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Abstract 

Activity space, defined as “the local areas within which people move or travel during the course of 
their daily activities”, is a measure of individual’s spatial behaviour which captures individual and en-
vironmental differences and offers an alternative approach to studying the spatial reach of travellers. 
The shape and area of the activity space is a product of how it is conceptualized and measured. The 
paper enlarges the set of geometries, which can be used to describe the activity space. It tests four pa-
rametric geometries (ellipse, superellipse, Cassini oval and bean curve), which are identified as those 
capturing a specific share of all locations visited, e.g. 95%, while minimising the area covered. They 
are estimated for a number of long-duration datasets while distinguishing between trip purposes. 

 



 

 

1 Introduction 

Before Geographic Information Systems (GIS) were introduced, Euclidean measures like the 
standard deviational ellipse (SDE), and methods making use of place-based proxies for 
household locations (such as zip code centroid) were used to approximate the activity space of 
travellers, understood here as the area which they have visited in person (See Schönfelder, 
2006 for a wider review) . However, most previous studies were restricted to samples of one 
or two day diaries because of the expense involved in data collection, especially of the geo-
coding of the addresses reported. With the recent advances in GIS technology and through the 
increasing availability of spatially referenced data, activity space has become a more attrac-
tive tool for studying spatial behaviour. These same technological advances enable research-
ers to develop new measures of activity space that improve on the precision of the standard 
deviational ellipse and represent and analyze actual travel behaviour in a better way. 

The micro-geographical concept of activity space aims to capture the structures of the ob-
served locational choices of the individual traveller. It is implemented, measured, with a two 
dimensional form (geometry) covering in a to be defined manner the places frequented by an 
individual over a period of time. Previously, the standard deviation ellipse (SDE), the two-
dimensional generalisation of the confidence interval, was a favourite method, as it easy to 
calculate (See Schönfelder, 2006 for a review; Schönfelder and Axhausen, 2003 for further 
approaches). However, the SDE imposes a specific geometric form, which might or might not 
reflect the underlying behaviour or urban form. In addition, it captures the underlying vari-
ance and therefore suggests rather large areas. Furthermore, if the SDE is calculated with re-
spect to the home location, it imposes a symmetry around the home, even if one half of the 
area covered is free of locations visited. Alternatives avoiding these issues would therefore be 
desirable.  

The alternatives suggested by Schönfelder and Axhausen, 2003: the shortest-path-network or 
kernel-density derived measures are appealing but have computational drawbacks and, at 
least, the shortest path networks, substantial additional data requirements in the form of a 
complete navigation network for the study area. The kernel density derived measures correlate 
very highly with the number of observed trips and add little new information. They are, never-
theless, a good semi-parametric way to map the activity locations. If one accepts a particular 
geometry and a unique criterion to determine the parameters of this geometry a priori, then 
any geometric form could be used to capture the observed destinations: circle, square, trian-



 

 

gle, etc. In this paper four geometries will be tested each reflecting a particular hypothesis 
about the form of a human activity space (see Vaze, et al., 2005 for a first implementation): 

• Ellipse, which can capture an activity space with either one or two clusters of loca-
tions visited combined with a range of other locations outside these clusters. (One 
cluster can be captured as the ellipse can collapse to a circle). 

• Cassini oval, which captures again two clusters, but without intermediate locations 
between the clusters. 

• Bean curve, which can accommodate three clusters, but is more flexible then a trian-
gle. 

• Superellipse, which includes the circle and ellipse, but can address a situation with 
four clusters by including a “caro” – like form.  

This paper presents discusses a method to fit these geometries to observed activity locations 
and applies to five long-duration diaries or GPS observations. It provides in this way im-
proved estimates of the size of the human activity space, but also for the first time into its 
structure. After a brief literature review, covering work from biology, geography and plan-
ning, the paper will present the algorithm implemented. The final chapter describes the data 
sets and the estimation results. An outlook to further work concludes. 

2 Brief review 

One of the first aggregate approaches to estimate people’s range of movement and contact is 
Hägerstrand’s Mean Information Field (MIF) (Hägerstrand, 1953). As Hägerstrand and his 
colleagues could not use longitudinal movement information which would have fulfilled the 
research requirements, they used local migration data to test the model. The concept was ap-
plied to other data sources and in different contexts later, interestingly also to one of the first 
longitudinal travel data sets ever, the Cedar Rapids movement study data (Garrison, et al., 
1959; Marble and Nystuen, 1963). 

Lnych’s work (1960) focuses on the assumption that the perception of space is a highly sub-
jective process – in contrast to the generalized representation of space in cartography. Based 
on the interest in the relationship between the structures as well as quality of architecture and 
human perception, Lynch found out that the mental maps of individuals, i.e. the image which 
human beings develop about their (travel) environment, are 



 

 

• more or less biased 

• are simplifications of the real world 

• group-specific and 

• composed of about five basic elements which have different meanings for the 
structure of urban space in different cities (paths, border lines, areas, foci and 
landmarks). 

Mental maps mainly act as an individualised cognitive support for spatial ordering and orien-
tation. Mental maps and their formation may methodologically be captured only indirectly – 
Lynch used memory protocols and - as a main approach - map sketches of test persons. 

Inspired by Hägerstrand’s space-time paths (Hägerstrand, 1970), Lenntorp (1976) developed 
the concept of space-time prisms. He operationalised Hägerstrand’s ideas towards a measure 
of individual accessibility based on the notion of a person’s reach. Space-time prisms define 
the possible locations for a space-time path with obligatory activities such as work fixing the 
shape of the prism by predefining the person’s location. 

Finally, the activity space concept – which was developed in parallel with several of the ap-
proaches presented above to describe individual perception, knowledge and actual usage of 
space in the 1960s and 1970s (see Golledge and Stimson, 1997 for a discussion) – aims to 
represent the space which contains the places frequented by an individual over a period of 
time. Activity spaces are (geometric) indicators of the observed or realised daily travel pat-
terns (see also Axhausen, 2002). This is stressed here as the related concepts such as action 
space, perceptual space, mental maps or space-time prisms mainly describe the individual po-
tentials of travel. 

Activity spaces underlie fundamental geographical principles such as distance decay and di-
rectional bias which implies that the probability of (regular) contact with a location usually 
decreases with its distance from the peg(s) of daily life (i.e. in particular home) and the devia-
tion from the main orientation / direction of daily travel. The latter refers to preferences for a 
particular place over other places of equal/similar distance due to some perceived quality of 
the preferred place (Golledge and Stimson, 1997). 



 

 

3 The algorithm 

The algorithm is implemented as an element of the (MATSIM-T) multi-agent transportation 
simulation toolkit (see Balmer, Axhausen and Nagel, 2006). The toolkit is based on a well de-
fined database describing a given scenario which consists of spatial data, transportation net-
works, survey information and detailed descriptions of each individual active in the scenario 
(see Figure 1). The base functionality of each optional element is to read the defined XML 
(eXtensible Markup Language) data, store them in an appropriate data structure and write it 
again in an enriched, reduced, or even unchanged form in the XML data format. The person 
data structure is based on the MATSIM-T daily schedule DTD (in MATSIM-T called a plans-
DTD) and is used as a working file to enrich persons description, their personal knowledge of 
the scenario and what they plan to do. In the minimum version the file holds only the identity 
number (id) of all persons modelled. But, obviously, it is possible to add a large amount of in-
formation about each person to the file, such as age, sex, car ownership, home, work and other 
locations visited by an individual etc. One part of the data structure actually defines their per-
sonal activity spaces. These data points will be calculated by the algorithm presented in this 
paper. The internal data structure of the plans package provides exactly the same flexibility as 
the XML file format. Therefore, it is possible to sequentially add additional schedule details 
to a given incomplete MATSIM plans file. 

Algorithms – like the one described in this paper – can be added to each package to verify, 
manipulate, add, or delete data items according to the purpose of the algorithm. Since differ-
ent algorithms have to be used or implemented for each new scenario, it is critical that the al-
gorithms are clearly separated from the data structure. They should also be easily exchange-
able. 



 

 

Figure 1 Schematic overview of MATSIM-T 

 

Adapted from Balmer (forthcoming) 

3.1 Simplex optimization technique 

The Nelder-Mead simplex optimization technique (Nelder and Mead, 1965) is an algorithm 
for finding local minimum of a function of several variables. For two variables, a simplex is a 
triangle, starting with three 2-dimensional points. These three points correspond to the three 
vertices of a triangle and constitute the first simplex. The method is a pattern search that com-
pares function values at the three vertices of the triangle. The worst vertex, where ),( yxf is 

largest, is rejected and replaced with a new vertex. A new triangle is formed and the search is 
continued (see Figure 2). The process generates a sequence of triangles, for which the func-
tion values at the vertices get smaller and smaller. The size of the triangles is reduced and the 
coordinates of the minimum point are found. Similarly, for a 3-dimensional space, four initial 
observations are required, thus defining a tetrahedral body. In general, for a function of n  
variables, the algorithm maintains a set of 1+n  points forming the vertices of a simplex in n -
dimensional space. This simplex is successively updated at each iteration by discarding the 



 

 

vertex having the highest function value and replacing it with a new vertex having a lower 
function value. Here is a brief outline of the steps involved in 2-dimensional simplex optimi-
zation, following Mathews and Fink (2004). 

3.1.1 Initial triangle BGW  

Let the function to be minimized be ),( yxf . Since it is a two variable function we are dealing 

with 2-dimensional parameter space, and hence require three initial observations to serve as 
the three vertices of the triangle constituting the first simplex. Let these vertices be given by 

( , ), 1, 2,3k k kV x y k= = . The function ),( yxf  is then evaluated at each of the three points: 

( , )k k kz f x y= for 3,2,1=k . The points are then sorted according to the calculated response as 

best, next best and the worst. We use the notation 

),(),,(),( 33221,1 yxWyxGyxB ===  

to help remember that B is the best vertex, G is next to best, and W is the worst (see Figure 
2a). 

3.1.2 Midpoint of the good side 

Next step involves calculation of the mid point of the line segment joining B and G. It is 
found by averaging the coordinates as 

( ) 1 2 1 2,
2 2 2

B G x x y yM
+ + +⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

3.1.3 Reflection using the point R 

The function ),( yxf decreases as we move along the side of the triangle from W to either of 

the points B and G implying that function takes on smaller values at points lying away from 
W on the opposite side of the line between B and G. A test point R is chosen by “reflecting” 
the triangle through the side BG. In order to determine R, midpoint of the side BG is calcu-
lated first. Then a line segment is drawn from W to M. Let its length be d . This line segment 
is extended a distance d through M to locate the point R. The vector formula of R is 



 

 

( ) WMWMMR −=−+= 2  

3.1.4 Expansion using the point E 

In case the value of the function calculated at R is smaller than that at W, it signifies that we 
have moved in the correct direction towards the minimum. However, since this is not the 
minimal point, we try to achieve a better approximation of it by extending the line segment 
through M and R to the point E, (see Figure 2b) forming an extended triangle BGE. The point 
E is found in the same manner as R by moving an additional distance d along the line joining 
M and R. If the value of the function is lower than that at R, it implies that E is a better vertex 
than R. The vector formula of E is given by 

( ) MRMRRE −=−+= 2  

3.1.5 Contraction using the point C 

If the initial reflection fails i.e. if the calculated value of the function at R is higher than that at 
R or if R is not within the accepted limits of parameters, a contraction is needed. A point C, 
called the contracted point is found out by calculating the midpoint of the line segment join-
ing W and M. In this case the point C replaces W in the simplex. However, if the function 
value at C is not lower than that at W, the points G and W must be shrunk towards B. The 
point G is replaced with M and W is replaced with S, which is the midpoint of the line seg-
ment joining B with W (see Figure 2c). 



 

 

Figure 2 Steps of the Nelder-Mead simplex-algorithm 

 

Figure 2a The triangle BGW, midpoint M and 
the reflected point R 

 

Figure 2c Shrinking of triangle towards B 

 

Figure 2 b The triangle BGW, point R and the extended point E 

 
 

Source: Mathews and Fink (2004) 

Therefore, at the end of every iteration step, we generate a new simplex with a set of three 
points ( 1+n  points for n  dimensional simplex optimization). The process is repeated until 
we approach the optimum value or till the improvement of the response is insignificant be-
tween successive iterations. 



 

 

3.2 Using simplex optimization for calculating activity spaces 

The above described simplex optimization algorithm can be used to find activity spaces of a 
specified shape such that the captured area will be minimized. Furthermore we want to prede-
fine a certain percentage of coverage of the given geo-coded locations which the resulting ac-
tivity space should cover. It is therefore crucial to define which parameters are preset by the 
user, which ones define the parameter space in which the simplex algorithm optimizes, and—
last but not least—we also need to define the objective function which has to be minimized. 

The predefined input parameters of the user are: 

• The type of the activity space which has to be minimized (ellipse, superellipse, 
Cassini oval or bean curve). 

• The location type which are considered for calculating the activity space (in 
here we are using ‘home’, ‘work’, ‘education’, ‘shop’, ‘leisure’ and also the 
type ‘all’ which defines the activity space for considering all given locations). 

• The minimum coverage ( cov [0.0,1.0]er = ) defines the percentage of locations 

which has to be covered by the resulting activity space. 

• The step size for angle θ , which defines the rotation of the shape based on the 
Euclidean coordinate system. The smaller the step size is, the more precise the 
resulting activity space fits the global minimum. 

Note, that—in principal—the angle θ  could be part of the simplex parameter space. But we 
already found out, that the search space including θ  leads us to problems in the optimization 
technique. In other words, the solution space is distorted towards the direction of θ  which 
leads to a large performance loss of the simplex algorithm. 

The objective function 1 2( , , , )nf x x xK  calculates the captured area of the given activity space 

defined by its parameters 1 2, , , nx x xK . For all four activity spaces discussed in this paper we 

use the objective parameters 0x  and 0y  to define the centre of the activity space in the given 

Euclidean coordinate system. Also the horizontal and vertical extensions ( a  and b ) are part 
of the search space. But since we are already set the coverage cov er , we are able to reduce 
the search space by one dimension: Instead of calculating ( 0, 0, , , , )nf x y a b xK , we reduce the 

search space such that it includes only activity spaces which covers the preset cov er  value. 



 

 

Therefore, we substitute a  and b  by the ratio ratio b a=  and let the objective function cal-

culate a  and b , such that it fulfils ratio b a=  and covers the defined amount of locations 

(preset by the cov er  parameter). As a result the search space of the simplex algorithm is de-
fined by the coordinates 0x  and 0y , the ratio ratio b a=  and—dependent on the given 

shape of the activity space—additional parameters. 

The objective function ( 0, 0, , , , )nf x y a b xK  is therefore replaced by 

( 0, 0, , , )cover nf x y ratio xK . In the objective function, the calculation of the actual extends of a  

and b  will be done via bisection method. 

The detailed description of the search space of each evaluated shape is described in the next 
section. 

3.3 Geometries implemented 

As discussed above, the geometries chosen impose a parametric form on the activity space. 
Although these geometries are an abstract representation of travellers’ activity spaces, they 
actually allow for construction of a more comprehensive and realistic picture of travel behav-
iour than has previously been provided. They provide an understandable graphical representa-
tion of a combination of elusive concepts and also several appropriate measures for quantifi-
cation and comparability to allow further analysis of activity spaces. This section deals pre-
sents the mathematical definition of the geometries (see Figure 3 for their graphical represen-
tations).  

3.3.1 Ellipse 

Ellipse is defined as the locus of points P  such that the sum of the distances from P  to two 
fixed points 21, FF  (called foci) is constant. That is, distance [ ]+1, FP  distance [ ] aFP 2, 2 = , 

where a  is a positive constant. An ellipse centred at the origin of an yx −  coordinate system 

with its major axis along the x-axis is defined by the equation of the elliptical object.  
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The same ellipse is also represented by the parametric equations: 

cos ; sinx a t y b t= = , 

where t  belongs to [ ]Π2,0  

If the ellipse is not centred at the origin of x-y coordinate system but has its major axis along 
the x-axis, it may be defined as 

100 22
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⎛ −

b
yy

a
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where ( )0,0 yx  is the centre. 

The parametric form of an ellipse centred at ( )0,0 yx  and rotated through an angle θ  is given 

by 

0cossinsincos,0sinsincoscos ytbtayxtbtax ++=+−= θθθθ  

The areas of an ellipse is given by 

baA ××Π=  

In order to find the ellipse covering 95% of the activity locations, four parameters were fitted: 

1. X coordinate of the centre of the ellipse ( 0x ). 

2. Y coordinate of the centre of the ellipse ( 0y ). 

3. The orientation of the major axis of the ellipse (θ ).  

4. The ratio ( ratio ) of the length of the semi-minor axis (b ) to the length of the semi-
major axis ( a ) of the ellipse. 



 

 

3.3.2 Superellipse 

A superellipse (Lamé curve), centred at origin, is defined in the Cartesian coordinate system 
as the set of points satisfying the equation 

1=+
rr

b
y

a
x , 

where 0〉r  and a  and b  are the radii of the oval shape. The case 2=r  yields an ordi-

nary ellipse; r  values below 2 result in hyper-ellipses with pointed corners in the x  and y  

directions resembling crosses, r  values greater than 2 yield hyper-ellipses which increasingly 
resemble rectangles.  

It may be described parametrically as  

tbytax rr /2/2 sin,cos ==  

A superellipse centred at ( )0,0 yx  is given by 

100
=

−
+

− rr

b
yy

a
xx , 

with parametric equation 

0sin,0cos /2/2 ytbyxtax rr +=+=  

A superellipse with centre at ( )0,0 yx  and having an orientation of θ  with the x-axis is de-

fined parametrically as 

0cossinsincos,0sinsincoscos /2/2/2/2 ytbtayxtbtax rrrr ++=+−= θθθθ  

The area of the superellipse is given by 

( )
( )r

rabA
r

/12/1
/11*4 /11

+Γ
+ΓΠ

=
−
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where Γ  is the gamma function. 

To construct optimum superellipse, the following parameters were calculated: 

1. X coordinate of the centre of the superellipse ( 0x ). 

2. Y coordinate of the centre of the superellipse ( 0y ). 

3. The orientation of the major axis of the superellipse (θ ). 

4. The ratio ( ratio ) of the length of the semi-minor axis (b ) to the length of the semi-
major axis ( a ) of the superellipse. 

5. The exponent r . 

The exponent r  defines if a superellipse looks like a diamond ( 0 1r< < ), like a rectangle 
( 1r = ) or more like an ellipse ( 1r > ). In this paper we are interested into diamond shapes 
of the superellipse, therefore we reduce the search space of the simplex algorithm to values of 
r  between zero and one. 

3.3.3 Cassini oval 

The Cassini ovals are defined as a locus of a point such that the product of its distances from 

two fixed points a distance a2  apart is a constant 2b . If the long axis of symmetry of the 
curve centred at origin, is parallel to the x-axis, it can be expressed as 

( )( ) ( )( ) 42222 byaxyax =+++−  

The parametric form of the above curve is: 
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The parametric equation of a cassini at an angle θ  and centred at ( )0,0 yx is: 
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The area of the curve is given by 
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The shape of the oval depends on the ratio a
b . When a

b  is greater than 1, the locus is a sin-

gle, connected loop. When a
b  is less than 1, the locus is comprises two separated parts as 

shown in Figure 3. When a
b  is equal to 1, the locus is a lemniscate. Since, the situation a

b  

less than 1 is not relevant to our purpose; it was excluded by constraining a
b  to be greater 

than 1 throughout the optimization process. 

For the Cassini oval, the optimization process fitted the following four parameters: 

1. X coordinate of the centre of the cassini oval ( 0x ). 

2. Y coordinate of the centre of the cassini oval ( 0y ) 

3. The orientation of the major axis of the cassini oval (θ ). 

4. The ratio ( ratio ) of the length of the semi-minor axis (b ) to the length of the semi-
major axis ( a ) of the cassini oval. 

3.3.4 Bean curve 

The standard unit bean curve, situated in the 1st and the 4th quadrant, with origin at its one end 
and having the horizontal axis of unit length oriented along −x axis, is given by the equation  

( )224224 yxxyyxx +=++  

The parametric form for the same is: 



 

 

2
sin31coscossin,sin

22
2 θθθθθ ++

== yx  

The area of the bean curve is given by  

( )
1

0

2 1 1 (2 3 ) ~ 1.058049* *A x x x x dx a b a b= − + + − ⋅ ⋅∫  

The optimization is performed in a 4-parameter space consisting of the following: 

1. X coordinate of the centre of the bean ( 0x ). 

2. Y coordinate of the centre of the bean ( 0y ). 

3. The orientation of the major axis of the bean (θ ). 

4. The ratio a
b , where a and b are the multiples by which the standard unit bean curve 

is stretched in the horizontal and vertical directions respectively.  

Figure 3 Geometries tested 
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Bean curve 
 
Source: http://mathworld.wolfram.com 

4 Results and discussion 

4.1 Data sources  

In the past, transport planners collected short duration, generally one-day diaries, because of 
the cost and effort required for longer duration studies. However, with the availability of 
GPS-based tracking system and the increased interest in studying travel behaviour, a number 
of long duration surveys and observational studies have become available. 

The data sets employed here are the Uppsala 5-week diary (Hanson and Burnett, 1982), Mo-
bidrive 6-week diary (Axhausen et al, 2002), ISA Rättfart GPS observational study (Schön-
felder et al 2002; Schönfelder and Samaga, 2003), SVI Stabilität 6-week diary (Axhausen et 
al., 2004) and the AKTA GPS observational study (Nielsen and Jovicic, 2003). 

The Uppsala survey was conducted in the city of Uppsala, located approximately 70 km 
northwest of Stockholm, in the year 1971. A random sample of 20% of the population was 
drawn. The final sample size was 278 households with 488 persons of which 92 households 
were chosen for further analysis. The addresses of all trips were geocoded by hand.  

The Mobidrive survey, conducted in the German cities of Halle/Saale and Karlsruhe in 1999, 
involved a total of 317 persons over 6 years in 139 households. The trip destination addresses 
of all main study trips were geo-coded with the geo-coding being positive for more than 98% 



 

 

of the trips. For the City of Karlsruhe and the City of Halle, small street blocks were used as 
the basis for the geo-coding of the street addresses. However, outside the urban area, the ad-
dresses were geo-coded only on the basis of the centroid of the municipality. 

The ISA Rättfart GPS study, carried out in the Middle-Swedish town of Borlänge, consists of 
fully automatically collected movement information for vehicles for up to two years. The ve-
hicles were equipped with on-board data collection system consisting of a GPS receiver, a 
data storage device running a GIS for mapping all movements and a mobile power supply. 
The study was conducted from 1999 to 2002 with more than 200 private and commercial cars 
equipped for periods of up to two years each. 

The SVI Stabilität survey was performed in the canton of Thurgau in 2003, covering a six 
week reporting period with  99 households and 230 persons. Nearly all destination addresses 
and household locations could be geo-coded with high precision. 

In the AKTA study, carried out in the greater Copenhagen region, approximately 400 cars 
were equipped with a GPS-based device during a period of two times 8-10 weeks in 
2001/2002. Vehicle movement data was collected each second. A telephone based before-
and-after survey which consisted of attitude questions accompanied the process of GPS moni-
toring. The available sample includes 50 vehicles/persons with 44 to 135 reported days and 
125 to 1044 reported trips each. The trip was defined by the first satellite signal received and 
ends with the engine switch off. The visited locations were identified by a simple clustering 
technique which grouped adjacent trip ends into clusters using the SAS Fastclus procedure 
(Anderberg, 1973). 

4.2 Setup 

For all the above given surveys we will calculate the 95% coverage activity spaces 
( 0.95cover = ). It has to be noted, that it is typically not possible to obtain exactly the given 
coverage because the number of locations excluded are discrete numbers. Therefore, the algo-
rithm will calculate the lowest possible coverage above 0.95. 

Each location of the above studies includes the frequency how often a person went to that lo-
cation. We are using this as the weight of the location by simply multiply it by the frequency. 
With it, locations which are visited quite often will typically be part of the calculated activity 
space with coverage 0.95. 



 

 

We assigned a orientation step size of θ  by 22.5stepθ = ° . This is a good trade off between 

computation time and accuracy of the resulting activity space. 

4.3 Results 

Before discussing the results for the whole samples, a set of example results will be discussed 
and mapped. Figure 4 depicts the different optimal geometries covering 95% of the shopping 
locations visited by a respondent drawn from the “SVI Stabilität” study. The person reported 
218 trips, sorted by the activity types: 

• 44 leisure activities at 24 unique leisure locations 

• 77 work activities at 11 unique work locations 

• 84 home activities at 1 unique home locations 

• 12 shop activities at 10 unique shop locations 

• 1 education activities at 1 unique education locations 



 

 

Figure 4 Example optimal geometries for the shopping locations plus home 
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The point to be noted here is that the superellipse produced is not the “best” optimum one that 
is possible. This is due to the limited number of angles which were tested during the optimisa-
tion (see above). A smaller step size for angles could be adopted for higher accuracy but at the 
cost of increased computation time. 

Figure 5 shows the optimal bean-curves for all locations, as well as for the four activity pur-
pose subsets. The bean curve covering 95% of all activity locations is smaller than that for lei-
sure activities, as there are peripheral and rarely visited leisure locations.  

 



 

 

Figure 5 Example 95% coverage activity spaces by weighted purpose (bean curves) 
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The optimal parameters were fitted for all geometries proposed and all five datasets (Table 1). 
In addition, the best, i.e. smallest, of the four geometries was determined for each respondent. 
All distributions are highly left skewed with substantially smaller medians than means. The 
large coefficients of variation underline this variance. While the mean and median of the best-
of geometry is much smaller then any of the other distributions, as expected. This highlights 
that no one geometry is appropriate for all respondents. The Cassini fits in about two of three 
cases, but not always. It indicates that the Cassini oval best reflects the typical pattern of two 
dominant clusters of activity (See Schönfelder, 2006), mostly home, work and education, but 
also frequently a leisure oriented cluster. In less then 10% of the cases, the bean curve capture 
a pattern with three clusters. 



 

 

Table 1 Optimal geometries for all locations: Summary of results 

Uppsala diary Cassini Ellipse Bean curve Superellipse Best geometry

Mean 115.71 197.80 145.40 200.55 92.93

Median 9.04 16.10 13.70 18.40 8.96

Standard deviation 354.80 652.46 508.67 674.88 326.45

Frequency of being the best solution 113 7 10 14 144

   

Mobidrive diary Cassini Ellipse Bean curve Superellipse Best geometry

Mean 384.74 629.12 597.88 558.71 333.63

Median 42.30 71.50 66.70 76.90 37.60

Standard deviation 1909.28 3175.02 3166.75 2846.46 1665.40

Frequency of being the best solution 257 16 20 24 317

   

ISA Rättfart GPS study, Borlänge Cassini Ellipse Bean curve Superellipse Best geometry

Mean 102.10 141.20 165.43 147.98 88.79

Median 65.60 110.00 102.00 112.00 65.60

Standard deviation 128.44 110.23 214.70 126.55 92.48

Frequency of being the best solution 53 1 5 7 66

   

SVI Stabilität survey, Thurgau Cassini Ellipse Bean curve Superellipse Best geometry

Mean 1845.99 2819.77 2509.13 3419.68 1724.84

Median 347 598 460 637 319

Standard deviation 3893.65 6123.99 8087.50 3667.79 3219.41

Frequency of being the best solution 177 14 26 13 230

   

The AKTA study, Copenhagen Cassini Ellipse Bean curve Superellipse Best geometry

Mean 3322.98 4111.08 5013.48 4869.48 2603.34

Median 246.00 426.00 366.00 491.00 241.00

Standard deviation 7520.15 10729.63 11684.94 13688.16 6314.43

Frequency of being the best solution 146 26 17 12 201

 



 

 

Figure 6 Occurrence distributions of ratio (b/a) for the four shapes 

 



 

 

If we compare the number of occurrences of a specific ratio of one of the given activity 
spaces, as shown in Figure 6, there are several aspects to mention: 

1. In the ellipse, superellipse and the bean curve histograms there area high amount of ra-
tio (b/a) almost equal to zero. There are artefacts created by calculating activity spaces 
for one or two geo-coded locations. Since those activity spaces do not have any use, 
we do not consider this part in the analysis. 

2. The ratio histogram of the ellipse shows more or less a normal distribution with the 
mean of ratio b/a equals to 1. In other words, many resulting ellipse activity spaces 
capture an area similar to a circle. With the information given by Table 1 we already 
know, that there are many exceptions in which the ellipse type does not cover an ap-
propriate area while other shapes minimizes the space better. 

3. Similar can be said about the superellipse. While the ratio is normal distributed around 
b/a = 1, the exponent (r) are either very small (which forms a very spiky shaped dia-
mond) or almost 1 (the shape of a “caro”). Since the analysis in Table 1 showed that 
the superellipse does not capture an appropriate activity space compared to the other 
shapes, it is no improvement of the ellipse shape. 

4. On the other hand, a very promising output is delivered by the Cassini oval. The ma-
jority parts of the shapes are lemniscates. The others tent to form a circle. This indi-
cates that the Cassini oval nicely captures location sets which are concentrated at two 
spatial regions. The ellipse and the superellipse fail in such cases. It has to be noted, 
that the Cassini oval does—per definition—consume a low amount of space compared 
to the ellipse. Therefore, it is not that surprising that the Cassini oval has a high fre-
quency of being the best solution. 

5. Last but not least, the bean curve also shows a promising histogram. Since its shape is 
the most flexible of the four tested ones, we can capture locations sets with two groups 
(b/a < 1) as well as set with three groups (b/a > 1). Also circle like activity spaces can 
be captured (b/a ~ 1). A two-group location set are better captured by the Cassini oval, 
but the bean curve is better trimmed as the ellipse. 

 



 

 

5 Summary and Outlook 

In this paper we presented a generic activity space calculation module embedded in the 
MATSIM-T project. It has the flexibility to produce an appropriate activity space representa-
tion for a given location set. The module can be varied by the type of the shape of the activity 
space, the location type which has to be covered by the activity space and the percentage of 
the locations which the activity space should cover. The module can be used at any time of 
the initial individual demand modelling process of MATSIM-T to enrich the person data 
structure of the MATSIM Database. 

But the use of the simplex algorithm to obtain the minimum activity space for a given shape 
fulfils the requirement only partially. It is unsatisfying to preset the orientation of the shape 
stepwise and then pick the best solution. Some tests by adding the orientation into the search 
space showed clearly, that the simplex algorithm could stuck into a local optimum. To gain 
more flexibility (and at the end also gain computational speedup) it is necessary to replace the 
simplex algorithm by a more stable optimization model which can handle more complex 
search spaces. Fairly good approaches are evolutionary strategies like the covariance matrix 
adaptation (CMA) as used in Charypar, et al. (2006). 

The results in the previous chapter showed, that the bean curve and the Cassini oval produces 
more appropriate activity spaces as the ellipse does. It would be desirable do combine the two 
shape to gain the advantages of both. We may want to implement shapes which are less spe-
cialised and are able to define activity space much more efficiently and accurately. 

Also, it would be interesting to see as to what factors influence the activity space sizes of dif-
ferent individuals. A detailed statistical analysis needs to be performed to see if the socio-
demographic variables affect the travel behaviour and—with it—their individual activity 
space. 

The empirical results reported in this paper suggest that the activity space concept has the po-
tential of becoming a more widely used tool in studying spatial access, transport policy and 
planning and can be used to understand urban travel behaviour. It can be used to evaluate pre-
sent and future urban structure and accordingly come up with solutions to satisfy the activity 
demand in the household’s neighbourhood, resulting in reduced travel expenses, congestion 
and emissions. With the growing recognition of need for long duration datasets, the future 
analyses will lead to improved understanding of urban travel behaviour and thus more accu-
rate forecasts and enhanced policy analyses. 
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