
DISS. ETH NO. 26074

EXACT NONLINEAR MODEL REDUCTION
IN STRUCTURAL DYNAMICS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

STEN LAURENT PONSIOEN

M.Sc. Mechanical Engineering,
Delft University of Technology

born on 06.03.1991

citizen of
the Kingdom of the Netherlands

accepted on the recommendation of

Prof. Dr. George Haller (ETH Zurich)
Prof. Dr. Eleni Chatzi (ETH Zurich)

2019





Acknowledgments

I wish to acknowledge my adviser Prof. Dr. George Haller, for the advice and support
I received during my doctoral studies. I couldn’t have wished for a better and more
inspiring mentor. Thank you George for all the opportunities that you gave me. I
am truly honored that I was able to work with you and learn from you.

I would like to thank all the members of the Haller group for the great time we spent
together for the last three years. Specifically I would like to thank Mattia Serra for
being a great inspiration on a professional and personal level. Additionally, I would
like to thank Tiemo Pedergnana for his outstanding work during our collaborations.

I want to express my deepest gratitude to my parents, Bou and Wil, and my sister,
Roos, for always being there for me.

Above all, I would like to thank my beautiful wife, Alexandra, for her unconditional
love and support during our whole adventure together, starting all the way back in
Trieste. Without you by my side, this journey would not have been so incredible. I
dedicate this milestone to you.

i





Abstract

In this thesis, we develop the tools to construct exact reduced-order models for non-
linear mechanical systems using spectral submanifold (SSM) theory. SSMs are the
unique, smoothest, nonlinear continuations of spectral subspaces of the linearized,
unforced limit of a mechanical system. We demonstrate that the reduced dynamics
on a two-dimensional SSM serves as an exact, single-degree-of-freedom reduced-
order model that can be constructed for each vibration mode of the full nonlinear
system.

In the first part of this work, we discuss an automated computational methodology
for computing two-dimensional SSMs in autonomous nonlinear mechanical systems.
We construct the SSMs up to arbitrary orders of accuracy, using the parameteriza-
tion method. Additionally, we develop an automated a posteriori error estimation
feature that enables a systematic increase in the orders of the SSM computation
until the required accuracy is reached.

We then extend the work from the autonomous setting to the non-autonomous
setting. We show how spectral submanifold theory can be used to extract forced-
response curves (FRCs) of high-degree-of-freedom periodically forced mechanical
systems. We use multivariate recurrence relations during the construction of the
SSMs for computational efficiency, providing a major-speed up relative to the au-
tonomous SSM algorithm. The increase in computational efficiency allows us to
close the gap between analyzing typical lower-dimensional academic examples and
larger systems obtained using a finite-element-method package. We find that our
SSM-based forced-response predictions remain accurate in high-dimensional sys-
tems, in which numerical continuation of the periodic response, using a collocation
method or harmonic balance method, is becoming computationally expensive.

In the last part of the thesis we show how SSM theory, in combination with the
developed computational engine, can be used to provide analytic predictions for the
response of periodically forced multi-degree-of-freedom mechanical systems. These
predictions include an explicit criterion for the existence of isolated forced responses
that will generally be missed by numerical continuation techniques. The analytic
predictions can be refined to arbitrary precision via an algorithm that does not
require the numerical solutions of the mechanical system. We illustrate these results
on low- and high-dimensional nonlinear vibration problems.
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Sommario

In questo lavoro di tesi, sviluppiamo gli strumenti per definire modelli ridotti per
la descrizione di sistemi meccanici tramite l’utilizzo della teoria delle sottovarietà
spettrali (SSM). Le SSM sono le più regolari, ed uniche, continuazioni nonlineari dei
sottospazi spettrali del sistema lineare non forzato. Dimostriamo che la dinamica
ridotta su un SSM bidimensionale costituisce un modello ridotto esatto, ad un grado
di libertà, che puo essere costruito per ogni modo di vibrare del sistema non lineare
completo.

Nella prima parte della tesi, discutiamo una metodologia computazionale automa-
tizzata per calcolare SSM bi-dimensionali in sistemi meccanici nonlineari autonomi.
Costruiamo SSM con ordine di accuratezza arbitrariamente alto tramite l’utilizzo
del metodo di parametrizzazione. In aggiunta, abbiamo sviluppato un approccio
per identificare a posteriori l’accuratezza del modello ridotto ed aumentare il grado
di approssimazione di conseguenza fino a raggiungere l’accuratezza desiderata.

Nel seguito, estendiamo i risultati a sistemi meccanici non autonomi. Mostriamo
come la teoria SSM può essere usata per estrarre curve di risposta in frequenza per
sistemi con elevati gradi di libertà forzati periodicamente. Utilizzando relazioni di
ricorrenza multivariate nella costruzione di SSMs, otteniamo una migliore efficienza
computazionale e velocità di calcolo significativamente maggiori rispetto al caso dei
sistemi autonomi. Questo incremento in efficienza ci permette di analizzare sistemi
ad elevato numero di gradi di libertà come quelli prevenienti da simulazioni ad el-
ementi finiti. Le curve di risposta in frequenza basate sulla teoria SSM rimangono
accurate anche in sistemi con molti di gradi di libertà, dove schemi numerici di con-
tinuazione delle risposte periodiche che utilizzano metodi di collocazione o bilancio
armonico diventano computazionalmente molto costosi.

Nell’ultima parte della tesi mostriamo come la teoria delle SSM, insieme allo schema
computazionale sviluppato, può essere utilizzata per calcolare predizioni analitiche
della risposta di sistemi meccanici a diversi gradi di libertà sottoposti a forzante pe-
riodica. Tali predizioni includono un criterio esplicito riguardo l’esistenza di risposte
forzate isolate che sono generalmente non rilevate da tecniche computazionali nu-
meriche. Le predizioni analitiche possono essere raffinate a piacimento tramite un
algoritmo che non richiede la risoluzione numerica del sistema. Illustriamo tali risul-
tati in sistemi meccanici nonlineari sia con pochi che con molti gradi di libertà.
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Chapter 1

General Introduction

1.1 Motivation and background

Modern-day nonlinear mechanical systems, constructed, e.g., using a finite-element
method package, can contain thousands of degrees of freedom. As a direct conse-
quence, obtaining a qualitative and quantitative understanding of the response of
such systems can be troublesome or even impossible.

In order to overcome this obstacle, model-reduction methods are often employed
to reduce the total dimension of the system, as it will be easier to interrogate the
reduced-order model (ROM) and extract information of interest. However, the
question that arises is how well do these reduced-order models capture the response
of the full system.

In linear conservative mechanical systems, one often reduces the full system by
projecting the equations of motion on a linear invariant subspace E , spanned by a
collection of the linear vibration modes of the system at the origin. As this space
is invariant, an initial position of the system in E will result in a motion of the
system that remains in E . As a result, the response of the system can be expressed
as a summation of the vibration modes that span the invariant subspace, effectively
reducing the dimension of the full system to the dimension of E . However, if the
system is given an initial position that is outside of E , then there is no a priori
reason for the response of the system to remain restricted to E , therefore rendering
the originally proposed reduced model invalid. We illustrate this concept in Fig.
1.1.

In a general nonlinear setting, the response of the system can no longer be rep-
resented by a linear summation of the vibration modes. However, the concept of
decomposing nonlinear oscillations in analogy with linear modal analysis has been
an active field of research for several decades. The concept of a nonlinear normal
mode (NNM) was first introduced by Rosenberg [1] and defined as a synchronous
periodic oscillation of the system that reaches its maximum in all modal coordi-
nates at the same time. A more geometrical approach to the concept of an NNM
was given by Shaw and Pierre [2], envisioning a NNM as a two-dimensional invari-
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1. General Introduction

x1

x2

xn

x(t)

x̂(t)

E

vm

v1

Figure 1.1: Model reduction by projection of a full trajectory x(t) on a linear
subspace E of dimension m, spanned by the linear eigenvectors v1, . . . ,vm, at the
origin. A general trajectory, starting from a point x̂(0) /∈ E might enter E but also
leave it again.

ant manifold tangent to a two-dimensional modal subspace of the linearized system.
In a conservative autonomous setting, the two proposed views on NNMs is unified
by the Lyapunov subcenter-manifold theorem [3], proving that, under appropriate
non-resonance conditions, the Shaw and Pierre type of invariant manifolds will be
filled with the Rosenberg type of periodic orbits.

For non-conservative systems, however, such a clear relationship doesn’t hold any-
more, as periodic orbits can become isolated in the phase space. Additionally, it is
a priori unclear if either none or infinitely many such invariant manifolds tangent to
an eigenspace may exist. Haller and Ponsioen [4] came up with a unified mathemat-
ical approach to nonlinear normal modes in non-conservative systems, where they
define a nonlinear normal mode as a recurrent motion with finitely many frequen-
cies. Included in their theory is a trivial NNM (or fixed point), a periodic NNM and
a quasi-periodic NNM, where the frequencies are rationally incommensurate, with
the orbit filling an invariant torus.

Using this NNM definition, Haller and Ponsioen [4] define a spectral submanifold
(SSM) as the smoothest invariant manifold tangent to a modal subspace of an
NNM. They then invoke rigorous existence, uniqueness and persistence results for
autonomous and non-autonomous SSMs, providing an exact mathematical foun-
dation for constructing nonlinear reduced-order models over appropriately chosen
spectral subspaces. These models are obtained by reducing the full dynamics to the

2



1.2. Summary of the results and thesis organization

exactly invariant SSM surfaces, tangent to those subspaces.

The SSM reduced-order models are defined on invariant sets of the full nonlinear
system. Additionally, the reduced models are robust and therefore persist under
small perturbations. The SSM-reduced-order models constructed over the slowest
spectral subspaces are normally-hyperbolic attracting invariant manifolds [5], and
therefore will attract typical trajectories making the reduced model relevant.

1.2 Summary of the results and thesis organization

In this thesis, we develop the the tools to construct exact reduced-order models for
nonlinear mechanical systems using SSM theory. The underlying SSM theory used
in all chapters is based on the following publication:

- G. Haller and S. Ponsioen. Nonlinear normal modes and spectral submani-
folds: existence, uniqueness and use in model reduction. Nonlinear dynamics
86.3: 1493-1534, 2016. [4]

The following chapters are a collection of the author’s results that are either pub-
lished, submitted or to be submitted as research articles. Therefore, each chapter
will be self contained, starting with an introduction, followed by the problem formu-
lation, results and conclusions. The theories and methods are applied to problems
varying from academic examples to models obtained using finite elements.

The work presented in chapter 2 is based on

- S. Ponsioen, T. Pedergnana and G. Haller. Automated computation of au-
tonomous spectral submanifolds for nonlinear modal analysis. Journal of
Sound and Vibration, 420, 269-295, 2018 [6],

where we discuss an automated computational methodology for computing two-
dimensional SSMs in autonomous nonlinear mechanical systems. The SSMs are
constructed up to arbitrary orders of accuracy, using the parameterization method.
We developed an automated a posteriori error estimation feature that enables a sys-
tematic increase in the orders of the SSM computation until the required accuracy
is reached. We find that the present algorithm provides a major speed-up, relative
to numerical continuation methods, in the computation of backbone curves, espe-
cially in higher-dimensional problems. We illustrate the accuracy and speed of the
automated SSM algorithm on lower- and higher-dimensional mechanical systems.

Chapter 3 is based on

- S. Ponsioen and G. Haller. Exact model reduction and fast forced response
calculation in high-dimensional nonlinear mechanical systems. submitted, 2019
[7],

3



1. General Introduction

where we extended the work presented in chapter 2 to the non-autonomous setting.
We used the reduced dynamics on a two-dimensional SSM to extract the forced-
response curve around a particular mode of interest. The automated computation
of non-autonomous SSMs can additionally be seen as a generalization of Breunung
and Haller [8], which compute the non-autonomous part of the SSM up to zeroth
order in the parameterization coordinates.

Chapter 4 is based on

- S. Ponsioen, T. Pedergnana and G. Haller. Analytic Prediction of Isolated
Forced Response Curves from Spectral Submanifolds. Nonlinear Dynamics,
2019 [9],

were we show how SSM theory, in combination with the computational engine de-
veloped in chapter 3, can be used to provide analytic predictions for the response of
periodically forced multi-degree-of-freedom mechanical systems. These predictions
include an explicit criterion for the existence of isolated forced responses that will
generally be missed by numerical continuation techniques. The analytic predictions
can be refined to arbitrary precision via an algorithm that does not require the
numerical solutions of the mechanical system. We illustrate all these results on low-
and high-dimensional nonlinear vibration problems. We find that our SSM-based
forced-response predictions remain accurate in high-dimensional systems, in which
numerical continuation of the periodic response, using a collocation method, is no
longer feasible.

As a byproduct of this thesis, we created a matlab based computational tool called
ssmtool for computing two-dimensional spectral submanifolds in nonlinear mechan-
ical systems with arbitrary degrees of freedom. ssmtool is intended for researchers
and students who are interested in extracting key-information, such as reduced-
order models, backbone curves or forced-response curves from a nonlinear, dissipa-
tive mechanical system with a potentially large number of degrees of freedom. The
software achieves this without using any numerical integration or numerical continu-
ation techniques, purely based on a reduction to SSMs. ssmtool can be downloaded
from the Haller Group software page at the ETH Zürich:

http://www.georgehaller.com

ssmtool requires matlab R2016b or newer.

An additional effort was made in applying SSM theory directly on the second-order
equations of motion, constructing explicit third-order reduced models for general
nonlinear mechanical systems, and can be found in

- Z. Veraszto, S. Ponsioen and G. Haller. Explicit third-order model reduction
formulas for general nonlinear mechanical systems. Journal of Sound and
Vibration, 2020 [10].

4
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1.2. Summary of the results and thesis organization

This work has not been included in the thesis but is listed here for completeness.
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Chapter 2

Autonomous SSMs

Chapter Summary

We discuss an automated computational methodology for computing two-dimensional
spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbi-
trary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continu-
ations of modal subspaces of the linearized system, are constructed up to arbitrary
orders of accuracy, using the parameterization method. An advantage of this ap-
proach is that the construction of the SSMs does not break down when the SSM
folds over its underlying spectral subspace. A further advantage is an automated a
posteriori error estimation feature that enables a systematic increase in the orders
of the SSM computation until the required accuracy is reached. We find that the
present algorithm provides a major speed-up, relative to numerical continuation
methods, in the computation of backbone curves, especially in higher-dimensional
problems. We illustrate the accuracy and speed of the automated SSM algorithm
on lower- and higher-dimensional mechanical systems.

2.1 Introduction

A fundamental notion in decomposing nonlinear mechanical oscillations, is the non-
linear normal mode (NNM) concept of Rosenberg [1], who defined a nonlinear nor-
mal mode as a synchronous periodic oscillation that reaches its maximum in all
modal coordinates at the same time. An alternative definition of a NNM, proposed
by Shaw and Pierre [2], is an invariant manifold that serves as the nonlinear con-
tinuation of two-dimensional subspaces formed by normal modes of the linearized
system. Shaw and Pierre seek such invariant manifolds as graphs over those two-
dimensional subspaces. For several extensive discussions about these two NNM
definitions, we refer the reader to the work of Kerschen et al. [11], Peeters et al.
[12], Mikhlin and Avramov [13] and Vakakis et al. [14].

If one relaxes the synchronicity requirement of Rosenberg, a clear relationship be-
tween the above two views on NNMs emerges for conservative oscillatory systems by
the Lyapunov subcenter-manifold theorem [3, 15]. Indeed, under appropriate non-

7



2. Autonomous SSMs

resonance conditions, these references guarantee the existence of a unique, analytic
and robust Shaw—Pierre-type invariant manifold tangent to each two-dimensional
modal subspace of the linearized system. This manifold, in turn, is filled with
Rosenberg-type periodic orbits.

In a non-conservative setting, this geometrical relationship between the two clas-
sic NNM concepts no longer holds, as periodic orbits become rare and isolated
in the phase space, whereas infinitely many invariant manifolds tangent to each
two-dimensional modal subspace will exist. A unified approach has been proposed
by Haller and Ponsioen [4] to clarify the relationship between the Rosenberg and
Shaw—Pierre NNM concepts. Specifically, [4] defines a nonlinear normal mode sim-
ply as a recurrent motion with finitely many frequencies. Included in this theory is
a trivial NNM or fixed point (no frequencies), a periodic NNM (the frequencies are
rationally commensurate, as for a Rosenberg-type periodic orbit) and a quasiperi-
odic NNM (the frequencies are rationally incommensurate, with the orbit filling an
invariant torus).

Using this NNM definition, Haller and Ponsioen [4] define a spectral submani-
fold (SSM) as the smoothest invariant manifold tangent to a modal subspace of
a NNM. They then invoke rigorous existence, uniqueness and persistence results
for autonomous and non-autonomous SSMs, providing an exact mathematical foun-
dation for constructing nonlinear reduced-order models over appropriately chosen
spectral subspaces. These models are obtained by reducing the full dynamics to the
exactly invariant SSM surfaces, tangent to those subspaces.

More recently, Szalai et al. [16] have shown that the dynamics on a single-mode
SSM can be seen as a nonlinear extension of the linear dynamics of the underlying
modal subspace, making it possible to extract the backbone curve, defined as a graph
plotting the instantaneous amplitude of vibration as a function of the instantaneous
frequency of vibration. This approach to backbone-curve computations assumes
that the Lyapunov subcenter-manifold perturbs smoothly to a unique SSM under
appropriate non-resonance conditions and under small enough damping, which is
consistent with the numerical observations as shown by Kerschen et al. [17], Peeters
et al. [18] and Szalai et al. [16].

Computing invariant manifolds tangent to modal subspaces in realistic applications
has been a challenge. Prior approaches have mostly focussed on solving the invari-
ance equations that such manifolds have to satisfy (Blanc et al. [19], Pesheck et al.
[20] and Renson et al. [21]). These invariance equations have infinitely many solu-
tions, out of which the numerical approaches employed by different authors selected
one particular solution. In contrast, the SSM theory employed here guarantees a
unique solution that can be approximated with arbitrary high precision via the pa-
rameterization method of Cabré et al. [22, 23, 24]. In the present work, we describe
an automated computational algorithm for two-dimensional SSMs constructed over

8



2.1. Introduction

two-dimensional modal subspaces. This algorithm1 allows us to compute the SSMs,
their reduced dynamics and associated backbone curves to arbitrary orders of ac-
curacy, limited only by available memory. An important feature of the algorithm
is a direct a posteriori estimation of the error in computing the SSM at a given
approximation order. This error estimate measures directly the extend to which
the SSM is invariant. If the error is unsatisfactory, the user can select higher order
approximations until the error falls below a required bound.

In technical terms, we construct the SSMs as embeddings of the modal subspaces
into the phase space of the mechanical system, as required by the parameterization
method (Cabré et al. [22, 23, 24]). A major advantage compared to most earlier
calculations (Haller and Ponsioen [4]) is that the parameterized construction of
SSMs does not break down when the SSM folds over the underlying modal subspace.
Another advantage of the method is its suitability for algorithmic implementations
for arbitrary orders of accuracy in arbitrary dimensions. For applications of the
parameterization method to other types of dynamical systems, we refer the reader
to the work of Haro et al. [25], van den Berg and Mireles James [26] and Mireles
James [27].

1ssmtool is available at: www.georgehaller.com

9
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2. Autonomous SSMs

2.2 System set-up

We consider n-degree-of-freedom, autonomous mechanical systems of the form

Mÿ + Cẏ + Ky + f(y, ẏ) = 0, f(y, ẏ) = O
(
|y|2 , |y| |ẏ| , |ẏ|2

)
, (2.1)

where y ∈ Rn is the generalized position vector; M = MT ∈ Rn×n is the positive
definite mass matrix; C = CT ∈ Rn×n is the damping matrix; K = KT ∈ Rn×n is
the stiffness matrix and f(x, ẋ) denotes all the nonlinear terms in the system. These
nonlinearities are assumed to be of class Cr in (x, ẋ), with r ∈ N+ ∪ {∞, a}. Here
r ∈ N+ refers to finite differentiability, r =∞ refers to infinite differentiability, and
r = a refer to analyticity, all three of which are allowed in our treatment.

System (2.1) can be transformed into a set of 2n first-order ordinary differential
equations by introducing a change of variables x1 = y, x2 = ẏ, with x = (x1,x2) ∈
R2n, which gives,

ẋ =

(
0 I

−M−1K −M−1C

)
x +

(
0

−M−1f(x1,x2)

)
= Ax + F(x), (2.2)

x ∈ R2n, F(x) = O
(
|x|2

)
.

The transformed system (2.2) has a fixed point at x = 0, A ∈ R2n×2n is a constant
matrix and F(x) is a class Cr function containing all the nonlinearities. Note that
the inverse of the mass matrix is well-defined because M is assumed positive definite.

The linearized part of (2.2) is

ẋ = Ax, (2.3)

where the matrix A has 2n eigenvalues λk ∈ C for k = 1, . . . , 2n. Counting multi-
plicities, we sort these eigenvalues based on their real parts in the decreasing order,

Re(λ2n) ≤ Re(λ2n−1) ≤ . . . ≤ Re(λ1) < 0, (2.4)

assuming that the real part of each eigenvalue is less than zero and hence the
fixed point is asymptotically stable. We further assume that the constant matrix
A is semisimple, which implies that the algebraic multiplicity of each λk is equal
to its geometric multiplicity, i.e. alg(λk) = geo(λk). We can therefore identify 2n
linearly independent eigenvectors vk ∈ C2n, with k = 1, . . . , 2n, each spanning a
real eigenspace Ek ⊂ R2n with dim(Ek) = 2 × alg(λk) in case Im(λk) 6= 0, or
dim(Ek) = alg(λk) in case Im(λk) = 0.

10



2.3. Autonomous SSMs for continuous mechanical systems

2.3 Autonomous SSMs for continuous mechanical systems

As A is semisimple, the linear part of system (4.2) can be diagonalized by introduc-
ing a linear change of coordinates x = Tq, with T = [vj1 ,vj2 , . . . ,vj2n ] ∈ C2n×2n

and q ∈ C2n,

q̇ = T−1ATq + T−1F(Tq) = diag(λj1 , λj2 . . . , λj2n)︸ ︷︷ ︸
Λ

q + T−1F(Tq)︸ ︷︷ ︸
G(q)

(2.5)

= Λq + G(q).

We now seek a two-dimensional modal subspace E = span {vj1 ,vj2} ⊂ C2n, with
vj2 = v̄j1 . Note that vj1 and vj2 are purely real if λj1 , λj2 ∈ R, in which case
E corresponds to either a single critically damped mode (λj1 = λj2), or to two
overdamped modes (λj1 6= λj2). In contrast, if λj1 , λ̄j2 ∈ C with Im λj1 6= 0, then E
corresponds to a single underdamped mode.

The remaining linearly independent eigenvectors vj3 , . . . ,vj2n span a complex sub-
space C ⊂ C2n such that the full phase space of (2.5) can be expressed as the direct
sum

C2n = E ⊕ C. (2.6)

The diagonal matrix Λ is the representation of the linear matrix A with respect to
this decomposition, which we can also write as

Λ =

[
ΛE 0
0 ΛC

]
, Spect (ΛE) = {λj1 , λj2} , Spect (ΛC) = {λj3 , . . . , λj2n} ,

(2.7)
with ΛE = diag(λj1 , λj2) and ΛC = diag(λj3 , . . . , λj2n).

Following the work of Haller and Ponsioen [4], we now define a spectral submani-
fold of the nonlinear system (2.5) as an invariant manifold tangent to the spectral
subspace E .

Definition 2.1 A spectral submanifold (SSM), W(E), corresponding to a spectral
subspace E of Λ is an invariant manifold of the dynamical system (2.5) such that

(i) W(E) is tangent to E and has the same dimension as E.

(ii) W(E) is strictly smoother than any other invariant manifold satisfying (i).

11



2. Autonomous SSMs

We define the outer spectral quotient σout(E) as the positive integer

σout(E) = Int

[
minλ∈Spect(ΛC) Reλ

maxλ∈Spect(ΛE) Reλ

]
∈ N+. (2.8)

Which is the integer part of the ratio between the strongest decay rate of the lin-
earized oscillations outside E and the weakest decay rate of the linearized oscillations
inside E . As we will see shortly, σout(E) determines the smoothness class in which
W(E) turns out to be unique.

To state the main results on SSMs from Haller and Ponsioen [4], we need the
following two assumptions:

(A1) σout(E) ≤ r,

(A2) The outer non-resonance conditions

aλj1 + bλj2 6= λl, ∀λl ∈ Spect(ΛC). (2.9)

hold for all positive integers a and b satisfying 2 ≤ a+ b ≤ σout(E).

Under these assumptions, we have the following main result on an SSM tangent to
the modal subspace E in system (2.5).

Theorem 1

(i) There exist a two-dimensional SSM, W(E), that is tangent to the spectral sub-
space E at the fixed point q = 0.

(ii) W(E) is of class Cr and is unique among all class Cσout(E)+1 two-dimensional
invariant manifolds that are tangent to E at q = 0.

(iii) W(E) can be parameterized over an open set U ⊂ C2 via the map

W : U ⊂ C2 → C2n, (2.10)

into the phase space of system (2.5).

(iv) There exist a Cr polynomial function R : U → U satisfying the following
invariance relationship

ΛW + G ◦W = ∇WR, (2.11)

such that the reduced dynamics on the SSM can be expressed as

12



2.4. Autonomous SSM computation

ż = R(z), R(0) = 0, ∇R(0) = ΛE =

[
λj1 0
0 λj2

]
, (2.12)

z = (zj1 , zj2) ∈ U .

(v) If the inner non-resonance conditions

aλj1 + bλj2 6= λji , i = 1, 2 (2.13)

hold for all positive integers a and b with

2 ≤ a+ b ≤ σin(E) = Int

[
minλ∈Spect(ΛE) Reλ

maxλ∈Spect(ΛE) Reλ

]
∈ N+,

then the mapping W can be chosen in such a way that R(z) does not contain
the terms zaj1z

b
j2

. In particular, if no inner resonances arise, then the reduced
dynamics on the SSM can be linearized.

The proof of Theorem 1 can be found in the work of Haller and Ponsioen [4], which
is based on the more abstract results of Cabré et al. [22, 23, 24] for mappings on
Banach spaces.

2.4 Autonomous SSM computation

In this section we show how the parameterized spectral submanifolds are approxi-
mated, around a fixed point, using polynomials. We express W(z), R(z) and G(q)
as multivariate polynomial functions, which is done by using the Kronecker prod-
uct. Substituting the expressions in the invariance equation (2.11), we obtain, for
each order, a linear system of equations that can be solved under appropriate non-
resonance conditions. For a different application of the parameterization method,
we refer to the work of Mireles James [27]. Where the parameterization method is
used for approximating (un)stable manifolds of one parameter families of analytic
dynamical systems, by using polynomials. For a more elaborate discussion about
the numerical computation of the coefficients of higher order power series expan-
sions of parameterized invariant manifolds around a fixed point of an elementary
vector field, where the coefficients of the power series expansions are obtained using
methods of Automatic Differentiation, we refer to Haro et al. [25].
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2. Autonomous SSMs

2.4.1 The Kronecker product

We now describe a computational algorithm for constructing the mapping W(z) in
(2.10) that maps U ⊂ C2 into the phase space of system (4.2), and the reduced
dynamics R(z) in (2.12). To handle the polynomial calculations arising in the
algorithm efficiently, we first need to recall the notion and some properties of the
Kronecker product [28].

Definition 2.2 Let A ∈ Cm×n, B ∈ Cp×q. Then we define the Kronecker product
of A and B as

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Cmp×nq. (2.14)

In accordance with Definition 2.2, the Kronecker product of two vectors x ∈ Cm
and y ∈ Cn is given by the vector

x⊗ y =

 x1y
...

xmy

 = [x1y1 · · ·x1yn · · ·xmy1 · · ·xmyn]T ∈ Cmn, (2.15)

or equivalently, written in index notation,

x⊗ y =
m∑
i=1

n∑
j=1

xiyje
x
i ⊗ eyj , (2.16)

where exi ∈ Cm and eyj ∈ Cn are basis vectors containing a one in their ith and

jth entries, respectively, and zeros elsewhere. Differentiating equation (2.16) with
respect to time yields

d

dt
(x⊗ y) =

d

dt

(
xiyje

x
i ⊗ eyj

)
= ẋiyje

x
i ⊗eyj +xiẏje

x
i ⊗eyj = ẋ⊗y +x⊗ ẏ. (2.17)

which is simply the product rule. By using the same reasoning, one shows that the
product rule also applies to the time derivative of the Kronecker product of multiple
vectors. We will use the shorthand notation z⊗i defined as

z⊗i =


z for i = 1.

z⊗ z⊗ · · · ⊗ z︸ ︷︷ ︸
i times

for i > 1. (2.18)
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2.4. Autonomous SSM computation

For subsequent derivations, we will make use of several properties of the Kronecker
product, which we list in 2.A for convenience.

We Taylor expand W(z) and R(z) and express them as multivariate polynomial
functions

W(z) =

nw∑
i=1

Wiz
⊗i = W1z + W2z⊗ z + W3z⊗ z⊗ z + . . . , (2.19)

Wi ∈ C2n×2i , z ∈ C2,

R(z) =

nw∑
i=1

Riz
⊗i = R1z + R2z⊗ z + R3z⊗ z⊗ z + . . . , (2.20)

Ri ∈ C2×2i , z ∈ C2,

with nw ≥ σout(E) + 1 denoting the order of the SSM expansion. We also Taylor
expand the nonlinear part of our dynamical system (2.5) up to order nw, around
the fixed point q = 0, such that we can represent the nonlinearities, in a fashion
similar to equations (2.19) and (2.20), as

G(q) =
Γ∑
i=2

Giq
⊗i = G2q⊗ q + G3q⊗ q⊗ q + . . . , (2.21)

Gi ∈ C2n×(2n)i , q ∈ C2n,

with Γ denoting the maximum order of nonlinearity considered.

By construction, the vector q⊗i will have redundant terms along its elements, and
hence Gi will have infinitely many possible representations at the ith order in equa-
tion (2.5). The redundancy in q⊗i allows us to introduce constraints between the
different coefficients that are related to the same monomial term. We can always
set these constraints such that G(q) will represent the 2n-dimensional polynomial
vector T−1F(Tq). For more detail, we refer the reader to 2.C.

2.4.2 The coefficient equations

We recall here the diagonalized dynamical system (2.5)

q̇ = Λq + G(q). (2.22)

Substituting q = W(z) on the right-hand side of equation (2.22), then differenti-
ating q = W(z) with respect to time and substituting the result q̇ = ∇W(z)ż on
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2. Autonomous SSMs

the left-hand side of equation (2.22), we obtain the invariance relation (2.11) in the
form

W1R(z) + W2 (R(z)⊗ z + z⊗R(z))

+ W3 (R(z)⊗ z⊗ z + z⊗R(z)⊗ z + z⊗ z⊗R(z)) + . . .

+ Wk

(
R(z)⊗ z⊗k−1 + Σk−2

j=1

(
z⊗j ⊗R(z)⊗ z⊗k−j−1

)
+ z⊗k−1 ⊗R(z)

)
= ΛW(z) + G2W(z)⊗2 + . . .+ GΓW(z)⊗Γ, (2.23)

for k = {2, . . . , nw}. The time derivative of q = W(z) =
∑

i Wiz
⊗i can be ex-

pressed, using the product rule for the Kronecker product of vectors, as

q̇ = W1ż + W2 (ż⊗ z + z⊗ ż) (2.24)

+ W3 (ż⊗ z⊗ z + z⊗ ż⊗ z + z⊗ z⊗ ż) + . . . .

Substituting ż = R(z) into (2.24), we precisely obtain the left-hand side of equation
(2.23). Rewriting equation (2.23) and collecting terms of equal power z⊗i for i =
{1, . . . nw}, we obtain, for i = 1,

[
ΛE 0
0 ΛC

]
︸ ︷︷ ︸

Λ

W1 = W1R1. (2.25)

From (2.12), we then require that ∇R(0) = ΛE = R1. Therefore, equation (2.25)
will be satisfied if we set W1 ∈ C2n×2 equal to

W1 =


1 0
0 1
0 0
...

...
0 0

 . (2.26)

For 2 ≤ i ≤ nw we have
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2.4. Autonomous SSM computation

ΛWi −Wi

Λ̃E,i︷ ︸︸ ︷∑
|s|=1

Λs1
E ⊗ · · · ⊗Λsi

E = W1Ri (2.27)

+
i−1∑
m=2

Wm

∑
|p|=1

Rp1
i+1−m ⊗ . . .⊗Rpm

i+1−m −GiW
⊗i
1

−
i−1∑
m=2

Gm

∑
|r|=i

Wr1 ⊗ . . .⊗Wrm ,

where we make use of multi-index notation for s = {s1, . . . , si} ∈ Ni, p = {p1, . . . , pm} ∈
Nm and r = {r1, . . . , rm} ∈ Nm. The notation Λ

sj
E is used to indicate that the ma-

trix ΛE is taken to the power sj ∈ N, where the zeroth power will simply return the
identity matrix of the same dimension as ΛE . Note that we also adopt the same
notation for Ri+1−m ∈ C2×2i+1−m

, where we set R0
i+1−m , I ∈ R2×2.

The right hand side of equation (2.27) consists of the lower-order terms Wj for
2 ≤ j < i − 1, which are known for the current order i. The term Ri represents
the coefficient matrix corresponding to the ith-order of the polynomial R(z). This
polynomial depends on the preferred style of parameterization and will be chosen
to remove near-inner resonances from the SSM expressions, as explained later in
section 2.5. The matrices Gj , for 2 ≤ j ≤ i, are known by definition because they
represent the nonlinearities of system (4.5).

Partitioning the coefficient equations

Due to the diagonal structure of Λ, we can partition equation (2.27) into the two
separate matrix equations

ΛEW
E
i −WE

i Λ̃E,i = Ri + BEi , (2.28)

ΛCW
C
i −WC

i Λ̃E,i = BCi , (2.29)

where Wi is partitioned as

Wi =

[
WE

i

WC
i

]
∈ C2n×2i , WE

i ∈ C2×2i , WC
i ∈ C(2n−2)×2i . (2.30)

The matrices BEi ∈ C2×2i and BC
i ∈ C(2n−2)×2i are such that
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2. Autonomous SSMs

[
BEi
BCi

]
=

i−1∑
m=2

Wm

∑
|p|=1

Rp1
i+1−m ⊗ . . .⊗Rpm

i+1−m −GiW
⊗i
1 (2.31)

−
i−1∑
m=2

Gm

∑
|r|=i

Wr1 ⊗ . . .⊗Wrm .

Equations (2.28) and (2.29) are also known as the Sylvester equations [28], having
the unknown coefficient matrices WE

i and WC
i . Using the Kronecker product and

the vectorization operation

vec(A) = vec ([a1a2 . . .an]) =

 a1
...

an

 ∈ Cmn, A ∈ Cm×n, (2.32)

with a1, . . . ,an denoting the column vectors of A, we rewrite equation (2.28) and
equation (2.29) as

(
I2i×2i ⊗ΛE − Λ̃T

E,i ⊗ I2×2

)
︸ ︷︷ ︸

ΘEi

vec
(
WE

i

)
= vec (Ri) + vec

(
BEi
)
. (2.33)

(
I2i×2i ⊗ΛC − Λ̃T

E,i ⊗ I(2n−2)×(2n−2)

)
︸ ︷︷ ︸

ΘCi

vec
(
WC

i

)
= vec

(
BCi
)
. (2.34)

Invertibility of ΘEi and ΘCi

Finding a unique solution for WC
i in equation (2.34) for a nonzero right-hand side

requires the matrix ΘCi to be non-singular. If, however, ΘEi is singular, which arises
from exact inner resonances, it suffices for the vectorized solution for WE

i to be in
the kernel of ΘEi . We can ensure this by choosing vec (Ri) such that the right-hand
side of equation (2.33) is zero. To carry out all this, we need to find the eigenvalues
of ΘEi and ΘCi .

It can be shown [28] that for a matrix A ∈ Cn×n, with the eigenvalues λi and a
matrix B ∈ Cm×m with eigenvalues µj , the matrix Im×m ⊗A −B ⊗ In×n has the
mn eigenvalues

λ1 − µ1, . . . , λ1 − µm, λ2 − µ1, . . . , λ2 − µm, . . . , λn − µ1, . . . , λn − µm. (2.35)
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In the current setting of (2.33) and (2.34), we know that the eigenvalues of ΛE and
ΛC are λj1 , λj2 and λj3 . . . , λj2n , respectively. By further exploiting the structure of

Λ̃T
E,i = Λ̃E,i =

∑
|s|=1

Λs1
E ⊗ · · · ⊗Λsi

E (2.36)

= ΛE ⊗ I⊗ · · · ⊗ I + . . .+ I⊗ I⊗ · · · ⊗ΛE ,

or, equivalently,

Λ̃E,i = diag (a1λ1 + b1λ2, . . . , a2iλ1 + b2iλ2) ∈ C2i×2i , (2.37)

we observe that each diagonal term of the matrix Λ̃E for a given order i will consist of
a linear combination of λ1 and λ2, i.e., ajλ1 + bjλ2 for j =

{
1, . . . , 2i

}
, with aj , bj ∈

N. Now let Ωi be a 2i-dimensional vector containing all possible lexicographically
ordered i-tuples made out of elements of the set {1, 2}, in which repetition is allowed.
The multiplicity corresponding to the numbers 1 and 2, in the jth element of Ωi,
will represent aj and bj respectively. To illustrate this, we give an example

Example 2.3 [Constructing the matrix Λ̃E,2 ] For i = 2, the diagonal matrix Λ̃E,2
is equal to

Λ̃E,2 = ΛE ⊗ I + I⊗ΛE =

[
λj1 0
0 λj2

]
⊗
[

1 0
0 1

]
+

[
1 0
0 1

]
⊗
[
λj1 0
0 λj2

]

=


2λj1 0 0 0

0 λj1 + λj2 0 0
0 0 λj2 + λj1 0
0 0 0 2λj2

 . (2.38)

The four-dimensional array Ω2 can be expressed as

Ω2 = (11, 12, 21, 22) ,

from which we obtain the coefficients (aj , bj) by determining the multiplicity of the
numbers 1 and 2 for each element j in Ω2.

As Λ̃E,i is diagonal by construction, its eigenvalues are positioned on the diagonal
and take the form of

aλj1 + bλj2 , a, b ∈ N : a+ b = i. (2.39)
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We, therefore, conclude from (2.35) that the eigenvalues of ΘEi and ΘCi can be
written as

λl − (aλj1 + bλj2), a, b ∈ N : a+ b = i, ∀λl ∈ Spect(ΛE), (2.40)

λl − (aλj1 + bλj2), a, b ∈ N : a+ b = i, ∀λl ∈ Spect(ΛC). (2.41)

Equations (2.40) and (2.41) lead precisely to the inner and outer non-resonance con-
ditions (2.13) and (2.9), respectively, related to the ith-order of the SSM expansion.
If there exists an inner resonance in (2.40), for a particular order i, the matrix ΘEi
will be singular. This means that for a nonzero right-hand side of equation (2.33),
there will be no solution for vec(WE

i ). However, we can then set Ri in equation
(2.33) equal to -BEi , which gives a zero right-hand side. As a consequence, the so-
lution vec(WE

i ) has to be in the kernel of ΘEi , creating an opportunity to remove
resonant terms in the expression for W(z). The presence of an outer resonance
in (2.41) will result in a breakdown of the SSM. In this case, we do not have the
freedom to alter the right-hand side of equation (2.34).

2.5 Reduced dynamics on the autonomous SSM

2.5.1 Near-inner-resonances

Based on eq. (2.33), the polynomial dynamics on the SSM must be parameterized
as nonlinear when an inner resonance arises in the spectral subspace E over which
the SSM is constructed. When the eigenvalues λj1 and λj2 are complex conjugate,
the inner non-resonance conditions (2.13) will never be violated. However, as ex-
plained by Szalai et al. [16], for a lightly damped spectral subspace corresponding
to a complex pair of eigenvalues, the following near-inner-resonance conditions will
always hold:

2λj1 + λ̄j1 ≈ λj1 , λj1 + 2λ̄j1 ≈ λ̄j1 . (2.42)

These near-inner-resonances, in turn, will lead to small denominators in the coeffi-
cients related to the monomial terms z2

j1
z̄j1 and zj1 z̄

2
j1

in the third-order coefficient

matrix WE
3 (cf. eqs. (2.33-2.34)). Such small denominators generally reduce the

domain of convergence of the Taylor series we compute for W(z).

Luckily, we have the freedom to remove these resonant terms in WE
3 by setting

R3 on the right-hand side of equation (2.28) equal to -BE3 . However, due to the
particular diagonal structure of equation (2.33), it is possible to specifically remove
the resonant terms z2

j1
z̄j1 and zj1 z̄

2
j1

in WE
3 by only setting the coefficients in R3

related to the the resonant terms equal to the coefficients in -BE3 . This corresponds
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to a mixed parameterization style, as explained in Haro et al. [25], which can also
be applied to higher orders.

The third order near-inner-resonance condition (2.42) can be extended to higher-
order near-inner-resonances by introducing an appropriate resonance-closeness mea-
sure

I(a, b, λl) =

∣∣∣∣ 〈c(a, b),vE(λl)〉
‖c(a, b)‖ ‖vE(λl)‖

∣∣∣∣ < δ, 0 < δ � 1, (2.43)

for δ sufficiently small, with

c(a, b) =

 a
b
−1

 , vE(λl) =

 λj1
λj2
λl

 , a, b ∈ N, ∀λl ∈ {λj1 , λj2} .

The resonance-closeness measure I takes values between Imin = 0 and Imax = 1.
We consider δ to be small when δ is at least one order of magnitude smaller than
Imax. In the presence of near-inner resonances, the choice of δ affects the accuracy
of the SSM and the reduced dynamics. If the observed invariance error of the SSM
(cf. section 2.6) is unsatisfactory, δ can be increased in order to account for even
weaker near-inner resonances.

In the case of an exact inner resonance, I(a, b, λl) in equation (2.43) will be zero.
Using the same measure, we can also quantify closeness to outer resonances by
substituting all possible λl /∈ {λj1 , λj2} into (2.43).

2.5.2 Instantaneous amplitude and frequency

When the chosen spectral subspace E is spanned by a complex pair of eigenvectors,
which in turn corresponds to a complex conjugate pair of eigenvalues λj1 and λj2 ,
the complex conjugate pair of coordinates zj1 and zj2 = z̄j1 in the reduced dynamics
R(z) can be expressed in real amplitude-phase coordinates (ρ, θ) as

zj1 = ρeiθ, z̄j1 = ρe−iθ. (2.44)

Assume now that the spectral subspace E has higher-order near-inner-resonances,
i.e.

I(a, b, λj1) < δ, I(b, a, λj2) < δ, (a, b) ∈ {(2, 1), (3, 2), (4, 3), . . .} = S,
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and, additionally, the coefficients in BEi for i = 3, 5, 7 . . ., corresponding to the
monomial terms zaj1 z̄

b
j1

and zsj1 z̄
r
j1

, on the right hand side of (2.28) are nonzero.
We then obtain the following expression for the reduced dynamics on the spectral
submanifold W(E):

ż = R(z) =


λj1zj1 +

∑
∀(a,b)∈S

γa,bz
a
j1 z̄

b
j1

λ̄j1 z̄j1 +
∑

∀(a,b)∈S

γ̄a,bz
b
j1 z̄

a
j1

 . (2.45)

Here γa,b depends directly on BEi , which is known for the current order i. Alterna-
tively, γa,b will be equal to the sum of all nonzero coefficients in Ri, with i = a+ b
corresponding to the monomial term zaj1 z̄

b
j1

. Substituting equation (2.44) into the
left- and right-hand side of equation (2.45) gives

ρ̇ = Re(λj1)ρ+
∑

∀(a,b)∈S

Re(γa,b)ρ
(a+b), (2.46)

ω = θ̇ = Im(λj1) +
∑

∀(a,b)∈S

Im(γa,b)ρ
(a+b−1). (2.47)

for ρ 6= 0. Equation (2.47) determines an instantaneous frequency θ̇ that depends
solely upon ρ. To any ρ value, we assign an instantaneous physically observable
amplitude by defining

A(ρ) =
1

2π

2π∫
0

|TyW(z(ρ, θ))| dθ, (2.48)

where the transformation matrix Ty acts on W(z(ρ, θ)) and hence returns physical
position coordinates y ∈ Rn of our mechanical system (4.2). Then, following the
definition of Szalai et al. [16], we define a backbone curve for the reduced dynamics
on the SSM to be the parameterized curve

B = {ω(ρ), A(ρ)}ρ∈R+ . (2.49)

An illustration of how the parametrized SSM, constructed over a lightly damped
spectral subspace E , can be used to construct the backbone curve B is shown in
figure 2.1.
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Figure 2.1: Illustration of the backbone curve construction using the parameterized
SSM. For each fixed radius ρ0 on the SSM, we can identify an instantaneous fre-
quency (2.47). By averaging the physical coordinates over one period, evaluated on
the SSM constraint to the fixed radius ρ0, we obtain the instantaneous amplitude
(2.48). For each ρ = ρ0 ∈ R+, we obtain a point of the curve B, shown in the
amplitude-frequency plot. The continuous black line in the amplitude-frequency
plot consists out of periodic orbits of the periodically forced system for varying
forcing frequency.

2.6 Invariance measure and order selection

As stated in Theorem 1, the unique SSM is captured and approximated by Taylor
expanding up to order σout(E) + 1. The outer spectral quotient σout, is defined
as the integer part of the ratio between the strongest decay rate of the linearized
oscillations outside E and the weakest decay rate of the linearized oscillations inside
E . As explained by Géradin and Rixen [29], a first-order approximation of the real
part of each eigenvalue of a lightly damped mechanical system, of the form (2.1),
scales with the square of its natural eigenfrequency. This means that for a discretized
non-conservative mechanical system with a high number of degrees of freedom, the
order of the SSM needed to be unique can become large. An illustration of this is
shown in figure 2.2.

As the outer spectral quotient σout(E) increases, trajectories transverse to the slow
SSM die out fast compared to trajectories on the SSM, as indicated in the lower part
of figure 2.2. This collapsing nature of the transverse trajectories makes it harder
to distinguish between the unique SSM and any other two-dimensional invariant
manifold tangent the same modal subspace. In order to approximate the SSMs
with a large outer spectral quotient, without having to compute the SSMs up to
extremely high orders, we introduce an invariance error measure, δinv, that quantifies
the accuracy of the computed invariant manifolds and the reduced dynamics on
them.
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Figure 2.2: Illustration of a system having a low outer spectral quotient (top) and
a high outer spectral quotient (bottom).

The invariance error measure compares trajectories of the full system xi, with tra-
jectories of the reduced system x̃i. Trajectories from the full and reduced system are
launched from a circle with fixed radius ρ0, from the origin, and integrated until the
reduced trajectories cross the inner circle of radius ρε < ρ0, therefore removing the
time dependency. An illustration of this is shown in figure 2.3. We mathematically
formalize the invariance error as follows

δinv =
1

N

N∑
i=1

dist(i)

max
θ∈S1
‖x̃(ρ0, θ)‖2

, dist(i) = max
∥∥∥xi|ρερ0 − x̃i|ρερ0

∥∥∥
2
, (2.50)

where we take the average of the maximum Euclidean distance between N trajec-
tories xi and x̃i, for i = 1, . . . , N , traveling from a circle with radius ρ0 to an inner
circle with radius ρε, and normalize the result by the maximum Euclidean distance
from the origin to the circle with fixed radius ρ0.

If the invariance error δinv, for a given order of the approximated SSM, is above
a certain pre-specified bound, then the order of the SSM approximation has to be
further increased.

2.7 Applications

We now apply our computational algorithm to three different mechanical systems.
The numerical results and figures we show have all been generated directly by
ssmtool.
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Figure 2.3: Illustration of the invariance error measure.

Figure 2.4: Two-degree-of-freedom modified Shaw–Pierre example.

2.7.1 The modified Shaw–Pierre example: Inner resonances

We first consider a slightly modified version of the example of Shaw and Pierre [30],
shown in figure 2.4. The original Shaw–Pierre example involves a two-degree-of-
freedom mechanical oscillator, which is modified in the current setting such that
the damping matrix is proportional to the mass and stiffness matrices (also known
as Rayleigh damping, see, e.g., Géradin and Rixen [29]). For this problem, the SSM
coefficients have been explicitly calculated in Szalai et al. [16], up to third order.

For k1 = k2 = k3 = k, the equations of motion of the system are

[
m 0
0 m

] [
ẍ1

ẍ2

]
+

[
2c −c
−c 2c

] [
ẋ1

ẋ2

]
+

[
2k −k
−k 2k

] [
x1

x2

]
(2.51)

+

[
κx3

1

0

]
=

[
0
0

]
,

with the linear part having the eigenvalue pairs

λ1,2 = − c
2
± i

√
k

(
1− c2

4k

)
, λ3,4 = −3c

2
± i

√
3k

(
1− 3c2

4k

)
, (2.52)
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when both linear normal modes are underdamped (c < 2
√
k/3) and the mass m is

equal to 1 kg. As noted in Szalai et al. [16], the two spectral subspaces, E1 and
E2, corresponding to the eigenvalues λ1,2 and λ3,4 respectively, have the outer and
inner spectral quotients

σout(E1) = Int

[
Reλ3

Reλ1

]
= 3, σout(E2) =

[
Reλ1

Reλ3

]
= 0, (2.53)

σin(E1) = Int

[
Reλ1

Reλ1

]
= 1, σin(E2) =

[
Reλ3

Reλ3

]
= 1. (2.54)

The non-resonance conditions (2.9) and (2.13) are satisfied for both of these spectral
subspaces, thus, there exist two two-dimensional analytic SSMs, W(E1) and W(E2),
that are unique among all C4 and C1 invariant manifolds tangent to E1 and E2,
respectively.

Rewriting the equations of motion (2.51) in first-order form, we obtain

d

dt


x1

x2

ẋ1

ẋ2

 =


0 0 1 0
0 0 0 1
−2k k −2c c
k −2k c −2c


︸ ︷︷ ︸

A


x1

x2

ẋ1

ẋ2

+


0
0
−κx3

1

0


︸ ︷︷ ︸

F(x)

. (2.55)

Computing W(E1) and W(E2)

The spectral submanifolds, W(E1) and W(E2), will be tangent to their correspond-
ing spectral subspaces, E1 and E2. To compute W(E1), we diagonalize (2.55) by
introducing a linear change of coordinates x = Tq, where the columns of T contain
the eigenvectors of (2.55), i.e.,

T = [v1, v̄1,v3, v̄3] =


1 1 1 1
1 1 −1 −1
λ1 λ̄1 λ3 λ̄3

λ1 λ̄1 −λ3 −λ̄3

 . (2.56)

We can rewrite equation (2.55) in the form of (2.22)

q̇ = diag(λ1, λ̄1, λ3, λ̄3)q + T−1F(Tq) = Λq + G(q). (2.57)

To compute W(E2), equation (2.55) must be diagonalized via a similar linear change
of coordinates x = T̃q̃, where the columns of T̃ now contain the eigenvectors of
(2.55) in the following order
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T = [v3, v̄3,v1, v̄1] =


1 1 1 1
−1 −1 1 1
λ3 λ̄3 λ1 λ̄1

−λ3 −λ̄3 λ1 λ̄1

 . (2.58)

Similarly, equation (2.55) can be written in the form of (2.22), i.e.

˙̃q = diag(λ3, λ̄3, λ1, λ̄1)q̃ + T̃−1F(T̃q̃) = Λ̃q̃ + G̃(q̃). (2.59)

The polynomial expressions for the nonlinearities G(q) and G̃(q̃) only contain cubic
nonlinearities and therefore only the nonlinear coefficient matrices G3 and G̃3 will
be non-zero. We will compute W(E1) and W(E2) for the following parameter values

k = 1 N m−1, c = 0.03 N s m−1, κ = 0.5 N m−3, δ = 0.05. (2.60)

We justify the choice up to which order we have to approximate the SSMs to get an
accurate reduced order model, by evaluating the invariance error (2.50) for different
approximation orders. For a given fixed radius ρ0 = 0.35 we take 50 initial points,
each corresponding to an angle θ0, uniformly distributed in S1.

As the order of the approximation of W(E1) and W(E2) is increased, the error δinv is
substantially reduced, as expected. We conclude that the 15th order approximation
for both spectral submanifolds is high enough to guarantee them to be accurate for
oscillation amplitudes up to ρ0 = 0.35, which corresponds to a physical maximum
displacement of |x1| ≈ 0.66 m and |x2| ≈ 0.71 m for W(E1) and |x1| ≈ 0.73 m and
|x2| ≈ 0.66 m for W(E2).

We observe that the following near-inner-resonances conditions are satisfied within
the spectral subspaces E1 and E2, see table (2.1) and (2.2) respectively.

We intend to remove the near-inner resonant terms z2
1z2, z1z

2
2 , z3

1z
2
2 , z2

1z
3
2 , z4

1z
3
2 , z3

1z
4
2 ,

z5
1z

4
2 , z4

1z
5
2 , z6

1z
5
2 , z5

1z
6
2 , z7

1z
6
2 , z6

1z
7
2 , z8

1z
7
2 and z7

1z
8
2 in the expressions of W(E1) and

W(E2) and add them to the polynomial expressions for the reduced dynamics on
the spectral submanifolds. Due to the choice of nonlinearities, all the coefficients
of W(E1) and W(E2) corresponding to even powers in |z| are zero. Solving the
partitioned Sylvester equations (2.33) and (2.34) for WE

i and WC
i for orders i =

2, . . . , 15, we obtain the lower-dimensional projections of the full phase space for the
15th order approximations of W(E1) and W(E2), shown in figure 2.6. The images
are directly obtained from ssmtool, which detects resonant terms and adds them to
the reduced dynamics R(z) when solving the partitioned Sylvester equations (2.33)
and (2.34).
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Figure 2.5: Normalized error for the 3th-15th order approximation of W(E1) (2.5(a))
and W(E2) (2.5(b)) for 50 evenly distributed initial positions lying on a fixed radius
ρ0 = 0.35 and θ0 ∈ S1. For each trajectory traveling between ρ0 and ρε = 0.01, we
identify the maximum error and take the average over all trajectories.
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(a) (b)

(c) (d)

Figure 2.6: Lower-dimensional projections of the full phase space, showing the 15th

order approximations of W(E1) and W(E2). Figures 2.6(a) and 2.6(b) show the
spectral submanifold W(E1) tangent to E1. Figures 2.6(c) and 2.6(d) show the
spectral submanifold W(E2) tangent to E2. The dashed curves indicate different
projections of a trajectory of the reduced system R(z), starting from the initial
position ρ = 0.35 and θ = 1. The solid curves represent trajectories of the full
system for the same initial position. The solid gray curves represent contour lines
of equal parameterized distance ρ.
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E1

a b λl I

O(|z|3)
2 1 λ1 0.00707
1 2 λ̄1 0.00707

O(|z|5)
3 2 λ1 0.00926
2 3 λ̄1 0.00926

O(|z|7)
4 3 λ1 0.01019
3 4 λ̄1 0.01019

O(|z|9)
5 4 λ1 0.01069
4 5 λ̄1 0.01069

O(|z|11)
6 5 λ1 0.01100
5 6 λ̄1 0.01100

O(|z|13)
7 6 λ1 0.01121
6 7 λ̄1 0.01121

O(|z|15)
8 7 λ1 0.01136
7 8 λ̄1 0.01136

Table 2.1: Near-inner-resonances for E1 with δ = 0.05.

Reduced Dynamics

The near-inner resonances within the spectral subspaces E1 and E2 introduce non-
linear terms in the reduced dynamics on the spectral submanifolds. The reduced
dynamics on W(E1) and W(E2) is of the general form (2.45). After transforming to
polar coordinates, we obtain the following reduced equations for the in-phase mode
of the system from ssmtool:

ρ̇ =− 0.015ρ− 0.00079121ρ5 − 0.0012708ρ7 (2.61)

+ 0.0090446ρ9 − 0.03569ρ11 + 0.12918ρ13 − 0.45878ρ15,

ω =0.99989 + 0.37504ρ2 − 0.60592ρ4 + 1.1713ρ6 (2.62)

− 2.5137ρ8 + 5.7885ρ10 − 14.01ρ12 + 35.159ρ14.
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E2

a b λl I

O(|z|3)
2 1 λ3 0.01225
1 2 λ̄3 0.01225

O(|z|5)
3 2 λ3 0.01604
2 3 λ̄3 0.01604

O(|z|7)
4 3 λ3 0.01765
3 4 λ̄3 0.01765

O(|z|9)
5 4 λ3 0.01852
4 5 λ̄3 0.01852

O(|z|11)
6 5 λ3 0.01905
5 6 λ̄3 0.01905

O(|z|13)
7 6 λ3 0.01941
6 7 λ̄3 0.01941

O(|z|15)
8 7 λ3 0.01967
7 8 λ̄3 0.01967

Table 2.2: Near-inner-resonances for E2 with δ = 0.05.

The reduced dynamics for the out-of-phase mode of the system is obtained from
ssmtool as

ρ̇ =− 0.045ρ+ 0.016267ρ5 + 0.02614ρ7 (2.63)

+ 0.015714ρ9 − 0.012768ρ11 − 0.03437ρ13 − 0.0308ρ15,

ω =1.7315 + 0.21658ρ2 + 0.19904ρ4 + 0.14858ρ6 (2.64)

+ 0.072849ρ8 + 0.017657ρ10 + 0.004087ρ12 − 0.011824ρ14,

where we set the order of computations to O(15). Both instantaneous frequencies
(2.62) and (2.64) depend on ρ only. The two red curves in figure 2.7(a) and figure
2.7(b) represent the O(15) backbone curves for the in-phase and out-of-phase mode
of the mechanical system, whereas the blue curves display the O(3) approximations
of the backbone curves.

We used the numerical continuation software coco [31] to find periodic orbits of the
periodically forced system for a fixed forcing amplitude while varying the forcing
frequency. We have extensively optimized the continuation parameters to ensure
accurate but fast results. In the current work, coco is used as an off-the-shelf
open-source benchmark to which we compare ssmtool as a stand-alone package.
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The promising techniques of Blanc et al. [19] and Renson et al. [21] would be
expected to perform better than coco in these computations, but have no available
open-source implementations at this point.

The equations of motion of the forced system are[
m 0
0 m

] [
ẍ1

ẍ2

]
+

[
2c −c
−c 2c

] [
ẋ1

ẋ2

]
+

[
2k −k
−k 2k

] [
x1

x2

]
(2.65)

+

[
κx3

1

0

]
=

[
A cos ωt

0

]
,

where we use the same parameter values (2.60) and introduced a forcing term with
amplitude A and forcing frequency ω. The resulting periodic response amplitudes
are shown in figure 2.7(a) and figure 2.7(b) in black for a forcing amplitude of
A = 0.05 N and A = 0.2 N, respectively. As shown, the O(15) approximations
for both backbone curves fit the forced peak responses well. The computational
time for the continuation curve in figure 2.7(a) takes 8 minutes and 6 seconds on
a Mac Pro 2 × 3.06 GHz 6-Core Intel Xeon, which technically corresponds to a
single point on the backbone curve. The computational time for the backbone
curve, extracted from the 15th order approximation of W(E1), is approximately 3
minutes, resulting in a parameterized curve that can be subsequently evaluated at
any required frequency. The computational time for the continuation curve in figure
2.7(b) takes a total of 11 minutes and 16 seconds, whereas the computational time
for the backbone curve, extracted from the 15th order approximation of W(E2), is
also approximately 3 minutes.

2.7.2 The modified Shaw–Pierre example: Outer resonances

We now consider the same analytic example as in section 2.7.1, but with the linear
springs k1, k2, k3 and the damping c tuned such that there are near-outer resonances
and no near-inner resonances. Here we only compute W(E1), the slow SSM arising
from the slow complex pair of eigenvalues. By definition, it is impossible to obtain
an outer resonance for the spectral subspace corresponding to the remaining fast
complex pair of eigenvalues.

The current example is taken from work of Cirillo et al. [32], where a global pa-
rameterization method is proposed for the computation of invariant manifolds in a
domain where the stringent non-resonance conditions of analytic linearization hold.

For the parameter values

k1 = k3 = 1 N m−1, k2 = 4.005 N m−1, c = 0.4 N s m−1, (2.66)

κ = 0.5 N m−3, δ = 0.05,
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Figure 2.7: Backbone curves and periodically forced responses for different ampli-
tudes of the mechanical system (2.51). Figure 2.7(a) shows the O(15) (red) and
O(3) (blue) approximations of the backbone curves for the in-phase mode of the
system. Figure 2.7(b) shows the O(15) (red) and O(3) (blue) approximations of
the backbone curves for the out-of-phase mode of the system. Black lines mark
amplitudes of periodic orbits of the periodically forced system for different forcing
amplitudes for varying forcing frequency. The dashed lines (magenta) represent the
backbone curves extracted from coco in the conservative limit of the mechanical
system, without any forcing.

the system has two complex conjugate pairs of eigenvalues with

λ1 = −0.2 + 0.9798i,

λ2 = −0.6 + 2.9411i,

and their conjugates. We construct the two-dimensional spectral subspace E1 corre-
sponding to the first conjugate pair of slow eigenvalues λ1 and λ̄1, whose inner and
outer spectral quotients are

σin(E1) = Int

[
Reλ1

Reλ1

]
= 1. (2.67)

σout(E1) = Int

[
Reλ̄2

Reλ1

]
= 3, (2.68)

The exact inner and outer non-resonance conditions, (2.9) and (2.13) respectively,
again are satisfied for the spectral subspace E1, i.e., there exists a two-dimensional
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E1

a b λl I

O(|z|3)
3 0 λ2 0.000162
0 3 λ̄2 0.000162

Table 2.3: Near-outer-resonances for E1 with δ = 0.05.
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Figure 2.8: Invariance error for the 3th-15th order approximations of W(E1) for 50
evenly distributed initial positions lying on a fixed radius ρ0 = 0.28 and θ0 ∈ S1.
For each trajectory traveling between ρ0 and ρε = 0.01, we identify the maximum
error and take the average over all trajectories.

analytic SSMs, W(E1), that is unique among all C4 invariant manifolds tangent to
E1. Due to the higher choice of damping, there are no near-inner resonances and
hence the reduced dynamics on the manifold can be expressed as linear. However,
the SSM is close to having two third-order outer resonances which in turn leads
to the two near-outer resonances shown in table 2.3. For k2 = 4 N m−1, the SSM
construction will break down as ΘC3 becomes singular while equation (2.34) has a
nonzero right-hand side.

As has been done in section 2.7.1, we would like to identify the order to which we
have to approximate the SSM to obtain an accurate reduced order model. Using
the invariance measure defined in equation (2.50), we test the invariance of W(E1)
for different approximation orders. In figure 2.8, we show the invariance error for
seven different approximations of W(E1). For a given fixed radius ρ0 = 0.28 we take
50 initial points, each corresponding to an angle θ0, uniformly distributed in S1.
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(a) (b)

(c)

Figure 2.9: Lower-dimensional projections of the full phase space showing the 15th

order approximation of W(E1) in modal coordinates. Figures 2.9(a), 2.9(b) and
2.9(c) show the spectral submanifold W(E1) tangent to E1, being close to outer
resonance. Figure 2.9(b), a top-view of W(E1), shows the development of a fold as
indicated by the rectangle. Figure 2.9(c) is a zoomed-in version of the fold.

As a the SSM is near an outer resonance, a folding of the SSM over its underlying
modal subspace is more likely to occur. Such a folding is illustrated in figure 2.9,
showing a lower-dimensional projection of the full phase space of the 15th order ap-
proximation of W(E1). This example brings out the power of the parameterization
method, as constructing the SSM as a graph over its modal subspace would break
down at the point of folding.

In figure 2.10, we show the SSM transformed to physical coordinates (also an option
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Symbol Meaning (unit)

L Length of beam (mm)

h Height of beam (mm)

b Width of beam (mm)

% Density (kg mm-3)

E Young’s Modulus (MPa)

G Shear Modulus (MPa)

η Axial material damping constant (MPa s)

µ Shear material damping constant (MPa s)

λ External damping constant (MPa s mm-2)

A = bh Cross-section of beam (mm2)

Table 2.4: Notation used in subsequent derivations

in ssmtool), where we demonstrate the invariance of W(E1) (figure 2.10(a)) and that
different trajectories converge towards W(E1) (figure 2.10(b)), when starting close
to W(E1).

2.7.3 The discretized nonlinear Timoshenko beam

In this section, we construct a reduced order model for a discretized nonlinear
Timoshenko beam by computing the reduced dynamics on the two-dimensional SSM
arising from the slowest modal subspace. We will briefly outline the steps leading to
the derivation of the partial differential equations (PDEs) governing the dynamics
of the beam. Our reasoning largely follows the presentation given by Reddy [33].
The problem considered here is a square 2D beam placed in a cartesian coordinate
system with coordinates (x, y, z) and basis (ex, ey, ez). Initially, the beam is straight,
with its main axis parallel to the x-axis, while its cross section lies in the y−z plane.
The relevant beam parameters are listed in table 2.4.

We call the line that initially coincides with the x-axis the beam’s neutral axis. The
kinematic assumptions underlying the Timoshenko beam model can be obtained by
relaxing the restrictions of the Bernoulli hypothesis which is the basis of the more
classical and well-known Euler-Bernoulli beam theory. The Bernoulli hypothesis
states (cf. Reddy [33]) that initially straight material lines normal to the neutral
axis remain (a) straight and (b) inextensible after deformation, and (c) rotate as
rigid lines to remain perpendicular to the beam’s neutral axis after deformation. We
relax (c) by allowing for rigid rotation of the cross section about the y-axis. These
kinematic assumptions are satisfied by the following displacement field
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(a)

(b)

Figure 2.10: Lower-dimensional projections of the full phase space showing the 15th

order approximation of W(E1), transformed to physical coordinates. The dashed
curves in figure 2.10(a) correspond to trajectories of the reduced system R(z) corre-
sponding to the initial positions ρ = {0.15, 0.13, 0.11} and θ = 3. The solid curves
represent trajectories of the full system for the same initial positions. In figure
2.10(b), the dashed curves corresponds to a trajectory of the reduced system R(z)
for the initial position ρ = 0.15 and θ = 1. The solid lines represent trajectories of
the full system having an initial position off the manifold, showing the convergence
towards W(E1).

37



2. Autonomous SSMs

ϕ
y

L

h

u
0

nonlinear Timoshenko beam

zϕ
y

Figure 2.11: Kinematics of the nonlinear Timoshenko beam.

ux(x, y, z) = u0(x) + zφy(x), (2.69)

uy(x, y, z) = 0, (2.70)

uz(x, y, z) = w(x). (2.71)

Here (ux, uy, uz) are the components of the displacement field u(x, y, z) for a mate-
rial point in the (x, y, z) directions, respectively. The functions u0(x) and w(x) rep-
resent the displacements of a material point with initial coordinates on the beam’s
neutral axis, given by z = 0. The rotation of a normal section about the y-axis is
denoted by φy(x). We illustrate the kinematics in figure 2.11.

Following Reddy [33], we neglect all (u0,x)2 terms in the Green-Lagrange strain
tensor, where we use the shorthand notation (·),x = ∂x(·). This approximation ac-
counts for geometric nonlinearities due to moderately large rotations while assuming
small membrane strains. The relevant non-zero components of the simplified Green-
Lagrange strain tensor εij take the form

εxx = ε0
xx + zε1

xx, (2.72)

γxz = 2εxy = γ0
xz + zγ1

xz, (2.73)

with

ε0
xx = ∂xu0 +

1

2
(∂xw)2, ε1

xx = ∂xφy, (2.74)

γ0
xz = φy + ∂xw + φy∂xu0, γ

1
xz = φy∂xφy. (2.75)
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We assume a linear viscoelastic constitutive relation between the stresses and strains
of the following form

σxx = Eεxx + ηε̇xx, (2.76)

σxz = Gγxz + µγ̇xz. (2.77)

Here σxx and σxz are the components of the Cauchy stress tensor σ (see, e.g., Lai
et al. [34]). The relations given in (2.76) and (2.77) are a special case of the
more general linear viscoelastic material models that can be found, for example, in
Skrzypek and Ganczarski [35] and is also used, e.g., by Lesieutre and Kauffman [36].
We explain the derivation and discretization of the equations of motion of the beam
in 2.B.

In the following computations, we will consider a beam that is clamped on one end
and free on the other, which means that on the clamped end all displacements (u0,
w, φy) are zero, while on the free end no restrictions are placed on the displacements.
After implementation of the essential boundary conditions, the number of degrees
of freedom n of our system is given by

n = 5m+ 1, (2.78)

where m is the number of finite beam elements used in the discretization. Addi-
tionally, we set the external damping parameter c, discussed in 2.B, to zero and
therefore the damping of our beam only enters through the viscoelastic constitutive
relation.

We continue by constructing the slowest single-mode SSM for a specific beam, for
which we will use the ssmtool to reduce the beam dynamics to a two-dimensional
system of ordinary differential equations. The chosen geometric and material pa-
rameters are listed in Table 2.5.

We simulate the beam with three elements, resulting in a 32-dimensional phase space.
For the chosen parameter values, the eigenvalues corresponding to the slowest modal
subspace E are λ1,2 = −0.02286±11.03i. In terms of its exponential decay rate, the
eigenspace E is about 50 times slower compared to the second slowest eigenspace of
the system. This spectral ratio indicates that trajectories of the system transverse
to the slow SSM die out fast, making the slowest SSM an excellent choice for model
reduction, because it will contain trajectories that remain active for the longest
time.

In figure 2.12, we show the invariance error (2.50) for four different orders of ap-
proximations of W(E).
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2. Autonomous SSMs

Parameter Value

L 1000 mm

h 100 mm

b 100 mm

% 7850 · 10−9 kg mm−3

E 90 GPa

G 34.6 GPa

η 33.6 MPa s

µ 20.9 MPa s

Table 2.5: Geometric and material parameters.

O(4) O(6) O(8) O(10)

Approximation order

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

E
rr

o
r 

(-
)

Figure 2.12: Invariance error for the 4th, 6th, 8th and 10th order approximations of
W(E) for 50 evenly distributed initial positions lying on a fixed radius ρ0 = 1.5 and
θ0 ∈ S1. The chosen value of ρ0 = 1.5 corresponds to a maximum physical vertical
displacement of the endpoint of the beam of 160 mm. For each trajectory traveling
between ρ0 and ρε = 0.2, we identify the maximum error and take the average over
all trajectories.

40



2.8. Conclusions

We observe that the 4th order approximation of W(E) is already accurate up to
the chosen value of ρ0 = 1.5, which corresponds to a maximum physical vertical
displacement of the endpoint of the beam of 160 mm. By increasing the order of
approximation to 10, the invariance error is reduced further by approximately three
orders of magnitude. Figure 2.13 displays two lower-dimensional projections of the
32-dimensional phase space, showing the 10th order approximation of W(E), with
the the modal coordinates q3 and q4 plotted over the coordinates q1 and q2.

As λ1 and λ̄1 have small negative real parts, the near-inner-resonances conditions
related to O(|z|i) with i = 3, 5, 7, 9 are satisfied within the spectral subspaces E .
This in turn leads to the following expressions for reduced dynamics on W(E),
obtained from ssmtool:

ρ̇ =− 0.022856ρ− 0.00017033ρ3 − 4.9542 · 10−6ρ5 (2.79)

+ 8.5365 · 10−8ρ7 − 3.0348 · 10−9ρ9,

ω =11.027 + 0.099097ρ2 − 0.000020843ρ4 − 2.8625 · 10−6ρ6 (2.80)

+ 1.729 · 10−7ρ8

Using the definition of the instantaneous amplitude (2.48) and the corresponding in-
stantaneous frequency (2.80), ssmtool computes the parameterized backbone curve
B (shown in figure 2.14) in less than 4 minutes time. The continuation curve, shown
in black, has been computed using the numerical continuation software coco [31],
after applying a periodic force, F = A cos ωt, to the vertical displacement coordi-
nate w at the free end of the beam with a forcing amplitude of A = 300 N.

The continuation algorithm takes 4 hours 42 minutes and 17 seconds to compute.
Additionally, in figure 2.15 we show that trajectories starting off W(E1), will con-
verge towards W(E1) as a consequence of having the high spectral quotient between
the slowest and the remaining eigenspaces.

2.8 Conclusions

We have developed and tested an automated computational algorithm for two-
dimensional autonomous SSMs that extends modal subspaces of linear systems to
nonlinear systems. Implemented in the matlab package ssmtool, the algorithm can
handle non-conservative mechanical systems of arbitrary (finite) degrees of freedom,
subject to numerical memory limitations only. We used a systematic approach, the
parameterization method, allowing us to construct the SSMs, their reduced dynam-
ics and corresponding backbone curves up to any required order of precision.

Because the SSMs are embedded using the parameterization method, the construc-
tion of the SSMs does not break down when the SSM folds over its underlying
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(a)

(b)

Figure 2.13: Lower-dimensional projections of the 32-dimensional phase space, of
the discretized nonlinear Timoshenko beam, showing the 10th order approximation
of W(E). Figures 2.13(a), 2.13(b) show the spectral submanifold W(E) tangent
to slowest modal subspace E . The dashed curve corresponds to a trajectory of the
reduced two-dimensional system R(z) corresponding to the initial positions r = 1.5
and θ = 3. The solid curve represents a trajectory of the full system for the same
initial position, with tend = 15 s.
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Figure 2.14: Backbone curve and periodically forced responses of the discretized
Timoshenko beam having a 32-dimensional phase space. The O(10) (red) approx-
imation of the backbone curve is computed up to ρ = 1.3. The black line cor-
responds to periodic orbits of the periodically forced system for varying forcing
frequency. The blue line represents the backbone curve extracted from coco in the
conservative limit of the beam, without any forcing.

spectral subspace, as opposed to constructing the SSMs as graphs over a set of
coordinates. The implementation (a matlab based graphical user interface called
ssmtool) detects near-outer and near-inner resonances. In case of an exact outer
resonance, the SSM construction will break down, whereas the presence of near-
inner resonances in general leads to nonlinear terms in the reduced dynamics on the
SSMs.

Szalai et al. [16] have exactly shown how backbone curves can be extracted from
SSMs. We computed the backbone curves, in this fashion, up to 15th-order for a
two-degree-of-freedom non-conservative mechanical system and used the numerical
continuation software coco [31] to find periodic orbits of the periodically forced
system for different forcing amplitudes while varying the forcing frequency to verify
the accuracy of the backbone curves.

Under an approximate outer resonance, folding of the SSMs is likely to occur. We
demonstrated such folding on the same two-degree-of-freedom non-conservative me-
chanical system by varying the system parameters accordingly to create a near-outer
resonance.
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(a)

(b)

Figure 2.15: Lower-dimensional projections of the 32-dimensional phase space, of
the discretized nonlinear Timoshenko beam, showing the 10th order approximation
of W(E). Figure 2.15(a) shows the spectral submanifold W(E) tangent to slowest
subspace E . The dashed (blue) curve corresponds to a trajectory of the reduced two-
dimensional system R(z) corresponding to the initial positions r = 1.5 and θ = 3.
The solid (red) curve represents a trajectory of the full system having an initial
position off the manifold, showing the convergence towards W(E1), with tend = 15 s.
The collapsing nature of the trajectories onto W(E), is a direct consequence of the
high spectral ratio between the slowest eigenspace and the second slowest eigenspace
shown in figure 2.15(b).
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2.8. Conclusions

Finally, we have used the developed numerical method to construct a reduced-order
model for a discretized nonlinear Timoshenko beam. We have computed the reduced
dynamics on the two-dimensional slow SSM arising from the slowest modal subspace
of the linearized system. The backbone curve obtained from the ssmtool shows close
agreement with a single amplitude frequency sweep computed from coco. While
substantially limited in its scope relative to coco’s, ssmtool has returned backbone
curves in a fraction of the times required by coco to construct the response curve
for one forcing amplitude. The spectral quotient between the slowest eigenspace
and the second slowest eigenspace indicates that trajectories transverse to the slow
SSM die out fast, making the slowest SSM an optimal choice for reducing our beam
model to a two-dimensional system of ordinary differential equations.
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Appendix

2.A Properties of the Kronecker product

In this section, we list several useful properties of the Kronecker product. For
further reading, we refer the reader to A.J. Laub [28].

(i) The Kronecker product is associative, i.e.,

(A⊗B)⊗C = A⊗ (B⊗C), (2.81)

A ∈ Cm×n, B ∈ Cp×q, C ∈ Cr×s.

(ii) The Kronecker product is right-distributive, i.e.,

(A + B)⊗C = A⊗C + B⊗C, (2.82)

A,B ∈ Cm×n, C ∈ Cp×q.

(iii) The Kronecker product is left-distributive, i.e.,

A⊗ (B + C) = A⊗B + A⊗C, (2.83)

A ∈ Cm×n, B,C ∈ Cp×q.

(iv) The product of two Kronecker products yields another Kronecker product:

(A⊗B)(C⊗D) = AC⊗BD ∈ Cmr×pt, (2.84)

A ∈ Cm×n, B ∈ Cr×s, C ∈ Cn×p, D ∈ Cs×t.
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2. Autonomous SSMs

2.B Equations of motion for the nonlinear Timoshenko beam

We derive the equations of motion for the nonlinear Timoshenko beam, based on the
kinematical and constitutive assumptions made in section 2.7.3. Applying Hamil-
ton’s principle, we require that the true evolution of the displacement field between
two specified time instances, t1 and t2, is a stationary point of the action functional
S. Consequently, the variation of the action functional under a virtual displacement,
of our system, should be identically zero at t1 and t2, i.e.,

δS =

t2∫
t1

−δK + δU + δV dt = 0, (2.85)

where δK and δU are the variations in kinetic and strain energy due to an arbitrary
virtual displacement, and δV is the virtual work done by the external forces. For
simplicity, we assume that the virtual work done by internal forces acting on the
beam’s cross section is large relative to the work done by internal forces due to
out-of-plane stresses. This corresponds to assuming a state of either plane stress or
plane strain, causing all terms related to out-of-plane stresses to drop out from the
expression for the internal strain energy. This assumption can be justified by the
fact that the respective neglected quantities would only contribute to the governing
equations nonlinear terms of the fourth order in the stiffest (and hence typically the
fastest decaying) degrees of freedom, φy, while all other nonlinearities are of order
three or lower. Thus, those terms can be considered small compared to the rest.
This can also be shown by nondimensionalizing the system and treating the ratio
of the beam’s length to its height, h

L , as a small parameter.

In addition to our viscoelastic constitutive law, we allow for external damping by
introducing a simple damping model similar to the ones discussed in Lesieutre and
Kauffman [36] and Lesieutre [37]. Our model assumes a body force acting propor-
tional to the displacement velocity:

fc = cu̇(x, y, z). (2.86)

The virtual work done by this force is

δV =

∫
L

∫
A

fcδu dAdx =

∫
L

λ(u̇0δu0 + ẇδw +
I2

I0
φ̇yδφy) dx, (2.87)

with
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2.B. Equations of motion for the nonlinear Timoshenko beam

Ik =

∫
A

zkdA, λ = cI0. (2.88)

Equation (2.87) can be interpreted as the work done by two line-distributed forces,
fx = λu̇0 and fz = λẇ , proportional to the time derivative of the transverse
displacement and the axial displacement, respectively. Additionally, we have a
line-distributed force couple, Ty = λ I2I0 φ̇y, proportional to the time derivative of
the rotation of the cross section. The pre-factor I2/I0 in equation (2.87) ensures
that the contribution of the external damping to the damping matrix of the FEM
model derived below is proportional to the mass matrix. As a consequence, the
entire system will be subjected to Rayleigh damping, a damping model which is
frequently used in FEM simulations, see e.g. Takács et al. [38]. For more extensive
discussions about how to model damping in beams, we refer the reader to the work
of Lesieutre and Kauffman [36] and Lesieutre [37]. The preceding considerations
lead to the following expressions

δK =

∫
L

m0u̇0δu̇0 +m0ẇδẇ +m2φ̇yδφ̇y dx, (2.89)

δU =

∫
L

∫
A

σxxδεxx + σxzδγxz dAdx, (2.90)

δV =

∫
L

fxδu0 + fzδw + Tyδφy dx, (2.91)

with

mk =

∫
A

%zk dA, (2.92)

Substituting (2.89), (2.90) and (2.91) into (2.85), plugging in the kinematical as-
sumptions and using integration by parts with respect to t and x we obtain
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2. Autonomous SSMs

δS =

t2∫
t1

[ L∫
0

[(
m0ü0 + λu̇0 − ∂x

(
M0
xx + φyM

0
xz

))
δu0

+

(
m0ẅ + λẇ − ∂x

(
M0
xz + ∂xwM

0
xx

))
δw

+

(
m2φ̈y + λ

I2

I0
φ̇y − ∂x

(
M1
xx + φyM

1
xz

)
+
(
M0
xz + ∂xu0M

0
xz + ∂xφyM

1
xz

))
δφy

]
dx (2.93)

+
[(
M0
xx + φyM

0
xz

)
δu0

]L
0

+
[(
M0
xz + ∂xwM

0
xx

)
δw
]L
0

+
[(
M1
xx + φyM

1
xz

)
δφy
]L
0

]
dt = 0,

where we have defined

Mk
ij =

∫
A

σijz
k dA. (2.94)

Equating the variational derivative of this functional with zero, we obtain the Euler-
Lagrange equations

m0ü0 + λu̇0 − ∂x
(
M0
xx + φyM

0
xz

)
= 0, (2.95)

m0ẅ + λẇ − ∂x
(
M0
xz + ∂xwM

0
xx

)
= 0, (2.96)

m2φ̈y + λ
I2

I0
φ̇y − ∂x

(
M1
xx + φyM

1
xz

)
(2.97)

+
(
M0
xz + ∂xu0M

0
xz + ∂xφyM

1
xz

)
= 0,

along with the corresponding boundary conditions

(
M0
xx + φyM

0
xz

)∣∣
L
δu0(L) = 0,

(
M0
xx + φyM

0
xz

)∣∣
0
δu0(0) = 0,(

M0
xz + ∂xwM

0
xx

)∣∣
L
δw(L) = 0,

(
M0
xz + ∂xwM

0
xx

)∣∣
0
δw(0) = 0,(

M1
xx + φyM

1
xz

)∣∣
L
δφy(L) = 0,

(
M1
xx + φyM

1
xz

)∣∣
0
δφy(0) = 0.

The Mk
ij terms can be written as a function of our displacement field by using the

kinematical and constitutive relations, i.e.,
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2.B. Equations of motion for the nonlinear Timoshenko beam

M0
xx = I0

(
E(∂xu0 +

1

2
(∂xw)2) + η(∂xu̇0 + ∂xẇ∂xw)

)
,

M1
xx = I2

(
E∂xφy + η∂xφ̇y

)
,

M0
xz = I0

(
G(φy + ∂xw + φy∂xu0) + µ(φ̇y + ∂xẇ + φ̇y∂xu0 + φy∂xu̇0)

)
,

M1
xz = I2

(
Gφy∂xφy + µ(φ̇y∂xφy + φy∂xφ̇y)

)
.

We discretize equations (2.95)-(2.97) using a finite-element discretization (cf. Reddy
[39] for a more detailed description). We use cubic shape functions to approximate
u0, quadratic shape functions for w and linear shape functions for φy. A beam
element with three equally spaced nodes, situated at the beginning, the middle
and at the end of the element is used. The node in the middle of the element is
only needed for the interpolation of the transverse displacement w. To avoid shear
and membrane locking, the ε0

xx and γ0
xz terms should be approximated by shape

functions of the same order. After discretization, we obtain a set of n ordinary
differential equations (ODEs) governing the dynamics the nonlinear Timoshenko
beam:

Mÿ + Cẏ + Ky + f(y, ẏ) = 0 (2.98)

where we have defined the vector

y =

 ũ0

w̃

φ̃y

 (2.99)

representing the discretized degrees of freedom corresponding to the unknowns
(u0, w, φy). The quantities M ∈ Rn×n, C ∈ Rn×n, K ∈ Rn×n are the mass, damping
and stiffness matrices of our discretized model, respectively, and the nonlinear force
vector f ∈ Rn is of the form

fi = Dijkyjyk +Gijkyj ẏk +Hijklyjykyl + Lijklyjykẏl (2.100)

where i ∈ {1, . . . , n}, and the Einstein summation convention is followed.
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2. Autonomous SSMs

2.C Multiple representations for the nonlinear coefficient
matrices

The vector q⊗i contains all possible combinations of its own elements up to order
i, and therefore will contain all the monomial terms related to a homogeneous
multivariate polynomial of degree i in the variables q. The number of unique
monomial terms S(2n, i) in a multivariate polynomial of degree i with the variables
q ∈ C2n is equal to the number of multisets of cardinality i, with elements taken
from the set {1, 2, . . . , 2n} ∈ N2n [40], i.e,

S(2n, i) =

(
i+ 2n− 1

i

)
=

(i+ 2n− 1)!

(2n− 1)!i!
. (2.101)

To illustrate this, we now give an example.

Example 2.4 [Unique monomial terms representing a multivariate polynomial of
degree two] Assume that q = (q1, q2, q3, q4)T ∈ C4, then the unique monomial terms
related to the multivariate polynomial of degree two in the q variables are



q2
1

q1q2

q1q3

q1q4

q2
2

q2q3

q2q4

q2
3

q3q4

q4


→

{1, 1}
{1, 2}
{1, 3}
{1, 4}
{2, 2}
{2, 3}
{2, 4}
{3, 3}
{3, 4}
{4, 4}



S =

(
5
2

)
= 10. (2.102)

Here we see the equivalence with the ten multisets of cardinality two, with elements
taken from the set {1, 2, 3, 4}. Indeed, the Kronecker product q⊗ q will result in a
16-dimensional vector containing 6 extra cross terms that are contained in the ten
multisets.

As a direct consequence of this redundancy for a representation of 2n multivariate
polynomials of degree i in the variables q, there will be infinitely many possible
representations for the nonlinear coefficient matrix Gi corresponding to the ith

order in equation (4.5). We show this in Example 2.5.

Example 2.5 [Multiple representations for the matrices Gi] If we assume, for sim-

plicity, that q = (q1, q2)T ∈ C2, and G(q) is only of O
(
|q|2

)
, i.e. Γ = 2,
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2.D. Memory requirements for the coefficient matrices

G(q) =

2∑
i=2

Giq
⊗i = G2q⊗ q =

[
g11 g12 g13 g14

g21 g22 g23 g24

]
q2

1

q1q2

q2q1

q2
2

 (2.103)

=

[
g11q

2
1 + (g12 + g13)q1q2 + g14q

2
2

g21q
2
1 + (g22 + g23)q1q2 + g24q

2
2

]
.

Assume that the quadratic nonlinearities of the underlying system are modeled as
follows

P(q) =

[
a1q

2
1 + b1q1q2 + c1q

2
2

a2q
2
1 + b2q1q2 + c2q

2
2

]
. (2.104)

If we want to transform P(q) into the form of G(q), equating G(q) and P(q) and
collecting terms of equal power in q1 and q2 gives

g11 = a1, (g12 + g13) = b1, g14 = c1,

g21 = a2, (g22 + g23) = b2, g24 = c2.

The presence of the redundant term q2q1 in q⊗q introduces two extra coefficients g13

and g23, giving us the freedom to introduce a constraint between g12 and g13, and
between g22 and g23. We then have two independent equations, each containing
two independent variables. For each equation, an independent constraint can be
introduced such that g12, g13, g22 and g23 are uniquely determined and the product
G2q⊗ q = G(q) precisely represents P(q). Each monomial term in the vector q⊗i

has a unique location in the vector itself, which in turn points to a unique location in
the matrix Gi for each row. In this way, the constraints are automatically satisfied
when ssmtool identifies the nonlinearities of the underlying mechanical system.

2.D Memory requirements for the coefficient matrices

In our current setting, the most computationally demanding terms in the SSM
construction are the summation terms in equation (2.31), which are shown below
for the ith order

i−1∑
m=2

Wm

∑
|p|=1

Rp1
i+1−m ⊗ . . .⊗Rpm

i+1−m, (2.105)

i−1∑
m=2

Gm

∑
|r|=i

Wr1 ⊗ . . .⊗Wrm . (2.106)
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2. Autonomous SSMs

If we assume that all matrices in equations (2.105) and (2.106) are densely filled
with doubles, where each double has an allocated memory of 8 bytes in MATLAB,
the total amount of memory needed (in bytes) to store the matrices in equations
(2.105) and (2.106) corresponding to a mechanical system of n degrees of freedom
at the ith order is equal to

M(n, i) = 8 ·
i−1∑
m=2

(
(2n)2m + 2m+im+ (2n)m+1 + (2n)m2ic(m, i)

)
, (2.107)

where c(m, i) is the number of all possible combinations of m positive integers
l1, . . . , lm ∈ N+, with |l| = i.

Example 2.6 [Memory requirements for different orders] We consider a mechanical
system of two degrees of freedom (n = 2) with a single cubic nonlinearity and
arbitrary near-inner-resonances. The cubic nonlinear spring will only contribute to
the G3 coefficient matrix, therefore the only contribution from equation (2.106) to
equation (2.107) is for m = 3. In figure 2.D.1, we show the output of equation
(2.107) for different orders of expansion.
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Figure 2.D.1: Memory requirements in terabytes for equations (2.105) and (2.106)
for different orders of the two-degree-of-freedom mechanical system. The amount
of memory needed drastically increases from 0.4846 TB for order 16 to 2.0696 TB
for order 17.
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Chapter 3

Non-autonomous SSMs

Chapter Summary

In this chapter, we show how spectral submanifold (SSM) theory can be used to ex-
tract forced-response curves, including isolas, without any numerical simulation in
high-degree-of-freedom, periodically forced mechanical systems. We use multivari-
ate recurrence relations to construct the SSMs, achieving a major speed-up relative
to earlier autonomous SSM algorithms. The increase in computational efficiency
promises to close the current gap between studying lower-dimensional academic ex-
amples and analyzing larger systems obtained from finite-element modeling, as we
illustrate on a discretization of a damped-forced beam model.

3.1 Introduction

Determining the forced response curve (FRC) of a multi-degree-of-freedom nonlin-
ear mechanical system under periodic forcing is one of the most common tasks in
structural engineering, providing key insights into the nonlinear behavior of the
system. Specifically, the FRC gives the amplitude of the periodic response of the
system as a function of the frequency of the periodic forcing. This, in turn, provides
valuable information about expected material stresses and strains that arise in the
system under various external forcing conditions. The nonlinear FRC often differs
significantly from the FRC of the linear part of the system, possibly containing also
unexpected isolated response branches (isolas).

For low-dimensional mechanical systems, the steady-state response can simply be
obtained by numerically integrating the equations of motion. However, mechani-
cal models constructed by finite-element packages generally contain thousands of
degrees of freedom. This high dimensionality, coupled with typically low damping
and costly function evaluations, may result in excessively long integration times (up
to days or weeks) until a steady-state response is reached.

To overcome this obstacle, one often reduces high-dimensional systems to lower-
dimensional models whose FRCs can be faster extracted. Virtually all model-
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3. Non-autonomous SSMs

reduction techniques in use involve projecting the full dynamics to a lower-dimensional
subspace. Examples include the static condensation method, also known as the
Guyan-Irons reduction method (Guyan [41] and Irons [42]; cf. Géradin and Rixen
[29]), the Craig-Bampton method [43] and the proper orthogonal decomposition
method [44, 45, 46, 47, 48]. These methods are generally applied without any a pri-
ori knowledge about the errors arising from the lack of invariance of the subspace
involved in the projection. Similarly unclear is the error arising from the nonlin-
ear method of modal derivatives [49], which formally restricts the full system into
an envisioned quadratic surface in the configuration space. Haller and Ponsioen
[50] showed that only under restrictive conditions can the static-condensation and
modal-derivative techniques be justified as first- and second-order local approxima-
tions to an invariant manifold to which the full mechanical system can indeed be
exactly reduced.

A more recent reduction method, proposed by Haller and Ponsioen [4], uses spec-
tral submanifold (SSM) theory to reduce the full dynamics to exactly invariant SSM
surfaces in the phase space. SSMs are the unique, smoothest, nonlinear continua-
tions of spectral subspaces of the linearized, unforced limit of a mechanical system.
SSM theory can be applied to nonlinear, damped mechanical systems with no forc-
ing, periodic forcing or quasi-periodic forcing. As shown by [6, 8, 9, 16, 51, 52],
the reduced dynamics on a two-dimensional SSM serves as an exact, one-degree-of-
freedom reduced-order model, that can be constructed for any particular vibration
mode of interest.

Once a reduced model has been obtained by any method, it is typically interrogated
for a reduced forced response. A broadly used method for this analysis is the har-
monic balance (HB) method, introduced first by Kryloff and Bogoliuboff [53] for
a single-harmonic approximation. The HB method assumes that the system has
a steady-state periodic solution, which can therefore be represented by a Fourier
series. By substituting the assumed solution into the original ordinary differential
equations and keeping only finitely many harmonics, one obtains a set of nonlinear
algebraic equations for the unknown Fourier coefficients. The HB method can also
be coupled to a continuation scheme in order to obtain the forced response over
a forcing frequency domain of interest (cf. von Groll and Ewins [54] and Coche-
lin and Vergez [55]). While conceptually simple, the HB method also has several
shortcomings. First, it requires a large number of nonlinear algebraic equations to
be solved, and hence becomes ineffective in higher degrees of freedom. Second, the
solvability of these equations for a few harmonics does not imply that a periodic
orbit actually exists. Indeed, there are documented examples of systems, such as
those with quadratic nonlinearities, for which the HB has been found not to work
well [56]. More recently, Breunung and Haller [57] constructed mechanical exam-
ples in which the HB method indicates the existence of a periodic response even
though no periodic orbits exist in the system. Finally, the HB method provides no
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information about the stability of the periodic orbit that it approximates.

As alternatives to the HB method, several computational methods exist in the
time domain for finding periodic solutions. Among these, the shooting method
(cf. Peeters et al. [12], Slater [58], Roberts and Shipman [59]) solves a two-point
boundary value problem to compute a steady-state solution of a periodically forced
system. An initial guess, representing an initial position on the periodic orbit, is
corrected by solving the equation of variations, which can be evaluated using a
numerical finite-difference method by perturbing each of the initial conditions and
integrating the full system. Similar to the HB method, the shooting method can be
coupled to a path continuation technique to obtain the forced response curve.

To avoid numerical integration of the full system, a collocation method can be used
to solve for the full periodic solution at once. This is done by approximating a
periodic solution of the full system as a continuous function of time, expressed on
a predefined number of time intervals as a polynomial of a certain degree, param-
eterized by unknown base points (see Dankowicz and Schilder [31]). Collocation
methods, however, have generally not been applied to large systems due to their
significant memory needs.

In the recent work of Jain et al. [60], an integral-equation approach is proposed
for the fast computation of the steady-state response of (quasi-) periodically forced
nonlinear systems by finding the zeros of an integral equation using a Picard and
Newton–Raphson iteration method. A major advantage of this approach compared
to the classical shooting method is its ability to handle quasi-periodic forcing. The
integral equation approach also gives increased speed over other numerical contin-
uation methods by exploiting the special structure of weakly nonlinear mechanical
vibrations. Still, for higher degrees of freedom, even this increased speed can lead
to calculations that are simply too big to be practical.

In contrast to all these prior approaches, here we use the reduced dynamics on a
two-dimensional SSM to extract the forced-response curve around a particular mode
of interest. By doing so, we extend the work of Ponsioen et al. [6], who developed a
matlab-based computational tool (ssmtool) for computing two-dimensional SSMs
in arbitrary autonomous mechanical systems, to the non-autonomous setting. The
present work also builds on the approach of Breunung and Haller [8], who compute
the non-autonomous part of the SSM up to zeroth order in appropriate coordinates
in which the SSM-reduced dynamics simplifies to a normal form.

The reduced dynamics on each two-dimensional SSM provides us with two differ-
ential equations. The fixed points of the two-dimensional SSM-reduced system
correspond to periodic orbits on the FRC for a particular forcing frequency. These
fixed points can be instantaneously computed, irrespective of the dimensionality of
the original mechanical system. The stability of the corresponding periodic orbits
can directly be obtained from the eigenvalues of the linearized reduced system at
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3. Non-autonomous SSMs

its fixed points. As a consequence, all periodic responses, including isolas, and their
stability can be identified from a procedure in which the only numerical step in the
end is the identification of the zeros of a two-dimensional autonomous vector field.
A simple matlab implementation is now available for this procedure1, allowing the
user to apply SSM-based model reduction and forced-response calculations to sys-
tems with high degrees of freedom. We illustrate this by locating forced responses
in a forced-damped beam, considering discretizations of this nonlinear system up to
10,000 degrees of freedom. We also present speed comparisons with the collocation
and the HB methods up to the limits of applicability of those methods.

3.2 System set-up

We consider n-degree-of-freedom, periodically forced mechanical systems of the form

Mÿ + Cẏ + Ky + g(y, ẏ) = εf(Ωt), 0 ≤ ε� 1, (3.1)

g(y, ẏ) = O
(
|y|2 , |y| |ẏ| , |ẏ|2

)
,

where y ∈ Rn is the generalized position vector; M = MT ∈ Rn×n is the positive
definite mass matrix; C = CT ∈ Rn×n is the damping matrix; K = KT ∈ Rn×n
is the stiffness matrix and g(y, ẏ) contains all the nonlinear terms in the system,
which are assumed to be analytic. The external forcing εf(Ωt) does not depend on
the positions and velocities.

We transform system (3.1) into a set of 2n first-order ordinary differential equations
by introducing the change of variables x1 = y, x2 = ẏ, with x = (x1,x2) ∈ R2n,
which gives

ẋ =

(
0 I

−M−1K −M−1C

)
x +

(
0

−M−1g(x1,x2)

)
(3.2)

+ ε

(
0

M−1f(Ωt)

)
= Ax + Gp(x) + εFp(Ωt).

System (3.2) has a fixed point at x = 0 when the system is unforced (ε = 0).
Additionally we observe that M−1 is well-defined because M is assumed positive
definite.

The linearized part of system (3.2) is

ẋ = Ax, (3.3)

where the matrix A has 2n eigenvalues λk ∈ C for k = 1, . . . , 2n. Counting multi-
plicities, we sort these eigenvalues based on their real parts in the decreasing order

1ssmtool is available at: www.georgehaller.com.
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3.3. Non-autonomous SSMs for continuous mechanical systems

Re(λ2n) ≤ Re(λ2n−1) ≤ . . . ≤ Re(λ1) < 0, (3.4)

assuming that the real part of each eigenvalue is less than zero and hence the fixed
point of Eq. (3.3) is asymptotically stable. We further assume that the constant
matrix A is semisimple. Similarly to section 2.2, we can, therefore, identify 2n
linearly independent eigenvectors vk ∈ C2n, with k = 1, . . . , 2n, each spanning a
real eigenspace Ek ⊂ R2n with dim(Ek) = 2 × alg(λk) in case Im(λk) 6= 0, or
dim(Ek) = alg(λk) in case Im(λk) = 0.

3.3 Non-autonomous SSMs for continuous mechanical sys-
tems

As a result of A being semisimple, the linear part of system (3.2) is diagonalized
by a linear change of coordinates x = Tq, with T = [v1,v2, . . . ,v2n] ∈ C2n×2n and
q ∈ C2n, yielding

q̇ = diag(λ1, λ2 . . . , λ2n)︸ ︷︷ ︸
Λ

q + Gm(q) + εFm(φ). (3.5)

We consider the two-dimensional modal subspace E = span {v1,v2} ⊂ C2n with
v2 = v̄1. The remaining linearly independent eigenvectors v3, . . . ,v2n span a com-
plex subspace C ⊂ C2n such that the full phase space of (3.5) can be expressed as
the direct sum

C2n = E ⊕ C. (3.6)

We write the diagonal matrix Λ as

Λ =

[
ΛE 0
0 ΛC

]
, (3.7)

Spect (ΛE) = {λ1, λ2} , Spect (ΛC) = {λ3, . . . , λ2n} ,

with ΛE = diag(λ1, λ2) and ΛC = diag(λ3, . . . , λ2n).

Following Haller and Ponsioen [4], we now define a non-autonomous spectral sub-
manifold (SSM), W(E ,Ωt), corresponding to the spectral subspace E of Λ as a two-
dimensional invariant manifold of the dynamical system (3.5) that is 2π

Ω -periodic in
time and

(i) Perturbs smoothly from E at the trivial fixed point q = 0 under the addition
of the O(ε) terms in Eq. (3.5).

(ii) Is strictly smoother than any other 2π
Ω -periodic invariant manifold satisfying

(i).
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We also define the absolute spectral quotient Σ(E) of E as the positive integer

Σ(E) = Int

[
minλ∈Spect(Λ) Reλ

maxλ∈Spect(ΛE) Reλ

]
∈ N. (3.8)

Additionally, we introduce the non-resonance conditions

aReλ1 + bReλ2 6= Reλl, ∀λl ∈ Spect(ΛC), (3.9)

2 ≤ a+ b ≤ Σ(E), a, b ∈ N0.

We now restate the following result from Haller and Ponsioen [4], for the existence
of an SMM in system (3.5).

Theorem 3.1 Under the non-resonance conditions (3.9), the following hold for
system (3.5):

(i) There exists a unique two-dimensional, time-periodic, analytic SSM,W(E ,Ωt)
that depends smoothly on the parameter ε.

(ii) W(E) can be viewed as an embedding of an open set U into the phase space of
system (3.5) via the map

W(s, φ) : U ⊂ C2 × S1 → C2n, (3.10)

with the phase variable φ ∈ S1. We can approximate W(s, φ) in a neighbor-
hood of the origin using a Taylor expansion in the parameterization coordi-
nates s = (s1, s2 = s̄1), with coefficients that depend periodically on the phase
variable φ.

(iii) There exists a polynomial function R(s, φ) : U → U satisfying the invariance
relationship

ΛW(s, φ) + Gm(W(s, φ)) + εFm(φ) (3.11)

= DsW(s, φ)R(s, φ) +DφW(s, φ)Ω,

such that the reduced dynamics on the SSM can be expressed as

ṡ = R(s, φ). (3.12)

Proof : We have simply restated the main theorem by Haller and Ponsioen [4],
which is based on the more abstract results of Cabré et al. [22, 23, 24] for mappings
on Banach spaces.

In the upcoming sections, we will explain how to construct non-autonomous SSMs
and show that the fixed points of the reduced dynamics represent limit cycles in the
full phase space. These limit cycles, in turn, each correspond to points on the FRC
for a particular forcing frequency.
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3.4 Non-autonomous SSM computation

By the smooth dependence of the SSM on ε, we can write

W(s, φ) = W0(s) + εW1(s, φ) +O(ε2), (3.13)

R(s, φ) = R0(s) + εR1(s, φ) +O(ε2). (3.14)

We now substitute Eqs. (3.13)-(3.14) into the invariance Eq. (3.11) and collect
terms of equal order in ε. Given that Gm(q) = O(|q|2), we can Taylor-expand
Gm(W(s, φ)) around ε = 0, to obtain

Gm(W(s, φ)) = Gm(W0(s)) + εDqGm(W0(s))W1(s, φ) +O(ε2). (3.15)

3.4.1 The autonomous coefficient equations

Collecting terms of O(1), we obtain the coefficient equations corresponding to the
autonomous part of the SSM

ΛW0(s) + Gm(W0(s)) = DsW0(s)R0(s). (3.16)

The autonomous part of the SSM and the reduced dynamics, which have previously
been derived from an expansion in ε, are in turn Taylor expanded in the parameter-
ization coordinates s, which we explicitly express as

W0(s) =

 w
0
1(s)
...

w0
2n(s)

 , w0
i (s) =

∑
m

W 0
i,msm, (3.17)

R0(s) =

[
r0

1(s)
r0

2(s)

]
, r0

i (s) =
∑
m

R0
i,msm, (3.18)

where we use the multi-index notation m ∈ N2
0.

Theorem 3.2 The coefficient equation related to the kth-power term of the ith row
of the autonomous invariance Eq. (3.16), for |k| > 2, is equal toλi − 2∑

j=1

kjλj

W 0
i,k =

2∑
j=1

δijR
0
j,k +Qi,k, (3.19)

where Qi,k can be written as

2∑
j=1

∑
m≤k̃j
m 6=ej
m 6=k
mj>0

mjW
0
i,mR

0
j,k̃j−m

− [gi(W0(s))]k .

Proof We derive this result in Appendix 3.A.
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Solving the autonomous invariance equation for |k| > 0

As the autonomous part of the SSM is tangent to the spectral subspace E by con-
struction (see Cabré et al. [24]), we have that

W0(0) = 0, DsW0(0)E = E ,
R0(0) = 0, DsR0(0) = ΛE ,

which satisfies the autonomous coefficient Eq. (3.16) for |k| = 0 and |k| = 1. For
|k| ≥ 2, we solve Eq. (3.19) for W 0

i,k, which yields

W 0
i,k =

∑2
j=1 δijR

0
j,k +Qi,k

λi −
∑2

j=1 kjλj
. (3.20)

3.4.2 Removing near-resonant terms from the autonomous SSM

As observed by Szalai et al. [16], if the spectral subspace E is lightly damped, the
near-resonance relationships

λ1 − ((k + 1)λ1 + kλ2) ≈ 0, λ2 − (kλ1 + (k + 1)λ2) ≈ 0 (3.21)

hold for k ∈ N+. Specifically, we consider the damping in the spectral subspace E
light if

|Re(λ1)| � 1

2k
. (3.22)

When this relation holds, Eq. (3.20) will have large denominators, generally reduc-
ing the domain of convergence of the Taylor series approximations for W(s). To
counter this effect, we will remove these near-resonant terms from the expression
of the autonomous SSM and place them in the autonomous part of the reduced
dynamics by setting

R0
1,(k+1,k) = −Q1,(k+1,k) := γk ⇒ W 0

1,(k+1,k) = 0, (3.23)

R0
2,(k,k+1) = −Q2,(k,k+1) := γ̄k ⇒ W 0

2,(k,k+1) = 0. (3.24)

This results in

R0(s) =

[
λ1s1 +

∑M
i=1 γis

i+1
1 s̄i1

λ̄1s̄1 +
∑M

i=1 γ̄is
i
1s̄
i+1
1

]
, M ∈ N+. (3.25)

where we assumed that

|Re(λ1)| � 1

2M
. (3.26)
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3.4.3 The non-autonomous coefficient equations

Collecting terms of O(ε) we obtain

ΛW1(s, φ) +DqGm(W0(s))W1(s, φ) + Fm(φ) (3.27)

= DsW0(s)R1(s, φ) +DsW1(s, φ)R0(s) +DφW1(s, φ)Ω.

The non-autonomous part of the SSM and the reduced dynamics, are Taylor-expanded
in the parameterization coordinates s, which we explicitly express as

W1(s, φ) =

 w
1
1(s, φ)

...
w1

2n(s, φ)

 , w1
i (s, φ) =

∑
m

W 1
i,m(φ)sm, (3.28)

R1(s, φ) =

[
r1

1(s, φ)
r1

2(s, φ)

]
, r1

i (s, φ) =
∑
m

R1
i,m(φ)sm. (3.29)

Theorem 3.3 For φ ∈ S1, the coefficient equation related to the kth-power term of
the ith row of the non-autonomous invariance Eq. (3.27), is equal toλi − 2∑

j=1

kjλj

W 1
i,k(φ)−DφW

1
i,k(φ)Ω =

2∑
j=1

δijR
1
j,k(φ) + Pi,k(φ), (3.30)

where Pi,k(φ) can be written as

Pi,k(φ) =
2∑
j=1

∑
m≤k̃j
m 6=ej
mj>0

mjW
0
i,mR

1
j,k̃j−m

(φ) +
2∑
j=1

∑
m≤k̃j
m 6=k
mj>0

mjW
1
i,m(φ)R0

j,k̃j−m
(3.31)

− Fi,k(φ)−

 2n∑
j=1

Dqjgi(W0(s))w1
j (s, φ)


k

.

Proof We derive this result in Appendix 3.B.

Solving the non-autonomous invariance equation for |k| = 0

For |k| = 0, Eq. (3.30) becomes

λiW
1
i,0(φ)−DφW

1
i,0(φ)Ω =

2∑
j=1

δijR
1
j,0(φ)− Fi,0(φ), (3.32)
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Assuming that the forcing term Fi,0(φ) can be written as

Fi,0(φ) = F̃i,0
eiφ + e−iφ

2
, (3.33)

we express W 1
i,0(φ) and R1

i,0(φ) in the following form

W 1
i,0(φ) = ai,0eiφ + bi,0e−iφ, R1

i,0(φ) = ci,0eiφ + di,0e−iφ. (3.34)

We can now write the solution of Eq. (3.32) as

W 1
i,0 =

δi1c1,0 + δi2c2,0 − 1
2 F̃i,0

λi − iΩ
eiφ +

δi1d1,0 + δi2d2,0 − 1
2 F̃i,0

λi + iΩ
e−iφ. (3.35)

For lightly damped systems where Reλ1 is small, we obtain small denominators in
Eq. (3.35) if the forcing frequency Ω is approximately equal to Imλ1. We, therefore,
intend to remove this near-resonance by setting

c1,0 =
1

2
F̃1,0, c2,0 = 0, d1,0 = 0, d2,0 =

1

2
F̃2,0. (3.36)

Solving the non-autonomous invariance equation for |k| > 0

For |k| > 0, the solution to the non-autonomous invariance Eq. (3.30) takes the
form

W 1
i,k(φ) =

∑2
j=1 δijcj,k + αi,k

λi −
∑2

j=1 kjλj − iΩ︸ ︷︷ ︸
ai,k

eiφ +

∑2
j=1 δijdj,k + βi,k

λi −
∑2

j=1 kjλj + iΩ︸ ︷︷ ︸
bi,k

e−iφ, (3.37)

where we introduced the following notation for Pi,k in Eq. (3.31)

Pi,k = αi,keiφ + βi,ke−iφ.

3.4.4 Removing near-resonant terms from the non-autonomous SSM

Using the same reasoning as in section 3.4.3, we want to choose ci,k and di,k in Eq.
(3.37) in such a way that we prevent the coefficients ai,k and bi,k form having any
small denominators. We observe that if the spectral subspace E is lightly damped
and the forcing frequency Ω is close to Imλ1, the near-resonance relationships

λ1 − (kλ1 + kλ2)− iΩ ≈ 0,

λ1 − ((k + 1)λ1 + (k − 1)λ2) + iΩ ≈ 0,

λ2 − (kλ1 + kλ2) + iΩ ≈ 0,

λ2 − ((k − 1)λ1 + (k + 1)λ2)− iΩ ≈ 0,
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hold for k ∈ N+, where, for the non-autonomous expressions, a lightly damped
spectral subspace E implies that

|Re(λ1)| � 1

|1− 2k| . (3.38)

Eq. (3.38) is automatically satisfied if the small damping assumption in Eq. (3.22)
is satisfied, because

1

2k
<

1

|1− 2k| , k ∈ N+. (3.39)

The near-resonance terms are removed from the expressions of W1(s, φ) and in-
cluded into the non-autonomous part of the reduced dynamics R1(s, φ) if we set

c1,(k,k) = −α1,(k,k) ⇒ a1,(k,k) = 0,

d2,(k,k) = −β2,(k,k) ⇒ b2,(k,k) = 0,

d1,(k+1,k−1) = −β1,(k+1,k−1) ⇒ b1,(k+1,k−1) = 0,

c2,(k−1,k+1) = −α2,(k−1,k+1) ⇒ a2,(k−1,k+1) = 0,

where, by construction, we have

d2,(k,k) = c̄1,(k,k),

c2,(k−1,k+1) = d̄1,(k+1,k−1).

This results in the following form for the non-autonomous part of the reduced dy-
namics:

R1(s, φ) =

[
c1,0eiφ +

∑M
i=1

(
c1,(i,i)(Ω)si1s̄

i
1eiφ + d1,(i+1,i−1)(Ω)si+1

1 s̄i−1
1 e−iφ

)
c̄1,0e−iφ +

∑M
i=1

(
c̄1,(i,i)(Ω)si1s̄

i
1e−iφ + d̄1,(i+1,i−1)(Ω)si−1

1 s̄i+1
1 eiφ

)] ,
where Eq. (3.26) implies that |Re(λ1)| � 1

2M < 1
|1−2M | .

3.5 Reduced dynamics on the non-autonomous SSM

Our next result concerns the dynamics on the SSM described in Theorem 3.1

Theorem 3.4 Under the assumption that |Re(λ1)| � 1
2M , the dynamics on the

two-dimensional SSM given in Theorem 3.1 can approximately be written in polar
coordinates (ρ, ψ) as

ρ̇ = a(ρ) + ε (f1(ρ,Ω) cos(ψ) + f2(ρ,Ω) sin(ψ)) , (3.40)

ψ̇ = (b(ρ)− Ω) +
ε

ρ
(g1(ρ,Ω) cos(ψ)− g2(ρ,Ω) sin(ψ)) , (3.41)
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where

a(ρ) = Re(λ1)ρ+
M∑
i=1

Re(γi)ρ
2i+1, (3.42)

b(ρ) = Im(λ1) +
M∑
i=1

Im(γi)ρ
2i, (3.43)

f1(ρ,Ω) = Re(c1,0) +

M∑
i=1

(
Re(c1,(i,i)(Ω)) + Re(d1,(i+1,i−1)(Ω))

)
ρ2i, (3.44)

f2(ρ,Ω) = Im(c1,0) +

M∑
i=1

(
Im(c1,(i,i)(Ω))− Im(d1,(i+1,i−1)(Ω))

)
ρ2i, (3.45)

g1(ρ,Ω) = Im(c1,0) +
M∑
i=1

(
Im(c1,(i,i)(Ω)) + Im(d1,(i+1,i−1)(Ω))

)
ρ2i, (3.46)

g2(ρ,Ω) = Re(c1,0) +
M∑
i=1

(
Re(c1,(i,i)(Ω))− Re(d1,(i+1,i−1)(Ω))

)
ρ2i, (3.47)

with 2M + 1 denoting the order of the expansion.

Proof : We derive this result in Appendix 3.C.

We note that Theorem 3.1, upon which Theorem 3.4 is based, is specifically geared
towards constructing the SSM corresponding to the slowest vibration mode of sys-
tem (3.5). However, the main result of Haller and Ponsioen [4] is general enough
to allow for the construction of an SSM over any mode of interest as long as ap-
propriate non-resonance conditions are satisfied. Therefore, an approach similar to
the one described in this section can be applied to extract the FRCs of higher-order
modes.

In the unforced limit (ε = 0), the reduced system (3.40)-(3.41) can have fixed
points but no nontrivial periodic orbits. This is because (3.40) decouples from
(3.41), representing a one-dimensional ordinary differential equation that cannot
have non-constant periodic solutions. By construction, the trivial fixed point of
(3.40)-(3.41) is asymptotically stable and will persist for ε > 0. These persisting
fixed points satisfy the system of equations

F(u) =

[
F1(u)
F2(u)

]
(3.48)

=

[
a(ρ) + ε (f1(ρ,Ω) cos(ψ) + f2(ρ,Ω) sin(ψ))

(b(ρ)− Ω)ρ+ ε (g1(ρ,Ω) cos(ψ)− g2(ρ,Ω) sin(ψ))

]
= 0,
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where

F(u) : R3 → R2, u =

ρΩ
ψ

 .
If there exists a regular point p = (ρ,Ω, ψ), such that F(p) = 0 in (3.48) and the
Jacobian of F evaluated at p is surjective, then by the implicit function theorem,
locally there exists a one-dimensional submanifold of R3 which will represent the
forced response curve when projected onto the (Ω, ρ)-space. The stability of these
fixed points (which correspond to periodic solutions of the full mechanical system) is
determined by the real parts of the eigenvalues of the Jacobian of F(u), as illustrated
in Fig. 3.1.

Figure 3.1: Illustration of how the fixed points of the reduced dynamics for a fixed
forcing frequency Ω0 are mapped to periodic orbits in the full phase space by the
mapping W(s,Ω0t).

In Appendix 3.E, we give a geometric interpretation of the construction of zeros for
the reduced dynamics on the SSM.
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In summary, Theorem 3.4 gives explicit formulas that enable the calculation of the
exact dynamics up to any required order of accuracy for the SSMs associated with
the normal modes of the original mechanical system (3.1). Once the reduced dynam-
ics is calculated, finding the nonlinear periodic responses of the system, including
isolas, simply amounts to finding the zeros of the right-hand side of Eqs. (3.40)-
(3.41). No other numerical simulation or iteration is involved in constructing the
forced response from SSM-based, exact model reduction.

3.6 Example: A discretized, forced Bernoulli beam with a
nonlinear spring

As an application of our main result on non-autonomous, SSM-based model re-
duction and forced response, we now consider a discretized, cantilevered Bernoulli
beam with a cubic spring attached to the free end of the beam. We extract the
forced-response curve around the first eigenfrequency of the beam using ssmtool2,
the HB method (nlvib tool [61]) and the po toolbox of coco, a numerical continu-
ation package discussed in [31]. We apply all three methods on the same discretized
beam for an increasing number of elements in the discretization, ranging from 10
degrees of freedom to 10,000 degrees of freedom. We note that nlvib tool and coco
only run in series. Indeed, neither approach would benefit from parallelization over
different forcing cases, as steady-state responses forced for one parameter configura-
tion are heavily used to initialize the search for steady states for the next parameter
configuration. In contrast, finding steady states from ssmtool involves no numerical
simulations or iterations and hence can be done in parallel for all forcing parameter
values of interest. We will nevertheless include results from ssmtool run in series,
in addition to a parallelized run over 20 processors.

3.6.1 Equations of motion for the Bernoulli beam

The beam is of length L, with the square cross-section A, situated in a Cartesian
coordinate system of (x, y, z) and basis (ex, ey, ez). The relevant beam parameters
are listed in Table 3.1. The line of points coinciding with the x-axis is called the
beam’s neutral axis. The Bernoulli hypothesis states that initially straight material
lines, normal to the neutral axis, remain (a) straight and (b) inextensible, and
(c) rotate as rigid lines to remain perpendicular to the beam’s neutral axis after

2ssmtool is available at: www.georgehaller.com.
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3.6. Example: A discretized, forced Bernoulli beam with a nonlinear spring

Table 3.1: Notation used in the discretized beam example.

Symbol Meaning (unit)

L Length of beam (mm)

h Height of beam (mm)

b Width of beam (mm)

ρ Density (kg/mm3)

E Young’s Modulus (kPa)

I Area moment of inertia (mm4)

κ Coefficient cubic spring (mN/mm3)

A Cross-section of beam (mm2)

P External forcing amplitude (mN)

deformation. These kinematic assumptions are satisfied the displacement field,

ux(x, y, z, t) = −z ∂w(x, t)

∂x
, (3.49)

uy(x, y, z, t) = 0, (3.50)

uz(x, y, z, t) = w(x, t), (3.51)

where (ux, uy, uz) are the components of the displacement field u(x, y, z, t) of a
material point located at (x, y, z). The transverse displacement of a material point
with initial coordinates on the beam’s neutral axis at z = 0 is denoted by w(x). The
rotation angle of a transverse normal line about the y-axis is given by −∂xw(x).

Using the Green-Lagrange strain tensor, we can express the relevant strains as

εxx = −z ∂
2w(x, t)

∂x2
, γxz = 2εxz = 0. (3.52)

We assume an isotropic, linearly elastic constitutive relation between the stresses
and strains, i.e.

σxx = Eεxx, (3.53)

which finally leads to the equation of motion of the beam

ρA
∂2w(x, t)

∂t2
− ρI ∂

4w(x, t)

∂x2∂t2
+ EI

∂4w(x, t)

∂x4
= 0. (3.54)

We assume that the thickness of the beam is small compared to its length, i.e.,
h � L, and hence we can neglect the mixed partial derivative term in Eq. (3.54)
(cf. Reddy and Mahaffey [33]).

After discretization of (3.54), we obtain the set of ordinary differential equations

Mẍ + Kx = 0, (3.55)

69
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where x ∈ R2m, and m is the number of elements used in the discretization. Each
node of the beam has two coordinates related to the transverse displacement w(x)
and the rotation angle −∂xw(x) of the cross section. We assume structural damping
by considering the damping matrix

C = αM + βK, (3.56)

with parameters α and β. We apply cosinusoidal external forcing on the transverse
displacement coordinate at the free end of the beam with forcing frequency Ω and
forcing amplitude εP . Additionally, we add a cubic spring along this coordinate
with coefficient κ. As a result, the equations of motion of the beam can be written
as

Mẍ + Cẋ + Kx + g(x, ẋ) = εf(Ωt). (3.57)

We illustrate the kinematics, the forcing and the cubic spring in Fig. 3.2.

z

z

w

w
x

–z

dw

dx

linear Bernoulli beam

L

h

dw

dxκ

εPcos(Ωt)

Figure 3.2: Forced Bernoulli beam with a cubic spring.

We transform Eq. (3.57) to first-order form by setting x = [x1,x2]> = [y, ẏ]> and
apply a change of coordinates x = Tq, resulting in

q̇ = T−1

(
0 I

−M−1K −M−1C

)
Tq + T−1

(
0

−M−1g(Tq)

)
(3.58)

+ εT−1

(
0

M−1f(Ωt)

)

= Λq + T−1

(
0 0
0 M−1

)
0
...

−κ
(∑2n

i=1[T]n−1,iqi

)3

0


+ εFm(Ωt)

= Λq + Gm(q) + εFm(Ωt).

70



3.6. Example: A discretized, forced Bernoulli beam with a nonlinear spring

3.6.2 Constructing the SSM-reduced system

Using ssmtool, we compute a third-order SSM reduced model of system (3.58),
which will take the following form

ρ̇ = a(ρ) + ε (f1(ρ,Ω) cos(ψ) + f2(ρ,Ω) sin(ψ)) , (3.59)

ψ̇ = (b(ρ)− Ω) +
ε

ρ
(g1(ρ,Ω) cos(ψ)− g2(ρ,Ω) sin(ψ)) , (3.60)

where

a(ρ) = Re(λ1)ρ+ Re(γ1)ρ3,

b(ρ) = Im(λ1) + Im(γ1)ρ2,

f1(ρ,Ω) = Re(c1,(0,0)) +
(
Re(c1,(1,1)(Ω)) + Re(d1,(2,0)(Ω))

)
ρ2,

f2(ρ,Ω) = Im(c1,(0,0)) +
(
Im(c1,(1,1)(Ω))− Im(d1,(2,0)(Ω))

)
ρ2,

g1(ρ,Ω) = Im(c1,(0,0)) +
(
Im(c1,(1,1)(Ω)) + Im(d1,(2,0)(Ω))

)
ρ2,

g2(ρ,Ω) = Re(c1,(0,0)) +
(
Re(c1,(1,1)(Ω))− Re(d1,(2,0)(Ω))

)
ρ2.

We can explicitly compute the autonomous and non-autonomous SSM coefficients,
which are used to verify the output given by ssmtool,

γ1 = −3κ[B̃]1,2n−1[T]2n−1,1[T]n−1,2, (3.61)

c1,(0,0) =
[B̃]1,2n−1P

2
, (3.62)

c1,(1,1) = 6κ[B̃]1,2n−1[T]n−1,1[T]n−1,2

2n∑
j=2

[T]n−1,j [B̃]j,2n−1P

2(λj − iΩ)
, (3.63)

d1,(2,0) = 3κ[B̃]1,2n−1[T]2n−1,1

2n∑
j=1
j 6=2

[T]n−1,j [B̃]j,2n−1P

2(λj + iΩ)
, (3.64)

where the matrix B̃ is defined as

B̃ = T−1

(
0 0
0 M−1

)
. (3.65)

3.6.3 Numerical results

In our upcoming comparison, the collocation computations were performed on a
remote Intel Xeon E5-2680v3 processor (3.3 GHz) on the ETH cluster due to large
computational times. The SSM and HB computations were performed on an In-
tel Xeon X5675 processor (3.07 GHz) on a local workstation. We now compute
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3. Non-autonomous SSMs

the forced-response curves around the first vibration mode of the discretized beam
model described above. The FRCs will be obtained independently from SSM the-
ory, the harmonic balance method and a collocation method. We list the chosen
geometric and material parameter values in Table 3.2.

Table 3.2: Geometric and material parameters for the Bernoulli beam.

Symbol Value

L 2700 mm

h 10 mm

b 10 mm

ρ 1780 · 10−9 kg/mm3

E 45 · 106 kPa

κ 4 mN/mm3

α 1.25 · 10−4 s−1

β 2.5 · 10−4 s

P 0.1 mN

As system (3.58) is a discretized version of Eq. (3.54), the first natural frequency of
the conservative, unforced, fixed-free beam, consisting of m elements, will approxi-
mate

ω1 = (β1l)
2

√
EI

ρAl4
≈ 7 rad/s, β1l = 1.875104, (3.66)

for an increasing value of m (see Rao [62]). If the damping is small, the imaginary
part of λ1 will approximately be equal to ω1 (cf. Géradin and Rixen [29]).

We used the ode isol2po toolbox constructor in coco [31] for continuation along
a family of single-segment periodic orbits from an initial solution guess. The single-
segment collocation zero problem is initially constructed on a default mesh with 10
intervals, 5 base points and 4 collocation nodes in each interval. The continuation
algorithm is then instructed to make adaptive changes to the problem discretization
after each step of continuation.

We also used the nlvib tool [61], which implements the HB method coupled to a
path-continuation procedure. In the HB method, it is assumed that the system has
a steady-state solution represented by a Fourier series

y = Re(

∞∑
k=0

cke
ikΩt), (3.67)
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where ck ∈ Cn is a vector containing the complex Fourier coefficients corresponding
to the kth harmonic. Furthermore, it is assumed that the nonlinear force vector
g(y, ẏ) can be approximated by a Fourier series as well.

By substituting the assumed solution (3.67) into the original ordinary differential
equations (3.57) and restricting the result to finitely many harmonics H (we will
use H = 10), the original equations are transformed into a set of nonlinear algebraic
equations(
−(kΩ)2M + ikΩC + K

)
ck + fnl,k(c0, . . . , cH)− fext,k = 0, k = 0, . . . ,H, (3.68)

to be solved simultaneously for all ck, with k = 0, . . . ,H. This is typically done
using a Newton-Raphson iteration scheme.

To evaluate the nonlinear force vector fnl,k(c0, . . . , cH) in (3.68), nlvib tool uses
the Alternating-Frequency-Time (AFT) method, proposed first by Cameron et al.
[63], which uses the inverse Fourier transform of the positions and velocities in the
frequency domain, creating a sampled time signal over one period of oscillation.
The time signal is then substituted into the nonlinear force vector g(y, ẏ) and the
resulting output signal is in turn transformed back to the frequency domain using
a Fourier transformation. For several implementations of the AFT method we refer
to [64, 65, 66, 67].

A shortcoming of the HB method, as compared to SSM theory and the collocation
method used by coco, is that it does not provide any information about the stability
of the solutions, which has to be analyzed in a separate effort. As described in
Detroux et al. [64], a variant of Floquet theory can be used in order to identify
the stability of the solutions, which is applicable in the frequency domain and is
known as Hill’s method [68]. This separate method has not been implemented in
the current work.

We now compute the forced-response curve, around ω1 (3.66), over the interval
SΩ = [6.88, 7.12] for an increasing number of elements m and ε = 0.002. We
verify our results and compare the recorded computational times using ssmtool
with the numerical continuation package coco and the harmonic balance method.
The corresponding computational times are listed in Fig. 3.3.

As can be seen in Fig. 3.3, the collocation based method with coco takes 12 full
days to compute the forced-response curve, over the interval SΩ, for a 50-degrees-
of-freedom system and due to this reason has not been used for higher-degrees-of-
freedom simulations. For the discretized beam with 500-degrees-of-freedom, the HB
method with 10 harmonics takes around 1 day to compute the forced response curve,
where the number of nonlinear algebraic equations and unknowns is given by

p = n(2H + 1).
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3. Non-autonomous SSMs

Figure 3.3: Computational times to extract the forced-response curve around the
first vibration mode of a cantilevered Bernoulli beam with a cubic spring over the
interval SΩ = [6.88, 7.12], using collocation, harmonic balance and ssmtool.

For the 1000 degrees-of-freedom system, the total number of nonlinear algebraic
equations is p = 21000, which has to be solved for the 21000 unknown Fourier
coefficients. This becomes unfeasible using the available matlab implementation
of the HB method.

For the ssmtool calculation, the 10,000 degrees of freedom example takes a total of
13 hours when computed on a single core. Here we sampled the frequency interval
SΩ for 60 frequency values Ωi and computed the third-order approximation for the
non-autonomous SSM. As the autonomous part does not depend on the forcing
frequency Ω, we only have to compute this part once. The non-autonomous part is
recalculated for different samples Ωi, which makes it possible to parallelize the non-
autonomous computations by dividing the frequency samples over different cores.
Running the non-autonomous part of the SSM computation on 20 cores reduces the
total computational time from 13 hours to 2 hours.

The resulting FRCs corresponding to the absolute maximum displacement during
one period of oscillation of the transverse component at the free end of the beam,
for n = {10, 50, 500, 10000} over the interval SΩ, are listed in Figs. 3.4. In Fig.
3.5 we illustrate the phase plane of the two-dimensional SSM-reduced system ex-
tracted from the 100 degrees-of-freedom beam example, showing how the domain of
attraction of the higher amplitude stable fixed point reduces up to the point where
a saddle-node bifurcation occurs, which is where the stable and saddle-type fixed
points collide and annihilate each other.
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Figure 3.4: Extracted forced response curves for xn−1, using a third-order SSM
reduced model, collocation and the harmonic balance method, for an increasing
number of degrees of freedom n, where n = {10, 50, 500, 10000} in Figs (a), (b), (c)
and (d), respectively.
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(a) (b)

(c) (d)

Figure 3.5: Phase plane of the two-dimensional SSM-reduced system extracted from
the 100 degrees-of-freedom beam example for different forcing frequencies Ω and
fixed forcing amplitude ε = 0.002. The Figures (a), (b) and (c), the reduced system
has a total of three fixed points, of which two are stable spirals and one is a saddle.
As the forcing frequency is increased (cf. Fig. (d)), a saddle-node bifurcation occurs
where the two higher-amplitude fixed points collide and annihilate each other. The
stable and unstable manifolds of the saddle-type fixed point are shown in green and
red. Notice how the domain of attraction of the higher amplitude stable fixed point
reduces significantly in area as the forcing frequency is increased, making it harder
to end up in this particular fixed point.
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3.7 Conclusions

In this work, we have used the reduced dynamics on two-dimensional time-periodic
spectral submanifolds (SSMs) to extract forced-response curves (FRCs) around the
vibration modes of nonlinear non-conservative mechanical systems. We compared
the computational times needed to extract such FRCs from systems with an increas-
ing number of degrees of freedom, using SSM theory, the harmonic balance (HB)
method and a collocation method implemented in the po toolbox of coco.

Varying the number of degrees of freedom, from 10 to a 10,000, we have found
that extracting the FRC using the HB method and the collocation method becomes
rapidly intractable. However, using ssmtool, a 10,000-degree-of-freedom system
takes approximately 13 hours to obtain the FRC over a predefined set of frequency
values.

An additional advantage of the present approach is that SSM computations can
be parallelized. The frequency domain of interest can be divided into subsets and
each computation over such a subset can be sent to a different core. For the 10,000
degrees-of-freedom system, running the ssmtool computation in parallel on 20 cores
reduces the computational time from 13 hours to approximately 2 hours. These
speeds and corresponding degrees of freedom appear certainly out of reach for any
other approach that we are aware of for steady-state calculations in periodically
forced nonlinear mechanical systems.

We have visualized the phase space of the two-dimensional SSM-reduced systems.
Doing so we have reproduced the behavior commonly observed in experiments: dur-
ing a frequency sweep of the system, following the higher-amplitude stable periodic
solution branch becomes harder near folding points. Indeed, as our analysis reveals,
small perturbations can cause the response of the system to escape the domain of
attraction of the higher-amplitude stable periodic orbit, ending up in the domain
of attraction of the lower-amplitude stable periodic solution. Specifically, the do-
main of attraction of the higher-amplitude fixed point, for the SSM-reduced system,
shrinks in area up to the point where it completely vanishes during a saddle-node
bifurcation.

When the forcing frequency, Ω, and the forcing amplitude, ε, are fixed, we showed
that the zeros of the reduced dynamics lie on an ellipse-shaped curve, which gives
a new geometric interpretation of the family of periodic orbits of the full system.
Additionally, if we reduced our analysis to the setting of Breunung and Haller [8]
and computed the non-autonomous part of the SSM only up to zeroth order in the
parameterization coordinates, the ellipse would reduce to a circle.

In summary, we find that spectral submanifolds provide a mathematically exact
model reduction tool for high-degree-of-freedom nonlinear mechanical systems at
previously unthinkable speeds. The reduction method does not require the numer-
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ical solution of differential equations: all effort goes into constructing appropriate
matrices corresponding to a linear system of equations from which the solution de-
scribes the SSM and its reduced dynamics. Locating steady states then requires
solving a two-dimensional algebraic system of equations, which is practically instan-
taneous.

The main performance limitation for SSM-based model reduction is not processor
speed but memory needs, which depends on the structure of the nonlinearities of
the mechanical system. On the positive side, the storage requirements for SSM
coefficients can be significantly optimized relative to the proof-of-concept approach
presented here. This optimization is an improvement of ssmtool and is currently
ongoing work that will be published in the future.
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Appendix

3.A Proof of Theorem 3.2

For row i, the kth-power terms on the right-hand side of Eq. (3.16) can be expressed
as

[DsW0(s)R0(s)]ki =

2∑
j=1

∑
m≤k̃j
mj>0

mjW
0
i,mR

0
j,k̃j−m

(3.69)

The kth-power terms on the left-hand side of the ith row of Eq. (3.16) can be written
as

[ΛW0(s)]ki = λiW
0
i,k, (3.70)

[Gm(W0(s))]ki = [gi(W0(s))]k . (3.71)

where we have made use of the multi-index notation

m ∈ N2
0, k ∈ N2

0, k̃j = k + ej , (3.72)

with ej denoting a unit vector.

The coefficient equation related to the kth-power term of the ith row of the au-
tonomous invariance Eq. (3.16) can now be rewritten asλi − 2∑

j=1

kjλj

W 0
i,k =

2∑
j=1

δijR
0
j,k +Qi,k, (3.73)

where Qi,k is defined as

Qi,k =

2∑
j=1

∑
m≤k̃j
m 6=ej
m 6=k
mj>0

mjW
0
i,mR

0
j,k̃j−m

− [gi(W0(s))]k ,

which proves the result stated in Theorem 3.2.
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3.B Proof of Theorem 3.3

Assuming that φ ∈ S1, we obtain that for the ith row, the kth-power terms on the
right-hand side of Eq. (3.27) can be expressed as

[DsW0(s)R1(s, φ)]ki =
2∑
j=1

∑
m≤k̃j
mj>0

mjW
0
i,mR

1
j,k̃j−m

(φ), (3.74)

[DsW1(s, φ)R0(s)]ki =
2∑
j=1

∑
m≤k̃j
mj>0

mjW
1
i,m(φ)R0

j,k̃j−m
, (3.75)

[DφW1(s, φ)Ω]ki = DφW
1
i,k(φ)Ω. (3.76)

The kth-power terms on the left-hand side of the ith row of Eq. (3.27) can be written
as

[ΛW1(s, φ)]ki = λiW
1
i,k(φ), (3.77)

[DqGm(W0(s))W1(s, φ)]ki =

 2n∑
j=1

Dqjgi(W0(s))w1
j (s, φ)


k

, (3.78)

[Fm(φ)]ki = Fi,k(φ). (3.79)

Therefore, the coefficient equation related to the kth-power term of the ith row of
the non-autonomous invariance Eq. (3.27) isλi − 2∑

j=1

kjλj

W 1
i,k(φ)−DφW

1
i,k(φ)Ω =

2∑
j=1

δijR
1
j,k(φ) + Pi,k(φ), (3.80)

where

Pi,k(φ) =

2∑
j=1

∑
m≤k̃j
m 6=ej
mj>0

mjW
0
i,mR

1
j,k̃j−m

(φ) +

2∑
j=1

∑
m≤k̃j
m 6=k
mj>0

mjW
1
i,m(φ)R0

j,k̃j−m
(3.81)

− Fi,k(φ)−

 2n∑
j=1

Dqjgi(W0(s))w1
j (s, φ)


k

,

which concludes the proof of Theorem 3.3.
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3.C Proof of Theorem 3.4

The O(ε) approximation of the reduced dynamics for s can be written as

ṡ = R(s, φ) = R0(s) + εR1(s, φ), (3.82)

where the first row of Eq. (3.82) takes the form

ṡ1 = λ1s1 +

M∑
i=1

γis
i+1
1 s̄i1 (3.83)

+ ε

(
c1,0eiφ +

M∑
i=1

(
c1,(i,i)(Ω)si1s̄

i
1eiφ + d1,(i+1,i−1)(Ω)si+1

1 s̄i−1
1 e−iφ

))
,

Introducing a change to polar coordinates, s1 = ρeiθ, s̄1 = ρe−iθ, dividing by eiθ

and introducing the new phase coordinate ψ = θ − φ, we obtain

ρ̇+ iρ(ψ̇ + Ω) = λ1ρ+

M∑
i=1

γiρ
2i+1 (3.84)

+ ε

(
c1,0e−iψ +

M∑
i=1

(
c1,(i,i)(Ω)ρ2ie−iψ + d1,(i+1,i−1)(Ω)ρ2ieiψ

))
.

We obtain the result listed in Theorem 3.4 by splitting Eq. (3.84) into its real and
imaginary part.

3.D Multivariate recurrence relations

3.D.1 Products

The ith row on the right hand side of the O(1) coefficient equation can be written
as

2∑
j=1

∂sjw
0
i (s)r0

j (s) =
2∑
j=1

∑
m

mj>0

mjW
0
i,msm−ej

∑
n

R0
j,nsn

 . (3.85)

The kth power coefficient of this resulting product is recursively defined as 2∑
j=1

∂sjw
0
i (s)r0

j (s)


k

=

2∑
j=1

∑
m≤k̃j
mj>0

mjW
0
i,mR

0
j,k̃j−m

. (3.86)
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Example 3.5 To demonstrate how the product in Eq. (3.86) is carried out in
ssmtool, we assume that we have the following arbitrary polynomial functions for
the autonomous SSM and autonomous reduced dynamics, which already has been
computed up to order |k| = 3, where i = 1,

w0
1(s) = αs3

1 + βs2
1s2, r0

1(s) = γs2
2 + δs1s2, r0

2(s) = εs2
2, (3.87)

We want to compute the coefficient related to the monomial term k = (2, 2), which
corresponds to order |k| = 4. Using Eq. (3.86), we write 2∑

j=1

∂sjw
0
1(s)r0

j (s)


(2,2)

=
∑

m≤(3,2)
m1>0

m1W
0
1,mR

0
1,(3,2)−m (3.88)

+
∑

m≤(2,3)
m2>0

m2W
0
1,mR

0
2,(2,3)−m.

To increase the efficiency and reduce the total computational time and memory
usage, the updated version of ssmtool keeps track of all the non-zero coefficients in
w0

1(s), r0
1(s) and r0

2(s). This way, instead of carrying out the full summations in Eq.
(3.86), we can selectively carry out the products from which we know in advance
that these terms will give a contribution to the current coefficient of interest. The
entries of the non-zero coefficients for each polynomial function are listed in an
individual vector and stored in matlab,

W 0
1,index =

[
(3, 0)
(2, 1)

]
, R0

1,index =

[
(0, 2)
(1, 1)

]
, R0

2,index =
[
(0, 2)

]
. (3.89)

From this we conclude that for the first summation term on the right hand side of
Eq. (3.88), the absolute maximum number of iterations that we possibly have to
perform are two, related to the terms m = (3, 0) and m = (2, 1), as these are the
only currently non-zero terms in w0

1(s). Depending on the non-zero coefficients of
the reduced dynamics, the number of iterations needed either remains the same or
decreases. The coefficients, related to r0

1(s), that are needed in the summation are

R0
1,(3,2)−(3,0) = R0

1,(0,2), R0
1,(3,2)−(2,1) = R0

1,(1,1), (3.90)

which both are non-zero in this particular example. Therefore, we can write∑
m≤(3,2)
m1>0

m1W
0
1,mR

0
1,(3,2)−m = 3W 0

1,(3,0)R
0
1,(0,2) + 2W 0

1,(2,1)R
0
1,(1,1) (3.91)

= 3αγ + 2βδ.
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For the second summation term on the right hand side of Eq. (3.88), the maximum
number of iterations that we possibly have to perform is one, corresponding to
m = (2, 1), as it is required that m2 > 0, which is not the case for m = (3, 0).
Again, depending on the coefficients of the reduced dynamics, it is possible that
less iterations are needed. The coefficients, related to r0

2(s), that are needed in the
summation are

R0
2,(2,3)−(2,1) = R0

2,(0,2), (3.92)

which is non-zero in this particular example. We can express the second summation
term on the right hand side of Eq. (3.88) as∑

m≤(2,3)
m2>0

m2W
0
1,mR

0
2,(2,3)−m = W 0

1,(2,1)R
0
2,(0,2) = βε. (3.93)

Therefore, the coefficient related to the term k = (2, 2) of the product
∑2

j=1 ∂sjw
0
1(s)r0

j (s),
is equal to  2∑

j=1

∂sjw
0
1(s)r0

j (s)


(2,2)

= 3αγ + 2βδ + βε. (3.94)

For verification, we manually compute the product

2∑
j=1

∂sjw
0
1(s)r0

j (s) = (3αγ + 2βδ + βε) s2
1s

2
2 +O(|s|4). (3.95)

which agrees with our result.

3.D.2 Compositions

The ith row of the composition on the left hand side of Eq. (3.16) can be written
as

h(s)a =
∑
k

Ha,ksk = (w0
i (s))a =

(∑
m

W 0
i,msm

)a
. (3.96)

We want to obtain the coefficient related to the term k 6= 0 of this composition. We
pick an index j, such that kj = min(kl : kl 6= 0) and differentiate Eq. (3.96) with
respect to sj , yielding

∂sjh(s) = a(w0
i (s))a−1∂sjw

0
i (s) = ah(s)a−1∂sjw

0
i (s), (3.97)

which is equivalent to∑
k

kj>0

kjHa,ksk−ej = a
∑
n

Ha−1,nsn
∑
m

mj>0

mjW
0
i,msm−ej . (3.98)
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Collecting the coefficient corresponding to the monomial term sk−ej on each side of
Eq. (3.98) yields the coefficient related to the k 6= 0 term of Eq. (3.96),

Ha,k =
a

kj

∑
m≤k
mj>0

mjW
0
i,mHa−1,k−m. (3.99)

Example 3.6 We give an demonstration of Eq (3.99), where we will use the same
polynomial function w0

1(s) as in Example 3.5,

w0
1(s) = αs3

1 + βs2
1s2. (3.100)

Assume we are interested in the coefficient related to the monomial term k = (5, 1)
of the square of w0

1(s), i.e. where a = 2. We choose j = 2 such that we minimize
the number of iterations needed. Then using Eq. (3.99) we can write

H2,(5,1) =
2

1

∑
m≤(5,1)
m2>0

m2W
0
1,mH1,(5,1)−m, (3.101)

where we note that H1,m is equal to W 0
1,m. The entries of the non-zero coefficients

for w0
1(s) are listed in an individual vector,

W 0
1,index =

[
(3, 0)
(2, 1)

]
. (3.102)

From this we conclude that the absolute maximum number of iterations that we
possibly have to perform are two, related to the terms m = (3, 0) and m = (2, 1),
as these are the only currently non-zero terms in w0

1(s). However, taking a closer
look, we obverse that for m = (3, 0), m2 = 0, and therefore this index is excluded
from the summation. Summing over the remaining index m = (2, 1), we obtain

H2,(5,1) =
2

1

∑
m≤(5,1)
m2>0

m2W
0
1,mW

0
1,(5,1)−m = 2αβ. (3.103)

To verify this result, we manually compute the square of w0
1(s),

(w0
1(s))2 = 2αβs5

1s2 +O(|s|6). (3.104)
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3.E A geometric interpretation of the fixed points of the
reduced dynamics

We can interpret the zero problem (3.48) in a geometrical way by multiplying F1(u)
and F2(u) with g1 6= 0 and f2 6= 0, respectively, and rewriting the result as

s(ρ,Ω, ψ) =

[
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

]
︸ ︷︷ ︸

R(ψ)

[
f2g2

f2g1

]
︸ ︷︷ ︸

v1

+

[
f1g1 − f2g2

0

]
︸ ︷︷ ︸

v2

cos(ψ) (3.105)

= −1

ε

[
g1a

f2(b− Ω)ρ

]
︸ ︷︷ ︸

v3

,

where we introduced the rotation matrix R(ψ) ∈ SO(2). For a fixed value of ρ0, Ω0

and 0 ≤ ψ < 2π, s(ρ0,Ω0, ψ) represents an ellipse with semi-major and semi-minor
axes, ‖s(ρ0,Ω0, ψ1)‖ and ‖s(ρ0,Ω0, ψ2)‖, respectively, where

ψ1 = arg max
0≤ψ≤π

‖s(ρ0,Ω0, ψ)‖, ψ2 = arg min
0≤ψ≤π

‖s(ρ0,Ω0, ψ)‖.

We can always solve Eq. (3.105) by scaling the length of v3 (varying ε) such that
v3 points to a point on the ellipse s(ρ0,Ω0, ψ). This intersection point then defines
a ψ value for which Eq. (3.105) is satisfied. Each point where s and v3 coincide
for different values of ρ gives a point on the forced-response curve. An illustration
of this concept is shown in Fig. 3.E.1, where v3 intersects s a total of three times
for increasing ρ. These three intersections correspond to three points on the forced-
response curve for a fixed forcing frequency Ω and fixed forcing amplitude ε.

We will show that for a mechanical system with symmetric system matrices and
with structural damping, we can always pick a modal transformation matrix T,
such that g1 and f2 will have a non-zero constant part.

As seen in Eq. (3.36), the zeroth-order constant, c1,0, is equal to the first element
of the vector F̃0/2, which is extracted from the modal force vector

Fm(φ) = T̃−1

[
0

M−1f(φ)

]
=

F̃0

2

(
eiφ + e−iφ

)
. (3.106)

For a mechanical system with symmetric system matrices and with structural damp-
ing, following [8], we introduce a mass normalized real modal transformation matrix
E, defined in terms of the quantities in the second-order system (3.1) as follows:

(M−1K)E = E diag(ω2
1, . . . , ω

2
n),

E>ME = I, E>CE = diag(β1, . . . , βn), E>KE = diag(ω2
1, . . . , ω

2
n),
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3. Non-autonomous SSMs

Figure 3.E.1: Illustration of s(ρ,Ω, ψ) and v3 for a fixed forcing frequency Ω, ψ ∈
[0, 2π), while varying ρ. The points where s(ρ,Ω, ψ) and v3 coincide for different
values of ρ will each correspond to a point on the forced-response curve.

Here the eigenvalues of the linearized part of system (3.2) are given by

λ2i−1 = −βi
2

+

√(
βi
2

)2

− ω2
i , λ2i = −βi

2
−
√(

βi
2

)2

− ω2
i , i = 1, . . . , n.

(3.107)
We now introduce the modal transformation matrix T̂ that will diagonalize the
linear matrix A in (3.2), i.e., we let

T̂ =

[
E E

EΛ1 EΛ2

]
, Λ̂ = T̂−1AT̂ =

[
Λ1 0
0 Λ2

]
(3.108)

Λ1 = diag(λ1, λ3, . . . , λ2n−1), Λ2 = diag(λ2, λ4, . . . , λ2n) = Λ̄1.

The inverse of the modal transformation matrix T̂ is given by

T̂−1 =

[
E−1 + (Λ2 −Λ1)−1E−1Λ1E

−1 −(Λ2 −Λ1)−1E−1

(Λ2 −Λ1)−1E−1Λ1E
−1 (Λ2 −Λ1)−1E−1

]
. (3.109)

We observe that the last n columns of T̂−1 are purely imaginary. Note that the
current ordering of the columns of T̂, will result in a diagonalized matrix Λ̂ with
a different column ordering as compared to Λ in (3.5). However, we can always
reorder the columns of T̂ to T̃ such that we obtain the original diagonalized matrix
Λ, without altering the fact that the last n columns of T̃−1 will be imaginary. This
is due to the fact that a reordering of the columns of a full rank matrix P, will
result in a reordering of the rows of P−1, but not the columns of P−1.
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3.E. A geometric interpretation of the fixed points of the reduced dynamics

As a result, the vector F̃0 will be purely imaginary as can be seen from Eq. (3.106),
and, consequently, the zeroth order constant c1,0 in (3.36) will be purely imaginary.
Additionally, the first n rows of T̃ are real (as T̃ is only a column shifted version of
T̂), meaning that the if we map a fixed point for the reduced system back to the
full phase space, we observe that the leading order linear term in ρ, corresponding
to a positional coordinate yi of the full system, will have a phase shift of ψ with
respect to the forcing, i.e.

yi = [T̃]i,1ρei(φ+ψ) + [T̃]i,2ρe−i(φ+ψ) +O(|ρ|2, ε)
= [T̃]i,1ρ

(
ei(φ+ψ) + e−i(φ+ψ)

)
+O(|ρ|2, ε), i = 1, . . . , n,

provided that [T̃]i,1 = [T̃]i,2 6= 0. No additional phase is introduced by the coeffi-
cients of the modal transformation matrix for the positional coordinates yi, as all
the coefficients are real.

In the setting of Breunung and Haller [8], where the parameterization W(s, φ) and
the reduced dynamics R(s, φ) are truncated at O(ε|s|, ε2), which is justified when

s = O(ε
1

2M+2 ), the zero problem (3.48) can be written as

F̃(u) =

[
F̃1(u)

F̃2(u)

]
(3.110)

=

[
a(ρ) + ε (Re(c1,0) cos(ψ) + Im(c1,0) sin(ψ))

(b(ρ)− Ω)ρ+ ε (Im(c1,0) cos(ψ)− Re(c1,0) sin(ψ))

]
= 0.

The ellipse s reduces to a circle[
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

]
︸ ︷︷ ︸

R(ψ)

[
Re(c1,0)
Im(c1,0)

]
︸ ︷︷ ︸

v1

= −1

ε

[
a(ρ)

(b(ρ)− Ω)ρ

]
︸ ︷︷ ︸

v2

. (3.111)

In their setting, at the intersection of the FRC with the autonomous backbone curve,
i.e., where b(ρ)−Ω = 0, the vectors v1 and v2 are orthogonal with respect to each
other, due to the fact the real part of c1,0 is zero. Therefore, the phase shift ψ will
be equal to π/2.
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Chapter 4

Analytic Prediction of Isolated
FRCs from SSMs

Introduction

We show how spectral submanifold (SSM) theory can be used to provide analytic
predictions for the response of periodically forced multi-degree-of-freedom mechan-
ical systems. These predictions include an explicit criterion for the existence of
isolated forced responses that will generally be missed by numerical continuation
techniques. Our analytic predictions can be refined to arbitrary precision via an
algorithm that does not require the numerical solutions of the mechanical system.
We illustrate all these results on low- and high-dimensional nonlinear vibration prob-
lems. We find that our SSM-based forced-response predictions remain accurate in
high-dimensional systems, in which numerical continuation of the periodic response
is becoming computationally expensive.

4.1 Introduction

For an n-degree-of-freedom, periodically forced, nonlinear mechanical system, the
forced response curve (FRC) gives the amplitude of the periodic response of the
system as a function of the frequency of the periodic forcing. The FRC may contain
isolated branches of periodic solutions, also known as isolas, that are detached from
the main FRC. A small change in the forcing amplitude might result in the merger
of the isola with the main branch of the FRC (cf. Detroux et al. [69] and Noël et
al. [70]), which can lead to an unexpected and significant increase in the response
amplitude.

The existence of isolated branches of periodic solutions in the frequency response
of nonlinear oscillatory systems has been known since the 1950s [71]. For an exten-
sive review of the subject, we refer the reader to Habib et al. [72]. It is broadly
agreed that the identification of isolas is difficult, because numerical continuation
techniques are generally initiated on a non-isolated solution branch and will there-
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4. Analytic Prediction of Isolated FRCs from SSMs

fore miss any isolated branch. Similarly, a frequency sweep of the full system will
generally not capture an isolated response unless the sweep is initialized on one.

The detection of isolas and the prediction of their behavior under changing system
parameters can be critical in practice because, their merger with the main FRC
may lead to a dramatic shift in the resonance frequency and response amplitude.
Habib et al. [72] use singularity theory in combination with averaging for the pre-
diction and identification of isolas in a specific single-degree-of-freedom mechanical
system with nonlinear damping. The averaging method they use (cf. Sanders et
al. [73]), however, requires both the forcing amplitude and the nonlinear damping
coefficients to be small. Hill et al. [74] use a second-order normal form technique to
obtain analytical expressions for the autonomous conservative backbone curves (i.e.
amplitude-frequency plots of nonlinear periodic orbits) of a specific two-degree-of-
freedom mechanical system. They give leading-order criteria for the intersection of
this backbone curve with the forced response curve and postulate this location to
be a potential starting point for an isola, which is to be constructed numerically in
a separate effort. This procedure also relies on the smallness of the nonlinear and
damping coefficients, as well as on the absence of quadratic nonlinearities.

In summary, while the significance of isolas is broadly recognized, their existence
has only been studied in specific, low-dimensional examples under restrictions on
the nonlinearities. A conclusive analytical criterion for predicting isolas in multi-
degree of freedom systems without costly numerical simulations, therefore, has been
unavailable.

In this work, we seek to fill this gap by developing a generally applicable method-
ology for the prediction of isolas in multi-degree-of-freedom, forced mechanical sys-
tems. Our approach is based on the mathematically rigorous theory of spectral
submanifolds (SSMs) that are the unique, smoothest, nonlinear continuations of
spectral subspaces of the linearized, unforced limit of a mechanical system (cf. Haller
and Ponsioen [4]). The reduced dynamics on a two-dimensional SSM serves as an ex-
act, single-degree-of-freedom reduced-order model that can be constructed for each
vibration mode of the full nonlinear system (cf. [6, 8, 16, 52, 51]).

By construction, these rigorously, simplified two-dimensional reduced models will
capture all isolas that are remnants of periodic orbit families of the conservative
limit of the system. As we show for a cubic-order approximation, the reduced
SSM dynamics gives a closed form first-order prediction for isolas that can even be
calculated by hand in simple examples. Higher-order refinements to this analytic
formula can be recursively constructed and have been implemented in the publicly
available matlab script ssmtool1. We show the use of the analytic formula as well
as its numerical refinements on simple and more complicated examples.

1ssmtool is available at: www.georgehaller.com
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4.2 System set-up

We consider the same system set-up as introduced in section 3.2, which we restate
for the sake of readability. Where we have n-degree-of-freedom, periodically forced
mechanical systems of the form

Mÿ + Cẏ + Ky + g(y, ẏ) = εf(Ωt), 0 ≤ ε� 1, (4.1)

g(y, ẏ) = O
(
|y|2 , |y| |ẏ| , |ẏ|2

)
,

where y ∈ Rn is the generalized position vector; M = MT ∈ Rn×n is the positive
definite mass matrix; C = CT ∈ Rn×n is the damping matrix; K = KT ∈ Rn×n
is the stiffness matrix and g(y, ẏ) denotes all the nonlinear terms in the system.
These nonlinearities are assumed to be analytic for simplicity. The external forcing
εf(Ωt) does not depend on the positions and velocities.

System (4.1) can be transformed into a set of 2n first-order ordinary differential
equations by introducing the change of variables x1 = y, x2 = ẏ, with x = (x1,x2) ∈
R2n, which gives

ẋ =

(
0 I

−M−1K −M−1C

)
x +

(
0

−M−1g(x1,x2)

)
+ ε

(
0

M−1f(Ωt)

)
= Ax + Gp(x) + εFp(Ωt). (4.2)

The transformed first-order system (4.2) has a fixed point at x = 0 when the
system is unforced (ε = 0); A ∈ R2n×2n is a constant matrix and Gp(x) is an
analytic function containing all the nonlinearities.

The linearized part of system (4.2) is

ẋ = Ax, (4.3)

where the matrix A has 2n eigenvalues λk ∈ C for k = 1, . . . , 2n. Counting multi-
plicities, we again sort these eigenvalues based on their real parts in the decreasing
order

Re(λ2n) ≤ Re(λ2n−1) ≤ . . . ≤ Re(λ1) < 0, (4.4)

assuming that the real part of each eigenvalue is less than zero and hence the fixed
point of Eq. (4.3) is asymptotically stable. We further assume that the constant
matrix A is semisimple.
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4.3 Extracting the forced-response curve

Because A is semisimple, the linear part of system (4.2) is diagonalized by a linear
change of coordinates x = Tq, with T = [v1,v2, . . . ,v2n] ∈ C2n×2n and q ∈ C2n,
yielding

q̇ = diag(λ1, λ2 . . . , λ2n)︸ ︷︷ ︸
Λ

q + Gm(q) + εFm(φ). (4.5)

We now consider the two-dimensional modal subspace E = span {v1,v2} ⊂ C2n

with v2 = v̄1. The remaining linearly independent eigenvectors v3, . . . ,v2n span a
complex subspace C ⊂ C2n such that the full phase space of (4.5) can be expressed
as the direct sum

C2n = E ⊕ C. (4.6)

We write the diagonal matrix Λ as

Λ =

[
ΛE 0
0 ΛC

]
, (4.7)

Spect (ΛE) = {λ1, λ2} , Spect (ΛC) = {λ3, . . . , λ2n} ,

with ΛE = diag(λ1, λ2) and ΛC = diag(λ3, . . . , λ2n).

Under the non-resonance conditions stated in (3.9), there exists a unique two-
dimensional, time-periodic, analytic SSM W(E), which perturbs smoothly from E
at the trivial fixed point q = 0, under the addition of the O(ε) terms in Eq. (4.5).
Additionally, W(E) is strictly smoother than any other invariant manifold with the
same properties.

We give an illustration of a time-periodic SSM in Fig. 4.1. We have assumed a
case in which the SSM has three limit cycles for a given forcing frequency, with
two of these limit cycles contained in an isola. The SSM approach can be viewed
as a refinement and extension of the seminal work of Shaw and Pierre [2], who
envision nonlinear normal modes as invariant manifolds that are locally graphs over
two-dimensional modal subspaces of the linearized system.

We recall that the dynamics on the SSM described in Theorem 3.1 can approxi-
mately be written in polar coordinates (ρ, ψ) as

ρ̇ = a(ρ) + ε (f1(ρ,Ω) cos(ψ) + f2(ρ,Ω) sin(ψ)) , (4.8)

ψ̇ = (b(ρ)− Ω) +
ε

ρ
(g1(ρ,Ω) cos(ψ)− g2(ρ,Ω) sin(ψ)) , (4.9)
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Figure 4.1: Illustration of a time-periodic SSM. For a given forcing frequency Ω, we
illustrate how the SSM may contain three limit cycles, of which two fall in an isola.

where

a(ρ) = Re(λ1)ρ+

M∑
i=1

Re(γi)ρ
2i+1, (4.10)

b(ρ) = Im(λ1) +
M∑
i=1

Im(γi)ρ
2i, (4.11)

and

f1(ρ,Ω) = Re(c1,0) +
M∑
i=1

(
Re(c1,(i,i)(Ω)) + Re(d1,(i+1,i−1)(Ω))

)
ρ2i, (4.12)

f2(ρ,Ω) = Im(c1,0) +

M∑
i=1

(
Im(c1,(i,i)(Ω))− Im(d1,(i+1,i−1)(Ω))

)
ρ2i, (4.13)

g1(ρ,Ω) = Im(c1,0) +

M∑
i=1

(
Im(c1,(i,i)(Ω)) + Im(d1,(i+1,i−1)(Ω))

)
ρ2i, (4.14)

g2(ρ,Ω) = Re(c1,0) +

M∑
i=1

(
Re(c1,(i,i)(Ω))− Re(d1,(i+1,i−1)(Ω))

)
ρ2i, (4.15)

with 2M + 1 denoting the order of the expansion.

In the unforced limit (ε = 0), the reduced system (4.8)-(4.9) can have fixed points
but no nontrivial periodic orbits. This is because (4.8) decouples from (4.9), rep-
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resenting a one-dimensional ordinary differential equation that cannot have non-
constant periodic solutions. By construction, the trivial fixed point of (4.8)-(4.9)
is asymptotically stable and will persist for ε > 0. These persisting fixed points
satisfy the system of equations

F(u) =

[
F1(u)
F2(u)

]
=

[
a(ρ) + ε (f1(ρ,Ω) cos(ψ) + f2(ρ,Ω) sin(ψ))

(b(ρ)− Ω)ρ+ ε (g1(ρ,Ω) cos(ψ)− g2(ρ,Ω) sin(ψ))

]
= 0,

(4.16)
where

F(u) : R3 → R2, u =

ρΩ
ψ

 .
As we show in Appendix 4.A, under appropriate non-degeneracy conditions, the
zeros of (4.16) form a one-dimensional manifold, which, after a projection onto
the amplitude-frequency space, will represent the FRC. The stability of these fixed
points (which correspond to periodic solutions of the full mechanical system) is
determined by the real parts of the eigenvalues of the Jacobian of F(u).

Theorem 4.1 The amplitude ρ of the T -periodic orbits of the reduced dynamics
(4.8)-(4.9) are given by the zeros of the function

G(ρ; Ω) = (b(ρ)− Ω)ρ (4.17)

+ ε

(
g1(ρ,Ω)

1−K±(ρ; Ω)2

1 +K±(ρ; Ω)2
− g2(ρ,Ω)

2K±(ρ; Ω)

1 +K±(ρ; Ω)2

)
= 0,

where

K±(ρ; Ω) =
−εf2(ρ,Ω)±

√
ε2 (f1(ρ,Ω)2 + f2(ρ,Ω)2)− a(ρ)2

a(ρ)− εf1(ρ,Ω)
. (4.18)

Proof We derive this result in Appendix 4.B.

The zero-level set of Eq. (4.17) yields the forced-response curve in the (Ω, ρ)-space.
This curve will consist of two segments obtained from K+ and K− in Eq. (4.18).
The two segments meet exactly at the point where the square root term in the
definition of K±(ρ; Ω) is equal to zero. We sketch this for a damped, nonlinear,
periodically forced mechanical system in Fig. 4.2.

Because the isolated branches of periodic solutions are also a part of the FRC, the
zero-level set of G(ρ; Ω) can predict isolas as well. In contrast, detecting isolas by
numerical continuation requires one to start on the isola and hence assumes a priori
knowledge of an isolated branch of periodic solutions. We will discuss this in section
4.4.
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Figure 4.2: Example of the zero-level set of Eq. (4.17) for a damped, non-linear,
periodically forced mechanical system with a hardening nonlinearity. The blue and
red curves correspond to K+ and K−. These two segments come together exactly
at the point where the discriminant of the quadratic Eq. (4.47) is equal to zero.

4.4 Analytic criterion for isolas

We will now give an analytic criterion for the emergence of isolas in terms of the func-
tion a(ρ) defined in equation (4.10). An essential question is how approximate zeros
obtained from finite-order Taylor series expansions persist as M → ∞. Jentzsch
[75] proved that in the limit of the order of the Taylor series expansion going to
infinity, the non-persistent spurious zeros come arbitrarily close to the boundary of
the domain of convergence. Hurwitz [76] showed that in the same limit, the uniform
convergence of the Taylor series polynomial leads to a good approximation of the
genuine zeros inside the circle of convergence. Christiansen and Madsen[77] numer-
ically verified this behavior on several examples. We will call such a zero ρ0 of a(ρ),
non-spurious if it converges to a genuine zero of a(ρ) in the limit of M →∞.

Theorem 4.2 Assume that ρ0 6= 0 is a non-spurious transverse zero of a(ρ), i.e.,

a(ρ0) = 0, ∂ρa(ρ0) 6= 0. (4.19)

Then, for ε > 0 small enough, system (4.16) has an isola that perturbs from the
unforced damped backbone curve Ω = b(ρ) near the amplitude value ρ0.

Proof We derive this result in Appendix 4.C.

In order to verify if a non-trivial zero of the Taylor series expansion of a(ρ) is
also non-spurious, we compute the (generally complex) zeros of the function a(ρ)
for increasing order of approximation M . As we discussed before Theorem 4.2,
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Ω

ρ

FRC
Ω = b(ρ)
Ω = b(ρ0)

ψ

ε = ε1 = const.

Ω

ρ

FRC
Ω = b(ρ)
Ω = b(ρ0)

ε = ε2 > ε1

ψ

Figure 4.3: An isola of periodic solutions near the damped backbone curve, emerging
from a non-trivial transverse zero ρ0 of a(ρ). The isola curve can be parameterized
by the variable ψ.

spurious zeros will converge to the circle defining the radius of convergence of a(ρ),
whereas non-spurious zeros stay bounded away from that circle and hence converge
to the genuine zeros of a(ρ).

In Fig. 4.3, we sketch qualitatively the statement of Theorem 4.2: a non-spurious,
transverse zero ρ0 of a(ρ) indicates a nearby isola.

4.4.1 Leading-order analytic formula for isolas

For higher-order approximations of a(ρ), we can determine the roots of a(ρ) nu-
merically. Restricting ourselves to a 3rd-order approximation of the SSM, we can,
however, extract even an analytic criterion for the existence of an isola. Following
the work of Breunung and Haller [8], we truncate the parameterization W(s, φ) and
the reduced dynamics R(s, φ) at O(ε|s|, ε2), which they justify by introducing the

scaling s → ε
1
4 s, such that the zero problem of the reduced system can be written

as

F̃(u) =


Re(λ1)ρ+ Re(γ1)ρ3︸ ︷︷ ︸

a(ρ)

+ε (Re(c1,0) cos(ψ) + Im(c1,0) sin(ψ))

(Im(λ1) + Im(γ1)ρ2︸ ︷︷ ︸
b(ρ)

−Ω)ρ+ ε (Im(c1,0) cos(ψ)− Re(c1,0) sin(ψ))

 = 0.

(4.20)

Here we have f1 = g2 = Re(c1,0) and f2 = g1 = Im(c1,0). We now show in
Theorem 4.3 that this approximation gives an analytically computable condition
for the existence of an isola.
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Theorem 4.3 Assume that for system (4.20), Re(γ1) > 0 is satisfied and the cubic-
order zero ρ1 =

√
|Re(λ1)|/Re(γ1) of a(ρ) is non-spurious. Then the following

holds:

(i) For ε > 0 small enough, an isola of the type described in Theorem 4.2 exists
near the point (Ω, ρ) = (b(ρ0), ρ0) of the damped backbone curve.

(ii) The isola will be disconnected from the main FRC for ε > 0 values satisfying

ε <
1

‖c1,0‖

√
4|Re(λ1)|3
27Re(γ1)

. (4.21)

(iii) The isola will merge with the main FRC approximately at the ε value

εm =
1

‖c1,0‖

√
4|Re(λ1)|3
27Re(γ1)

. (4.22)

Proof We derive this result in Appendix 4.D.

4.5 Numerical Examples

4.5.1 The modified Shaw–Pierre example

As a typical benchmark, we first consider a modified version of the example of Shaw
and Pierre [30], in which an additional cubic nonlinear damper is added, as in the
single degree-of-freedom example of Habib et al. [72]. The equations of motion of
our two-degree-of-freedom system in first-order form are given by

ẋ =



0 0 1 0

0 0 0 1

−2k

m

k

m
−c1 + c2

m

c2

m
k

m
−2k

m

c2

m
−c1 + c2

m


︸ ︷︷ ︸

A

x +


0

0

− κ
m
x3

1 −
α

m
x3

3

0


︸ ︷︷ ︸

Gp(x)

+ε


0

0

P

m
cos(Ωt)

0


︸ ︷︷ ︸

Fp(Ωt)

,

(4.23)
where x = [x1, x2, x3, x4]> = [y1, y2, ẏ1, ẏ2]>. The matrix A has the eigenvalue pairs

λ1,2 =

(
−ζ1 ± i

√
1− ζ2

1

)
ω1, ζ1 =

c1

2mω1
, ω1 =

√
k

m
, (4.24)

λ3,4 =

(
−ζ2 ± i

√
1− ζ2

2

)
ω2, ζ2 =

c1 + 2c2

2mω2
, ω2 =

√
3k

m
, (4.25)
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assume that both modes are underdamped, i.e., 0 < ζ1 < 1 and 0 < ζ2 < 1. The
matrix T that transforms our system to complex modal coordinates is composed of
the eigenvectors of our system, i.e.,

T =


1 1 1 1
1 1 −1 −1
λ1 λ̄1 λ3 λ̄3

λ1 λ̄1 −λ3 −λ̄3

 , (4.26)

with the inverse of T given by

T−1 =



− λ̄1

2(λ1 − λ̄1)
− λ̄1

2(λ1 − λ̄1)

1

2(λ1 − λ̄1)

1

2(λ1 − λ̄1)
λ1

2(λ1 − λ̄1)

λ1

2(λ1 − λ̄1)
− 1

2(λ1 − λ̄1)
− 1

2(λ1 − λ̄1)

− λ̄3

2(λ3 − λ̄3)

λ̄3

2(λ3 − λ̄3)

1

2(λ3 − λ̄3)
− 1

2(λ3 − λ̄3)
λ3

2(λ3 − λ̄3)
− λ3

2(λ3 − λ̄3)
− 1

2(λ3 − λ̄3)

1

2(λ3 − λ̄3)


. (4.27)

In this example, we can compute the cubic coefficient of a(ρ) explicitly. Specifically,
we have

Re(γ1) = Re

(
−3α

m
[T−1]1,3[T]23,1[T]3,2 −

3κ

m
[T−1]1,3[T]21,1[T]1,2

)
(4.28)

= Re

(
−3
(
αλ2

1λ̄1 + κ
)

2m(λ1 − λ̄1)

)
(4.29)

= − 3αk

4m2
. (4.30)

Therefore, for α < 0, the reduced dynamics on the third-order autonomous SSM
will have a nontrivial zero. If, additionally, this zero is non-spurious, then Theorem
4.3 guarantees the existence of an isola. Using Eq. (4.22), the isola will merge with
the main FRC for

εm =
8m
√

1− ζ2
1ω1

|P |

√
16m2(ζ1ω1)3

81k|α| . (4.31)

We verify this analytic prediction numerically in Example 4.4 below.

Example 4.4 We choose the parameter values listed in Table 4.1 and compute
the forced response curve for system (4.23). Note that for this choice of damping
parameters, the non-resonance conditions (3.9) are satisfied.
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Table 4.1: Parameter values for Example 4.4.

Symbol Value

m 1 kg

c1 0.03 N · s/m
c2

√
3 · 0.03 N · s/m

k 3 N/m

κ 0.4 N/m3

α −0.6 N · (s/m)3

P 3 N

Plugging in the parameter values of Table 4.1 into Eq. (4.30), we observe that the
third-order coefficient of the autonomous part of the SSM is

Re(γ1) = − 3αk

4m2
= 1.35 > 0. (4.32)

We now numerically verify that this transverse zero is non-spurious by computing
the (complex) roots of a(ρ) for an increasing order M of expansion in formula
(4.10) using ssmtool. In Fig. 4.4, we show these roots, up to 50th order, with
lighter colors indicating higher orders of approximation. Eq. (4.32) and Fig. 4.4
allow us to conclude from statement (i) of Theorem 4.3 the existence of an isola
near the amplitude value |ρ±1 |, where ρ±1 are the two nontrivial, non-spurious zeros
of a(ρ) seen in Fig. 4.4. By Eq. (4.31), the isola will merge with the main branch
of the forced response curve approximately at the parameter value

εm = 0.0028. (4.33)

We now verify this analytic prediction for the isola merger numerically. In Fig.
4.5, we show in red the leading-order forced response curves for ε = 0.0027 and
ε = 0.0029. Also shown in black are the forced response curves of the full sys-
tem obtained via the periodic-orbit toolbox of coco [31]. We conclude that the
FRC obtained from our two-dimensional, SSM-reduced system perfectly predicts
the behavior of the full system.

Example 4.5 In this example, we add a quintic nonlinear damper to system (4.23),
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Figure 4.4: Plot of the roots of a(ρ) in the complex plane for Example 4.4, with
brighter colors indicating an increasing order M in the expansion of a(ρ), up to 50th
order (roots that are negative of each other are to be identified). The zeros from the
highest approximation are highlighted in magenta. We observe that a non-trivial
transverse zero ρ±1 persists for higher-order approximations and is clearly within the
domain of convergence of the function a(ρ).

which yields the modified equations of motion in first-order form

ẋ =



0 0 1 0

0 0 0 1

−2k

m

k

m
−c1 + c2

m

c2

m
k

m
−2k

m

c2

m
−c1 + c2

m


︸ ︷︷ ︸

A

x

+


0

0

− κ
m
x3

1 −
α

m
x3

3 −
β

m
x5

3

0


︸ ︷︷ ︸

Gp(x)

+ε


0

0

P

m
cos(Ωt)

0


︸ ︷︷ ︸

Fp(Ωt)

. (4.34)

We again use the parameter values in Table 4.1 and additionally select the quintic
damping coefficient β = 1.2 N · (s/m)5. We use ssmtool to calculate the functions
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Figure 4.5: (a) Forced response curve for ε = 0.0027 in Example 4.4, which is
slightly below the predicted value εm for the merger of the isola with the main
branch of the FRC. The dashed lines indicate that the isola is unstable. (b) Forced
response curve for ε = 0.0029, which is slightly above the predicted merging value
εm. The unstable isola has indeed merged with the main FRC branch, as predicted
analytically.
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Figure 4.6: Plot of the roots of a(ρ) in the complex plane for Example 4.5, with
brighter colors indicating an increasing order M in the expansion of a(ρ), up to
50th order (roots that are negative of each other are to be identified). The zeros
from the highest approximation are highlighted in magenta. We observe that the
non-trivial transverse zeros ρ±1 and ρ±2 persist for higher-order approximations and
is clearly within the domain of convergence of the function a(ρ).

included in the reduced dynamics (4.8)-(4.9) up to 5th order in ρ. The function
a(ρ) now has two positive, non-spurious zeros located at ρ+

1 = 0.13 and ρ+
2 = 0.17.

Therefore, Theorem 4.2 implies the existence of two separate isolas bifurcating from
the damped backbone curve under periodic forcing.

We show the extracted forced response curves for three different values of ε in
Fig. 4.7. As we have predicted above, two isolas are born out of the non-trivial
transverse zeros of a(ρ) along the autonomous backbone curve. The isola with lower
amplitudes is unstable, whereas the isola with higher amplitudes is partially stable.
If we increase the forcing amplitude ε, the two isolas merge. Increasing ε further
will make the merged isolas merge with the lower FRC branch. The branches of
the forced response curve, extracted using SSM theory, are again verified using the
periodic-orbit toolbox of coco [31]. In order to initialize the continuation algorithm,
we integrate the full system to provide an initial solution guess that is used to start
the continuation process. For higher amplitude values, our 5th-order approximation
slightly deviates from the numerical continuation results, as expected. For lower
amplitudes, however, our SSM-based prediction perfectly matches the numerical
result.
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Figure 4.7: (a) Resulting forced response curve for ε = 0.001 in Example 4.5. Two
isolas are born out of the non-trivial transverse zeros of a(ρ), located at (b(Ω), ρ) on
the autonomous backbone curve. The dashed lines indicate that the lower-amplitude
isola is unstable in nature, whereas the higher-amplitude isola is partially stable.
(b) Forced response curve for ε = 0.0025. Both isolas have merged into one bigger
isolated region. The lower half of the merged isolas is unstable in nature, whereas
the upper half is stable. (c) Forced response curve for ε = 0.003. The two merged
isolas now have merged with the lower branch of the FRC.
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4.5.2 A discretized, forced Bernoulli beam with a cubic spring and
damper

Similarly to the example in section 3.6, we now construct a reduced-order model for
a discretized, cantilevered Bernoulli beam with a cubic spring and, additionally, a
cubic damper attached to the free end of the beam. We obtain the reduced model
by computing the dynamics on the slowest, two-dimensional, time-periodic SSM of
the system.

The beam is of length L, with the square cross-section A, situated in a Cartesian
coordinate system of (x, y, z) and basis (ex, ey, ez). The relevant beam parameters
are listed in Table 4.2. The beam’s neutral axis is the line of points coinciding with

Table 4.2: Notation used in the discretized beam example.

Symbol Meaning (unit)

L Length of beam (mm)

h Height of beam (mm)

b Width of beam (mm)

ρ Density (kg/mm3)

E Young’s Modulus (kPa)

I Area moment of inertia (mm4)

κ Coefficient cubic spring (mN/mm3)

γ Coefficient cubic damper (mN · s/mm3)

A Cross-section of beam (mm2)

P External forcing amplitude (mN)

the x-axis. The Bernoulli hypothesis states that initially straight material lines,
normal to the neutral axis, remain (a) straight and (b) inextensible, and (c) rotate as
rigid lines to remain perpendicular to the beam’s neutral axis after deformation. The
transverse displacement of a material point with initial coordinates on the beam’s
neutral axis at z = 0 is denoted by w(x). The rotation angle of a transverse normal
line about the y-axis is given by −∂xw(x). We assume an isotropic, linearly elastic
constitutive relation between the stresses and strains. This yields the following
equations of motion

ρA
∂2w(x, t)

∂t2
− ρI ∂

4w(x, t)

∂x2∂t2
+ EI

∂4w(x, t)

∂x4
= 0. (4.35)

We can neglect the mixed partial derivative term in Eq. (3.54) by assuming that
the thickness of the beam is small compared to its length, i.e., h � L (see Reddy
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and Mahaffey [33]), we therefore can write Eq. (4.35) as

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
= 0. (4.36)

We discretize Eq. (4.36) and obtain a set of ordinary differential equations

Mÿ + Ky = 0, (4.37)

where y ∈ R2m = Rn, and m is the number of elements used in the discretization.
Each node of the beam has two coordinates related to the transverse displacement
w(x) and the rotation angle −∂xw(x) of the cross section. Structural damping is
assumed by considering the damping matrix

C = αM + βK, (4.38)

with parameters α and β. We apply cosinusoidal external forcing on the transverse
displacement coordinate at the free end of the beam with forcing frequency Ω and
forcing amplitude εP . Additionally, we add a cubic spring and damper along this
coordinate, with coefficients κ and γ, respectively. As a result, the second-order
equations of motion can be written as

Mÿ + Cẏ + Ky + g(y, ẏ) = εf(Ωt). (4.39)

We give an illustration of the beam in Fig. 4.8.

z

z

w

w
x

–z

dw

dx

linear Bernoulli beam

L

h

dw

dxκ

εPcos(Ωt)

γ

Figure 4.8: Forced Bernoulli beam with a cubic spring and damper.

We select m = 25 for the number of discretized elements, which gives x ∈ R50,
resulting in a 100-dimensional phase space. We list the geometric and material
parameter values in Table 4.3.
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Table 4.3: Geometric and material parameters for the Bernoulli beam.

Symbol Value

L 2700 mm

h 10 mm

b 10 mm

ρ 1780 · 10−9 kg/mm3

E 45 · 106 kPa

κ 6 mN/mm3

γ −0.02 mN · s/mm3

α 1.25 · 10−4 s−1

β 2.5 · 10−4 s

P 0.1 mN

For these parameter values, the eigenvalues corresponding to the slowest eigenspace
are

λ1,2 = −0.0061884± 7.0005i. (4.40)

As earlier, introducing the scaling s→ ε
1
4 s, we obtain the approximations

a(ρ) = −0.0061884ρ+ 0.036202ρ3, (4.41)

b(ρ) = 7.0005 + 0.031689ρ2, (4.42)

c1,0 = 0.54645 + 0.00048i. (4.43)

The function a(ρ) in Eq. (4.41) has a non-trivial, transverse, positive zero at ρ+
1 =

0.413. Fig. 4.9 shows this zero to be non-spurious. Therefore, by Theorem 4.3,
an isola will perturb from the point (Ω = b(ρ+

1 ), ρ+
1 ) of the autonomous backbone

curve. Also by Theorem 4.3, the isola will merge with the main branch of the FRC
approximately for

εm =
1

‖c1,0‖

√
4|Re(λ1)|3
27Re(γ1)

= 0.0018. (4.44)

To verify our predicted merger amplitude in (4.44), we perform a discrete numerical
sweep of the full system, in which we force the system at different forcing frequencies
and plot the resulting maximum absolute value of the transverse displacement of
the tip of the beam, while keeping the forcing amplitude fixed (see Fig. 4.10).

While numerical continuation using the po toolbox of coco remains a powerful tool
in verifying our analytic predictions in lower dimensions, its use becomes computa-
tionally expensive in higher dimensions. For this reason, Fig. 4.10 only shows a
discrete set of periodic responses computed from a point-wise, long-term numerical
integration leading to a steady state, as opposed to a continuous FRC obtained
from numerical continuation.
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Figure 4.9: Plot of the roots of a(ρ) in the complex plane for Example 4.5.2, with
brighter colors indicating an increasing order M in the expansion of a(ρ), up to 50th
order (roots that are negative of each other are to be identified). The zeros from the
highest approximation are highlighted in magenta. We observe that a non-trivial
transverse zero ρ±1 persists for higher-order approximations and is clearly within the
domain of convergence of the function a(ρ).

4.6 Conclusions

We have used the exact reduced dynamics on two-dimensional time-periodic spectral
submanifolds (SSMs) to extract forced-response curves (FRCs) and predict isolas
in arbitrary multi-degree-of-freedom mechanical systems without performing costly
numerical simulations. We showed that for a cubic-order approximation, the re-
duced dynamics on the SSM gives an analytic prediction for the isolas, valid for any
mode of a multi-degree-of-freedom oscillatory system. For simple examples, these
predictions can explicitly be expressed as functions of the system parameters. Our
lower-order predictions can be refined to higher-orders using the publicly available
matlab script ssmtool2.

For mechanical systems of high degrees of freedom, numerical continuation tech-
niques for forced response curves become computationally expensive. Instead, using
the non-autonomous SSM and the corresponding reduced dynamics on the SSM, we
are able to approximate all possible FRCs for different forcing amplitudes, as our

2ssmtool is available at: www.georgehaller.com
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Figure 4.10: (a) Extracted forced response curve for ε = 0.0016 in Example 4.5.2.
An unstable isola is born out of the non-trivial transverse zero of a(ρ), located at
(Ω = b(ρ+

1 ), ρ+
1 ) on the autonomous backbone curve. (b) Extracted forced response

curve from the reduced dynamics for ε = 0.002 > εm. The main FRC branch has
merged with the unstable isola. A discrete frequency sweep has been performed
on the full 100-dimensional system to verify the accuracy of our two-dimensional
reduced model. The frequency region in which the FRC becomes unstable, as
predicted by the SSM-based reduced dynamics, is confirmed by the full numerical
frequency sweep.
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expressions depend symbolically on the forcing amplitude ε. An additional advan-
tage of the results derived here is that the isolas are uncovered by the transverse
intersection of the zero-level sets of our two reduced equations. The isolas will gen-
erally be missed by numerical continuation techniques, which require starting on
an isolated solution branch. As we have shown, our predictions for the main FRC
branches, as well as for isolas, remain valid and computable in high dimensional
problems in which numerical continuation is no longer a viable alternative for con-
structing these curves. Using the general results of Haller and Ponsioen [4], one can
extend the periodic approach to detect quasi-periodic responses and isolas under
quasi-periodic forcing.
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Appendix

4.A Extracting the forced response curve

For convenience, we restate our zero problem (4.16),

F(u) =

[
F1(u)
F2(u)

]
=

[
a(ρ) + ε (f1(ρ,Ω) cos(ψ) + f2(ρ,Ω) sin(ψ))

(b(ρ)− Ω)ρ+ ε (g1(ρ,Ω) cos(ψ)− g2(ρ,Ω) sin(ψ))

]
= 0,

(4.45)
where

F(u) : R3 → R2, u =

ρΩ
ψ

 .
If there exists a regular point p = (ρ,Ω, ψ), such that F(p) = 0 in (4.45) and the
Jacobian of F evaluated at p is surjective, then by the implicit function theorem,
locally there exists a one-dimensional submanifold of R3 which will represent the
forced response curve when projected onto the (Ω, ρ)-space. Equivalently, the zero-
level sets of F1(u) and F2(u) in (4.45), which we will denote by Mp

1 and Mp
2 , will

be two two-dimensional submanifolds in the (ρ, ψ,Ω)-space that, locally around p,
intersect each other transversely, yielding the forced response curve. We illustrate
this concept in Fig. 4.A.1, which is a typical picture for a damped non-linear
periodically forced mechanical system with a hardening nonlinearity.

4.B Proof of Theorem 4.1

Let u0 be a regular point of the map F(u) (4.16) such that F(u0) = 0, and DuF(u0)
is surjective. Then, by the implicit function theorem, locally there exists a one-
dimensional submanifold of R3 around u0. We express ψ as a function of ρ and Ω,
using the tangent half-angle substitution and the trigonometric identities,

ψ

2
= tan−1 (K) , cos (ψ) =

1−K2

1 +K2
, sin (ψ) =

2K

1 +K2
. (4.46)

Setting Eq. (4.8) equal to zero and substituting the identities into Eq. (4.8), we
obtain a quadratic equation in K,

(a(ρ)− εf1(ρ,Ω))K2 + 2εf2(ρ,Ω)K + (a(ρ) + εf1(ρ,Ω)) = 0, (4.47)
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(a) (b)

Figure 4.A.1: (a)-(b): Intersection of M1 (green) and M2 (red), yielding the
frequency-response curve in blue.

which has the solution,

K(ρ; Ω)± =
−εf2(ρ,Ω)±

√
ε2 (f1(ρ,Ω)2 + f2(ρ,Ω)2)− a(ρ)2

a(ρ)− εf1(ρ,Ω)
. (4.48)

Substituting Eq. (4.48), together with the trigonometric identities in (4.46), into
Eq. (4.9), we obtain the result stated in Theorem 4.1.

4.C Proof of Theorem 4.2

We now consider ε to be a variable in our zero problem (4.16), i.e.

F(u, ε) : R4 → R2, u =

ρΩ
ψ

 .
If there exists a non-spurious non-trivial transverse zero ρ0 : a(ρ0) = 0 and ∂ρa(ρ0) 6=
0, then by restricting ourselves to the autonomous backbone curve (see Ponsioen et
al. [6]), i.e.

u0 = [ρ0,Ω0, ψ0, ]
>, Ω0 = b(ρ0), ψ0 = const., ε = 0,

we have found a solution
F(u0, 0) = 0. (4.49)
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4.D. Proof of Theorem 4.3

The Jacobian of F with respect to ρ and Ω, evaluated at the solution (u0, 0), is
given by the square matrix

D(ρ,Ω)F(u0, 0) =

[
∂ρa(ρ0) 0
∂ρb(ρ0)ρ0 −ρ0

]
, (4.50)

which is invertible. Therefore, by the implicit function theorem, we can continue
our solution as a two-dimensional submanifold of R4. Locally, we can express ρ
and Ω as a function of ψ and ε. For ε > 0, an isola is born out of the non-trivial
transverse zero on the autonomous backbone curve located at (Ω, ρ) = (b(ρ0), ρ0).
For a fixed forcing ampltide ε, the isola is parameterized by ψ (as illustrated in Fig.
4.3).

4.D Proof of Theorem 4.3

In the setting of (4.20), our implicit function (4.17) will reduce to

G(ρ,Ω) = (b(ρ)− Ω)ρ±
√
ε2‖c1,0‖2 − a(ρ)2 = 0. (4.51)

Any zero ρ0 that makes the square root term in Eq. (4.51) vanish, will also be
a zero of (4.51) itself by setting Ω = b(ρ0), and therefore will be on the forced
response curve and on the autonomous backbone curve. Additionally, at this point,
two segments of the FRC will meet and create a fold over the Ω direction. We set
the argument inside the square root in Eq. (4.51) equal to zero and rewrite it as

∆(ρ) = a(ρ)± ε‖c1,0‖ = 0. (4.52)

Restricting ρ ∈ R+
0 , then for Re(γ1) > 0, the third-order autonomous function a(ρ)

will have a trivial transverse zero and a non-trivial transverse zero located at

ρ0 = 0, ρ1 =

√
|Re(λ1)|
Re(γ1)

, (4.53)

such that a(ρ0) = 0, a(ρ1) = 0, ∂ρa(ρ0) 6= 0 and ∂ρa(ρ1) 6= 0. Under the assumption
that the cubic order zero ρ1 is a non-spurious zero for the function a(ρ), then, using
the same type of argument as in the proof of Theorem 4.2, an isola will be born out
of this non-trivial transverse zero for system (4.20).

We note that between ρ0 and ρ1, a(ρ) will have a local minimum at,

∂ρa(ρ) = −|Re(λ1)|+ 3Re(γ1)ρ2 = 0 ⇒ ρ̃ =

√
|Re(λ1)|
3Re(γ1)

. (4.54)

Therefore, for ε > 0 small enough, the function a(ρ) will have three intersections
with the constant curves ±ε‖c1,0‖, meaning that we have found three zeros, 0 <
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ρa
0 < ρa

1 < ρb
1 of Eq. (4.52), that correspond to three folding points of the FRC over

the Ω direction. In this setting, ρa
0 corresponds to the maximum amplitude of the

main FRC branch, ρa
1 corresponds to the minimum amplitude of the isola, whereas

ρb
1 will be the maximum amplitude of the isola.

We can increase ε such that ρa
0 = ρa

1, which merges the maximum amplitude of the
main FRC branch with the minimum amplitude of the isola, which is exactly at

εm =
1

‖c1,0‖

√
4|Re(λ1)|3
27Re(γ1)

, (4.55)

whereas for

0 < ε <
1

‖c1,0‖

√
4|Re(λ1)|3
27Re(γ1)

. (4.56)

the isola will be disconnected from the main FRC, proving Theorem 4.3.
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Chapter 5

General Conclusions

In this thesis we developed the computational tools to construct exact reduced-order
models for nonlinear (non-)autonomous mechanical systems using spectral subman-
ifold (SSM) theory, developed by Haller and Ponsioen [4]. In order to construct the
SSMs, we used a systematic approach also known as the parameterization method
from Cabré et al. [22, 23, 24]. In the autonomous setting, the reduced dynamics
on the SSM can be used to extract damped backbone curves, uncovering insight-
ful information about the nonlinear response of the full system without using any
numerical integration on the full system.

We then extended the work to the non-autonomous setting, where we used the re-
duced dynamics on two-dimensional time-periodic SSMs to extract forced-response
curves (FRCs) around vibration modes of interest. We showed that the use of mul-
tivariate recurrence relations to construct the SSMs, provides a major speed up
relative to the autonomous SSM algorithm, allowing us to analyze high-degree-of-
freedom mechanical systems, obtained using finite element methods, in a fraction of
the time compared to other state-of-the-art numerical methods such as the harmonic
balance (HB) method or a collocation method.

Using SSM theory in combination with the developed computational engine we
were able to predict isolated branches of periodic responses, also known as isolas,
in arbitrary multi-degree-of-freedom mechanical systems without performing costly
numerical simulations. We showed that for a cubic-order approximation, the re-
duced dynamics on the SSM gives an analytic prediction for the isolas, valid for any
mode of a multi-degree-of-freedom oscillatory system. For simple examples, these
predictions can explicitly be expressed as functions of the system parameters.

Finally, we created a matlab based computational tool called ssmtool for comput-
ing two-dimensional SSMs in nonlinear mechanical systems with arbitrary degrees
of freedom. ssmtool is created for researchers and students who are interested
in applying SSM theory to nonlinear, non-conservative mechanical systems with a
potentially large number of degrees of freedom in order to extract reduced-order
models, backbone curves or forced-response curves

As future work, using the general results of Haller and Ponsioen [4], we can ex-
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5. General Conclusions

tend the time-periodic results to a quasi-periodic setting to extract quasi-periodic
responses and isolas under quasi-periodic forcing. Additionally, the dimension of
the SSMs can be increased in order to deal with internal resonances, which has not
been done so far.
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[19] F. Blanc, C. Touzé, J. Mercier, K. Ege, A. Ben-Dhia, On the numerical
computation of nonlinear normal modes for reduced-order modelling of con-
servative vibratory systems, Mech. Syst. Sig. Process. 36 (2) (2013) 520–539.
doi:10.1016/j.ymssp.2012.10.016.

[20] E. Pesheck, C. Pierre, S. Shaw, A new Galerkin-based approach for accurate
non-linear normal modes through invariant manifolds, J. Sound Vib. 249 (5)
(2002) 971–993. doi:10.1006/jsvi.2001.3914.
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