressed several times in order to assess how well the 
basic assumption is justified. Once this is done, an argument map can be drawn in which 
it becomes apparent which arguments and assumptions justify the fitness-for-purpose 
assumption. 

In the second step, based on the argument map from the first step (or in simpler cases, 
based on a direct assessment of the arguments), it is evaluated how well the different 
assumptions and specifically the fitness-for-purpose assumption are justified. For this, 
it is relevant to check whether the premises used to justify a conclusion are true and 
whether they provide sufficiently good reason to accept the truth of the conclusion. 
Whenever possible, arguments should be reconstructed as deductively valid arguments, 
i.e., arguments for which the following condition holds: if all the premises are true, then 
the conclusion must be true. This way, the assumptions become more explicit and the 
actual sources of uncertainty can be identified more easily. An example of a deductively 
valid argument is the following (this example is taken from Baumberger, Knutti, and 
Hirsch Hadorn 2017, 7): If a model is adequate for projecting X for the far future, then 
the model reliably indicates X for past and present. Model M does not reliably indicate 
X for past and present. Hence, M is not adequate for projecting X for the far future. Some 
arguments cannot easily be reconstructed as deductively valid, e.g., because one would 
have to add premises that are suspected or even known to be false. In these cases, the 
arguments can be reconstructed as non-deductively correct, i.e. as arguments that pro-
vide sufficiently strong (but not conclusive) reasons for the truth of the conclusion. Non-
deductively correct arguments are risky in the sense that even if all of their premises are 
true, the truth of the conclusion is not guaranteed. An example of a non-deductive argu-
ment is the following (this example, too, is taken from Baumberger, Knutti, and Hirsch 
Hadorn 2017, 7): Model M reliably indicates X and climate quantities upon which X 
depends for past and present. So probably, M is adequate for projecting X for the near 
future.  

Finally, the third step consists in an assessment of the uncertainty. By analyzing the 
possible epistemic justification of assumptions, the focus of the framework presented 
here is on epistemic uncertainties. The framework distinguishes between two types of 
epistemic uncertainty that we refer to as “first-order uncertainty” and “second-order un-
certainty”. 8 These two types of uncertainty are distinguished by their objects. First-order 
uncertainty is the epistemic uncertainty of the prediction. Consequently, first-order un-
certainty is defined, here, as the extent to which the assumptions underlying a prediction 
are not or insufficiently justified. Thus, epistemic first-order uncertainty arises if it can-
not be conclusively justified that the model is maximally fit-for-purpose. Second-order 
uncertainty is defined, here, as the extent to which the assessment of first-order uncer-
tainty is impaired by context-specific factors. Specifically, second-order uncertainty 

                                            
8 Note that the justifications always have to rely on arguments that can be constructed from 
what is known. Hence, the framework introduced here is not helpful to identify uncertainty 
arising from unknown unknowns. 
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depends on difficulties in assessing to which extent the assumptions are justified, e.g. 
because of a lack of evidence, contradictory evidence, or expert disagreement. Thus, 
epistemic second-order uncertainty arises if the degree of fitness-for-purpose cannot be 
conclusively determined. The assessment of these two types of uncertainty is based on 
the evaluation of the uncertainty from the second step, as will be illustrated below. Based 
on the framework, the expressions of first-order and second-order uncertainty will be 
purely qualitative. However, in section 6 below, we address the questions of uncertainty 
quantification, which is desired for many applications.9  

Before we proceed to illustrating the application of the framework, two clarifications 
are in order. First, in practical applications, the fitness-for-purpose of a model will not 
only depend on its predictive accuracy. Further considerations such as practical concerns 
can play a role, for example ease-of-use or computational cost. However, in the present 
paper, we are only concerned with the uncertainty of the predictions of a model and we 
will, hence, discuss fitness-for-purpose only as it relates to predictive accuracy. Second, 
note that if a model is found to be less-than-maximally fit-for-purpose, this does not 
mean that the model is outright unfit-for-purpose. Whether a given degree of fitness-
for-purpose is sufficient to consider a model outright fit (or adequate) for a specific 
purpose depends on the context.  

The identification and evaluation of how the assumptions are justified requires expertise 
from domain scientists concerned with the phenomenon at hand and from modelers and 
data scientists, but also expertise in argument analysis (an introduction to argument 
analysis can be found in Brun and Betz 2016). In the literature, it has been recognized 
that an analysis of assumptions can be important for a better understanding of uncertain-
ties (see Kloprogge, van der Sluijs, and Petersen 2011). However, as will be shown 
below, since the framework presented here is concerned with justifying the fitness-for-
purpose, it is not only concerned with assumptions that a modeler makes in the process 
of model construction. Instead, it is concerned with assumptions that a model user is 
relying on, at least implicitly, when using a given model for a specific predictive pur-
pose. For example, a model user might have to assume that certain processes are accu-
rately represented in a data-driven model. However, this assumption is not made 
explicitly in the process of building a data-driven model as the relationships between 
variables are not explicitly prescribed (see Pietsch 2015). Hence, there are usually no 
explicit representations of processes in data-driven models. 

                                            
9 We note here that uncertainties of higher orders could be defined in analogy to second-order 
uncertainty. For example, third-order uncertainty could be defined as the uncertainty of the 
assessment of second-order uncertainty. As the discussion below will highlight, second-order 
uncertainty is an important concept to better understand the epistemic uncertainty of model 
predictions. Uncertainties of higher order are likely irrelevant in practical applications.  
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3.4. Toy Example for Illustration 

In this section, we discuss a simple toy example of a data-driven model to illustrate how 
the framework can be applied. Our toy model is a random forest algorithm that is trained 
to predict the maximum daily air temperature at a given location with a lead-time of one 
day. For this, the current air temperature and pressure at the location, the season, and an 
index on the general weather conditions are used as predictors. Imagine that the model 
predictions are successful and actually measured maximum daily air temperatures are 
always close to the predicted value (within a small error range), and we are able to re-
peatedly use the model and evaluate its performance.  

We might generally wish to better understand the uncertainty of this kind of prediction 
in order to base decisions on them.10 For example, the prediction of an unusually cold 
or hot maximum temperature might be relevant for public health. In order to obtain a 
better understanding of the uncertainty of the predictions, we can apply the framework 
introduced in the previous section. First, the assumptions and their possible justifications 
need to be identified and graphically arranged. As explained above, the most fundamen-
tal assumption is a fitness-for-purpose assumption. In this case, the fitness-for-purpose 
assumption states that the model is fit for making predictions of the daily maximum 
temperature with a lead time of a day for a specific location up to some range. How can 
this assumption be justified? Since we have used the model and evaluated the accuracy 
of its predictions repeatedly in the past, this past performance can be used to justify the 
fitness of the model for the predictions at hand. Namely, the model has predicted many 
past instances of maximum daily temperature accurately.11 This justification can now 
be illustrated, for example in a table as shown in Table 2.  

 
Table 2: Application of the conceptual framework to the toy example with maximum daily tem-
perature predictions. 

assumption justification of the assumption 

The model is fit for predicting maximum daily 
temperature with a lead time of one day. 

The model has accurately predicted many 
past instances of maximum daily tempera-
ture with a lead time of one day. 

 

                                            
10 The same considerations could also be applied in an analysis for this specific instance of a 
prediction from the model. Then, the reconstruction of the assumptions would have to include 
that the conditions of the specific prediction are sufficiently similar to past conditions. Further-
more, the fitness-for-purpose assumption would have to be reformulated to refer to the specific 
prediction instance. 
11 Implicitly, this can be read as saying that the model does not make an extrapolation far outside 
the range of values for which it has been trained.  
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This justification can be reconstructed as a deductively valid argument of the following 
form:  

 

Now that the argumentation is reconstructed, we can proceed to the second step, namely 
evaluating to what extent the fitness-for-purpose assumption is justified. For the evalu-
ation of the justification, we need to assess whether the premises are true and to what 
extent they provide good reasons for the fitness-for-purpose assumption. As the justifi-
cation can be reconstructed as a deductively valid argument, the conclusion must be true 
if the premises are true. Thus, the evaluation consists in determining whether all prem-
ises are true. P1 makes a conditional claim about the fitness-for-purpose of the model. 
This premise, we take it, is uncontroversial. The premise P2 is related to the evaluation 
of past predictions of the model. As mentioned above, the model has been extensively 
used in past cases and has been predictively successful. Thus, P2 is true, too. The truth 
of P3, finally, has to be justified based on domain-specific background knowledge, 
namely that the past cases are sufficiently representative to be confident about the mod-
els’ performance more generally for cases that are similar to the ones considered thus 
far. The short lead-time of the predictions makes it likely that P3 is true, too, for two 
reasons. First, on a practical level, the short lead-time allows for repeated evaluations of 
the predictions. Second and more fundamentally, the short lead-time increases the 
chance that the evaluated predictions of the past are representative of the current predic-
tions because the system is less likely to have experienced large changes in boundary 
conditions over a short period of time.12 Hence, we have a deductively valid argument 
that justifies the fitness-for-purpose of the model, and there are good reasons to assume 
that all of its premises are true. Hence, the argument seems to be sound (a sound argu-
ment is a deductively valid argument with true premises), which means that the conclu-
sion of the argument is true. 

Finally, in the third step, the epistemic uncertainty of the prediction can be assessed. 
The first-order uncertainty depends on the extent to which the fitness-for-purpose as-
sumption is justified. As we have seen, the justification of the fitness-for-purpose, here, 

                                            
12 Note that the argument could as well be reconstructed without premise P3. This would turn 
the argument into an inductive argument whose strength would have to be assessed based on 
the representativeness of the past cases. We choose and recommend the deductive reconstruc-
tion as it makes the uncertainty more explicit. 

P1 If a model has predicted many past instances of a variable accurately and 
the conditions for the predictions remain sufficiently similar to the past in-
stances, the model is fit for predicting that variable. 

P2 Model M has predicted many past instances of Tmax accurately. 
P3 The conditions for the predictions of Tmax remain sufficiently similar to past 

instances. 
C M is fit for predicting Tmax. 
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seems to a sound argument, meaning that the model can safely be considered close to 
maximally fit-for-purpose. This means that epistemic first-order uncertainty is very 
small or even absent in the toy example. Epistemic second-order uncertainty is also 
small or even absent as it is straightforward to reconstruct and evaluate the argument for 
the fitness-for-purpose assumption. There may be some second-order uncertainty re-
lated to premise P3 if it is unclear to what extent the past performance is representative 
of future performance. The justification of the truth of P3 fundamentally depends on the 
system understanding. 

Note that in this simple toy example, the framework can also help to identify the aleatory 
uncertainty. The reason for this is that the total uncertainty of the predictions can be 
estimated in a straightforward way based on the evaluated predictions. Since the epis-
temic uncertainty of the predictions can be reliably estimated as a result of the low level 
of second-order uncertainty, the aleatory uncertainty is simply the difference between 
total uncertainty and epistemic first-order uncertainty. In the present case, aleatory un-
certainty corresponds to the range that can be estimated from the small random errors 
of model predictions. As Kendall and Gal (2017) have argued, in machine learning ale-
atory uncertainty is best understood as uncertainty that cannot be reduced by collecting 
additional samples of data, which is exactly the kind of uncertainty that remains here. 
In this toy example, the aleatory uncertainty can readily be quantified based on records 
of past model performance. 

In sum, all things considered, both epistemic first-order and second-order uncertainty 
turn out to be very small in this example. The reason for the small epistemic uncertainty 
is that the model predictions have been evaluated repeatedly for similar cases. This al-
lows model users to adopt a purely instrumental view of the model, meaning that the 
focus of the model evaluation lies purely on its predictive success and not on the reasons 
for why the model makes certain predictions, nor on its structure. Hence, in such a case, 
an evaluation of uncertainty in terms of model structure or model parameters would 
make little sense. This highlights that the framework introduced here can deal with cases 
where model users have a purely instrumental view of their models. 

3.5. Case Study: Long-Term Global Selenium Predictions 

In this section, we present a case study from environmental science to demonstrate the 
application of the framework to a long-term prediction to illustrate how the framework 
works in more complex situations than the toy example from the previous section. 
Namely, we discuss the case of predictions of changes in global soil selenium content 
by Jones et al. (2017). The study used data-driven models for three goals, namely “(i) to 
test hypothesized drivers of soil Se [selenium] concentrations, (ii) to predict global soil 
Se [selenium] concentrations quantitatively, and (iii) to quantify potential changes in 
soil Se [selenium] concentrations resulting from climate change” (Jones et al. 2017, 
2848). For illustration, we will discuss the last of these three goals, the impact of climate 
change on soil selenium. 
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Jones et al. (2017) used data from over 30.000 samples worldwide to train three different 
models, namely, two artificial neural networks and a random forest model. All three 
data-driven models relate environmental variables to soil selenium concentrations. The 
authors performed a variable selection procedure, after which the seven most important 
predictors were retained and trained the three models using historical data. The chosen 
predictors were the aridity index, the clay content, evapotranspiration, lithology, pH, 
precipitation, and soil organic carbon. These trained models were then used to project 
changes in soil selenium concentrations due to climate change, hereby using changes in 
precipitation and evapotranspiration from climate models (for RCP6.0) and an accom-
panying scenario for the development of soil organic carbon. Doing this, they estimated 
that average soil selenium concentrations will decline by 4.3% under the chosen bound-
ary conditions. Selenium is an essential micronutrient, which makes information on fu-
ture selenium loss of this magnitude potentially decision-relevant. For example, changes 
to farming practices might be required to counter the climate impacts to ensure nutri-
tionally adequate crops. Such measures could include fertilization and relying on crops 
that can take up selenium from the soil even if soil selenium concentrations are lower.13 
However, taking decisions about such measures requires confidence in the predictions, 
which, in turn, requires an analysis of the uncertainties of the predictions. For this, the 
framework introduced here can be applied. 

Again, in a first step, the assumptions underlying the predictions and their possible jus-
tification need to be reconstructed and graphically represented. An overview of all of 
the assumptions and their justification is provided in Table 3. The first assumption is the 
fitness-for-purpose assumption. The fitness-for-purpose assumption states that the mod-
els constructed with the given set of drivers and historical data allows to project (i.e., 
make a conditional prediction of) future selenium concentrations.14 However, in this 
case, the fitness-for-purpose assumption can no longer be conclusively justified based 
on the repeated evaluation of the model predictions (as it was in the toy example) be-
cause it is unclear whether the future cases are sufficiently similar to past cases. Hence, 
further ways of justifying the fitness-for-purpose are required besides past model per-
formance. A plausible justification is that the modeled relationships can be assumed to 
be sufficiently constant over time and hence, can be extrapolated into the far future (see 
                                            
13 Which of these methods would be best suited to address selenium losses is, of course, fraught 
with uncertainties, including uncertainty about what is most important for local populations 
directly affected by potential selenium losses. For reasons of simplicity we will not engage in 
discussions of specific policy measures here but only discuss the uncertainties of the prediction. 
14 The reconstruction presented here assumes that the boundary conditions require no further 
justification and can just be regarded as given. This is done for simplicity. A different recon-
struction would be possible in which the adequacy of the boundary conditions, which depends 
on the internal consistency of the scenario and on how informative the scenario is for the pur-
pose at hand, could be included. This assumption would then have to be justified based on an 
independent evaluation of the respective models that were used to create these scenarios. As 
this point is not essential for the present purposes, we will not engage with this discussion in 
more detail. 



Case Study: Long-Term Global Selenium Predictions | 51 

 

Knüsel et al. 2019). However, this assumption itself requires further justification. A pos-
sible justification of this constancy assumption is that the model accurately represents 
the most relevant causal processes that drive selenium concentrations and that these 
mechanisms will not change in response to changing environmental conditions.15  

 

Table 3: Application of the conceptual framework to the example with projections of long-term 
selenium concentrations. 

iteration assumption justification of the assumption 

1 
The model is fit for projecting soil sele-
nium concentrations in the far future for 
the given boundary conditions. 

The model predicts past instances of 
selenium concentrations well.  
The model relationships are suffi-
ciently constant over time. 

2 The model relationships are sufficiently 
constant over time. 

The model represents most relevant 
processes driving selenium concen-
trations accurately and these remain 
sufficiently constant under changing 
environmental conditions. 

3 

The model represents most relevant 
processes driving selenium concentra-
tions accurately and these remain suffi-
ciently constant under changing 
environmental conditions. 

The most relevant predictors were 
included in the model. 
Data from many regions was used 
for training. 
Sufficiently flexible machine learning 
algorithms were used. 
The model is empirically accurate 
when tested with data from the past. 
Model behavior is consistent with 
background knowledge. 
The model results are robust to the 
modeling assumptions. 

4 

The most relevant predictors were in-
cluded in the model. 

The variables were identified based 
on domain-specific background 
knowledge and a variable selection 
procedure. 

Data from many regions was used for 
training. 

These regions are sufficiently repre-
sentative of possible configurations. 

Sufficiently flexible machine learning al-
gorithms were used. 

Neural networks and random forest 
are very flexible methods. 

 

                                            
15 We note here that a different justification for the constancy of the described relationship could 
also be that two factors whose relationship is modeled have a common cause instead of being 
directly causally related. However, the direct path is the more plausible one here.  



52 | Assessment of Predictive Uncertainty of Data-Driven Environmental Models 

 

Yet, that the model represents most of the relevant causal processes accurately is itself 
an assumption since no mechanisms were explicitly included in the model, and hence, 
it needs to be justified. Furthermore, even if the model represents important causal pro-
cesses, it may be unclear to what extent these mechanisms remain constant when ex-
trapolated to changing environmental conditions. This is relevant, here, because the 
model is used to make projections for values of the variables that are somewhat different 
from today’s values because of climate change. The justification of the assumption that 
most of the relevant causal processes are accurately represented leads to a third argu-
mentation iteration, and hence a third row in Table 3. 

Due to the lack of explicit representations of processes, the assumption needs to be jus-
tified indirectly. There are several ways to justify this assumption, namely (1) that the 
most relevant variables were included, (2) that data from many different regions was 
analyzed, (3) that sufficiently flexible machine learning algorithms were used, (4) that 
the models are empirically accurate (i.e., the cross-validation error is low), (5) that 
model behavior, as assessed through sensitivity analysis, is consistent with background 
knowledge about the system, and finally (6) that three different machine learning algo-
rithms were used and largely agreed (i.e., a robustness argument). These reasons have 
been suggested as conditions for the adequacy of machine learning approaches in the 
philosophical literature. For example, Pietsch (2015) has stressed the importance of (1) 
and (2), while Knüsel and Baumberger (under review) have stressed the importance of 
all six points for evaluating to what extent a data-driven model is coherent with back-
ground knowledge. Now, (1), (2), and (3) again require further justification, which leads 
to a fourth iteration. In order to justify them, scientists have to rely on both background 
knowledge on the behavior of trace elements in the environment and understanding of 
and experience with machine learning. 

With this, the possible justification of the fitness-for-purpose has been identified. For 
space reasons, we do not provide an explicit reconstruction of the arguments here. A 
reconstruction of the complex argumentation is provided in the appendix. We note here 
that the arguments in the first two iterations can be reconstructed as deductively valid 
arguments. This is not easily possible for the third iteration. In the appendix, we also 
provide an argument map that shows how the different arguments relate to each other. 
Note that the empirical accuracy of the model predictions now appears twice as a justi-
fication: It is a necessary condition for considering the model fit-for-purpose in the first 
iteration, but it also gives some indication that the relevant processes are represented 
accurately in the model in the third iteration. 

In the second step, the arguments for justifying the fitness-for-purpose have to be eval-
uated. The truth of the individual premises (see the reconstruction in the appendix) has 
to be evaluated based on domain-specific background knowledge, the evaluation of the 
models with available data, and the comparison of the behavior of the three individual 
models. Based on the model evaluation as discussed by Jones et al. (2017), all the prem-
ises of the arguments seem to be at least approximately true. There is, however, one 
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exception to this, concerning the choice of variables: As Jones et al. (2017) note, their 
model lacks selenium sources, which leads to an underprediction of global average se-
lenium values. The reason for this is that data on selenium sources like atmospheric 
deposition or biomass deposition was missing. That there is an underprediction of aver-
age soil selenium concentrations attacks the inference from the empirical accuracy of 
the models to the conclusion that most relevant processes are accurately represented in 
the models. That data on selenium sources was lacking attacks the premise that most 
relevant predictors were considered because the global underprediction shows that sele-
nium sources are important for soil selenium concentrations. This means that the 
strength of the argument from empirical accuracy is reduced somewhat, and the argu-
ment about the most important variables being considered has a premise that is strictly 
speaking false. Furthermore, while several arguments can be provided to argue for the 
assumption that most relevant mechanisms are accurately represented in the model, they 
neither individually nor jointly guarantee that the mechanisms are represented accu-
rately. This is because in the third iteration, the arguments are not deductively valid but 
provide only more or less strong reasons for the truth of their conclusion. Hence, also 
the preceding assumptions about the constancy of the identified relationships and the 
fitness-for-purpose cannot be justified conclusively. 

Now, in a third step, we can proceed to assessing the uncertainty based on the argumen-
tation reconstructed above. As noted, some of the provided premises are known to be 
false, strictly speaking, namely the assumption that all relevant variables were included. 
This also somewhat affects the empirical accuracy of the models. Furthermore, the jus-
tifications provided can neither individually nor jointly guarantee that the models are 
really fit for purpose. The lack of good justification of some of the assumptions leads to 
a lower-than-maximal fitness-for-purpose, which means that there is more epistemic 
first-order uncertainty in this case study compared to the toy example from above. The 
framework introduced here does not only highlight that the epistemic uncertainty of the 
prediction is comparatively large, it also highlights which specific aspects of the justifi-
cation are responsible for this. Second-order uncertainty is also substantially larger than 
in the toy example above. The reason for this is that it is not clear to what extent the 
modeling assumptions are justified by the provided evidence. This has to do on the one 
hand with opacity of the models, as it is not entirely clear what relations they actually 
represent and on what grounds.16 More importantly, it has to do with the lack of back-
ground knowledge to judge to what degree the assumptions are justified by the provided 
arguments. This lack of background knowledge makes it difficult to assess the strength 
of the non-deductive arguments in the third and fourth iterations shown in the Table 3. 

All uncertainties considered, we see that in this example, both first-order and second-
order epistemic uncertainty are present to a larger degree than in the toy example. First-

                                            
16 The reason for this is that the model does not provide an explicit equation or a set of rules 
that could be analyzed. This is especially true of the models used by Jones et al. (2017), random 
forest and neural networks. 
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order uncertainty relates to a lower degree of fitness-for-purpose because the justifica-
tion of fitness-for-purpose is less strong. There are two reasons for this. First, some of 
the arguments provided are non-deductive, meaning that the conclusion need not be true 
even if all the premises are true. This means that the provided justification cannot guar-
antee that the model is generally fit for the kind of prediction of interest. Second, the 
lacking data on selenium sources and, relatedly, the global underprediction of average 
selenium concentrations attacks two arguments for the overall fitness-for-purpose, 
which reduces the fitness-for-purpose to a less-than-maximal level. Note again, here, 
that even though the degree of fitness-for-purpose is less-than-maximal, the models are 
not outright unfit-for-purpose. Second-order uncertainty relates to certain arguments 
whose strength is difficult to evaluate. For example, it is unclear whether the models 
really do capture important causal processes that are sufficiently constant under chang-
ing environmental conditions. This is due to a lack of domain-specific background 
knowledge. Also, the arguments provided for the statement that the model represents 
important causal processes accurately are all non-deductive. These non-deductive argu-
ments introduce first-order uncertainty because the justification of fitness-for-purpose 
becomes less conclusive. They also introduce second-order uncertainty because the 
strength of the justification is difficult to evaluate due to a lack of system understanding. 

The arguments discussed above can also be found in the paper by Jones et al. (2017) 
who discussed them in order to understand the uncertainties of the inferences. For ex-
ample, they provide a discussion of missing variables (concerning (1) above) and of the 
representativeness of the available samples (concerning (2) above). Furthermore, they 
discussed the empirical accuracy of the model in a cross-validation setting (concerning 
(4) above) and conducted sensitivity analyses to assess whether model behavior is con-
sistent with background knowledge (concerning (5) above). Finally, they only consid-
ered predictions for pixels where the three data-driven models agreed in the sign of 
change. Hence, they considered the robustness of the predictions (concerning (6) above). 
This shows that the arguments provided here were actively engaged with by the authors 
of the original study. Note, however, that the assumptions discussed are not explicitly 
made during the process of model construction by the modelers. Rather, they are as-
sumptions that modelers need to make once they apply the models for certain kinds of 
long-term predictions.  

As noted, both first-order and second-order uncertainty were considerably larger in this 
case study than in the toy example above. The reason for this is that the data-driven 
models were constructed for the selenium prediction but due to the long lead-time of the 
prediction and the lack of evaluation of the model predictions for the desired purpose, 
model users had to adopt a more realist interpretation of model behavior (compared to 
the more instrumental view of the model in the toy example). Hence, the reason for the 
increase in both types of epistemic uncertainty is not simply that data-driven models 
were used, but rather that data-driven models were used in a context where the uncer-
tainty cannot be estimated from the past performance of the model alone. The conclusion 
of this discussion is likely to hold more generally in cases where background knowledge 
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is insufficient to provide conclusive justification of the fitness-for-purpose assumption. 
As Knüsel et al. (2019) argue, data-driven models are often constructed when back-
ground knowledge is insufficient for constructing process-based models. Hence, the 
points about increasing second-order uncertainty are likely to hold more generally, not 
just for this case study. The flexibility of the framework presented here might lead to 
different arguments being relevant in different contexts. However, the arguments high-
lighted in this case study are likely to show up in different contexts again, specifically 
the six reasons provided for assuming that the model presents most of the relevant pro-
cesses accurately. In some examples, it is well possible that further iterations are re-
quired to justify some of the six points raised above. 

3.6. Implications for Decision-Making 

One of the key reasons for better understanding the uncertainties of scientific inferences 
is that this understanding is required for epistemically confident decision-making. 
Hence, more needs to be said about how the kind of information provided by the frame-
work presented here can be handled in decision-making. This is specifically important 
because the framework delivers two types of epistemic uncertainty, first-order and sec-
ond-order uncertainty and characterizes them in a purely qualitative form. In this section 
we address how the information on uncertainty provided by our framework can be used 
effectively for decision-making and point to areas where further research is necessary. 

Many decision-principles require that information on first-order uncertainties be quan-
tified. However, as Walker et al. (2003, 8) state, quantified “statistical uncertainty 
should not be accorded as much attention as other levels of uncertainty in the uncertainty 
analysis” if there are more severe levels of uncertainty present. This means that uncer-
tainties should only be quantified when researchers are in a position to do so confidently. 
Doing this first requires a good understanding of what the relevant sources of uncer-
tainty are, i.e., it requires an understanding of which assumptions lead to uncertainty. In 
this sense, the framework presented here can be used to build the groundwork for un-
certainty quantification because it highlights where uncertainties come from and what 
the relevant uncertainties are.  

Approaches exist to quantify uncertainties from machine learning predictions. Some of 
these, such as quantile regression forests, directly provide probabilistic information by 
predicting not only the best estimate but also the quantiles of the probability distribution 
function, which is learned from the data (Meinshausen 2006). There are also approaches 
for estimating uncertainty that are based on Bayesian reasoning that account for the un-
certainty of individual parameter values in deep learning (see e.g. Blundell et al. 2015; 
Gal and Ghahramani 2016). These approaches are useful to quantify uncertainty that 
can directly be inferred from the available data. We recognize that they yield valuable 
information and can provide a full account of uncertainties in some settings, e.g., in 
image classification tasks. However, in cases such as the case study considered in this 
paper, these approaches would not be able to quantify the full uncertainty. While these 
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methodological approaches help to assess the robustness of the results, they do not ad-
dress all of the sources of uncertainty identified above. Hence, in cases such as the case 
study discussed above, additional approaches for uncertainty quantification are needed. 

One promising approach might be to rely on structured expert elicitation in order to 
estimate quantitative information on uncertainties from the qualitative information that 
the framework presented here provides (see Morgan 2014; Thompson, Frigg, and 
Helgeson 2016; Oppenheimer, Little, and Cooke 2016). As it will generally be difficult 
to create exact uncertainty estimates based on the framework, experts will likely be in-
clined to provide imprecise probability estimates. This would require experts to consider 
a graphical representation such as the argument map provided in the appendix and assess 
the strength of the arguments provided for the fitness-for-purpose assumption at hand. 
The aforementioned methods for uncertainty quantification based on the robustness of 
the results can provide a good starting point here. Based on the expert assessment, the 
intervals obtained would have to be widened or narrowed accordingly. The strength of 
the arguments discussed above should be assessed by domain experts. For some of the 
factors leading to uncertainty, it can suffice to specify plausible scenarios without quan-
titative information on their probability (this would be scenario uncertainty in the matrix 
of Walker et al. 2003). This is for example the case for the information on boundary 
conditions regarding the changing climatic conditions in the case study introduced 
above.  

The framework does not only provide information on first-order but also on second-
order uncertainty. When quantifying first-order uncertainty, second-order uncertainty 
should be considered, too. A large second-order uncertainty means that it is difficult to 
judge the degree of fitness-for-purpose of the model. This means that first-order uncer-
tainty will be only weakly constrained. If first-order uncertainty is less well constrained, 
a trade-off emerges. Experts can either provide narrower estimates of first-order uncer-
tainty and be less confident about it (i.e., they face more second-order uncertainty) or 
provide a wider estimate of first-order uncertainty with more confidence (see Winsberg 
2018b, chap. 7). Balancing this trade-off has to be based on what is perceived to be the 
most useful for decision-makers (Winsberg 2018a). 

Research into the development of decision principles that can be used with the two-
tiered information on uncertainty discussed here is still needed (Winsberg 2018b, chap. 
8). A candidate approach is the confidence approach that considers different models 
depending on decision makers’ risk attitude (Roussos, Bradley, and Frigg, under 
review). A different approach is decision-making with possibilistic information, i.e., 
with information on what is and what is not consistent with our understanding of a sys-
tem (Betz 2016a). If model-based information is handled with such a possibilistic mind-
set, a greater second-order uncertainty implies that it is more difficult to distinguish 
between outcomes that are consistent with our background knowledge, outcomes that 
are inconsistent with our background knowledge, and outcomes that cannot be put in 
either of these categories. Hence, a possible outcome (an event with some epistemic 
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first-order uncertainty) with a large second-order uncertainty might have to be consid-
ered by a risk-averse decision-maker even if its largest possible likelihood, as estimated 
based on the first-order uncertainty, seems small. The reason for this is that its (first-
order) uncertainty assessment is uncertain and might need to be revised in light of new 
information. 

Predictions are not the only way in which models can provide decision-relevant infor-
mation. Namely, knowledge of causal connections and exploratory modeling can guide 
policy decisions (Weaver et al. 2013). In such cases, models are needed that represent 
the processes responsible for producing a phenomenon with sufficient accuracy. Data-
driven models can be fit for providing this kind of information, too. In these cases, the 
evaluation of the models’ fitness is similar to the uncertainty analysis seen in section 3.5 
(see Knüsel and Baumberger, under review). 

3.7. Conclusions 

In this paper, we have presented an argument-based framework for assessing the uncer-
tainties of model-based predictions. We hereby focused on features of data-driven mod-
els and showed that the framework is able to analyze the uncertainty of predictions from 
data-driven models. Based on a toy example and the extensive discussion of a case study 
from environmental science, we highlighted how the application of the framework 
works in practice. Constructing data-driven models is possible also when a phenomenon 
is comparatively ill-understood. However, this lack of background knowledge and the 
opacity of data-driven models can lead to substantial second-order uncertainty, as we 
have shown here. We then discussed what the framework implies for the quantification 
of uncertainties and for decision-making based on information from data-driven models. 
Open questions remain specifically with respect to the quantification of uncertainties. 
We encourage attempts at using structured expert elicitation as suggested here and fur-
ther research into decision principles. 

Environmental scientists working with data-driven models are often aware of the limi-
tations and uncertainties of their models. However, the lack of conceptual tools for un-
certainty assessments may inhibit a clear understanding of how large these uncertainties 
are. Thus, there can potentially be overconfidence about results obtained with data-
driven models. The lack of conceptual tools can also impair a better understanding of 
the factors that lead to the uncertainty. Understanding these factors can be useful for 
researchers, e.g., to identify what steps they could take to reduce the impact of a specific 
factor that leads to uncertainty. The framework presented here provides tools to perform 
such uncertainty assessments and communicate the uncertainty of predictions from data-
driven models more transparently. Hence, we encourage researchers developing and 
working with data-driven models to employ the framework provided here to assess the 
predictive uncertainties of their models. Being more explicit about uncertainties in-
creases the usefulness of data-driven models both for scientific and policy purposes. At 
the same time, explicitly discussing the representational function of models may reveal 
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that data-driven models are more skillful in some applications than one might have ex-
pected initially. Hence, the argument-based framework provided here can help to make 
good use of data-driven models in environmental science. 

Kwakkel, Walker, and Marchau (2010) have emphasized the importance of using a com-
mon language in uncertainty assessments in order to provide information to decision-
makers that is easier for them to compare to other cases and contexts. We agree with 
this view. However, in the case of data-driven models, it seems unlikely that locations 
of uncertainty similar to the ones from other frameworks can be defined that can be 
applied to data-driven models generally and are informative of their predictive uncer-
tainty. For example, it might be intuitive, here, to speak of “model uncertainty” and 
“extrapolation uncertainty”. However, as the discussion of the case study has shown, 
how much uncertainty the extrapolation introduces directly depends on properties of the 
model. Hence, these two terms would not refer to distinct locations of uncertainty. How-
ever, we encourage future work that aims to find a terminology for the information from 
our framework that can consistently be related to uncertainties from other frameworks. 
Future research should also address decision principles that can handle the kind of un-
certainty that the framework presented here provides. 

The considerations made in this paper are likely relevant beyond data-driven models. 
The framework discussed here is quite general. It can hence be applied to other types of 
models, too and could hence complement existing discussions of uncertainty of envi-
ronmental models. Furthermore, as the framework focuses on assumptions and how they 
are justified, it can potentially reveal that some of the analyzed assumptions concern 
value judgments and hence highlight cases of value uncertainty. 
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Abstract 

In climate science, climate models are one of the main tools for understanding phenom-
ena. Here, we develop a framework to assess the fitness of a climate model for providing 
understanding. The framework is based on three dimensions: representational accuracy, 
representational depth, and graspability. We show that this framework does justice to 
the intuition that classical process-based climate models give understanding of phenom-
ena. While simple climate models are characterized by a larger graspability, state-of-
the-art models have a higher representational accuracy and representational depth. We 
then compare the fitness-for-providing understanding of process-based to data-driven 
models that are built with machine learning. We show that at first glance, data-driven 
models seem either unnecessary or inadequate for understanding. However, a case study 
from atmospheric research demonstrates that this is a false dilemma. Data-driven mod-
els can be useful tools for understanding specifically for phenomena for which scientists 
can argue from the coherence of the models with background knowledge to their repre-
sentational accuracy and for which the model complexity can be reduced such that they 
are graspable to a satisfactory extent. 
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4.1. Introduction 

Recent years have seen increasing volumes of climate information produced and stored, 
driven by satellite data and results from numerical climate models (Overpeck et al. 
2011). This makes data analysis based on machine learning possible, including data-
driven modeling of phenomena in the climate system (Knüsel et al. 2019). Machine 
learning is often said to be useful for predictions of complex ill-understood phenomena 
(at least under some conditions, see Pietsch 2015; Knüsel et al. 2019; Northcott 2019). 
However, climate scientists aim not only at predicting phenomena but also at under-
standing them. Whereas process-based climate models can be useful for understanding 
phenomena (Parker 2014), it is unclear whether and under what conditions data-driven 
models can provide understanding. In fact, skepticism is often expressed about the fit-
ness of data-driven models for understanding and explaining. For example, López-Ru-
bio and Ratti (2019) argue that the complexity of machine learning models, which 
generally increases with the models’ predictive skill for complex phenomena, impairs 
their intelligibility and hence, their usefulness for yielding mechanistic explanations. In 
contrast, Sullivan (2019) argues that the usefulness of machine learning models for un-
derstanding is primarily impaired by what she calls “link uncertainty”, i.e., a lack of 
evidence linking the model to the target system. Still, Sullivan (2019) argues that it can 
be possible to reduce this link uncertainty and successfully use machine learning models 
for understanding. 

In this paper, we address the fitness of data-driven models for providing understanding. 
We do so by first clarifying in a general way what criteria determine the fitness of a 
model for providing understanding. As process-based climate models are routinely used 
to obtain understanding of phenomena (see Parker 2014), we illustrate the application 
of the framework to process-based climate models of different complexities. We then 
apply these criteria to data-driven models and compare their fitness as vehicles for un-
derstanding to that of process-based models. We argue that at first glance, there seems 
to be a dilemma to data-driven models: While they are fit for providing understanding 
of some simple phenomena, in these cases, researchers typically have sufficient back-
ground knowledge to construct process-based models and hence do not need data-driven 
models. In other, more complex cases, the lack of background knowledge and the lack 
of model intelligibility impair the fitness of data-driven models for providing under-
standing. Thus, stated boldly, data-driven models seem either unnecessary or inadequate 
for understanding. We go on to show that, while intuitively plausible, this is a false 
dilemma, which we illustrate using a case study from climate science where a data-
driven model was successfully used to obtain understanding. Generalizing the insights 
from this example to other cases, we conclude that data-driven models can be useful for 
understanding phenomena under certain conditions.  

The remainder of this paper is structured as follows. In section 2, we clarify the distinc-
tion between process-based and data-driven models. In section 3, we introduce a 
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framework to assess to what degree a model can provide understanding of aspects of a 
target system, which builds upon three dimensions: the representational accuracy and 
the representational depth of a model, and model graspability. We illustrate the applica-
tion of this framework in section 4 for a simple energy-balance model of the global 
climate system but also discuss state-of-the-art global climate models. In section 5, we 
assess the potential of data-driven models for providing understanding, which we com-
pare to the fitness of process-based models for this purpose. We conclude in section 6. 

4.2. Process-Based and Data-Driven Models 

The focus of the present paper is on data-driven models as opposed to process-based 
models. Process-based models are mathematical models that explicitly represent with 
equations processes taking place in the target system. Examples include state-of-the-art 
climate models, general equilibrium models in economics, and the Lotka-Volterra 
model in ecology. While the equations of process-based models are often derived from 
theory, they need not necessarily be so (as argued by Weisberg 2013, chap. 1, this was 
the case for the original formulation of the Lotka-Volterra model in ecology). While in 
principle, pen and paper suffice to formulate and use a process-based model, in many 
applications the models are implemented on a computer as a simulation model. Using a 
computer is necessary when analytical solutions for the model equations are out of reach 
or when the problem at hand is too complex to analyze the model equations directly, 
e.g. because of its temporal and spatial resolution (Parker 2014).  

Data-driven models, in contrast, are built with machine learning. Note that machine 
learning can be used for a variety of purposes. Modeling phenomena, e.g. in order to 
make reliable predictions of new cases, is only one of them. Other purposes are e.g. to 
explore a dataset, and to find patterns and associations between variables. A variety of 
machine learning algorithms exists, ranging from simple tools such as linear regression 
and LASSO regression, a linear regression technique that performs a regularization that 
selects the most important variables automatically, to complex non-linear artificial neu-
ral networks, including deep learning (James et al. 2013; Reichstein et al. 2019). Gen-
erally, there is a trade-off between the flexibility of machine learning algorithms and 
model interpretability (James et al. 2013). Flexibility refers to the ability of a machine 
learning algorithm to extract complex, non-linear relations between variables. Interpret-
ability refers to how much insight a model allows a user into its inner workings. In this 
paper, we focus on algorithms that lie on the more flexible and less interpretable end of 
this spectrum, which are often non-parametric methods (for a philosophical discussion 
of non-parametric machine learning models, see Pietsch 2015). More on interpretability 
and related terms will be said below in section 4.3.2. 

Hence, data-driven models of phenomena are not constructed with equations or other 
explicit representations of processes but by training a machine learning algorithm, which 
we refer to as “data-driven modeling of phenomena”. Training refers to the step of al-
gorithmically learning how to predict the values of the dependent variables from the set 
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of independent variables. We use the term “data-driven model” only for this trained 
model, not for the machine learning algorithm prior to the training step. Note that data-
driven models should not be confused with models of data (for a discussion of models 
of phenomena and models of data, see Frigg and Hartmann 2012). In this paper, the 
focus is on data-driven modeling that relies on supervised machine learning,17 which is 
a set of methods for datasets that consist of labeled samples of independent and depend-
ent variables. An algorithm is used to learn generalizable rules that allow to predict the 
dependent variable based on independent variables for new samples with an unknown 
value of the dependent variable. 

The use of data-driven models has two main advantages compared to process-based 
models. First, running an already trained data-driven model is usually inexpensive from 
a computational perspective. Second, training a data-driven model is possible also when 
scientists do not have sufficient process understanding to construct a process-based 
model. This is because in principle it suffices to be able to specify which variables are 
potentially important for producing a phenomenon without knowledge of their relative 
contributions and the processes responsible for the connections (Knüsel et al. 2019). 
While it is undisputed that data-driven models can be useful for predictions, at least 
under certain conditions, there is skepticism about their usefulness for understanding 
phenomena as outlined in the introduction (see López-Rubio and Ratti 2019; Sullivan 
2019).  

In this paper, we draw a sharp distinction between process-based and data-driven mod-
els, but we note that in practice the distinction may not always be clear. For example, 
state-of-the-art Earth system models in climate science are process-based models as far 
as e.g. the large-scale flow dynamics are concerned. However, empirical parameteriza-
tions are used e.g. to represent cloud formation or vegetation in the form of plant func-
tional types. These parameterizations have a phenomenological character that is similar 
to that of data-driven models. Furthermore, climate models exist in which some param-
eterizations have been replaced by machine learning (e.g., Gentine et al. 2018). These 
approaches further blur the line between process-based and data-driven models.  

4.3. Models and Understanding 

In recent years, understanding has received increasing attention from philosophers of 
science and has been recognized as an important epistemic aim of science (de Regt 2017; 
Dellsén 2016). Different accounts of scientific understanding exist. These accounts re-
quire different characteristics from theories or models and from cognitive agents for 
understanding, such as that the theory is factive (Strevens 2013), that the agent has cer-
tain abilities in handling the theory (de Regt 2017), or both (Wilkenfeld 2017). In the 
                                            
17 Besides supervised learning, there are unsupervised machine learning algorithms, which do 
not require labeled output data. Instead, patterns in the datasets are detected. Examples of un-
supervised learning are clustering algorithms and principal component analysis. 
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following, we draw on this literature and develop a framework that allows to assess to 
what extent a model is fit for providing a user with understanding. Hence, the framework 
allows to perform an adequacy-for-purpose assessment where the purpose is understand-
ing (however, we use the term “fitness” instead of “adequacy” because fitness-for-pur-
pose is a matter of degrees, see Parker, forthcoming). 

The focus of the present paper is on understanding of phenomena. Examples for this 
kind of understanding are when an agent understands global warming, cloud formation, 
or the ice-albedo feedback. Understanding of a phenomenon is typically related to hav-
ing an explanation of the phenomenon (de Regt 2017; Baumberger, Beisbart, and Brun 
2017). This kind of understanding would be attributed to people who can explain why 
global warming occurs, how cloud formation works, etc.18 Hence, a model that is fit for 
providing this kind of understanding provides the model user with explanatory infor-
mation that enables her to construct an explanation of the phenomenon.19 This is possi-
ble, for example, by highlighting which causal factors are most relevant for producing 
a phenomenon or how different causal factors interact in producing a phenomenon.  

The framework for assessing the fitness of a model for providing understanding 
acknowledges that understanding comes in degrees and takes understanding to be a mul-
tidimensional concept (see Baumberger 2019; Wilkenfeld 2017). We take the fitness of 
a model for understanding a phenomenon to depend upon the three dimensions of rep-
resentational accuracy, representational depth, and graspability. Representational accu-
racy and representational depth concern the relationship between the model and its 
target, and graspability concerns the relationship between the model and its user. Thus, 
we suggest that the extent to which a model M is capable of providing a user S with 
understanding of a phenomenon P in target T depends on (a) how accurately M repre-
sents T for an account of P, (b) how graspable M is for S, and (c) how comprehensively 
M represents the processes producing P. We want to emphasize here that these dimen-
sions and the respective criteria should not be taken to be necessary conditions for un-
derstanding but evaluative criteria to assess how good the understanding is that can be 
obtained with a given model. It depends on the context how well a model needs to per-
form with respect to the three dimensions in order to be capable of providing a user with 
outright understanding. Typically, in a research context, representational accuracy and 
depth might outweigh graspability, whereas in an educational context graspability might 
well need to be higher than in a research context. In the following, we discuss the fitness-
for-purpose of models for a general context of scientific research. 

                                            
18 We leave open whether agents can understand a phenomenon without having an explanation 
of it (see Lipton 2009) because we will show that data-driven models can enable the construc-
tion of explanations, and, hence, can be fit for providing understanding even in this stronger 
sense of understanding. 
19 Note that we use the term “explanatory information” in a more restrictive sense than Parker 
(2014). We refer to information as “explanatory” if it allows a scientist to construct to an ex-
planation of a phenomenon.  
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In subsections 4.3.1, 4.3.2, and 4.3.3, we introduce these dimensions and the respective 
evaluative criteria to assess how well a model fares with respect to the dimension.  

4.3.1. Representational Accuracy 

Representational accuracy of a model is the degree to which the model is similar to its 
target in relevant respects (Giere 2004; Wilkenfeld 2017). When the goal is understand-
ing, the relevant respects will often be related to causal processes that are potentially 
relevant for producing the phenomenon under investigation. If they are accurately rep-
resented, the researcher can obtain information via the model that aids the construction 
of how-possibly or how-actually explanations of the phenomenon (Parker 2014). For 
instance, if the model generates a phenomenon very similar to that observed in the target, 
this suggests that the causal factors represented in the model are sufficient for producing 
the phenomenon (irrespective of whether they in fact are responsible for the actual in-
stances of the phenomenon thus far observed). Likewise, running the model with a pro-
cess “turned off” can reveal that the process is necessary for the production of the 
phenomenon – because it no longer appears in the simulation – at least in the presence 
of the other causal factors represented in the model. 

The accuracy of a model’s representation of particular causal processes is not directly 
accessible and needs to be justified indirectly. Our framework offers three evaluative 
criteria that allow to assess the representational accuracy of a model, which are based 
on Baumberger, Knutti, and Hirsch Hadorn (2017) and Baumberger (2019). These three 
criteria are the coherence of a model with background knowledge, the empirical accu-
racy of relevant model results, and the robustness of model results. Below, we introduce 
these three criteria and explain why they can be used to evaluate the representational 
accuracy of a model. The three criteria can neither individually nor jointly guarantee 
that a model is representationally accurate. Rather, they are gradual and provide more 
or less strong non-deductive reasons for thinking that a model has a certain degree of 
representational accuracy. They should thus be seen as indicators of representational 
accuracy. 

Coherence with background knowledge 
To what degree is the model as an account of the phenomenon under investigation co-
herent with background knowledge and assumptions? A direct comparison of the inner 
workings of the model with the inner workings of its target is not possible because the 
target’s inner workings are generally not directly accessible. Hence, the inner workings 
of the model are instead compared to available background knowledge and assumptions. 
The considered background knowledge can include anything from approximately true 
fundamental physical laws such as conservation of energy to well-established empirical 
relationships such as the near-linear relationship between total carbon emissions and 
temperature change. 
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Empirical accuracy 
How well do model results relevant for the phenomenon under investigation resemble 
the states of the target system as depicted in observational and observation-based data 
of sufficient quality? Empirical accuracy indicates whether the model behaves approxi-
mately the way it is expected to. However, not all instances of empirical accuracy pro-
vide equally strong reasons for thinking that the model is representationally accurate. A 
good fit of model results to observations provides stronger reasons for the representa-
tional accuracy of the model if the observational data was not previously used for model 
tuning or training (Frisch 2015). Hence, use-novel data has a special status in model 
evaluation, for example in cross-validation, even though this does not mean that double-
counting of data for model construction and evaluation is impermissible (Steele and 
Werndl 2016). Note that the argument from empirical accuracy to representational ac-
curacy alone can be weak due to the problem of underdetermination. Even in combina-
tion with the other criteria, the argument from empirical accuracy to representational 
accuracy is not conclusive.  

Robustness 
To what degree are model results relevant for the phenomenon under investigation de-
pendent on the specific model implementation? This can often be assessed by checking 
whether model results agree with the outputs from other models (Weisberg 2006). If 
models share a common core and agree on some hypothesis, then this can provide evi-
dence for these core causal assumptions in the model (see Baumberger, Knutti, and 
Hirsch Hadorn 2017; Lloyd 2010; Weisberg 2006). In order for this agreement to in-
crease our confidence that the model is representationally accurate in the relevant re-
spects, we need to believe that the other models can serve as benchmarks because they 
are themselves sufficiently representationally accurate or that it is unlikely that the 
agreement would occur even though the models were not accurately representing the 
relevant aspects of the target (e.g. due to shared biases). This is an important caveat in 
climate modeling due to recognized model interdependence (see Parker 2011). Robust-
ness considerations can be especially important when little data is available to assess 
empirical accuracy.  

4.3.2. Graspability 

A common view holds that in order to understand a phenomenon with the help of a 
theory or model, an agent needs to grasp the theory or model to some degree. What it 
means to grasp a theory or model to a relevant degree is usually spelled out in terms of 
certain abilities, such as the ability to make use of the theory or model, and hence, dif-
ferent authors associate or even equate understanding with these abilities. The most 
prominent suggestion along these lines is due to de Regt and Dieks (2005). It states that 
a scientist needs a theory that is intelligible in order to use it as a vehicle to understand 
a phenomenon, where intelligibility is the value that scientists attribute to the cluster of 
qualities of a theory (e.g. simplicity, scope, familiarity, causation, mechanism, and 
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visualizability) that facilitate the use of the theory. De Regt and Dieks suggest that a 
sufficient condition for the intelligibility of a theory for a scientist is that the scientist 
can estimate qualitatively the consequences of the theory without performing any cal-
culations (see also de Regt 2017). We propose an adapted version of this suggestion, 
namely the ability to qualitatively anticipate model outputs. However, as Lenhard 
(2006) has pointed out, it is possible to gain this ability without being able to explain 
the behavior of the model by simply familiarizing oneself sufficiently with the model. 
Since the ability to further explain model behavior would increase the graspability of 
the model, we suggest that this ability is a second criterion to assess the graspability of 
a model.  

Ability to qualitatively anticipate model outputs 
To what degree can model outputs be anticipated by the user without performing calcu-
lations or running a simulation of the model? That this ability is important for under-
standing has been argued by de Regt and Dieks (2005). It holds that if a model user 
accumulates experience with a model, she can learn to anticipate how the model behaves 
in response to changing inputs. This notion has also been suggested by Lenhard (2006) 
for simulation models.  

Ability to explain model behavior 
To what degree can the behavior of the model be explained by the user? This aspect of 
graspability has been the focus of philosophical research on computer simulations. It 
has been argued that computer simulations are epistemically opaque (Humphreys 2004, 
2009) and that it is difficult to attribute the reasons for successes and failures of climate 
model simulations to specific submodels (Lenhard and Winsberg 2010). All else being 
equal, if a model allows the user to explain its behavior, the model is fitter as a vehicle 
for understanding. If the model is also representationally accurate to a sufficient degree, 
explaining model behavior allows a user to explain the behavior of the target system to 
some extent as well. 

Obviously, model graspability does not only depend on characteristics of the model but 
also on a specific model user. Here, we focus on characteristics of the model and lay out 
general considerations that are relevant for a versed model user. While for representa-
tional accuracy, the three criteria from above only provide more or less strong reasons 
to assume representational accuracy, performing well in terms of the two criteria con-
sidered here constitutes grasping. Hence, the evaluation of the extent to which a user 
actually grasps a model is more direct and certain compared to the evaluation of its 
representational accuracy. 

4.3.3. Representational depth 

Representational depth is defined in terms of the level at which a model describes the 
processes producing the phenomenon that is to be understood. A representationally 
deeper model describes a phenomenon not only on a phenomenological level but also 
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describes the lower-level mechanisms producing the phenomenon and hence provides 
in this sense a more comprehensive representation of the processes. Therefore, a repre-
sentationally deeper model generally allows for more mechanistic understanding, which 
we take to be better than mere phenomenological understanding about how changing 
inputs relate to changing outputs.  

Representational depth becomes relevant only when discriminating between two models 
that describe the same target but do so at different levels of description. This is for ex-
ample the case when comparing two climate models with different spatial resolutions 
that are both used to study the phenomenon of global warming. The model with the 
higher resolution offers a more complete representation of the processes that produce 
global warming. This is because more processes need to be represented at a lower level 
of description as a result of the increased resolution. An example of such processes rel-
evant for understanding global warming is the formation of clouds that can be more 
comprehensively represented in a model with higher spatial resolution. In the remainder 
of this article, we will compare a process-based and a data-driven model that describe 
the same phenomenon at the same level of description and, hence, have the same repre-
sentational depth. This ensures that the comparison of the two models is a fair one. Thus, 
we will discuss models mainly in terms of the other two dimensions, representational 
accuracy and graspability, but the dimension of representational depth is required to 
ensure a fair comparison. We will briefly return to representational depth in section 
4.4.2, where we discuss state-of-the-art climate models. 

4.4. Understanding with Process-Based Climate Models 

There is a general intuition that process-based models are useful tools for understanding 
phenomena. In this section, we illustrate that the framework introduced in the previous 
section does justice to this intuition. We do this by first presenting the example of a 
simple, zero-dimensional energy-balance model in subsection 4.4.1 and then extend the 
discussion to state-of-the-art climate models in subsection 4.4.2.  

4.4.1. Zero-Dimensional Energy-Balance Model 

In this subsection, we use the example of a simple, zero-dimensional linear energy-bal-
ance model and discuss how well it performs with respect to the first two dimensions of 
the framework introduced above. We discuss the example of the same type of hypothesis 
test of the causes of 20th century global warming as discussed by Parker (2014). The 
model is based on just one linear differential equation:  

    𝐶𝐶 ⋅ #$
#%
= 𝐹𝐹 − 𝜆𝜆 ⋅ 𝑇𝑇  ( 1 ) 

In equation (1), C denotes the heat capacity of the Earth’s climate system, T denotes the 
global mean surface temperature perturbation (relative to some baseline), t denotes time, 
F is a term capturing a linear combination of all radiative forcing factors, and l is a 
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constant feedback parameter. Variations of this model have been used and discussed 
extensively in climate physics (e.g., P. M. Forster et al. 2013; Knutti and Rugenstein 
2015; for an overview, see Knutti, Rugenstein, and Hegerl 2017). The model equation 
prescribes that any change in the total heat content of the Earth’s climate system must 
equal some positive radiative forcing (e.g., increased CO2 in the atmosphere) minus en-
ergy that leaves the climate system due to a response in the radiative budget, parameter-
ized here as linear feedback. The values of C and l were identified by calibrating the 
model to data for the years 1931 to 1980. Details about model parameters and data are 
provided in the appendix.  

Using this model, it is possible to run a hypothesis test for the causes of 20th century 
global warming. The radiative forcing factors are usually classified as either natural or 
anthropogenic depending on their origin. Natural forcing factors considered here are 
changes in solar irradiance and aerosols from volcanic activity. Anthropogenic forcing 
factors include greenhouse gases, aerosols, ozone, black carbon, and land use (Myhre et 
al. 2013). Here, three important greenhouse gases are considered, namely CO2, CH4, 
and N2O. Now, suppose we want to determine whether anthropogenic factors caused the 
measured increase in global mean surface temperature over the 20th century. This ques-
tion can be addressed by comparing two model simulations. In the first, both natural and 
anthropogenic radiative forcing factors follow their actual values over time; in the sec-
ond, anthropogenic forcing factors are kept constant at their preindustrial averages, and 
only natural forcing factors evolve according to historical records. 

 

Figure 1: Simulation runs of the energy-balance model (a) and of the data-driven model (b) for 
the scenario with all forcing factors corresponding to historical observations, and for the sce-
nario where anthropogenic forcing factors are held constant at their preindustrial average val-
ues. Temperature anomalies are relative to 1851 – 1880. 

The results of the simulations for these two scenarios are displayed in Figure 1(a). The 
blue curve displays the simulation in which only natural forcing factors correspond to 
historical observations. It is unable to reproduce the evolution in 20th century global 
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mean surface temperature. In contrast, the simulation run with all forcing factors fol-
lowing historical records generally tracks the observations closely, if appropriate values 
for the feedback and heat capacity are chosen. The extent to which these results provide 
understanding depends on the fitness of the model to serve as a vehicle of understanding, 
which can be assessed using the framework introduced in the previous two subsections. 

Coherence with background knowledge 
The model only consists of one equation. For the model to be representationally accurate 
for this type of hypothesis test, the equation needs to consider all relevant causal factors 
and needs to adequately reflect the relationships between them. In order to argue for 
this, according to the framework, the equation needs to be assessed in terms of its co-
herence with background knowledge. The model states that in equilibrium, incoming 
shortwave radiation and outgoing longwave radiation balance each other out, and is 
hence based on conservation of energy. Equation (1) emerges when approximating a 
conservation of energy equation with a Taylor expansion under the assumption that the 
feedback parameter is constant and that higher-order expressions can be ignored (see 
Knutti and Rugenstein 2015). Thus, the equation is based on assumptions that idealize 
certain properties of the real-world climate system for an account of global mean tem-
perature change. As Knutti and Rugenstein (2015) argue, the assumption of a constant 
feedback parameter only holds within limits since many feedbacks are state-dependent. 
However, here, the model was only used to reproduce historical temperature records. 
Furthermore, there are some uncertainties in estimating the radiative forcing F. Hence, 
the assumption of a constant feedback parameter and a constant heat capacity is proba-
bly not a problematic idealization. The factors considered in F were aggregated based 
on their radiative forcing. Thus, the model is coherent with well-established background 
knowledge, at least to a certain extent. 

Empirical accuracy 
In order to assess the empirical accuracy of the results of the energy-balance model, 
model results (red) need to be compared to observations or observation-based data 
(black curve in Figure 1(a)). The two curves are in good agreement, meaning that the 
model is empirically accurate. Some deviations are apparent, especially for the time be-
fore 1950 where the model exhibits less variation. This can partly be explained by modes 
of internal variability, i.e., factors that are related to the chaotic nature of the climate 
system and cause natural internal fluctuations (see Katzav and Parker 2018) for which 
no data was available for the time before 1950. Furthermore, uncertainties in forcing 
and observed warming for this early period may contribute to the deviations. Hence, the 
deviations should not be a major reason for concern.  

In model creation, the values of some parameters cannot be fixed based on background 
knowledge. Instead, they have to be inferred from observations through so-called model 
calibration or model tuning (Frisch 2015). Most authors hold that for model evaluation, 
data should be considered that has not been used for model calibration (see Parker 2018 
for an overview). Specifically, Frisch argues that if complex climate models have 
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predictive success (i.e., success in reproducing independent observations), this provides 
better reasons to think that they represent fundamental processes accurately than does 
achieving the same success through tuning/calibration. Only the observations from 1931 
to 1980 displayed in Figure 1(a) were used for model calibration. Hence, especially the 
model’s good performance outside of this range gives us some confidence that it repre-
sents the climate system sufficiently accurately for our purposes. 

Robustness 
In order to judge the robustness of model results, one needs to assess the extent to which 
model results correspond to the results of other models. For this, the results from the 
energy-balance model can for example be compared to the results from the Coupled 
Model Intercomparison Project (CMIP5 members) (plotted as a yellow area in Figure 
1(a)), which is an ensemble of state-of-the art climate models. This reveals that the en-
ergy-balance model tracks the spread of the CMIP5 members closely, hence the results 
of the energy-balance model are robust with respect to CMIP5 models. Due to the dif-
ferent modeling approach in the construction of the energy-balance model and of the 
CMIP5 models, shared biases seem rather unlikely.  

Ability to qualitatively anticipate model outputs 
A model user can familiarize herself with a simulation model by way of systematically 
varying the inputs into the model and observing the outputs. It is certainly possible to 
learn about the behavior of the energy-balance model in this way. Furthermore, as the 
model is comparatively simple, a model user versed in mathematics will be able to an-
ticipate model outputs qualitatively if she knows details about the development of the 
factors contained in the expression F in equation (1), i.e., the radiative forcing factors.  

Ability to explain model behavior 
The final criterion to consider is a model user’s ability to explain model behavior, which, 
again, is dependent on the specific model user. In a simple case like the energy-balance 
model discussed here, it is possible to explain much of the behavior based on equation 
(1). For example, as concentrations of greenhouse gases in the atmosphere rise, so will 
the radiative forcing imposed by them, which is entailed in the values of F. As the cli-
mate system approaches a new equilibrium, it will balance the excess energy input 
through a rising temperature, which leads to a larger feedback term 𝜆𝜆 ⋅ 𝑇𝑇.  

Thus, there are indications that the simple energy-balance model provides a representa-
tion of the climate system for an account 20th century global mean surface temperature 
that is accurate to a satisfactory degree. Also, the model can be grasped to a satisfactory 
degree by a versed user. Hence, based on the framework we conclude that the model 
can be considered reasonably fit to serve as a vehicle for (phenomenological) under-
standing of 20th century global mean temperature evolution.  
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4.4.2. State-of-the-Art Climate Models 

In this section, we briefly discuss to what extent and why our framework also allows for 
more complex state-of-the-art climate models to provide understanding. As Parker 
(2014) discusses, general circulation models are routinely used to provide understanding 
of phenomena in climate research, and their use for this purpose rests mainly on the 
assumption of their representational accuracy. As outlined above, representational ac-
curacy here means that all candidate causal factors (i.e. candidate causes of the phenom-
enon to be understood) are included and the relationships between them are sufficiently 
adequately modeled. For example, complex climate models can be used for the same 
types of hypothesis tests that we have discussed in the previous section (Parker 2014). 
State-of-the-art climate models routinely consider more causal factors relevant for 20th 
century global warming than the energy-balance model discussed above, such as addi-
tional greenhouse gases from industrial processes and black carbon. Thus, they can be 
considered more representationally accurate for an account of 20th century global warm-
ing than the simple energy-balance model. However, if all of these factors were included 
in the energy-balance model, too, it would be similarly representationally accurate for 
an account of 20th century global warming. 

State-of-the-art climate models differ from the simple energy-balance model in terms of 
their graspability. As Lenhard and Winsberg (2010) have argued, the complexity and 
layered development histories of climate models can makes it difficult to attribute rea-
sons for model success or model failure to individual model components or submodels. 
This is a drawback of complex climate models in terms of graspability because it limits 
the ability of the model user to explain model behavior. This difficulty in explaining 
model behavior makes clear why climate scientist Isaac Held (2005) states that there is 
a gap between the ability of (process-based) climate models to accurately simulate the 
climate and scientists’ understanding of the models. Hence, the tendency to explicitly 
resolve more processes comes at the expense of model graspability.  

State-of-the-art climate models also differ from the energy-balance model in that they 
have a larger degree of representational depth. This means that they represent phenom-
ena on lower levels of description, which is why they can, in principle, provide more 
mechanistic understanding by revealing how, in a mechanistic sense, a phenomenon is 
produced. For example, complex climate models allow a model user to see how increas-
ing levels of greenhouse gases have changed the temperatures over land and over the 
ocean, and how this in turn has led to an increase in global mean surface temperature. 
Hence, in principle, they allow for a better understanding of the phenomenon of global 
warming. However, in practice, as argued above, it can be difficult to attribute simulated 
phenomena to specific parts of the model.  

Representational depth can be understood as a kind of “vertical completeness” because 
it is defined through the comprehensive representation of the processes that produce the 
phenomenon of interest. Besides this “vertical completeness”, which specifically con-
cerns the description of one phenomenon, state-of-the-art climate models are also more 
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complete than the energy-balance model in a second, “horizontal” sense because they 
describe many additional processes in the target system. This “horizontal completeness” 
is not relevant for understanding a given phenomenon and is hence not part of our frame-
work. It does, however, generally make one model applicable to a range of different 
phenomena and can also make it adequate for predictive purposes. An example for this 
form of completeness is that state-of-the-art climate models may represent the melting 
of the Greenland ice sheets, which is not directly relevant for producing 20th century 
global warming. Hence, while this “horizontal completeness” is not directly relevant for 
accounts of specific phenomena, it makes a specific model more broadly applicable. 

Hence, even though graspability is a problem for state-of-the-art climate models, they 
are still reasonably fit for providing a versed user with understanding of a wide range of 
phenomena, assuming something like the causal-hypothesis-testing approach to advanc-
ing understanding. This fitness stems from the accuracy with which many different pro-
cesses are represented and from the representational depth of the models for accounts of 
a range of phenomena, which allows for mechanistic understanding. Hence, state-of-
the-art climate models generally have a higher degree of representational depth than 
simpler models like the energy-balance model, and they are often also representationally 
more accurate for accounts of specific phenomena. However, the energy-balance model 
fares better than state-of-the-art climate models in terms of graspability. This tendency 
reveals a dependence between the three dimensions of understanding. They are inde-
pendent in a preferential sense because, in principle, a model that is representationally 
accurate, representationally deep, and graspable to a high degree would be preferable to 
one that only performs well with respect to one dimension. However, the dimensions do 
not seem independent in a statistical sense because, in practice, representational accu-
racy and representational depth often run counter to model graspability (for the differ-
ence between preferential and statistical independence, see Eisenführ, Weber, and 
Langer 2010). This trade-off is the reason why idealizations in models do not always 
reduce their fitness for providing explanations: although idealizations reduce the 
model’s representational accuracy or depth, they can increase the graspability of the 
model (see Jebeile and Kennedy 2015). 

4.5. Data-Driven Models and Understanding 

In this section, we discuss the fitness of data-driven models as vehicles for understand-
ing phenomena in the climate system and compare it to that of process-based models. 
We start with an example in subsection 4.5.1 and compare it to the energy-balance 
model from subsection 4.4.1. In subsection 4.5.2, we generalize the insights from the 
example to other cases of data-driven models and discuss the alleged dilemma of data-
driven models. Finally, in subsection 4.5.3, we use an example from climate research to 
show that the alleged dilemma of data-driven models is a false dilemma and make some 
comments on how data-driven models can best be used as vehicles for understanding 
climate phenomena. 
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4.5.1. An Illustrative Example 

We again take up the example of hypothesis testing of the causes of 20th global warming 
discussed in subsection 4.4.1. As we have mentioned in section 4.3.3, we compare two 
models that describe the same phenomenon at the same level of description – i.e., two 
models with the same representational depth. This ensures a fair comparison. The ex-
ample will inform the general discussion about the role of data-driven models for ob-
taining understanding. As discussed in section 4.2, there is a general trade-off between 
the flexibility and the graspability (interpretability) of a machine learning algorithm. At 
the same time, the skepticism regarding the role that data-driven models can play in 
understanding phenomena stems partly from the lack of graspability. Hence, for the ex-
ample here, we use a data-driven model constructed using the random forest algorithm 
(Breiman 2001) because it lies on the flexible and non-interpretable end of the spectrum 
(see James et al. 2013). Furthermore, random forest is an algorithm that is used in envi-
ronmental science (e.g., Gudmundsson and Seneviratne 2015). It is a machine learning 
algorithm that uses subsets of the data to create many individual regression (or decision) 
trees and averages their vote. It starts by creating random subsets of the data (so-called 
bootstrapping). Then, a tree is trained on each subset. Each of these trees aims to predict 
the dependent variable based on the independent variables. However, at each split in the 
decision tree, only a random subset of all the variables is considered, which helps to 
train trees that are decorrelated. Once many trees are trained, the prediction of the de-
pendent variable is made by averaging the predictions from all the individual trees (so-
called aggregation). This combination of bootstrapping and aggregation is referred to as 
“bagging”.  

We trained a random forest model with data on the anthropogenic and natural forcing 
factors discussed in the example in subsection 4.4.1 as well as with modes of internal 
variability. As the dependent variable, global mean surface temperature was used. De-
tails are provided in the appendix. Then two simulations were run in analogy to the 
example in subsection 4.4.1. The model results are displayed in Figure 1(b). At first 
glance, they look similar to the ones obtained from the energy-balance model, as only 
the red curve considering all forcing factors tracks observations closely. Hence, the 
question emerges whether the same degree of understanding can be obtained from the 
random forest model as was obtained from the energy-balance model. In order to know 
to what extent the model is fit to serve as a vehicle for understanding the causes 20th 
century global warming, the random forest model has to be assessed with the framework 
introduced in section 4.3. 

In Table 4, we compare the fitness of the energy-balance model and the random forest 
model for providing understanding of the observed warming. As can be seen, the re-
quired considerations for empirical accuracy, robustness, and the ability to qualitatively 
anticipate model outputs are identical or very similar between the two models: not only 
do they fare similarly well with respect to these criteria, the considerations necessary to 
perform the evaluation are also similar. One difference is that the ability to qualitatively 
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anticipate model outputs can mainly be gained by manipulating the model in the case of 
the random forest model. We note here that it is even more important in the case of the 
data-driven model to evaluate the empirical accuracy of the model with novel data. Be-
cause the model structure crucially depends on the data, using the same data for model 
training and model evaluation would hide cases of overfitting. This is why in machine 
learning, researchers routinely split the datasets into training, test, and validation sets. 
A random split of the data was performed in order to have different training and test 
sets. This procedure employs use-novel data for model selection but double-counting 
occurs when the full model is evaluated as depicted in Figure 1(b). 

 

Table 4: Comparison of the fitness of the energy-balance model and the random forest model 
of global mean surface temperature to serve as a vehicle for understanding. 

dimension of 
understanding 

evaluative  
criterion 

energy-balance model 
(process-based model) 

random forest model 
(data-driven model) 

representational 
accuracy 

empirical  
accuracy 

• model reproduces ob-
servations well 

• model reproduces ob-
servations well 

robustness • model outputs are simi-
lar to CMIP5 models 

• model outputs are simi-
lar to CMIP5 models 

coherence with 
background 
knowledge 

• based on conservation 
of energy 

• idealizations seem justi-
fied for the case at 
hand 

• model behavior con-
sistent with background 
knowledge 

• model outputs con-
sistent with background 
knowledge 

• all relevant variables 
considered 

• sufficiently flexible func-
tional form used 

• sufficiently many config-
urations of the target 
system considered 

graspability 

ability to quali-
tatively antici-
pate model 
outputs 

• familiarizing oneself 
with the model through 
manipulation 

• analysis of equation 

• familiarizing oneself 
with the model through 
manipulation  

ability to ex-
plain model 
behavior 

• analysis of differential 
equation 

• manipulation of model 

• variable importance plot 
• manipulation of model 
• working of optimization 

algorithm 
 

While the assessment of the two models in terms of three criteria is similar, the two 
model types differ when assessing the remaining two criteria, i.e., coherence with back-
ground knowledge and the ability to explain model behavior.  
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Coherence with background knowledge 
As data-driven models do not explicitly incorporate background knowledge in the form 
of equations, the coherence of the models with background knowledge needs to be as-
sessed indirectly. Different aspects can be addressed for this. First, model behavior, to 
the extent that it is accessible, can be checked for its consistency with background 
knowledge. This can, admittedly, be difficult in the case of many machine learning ap-
plications.20 Second, model outputs can be checked for their consistency with back-
ground knowledge. Here, model outputs show no obvious violations of background 
knowledge. Third, the relevant variables, as judged from the point of view of back-
ground knowledge, should be considered in model development. This question is of im-
portance for data-driven models because excluding causally relevant variables from the 
model can lead to a biased estimation of the contribution from other factors if the ex-
cluded factor is correlated to other input factors. Since understanding here depends on 
estimating the contributions of different factors to global mean surface temperature, the 
relevant causal factors should be included. In the example illustrated above, important 
natural and anthropogenic forcing agents were included (see Myhre et al. 2013). Fourth, 
the machine learning method used should be sufficiently flexible to model the relation-
ships between the variables. Here, a bagging method was used that is generally very 
flexible. We add two notes of caution: using a very flexible algorithm to make it likely 
to capture the true dependencies comes with the drawback of lost model graspability, 
and it can lead to overfitting. Fifth, a sufficient number of configurations of the target 
system should be considered in the training dataset. The importance of this point has 
been stressed by Pietsch (2016, 138), who has claimed that data-intensive science “re-
quires data covering all configurations of a phenomenon that are relevant with respect 
to a specific research question”. Variation within one variable without covariation with 
the other variables is especially important. Here, to avoid the problem of correlated var-
iables, the considered anthropogenic forcings were aggregated into one time series based 
on the respective radiative forcings. This step to decorrelate the variables makes it likely 
that sufficiently many configurations were considered. Hence, based on these consider-
ations, the model seems coherent with background knowledge to a satisfactory degree.  

Ability to explain model behavior 
Whereas for the process-based models, some direct assessments of model behavior is 
possible, this is not straightforward for the data-driven model considered here. The rea-
son for this is that random forest does not provide a set of rules or a model equation that 
could be analyzed. However, by manipulating the input and assessing the resulting out-
puts, one can conduct sensitivity analyses and learn about model behavior beyond the 
ability to simply anticipate model outputs and actually learn to explain how the model 

                                            
20 In the case of random forest, the variable importance plot could be assessed to learn about 
model behavior (see appendix). This shows which variables contribute most strongly to varia-
tion in the dependent variable. As this is precisely the understanding we are after in the example, 
we do not show and further discuss this here.  
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behaves.21 Also, by knowing how the underlying machine learning algorithm works, it 
can be possible to know at least to some extent what drives model behavior. For exam-
ple, in random forests, one can generally expect that sufficiently small variations in 
model inputs will not impact the values of the dependent variable due to the stepwise 
predictions. Hence, a versed model user can explain model behavior to some extent. But 
the data-driven model certainly performs worse compared to the process-based energy-
balance model in terms of this criterion. We note here that advances in explainable arti-
ficial intelligence might further contribute to the graspability of data-driven models (for 
a more detailed discussion of different types of transparency of computational systems, 
including machine learning, see Creel, forthcoming).  

Hence, despite the difficulties in explaining model behavior, we conclude that in the 
above example the data-driven model has a reasonable fitness to serve as a vehicle for 
understanding 20th century global warming. This is because the model performs simi-
larly to a process-based model with the same representational depth in terms of empiri-
cal accuracy, robustness, and the ability to qualitatively anticipate model outputs. The 
obstacles for the fitness-for-understanding are the difficulty in explaining model behav-
ior and in assessing the coherence of the model with background knowledge. However, 
at least the coherence with background knowledge can be assessed to a reasonable de-
gree. Hence, while we acknowledge that the difficulties with respect to the two criteria 
can have an impact on the fitness of the model for providing understanding of phenom-
ena, they do not seem sufficient to make the model in this example entirely unfit-for-
purpose. However, it is yet unclear what the considerations from this example tell us 
about data-driven models more generally. We address this question in the following 
section. 

4.5.2. Generalization: The Alleged Dilemma of Data-Driven Models 

Constructing data-driven models does not require that all processes are quantitatively 
understood to the same extent that is necessary for constructing process-based models. 
Hence, it is possible to construct data-driven models of comparatively ill-understood 
phenomena. As seen in the previous section, data-driven models can be fit for providing 
understanding of phenomena in the climate system. They might therefore seem like a 
good choice of tools for achieving a better understanding of ill-understood phenomena. 
Thus, the question needs to be addressed to what extent the example from the previous 
section can be generalized. Generally, the evaluation of the empirical accuracy and the 
robustness of model results, and the ability to qualitatively anticipate model outputs 
would be very similar in other cases. Furthermore, the evaluation of the coherence of 
data-driven models with background knowledge will have to consider points similar to 
the ones presented in Table 4. However, in cases where model users have less 
                                            
21 Tools like the variable importance plot could further help here. We do not discuss this further 
as it tells about which the most important variables are, which is precisely the understanding 
we are after, here (see footnotes 20 and 22). 
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background knowledge, arguing from the coherence with background knowledge to rep-
resentational accuracy is considerably weaker. Specifically, in more complex cases, the 
available background knowledge will often be insufficient to assess whether all relevant 
variables have been included and whether sufficiently many configurations of the target 
system have been considered. This problem also affects the first two points (in Table 4) 
about judging the consistency of model behavior and model results with background 
knowledge. Hence, in ill-understood cases, the coherence of a model with background 
knowledge can be a very weak argument as a justification of representational accuracy.  

In more complex cases, there will often also be more difficulties in explaining model 
behavior compared to the example above. In such cases, model users might employ 
more flexible methods, e.g., models constructed with deep learning. These more flexible 
methods can be even less graspable for model users than the one presented above. The 
concerns about the lack of access to model behavior are especially relevant for models 
with a large number of independent variables.  

Thus, when serving as vehicles for understanding, data-driven models can face several 
problems. First, the difficulty to explain model behavior can limit the graspability of the 
model. Second, when background knowledge is quite limited, the argument from coher-
ence with background knowledge to representational accuracy is weaker. This also im-
pacts the argument from empirical accuracy to representational accuracy due to the 
problem of underdetermination. This gives rise to an (alleged) dilemma of data-driven 
models in terms of their usefulness as vehicles for understanding. Namely, data-driven 
models can be fit for providing understanding of climate phenomena in simple, well 
understood cases. However, in these cases, scientists can typically construct and work 
with process-based models, whose evaluation in terms of coherence with background 
knowledge is more direct and hence, more certain, and which are more graspable. In 
more complex, ill-understood cases, it is not possible to construct process-based models. 
However, in these cases, the difficulty in grasping data-driven models and in justifying 
their representational accuracy seriously impairs their fitness for providing understand-
ing. Thus, it seems that in simple cases there is no need for data-driven models since we 
can construct process-based models to provide understanding, and in more complex 
cases, where process-based models are out of reach, data-driven models are not fit for 
providing understanding. Stated boldly, data-driven models seem either unnecessary or 
inadequate for understanding. Hence, this indicates limited scope for data-driven models 
to provide understanding in practice. 

4.5.3. Overcoming the Dilemma 

If this dilemma holds, it restricts the role of data-driven models as vehicles for under-
standing to cases where computational cost is limiting or to didactical applications. 
However, while it might seem intuitively plausible, it is a false dilemma. This is because 
there are applications in practice where sufficiently restrictive background knowledge 
is available for scientists to distinguish between representationally accurate and 
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inaccurate models. At the same time, this background knowledge is insufficient for the 
construction of satisfactory process-based models. Such a case is presented by Andersen 
et al. (2017) in a paper labeled “Understanding the Drivers of Marine Liquid-Water 
Cloud Occurrence and Properties with Global Observations Using Neural Networks”. 
The authors use satellite and reanalysis data and train multilayer perceptrons, a type of 
artificial neural networks, to reproduce cloud fraction and different cloud properties 
such as the optical thickness. The neural networks in the study have one hidden layer 
with five neurons. In terms of the criteria of our framework, this machine learning 
method has a similar graspability to the random forest model introduced above. The 
independent variables were chosen based on a review of other studies. They included 
the aerosol index, relative humidity and vertical vorticity at different pressure levels, 
boundary level height, and the lower-tropospheric stability. The authors chose not to 
train a single artificial neural network but instead to construct regionally specific models 
because some relationships were known to be regionally specific, e.g. pertaining to sea-
sonal effects.  

The resulting models achieved comparatively good empirical accuracy. Furthermore, 
the authors performed sensitivity analyses in which they systematically varied the values 
of one input variable while holding the others constant. In this way, they were able to 
learn to anticipate model outputs and, to some extent, to explain model behavior to some 
degree. Thus, the model was graspable to a satisfactory extent along both of the evalu-
ative criteria for graspability introduced above. Finally, and most importantly, several 
bivariate relationships between individual predictor variables and the dependent varia-
bles were well constrained in the literature. Thus, the authors had sufficient background 
knowledge such that the evaluation of the coherence of the models with background 
knowledge gave strong arguments for the representational accuracy of the models. Nev-
ertheless, while process-based models of such clouds exist, their usefulness for this kind 
of analysis is impaired by imperfect knowledge of the processes and computational 
costs. 

Hence, this study shows that the dilemma introduced above is a false one, and that data-
driven models can successfully be used as vehicles for understanding phenomena in the 
climate system, unless one claims that the study did not lead to new understanding. Can 
the authors convincingly argue that their models yielded new understanding of aspects 
of the climate system? Andersen et al. (2017) showed how different processes interact, 
and hence provided a better understanding of the formation of and processes within ma-
rine liquid-water clouds. E.g., they were able to show which predictors are the most 
important drivers of cloud fraction and estimate the individual contributions of different 
factors. Hence, this study provides explanatory information as introduced in section 4.3, 
namely information that can be used to construct explanations of cloud formation. 

What more general points can be learned from this example? Data-driven models can 
be good tools to understand phenomena in the climate system (and potentially in other 
scientific fields) if researchers can take steps to increase the graspability of the model 
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and if their background knowledge is sufficiently large so that coherence with it pro-
vides a good argument for the representational accuracy of the model. One step that 
researchers can take is to restrict the set of independent variables based on their back-
ground knowledge of the phenomenon of interest. This increases the graspability of the 
models. If model users further have knowledge of some bivariate relationships (as was 
the case for Andersen et al. (2017)), sensitivity analyses or other techniques to explore 
the behavior of the data-driven model can help to both increase the graspability of the 
model and to evaluate to what extent it is coherent with background knowledge.22 What 
is more, data-driven models can also potentially serve as a good starting point for un-
derstanding phenomena. For example, if a large dataset of some independent variables 
and a dependent variable is available, but a sufficiently flexible machine learning algo-
rithm fails to accurately represent the phenomenon of interest, researchers know that 
processes not represented in their model must be relevant, and that additional variables 
are potentially relevant. If two data-driven models are compared that differ only because 
one of them also considers a specific variable that is not considered in the other model 
and the first of the two models is much more empirically accurate, this can give scientists 
some understanding of the respective processes. A similar point about hierarchies of 
process-based climate models of different complexity was made by Katzav and Parker 
(2015). 

Thus, we agree that both model interpretability (cf. López-Rubio and Ratti 2019) and 
the lack of evidence linking the model to the target (cf. Sullivan 2019) pose difficulties 
for the fitness of data-driven models for understanding. However, we argued here that 
neither problem necessarily precludes data-driven models from serving as vehicles for 
understanding in specific instances. Creating data-driven models in situations where 
sufficient background knowledge is available to argue from the coherence of the model 
with background knowledge to its representational accuracy can provide exactly the 
kind of evidence that reduces the link uncertainty discussed by Sullivan (2019). Further-
more, Krishnan (2019) argued that in many cases, the ability to explain model behavior 
is often not necessary for a machine learning model to be fit for a specific purpose. 
Based on our framework, we agree with this position for the purpose of understanding 
phenomena because the models can have a sufficient degree of graspability even if their 
behavior cannot be explained. Nevertheless, advances in explainable machine learning 
would generally increase the fitness of data-driven models for the purpose of under-
standing (see Creel, forthcoming). 

                                            
22 Note that evaluating the coherence of a model with background knowledge can also be pos-
sible for complex methods like deep neural networks, e.g., based on variable importance (see 
Gagne II et al. 2019). While graspability becomes a larger issue for these more complex models, 
the justification of representational accuracy can be possible. 
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4.6. Conclusion 

In this paper, we have proposed a framework for assessing the fitness of climate models 
to serve as vehicles for understanding. This framework is built upon three dimensions 
of understanding, namely the model’s representational accuracy, its graspability, and its 
representational depth. We introduced several evaluative criteria to assess how well a 
particular model performs along each of these dimensions. After applying the frame-
work to process-based models, we considered an alleged dilemma for data-driven mod-
els, according to which they are either irrelevant or inadequate because they can only 
provide understanding for cases in which process-based models could more confidently 
be applied. Using a case study, we showed that this is a false dilemma. Hence, there is 
a role for data-driven models to play for researchers aiming to better understand climate 
phenomena.  

We largely ignored the role that machine learning methods can play in applications other 
than representational models of phenomena. For example, unsupervised machine learn-
ing can be used to identify clusters in climate datasets (Zscheischler, Mahecha, and 
Harmeling 2012), i.e., as models of data. If one holds that identifying such groups con-
stitutes understanding (see Gijsbers 2013), then machine learning can play a role for 
obtaining understanding that goes beyond the use for data-driven modeling of phenom-
ena.  

The concerns raised in this paper have consequences that go beyond data-driven models. 
They might also be relevant for more classical statistical modeling practices in the sci-
ences. Furthermore, as discussed, the framework for assessing the fitness for the purpose 
of understanding applies equally to process-based climate models. The extent to which 
the representational accuracy of global climate models is impaired by empirical param-
eterizations and to which the complexity of the models impairs model users’ ability to 
grasp the model are open questions.  
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5. Conclusions and Outlook 

Data generated worldwide is increasing in both volume and complexity. This does not 
only lead to technical, legal, and ethical challenges, it also opens up new opportunities, 
including for scientific research. This thesis provides some insights into what these op-
portunities consist in for environmental science and specifically for climate research. It 
addresses questions of predictions, uncertainty, and scientific understanding, and dis-
cusses what challenges researchers face when applying data-driven modeling techniques 
for these purposes. 

In this chapter, I conclude by highlighting central findings and implications of the thesis 
and by providing an outlook to future research. The chapter is organized as follows. I 
first present the central findings emerging from chapters 2, 3, and 4 in section 5.1. Sec-
tion 5.2 presents implications of the findings of the thesis for broader scientific and so-
cietal debates. I then present suggestions for further research in section 5.3 before ending 
with some closing remarks in section 5.4. 

5.1. Central Findings 

The central finding of this thesis is that neither extreme optimism nor extreme pessi-
mism is warranted regarding the possibilities emerging from big data in general and 
data-driven modeling techniques in particular. It does not seem likely, based on the find-
ings presented in this thesis, that all or most modeling in climate science will or should 
become data-driven for all purposes. Nor is it true that data-driven modeling is only 
useful for narrow short-term predictions. Rather, thanks to increasing volumes of data, 
scientists can add techniques for data-driven modeling to their toolbox and use them for 
a range of scientific tasks, including for long-range projections and for obtaining under-
standing of phenomena. Although new forms of data, e.g. from crowdsourcing or from 
social media, were not a central topic of this thesis, similar conclusions regarding these 
data sources were reached in chapter 2. Making good use of big-data elements in envi-
ronmental and climate science requires that the research process be guided by domain-
specific background knowledge. This helps to evaluate whether models and data are fit 
for the purpose to which they are put. 
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In chapter 2, we argued that big data does not affect scientific research in climate science 
in an all-or-nothing way. Big data is present in research in the form of individual ele-
ments and hence affects research to larger or smaller degrees. Big-data elements can 
help scientists to overcome two kinds of limitations they may face in their research. 
First, big-data elements can help them to model or measure a phenomenon when the 
financial, computational, or time resources are limiting a more classical approach. We 
referred to this as the rationale of efficiency. Second, big-data elements can allow sci-
entists to model a phenomenon when their understanding is insufficient for a more the-
ory-based modeling approach. We referred to this as the epistemic rationale. In chapters 
3 and 4, we have discussed cases in which the epistemic rationale was the reason for 
using data-driven modeling techniques. We have shown that also in such cases, re-
searchers can confidently make arguments from the coherence with background 
knowledge to the representational accuracy of the model. Thanks to this evaluation, 
data-driven environmental models can be useful for purposes such as making long-term 
projections and obtaining scientific understanding. 

In chapter 2, we further showed that in most scientific applications, predictions made 
with big-data elements, i.e. machine learning and new forms of data, cannot be con-
stantly evaluated against new data. Hence, in these situations, researchers need to as-
sume the constancy of the identified relationship and need to justify this assumption. 
This justification can only be based on background knowledge. In chapter 3, we specif-
ically addressed the question of how this constancy assumption can be justified by ex-
tensively discussing the case study of a data-driven environmental model. We have 
shown that the constancy assumption can be justified based on the accuracy with which 
the data-driven model represents important causal processes in the target system. This 
representational accuracy, in turn, can be justified by at least six points. These are (1) 
that most relevant variables have been included, (2) that data covering many configura-
tions of the phenomenon of interest were included in the training dataset, (3) that suffi-
ciently flexible machine learning methods were used, (4) that the results of the model 
are consistent with background knowledge, (5) that the model is empirically accurate, 
and (6) that the results are robust across different models. In chapter 4, the same six 
points were provided to justify that a data-driven model provides an accurate represen-
tation of a target system for an account of a specific phenomenon. While these aspects 
can be helpful to justify the representational accuracy of a data-driven model, we have 
seen in chapter 3 that they do not necessarily guarantee representational accuracy, nor, 
consequently, the constancy of the identified relationships. This is because the recon-
structed arguments in chapter 3 were non-deductive.  

These points about the representational accuracy of data-driven models are related to 
the external theory-ladenness of data-driven models introduced by Pietsch (2015). Ex-
ternal theory-ladenness in Pietsch’s account is explicated mainly in terms of the framing 
of the problem. Namely, Pietsch argues that when constructing machine learning models 
of phenomena, scientists need to include the right variables and have training data cov-
ering all states of the target system that are of interest. Furthermore, stable background 
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conditions and stable causal categories are required. If these four conditions hold, Pi-
etsch (2015) argues, no further internal theoretical assumptions are needed for construct-
ing successful machine learning models. Pietsch (2015; 2016) has specifically addressed 
disciplines where no well-established hierarchies of scientific theories are available. In 
disciplines like climate science where such theoretical background knowledge is avail-
able to a larger extent, we have shown that additional considerations are important, spe-
cifically the consistency of model results with background knowledge. As the modeled 
relationships are still not prescribed from theory, the evaluation of the consistency of 
model results with background knowledge leads to an external theory-ladenness of data-
driven modeling that goes beyond what Pietsch has described. 

The aspects to evaluate the representational accuracy of data-driven models in chapters 
3 and 4 are important specifically in environmental and climate science because there 
are reasons to believe that often, not all of Pietsch’s (2015) four conditions hold for 
environmental systems. This specifically concerns the requirement to have data cover-
ing all configurations of interest, and potentially also the requirement to have stable 
background conditions. Due to global environmental change, at least for long-term pro-
jections such as the selenium projections discussed in chapter 3, it seems unlikely that 
environmental scientists can train a data-driven model using data that covers all config-
urations or that they encounter stable background conditions. However, the aspects that 
we discussed in chapters 3 and 4 to evaluate models in terms of their representational 
accuracy can be a potential remedy that helps to confidently use data-driven models 
despite this extrapolation. This is also why, rather than emphasizing constant back-
ground conditions or data covering all configurations of interest, in chapter 2 we have 
emphasized the importance of the constancy of the identified relationships in models 
and measurements. 

One of the recurring topics in the chapters of this thesis has been the role of background 
knowledge in model construction, model evaluation, and in the interpretation of model 
results. There is an apparent paradox emerging regarding of the role of background 
knowledge. On the one hand, we have argued in chapter 2 that there is an epistemic 
rationale for the use of data-driven models because they allow the modeling of phenom-
ena that researchers are unable to model otherwise because of their lack of system un-
derstanding. On the other hand, we have stressed the importance of background 
knowledge for model evaluation in chapters 3 and 4. One might worry that this under-
cuts the epistemic rationale and reduces its importance in practical applications. It is this 
worry that gave rise to the alleged dilemma of data-driven models that we encountered 
in chapter 4. However, as the discussions in chapters 3 and 4 showed, the situation is 
less dramatic than it seems at first glance. There are cases, such as the case studies dis-
cussed in these two chapters, where data-driven models are constructed due to the epis-
temic rationale, yet the available background knowledge allows to make sufficiently 
strong arguments from coherence with background knowledge to representational accu-
racy.  
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In many debates, machine learning and data-science tools more generally are referred 
to as black boxes. Since many machine learning algorithms do not explicitly represent 
processes and because they are often applied to large datasets with data on ill-understood 
phenomena, this is understandable. However, Krishnan (2019) has cogently argued that 
model interpretability is only an instrumental goal, and the ultimate goals are often 
achievable without model interpretability. While Krishnan has made this point mainly 
for goals related to non-epistemic values, for example for the goal of non-discrimination, 
the findings of this thesis support her point of view for certain epistemic purposes. 
Namely, in chapters 3 and 4, we have shown that making long-term projections with 
and obtaining understanding from data-driven models is possible with data-driven mod-
els despite difficulties with model interpretability. The reason for this is that interpreta-
bility in the sense of explaining every predicted instance is not a requirement for an 
assessment of the representational accuracy of a data-driven model. A high-level trans-
parency regarding how a computer system turns inputs into outputs is often sufficient 
for this kind of model evaluation (see Creel, forthcoming). In more complex data-sci-
ence contexts, the lack of transparency and interpretability of the models and the model 
construction may be a serious issue (see Hutson 2018). However, in research contexts 
such as in environmental and climate science, the kind of interpretability of data-driven 
models that is required for epistemic goals is often achievable with existing tools, as the 
case studies in chapters 3 and 4 have shown. 

5.2. Implications 

One of the central findings of this thesis, as discussed above, is the importance of back-
ground knowledge in model construction, evaluation, and use. Especially for complex 
modeling tasks, this finding can be read as a call for interdisciplinary collaborations 
between data scientists and domain scientists. While in some simple cases, domain sci-
entists are able to construct data-driven models on their own, this could be increasingly 
difficult with unstructured data or very large datasets in general. Modeling in these cases 
thus requires interdisciplinary collaboration, as has also been suggested elsewhere 
(Faghmous and Kumar 2014; Faghmous et al. 2014; Karpatne et al. 2017). These inter-
disciplinary collaborations can ensure that the models are physically plausible and to 
some extent interpretable by domain scientists (see Gagne II et al. 2019; McGovern et 
al. 2019). Hence, based on the findings provided here, attempts should be welcomed and 
encouraged that bring domain scientists and data scientists together to collaborate on 
projects. Such attempts are made, for example, by the Swiss Data Science Center.23 

For the most part, in this thesis, I have addressed issues of data-driven models, i.e., ap-
plications of machine learning to model phenomena in scientific contexts. However, the 
findings of the thesis have implications for other applications of machine learning, too. 
This is particularly true of the framework for assessing predictive uncertainties 

                                            
23 See https://datascience.ch/academic-projects/, accessed on January 16, 2020. 
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introduced in chapter 3. In machine learning applications in which the algorithm is not 
interpreted as the representation of a phenomenon, the uncertainty can still be assessed 
using the argument-based framework introduced in this thesis. Applying this framework 
might be helpful, e.g., in image classification tasks by highlighting that there is second-
order uncertainty because it is unclear to what extent the model can generalize or fall 
prey to adversarial examples. This insight can guide further research to reduce the in-
fluence of the factors that lead to this uncertainty. In other applications, for example 
when machine learning is used to assess the credit-worthiness of people or for predictive 
policing, the argument-based framework may yield useful insights into uncertainties that 
are relevant from an ethical perspective. Hence, the work presented in this thesis could 
provide good tools for ethical analyses of big data and machine learning. However, as-
sessing how useful the argument-based framework is for these tasks requires further 
work. 

In chapters 3 and 4, we have discussed the predictive uncertainty of data-driven models 
and the fitness of data-driven models to serve as vehicles for understanding phenomena. 
In both chapters, the frameworks used were quite general and could be applied to pro-
cess-based models, too. In the case of the framework for understanding, an explicit dis-
cussion of process-based models was even provided. The differences between the two 
types of models consisted in how exactly the assessments were performed. This com-
parison reveals that the epistemological questions that arise with data-driven models 
concern issues that philosophers and scientists are familiar with because they arise in 
other, more traditional modeling activities, too. These are, for example, questions related 
to representational accuracy or model opacity. Thus, it seems that in many scientific 
contexts, the epistemological issues arising in the construction, evaluation, and use of 
data-driven models and machine learning more generally are best understood in the con-
text of the existing literature on models and computer simulations.24 

The evaluation of models in terms of background knowledge proposed in this thesis has 
implications for the evidence that data-driven models can provide for or against specific 
hypotheses. For example, Mazzocchi and Pasini (2017) have argued that climate model 
ensembles should be taken beyond dynamical, i.e., process-based, models and also in-
clude data-driven models. Pasini et al. (2017) have discussed such an application. 
Namely, the authors trained artificial neural networks to model global mean surface 
temperature dependent on different forcing factors similar to the application demon-
strated with a random-forest model in chapter 4. As Pasini et al. (2017, 1) explain, “… 
to achieve robustness we need to obtain a common result from independent means of 
investigation (models) and GCMs [i.e., general circulation models] do not seem so in-
dependent from each other […]. Thus, attribution results from different approaches 
could be compared with GCMs’ ones for understanding if we have robust results.” In 
other words, investigating climate phenomena using data-driven models could, 
                                            
24 This is of course not true for developments that go beyond narrow applications of machine 
learning, i.e., efforts to develop general artificial intelligence (Goertzel and Pennachin 2007). 
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according to Pasini et al., provide independent evidence of the findings from process-
based models. However, it is not prima facie clear to what extent data-driven models 
can provide independent evidence in such cases. For data-driven models to provide in-
dependent evidence, they would have to help exclude rival hypotheses for global warm-
ing (i.e., hypotheses that claim that anthropogenic greenhouse gas emissions are not the 
main factor driving global warming) that are consistent with results from process-based 
models (see Schupbach 2016). At the same time, the kind of reasoning employed here 
demands that the data-driven models be sufficiently fit for serving as vehicles for un-
derstanding. As the discussion in chapter 4 has shown, the fitness of data-driven models 
for this purpose requires that they provide an accurate representation of the climate sys-
tem for an account of global warming. This representational accuracy is evaluated, 
among other things, in terms of the models’ coherence with background knowledge, and 
this background knowledge is largely embedded in the available process-based models. 
Background knowledge that is used for the evaluation of data-driven models may also 
be obtained from the process-based climate models. If the data-driven models are co-
herent with this background knowledge to a sufficient degree, they are unlikely to be 
useful in robustness analysis because they probably cannot help to exclude rival hypoth-
eses. If, however, the data-driven models are not coherent with background knowledge 
to a sufficient degree, then their fitness for providing understanding of the desired phe-
nomenon will be rather low. Hence, while data-driven models are independent from 
process-based models in how they are constructed, it is doubtful that they can provide 
independent evidence for or against a hypothesis in such a robustness analysis. Yet, the 
independence of the two modeling types is an issue that deserves attention in future 
work.25 

In the age of big data, researchers will increasingly be confronted with situations in 
which they have too many variables at their disposal that they can potentially include 
into data-driven models. Including all of them would likely lead to models that are partly 
based on spurious correlations (see Calude and Longo 2017). This is related to the prob-
lem of overfitting in machine learning. In such cases, a sensible variable selection pro-
cedure has to be implemented. While the problem of having too many variables 
available has not been explicitly discussed in this thesis, the uncertainty framework pro-
vided in chapter 3 has implications for how the uncertainty related to variable selection 
can be addressed. The selection of variables is one of the aspects that may have to be 
justified as it is relevant for the fitness-for-purpose of the model and, consequently, for 
the uncertainty assessment. Two approaches are possible for this. The first approach is 
to base the selection of variables entirely on researchers’ background knowledge of the 
target system. This requires that their system understanding is good enough to decide 
                                            
25 Note that the robustness reasoning employed in chapter 4 of this thesis is different from the 
robustness reasoning employed by Pasini et al. (2017). In chapter 4, we recommend that ro-
bustness reasoning is used as a means to judge the causal core of the models that leads to robust 
properties. Hence, the robustness reasoning that we employed is not about accepting or reject-
ing hypotheses indicated by model results, it is about the models themselves (see Lloyd 2015). 



Future Research | 89 
 

 

which variables to include and which ones to exclude. The second approach is to base 
this decision on automated variable selection procedures such as LASSO or RIDGE 
regression (see James et al. 2013). In climate science, the latter approach has, for exam-
ple, been employed by Sippel et al. (2020). Regardless of which of these two paths is 
chosen, it would appear in the framework presented in chapter 3 as a justification of the 
representational accuracy of the model, and it would itself require further justification. 
If the first path is deemed appropriate, the justification has to be provided by domain 
scientists based on domain-specific background knowledge. If the second path is cho-
sen, data scientists and domain scientists may have to jointly judge the appropriateness 
of a given method for variable selection. Hence, deciding on which path to take may be 
a task that is best solved in an interdisciplinary manner. Second-order uncertainty 
emerges due to this decision if it is unclear how well justified the chosen approach is.  

A final implication of the results here concerns scientific objectivity. In a recent account 
of scientific objectivity, Koskinen (2018) has suggested that something, be it a result, a 
method, or a scientific community, should be considered objective if it successfully 
averts the influence of our imperfections as cognitive agents, i.e., epistemic risks. In-
ductive risks are one type of epistemic risks that have to be managed, but other individ-
ual and collective biases are relevant, too. In chapter 3 of this thesis, we have argued 
that results from data-driven models can be fraught with second-order uncertainties be-
cause of the epistemic rationale that motivates the use of data-driven models, and be-
cause of model opacity. In cases with large second-order uncertainties, it might be 
difficult for researchers to assess the epistemic risks they face. Hence, second-order un-
certainty could have implications for scientific objectivity in data-intensive science. 
However, this is a point that merits further investigation in the future. 

5.3. Future Research 

In chapter 2, we have concluded that machine learning provides a good set of tools for 
modeling phenomena when scientific understanding of the involved processes is insuf-
ficient for the construction of process-based models. We have then stressed the im-
portance of background knowledge in justifying the assumption that the identified 
relationships remain sufficiently constant. I have noted in section 5.1 that this may seem 
like a paradox at first glance, but that there are cases where the representational accuracy 
of a model can be evaluated based on background knowledge even though no satisfac-
tory process-based models can be constructed. Yet, more work is needed to understand 
the relationship between background knowledge needed to construct satisfactory pro-
cess-based models and background knowledge needed to justify the representational ac-
curacy of data-driven models. This issue could be addressed in future research by 
domain scientists, data scientists, and philosophers. In this assessment, non-epistemic 
values are likely to play a role. This is because a less conclusive justification of repre-
sentational accuracy may suffice in cases where the consequences of wrong inferences 
are low. The larger the consequences of wrong inferences become, the more conclusive 
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the justification may have to be, requiring a better initial understanding of the target 
system.  

In chapter 3, we have provided some thoughts on the quantification of uncertainties that 
builds upon the proposed framework, which analyzes uncertainty in a purely qualitative 
way. Chapter 3 specifically recommends using structured expert elicitation to obtain 
quantified information on uncertainties. Future research could assess the usefulness of 
expert elicitation for such quantifications. Related to this, we have provided some initial 
thoughts on decision-making with the kind of information on uncertainties that is pro-
vided by our framework. We have noted that more work is needed to develop decision 
frameworks that can handle the kind of information that results from this framework. 
Hence, research into decision frameworks that consider both first-order and second-or-
der uncertainty will be highly useful. 

In chapters 3 and 4, we have touched upon the transparency and interpretability of ma-
chine learning models. We have argued that the lack of transparency of data-driven 
models can be a source of second-order uncertainty and somewhat reduces the fitness 
of data-driven models as vehicles for scientific understanding. Recently, Creel 
(forthcoming) has suggested that three different types of transparency of complex com-
putational systems should be distinguished, which are not all equally important in all 
contexts and for all purposes. It has also been argued, recently, that different stakehold-
ers might have different requirements of what constitutes a satisfactory explanation in 
explainable machine learning (Zednik 2019). Future work could more explicitly link 
questions about the transparency of machine learning with the scientific issues discussed 
in this thesis, namely uncertainty assessments and scientific understanding. This work 
could engage in a discussion of the type of transparency that is needed for these tasks. 

As noted in section 1.2.2, the term “big data” is not well defined. In chapter 2, we have 
touched on the issue of what exactly the term “big data” refers to. While we have iden-
tified different big-data elements that are characteristic of what the term refers to, we 
have not proposed a definition of the term. However, given the range of categories we 
have presented in which big-data elements are used, the descriptive approach chosen in 
chapter 2 yields insights that can be relevant for future work aiming to clarify the term 
“big data”. Such work should be welcomed in order to have more clarity about what big 
data is and is not. 

In chapters 3 and 4, we have distinguished between process-based and data-driven mod-
els. In the previous section, I have noted that it seems unlikely that data-driven models 
of phenomena can provide evidence for or against a hypothesis that is independent of 
the evidence derived from process-based models. The independence of the two model-
ing approaches is thus an issue that deserves attention in future work. What is more, 
future research could also address the distinction between process-based and data-driven 
models more explicitly. In chapter 2, we have illustrated that machine learning has been 
embedded into existing climate models to replace or improve parameterization schemes 
(see Krasnopolsky and Fox-Rabinovitz 2006; Schneider et al. 2017; Gentine et al. 2018). 
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This shows that the distinction between the two types of models need not always be 
clear in practice. Interesting research in the future could address epistemological issues 
concerning models that combine process-based and data-driven aspects, specifically hy-
brid models in which machine learning is embedded into process-based models. It could 
be interesting to investigate, for example, how the evaluation of such models would 
work in terms of their representational accuracy. 

Finally, in chapters 3 and 4, we have introduced new frameworks to address epistemo-
logical issues in data-driven modeling. Both of these frameworks are fairly general and 
could be applied in various other contexts in future work, including in other disciplines 
in which data-driven models are employed and for process-based models in climate sci-
ence. Future research could also scrutinize the two frameworks and assess, e.g., whether 
epistemic uncertainty can generally be thought of as a lack of conclusive justification as 
suggested in chapter 3 or further elaborate on the dimension of representational depth 
that we have introduced in the framework for understanding in chapter 4. 

5.4. Closing Remarks 

In November 2019, Adrian Daub, a professor of literature at Stanford University, wrote 
an op-ed for the Zurich-based newspaper Neue Zürcher Zeitung about the tendency of 
businesses to collect more and more data (Daub 2019). He argued that these massive 
datasets are affecting us, today, mostly in hypothetical terms. We are affected by the 
promise that these datasets might one day be used for important discoveries, but the 
promises of big data are mostly just that: promises. Regardless of whether this is true 
for the private sector, it does not seem true of scientific applications of big data, based 
on the findings of this thesis. While big data is no panacea for scientific research, it 
provides scientists with tools that are already used for a range of interesting research 
questions. 

This thesis has investigated epistemological issues in data-driven modeling in climate 
research. The topics discussed show that the epistemological issues arising in relation 
to data-driven models are not fundamentally different from traditional topics discussed 
for other models even though aspects of model evaluation may be different. The age of 
big data brings about many opportunities for scientific research, and interdisciplinary 
research teams will likely obtain interesting insights thanks to data-science tools. How-
ever, data-driven models will remain one tool among many available to scientists that 
can be useful for some but certainly not all research questions. 
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A. Supplementary Material to Chapter 3 

Here, we present the individual arguments that can be made to justify the fitness-for-
purpose in the case study presented in section 3.5. It is essentially an explicit reconstruc-
tion of the justifications shown in Table 3. The method used to reconstruct the arguments 
and relate them to each other in the argument map is largely based on Betz (2016b) with 
the exception that we also consider non-deductive arguments here. For a general intro-
duction into the analysis of practical arguments, the reader is referred to Brun and Betz 
(2016). 

In this reconstruction, the variable M denotes the model ensemble used by Jones et al. 
(2017), consisting of an ensemble of data-driven models, one of which was built using 
random forest, and two of which were built using artificial neural networks. The variable 
S refers to soil selenium concentrations. The first argument corresponds to the first row 
of Table 3 and directly concerns the fitness-for-purpose of the model and is similar to 
the one presented in the toy example:  

 Argument 1 
P1.1 If a model has predicted many past instances of a phenomenon accurately 

and the modeled relationships remain sufficiently constant over time, that 
model is fit for predicting the phenomenon in the far future. 

P1.2 M has predicted many past instances of S accurately. 
P1.3 The modeled relationships in M remain sufficiently constant. 
C1 M is fit for predicting S in the far future.  

 

In argument 1, premise P1.3 requires further justification. A possible justification is 
based on the fact that the relevant causal processes are represented in the model in a 
sufficiently accurate manner. This argument can again be reconstructed as a deductively 
valid argument: 

 Argument 2 
P2.1 If a model represents the most important causal processes producing a phe-

nomenon accurately and these processes are unaffected by changing envi-
ronmental conditions, the modeled relationships remain sufficiently 
constant. 

P2.2 The causal processes represented in M are unaffected by changing environ-
mental conditions. 

P2.3 M accurately represents the important causal processes that produce S. 
C2 The modeled relationships in M remain sufficiently constant. (= P1.3) 

 



118 | Supplementary Material to Chapter 3 

 

While this argument is deductively valid, it is not clear whether its premises are true. 
Premise P2.1 seems uncontroversial. Premise P2.2 requires some further justification. 
This can for example be justified based on background knowledge, e.g., if the processes 
represented are consistent with current scientific understanding and there is reason to 
believe that they are not dependent on current environmental conditions. Premise P2.3 
in argument 2 also requires further justifications. There are four arguments that can be 
made in favor of P2.3, all of which are non-deductive. Hence, in these arguments, even 
if all the premises are true, they neither individually, nor jointly guarantee the truth of 
the conclusion. The first of these arguments refers the reasons (1), (2), and (3) presented 
in the main text and concerns how the machine learning algorithms were trained to con-
struct the ensemble of data-driven models: 

 Argument 3 

P3.1 M was constructed using data that represents sufficiently many configura-
tions of S. 

P3.2 M was constructed using the most important variables.  
P3.3 M was constructed using sufficiently flexible methods.  
C3 M represents most important mechanisms that produce S. (=P.23)  

 

In argument 3, the individual premises require further justification, too. This justifica-
tion has to be made by referring to background knowledge. The expertise of both domain 
scientists and data scientists is necessary who need to judge whether the considered 
samples are sufficiently diverse (P3.1), whether relevant variables were omitted (P3.2), 
and whether the used methods were sufficiently flexible (P3.3).  

A second argument that can be made in favor of P2.2 refers to the empirical accuracy of 
the model: 

 Argument 4 
P4.1 M is empirically accurate with respect to the data from the past. 
C4 M represents most important mechanisms that produce S. (= P2.3)  

 

Note, here, that there is a thesis that weakens argument 4. Namely, M has a low bias and 
underpredicts global average soil selenium concentration. This underprediction attacks 
P4.1 to some extent.  

A third argument considers the consistency of the model with background knowledge. 
The truth of P5 can be established by conducting sensitivity analyses of the models. 
Furthermore, Jones et al. (2017) also use existing samples to show that the rate of change 
predicted by their models has historical precedents, which also serves as evidence for 
the truth of P5. 
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 Argument 5 
P5 M behaves in consistency with background knowledge about S. 
C5 M represents most important mechanisms that produce S. (= P2.3) 

 

Finally, a fourth argument can be made that refers to the robustness of the models be-
cause predictions were only considered for the regions in which all three machine learn-
ing algorithms agreed. 

 Argument 6 
P6 The predictions are only considered if the ensemble members of M agree on 

the sign of change of S. 
C6 M represents most important mechanisms that produce S. (= P2.3) 

 

As mentioned above, the premises of Argument 3 all require further justification. For 
each of these, that justification has to come from background knowledge. 

 Argument 7 
P7 M was constructed using over 30.000 samples from different continents. 
C7 M was constructed using data that represents sufficiently many configura-

tions of S. (=P3.1) 
 

 Argument 8 
P8.1 M was constructed using seven variables chosen based on a variable selec-

tion procedure. 
P8.2 Most potentially relevant variables were included in the variable selection 

procedure. 
C8 M was constructed using the most important variables. (= P3.2) 

 

 Argument 9 
P9 M was constructed using artificial neural networks and random forest. 
C9 M was constructed using sufficiently flexible methods. (= P3.3) 

 

A problem emerges with respect to argument 8. Namely, as has been noted, data on 
selenium sources was lacking. This is what leads the models to underpredict global av-
erage selenium concentration (see argument 4 above). The low bias of the models shows 
that these sources of selenium are important for soil selenium concentrations. Hence, 
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that data on these sources was lacking directly attacks premise P8.2, which states that 
all potentially relevant variables were included in the variable selection procedure. 

 

Figure 2: Argument map of the justification of the fitness-for-purpose of the models in the case 
study from section 3.5. 
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All of these arguments can then be arranged in an argument map as shown in Figure 2. 
This map is created as introduced by Betz (2016b). White boxes refer to arguments, and 
grey boxes to theses. Solid arrows denote that the content of one box, be it an argument 
or a thesis, supports the content of the other box. Dashed arrows denote that the content 
of one box attacks the content of the other box. Note that the solid arrows here do not 
differentiate between deductive and non-deductive arguments. 

If an arrow goes from a thesis to an argument, this means that the thesis is a premise of 
the argument (support) or that the thesis contradicts a premise of the argument (attack). 
If the arrow goes from an argument to a thesis, this means that the thesis is the conclu-
sion of the argument (support) or that the thesis is contradicted by the conclusion of the 
argument (attack). 
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B. Supplementary Material to Chapter 4 

B.1. Energy-Balance Model 

The energy balance model represents the Earth’s energy balance with the following 
equation: 

𝐶𝐶 ⋅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹 − 𝜆𝜆 ⋅ 𝑇𝑇 

The expression F consists of anthropogenic and natural forcing factors, 𝐹𝐹-.% and 𝐹𝐹.-%: 

𝐹𝐹 = 	𝐹𝐹-.% + 𝐹𝐹.-% 

Data 𝐹𝐹-.%was obtained from the IPCC. For 𝐹𝐹-.%, a time series of mid-year radiative 
forcing of CO2, CH4, and N2O combined was used. For 𝐹𝐹.-%, time series of mid-year 
radiative forcing from stratospheric aerosol optical depth and solar radiation were used. 
As for both these expressions, these time series contained annual values, they were in-
terpolated linearly in order to obtain monthly values.  

Then, using the BEST monthly temperature data and the forcing values from the IPCC, 
the values of the parameters 𝐶𝐶 and 𝜆𝜆 were determined based on a least-squares optimi-
zation for the data from January 1931 to December 1980. As the value for C was not 
well constrained, the bounds for the optimization were based on the literature (see here: 
O. Geoffroy et al. "Transient climate response in a two-layer energy-balance model. Part 
I: Analytical solution and parameter calibration using CMIP5 AOGCM experi-
ments." Journal of Climate 26, no. 6 (2013): 1841-1857.). 

The IPCC data was retrieved from here: 

http://www.pik-potsdam.de/~mmalte/rcps/data/, accessed on September 27, 2019. 

The identified values were: 

𝐶𝐶 = 6.0	
𝐽𝐽

𝐾𝐾 ⋅ 𝑚𝑚7 ⋅ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 

𝜆𝜆 = 	2.4
𝑊𝑊

𝑚𝑚7 ⋅ 𝐾𝐾
 

Note that the values of the heat capacity were divided by twelve for the simulation model 
as monthly time series was used. 

The simulation was conducted by discretizing the equation as follows: 

𝐶𝐶 ⋅ ΔTA = 𝐹𝐹% − 𝜆𝜆 ⋅ (𝑇𝑇%CD + ΔT%) + (𝛽𝛽D ⋅ 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂% + 𝛽𝛽7 ⋅ 𝐴𝐴𝐴𝐴𝑂𝑂% + 𝛽𝛽M ⋅ 𝑃𝑃𝑃𝑃𝑂𝑂%) ⋅
𝑊𝑊
𝑚𝑚7	 

ΔTA = 𝑇𝑇%PD − 𝑇𝑇% 
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The linear terms added with the parameters 𝛽𝛽D, 𝛽𝛽7, and 𝛽𝛽M account for internal variabil-
ity. ENSO denotes the El Niño Southern Oscillation, AMO denotes the Atlantic Merid-
ional Oscillation, and PDO denotes the Pacific Decadal Oscillation. The values were 
identified in the same way as 𝐶𝐶 and 𝜆𝜆, but only in a later step. The identified values are: 

𝛽𝛽D = 0.200, 𝛽𝛽7 = 1.001, 𝛽𝛽M = 0.021	 

The time series for ENSO, AMO, and PDO were obtained from NOAA from the fol-
lowing websites (all accessed on September 27, 2019): 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/en-
sostuff/ONI_change.shtml 

https://www.esrl.noaa.gov/psd/data/timeseries/AMO/ 

https://www.ncdc.noaa.gov/teleconnections/pdo/ 

They contain unitless indices of the respective modes of internal variability. 

B.2. Data-Driven Model 

The same monthly data was used in a random forest regression model obtained from the 
open source python library SciKitLearn. The following parameter values were specified:  

min_samples_split = 12 (meaning that the 12 observations had to be in a node at least 
to further split it into two nodes when training a tree; this parameter was chosen to re-
duce the noisiness of the predictions that resulted from predictions with the default value 
of 2).  

n_estimators = 150 (meaning that 150 individual trees are trained). 

The data was randomly split into a test and training dataset, with 70% of the data being 
used for training and 30% for testing. The testing procedure tested different model set-
ups in which the parameter max_features was varied from 2 to 6 variables. This param-
eter denotes how many variables are maximally considered at each split. The model with 
a value of max_features = 4 achieved the lowest root mean squared error on the test set 
and was hence selected. 

The other parameters are set according to the default values. Details can be found here: 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Random-
ForestRegressor.html, accessed on September 27, 2019. 

The model was trained using BEST temperature data. 
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Figure 3: Variable importance plot of the model in the example in section 4.5.1. 

 





 


