Silica-supported, narrowly distributed, subnannometric Pt–Zn particles from single sites with high propane dehydrogenation performance†

Lukas Rochlitz,a Keith Searles,a Jan Alfke,ac Dmitry Zemlyanov,b Olga V. Safonova and Christophe Coperetd*,a

The development of highly productive, selective and stable propane dehydrogenation catalysts for propane production is strategic due to the increasing need for propene and the availibility of shale gas, an abundant source of light alkanes. In that context, the combination of surface organometallic chemistry (SOMC) and a thermolytic molecular precursor (TMP) approach is used to prepare bimetallic subnannometric and narrowly distributed Pt–Zn alloyed particles supported on silica via grafting of a Pt precursor on surface OH groups present in a Zn single-site containing material followed by a H₂ reduction treatment. This material, that exhibits a Zn to Pt molar ratio of 3 : 2 in the form of alloyed Pt–Zn particles with a 0.2 to 0.4 fraction of the overall Zn amount remaining as Zn⁰ sites on the silica surface, catalyzes propane dehydrogenation (PDH) with high productivity (703 gC₃H₆ gPt⁻¹ h⁻¹) to reach reasonable conversion levels, one of the biggest issues for the existing systems is catalyst stability due to coke formation and sintering requiring constant and rapid regeneration. The development and understanding of catalytic systems with increased stability while keeping a high selectivity and productivity is thus an intense field of research. In particular, major research endeavors focused on bi- and multi-metallic systems related to the industrial Pt–Sn/Al₂O₃ catalyst. In all cases, a combination of Pt with a second metal (In, Sn, Ga, Cu, Zn, etc.) beneficially influenced the catalyst performance as compared to monometallic Pt catalysts. While the selectivity for most of the systems reaches high levels, all of them suffer from deactivation. Zn, a highly abundant and non-toxic metal, is of special interest as the second component in bimetallic systems for PDH but has been studied less extensively when compared to more prominent post-transition-metals Sn and Ga.

Most synthetic strategies for bimetallic Pt–Zn dehydrogenation catalysts rely on well-established impregnation techniques. While being simple catalyst preparation methods, impregnation techniques typically yield poorly defined systems with inhomogeneous distribution of the components due to complex dissolution/precipitation events that occur in aqueous conditions. In order to develop more controlled preparation methods, surface organometallic chemistry (SOMC) in combination with the thermolytic molecular precursor approach (TMP) has emerged as a powerful preparation technique. In particular, it has been shown that supported single-sites can be used as building blocks to generate

Introduction

Propene is the second most utilized building block of the petrochemical industry besides ethene, and its production has been dramatically influenced by the emergence of shale gas resources. Indeed, crackers have been converted from naphtha to ethene units, with ethene feedstocks predominantly producing ethene, thereby reducing propene production. To compensate for the resulting propene production gap, the development of on-purpose propene production technologies has thus been on the rise.¹,² The most used on-purpose technology is selective propane dehydrogenation (PDH), a highly energy intensive process (ΔH°_298 = 124.3 kJ mol⁻¹), industrially implemented mainly via two processes using a bimetallic Pt–Sn/Al₂O₃ (UOP Oleflex process) or a metal-oxide based CrₓOᵧ/Al₂O₃ (Lummus Catofin process) catalyst.³ Due to the requirement of high reaction temperatures (500–700 °C) to reach reasonable conversion levels, one of the biggest issues for the existing
supported nanoparticles with controlled interfaces, allowing the introduction of dopants at the interface between silica and the metal particles or alternatively yielding a bimetallic alloy supported on SiO$_2$.\(^{17-20}\) A Pt–Ga alloy prepared through this approach displays high productivity and stability in the PDH reaction that has been attributed to surface dilution of Pt upon the introduction of gallium.\(^{21}\)

In view of the known activity of Pt–Zn in PDH and improved performance of catalysts prepared via SOMC/TMP approach, we reason that SOMC could constitute an ideal way to generate small and narrowly dispersed Pt–Zn alloys by first installing Zn\(^{II}\) single sites on a SiO$_2$ support followed by anchoring of a Pt precursor on the Zn\(^{II}/\)SiO$_2$ material and a subsequent treatment under H$_2$ to generate the desired particles. These silica-supported Pt–Zn nanoparticles were characterized by a multi-technique approach (CO and pyridine adsorption FTIR as well as X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) studies); they show high productivity (703 gC/$\text{hr} \cdot \text{Pt}$), high selectivity (≥95%) and an outstanding stability ($k_h = 0.027$) at high WHSV compared to other Pt–Zn based systems for PDH at 550 °C. This improved performance is attributed to the formation of subnanometric and narrowly distributed alloyed particles supported on Zn\(^{II}\) modified silica that likely plays a role in stabilizing these particles under PDH reaction conditions.

Results and discussion

The bimetallic Pt–Zn system was prepared via SOMC in a three-step process involving first the generation of Zn single-sites, then grafting of Pt(n) molecular precursor onto regenerated OH groups followed by a hydrogen treatment. Grafting of [Zn[Os(OrBu)$_3$]$_2$] on SiO$_2$–700 followed by a thermal treatment at 600 °C yielded Zn\(^{II}/\)SiO$_2$ as a white solid that contains Zn\(^{II}\) single sites (1.73 wt% Zn to 0.80 Zn per nm2), free of organic ligands along with isolated OH sites (0.66 OH per nm2) (Fig. 1(a)).\(^{22,23}\) In the next step, [Pt(Os[OrBu]$_3$)(COD)] (1.2 equiv./OH)\(^{24,25}\) (COD = 1,5-cyclooctadiene) was grafted onto the surface OH groups of Zn\(^{II}/\)SiO$_2$; the resulting supernatant contained [Pt(Os[OrBu]$_3$)(COD)] (0.35 equiv. Pt$_{\text{added}}$) and HOSi(OrBu)$_3$ (0.35 equiv. Pt$_{\text{added}}$). The obtained white material – Pt(Os[OrBu]$_3$)(COD)Zn\(^{II}/\)SiO$_2$ – dried under high vacuum (10$^{-5}$ mbar) contained 2.90 wt% Pt, 1.62 wt% Zn (1.66 equiv. Pt$^{-1}$), 4.44 wt% C (24.9 equiv. Pt$^{-1}$) and 0.79 wt% H (52.7 equiv. Pt$^{-1}$). The too high C and H values (20 C and 39 H expected) can be explained by a chemisorption (coordination) of some of the released HOSi(OrBu)$_3$ – formed during grafting of the Pt precursor – on the silica-support containing Zn\(^{II}\) Lewis acid sites. This is evidenced by the low amount of observed HOSi(OrBu)$_3$ released in solution compared to amount of remaining [Pt(Os[OrBu]$_3$)(COD)], revealing that 45% of the expected HOSi(OrBu)$_3$ is missing and remains chemisorbed at the surface of the support consistent with the elemental analysis. The IR spectrum revealed only partial consumption of the surface OH groups compared to Zn\(^{II}/\)SiO$_2$. This process is accompanied by the appearance of ν(C–H) at 3000–2800 cm$^{-1}$ and δ(C–H) at 1500–1340 cm$^{-1}$ (Fig. 1(b) and ESI Fig. S3†). All these data are consistent with grafting of the PtIV precursor through surface OH groups and the retention of some silanol on the surface. Furthermore, solid-state NMR supports the formation of ≡SiPt(Os[OrBu]$_3$)(COD) with signals at 1.5 ppm and 5.0 ppm in 1H SSNMR and signals at 30 ppm and 91 ppm in the 13C SSNMR spectrum, respectively (ESI Fig. S4 and S5†). The data is consistent with the formation of a grafted PtIV complex together with Zn single-sites in Pt(Os[OrBu]$_3$)(COD)Zn$^{II}/$SiO$_2$. The material was subsequently treated under H$_2$ at 600 °C for

Fig. 1 (a) Schematic representation of the synthesis of the material PtIIZn$^{II}/$SiO$_2$. (b) FTIR spectra of Zn$^{II}/$SiO$_2$ (orange), Pt(Os[OrBu]$_3$)(COD)ZnIV/SiO$_2$ (blue) and PtIVZn$^{IV}/$SiO$_2$ (black). (c) Representative HAADF-STEM image and particle size distribution of PtIVZn$^{IV}/$SiO$_2$.

This journal is © The Royal Society of Chemistry 2020
8 h yielding a black material – Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) – suggesting the formation of particles (3.05 wt% Pt, 1.54 wt% Zn). HAADF-STEM images of Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) confirmed the formation of well-dispersed and narrowly distributed sub-nanometric particles (0.8 ± 0.2 nm) (Fig. 1(c)).

The IR spectrum of a Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) self-supporting pellet exposed to CO (3 mg, 12 mbar) shows an intense CO vibrational band centered at 2046 cm\(^{-1}\) – supported on silica found in Zn\(_{II}/\)SiO\(_2\). The IR spectrum of a Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\)– supported on silica band centered at 2046 cm\(^{-1}\) exposed to CO (3 mg, 12 mbar) shows an intense CO vibrational band centered at 2046 cm\(^{-1}\) – supported on silica found in Zn\(_{II}/\)SiO\(_2\).

Additional CO and H\(_2\) chemisorption studies also support the vibrational bands at 2202 cm\(^{-1}\) (Fig. 2(a)). An additional band at 1906 cm\(^{-1}\) was therefore ascribed to an inherent difference in the particle surfaces of the Pt\(_0\)/SiO\(_2\) and Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) materials attributed to alloy formation of the two components in Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) (Fig. 2(a)).

XPS was used to gather further insight in the chemical state of Pt and Zn as well as the composition of the material. The results are summed up in Table 1. The Pt 4f\(_{7/2}\) binding energy in Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) is 71.6 eV which is shifted by +0.3 eV compared to Pt\(_0\)/SiO\(_2\), likely due to the restructuring of the Pt 4f states upon alloying with Zn.\(^{31}\) The Zn 2p\(_{3/2}\) peak for Zn\(_{II}/\)SiO\(_2\) consists of a symmetric component centered at 1023.1 eV (Fig. 2(c)), while the Zn 2p\(_{3/2}\) peak for Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) (Fig. 2(d)) is asymmetric and was therefore fitted with two components at 1021.7 eV (55% of area) and 1023.1 eV (45% of area). The lower binding energy of Pt\(_0\)/SiO\(_2\) – is consistent with a \(\mu_2\)-binding mode of CO on the Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) material. In addition to the CO IR studies, pyridine desorption was also used to probe the surface property of the material. Vibrational bands at 1538 cm\(^{-1}\), 1438 cm\(^{-1}\) and 1408 cm\(^{-1}\) are associated with the interaction of pyridine with Pt species on SiO\(_2\) and pyridyl species on Pt\(_{II}/\)SiO\(_2\). Bands at 1610 cm\(^{-1}\) and 1452 cm\(^{-1}\) – similar to Zn\(_{II}/\)SiO\(_2\) – as well as 1595 cm\(^{-1}\) and 1445 cm\(^{-1}\) for Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) indicate two different types of Lewis acidic Zn sites – a stronger and a weaker one – on the surface of the material.\(^{32,29}\) No bands above 1610 cm\(^{-1}\) indicate a low Brønsted acidity of the support (see ESI† for details). The combined results of the CO and pyridine IR studies suggest the formation of an alloyed Pt–Zn material along with residual surface Zn\(_{II}\) sites.

Fig. 2 (a) CO adsorption on Pt\(_0\)/SiO\(_2\) (black), Zn\(_{II}/\)SiO\(_2\) (orange) and Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) (blue). The spectra are normalized to the \(\nu_{\text{CO}}\) vibrational frequency at 1865 cm\(^{-1}\). (b) Background subtracted spectrum of CO adsorption on Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) (blue) and two component Gaussian fit (red, green; cumulative fit (purple)) of the CO adsorption region around 2179 cm\(^{-1}\) of Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\). (c) High resolution Zn 2p\(_{3/2}\) XPS spectrum of Zn\(_{II}/\)SiO\(_2\) (black) and Gaussian–Lorentzian fit to the data (blue). (d) High resolution Zn 2p\(_{3/2}\) XPS spectrum for Pt\(_0\)Zn\(_{4+}\)/SiO\(_2\) (black), two component Gaussian–Lorentzian fit to the data (green: 45%; red: 55%) and cumulative fit (blue).
component can be attributed to Zn⁰ (through ZnII reduction). This binding energy is close to the reported value for Zn metal (1021.8(2) eV), while the other value parallels what is found for ZnII/SiO₂ in accordance with a minority of Zn remaining on the surface as ZnII.

X-ray absorption studies of the materials have also been performed at the Zn K-edge and Pt L₃-edge in order to obtain a better understanding of the nature of Pt and Zn in the catalyst precursors and Pt⁰Zn⁺⁺/SiO₂. Fig. 3(a) shows the Zn K-edge X-ray absorption near-edge structure (XANES) spectra of Pt(Osi(OBu)₂)(COD)Zn⁰/SiO₂, Pt⁰Zn⁺⁺/SiO₂ and Zn foil. An edge shift of −3.8 eV from Pt(Osi(OBu)₂)(COD)Zn⁰⁰/SiO₂ to Pt⁰Zn⁺⁺/SiO₂ clearly indicates the reduction of ZnII to Zn⁰. The differences in shape and edge position of Pt⁰Zn⁺⁺/SiO₂ compared to Zn foil are attributed to alloy formation of Zn with Pt along with ZnII species as supported by comparison of the derivative spectra of Pt(Osi(OBu)₂)(COD)Zn⁰⁰/SiO₂ and Pt⁰Zn⁺⁺/SiO₂ (Fig. 3(b)) revealing the existence of a remaining oxidized Zn species in Pt⁰Zn⁺⁺/SiO₂ – in accordance with the observations of adsorption IR studies and XPS – attributed to ZnII sites on the support surface. A linear combination fit of Pt(Osi(OBu)₂)(COD)Zn⁰⁰/SiO₂ and Zn foil spectra suggests 22% of Zn remaining as ZnII sites on the surface of Pt⁰Zn⁺⁺/SiO₂ (ESI Fig. S21†).

Analysis of the extended X-ray absorption fine structure (EXAFS) of the Zn K-edge of the material precursors Pt(Osi(OBu)₂)(COD)Zn⁰⁰/SiO₂ and ZnII/SiO₂ (see Table 2 and ESI Fig. S24–S27 and Tables S4, S5†) reveals a significant elongation of the Zn–O bond distance in the former material compared to the latter, an indication for some changes in the local environment of Zn upon grafting of Pt(Osi(OBu)₂)(COD), consistent with the interaction of the ZnII sites with the Pt precursor. In both materials the inclusion of a Zn–Zn instead of a Zn–Si path decreased the fit quality significantly – indicating the high dispersion of ZnII single sites in the precatalyst before the H₂ treatment – also confirmed by a wavelet analysis of [Zn(Osi(OBu)₂)]₂ and Pt(Osi(OBu)₂)(COD)Zn⁰⁰/SiO₂ (ESI Fig. S28–S33†), clearly showing the disappearance of the Zn–Zn scattering pathway in the latter material. Detailed EXAFS analysis of Pt⁰Zn⁺⁺/SiO₂ was not possible due to the presence of overlapping scattering paths, resulting in fits without physical meaning.

XANES analysis of the Pt L₃ edge of Pt(Osi(OBu)₂)(COD)Zn⁰⁰/SiO₂ and Pt⁰Zn⁺⁺/SiO₂ follows similar trends as the Zn K edge (ESI Fig. S33 and S34†) with a strong decrease in white line intensity upon H₂ treatment – indicating reduction of the corresponding metal – and a shift to lower edge energy, supporting what was observed for the Zn K edge. EXAFS analysis of the Pt L₃ edge of Pt⁰/SiO₂ and Pt⁰Zn⁺⁺/SiO₂ (see Table 2) reveals a considerably shortened Pt–Pt bond distance in the bimetallic material consistent with structural changes and alloy formation. Furthermore, an approximately 2 : 1 (Zn : Pt) ratio of nearest neighbours for Pt⁰Zn⁺⁺/SiO₂ suggests a 1 : 1 metal ratio in the nanoparticles (see ESI† for details). However, large errors on the coordination numbers and the fact that XAS only provides average data do not allow the precise determination of particle composition and homogeneity of the alloying. Based on the EA, XPS and XAS results, it can be concluded that Pt⁰Zn⁺⁺/SiO₂ consists of alloyed, Pt–Zn nanoparticles supported on SiO₂ with a fraction of 0.2 to 0.4 of the total Zn remaining as ZnII sites on the surface of the material.

The materials Zn⁰⁰/SiO₂, Pt⁰/SiO₂ and Pt⁰Zn⁺⁺/SiO₂ were then tested in the PDH reaction at 550 °C under flow conditions.

Table 1 XPS 2p₃/₂ and 4f₇/₂ data of the Zn⁰⁰/SiO₂, Pt⁰/SiO₂ and Pt⁰Zn⁺⁺/SiO₂ materials

<table>
<thead>
<tr>
<th>Sample</th>
<th>Zn 2p₃/₂ BE [eV]</th>
<th>Pt 4f₇/₂ BE [eV]</th>
<th>FWHM 2p₃/₂ [eV]</th>
<th>FWHM 4f₇/₂ [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn⁰⁰/SiO₂</td>
<td>1023.1</td>
<td>—</td>
<td>2.7</td>
<td>—</td>
</tr>
<tr>
<td>Pt⁰/SiO₂</td>
<td>—</td>
<td>71.3a</td>
<td>—</td>
<td>2.1a</td>
</tr>
<tr>
<td>Pt⁰Zn⁺⁺/SiO₂</td>
<td>1021.7; 1023.1</td>
<td>71.6</td>
<td>2.0; 3.6</td>
<td>2.1</td>
</tr>
</tbody>
</table>

a Value taken from ref. 21.
(50 ml min⁻¹; 20% C₃H₈ in Ar) in a stainless-steel tubular reactor where negligible mass and heat transfer limitations occur (see calculations in ESI†). The results are summarized in Table 3. A very high initial productivity 703 gC₃H₆ gPt⁻¹ with a conversion of 30.2% and selectivity of 98.1% to C₃H₆ could be achieved for Pt⁰Zn⁰/SiO₂ at a WHSV of 75 h⁻¹. The high selectivity could be maintained over the course of 30 h time on stream with a final selectivity of 95.0% while the conversion dropped to a final 16.1% conversion (k_d = 0.027 h⁻¹ – see eqn (1)) and a productivity of 375 gC₃H₆ gPt⁻¹ – 350 gC₃H₆ gPt⁻¹ h⁻¹ over the course of 2 h, while Zn⁰/ SiO₂ shows comparable catalytic performance to SiO₂-700 (1.2% conversion, 39-38% selectivity over 10 h) revealing the absence of catalytic activity of Zn⁰/SiO₂ under these conditions.

Comparison of Pt⁰Zn⁰/SiO₂ to the monometallic Pt⁰/SiO₂ shows a dramatic improvement in the productivity of the bimetallic system by more than one order of magnitude. Comparison of Pt⁰Zn⁰/SiO₂ to other Pt–Zn systems reveals superior stability of the reported system (ESI Table S9†). While most systems show high selectivity and conversion levels, significantly larger deactivation factors are observed in comparison to Pt⁰Zn⁰/SiO₂ or the studies include H₂ co-feeding⁳¹ and significantly lower weight hourly space velocities to decrease deactivation rates. Furthermore, the metal based productivity and the stability of the reported system also surpass these of the recently published Pt–Ga based system (661 (357 after 20 h) gC₃H₆ gPt⁻¹ h⁻¹; k_d = 0.041 h⁻¹) prepared via the same SOMC/TMP approach.²¹

To further investigate the structural stability of Pt⁰Zn⁰/SiO₂ under PDH conditions in situ XAS studies were performed under the same conditions as the catalytic tests. The spectra of Pt⁰Zn⁰/SiO₂ and Pt⁰/SiO₂ show no significant change at the Pt L₃ edge over 8 h and 2 h, respectively. The Zn K edge spectra of Pt⁰Zn⁰/SiO₂ show a slight and consistent shift over 8 h, indicating a slight structural change for Zn. Preliminary analysis indicates the further – but not complete – reduction of Zn⁰ sites to Zn⁺ (ESI Fig. S48 and S49†).

The very high productivity of the reported Pt⁰Zn⁰/SiO₂ system compared to most other Pt–Zn systems is attributed to the formation of subnanometric alloyed particles, probably a result of the high metal dispersion in the precatalyst before reduction. These particles show minor growth during catalysis.

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Neighbor, (N^n)</th>
<th>(r' [\text{Å}])</th>
<th>(\sigma^{2d} [\text{Å}^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt⁰Zn⁺/SiO₂</td>
<td>Pt, 3.1 ± 1.4</td>
<td>2.62 ± 0.01</td>
<td>0.008 ± 0.002</td>
</tr>
<tr>
<td>Pt⁰/SiO₂</td>
<td>Zn, 6.7 ± 2.4</td>
<td>2.48 ± 0.03</td>
<td>0.022 ± 0.004</td>
</tr>
<tr>
<td></td>
<td>Pt, 9.1 ± 0.4</td>
<td>2.747 ± 0.002</td>
<td>0.0058 ± 0.0002</td>
</tr>
<tr>
<td>Zn⁰/SiO₂</td>
<td>O, 3.5 ± 0.9</td>
<td>1.88 ± 0.02</td>
<td>0.016 ± 0.004</td>
</tr>
<tr>
<td></td>
<td>Si, 0.7 ± 0.6</td>
<td>3.07 ± 0.04</td>
<td>0.005 ± 0.008</td>
</tr>
<tr>
<td>Pt(Os(OtBu)₃)(COD)Zn⁰/SiO₂</td>
<td>O, 3.8 ± 0.5</td>
<td>1.94 ± 0.01</td>
<td>0.011 ± 0.002</td>
</tr>
<tr>
<td></td>
<td>Si, 0.7 ± 0.4</td>
<td>3.09 ± 0.02</td>
<td>0.002 ± 0.004</td>
</tr>
</tbody>
</table>

* Samples recorded in transmission mode. * Number of specified neighbors. * Distance to neighbor. * Debye–Waller factor.

Table 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Time [h]</th>
<th>Conversion [%]</th>
<th>Selectivity *</th>
<th>Carbon balance [%]</th>
<th>Productivity [gC₃H₆ gPt⁻¹ h⁻¹]</th>
<th>WHSV [h⁻¹]</th>
<th>(k_d^c) [h⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt⁰/SiO₂</td>
<td>0.1</td>
<td>2.5</td>
<td>74.9</td>
<td>>99</td>
<td>14.5</td>
<td>32</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.5</td>
<td>47.1</td>
<td></td>
<td>8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn⁰/SiO₂</td>
<td>0.1</td>
<td>0.9</td>
<td>43.3</td>
<td>>99</td>
<td>–</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.9</td>
<td>39.6</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt⁰Zn⁺/SiO₂</td>
<td>0.1</td>
<td>35.3</td>
<td>97.6</td>
<td>97</td>
<td>350</td>
<td>32</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>26.6</td>
<td>96.3</td>
<td></td>
<td>264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt⁰Zn⁰/SiO₂</td>
<td>0.1</td>
<td>30.2</td>
<td>98.1</td>
<td>97</td>
<td>703</td>
<td>75</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>16.1</td>
<td>95.0</td>
<td></td>
<td>375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 50 ml min⁻¹; 20% C₃H₈ in Ar. * Selectivity for C₃H₈, only volatile compounds taken into account. * \(kd = \frac{\ln(1 - \text{conv}_{\text{end}})}{\text{conv}_{\text{end}}} - \frac{\ln(1 - \text{conv}_{\text{start}})}{\text{conv}_{\text{start}}}\)/\(t\).
Conclusions

This work shows that utilizing SOMC/TMP as a synthetic methodology enables the formation of narrowly distributed bimetallic Pt–Zn subnanometric particles supported on SiO₂. The resulting high productivity and stability in the PDH reaction for the tested range of WHSV compared to other Pt–Zn systems are attributed to the combination of alloying and high metal dispersion. Furthermore, the remaining Zn¹¹ surface sites likely play a role to prevent sintering. SOMC/TMP is a unique synthetic tool to address the origin of catalytic performances in complex multi-metallic systems, where composition, size and support effects can play a crucial role; we are currently further investigating this approach as a general tool for the synthesis of model catalysts to establish detailed structure–activity relationships.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

L. S. R. thanks the Swiss National Science Foundation (SNSF fond number: 200021_169134) for funding. J. A. thanks the Sinergia project of the Swiss National Science Foundation (SNSF fond number: CRSII5_183495) for funding. We thank Dr Dmitry Lebedev and ScopeM for help with TEM measurements. Fabian Müller and Debora Thöny are acknowledged for help with TGA measurements. Ka Wing Chan is thanked for help with XAS interpretation. Scott Docherty is acknowledged for help with chemisorption measurements. Dr Gina Noh, David Trummer, Petr Sot and Scott Docherty are acknowledged for discussions. The whole Copéret group is acknowledged for help with XAS measurements.

References

5 Z. Han, S. Li, F. Jiang, T. Wang, X. Ma and J. Gong, Nanoscale, 2014, 6, 10000–10008.

