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Abstract—The Wasserstein distance has seen a surge of in-
terest and applications in machine learning. Its popularity is
driven by many advantageous properties it possesses, such as
metric structure (metrization of weak convergence), robustness to
support mismatch, compatibility to gradient-based optimization,
and rich geometric properties. However, empirical approximation
under the Wasserstein distance suffers from a severe curse of
dimensionality, rendering it impractical in high dimensions. We
propose a novel Gaussian-smoothed Wasserstein distance, that
achieves the best of both worlds: preserving the Wasserstein
metric structure while alleviating the empirical approximation
curse of dimensionality. Furthermore, as the smoothing param-
eter shrinks to zero, smooth Wasserstein converges towards the
classic metric (with convergence of optimizers), thus serving
as a natural extension. These theoretic properties establish the
smooth Wasserstein distance as favorable alternative to its classic
counterpart for high-dimensional analysis and applications.

I. EXTENDED ABSTRACT

The 1-Wasserstein distance (W1) between two probability
measures P and Q, with finite first moments, is

W1(P,Q) := inf
π∈Π(P,Q)

∫
‖x− y‖ dπ(x, y),

where Π(P,Q) is the set of couplings of P and Q. This dis-
tance has many appealing properties, such as: (i) robustness to
mismatched supports of P and Q (crucial for generative mod-
eling applications); (ii) metrization of weak convergence of
probability measures; (iii) defining a constant speed geodesic
in the space of probability measures (giving rise to a natural
interpolation between measures). These advantages, however,
come at a price of slow empirical convergence rates, known
as the ‘curse of dimensionality’.

Suppose (Xi)
n
i=1 are i.i.d. samples from a Borel prob-

ability measure P on Rd. Consider the rate at which the
empirical measure Pn , 1

n

∑n
i=1 δXi

approaches P in the
1-Wasserstein distance, i.e., the EW1(Pn, P ) rate of decay.
Since W1 metrizes narrow convergence, the Glivenko-Cantelli
theorem implies W1(Pn, P ) → 0 as n → ∞. Unfortunately,
the convergence rate drastically deteriorates with dimension,
scaling as n−

1
d for any P absolutely continuous w.r.t. the

Lebesgue measure [1]. This rate is sharp for all d > 2. Thus,
empirical approximation under W1 is effectively infeasible
in high dimensions – a disappointing shortcoming given the
dimensionality of data in modern ML tasks.

To alleviate this impasse, we propose a novel framework,
termed Gaussian-smooth Wasserstein distance that inherits the
metric structure of W1 while attaining much stronger statistical

guarantees. The smooth Wasserstein distance of parameter σ ≥
0 between two d-dimensional probability measures P and Q is

W
(σ)
1 (P,Q) , W1(P ∗ Nσ, Q ∗ Nσ),

where ∗ stands for convolution and Nσ , N (0, σ2Id) is the
isotropic Gaussian measure of parameter σ. In other words,
W

(σ)
1 (P,Q) is simply the W1 distance between P and Q after

each is smoothed by an isotropic Gaussian kernel.
Theorem 1 of [2] shows that just like W1, for any

σ ∈ [0,+∞), W
(σ)
1 is a metric on the space of probability

measures that metrizes weak topology. Namely, a sequence
of probability measures (Pk)k∈N converges weakly to P if
and only if W

(σ)
1 (Pk, P ) → 0. This further implies that

convergence to zero of W1 and W
(σ)
1 are equivalent (see

[2, Theorem 2]). We next explore properties of W
(σ)
1 (P,Q)

as a function of σ for fixed P and Q. Theorem 3 in [2]
establishes continuity and non-increasing monotonicity of
W

(σ)
1 (P,Q) in σ ∈ [0,+∞). These, in particular, imply

that limσ→0 W
(σ)
1 (P,Q) = W1(P,Q). Additionally, using the

notion of Γ-convergence, Theorem 4 of the aforementioned
work establishes convergence of optimal couplings. Namely,
if (πk)k∈N is sequence of optimal couplings for W(σk)

1 (P,Q),
where σk → 0, then (πk)k∈N converges weakly to an optimal
coupling for W1(P,Q).

Lastly, consider empirical approximation under smooth
Wasserstein, i.e., the convergence rate of EW(σ)

1 (Pn, P ). It
was shown in [3, Proposition 1] that Gaussian smoothing
alleviates the curse of dimensionality, with EW(σ)

1 (Pn, P )

converging as n−
1
2 in all dimensions. Although W

(σ)
1 is

specialized to Gaussian noise, Theorem 5 of [2] generalizes
the empirical approximation result to account for subgaussian
noise densities. The expected value analysis is followed by
a concentration inequality for W

(σ)
1 (Pn, P ) derived through

McDiarmid’s inequality [2, Theorem 6].
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