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HOW IMPLICIT REGULARIZATION OF NEURAL NETWORKS

AFFECTS THE LEARNED FUNCTION - PART I

JAKOB HEISS, JOSEF TEICHMANN AND HANNA WUTTE

Abstract. Today, various forms of neural networks are trained to perform approxima-

tion tasks in many fields. However, the solutions obtained are not fully understood.
Empirical results suggest that typical training algorithms favor regularized solutions.

These observations motivate us to analyze properties of the solutions found by gradi-

ent descent initialized close to zero, that is frequently employed to perform the training
task. As a starting point, we consider one dimensional (shallow) ReLU neural networks in

which weights are chosen randomly and only the terminal layer is trained. We show that

the resulting solution converges to the smooth spline interpolation of the training data
as the number of hidden nodes tends to infinity. Moreover, we derive a correspondence

between the early stopped gradient descent and the smoothing spline regression. This
might give valuable insight on the properties of the solutions obtained using gradient

descent methods in general settings.

1. Introduction

Even though neural networks are becoming increasingly popular in supervised learning,
their theoretical understanding is still very limited. The most important open questions in
the mathematical theory of neural networks nowadays include the following:1

I. Generalization: Why and under which conditions can neural networks make good
predictions of the output for new unseen input data even though they have only
been trained on finitely many data points? How does the trained function behave
out of sample? How can one get control of over-fitting?

II. Gradient Descent: When training neural networks, a typically very high-dimensional
non-convex optimization problem is claimed to be solved by (stochastic) gradient
descent quite fast. There is relatively good understanding of how this algorithm
evolves in long term, in particular seen from the point of view of simulated an-
nealing. However, what happens if the algorithm is stopped early after a realistic
number of steps depending on a certain starting point?

III. Expressiveness: How expressive are neural networks (with a finite number of
nodes)? [31, 3, 16, 22]

IV. Summary: What are the advantages and disadvantages of different architectures?
What are the advantages and disadvantages of considering neural networks in ap-
proximation/prediction tasks compared to other methods such as Random Forests
or Kernel-based Gaussian processes? In both theory and applications, it is of great

The authors gratefully acknowledge the support from ETH-foundation. We are very thankful for nu-
merous helpful discussions, feedback, corrections and proof reading—especially to: Lukas Fertl, Peter

Mühlbacher, Martin Štefánik, Alexis Stockinger and Jakob Weissteiner.
1The literature agrees with questions I–III to be central [29]. Question IV motivates the importance of

questions I–III by summarizing them and concluding their implications.
1



2 JAKOB HEISS, JOSEF TEICHMANN AND HANNA WUTTE

interest to gain a precise understanding of IV, much of which could be achieved by
answering I–III.

The goal of this work is to contribute to answering these questions by rigorously proving
Theorems 3.8 and 3.17 that almost completely resolve question II (cp. eq. (28)) for the
restricted class of wide randomized shallow neural networks (RSNs) with ReLU activation
(i.e., wRRSNs). These answers together with the intuition acquired from sections 1.1 and 1.2
give quite extensive insights to I and thus IV.2

The result of this work can be seen in analogy to mean field theory in thermodynamics:
like we are understanding the collision behavior of each particle, we understand the training
behavior of each neuron3, 4. However, due to the extensive number of interactions between
particles/neurons the complexity increases in a way that the individual behavior of a par-
ticle/neuron does no longer give direct insight into the overall system’s behavior. In both
cases, taking the limit to infinity allows to precisely derive the system’s behavior in terms
of interpretable macroscopic laws/theorems (see Theorem 3.85).

1.1. The Regression Problem as a basis for Machine Learning. Throughout this pa-
per, we consider the task of supervised learning, for which the setting is typically introduced
as follows.

Let X respectively Y be an input and output space. Assume further, we observe a
finite number N ∈ N of i.i.d. samples (xtrain

i , ytrain
i ) ∈ X × Y with i ∈ {1, . . . , N} from an

unknown probability distribution PD on X × Y. Given an additional realization (X,Y )(ω)
of (X,Y ) ∼ PD, for which we can only observe X(ω) but not Y (ω), the goal is to make a

suitable prediction f̂(X(ω)) of Y (ω). Thus, for a given cost function C : Y × Y → R, we

are interested in an estimator f̂ : X → Y with low risk, i.e., for which the expected cost

E
[
C
(
f̂(X), Y

)]
is minimal. However, since PD is unknown, this risk cannot be calculated.

In supervised machine learning, one hence tries to learn an estimator f̂ based on the given
training data (xtrain

i , ytrain
i )i∈{1,...,N}. A common heuristic6 is to minimize a suitable training

loss

(1) L(f) :=

N∑
i=1

l
(
f(xtrain

i ), ytrain
i

)
for a chosen loss function l : Y × Y → R over a suitable class of functions H, i.e.,

min
f∈H

L(f).

2We also contribute to answering question III within the results marked with a “∗”: Remark 2.2, Corol-

lary 2.3, Lemma 2.4 and Remark 2.5 in Section 2. These results form an independent story line.
3In this work, only artificial neural networks are considered. Thus, terms such as ’neurons’ and ’neural

networks’ do not refer to actual biological neurons but rather to their artificial counterparts. The term

“node” will be used interchangeable with the term “neuron”.
4Notation remark: To improve readability of the paper, we use partially transparent (grey) fonts to

encourage the reader to skip these details.
5Theorem 3.8 results from letting the number of neurons n tend to infinity. In thermodynamics, Brownian

motion particle movements or heat equations result from taking the limit of the number of particles to infinity.
6Historically, the squared loss l(ŷ, y) := (ŷ − y)2 has often been used (in the case of regression). In

the literature, minimizing the training loss L is motivated sometimes as empirical cost minimization (or
empirical risk minimization) if C ∝ l and sometimes as maximum log-likelihood method if the logarithm of

the density of the noise Y − E [Y |X] is proportional to l.

https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
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Remark 1.1 (Setting). Throughout this work, we consider X = Rd with input dimension
d ∈ N and Y = R. In such a setting, we speak of supervised learning and regression inter-
changeably. Moreover, the (non-negative) loss function l : R×R→ R≥0 is generally assumed
to be convex and continuously differentiable in the first component (see Assumption 4).7

It is important to note that in Section 3.1 we derive this papers main contribution The-
orem 3.8 for d = 1. In future work, this result will be extended to d ≥ 2. By contrast,
the results presented in Section 3.2 hold true for general input dimension d ∈ N. However,
Theorem 3.17 linking the network resulting from gradient descent to the ridge network (with
explicitly regularized parameters) is derived for l(ŷ, y) := (ŷ − y)2 (Assumption 5; see also
Remark 3.18 ).

Historically, linear regression [10, 11, 21] was among the first methods used within super-
vised learning. Here, one restricts oneself to a tiny subspace of all functions: the space of
(affine-)linear functions. This choice indeed favors parsimony: if the number of samples N

is larger than the input dimension d(+1) there exists a unique8 function f̂ that fits through
the training data best, i.e. minimizes the training loss

(3) L
(
f̂
)

:=

N∑
i=1

(
f̂(xtrain

i )− ytrain
i

)2

.

Although this approach is still extensively used in real-world applications, the space of linear
functions often is not sufficient, as true relations between input and output are mostly more
involved if not highly non-linear. Ideally, the class H would hence be chosen to be more
expressive, so as to be able to approximate well these underlying maps from input X onto
output Y .

As a consequence, the challenge nowadays is to choose the “most desirable” function f̂

out of the infinitely many functions with equal training loss L
(
f̂
)

. This opens the ques-

tion to what the mathematical meaning of “most desirable” could be. At least intuitively,
engineers have quite specific convictions (also known as inductive bias) which functions are
not desirable (see Figures 1 and 2). This intuition could be formalized mathematically as

7This papers main result, Theorem 3.8, continues to hold true for more general choices of convex and
continuously differentiable loss functions li : R→ R≥0, i = 1, . . . , N and

(2) L(f) :=
N∑
i=1

li

(
f(xtrain

i )
)
,

(see Remark A.2 in Appendix A.1).
8The solution of a least square linear regression is unique, if there are d linearly independent training

data points xtrain
i (or d + 1 affine independent input points xtrain

i if an intercept is used). If the training

data points are drawn as i.i.d. samples from a distribution that is absolutely continuous with respect to the
d-dimensional Lebesgue measure, this is almost surely the case, if d(+1) ≤ N .

https://en.wikipedia.org/w/index.php?title=Inductive_bias&oldid=901756495
https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759


4 JAKOB HEISS, JOSEF TEICHMANN AND HANNA WUTTE

0

2

4

6

8

10

12

0 2 4 6 8 10 12

y

x

Figure 1. Example: Given these N = 11 training data
points (xtrain

i , ytrain
i ) (black dots) there are infinitely many functions f

that perfectly fit through the training data and therefore have training
loss L (f) = 0. The engineer’s intuition often tells us that one should
prefer the straight blue line over the oscillating red line, even though both
functions have zero training loss L (f) = 0.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

y

x

Figure 2. Example: Given these N = 120 training data
points (xtrain

i , ytrain
i ) (black dots) there are infinitely many functions f

that perfectly fit through the training data and therefore have training
loss L (f) = 0. For many applications our intuition tells us that we should
prefer the smooth blue line f∗,λ over the oscillating red line, even though
the smooth function f∗,λ results in training loss L

(
f∗,λ

)
> 0.
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a Bayesian prior knowledge9 [5, e.g. page 22].
One approach to capture the engineer’s intuition about the prior knowledge is to directly

regularize the second derivative of f̂ . Therefore, in the case of input-dimension d = 1, the

spline regression [30, 7, 18] is frequently considered in order to choose the function f̂ which
minimizes a weighted combination of the integrated square of the second derivative and the
training loss L.

Definition 1.2 (spline regression). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and λ ∈ R>0.
Then the (smoothing10) regression spline f∗,λ : R→ R is defined11 as

(4) f∗,λ
11

:∈ arg min
f∈C2(R)


L(f)=︷ ︸︸ ︷

N∑
i=1

(
f(xtrain

i )− ytrain
i

)2
+λ

P 1(f):=︷ ︸︸ ︷∫ ∞
−∞

(f ′′(x))
2
dx


︸ ︷︷ ︸

=:Fλ(f)

and for a given function g : R→ R≥0 the weighted regression spline f∗,λg is defined11 as

(5) f∗,λg

11

:∈ arg min
f∈C2(R)

supp(f)⊆supp(g)


L(f)=︷ ︸︸ ︷

N∑
i=1

(
f(xtrain

i )− ytrain
i

)2
+λ

P g(f):=︷ ︸︸ ︷
g(0)

∫
supp(g)

(f ′′(x))
2

g(x)
dx


︸ ︷︷ ︸

=:Fλ,g(f)

.

9From the machine learning point of view, one could theoretically formulate this prior knowledge regard-
ing the unknown distribution of (X,Y ) on X ×Y as a (probability)-measure on the space of all probability

measures on X × Y. If the prior measure is a probability measure, one can work perfectly rigorously in the

framework of classical Bayes law. If the prior measure is not a probability measure, we speak of an improper
prior, which can also lead to good results in applications. Consider for instance the very restrictive prior

measure that assigns measure 0 to the set of all non-linear functions and weights all linear functions the

same. Since this measure assigns ∞ to the subspace of all linear functions, it is an improper prior. This
improper prior leads to the least-square linear regression in the case of i.i.d. normally distributed noise. The

simple intuitive prior knowledge “I am absolutely sure that fTrue is linear, but I consider all linear func-
tions as equally likely.” is captured quite well by this improper prior and the solution of the corresponding

Bayesian problem can be computed quite fast (linear regression). But for most real-world applications, a

more realistic intuitive prior knowledge such as “I cannot exclude any function for sure, but I have some
vague feeling that fTrue is more likely to be a ‘simpler’, ‘smoother’ function than a ‘heavily oscillating’
function.” is harder to mathematically formalize and calculating the solution of such Bayesian problems

is often not tractable (with today’s computational power). Still, Bayesian theory can be considered a very
powerful and general abstract theoretical framework without explicitly solving Bayesian problems and even

without explicitly writing down priors.
10In the literature, the spline regression is often called (natural) (cubic) smoothing spline, but in this

text f∗,λ will simply be called regression spline.
11We use the notation a :∈ {s} to define a as the unique element s of the set {s} (i.e. a := s). So

strictly speaking the set after “:∈” should be a singleton—we are using footnotes to indicate under which

assumptions uniqueness can be guaranteed. The (weighted) regression spline f∗,λg is uniquely defined (i.e.

arg minf

(
L (f) + P g(f)

)
=
{
f∗,λg

}
) if ∃(i, j) ∈ {1, . . . , N}2 : xtrain

i 6= xtrain
j and g(0) 6= 0 in the case of

the weighted regression spline. The “arg min” is defined as the set of all minimizers:

(arg min) arg min
s∈S

F (s) :=

{
s ∈ S

∣∣∣∣ F (s) = min
s̃∈S

F (s̃)

}
= { s ∈ S | ∀s̃ ∈ S : F (s) ≤ F (s̃) }.

https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
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The meta parameter λ controls the trade-off between low training loss and low squared
second derivative. See f∗,λ in Figure 2 for an example of the regression spline (which
corresponds to the weighted regression spline f∗,λg with constant weight g ≡ c > 0).

Letting the regularization parameter λ tend to zero in (4), one obtains the smooth spline
interpolation, i.e. the “smoothest” C2-function interpolating the observed data.

Definition 1.3 (spline interpolation). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and λ ∈ R>0.
Then the (smooth) spline interpolation f∗,0+ : R→ R is defined12 as:

(6) f∗,0+ := lim
λ→0+

f∗,λ
12

∈ arg min
f∈C2(R),

f(xtrain
i )=ytrain

i ∀i∈{1,...,N}

(∫ ∞
−∞

(f ′′(x))
2
dx

)
.

The Definitions 1.2 and 1.3 can also be seen as solutions to mathematically defined
Bayesian problems [18]13.

1.2. A paradox of neural networks. As argued above, within a regression problem one

might have an intuition about certain attributes of solution functions f̂ that are particularly
“desirable”. Moreover, these ideas of suitability could be incorporated directly by including
certain regularization terms to the learning problem, such as seen in the popular example of
the spline regression f∗,λg . Surprisingly, however, standard algorithms applied to train neural
networks (i.e. gradient descent applied to the training loss L) are able to find “desirable”

functions f̂ without explicit regularization. This paradox shall be discussed throughout the
present section. In particular, we will demonstrate two severe misassumptions typically
made in the classical approach to explain supervised learning using neural networks.

The paradox can be observed for deep [13] as well as for shallow14 neural networks. This
paper resolves the phenomenon rigorously only in the context of (specific) shallow neural
networks (cp. Section 3). We start by defining these objects below. Further work is required
to extend the results to deep neural networks.14

Definition 1.4 (shallow neural network14). Let the activation function σ : R→ R be a non-
constant Lipschitz function. Then, a shallow neural network is defined as NN θ : Rd → R
s.t.

NN θ(x) :=

n∑
k=1

wk σ

bk +
d∑
j=1

vk,jxj

+ c ∀x ∈ Rd,

with

• number of neurons n ∈ N and input dimension d ∈ N,

12Analogous to footnote 11, the spline interpolation f∗,0+ is uniquely defined if ∃(i, j) ∈ {1, . . . , N}2 :

xtrain
i 6= xtrain

j . The right-hand side optimization problem in eq. (6) has a unique minimizer f∗,0+.
13More precisely, Definitions 1.2 and 1.3 can be seen as limits of Bayesian problems [18, p. 502]. Defini-

tions 1.2 and 1.3 cannot be solutions of a classical Bayesian problem with a proper prior (cp. footnote 9 on
page 5, [18, eq. (4.1) on p. 501] and [33]).

14In recent literature it has become fashionable to call shallow neural networks “simple deep neural

networks” or “two-layer (deep) neural networks” [12, Section 1.1 p. 3]. These three terms all are reasonable,

since such a network consists of three layers of neurons (input→hidden→output), therefore it has two layers
of weights and biases ((v, b) → (w, c)) and thus one hidden layer of neurons. Throughout this paper, we

use the classical notion of “shallow neural networks” to describe these objects. Within the current section
as well as in Section 4, we will express the desire to extend our theory to deep neural networks. This can

alternatively be read as extending the theory to “even deeper neural networks”.
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• weights vk ∈ Rd, wk ∈ R, k = 1, . . . , n and
• biases c ∈ R, bk ∈ R, k = 1, . . . , n.

Weights and biases are collected in

θ := (w, b, v, c) ∈ Θ := Rn × Rn × Rn×d × R.
Paradox 1. The paradox of how the training of neural networks leads to solution functions
that are surprisingly sensible from a Bayesian perspective (summarized in Figure 3) consists
of two parts:

1. In the literature it is often claimed that the goal of training a neural network is to
find parameters

(7) θ∗ ∈ arg min
θ∈Θ

L (NN θ) ,

such that the corresponding neural network f̂ := NN θ∗ fits through the training
data as good as possible (where goodness of fit is characterized by the choice of loss
L ).

However, such an optimal neural network NN θ∗ might have bad generalization
properties. First, if the number of hidden neurons n ≥ N is larger or equal than the
number of training data points N , there are infinitely many (7)-optimizing shallow
neural networks NN θ∗ that generalize arbitrarily badly15, even if there were only
zero noise εi = 0 on the training data.
Second, if n ≤ N − 2, then NN θ∗ can be unique, but NN θ∗ might still overfit to
the noise on the training data (see Figure 4). As a consequence of the universal
approximation theorems [8, 15], we have that large neural networks NN θ∗ (or any
other universally approximating class of functions) can potentially behave arbitrar-
ily badly (as, for instance, in Figure 1) in-between the training data xtrain

i while
keeping the training loss arbitrarily low, i.e. L (NN θ∗) ≤ ε, exactly because of their
universal approximation properties. (If a very small number of neurons n � N

d
were chosen, over-fitting of NN θ∗ would not pose such a severe problem, however,
in that case, neural networks would lose their universal approximation property
(which is one of their main selling points) and therefore NN θ∗ could not achieve a
low loss L (NN θ∗).)

Paradoxically, however, extremely large (trained) neural networks NN θ typically
generalize very well in practice. Indeed, Theorems 3.8 and 3.17 will demonstrate how
well neural networks NN θ with an infinite number of neurons behave in between
the data.

2. The objective function in optimization problem (7) (in the case of typical activation
functions) is a Lebesgue-almost everywhere differentiable function on the finite di-
mensional R-vector space Θ. Thus, for solving (7), it seems evident not only to most

15For ReLU activation functions, one can prove, that for every training data
(
xtrain
i , ytrain

i

)
i∈{1,...,N}

there exist infinitely many NN θ∗ such that the d-dimensional Lebesgue-measure of the

set
{
x ∈ [−1, 1]d

∣∣∣ |NN θ∗ (x)| > 9999
}

is larger than 99% and L (NN θ∗ ) = 0. If n ≥ N − 1 and

n ≥ 2 also infinitely many solutions exist that generalize arbitrary badly in a bit weaker sense: For every
training data

(
xtrain
i , ytrain

i

)
i∈{1,...,N} there exist infinitely many NN θ∗ such that the d-dimensional

Lebesgue-measure of the set
{
x ∈ [−1, 1]d

∣∣∣ |NN θ∗ (x)| > 9999
}

is larger or equal than 49% and

L (NN θ∗ ) = 0. This implies that there exist different global optima NN θ∗ of L that are arbitrarily far
from each other in any Lp-norm.



8 JAKOB HEISS, JOSEF TEICHMANN AND HANNA WUTTE

engineers to use a gradient descent algorithm (where the gradient can be calculated
via backpropagation algorithm in the case of neural networks). When considering
the training loss L , stochastic gradient descent might be as well used.16

However, there are no known guarantees that this algorithm converges to a global
optimum for a general, typically non-convex optimization problem. Moreover, nu-
merical experiments show that if the algorithm continues for a reasonable time, the
solution function obtained is still quite far from being optimal (w.r.t. the target
function L, that the algorithm claims to try to optimize.) (e.g. Figure 4).

WORKS VERY WELL!

EARLY-STOPPED GRADIENT DESCEND!

OVERPARAMETERIZED MODEL OF REALITY!

True Problem in Application: f̂ = ?
Bayesian Problem with realistic prior

θ∗ ∈ argmin
θ∈Θ

L (NN θ)︸ ︷︷ ︸∑N
i=1(NNθ(xtrain

i )−ytrain
i )

2

, f̂ := NN θ∗

θt+γ = θt − γ∇θL (NN θt) ,

θ0 ≈ 0,
f̂ := NN θT

1.

2.

Figure 3. Paradox 1: 1. It would not be desirable for neural networks to
solely minimize the training loss L. 2. The (stochastic) gradient descent
algorithm (also known as backpropagation algorithm) typically does not
succeed in finding a global optimum. Nevertheless, the algorithm results

in functions f̂ = NN θT that are surprisingly useful for a wide range of
practical applications.

1.3. Resolving Paradox 1: Implicit Regularization. In the following, we like to resolve
the paradox described above. Moreover, at the end of this section, a short overview will be
given, showing how this work contributes to a better understanding of the aforementioned
phenomenon.

Points 1, 2 and the observation that neural networks are very useful in practice can be
true at the same time:

As discussed above, an “optimal” network NN θ∗ would typically perform quite poorly
in practice (cp. 1). However, such a network is hardly obtained as a solution from a generic
training process involving a gradient descent based algorithm. The reason being that, for-
tunately, the backpropagation algorithm which was designed to yield trained networks close

16The stochastic gradient descent poses immense computational advantages in the case of a very large

number N of training observations (cp. item 2. on page 25). Within the present work, stochastic gradient
descent can be treated equivalently to ordinary gradient descent as we are considering the regime of constant

γ/τ ≡ T with diminishing learning rate γ → 0 and N ∈ N fixed.
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Figure 4. Example: Let N = 100 training samples (xtrain
i , ytrain

i ) be scat-
tered uniformly around the true function fTrue = 0 and consider a shallow
neural network NN with n = N = 100 hidden nodes. After 10000 train-
ing epochs of Adam SGD [19] the neural network does not converge to the
global optimum NN θ∗ (red line) with L (NN θ∗) = 0, but to a more regular
function NN θT (blue line) which is closer to the true function fTrue.

to NN θ∗ by minimizing the training loss L does not achieve17 this goal (cp. 2, i.e. typically
L (NN θT ) � L (NN θ∗)). Instead, it surprisingly succeeds in reaching a much more desir-
able objective by not only minimizing the training loss L but also implicitly18 regularizing
the problem. Hence, the typically bad generalization property 1 of NN θ∗ does not contra-
dict the great out-of-sample performance of NN θT , which is observed to be the much more
regular.

This phenomenon is known in the literature as “implicit regularization” [27, 26, 23, 20,
32, 29, 12] (also known as “implicit bias”[32]). It demonstrates that questions I and II,
i.e. the generalization properties of neural networks and the use of gradient descent-based
methods in their training are strongly linked in practice.

In applications, the phenomenon of implicit regularization is frequently observed [14, 24,
27, 26, 23, 20, 29]. Nonetheless, the theory behind it is still largely unexplored [23, 20, 29,
24]. The contribution of this work (summarized in Figure 5) is proving very precisely in
which manner the implicit regularization effects occur when training a so-called randomized
shallow neural network (RSN) (a specific type of neural network with one hidden layer

17In the limit of infinite training time T → ∞, the gradient descent method can converge to a global

optimum. As we will see in the sequel, even though there typically are infinitely many global optima this
limit will be a very specific representative (cp. Definitions 3.3 and 3.7, Theorems 3.8 and 3.17 and eq. (27)).
Nonetheless, the training process is typically stopped after a few epochs (with training time T �∞). The
corresponding solution NN θT typically satisfies L (NN θT ) � L (NN θ∗ ) and is much more desirable (cp.

Definition 3.5 and eq. (28)).
18“Implicitly” means that one uses exactly the same algorithm (gradient descent on the training loss L

cp. Figure 3) that one would use, if one did not care about regularization, but running the algorithm
surprisingly results in a very regular solution function NN θT .
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and randomly chosen first-layer parameters—Definition 2.1) with a large number of hidden
nodes n → ∞ and ReLU activation (i.e., a wRRSN) using a gradient descent method. As
we shall see in the following, for such a network (as a function from X to Y) the second
derivative is implicitly regularized during training. More precisely, we will characterize the
solution function obtained in infinite training time for wide networks with a large number
of hidden nodes (cp. Definition 3.5 and Theorems 3.8 and 3.17). In a typical setting, this
limit is very close to a regression spline f∗,λ, whose theory is highly understood [30, 7, 18].

Remark 1.5 (P -Functional). In supervised learning, P -regularized loss minimization models,
i.e.,

f∗,P ,λ ∈ arg min
f

L (f) + λP (f),

are typically quite easy to interpret and have nice theoretical properties (e.g. Definition 1.2).
Each of these models is fully characterized by its regularizing functional P : YX → R̄ (e.g.
P = P g in the case of weighted smooting spline regression f∗,λg ).19, 20 Our key finding is
that other supervised learning algorithms (such as standard neural network algorithms)
that are typically not considered as P -regularized loss minimization, in fact are equivalent
to P -regularized loss minimization with a specific P -functional (i.e. NN θresult ≈ f∗,P ,λ).
We believe that the framework of P -regularized loss minimization could be very well suited
to understand and compare the behavior of many different standard methods in super-
vised learning (in particular neural networks). Whether or not a certain P -functional (or an
equivalent algorithm) leads to functions f∗,P ,λ that generalize well, depends on one’s prior21

belief. The goal of this work will not be to determine how well certain types of neural net-
works generalize in general situations (this is not possible without assumptions on the data
generating process—i.e. PD). Instead, the main Theorem 3.8 expresses how a certain neural

network RN ∗,λ̃ ≈ RNwT behaves, by showing its equivalence to a certain P -regularized loss

minimizer f∗,λg,± ≈ f∗,λ characterized by a certain P -functional P g± (see Definition 3.5). The
long-term goal of this line of research is to describe the learning-behavior of every neural
network configuration with its own P -functional (see Figure 5), such that one can choose a
suitable configuration based on one’s prior belief.

Within this paper, we state two main theorems that jointly lead to the desired charac-
terization of the solution function obtained in the limit.

19The letter “P” can be motivated by the fact that the P -functional penalizes less regular functions f ∈
YX , assigning to them a large value of the penalty P (f). Moreover, it expresses a certain prior belief 21

of which types of functions should be preferred in the supervised learning task. Metaphorically speaking

the P -functional could in some sense be seen as the “psyche” of a particular type of neural network. (I.e.

the P -functional enables us to easily conclude how the experiences (xtrain
i , ytrain

i ) a neural network NN
encounters during training, effect its future behaviour f̂(x) = NN θT (x) for any future situation x ∈ X .

This would be a typical question asked in psychology in the case of biological neural networks. Note that

different architectures (e.g. different activation functions or different number of layers) can lead to a different
psyche/character within this analogy.)

20Instead of restricting the definition of P and the optimization problem minf L (f) +λP (f) to a certain

subspace (e.g. C2) one can also define P (f) :=∞ for all functions outside the subspace.
21P should not be directly interpreted as the prior distribution on the function space. However, some

P -functionals have the property that f∗,P ,λ ∈ arg minf L (f) + λP (f) is equal to the Bayesian a posteriori

mean with respect to some Bayesian prior distribution (see e.g. [18]).
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EARLY-STOPPED GRADIENT DESCEND!

OVERPARAMETERIZED MODEL OF REALITY!

WORKS VERY WELL!

True Problem in Application: f̂ = ?
Bayesian Problem with realistic prior

θ∗ ∈ argmin
θ∈Θ

L (NN θ)︸ ︷︷ ︸∑N
i=1(NNθ(xtrain

i )−ytrain
i )

2

, f̂ := NN θ∗

θt+γ = θt − γ∇θL (NN θt) ,

θ0 ≈ 0,
f̂ := NN θT

f̂ :∈ argmin
f :X→Y

L (f) + λP (f)

θλ̃ :∈ argmin
θ∈Θ

L (NN θ) + λ̃ ‖θ‖22 ,

f̂ := NN θ
λ̃

1.

2.

Theorem 3.8

Theorem 3.17

Remark 1.5

Figure 5. Solution of Paradox 1: The (early-stopped) (stochastic) gra-
dient descent algorithm on L (w.r.t. the trainable terminal-layer weights)
does not solely minimize L—instead it minimizes a regularized optimiza-
tion problem much more accurately, when initialized close to zero θ0 ≈ 0
(Theorem 3.17). The line of research starting with this paper describes
this regularization macroscopically on the function space in terms of a P -
functional (see Remark 1.5). (Theorem 3.8 reveals the very easy to interpret
P -functional P g± (Definition 3.5) in the case of a wide 1-dimensional net-
work of the form RN (Definition 2.1). Other types of neural networks
correspond to different P -functionals that will be shown in future work.).

• Theorem 3.17 connects the randomized shallow neural network (RSN) obtained by
performing ordinary gradient descent initialized close to zero to train the parame-
ters without any explicit regularization to the one obtained from an implicit ridge
regularization of the weights. (This theorem builds on very similar results that are
well known in the literature [4, 9, 29, 12].)

• Theorem 3.8 shows how the training of the wRRSN’s weights via ridge regularization
results in the (slightly adapted) spline regularization of the learned network function
if the number of neurons n → ∞. This theorem is the main contribution of this
work.

Understanding the training of neural networks and, in particular, their frequently aston-
ishing generalization properties has been at the center of interest in many recent works.
Without aiming to be exhaustive, we give a brief overview of existing results most related
to the the present paper.

• There are a number of works that discuss implicit regularization on the weight
space (comparable to Theorem 3.17) [4, 32, 29, 12]22. However, within these works
it is mostly not explained how these effects translate to implicit regularization on
the function space. As an exception within the framework of classification, [32,

22[32, 29] focus on classification (exponential loss) and in [4, 12] regression problems (with least square

training loss L) are considered.
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29] give insight about the margins between the classes, which is a property of the
learned function. These papers provide a precise and quite complete mathematical
understanding of linear neural networks without any hidden layers. The theorems
in these papers that deal with neural networks with one (or more) hidden layers
serve as a basis for arguments why an implicit regularization effect can exist on a
qualitative level, but not on a precise quantitative level (especially when non-linear
activation functions σ are considered).

• Contrary to the above, this paper’s main contribution, Theorem 3.8, explains the
implicit regularization effects on the function space. In that regard, the results
presented in [24, 20, 23] are more closely related.

– in [23], the implicit regularization effects that happen when fully training a
shallow neural network NN with non-linear ReLU activation function σ =
max (0, ·) are studied on a qualitative level in the context of classification (cross
entropy loss over the softmax as a training loss). In said work, the notion
“pseudo-smooth” [23, e.g. p. 4] is used, but a quantitative mathematical anal-
ysis of the pseudo-smoothness is missing.

– Similarly in [24] (by Google Brain), the implicit regularization for a fully
trained shallow neural network NN with non-linear ReLU activation functions
σ = max (0, ·) is discussed. In the context of regression (using an arbitrary
differentiable loss function) the main goal of [24] is to explain the macroscopic
behavior of the learned neural network function NN θT , i.e. its generalization
properties in between the training data. Within this work, a very rich qualita-
tive understanding of NN θT as well as very helpful visualizations are provided,
however, there is no mention of a precise quantitative formula. Hence, a com-
plete macroscopic characterization of the learned function is not given. In
contrast, within the present paper, we provide a precise quantitative macro-
scopic formula (Definition 3.5) that characterizes trained wRRSNs RN . Thus,
the present paper provides a quite complete understanding of wRRSNs RN .
In near future work, we intend to present results that characterize in which
sense a fully trained network NN θT is macroscopically optimal (cp. item iii in
Section 4).

– The implicit regularization effects in the training of deep neural networks
with non-linear ReLU activation functions σ = max (0, ·) are studied in [20].
Therein, it is stated that the learned function interpolates “almost linearly”
between samples. This behavior is related to a low (in the case of ReLUs
distributional) second derivative which corresponds to the notion of “gradient
gaps” introduced in [20].

• [17] gives an exact characterisation of the limiting function by proving an equiva-
lence between neural networks and kernel methods (Gaussian Processes) under quite
general assumptions. At the moment, the neural tangent kernel theory introduced
in [17] probably is the most general well-developed theory about the macroscopic
behavior of wide deep neural networks. Apart from the fact that neural tangent
theory is much further developed at the moment, both the P -functional theory and
the neural tangent kernel theory have their advantages and disadvantages that will
be compared in future work.

• Recently, there has been growing interest in analyzing the convergence behavior of
the gradient descent algorithm in the training of infinitely wide (shallow and deep)
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neural networks ([17], [6], [25]). Moreover, in these works, conditions for convergence
to global optima are discussed.

• In an earlier work, the relation between (possibly multivariate versions of) spline
interpolation and network structures was analyzed. The paper [28] nicely motivates
the reasonability of approximation tasks including general regularizing terms that
control the approximating function’s derivatives. It is shown that the solution to the
spline interpolation problem 1.3 can be explicitly represented as an element of an N -
dimensional subspace (where N is the number of data points at hand) of the space of
smooth functions, a basis of which is given by certain Green functions corresponding
to the optimization problem. Based on that observation, a so-called regularization
network that implements the smooth spline interpolation using the basis functions
as activation functions is defined. However, this result does not treat implicit regu-
larization effects but rather explicitly implements the desired regularization in the
form of a network structure.

The remainder of this paper is structured as follows. In Section 2, we begin by defining the
specific type of neural network RN considered in the subsequent analyses: 1-dimensional
wide ReLU randomized23 shallow neural networks (wRRSNs) (9). Moreover, we discuss
the expressiveness of the function class of such RSNs and give further definitions that are
central to the understanding of the main Theorems 3.8 and 3.17.

Thereafter, in Sections 3.1 and 3.2, Theorems 3.8 and 3.17 are formulated and discussed.
The corresponding proofs are to be found in Appendix A. Finally, in Section 4 the impli-
cations of these results are summarized in eqs. (27) and (28). Moreover, therein, we give a
brief outlook on planned future work.

2. Randomized Shallow Neural Networks (RSNs)

Within this section, we like to introduce the notion of randomized shallow neural network
(RSN), a specific kind of artificial neural network with one hidden layer, that we consider
for our analyses.

Definition 2.1 (RSN). Let (Ω,Σ,P) be a probability space, and the activation function
σ : R → R Lipschitz continuous and non-constant. Then a randomized shallow neural
network (RSN) is defined as RNw,ω : Rd → R s.t.

(8) RNw,ω(x) :=

n∑
k=1

wk σ

bk(ω) +
d∑
j=1

vk,j(ω)xj

 ∀ω ∈ Ω ∀x ∈ Rd

with24

• number of neurons n ∈ N and input dimension d ∈ N,
• trainable weights wk ∈ R, k = 1, . . . , n,

23The most striking property of this type of network is that the first layer is chosen randomly and not

trained, i.e. after random initialization only the terminal layer is trained. One might expect that this

randomness decreases the regularity of the learned function, but in fact the effect is quite the opposite: as
we will thoroughly discuss, the learned function will be especially smooth because of this randomness, where

smoothness is understood as minimizing the integrated squared second derivative; cp. Theorem 3.8)
24 One could include an additional bias c ∈ R to the last layer too, but in the limit n→∞ this last-layer

bias c does not change the behavior of the trained network-functions RNwT or RN ∗,λ̃. In Figures 6–8 this

last layer bias c was included in the training.
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• non-trainable random biases bk : (Ω,Σ)→ (R,B) i.i.d. real-valued random variables
k = 1, . . . , n,

• non-trainable random weights vk : (Ω,Σ)→ (Rd,Bd) i.i.d. Rd-valued random vari-
ables k = 1, . . . , n.

∗Remark 2.2 (further notation). Throughout this paper, P#f denotes the push-forward
measure of P under the map f . Moreover, we frequently use the notation µ := P#(b, v)
for denoting the distribution of a random first-layer parameter vector (b, v) : Ω → Rd+1

corresponding to an RSN RNw and write λd for the Lebesgue measure on Rd. We fur-
ther introduce the map ψ(b,v) : Ω × Rd → Rn, with ψ(b,v) : (ω, x) 7→ ψ(b,v)(ω)(x) s.t.

ψ(b,v)(ω)(x)k = σ
(
bk(ω) +

∑d
j=1 vk,j(ω)xj

)
for any k = 1, . . . , n, mapping the input to an

RSN’s hidden layer. We call range(ψ(b,v)) :=
⋃
ω∈Ω range(ψ(b,v)(ω)) ⊆ Rn the latent space

of an RSN.

Before describing in detail the implicit regularization effects obtained by applying gradient
descent methods to train the last layer of such an RSN in Section 3, we elaborate on the
expressiveness∗ (question III) of RSNs.

∗The class of RSNs might be interesting in supervised learning due to a number of reasons.
First, as a corollary to any of the much-cited universal approximation theorems, randomized
shallow networks are what we call universal in probability : Building on the results of [15, 8]
and later [22], we obtain that any real-valued continuous function on a compact subset of
Rd can be arbitrarily well approximated by an RSN with arbitrarily high probability. This
result holds under relatively weak assumptions on the activation function and probability
distribution of first-layer weights and biases and is given below in Corollary 2.3.

∗Second, given any set of (distinct) observations (xi, yi) ∈ Rd × R, i = 1, . . . , N , N ∈ N,
if the induced measure on the latent space is zero on sets of lower codimension, then, almost
surely, there exists an RSN that precisely interpolates these data. In other words, for suitable
choices of randomness in the first layer, with probability one the class of randomized shallow
networks contains representatives whose parameters are optimal solutions to (7). More
precisely, we have Lemma 2.4.

∗Corollary 2.3 (Universal in probability). Let X ⊂ Rd be compact and f ∈ C(X,R).
Furthermore, let RNw be as in Definition 2.1, with weights vk and biases bk, k = 1, . . . , n
i.i.d. according to µ := P#(b, v) with µ � λd+1. Then, under mild conditions on the
activation function (e.g. σ non-polynomial [22])

∀ε ∈ R+, lim
n→∞

µn (∃w ∈ Rn : ||RNw − f ||∞ > ε) = 0.

Here, µn denotes the n-fold product measure of µ.

Proof. The proof of Corollary 2.3 is formulated in Appendix A.3. �

∗Remark 2.2, Corollary 2.3, Lemma 2.4, Remark 2.5 and the text in-between (marked with a “∗”) form
an independent story line dealing with question III about the expressiveness. If these results are skipped,

one can still understand the main story line and the main Theorems 3.8 and 3.17.

https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
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∗Lemma 2.4 (Almost sure interpolation). Let distinct observations (xtrain
i , ytraini ) ∈ Rd×R,

i = 1, . . . , N be given. Then, any (perfectly trained25) RSN RNw with n ≥ N hidden nodes
such that P#(ψ(b,v)(x

train
i ))[A] = 0 for any A ⊆ range(ψ(b,v)) of codimension less than n and

i = 1, . . . , N , almost surely interpolates the data, i.e.

P
[
∃w∗ ∈ Rn : RNw∗(x

train
i ) = ytraini , ∀i = 1, . . . , N

]
= 1.

Proof. The proof of Lemma 2.4 is formulated in Appendix A.3. �

∗Remark 2.5. In Lemma 2.4 we required random features of the latent space ψ(b,v)(xi), i =
1, . . . , N to follow a distribution on Rn that puts zero mass on sets of lower codimension. A
setting which is rather usual in applications and for which this condition is satisfied would for
instance consist in taking P#(b, v)� λd+1 and σ : R→ (0, 1), σ(x) = exp(x)/(1+exp(x)).26

By Lemma 2.4 and Corollary 2.3, the function class of RSNs is expressive enough to
qualify as a suitable architecture within the framework of supervised learning. At the
same time, these results raise the question I, if RSNs generalize badly to unseen data,
because of over-parametrization and over-fitting (see Paradox 1-1.). Our main Theorems 3.8
and 3.17 are dealing with question I by providing a certain understanding of the implicit
regularization effects that occur when training a specific kind of RSN: As we will show in
the sequel, training the last layer of a wide (i.e. n→∞), ReLU-activated RSN (wRRSN)
using gradient descent initialized close to zero corresponds to solving a smooting spline
regression. Note, that this result does not depend on the number of data points N used in
the training and thus holds true for any finite number of observations N ∈ N. The main
assumptions we require to hold are made precise in Assumption 1 below.

Assumption 1. Using the notation from Definition 2.1:

a) The activation function σ(·) = max (0, ·) is ReLU.27

b) The distribution of the quotient ξk := −bk
vk

has a probability density function gξ
with respect to the Lebesgue measure.28

c) The input dimension d = 1.29

Under these assumptions, eq. (8) simplifies to

(9) RNw(x) =

n∑
k=1

wk max (0, bk + vkx) ∀x ∈ R .

25Since the optimization problem is convex in the last-layer weighs w, the gradient descent actually

converges to a global minimum. Hence, under the conditions of Lemma 2.4, the statement can be refined
to:

P
[

lim
T→∞

RNwT (xtrain
i ) = ytrain

i , ∀i = 1, . . . , N

]
= 1.

26For ReLU activation functions almost sure interpolation is often not the case with finite n <∞, but the

probability of perfect interpolation converges to one when the number of neurons n→∞ tends to infinity.
27In future work we want to derive other P -functionals for other activation functions instead of the

rectified linear units (ReLU)
28Assumption 1b) holds for any distribution typically used in practice. Moreover, it implies that

P [vk = 0] = 0 ∀k ∈ {1, . . . , n}. Note that Assumption 1b) is required in order to exclude certain de-

generate cases of RSNs such as those with constant weights and biases wk, bk, k = 1, . . . , n, and could in
fact be weakened.

29In part II we are going to generalize the result to arbitrary input dimension d ∈ N.
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We henceforth require Assumption 1 to be in place. For later uses, we further introduce
the notions of kink positions corresponding to a one-dimensional RSN with ReLU activation
and their density function.

Definition 2.6 (kink positions ξ). The kink positions ξk := −bk
vk

are defined using the
notation of Definition 2.1 under the Assumption 1.

Definition 2.7 (kink position density gξ). The probability density function gξ : R → R≥0

of the kink position ξk := −bk
vk

is defined in the setting of Definition 2.6.

3. Main Theorems

We now proceed to show that a standard gradient descent method applied to opti-
mize the (trainable) parameters w of an wide ReLU randomized shallow neural network
(wRRSN) RN , implicitly minimizes the second derivative of the solution function RNwT .
That is, in the many particle (i.e. neurons) limit (n → ∞) and as training time T → ∞
tends to infinity, the solution found by the gradient descent algorithm RNwT converges to
a slightly adapted smooth spline interpolation f∗,0+

g,± ≈ f∗,0+, if initialized w0 ≈ 0 close to
zero.

Our result follows by two separate observations. First, note that training a wide RSN in
essence reduces to solving a (random) kernelized linear regression in high dimensions (over-
parameterized). We obtain in Theorem 3.17 that training an RSN up to infinity (initialized
at zero w0 = 0) leads to the same solution as performing ridge regression (Definition 3.2)
with diminishing regularization to tune the parameters of the RSN’s terminal layer. Note,
that the results in Section 3.2 hold for a general input dimension d ∈ N and any fixed
number of neurons in the hidden layer n ∈ N.

Second, in Section 3.1, we relate the RSN RN ∗,λ̃ with optimal terminal-layer parame-

ters w∗,λ̃ chosen according to a ridge regression (Definition 3.2) to a smoothing spline f∗,λ

(with certain regularization parameters λ̃ := λn2g(0) and λ ∈ R>0 respectively). More pre-
cisely, we show in Theorem 3.8 that as the number of hidden nodes n (i.e. the dimension of

the hidden layer) tends to infinity the ridge regularized RSN RN ∗,λ̃ converges to a slightly

adapted smoothing spline f∗,λg,± in probability with respect to a certain Sobolev norm. Re-
call that, by Assumption 1, we prove this correspondence for wRRSNs with one-dimensional
input.

Remark 3.1. The implicit regularization effects we characterize within this paper are of an
asymptotic nature. For applications, however, it is interesting to note that, even for finitely
many hidden nodes and finite training time, one can bound the distance between the solution
obtained by gradient descent and a certain smoothing spline (see also Sections 3.2.1 and 4
for further details). The analysis of such bounds will be thematized in future work.

In the following Sections 3.1 and 3.2 we discuss both observations separately, before
combining them to formulate our main conclusion in Section 4. We start by introducing the
notions of ridge regularized RSN and minimum norm network.

Definition 3.2 (ridge regularized RSN). Let ∀i ∈ {1, . . . , N} : (xtrain
i , ytrain

i ) ∈ Rd+1 for
some N, d ∈ N. Furthermore, let RNw,ω be a randomized shallow network as introduced in
Definition 2.1. The ridge regularized RSN is defined as

(10) RN ∗,λ̃ω := RNw∗,λ̃(ω),ω ∀ω ∈ Ω ,
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with w∗,λ̃(ω) such that

(11) w∗,λ̃(ω) :∈ arg min
w∈Rn

L(RNw,ω)︷ ︸︸ ︷
N∑
i=1

l(RNw,ω(xtrain
i ), ytrain

i ) +λ̃||w||22︸ ︷︷ ︸
F λ̃n (RNw,ω)

∀ω ∈ Ω .

The ridge regularization is also known as “weight decay”, “ridge penalization”, “L2 (pa-
rameter) regularization” or “Tikhonov regularization” (or “ridge regression”, “`2 penalty”,
. . . )[13, section 7.1.1 on p. 227].

Definition 3.3 (minimum norm RSN). Using the notation from Definition 3.2, the mini-
mum norm30 RSN is then defined as RN ∗,0+ := RNw∗,0+ with weights

(12) w∗,0+(ω) := lim
λ̃→0+

w∗,λ̃(ω) ∀ω ∈ Ω .

3.1. Ridge Regularized RSN → Spline Regularization (d = 1, λ ∈ R>0). Through-
out this section we rigorously derive the correspondence between the regression spline f∗,λ

respectively the ridge regularized RSN RN ∗,λ̃ with penalty parameters λ > 0 and λ̃ > 0.
For giving a detailed description of the convergence behavior, we introduce an adapted
version of the regression spline, for which we consider a weighted version of the spline penal-
ization restricted to the support of the weighting function and introduce certain “boundary
conditions”. Depending on the distribution of the random weights wk and biases wb, the

ridge regularized RSN RN ∗,λ̃ will converge to such a (slightly) adapted version f∗,λg,± of the

classical regression spline f∗,λ.

Remark 3.4. For constant g ≡ g(0), one recovers the original spline regression.31 As we will

show in the sequel, the distribution chosen for the kink positions ξ of theRN ∗,λ̃ to be trained

in the approximation task will determine the weighting function of the corresponding f∗,λg,±.
The adapted spline hence is a rich concept that nicely displays the impact of the engineer’s
choices when setting up the network to be trained.

Definition 3.5 (adapted spline regression). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and

λ ∈ R>0. Then for a given function g : R → R≥0 the adapted regression spline f∗,λg,± is

30Upon all global optima w∗(ω) of the training loss L, the minimum norm RSN RNw∗,0+(ω),ω has

weights w∗,0+(ω) with minimal norm. In the over-parameterized setting (n� N) there are infinitely many

global optima RNw∗(ω),ω with arbitrary large norm ‖w∗(ω)‖2, but w∗,0+(ω) is always unique. If the

number of hidden neurons n is large enough (see Lemma 2.4), w∗,0+ could be equivalently defined as

w∗,0+(ω) :∈ arg min
w∈Rn,∀i∈{1,...,N}: RNw,ω(xtrain

i )=ytrain
i

‖w‖2 ∀ω ∈ Ω.

31This statement holds in the limit g
g(0)

→ 1. Formally eq. (13) in Definition 3.5 would not have a

classical minimizer, if g were constant (see footnote 34), but one could reformulate the definition of P g±
in Definition 3.5 by replacing the minimum by an infimum to extend Definition 3.5 to arbitrary weighting

functions g that do not have finite second momentum or that even have infinite integral like constant
g ≡ g(0) 6= 0. For typical choices of distribution for the first-layer weights vk and biases bk, the corresponding

weighting function g fulfills the finite second moment condition.
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defined32 as

(13) f∗,λg,±

32

:∈ arg min
f∈C2(R)

L (f) + λP g±(f)︸ ︷︷ ︸
=:Fλ,g± (f)

,

with

P g±(f) := 2g(0) min
(f+,f−)∈T
f=f++f−

∫
supp(g)

(
f+

′′
(x)
)2

g(x)
dx+

∫
supp(g)

(
f−
′′
(x)
)2

g(x)
dx

 ,

and

T :=

{
(f+, f−) ∈ C2(R)× C2(R)

∣∣∣∣ supp(f ′′+) ⊆ supp(g), supp(f ′′−) ⊆ supp(g),

lim
x→−∞

f+(x) = 0, lim
x→−∞

f ′+(x) = 0,

lim
x→+∞

f−(x) = 0, lim
x→+∞

f ′−(x) = 0

}
.

Remark 3.6. If for the weighting function g it holds that supp(g) is compact (cp. Assump-
tion 2a)), we define

(14) C`g := min(supp(g)) and Cug := max(supp(g)).

Furthermore, in that case, the set T can be rewritten: From supp(f ′′+) ⊆ supp(g) it follows

that f ′+ ∈ C1(R) is constant on (−∞, C`g]. With limx→−∞ f ′+(x) = 0 we obtain that f ′+(x) =

0 ∀x ≤ C`g. By the same argument we obtain f+(x) = 0 ∀x ≤ C`g. Moreover, we have that

∃ c+ ∈ R : f ′+(x) ≡ c+ on [Cug ,∞). Analogous derivations lead to f ′−(x) ≡ c− ∀x ≤ C`g with
c− ∈ R and f−(x) = f ′−(x) = 0 on [Cug ,∞). Hence, altogether, we have

T =

{
(f+, f−) ∈ C2(R)× C2(R)

∣∣∣∣ supp(f ′′+) ⊆ supp(g), supp(f ′′−) ⊆ supp(g),

∀x ≤ C`g : f+(x) = 0 = f ′+(x),

∀x ≥ Cug : f−(x) = 0 = f ′−(x)

}
.

If we assume supp(g) = [C`g, C
u
g ] we get:

T =

{
(f+, f−) ∈ C2(R)× C2(R)

∣∣∣∣∃c−, c+ ∈ R :

∀x ≤ C`g :
(
f+(x) = 0 = f ′+(x) ∧ f ′−(x) = c−

)
,

∀x ≥ Cug :
(
f−(x) = 0 = f ′−(x) ∧ f ′+(x) = c+

) }
.

Building on Definition 3.5, we define an adapted version of the smooth spline interpola-
tion.

32The adapted regression spline f∗,λg,± is uniquely defined if g is the probability density function of a

distribution with finite first and second moment and g(0) 6= 0 (cp. Definition A.3 and footnote 55).
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Definition 3.7 (adapted spline interpolation). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and

λ ∈ R>0. Then the adapted spline interpolation f∗,0+
g,± : R→ R is defined 33 as:

(15) f∗,0+
g,± := lim

λ→0+
f∗,λg,±.

Before stating the core result of this paper’s analyses in Theorem 3.8, we like to discuss
further assumptions we make therein. These requirements are technicalities that facilitate
the proof of Theorem 3.8 and could be weakened (see footnotes 34–37).

Assumption 2. Using the notation from Definitions 2.1 and 2.7 the following assumptions
extend Assumption 1:

a) The probability density function gξ of the kinks ξk has compact support supp(gξ).
34

b) The density gξ|supp(gξ)
is uniformly continuous on supp(gξ).

35

c) The reciprocal density 1
gξ

∣∣∣
supp(gξ)

is uniformly continuous on supp(gξ).
36

d) The conditioned distribution L(vk|ξk = x) of vk is uniformly continuous in x on
supp(gξ).

37

e) E
[
v2
k

]
<∞.38

The following technical Assumption 3 makes the result of Theorem 3.8 more readable by
referring to the easier Definition 3.5. Without Assumption 3, the Corollary 3.12 would still
hold, which is more general than Theorem 3.8, but uses the heavier notation of Definition 3.9.

Assumption 3. Using the notation from Definitions 2.1 and 2.7 the following assumptions
extend Assumption 1:

33Analogous to footnote 32 the spline interpolation f∗,0+
g,± is uniquely defined if g is the probability density

function of a distribution with finite first and second moment and if ∃(i, j) ∈ {1, . . . , N}2 : xtrain
i 6= xtrain

j .
34We believe that Assumption 2a) can be weakened quite extensively. However, for applications, it is

not too restrictive given that real-world computers anyhow cover a compact range of numbers only. This

assumption facilitates our proofs and it assures that a minimum of (30) exists. If one skips Assumption 2a)

completely, it could happen that (30) does not have a classical minimum (e.g. P [vk = −1] = 1
2

= P [vk = 1]

and bk ∼ Cauchy). As a remedy, one could define a weaker concept of minimum being the limit of minimizing
sequences which converge to a unique function on every compact set. This also corresponds to the unique

point-wise limit of minimizing sequences, which is not a classical minimum, because it does not satisfy all

the boundary conditions limx→−∞ f+(x) = 0 = limx→+∞ f−(x) anymore. For of this weaker minimum
concept, Theorem 3.8 would need to be reformulated at least slightly, in case Assumption 2a) were entirely

skipped. This weaker minimum concept can also be seen as the limit of adapted regression splines f∗,λg,± for

truncated g as the range of the truncation tends to (−∞,∞). This footnote will not be proved in this paper.
35One could think of replacing Assumption 2b) by the weaker assumption that gξ is (improper) Riemann-

integrable, however, almost all distributions which are typically used in practice satisfy Assumption 2b).
36Assumption 2c) implies that minx∈supp(gξ) gξ > 0. Similarly to footnote 35, this assumption might be

weakened in a way allowing gξ to have finitely many jumps and minx∈supp(gξ) gξ to be zero.
37Similarly to footnote 35, Assumption 2d) might be attenuated.
38Assumption 2e) always holds in typical scenarios. Assumption 2e) together with Assumption 2a) and

d) implies that E
[
v2
k

∣∣ξk = x
]

is bounded on supp(gξ).
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a) gξ(0) 6= 0.39

b) The distributions of the random weights and biases vk respectively bk are symmetric
w.r.t the sign, i.e.

i) P [vk ∈ E] = P [vk ∈ −E] ∀E ∈ B and
ii) P [bk ∈ E] = P [bk ∈ −E] ∀E ∈ B.

Assumption 4. The loss function40 l : R× R→ R≥0 is

a) non-negative41,
b) convex and
c) continuously differentiable42 (i.e. l(·, y) ∈ C1(R) ∀y ∈ R)

in the first component.

Theorem 3.8 (ridge weight penalty corresponds to adapted spline). Let N ∈ N be a finite
number of arbitrary training data (xtrain

i , ytraini ). Using the notation from Definitions 2.1,

2.7, 3.2 and 3.5 and let43 ∀x ∈ R : g(x) := gξ(x)E
[
v2
k

∣∣ξk = x
]

1
2 and λ̃ := λn2g(0), then,

under the Assumptions 1–4, the following statement holds for every compact set K ⊂ R:

(16) P- lim
n→∞

∥∥∥RN ∗,λ̃ − f∗,λg,±∥∥∥
W 1,∞(K)

= 0.44

Proof. The proof of Theorem 3.8 is formulated in Appendix A.1. �

Without Assumption 3, Theorem 3.8 has to be reformulated to Corollary 3.12. This is done in the rest

of this section.

Definition 3.9 (asymmetric adapted spline regression). Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and

λ ∈ R>0. Then for given functions g+ : R → R≥0, g− : R → R≥0 the asymmetric adapted regression

spline f∗,λg+,g−,± := f∗,λg+,g−,+ + f∗,λg+,g−,− + γ∗,λg+,g− is defined45 as

(17)
(
f∗,λg+,g−,+, f

∗,λ
g+,g−,−, γ

∗,λ
g+,g−

) 45

:∈ arg min
(f+,f−,γ)∈Tg+,g−

(L (f+ + f− + γ) + λP g+,g− (f+, f−, γ))︸ ︷︷ ︸
=:F

λ,g+,g−
+− (f+,f−,γ)

,

39Assumption 3a) has to be satisfied due to the way Definition 3.5 and Theorem 3.8 are formulated,

although the theory could be easily reformulated (see for instance Corollary 3.12) if Assumption 3a) were
not satisfied. The theorems presented would hold as well if g(0) were replaced by a fixed value g(xmid)

or by e.g. 1
2

∫ 1
−1 g(x)dx, however, the results are more easily interpreted if xmid is located somewhere “in

the middle” of the training data. Theorem 3.8 would even hold true if g(0) := 1 (see Corollary 3.12 and
Definition 3.9).

40Actually the main Theorem 3.8 is proven for even more general loss functions li in Appendix A.1 (see

Remark 3.18, Definition A.1 and Remark A.2)
41Assumption 4a) could be weakend—e.g. bounded from below should be sufficient, because w.l.o.g. one

could subtract the lower bound.
42Assumption 4c) might be weakend to locally Lipschitz.
43Since all vk are identically distributed and all ξk are identically distributed as well, the conditioned

expectation E
[
v2
k

∣∣ξk = x
]

does not depend on the choice of k ∈ {1, . . . , n}.
44Using the definition of the P- lim, equation (16) reads as: ∀ε ∈ R>0 : ∀ρ ∈ (0, 1) : ∃n0 ∈ N : ∀n ≥ n0 :

P
[∥∥∥RN ∗,λ̃ − f∗,λg,±∥∥∥

W1,∞(K)
< ε

]
> ρ.

45The optimization problem (17) should be interpreted such that 0
0

is replaced by zero (For example, if

P [v = 0] = 0 the last fraction should be ignored.). The triple
(
f∗,λg+,g−,+, f

∗,λ
g+,g−,−, γ

∗,λ
g+,g−

)
and thus the

adapted regression spline f∗,λg,± is uniquely defined if g+,g− are probability density functions of distributions

with finite first and second moment and if ∃(i, j) ∈ {1, . . . , N}2 : xtrain
i 6= xtrain

j .

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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with

P g+,g− (f+, f−, γ) :=

∫
supp(g+)

(
f+
′′

(x)
)2

g+(x)
dx+

∫
supp(g−)

(
f−
′′

(x)
)2

g−(x)
dx+

γ2

P [vk = 0]E
[
max (0, b)2

] ,
and

Tg+,g− :=

{
(f+, f−, γ) ∈ C2(R)× C2(R)× R

∣∣∣∣ supp(f ′′+) ⊆ supp(g+), supp(f ′′−) ⊆ supp(g−),

lim
x→−∞

f+(x) = 0, lim
x→−∞

f ′+(x) = 0,

lim
x→+∞

f−(x) = 0, lim
x→+∞

f ′−(x) = 0,

P [v = 0] = 0⇒ γ = 0

}
.

Remark 3.10 (connection to Definition 3.5). If Assumption 3 holds, then

(18) 2g(0)P g+,g− (f+, f−, 0) = P g+−(f+, f−)

holds with g = g+ = g− and connects Definition 3.9 with Definitions 3.5 and A.3.46

Definition 3.11 (conditioned kink position density g+
ξ , g−ξ ). The conditioned kink position density g+

ξ
:

R → R of ξk conditioned on vk > 0 is defined such that
∫
E g

+
ξ (x)dx = P [ξk ∈ E|vk > 0] ∀E ∈ B.

Analogously,
∫
E g
−
ξ (x)dx = P [ξk ∈ E|vk < 0] ,∀E ∈ B.

Corollary 3.12 (generalized Theorem 3.8). Let N ∈ N be a finite number of arbitrary training data(
xtraini , ytraini

)
. Using the notation from Definitions 2.1, 3.2, 3.9 and 3.11 and let ∀x ∈ R :

g+(x) := g+
ξ (x)E

[
v2
k

∣∣ξk = x, vk > 0
]
P [vk > 0] ,

g−(x) := g−ξ (x)E
[
v2
k

∣∣ξk = x, vk < 0
]
P [vk < 0] ,

and
˜̃
λ := λn. Then, under the Assumptions 1, 2 and 4, the following statement holds for every compact

set K ⊂ R:

(19) P- lim
n→∞

∥∥∥∥RN ∗,˜̃λ − f∗,λg+,g−,±
∥∥∥∥
W1,∞(K)

= 0.47

Proof. The proof of Corollary 3.12 is analagous to the proof of Theorem 3.8 in Appendix A.1. (The
footnotes 56, 58 and 62 on pages 32 and 36 in Appendix A.1 help to understand this analogy.) �

3.2. RSN and Gradient Descent→ Implicit Ridge Regularization (d ∈ N). We now
move on to derive the relation between the RSN RNwT whose terminal-layer parameters is
optimized performing gradient descent initialized at zero w0 = 0 up to a certain time point T

on the one hand, and the ridge regularized RSNRN ∗,λ̃ with penalization parameter λ̃ on the
other. In particular, we show that in the limit of infinite training time the solution RNw∞

obtained from the GD method corresponds to the one resulting by taking the limit λ̃ → 0
in the ridge problem (This solution is also referred to as minimum norm solution RN ∗,0+.).
Note again, that this result is well known thanks to the work of i.a. [4, 9, 29, 12]. Within the

46This factor 2g(0) explains the difference between λ̃ := λn2g(0) in Theorem 3.8 and
˜̃
λ := λn in Corol-

lary 3.12.
47Using the definition of the P- lim, equation (19) reads as: ∀ε ∈ R>0 : ∀ρ ∈ (0, 1) : ∃n0 ∈ N : ∀n ≥ n0 :

P

[∥∥∥∥RN ∗,˜̃λ − f∗,λg+,g−,±
∥∥∥∥
W1,∞(K)

< ε

]
> ρ.

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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present section, we like to collect the most important findings relating these two solutions
within our setting.

Moreover, we will argue that, if suitably transformed, the ridge path mapping λ̃ to the
optimal parameter corresponds to the GD path mapping training time to the corresponding
parameter. Again, this equivalence has been discussed in the existing literature (e.g. [4, 9,
29]). In these works, it is frequently claimed that the GD solution at time T approximately

coincides with the ridge solution for λ̃ = 1/T . We intend to make this relation more precise
below (cp. eq. (26)). Within future work we will further analyze the errors arising from
that approximate relation (see also Section 4 Item 3.).

Throughout this section, we consider the setting of supervised learning with squared loss,
i.e., we require Assumption 5 to hold true. We begin by defining the trained RSNs RNwT

obtained by pursuing the gradient flow w.r.t. this choice of training loss starting in the
origin w0=0 in parameter space up to time T .

Assumption 5. The loss function l : R× R→ R≥0 is given by l(ŷ, y) := (ŷ − y)2.

Definition 3.13 (time-T solution). Let ∀i ∈ {1, . . . , N} : (xtrain
i , ytrain

i ) ∈ Rd+1 for some
N, d ∈ N and RNw be a randomized shallow neural network (RSN) with n ∈ N hidden
nodes. For any ω ∈ Ω and T > 0, the time-T solution to the problem

(20) min
w∈Rn

N∑
i=1

(
RNw,ω(xtrain

i )− ytrain
i

)2
︸ ︷︷ ︸

L(RNw,ω)

is defined as RNwT (ω),ω, with weights wT (ω) ∈ Rn obtained by taking the gradient flow

dwt = −∇wL (RNwt) dt,

w0 = 0,
(GD)

corresponding to (20) up to time T .

Remark 3.14. In practice, the weights wT of the time-T solution as introduced in Defini-
tion 3.13 are approximated by taking τ := T/γ steps of size γ > 0 according to the Euler
discretization

w̌t+γ = w̌t − γ∇wL(RN w̌t),

w̌0 = 0,

corresponding to (GD).

Within our setting, which in essence corresponds to a kernelized linear regression with
random features, the time-T solution takes an explicit form, as shown in Lemma 3.15.

Lemma 3.15. Let ∀i ∈ {1, . . . , N} : (xtrain
i , ytraini ) ∈ Rd+1 for some N, d ∈ N and for any

ω ∈ Ω, let RNw,ω be a randomized shallow network with n ≥ N hidden nodes. Define
further X(ω) ∈ RN×n via

Xi,k(ω) := σ

bk(ω) +

d∑
j=1

vk,j(ω)xtrain
i,j

 ∀i ∈ {1, . . . , N} ∀k ∈ {1, . . . , n} ,
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where xtrain
i,j denotes the jth component of xtrain

i . For any T ≥ 0, the weights wT (ω) corre-
sponding to the time-T solution RNwT (ω),ω satisfy

(21) wT (ω) = − exp
(
−2TX>(ω)X(ω)

)
w∗,0+(ω) + w∗,0+(ω),

with weights w∗,0+(ω) corresponding to the minimum norm network (see Definition 3.3).

Proof. The proof of Lemma 3.15 is formulated in Appendix A.2. �

With the above, the asymptotic behavior of wT (ω) is easily analyzed. As Remark 3.16
shows, the time-T parameters wT (ω) converge to the minimum norm parameters w∗,0+(ω)
(see Definition 3.3). Consequently, the time-T solution converges to the ridge penalized
network when choosing the penalization accordingly, as is discussed in Theorem 3.17.

Remark 3.16 (limiting solution of gradient descent). By Lemma 3.15, the weights wT cor-
responding to the time-T solution converge to the minimum norm solution w∗,0+ as time
tends to infinity—i.e. taking the limit T →∞ in (21), we have limT→∞ wT (ω) = w∗,0+(ω)
∀ω ∈ Ω.

Proof. The proof of Remark 3.16 is formulated in Appendix A.2. �

Theorem 3.17. Let RNwT be the time-T solution and consider for λ̃ = 1
T the corresponding

ridge solution RN ∗,
1
T (cp. Definitions 3.2 and 3.13). We then have that

(22) ∀ω ∈ Ω : lim
T→∞

∥∥∥RN ∗, 1
T

ω −RNwT (ω),ω

∥∥∥
W 1,∞(K)

= 0.

Proof. The proof of Theorem 3.17 is formulated in Appendix A.2. �

Remark 3.18 (Relaxed requirements on loss function). Without Assumption 5 Theorem 3.17
can still be proven, if instead one requires that l(·, ytrain

i ) : R→ R≥0 has a unique minimum
for every i = 1 . . . , N , where l is given as in Assumption 4. This will be proven in future
work.

3.2.1. Early Stopping. Moreover, we may use the representation (21) to derive an approx-
imate relation between the weights wT corresponding to the time-T solution and those
obtained by performing a ridge regression with penalization parameter λ̃. The idea is to
first analyze which singular value is trained most at a given time T in an infinitesimal step
along the solution path of wT . In other words, we seek to find s ≥ 0 that maximizes
the gradient w.r.t. time of the singular values corresponding to the matrix exponential
characterizing the time-T solution, i.e. we solve

arg max
s≥0

∇T exp(−2Ts) = arg max
s≥0

− 2s exp(−2Ts).

The unique solution is given by

(23) s∗ =
1

2T
.

In a second step, we compare the closed-form solution of the parameters resulting from a
λ̃-ridge regression to the time-T solution, which we now consider to be characterized by

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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s∗(T ). To that end, we remark that using the singular value decomposition of the data
matrix X ∈ RN×n, i.e. X = UΣV > with

Σ =

(
diag(

√
s1, . . . ,

√
sr) 0

0 0

)
∈ RN×n,

these solutions may be written as

(24) wT = −V

(
diag

(
exp(−2Ts1)−1√

s1
, . . . , exp(−2Tsr)−1√

sr

)
0

0 0

)
U>y,

(25) wλ̃ = V

(
diag

( √
s1

s1+λ̃
, . . . ,

√
sr

sr+λ̃

)
0

0 0

)
U>y.

We then arrive at the ridge estimate approximating the time-T solution by comparing
eqs. (24) and (25) for the singular value s∗, i.e., the one that is most affected by the training
at time-point T . Hence, we relate the time-T solution to the ridge solution obtained using
the penalization parameter

(26) λ̃(T ) =
1

2T (e− 1)
.

Note that, by the above relation λ̃(T ) still is of order 1/T and hence the asymptotic behavior
that we characterize in Theorem 3.17 below, is sufficiently captured taking the relation
λ̃(T ) = 1/T . However, for comparing the early-stopped time-T solution RNwT to a ridge

regularized RSN RN ∗,λ̃ and, as a consequence, to a certain regression spline f∗,λ ≈ f∗,λg,±, we
make use of the precise relation (26). See also Section 4 for empirical results, that underline
the quality of the fit.

4. Conclusion and Future Work

Combining the main Theorems 3.8 and 3.17 finally yields our main result: for a large
number of training epochs τ = T/γ, the obtained wide (large number of neurons n) ReLU
randomized shallow neural network (wRRSN)

(27) RN w̌T,w̌0

w̌0→0
≈ RN w̌T

γ→0
≈ RNwT

T→∞
≈

Theorem 3.17
RN ∗,0+

P
n→∞
≈

Theorem 3.8
f∗,0+
g,±

g
g(0)
→ 1

≈ f∗,0+

is very close to the spline interpolation f∗,0+. Here, the notation
→
≈ corresponds to a math-

ematically proved exact limit in the very strong48 Sobolev norm ‖·‖W 1,∞(K) (in probability

in the case of
P

n→∞
≈ ).

In applications, however, both the number of hidden nodes and training steps are finite.
Hence, it is particularly interesting to note that in typical settings for arbitrary training
time T ∈ R>0 (including early stopping, i.e. T � ∞) the same relation approximately

holds true. In other words, by taking T
(26)
= 1

2λ̃(e−1)
and λ̃

Th. 3.8
= λn2g(0), we have

48Convergence in ‖·‖W1,∞(K) implies uniform convergence on K or convergence in W 1,p(K). Even

stronger Sobolev convergenve, such as convergence w.r.t. W 2,p, cannot be shown since RNw /∈W 2,p(K).

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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(28) RN w̌T,w̌0

w̌0≈0
≈
1.
RN w̌T

γ≈0
≈
2.
RNwT ≈

3.
RN ∗,λ̃

P
n large

≈
4.

f∗,λg,±

standard distrib.
for v and b

and K⊆[−1,1]
≈
5.

f∗,λ,

where “≈” represents equality up to a (small) approximation error (that can be strictly
larger than zero).

It is planned to give a more detailed description of approximation (28) in future work.
To give an outlook, we remark the following.

1. The first approximation should be quite simple but is not focused on within this
work.49 (As only the last layer of RN is trained, one could just start with w0 = 0)

2. It is of importance to choose the learning rate γ rather small.50 As will be dis-
cussed in future work, stochastic gradient descent allows to chose γ such that the
effective step size per floating point operation is larger. Note, that by the above
discussions we have that for an RSN RN the learning rate γ should typically be
chosen approximately inversely proportional to the number of neurons n. Another
interesting insight that we might elaborate on in more detail in upcoming work is
that the “approximation error” we get from larger values of γ has a very specific
structure that allows to some extent to explain it on a macroscopic functional level.

3. Multiple papers assume that the third approximation is quite precise for arbitrary
values of T ∈ R>0 without rigorous proof [4, 9, 29]. We believe that these “ap-
proximation errors” which typically are “rather small” but not vanishing could even
cancel with the “approximation errors” in 5. to some extent, thus having a positive
effect on the convergence. This theory could be part of close future work. 3. would
be particularly interesting for real-world applications, since it gives an improved
understanding of the solution functions obtained by stopping the GD algorithm
early.51

4. The mathematically precise asymptotic relation is the subject of Theorem 3.8. We
refer to future work for quantitative bounds discussing the number of neurons needed
to achieve approximation up to a certain accuracy.

5. The adapted regression spline f∗,λg,± is a macroscopically defined object that already

is nice to interpret. Intuitively, it is plausible that f∗,λg,± is very close to the very

desirable f∗,λ on the [−1, 1]-cube (and in its close surrounding), if one uses typi-
cal52 distributions for the first-layer weights and biases v and b, and if the training
data is scaled and shifted to fit into the [−1, 1]-cube. Additionally, by that same
intuition, it follows that if popular rules of thumb such as scaling and shifting the

49Lemma A.17 demonstrates, that with increasing n the initial weights w̌0 should be chosen closer to

zero.
50For finite values of T a standard result on Euler discretization can be used. In the limit T → ∞

one can formulate a direct argument that combines items 2. and 3.: limT→∞ w̌T = w∗,0+, if the learning

rate γ < 1/r(X>X) is smaller than 1 over the spectral radius (largest eigenvalue) of X>X [4, p. 4] [12, p.
11].

51We note, that it might be more reasonable to chose λ̃ = se−2sT

1−e−2sT instead of λ̃ = 1
T

, with an appropriate

choice of s (cp. eqs. (23) and (26)) to get better approximation bounds. Nonetheless, in Section 3 and eq. (27)

we work with the relation λ̃ = 1
T

, as it is commonly suggested in literature [4, Section 2.3 on p. 5]. Moreover,

in the limit T →∞ these relations coincide.
52For instance, one could choose bk, vk ∼ Unif(−c, c) i.i.d. uniformly symmetrically distributed or

bk, vk ∼ N (0, c) i.i.d. normally distributed with zero mean.

https://en.wikipedia.org/w/index.php?title=Euler_method&oldid=907454399
https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
https://en.wikipedia.org/w/index.php?title=Independent_and_identically_distributed_random_variables&oldid=910267759
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data to the [−1, 1]-cube are broken, one can obtain rather poor approximations f∗,λg,±.
Consequently, by providing these insights on the circumstances that would lead to
undesirable results, Theorem 3.8 greatly contributes to answering question IV about
best practices in machine learning.

4.1. Empirical results. As a proof of concept we like to empirically verify the approximate
relations (28) discussed above. To that end, we consider the aim of approximating the
function f : R → R, x 7→ sin (πx), given N = 16 noisy data points (xi, f(xi) + εi) ∈ R2,
where xi, i = 1, . . . , N are equidistant points in the interval [−1, 1] and εi are realizations of
a centred Gaussian random variable with standard deviation scale = 1/8. Figure 6 shows
a comparison of the solution functions obtained by

a) training an RSN with ReLU activation using a standard implementation of gradient
descent with step size γ = 2−11 for τ = 215 epochs (resulting inRN w̌T with T = τγ),

b) training that same RSN using a ridge penalty on the terminal weights with penal-

ization parameter λ̃ = 1
e−1

1
2τγ according to eq. (26) (resulting in RN ∗,λ̃) and

c) the spline regression with penalization parameter λ = λ̃
n2g(0) (resulting in f∗,λ).

(Here, n represents the RSN’s number of hidden nodes and the weighting function
g is defined in Theorem 3.8.)

The RSN was chosen to consist of n = 212 hidden nodes with first-layer weights and bi-
ases sampled from a Uniform distribution on [−0.05, 0.05]. Moreover, a last-layer bias was
included in the training (cp. Footnote 24).

Within this paper’s setting, this experiment corresponds to comparing the time-T solu-

tion RN w̌T for T = 16 to the ridge regularized RSN RN ∗,λ̃ with λ̃ = 1
e−1

1
2T ≈ 0.018 and

the smooth regression spline f∗,λ with penalization parameter λ ≈ 0.014.
As Figure 6 nicely shows, the three solution functions almost coincide on [−1, 1]. This is of
particular interest, since the training data typically is scaled to fit the interval [−1, 1].

In certain situations (that will be explained in Appendix B) the adapted regression

spline f∗,λg,± ≈ RN
∗,λ̃ can deviate more from the classical regression spline f∗,λ as can

be seen in Figure 7 far outside the training data. The RSN’s architecture could be extended
to incorporate a direct affine link onto the output, which, when included in the training
process, can make up for the observed difference (see also item ii below). However, as indi-
cated in item 3., this deviation might be an empirical hint of how the errors occurring in the

approximation of the ridge regularized RSN RN ∗,λ̃ by the RSN RNwT on the one hand,

and the approximation of the regression spline f∗,λ by the ridge regularized RSN RN ∗,λ̃ on
the other are partially cancelling under certain conditions, such that the fitted RSN RNwT

in fact is closer to the regression spline f∗,λ than the ridge regularized RSN RN ∗,λ̃.
A more detailed view on the trained RSN RNwT is given in Figure 8. Therein, we visu-

alize the RSN’s (distributional) second derivative at the respective realized kink positions
as well as a convoluted version of it using a Gaussian kernel. We observe that on average,
the RSN’s curvature is evenly spread among neighboring kinks.

4.2. Future work. Besides discussing the correspondence of the spline interpolation and
an RSN trained using gradient descent for a finite number of nodes and finite training time,
we intend to extend the theory in upcoming work as follows:
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(
xtrain
i , ytrain

i

)
RN

w̌T
(implicit)

RN∗,λ̃ (Ridge)

f∗,λ(spline)

Figure 6. Comparison of the solution functions obtained from performing
gradient descent (red line) and ridge regularization (yellow line) to train an
RSN to the spline regression (blue line) with parameters chosen as suggested
by eq. (26) and Theorem 3.8.

(
xtrain
i , ytrain

i

)
RN

w̌T
(implicit)

RN∗,λ̃ (Ridge)

f∗,λ(spline)

Figure 7. Large scale comparison of the solution functions as in Figure 6.
Outside the training data, the trained RSN RN w̌T ranges in between the

ridge regularized RSN RN ∗,λ̃ and the regression spline f∗,λ.

i. Generalizing to multidimensional input in X = Rd (see part II).53

53Since we will publish these theorems very soon, it would be a waste of resources if multiple people work
on it independently. If you are working on similar results, it makes sense to collaborate—if you want to do

so, please contact one of the authors.



28 JAKOB HEISS, JOSEF TEICHMANN AND HANNA WUTTE

Figure 8. The trained RSN RNwT (blue line) and its (distributional)
second derivative

∑n
k=1 vkwkδξk (yellow dots) at the respective realized

kink positions and a smoothed version of it. The smooth second derivative
was obtained from a convolution using a Gaussian kernel. It nicely captures
the trained RSN’s curvature. Moreover, the values of the terminal layer’s
weights wk at the respective kink positions ξk are given (red dots).

ii. With the insights gained from Theorem 3.8, possibilities arise how to save computa-
tional time, memory and energy consumption by replacing certain groups of neurons
by other algorithms (or simply by adding certain direct connections from input to
the output skipping the hidden layer). This can also offer other advantages54. Theo-
rem 3.8 and its proof inspire to choose special types of randomness for the first-layer
weights and biases. Naturally, we are interested to find out whether these choices
provide advantages in the training of such RN or other architectures.53

iii. Proving convergence to a differently regularized function (which is optimal with
respect to another P -functional) in the case of ordinary training of both layers of
NN instead of only training the last layer (see part III).53

iv. Generalization do deep neural networks with more hidden layers (e.g. deep convo-
lutional neural networks). The long-term goal of this line of research is to find a
P -functional (or another easy to interpret macroscopic description) for each type of
neural network for each set of meta-parameters. (This could be extended to other
Machine Learning methods like random forests too.)53
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Appendix A. Proofs

In the following, we rigorously prove the results presented within this paper.

A.1. Proof of Theorem 3.8 (RN ∗,λ̃ → f∗,λg,±). A number of lemmata are required for the
proof of Theorem 3.8. These will be presented and proved later in this section. We start by
defining the objects that are central to the subsequent derivations.

Throughout this section, we henceforth require Assumptions 1–4 to be in place.

Definition A.1 (generalized L). Let ∀i ∈ {1, . . . , N} : xtrain
i ∈ R for some N ∈ N. Let

li : R → R≥0, i = 1, . . . , N be convex and continuously differentiable loss functions. Then,
the generalized training loss L of function f : R→ R is defined as

(29) L(f) :=

N∑
i=1

li
(
f(xtrain

i )
)
.

Remark A.2. The training loss L defined in (1) is a special case of (29) with li (ŷ) :=
l(ŷ, ytrain

i ). This special case is sufficient to prove Theorem 3.8, but the proof is formulated
for more general choices of li (see Definition A.1) where the shape of the loss li can depend
on the index i.

Definition A.3. Let ∀i ∈ {1, . . . , N} : xtrain
i , ytrain

i ∈ R and λ ∈ R>0. Then for a given

function g : R→ R≥0 the tuple (f∗,λg,+, f
∗,λ
g,−) is defined55 as

(30)
(
f∗,λg,+, f

∗,λ
g,−

) 55

:∈ arg min
(f+,f−)∈T

L (f+ + f−) + λP g+−(f+, f−)︸ ︷︷ ︸
=:Fλ,g+− (f+,f−)

,

55The tuple
(
f∗,λg,+, f

∗,λ
g,−

)
is uniquely defined if g is the probability density function of a distribution with

finite first and second moment and g(0) 6= 0. Thus, by Remark A.4, the same holds true for the adapted

regression spline f∗,λg,±.
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with

P g+−(f+, f−) := 2g(0)

∫
supp(g)

(
f+

′′
(x)
)2

g(x)
dx+

∫
supp(g)

(
f−
′′
(x)
)2

g(x)
dx

 .

Remark A.4. Note that the adapted regression spline f∗,λg,± is given by

f∗,λg,± = f∗,λg,+ + f∗,λg,−.

Definition A.5 (estimated kink distance h̄ w.r.t. sgn (v)). Let RN be a randomized
shallow neural network with n hidden nodes as introduced in Definition 2.1. The estimated
kink distance w.r.t. sgn (v) at the kth kink position ξk corresponding to RN is defined as56

(32) h̄k :=
2

n gξ(ξk)
.

Definition A.6 (spline approximating RSN). Let RN be a real-valued randomized shallow

neural network with n hidden nodes (cp. Definition 2.1) and f∗,λg,± = f∗,λg,+ + f∗,λg,− ∈ C2(R) be
the adapted regression spline as introduced in Definitions 3.5 and A.3. The spline approxi-

mating RSN RN w̃ w.r.t. f∗,λg,± is given by

(33) RN w̃(ω),ω(x) =

n∑
k=1

w̃k(ω)σ (bk(ω) + vk(ω)x) ∀ω ∈ Ω ∀x ∈ R

with weights w̃(ω) defined as57, 58

w̃k(ω) := w
f∗,λg,±,n

k (ω) :=


h̄k(ω)vk(ω)

E[v2|ξ=ξk(ω)]f
∗,λ
g,+

′′

(ξk(ω)), vk(ω) > 0

−h̄k(ω)vk(ω)
E[v2|ξ=ξk(ω)]f

∗,λ
g,−

′′

(ξk(ω)), vk(ω) < 0

∀k ∈ {1, . . . , n}
∀ω ∈ Ω.

56Without Assumption 3b) one would define:

h̄+
k :=

1

nP [vk > 0] g+
ξ (ξk)

(31a)

h̄−k :=
1

nP [vk < 0] g−ξ (ξk)
.(31b)

Under Assumption 3b) we have the equality:

(31c) h̄k = h̄+
k = h̄−k.

57Since all vk are identically distributed and all ξk are identically distributed as well, the conditioned

expectation E
[
v2
k

∣∣ξk = x
]

does not depend on the choice of k ∈ {1, . . . , n}. Therefore, we will sometimes

use the following notation E
[
v2
∣∣ξ = x

]
:= E

[
v2
k

∣∣ξk = x
]
.

58Note that under Assumption 1b), the set {vk = 0} is of zero measure for any k ∈ {1, . . . , n} and hence

is not included in the definition of the weights w̃(ω). Without Assumption 3b) (and with a weakened form
of Assumption 1b)), w̃ would need to be reformulated:

w̃k(ω) := w
f
∗,λ
g+,g−,±

,n

k (ω) :=


h̄+

k(ω)vk(ω)

E[v2|ξ=ξk(ω),v>0]
f∗,λg+,g−,+

′′
(ξk(ω)), vk(ω) > 0

−h̄−k(ω)vk(ω)

E[v2|ξ=ξk(ω),v<0]
f∗,λg+,g−,−

′′
(ξk(ω)), vk(ω) < 0

max(0,bk(ω))

nP[v=0]E[max(0,b)2]
γ∗,λg+,g− , vk(ω) = 0

∀k ∈ {1, . . . , n}
∀ω ∈ Ω.
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We further define ∀ω ∈ Ω:

K+(ω) := { k ∈ {1, . . . , n} | vk(ω) > 0 } ,(34a)

K−(ω) := { k ∈ {1, . . . , n} | vk(ω) < 0 }(34b)

and w̃+ := (w̃k)k∈K+ respectively w̃− := (w̃k)k∈K− . With the above, spline approximating
RSNs can be alternatively represented as
(35)

RN w̃(ω),ω(x) =
∑

k∈K+(ω)

w̃k(ω)σ (bk(ω) + vk(ω)x)

︸ ︷︷ ︸
=:RN+

w̃+(ω),ω

+
∑

k∈K−(ω)

w̃k(ω)σ (bk(ω) + vk(ω)x)

︸ ︷︷ ︸
=:RN−

w̃−(ω),ω

.

Remark A.7. The spline approximating RSN introduced in Definition A.6 is a particular
randomized shallow neural network designed to be “close” to the adapted regression spline

f∗,λg,± in the sense that its curvature in between kinks is approximately captured by the size
of corresponding weights w̃.

Definition A.8 (smooth RSN approximation). For w∗,λ̃ and RN ∗,λ̃ as in Definition 3.2
with corresponding kink density gξ consider for every x ∈ R the kernel

κx : R→ R, κx(s) := 1B 1
2
√
ngξ(x)

(s)
√
ngξ(x) ∀s ∈ R,

where B 1
2
√
ngξ(x)

:= {τ ∈ R : |τ | ≤ 1
2
√
ngξ(x)

}. The smooth RSN approximation fw
∗,λ̃

is then

defined as the convolution59

(36) fw
∗,λ̃(ω)(x) :=

(
RN ∗,λ̃ω ∗ κx

)
(x) ∀ω ∈ Ω ∀x ∈ R.

Moreover, with the notation

(37) RN ∗,λ̃(x) =
∑
k∈K+

w∗,λ̃k σ (bk + vkx)︸ ︷︷ ︸
=:RN∗,λ̃+

+
∑
k∈K−

w∗,λ̃k σ (bk + vkx)︸ ︷︷ ︸
=:RN∗,λ̃−

∀x ∈ R,

with w∗+,λ̃ :=
(
w∗,λ̃k

)
k∈K+

and w∗−,λ̃ analogously defined as w̃+ and w̃−, we have

(38) fw
∗,λ̃

(x) =
(
RN ∗,λ̃+ ∗ κx

)
(x)︸ ︷︷ ︸

=:fw
∗,λ̃

+ (x)

+
(
RN ∗,λ̃− ∗ κx

)
(x)︸ ︷︷ ︸

=:fw
∗,λ̃
− (x)

∀x ∈ R.

Remark A.9. For any x ∈ R the kernel κx introduced in Definition A.8 satisfies

(1)
∫
R κx(s) ds = 1 and

(2) limn→∞ κx = δ0, where δ0 denotes the Dirac distribution at zero.

59This “convolution” is a bit special, because the kernel κx changes with x ∈ R. Therefore, the notation

RN ∗,λ̃ ∗ κ would not be properly defined, but we could define RN ∗,λ̃ ∗∗ κ as:
(
RN ∗,λ̃ω ∗∗ κ

)
(x) :=(

RN ∗,λ̃ω ∗ κx
)

(x) =
∫
RRN

∗,λ̃
ω (x − s)κx(s)ds ∀ω ∈ Ω ∀x ∈ R. Hence, fw

∗,λ̃
:= RN ∗,λ̃ ∗∗ κ would be

another correct way to define fw
∗,λ̃

.
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Proof of Theorem 3.8. The two auxiliary functions RN w̃ and fw
∗,λ̃

defined above in Defi-
nitions A.6 and A.8 will play an important role in this proof.60

In the end, we want to show the convergence of RN ∗,λ̃ to f∗,λg,±. Our strategy to achieve

this goal is to prove that both these functions RN ∗,λ̃ and f∗,λg,± get closer to the same func-

tion fw
∗,λ̃

in the limit n → ∞. The first first convergence will be shown in Lemma A.18.

The proof of the second convergence fw
∗,λ̃ → f∗,λg,± will need more steps—first we will

show the convergence Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

)
→ Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
(in multiple steps based

on Lemmas A.14 and A.19) to further imply with the help of Lemma A.22 the conver-

gence fw
∗,λ̃ → f∗,λg,±.

Following this strategy, we prove Theorem 3.8 step by step:

step -0.5 Before starting with the proof, we need the auxiliary Lemmas A.10 and A.11
step 0 Lemma A.12 shows

P- lim
n→∞

∥∥∥RN w̃ − f∗,λg,±
∥∥∥
W 1,∞(K)

= 0.

step 1 It is directly clear that

F λ̃n

(
RN ∗,λ̃

)
≤ F λ̃n (RN w̃) ,

because of the optimality of RN ∗,λ̃ (see Definition 3.2).
step 1.5 The auxiliary Lemma A.13 will be needed for step 2 and step 4.

step 2 Lemma A.14 shows

P- lim
n→∞

F λ̃n (RN w̃) = Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
.

step 2.5 The auxiliary Lemmas A.15–A.17 will be needed for step 3 and step 4.
step 3 Lemma A.18 shows

P- lim
n→∞

∥∥∥RN ∗,λ̃ − fw∗,λ̃∥∥∥
W 1,∞(K)

= 0.

step 4 Lemma A.19 shows

P- lim
n→∞

∣∣∣F λ̃n (RN ∗,λ̃)− Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

)∣∣∣ = 0.

step 5 After defining T̃ (see Definition A.20) it follows directly (with help of Remark A.21)
that

Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
≤ Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

)
holds, because of the optimality of

(
f∗,λg,+, f

∗,λ
g,−

)
∈ T̃ .

60At the end of the proof, we will see that the functions RN ∗,λ̃, fw
∗,λ̃

and RN w̃ will converge to the

same function f∗,λg,± in probability with respect to the Sobolev norm [1] ‖·‖W1,∞(K).

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537


HOW IMPLICIT REGULARIZATION OF NEURAL NETWORKS AFFECTS THE LEARNED FUNCTION 35

step 6 Combining step 1, step 2, step 4 and step 5 we directly get:61

Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

)
step 4
≈ F λ̃n

(
RN ∗,λ̃

) P
± ε1 ≤

step 1

≤ F λ̃n (RN w̃)
P
± ε1 ≈

step 2
≈ Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

) P
± ε1

P
± ε2

step 5

≤ Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

) P
± ε1

P
± ε2,

and thus:

Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

) step 4
step 2
step 1

/ Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

) P
± ε3

step 5

≤ Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

) P
± ε3,

which directly implies

(39) P- lim
n→∞

Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

)
= Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
.

step 7 Lemma A.22 shows

P- lim
n→∞

∥∥∥fw∗,λ̃ − f∗,λg,±∥∥∥
W 1,∞(K)

= 0,

if one applies it on the result (39) of step 6.
step 8 Combining step 4 and step 7 with the triangle inequality directly results in the

statement (16) we want show.

�

Lemma A.10 (Poincaré typed inequality). Let f : R → R be continuously differentiable
with f ′ : R → R Lebesgue integrable. Then, for any interval K = [a, b] ⊂ R such that
f(a) = 0 there exists a C∞K ∈ R>0 such that

(40) ‖f‖W 1,∞(K) ≤ C
∞
K ‖f ′‖L∞(K) .

Additionally, if f is twice differentiable with f ′′ : R→ R Lebesgue integrable, there exists a
C2
K ∈ R>0 such that

(41) ‖f‖W 1,∞(K) ≤ C
2
K ‖f ′′‖L2(K) .

Proof. By the fundamental theorem of calculus, if ‖f ′‖L∞(K) <∞, then

‖f‖L∞(K) = sup
x∈K

∣∣∣∣∫ x

a

f ′(y) dy

∣∣∣∣ ≤ |b− a| sup
y∈K
|f ′(y)|.

61We are using the following notation:

an ≈ bn
P
± ε1 :⇔ ∀ε1 ∈ R>0 : ∀P1 ∈ (0, 1) : ∃n0 ∈ N : ∀n ∈ N>n0 : P [an ∈ bn + [−ε1, ε1]] > ρ,

but a complete formalization of this notation would be quite long. This notation needs to be interpreted
depending on the context—e.g.:

bn
P
± ε1 ≈ bn

P
± ε1

P
± ε2 :⇔ ∀ε2 ∈ R>0 : ∀P2 ∈ (0, 1) : ∃n0 ∈ N : ∀n ∈ N>n0 : P [bn ∈ cn + [−ε2, ε2]] > P2,

or sometimes it makes sense to replace “∈” by “⊆” in a reasonable way. And in the proofs of some later

lemmata
P
±ε2 can have the meaning of

P
δ,ε1→0

± ε2 instead of

P
n→0

± ε2 depending on the context.

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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Hence it follows that

‖f‖W 1,∞(K) = max
{
‖f‖L∞(K) , ‖f

′‖L∞(K)

}
≤ max{|b− a|, 1} ‖f ′‖L∞(K) = C∞K ‖f ′‖L∞(K) .

Similarly, by the Hölder inequality we have

‖f ′‖L∞(K) = sup
x∈K

∣∣∣∣∣
∫ b

a

f ′′(y)1[a,x](y) dy

∣∣∣∣∣ ≤ sup
y∈K
‖f ′′‖L2(K)

∥∥1[a,y]

∥∥
L2(K)

= |b− a| ‖f ′′‖L2(K) .

Thus, (41) follows from

‖f‖W 1,∞(K) ≤ C
∞
K ‖f ′‖L∞(K) ≤ C

∞
K |b− a| ‖f ′′‖L2(K) = C2

K ‖f ′′‖L2(K) .

�

Lemma A.11. Let RN be a real-valued randomized shallow network. For ϕ : R2 → R
uniformly continuous such that for all x ∈ supp(gξ), E

[
ϕ(ξ, v) 1

ngξ(ξ)
|ξ = x

]
< ∞, it then

holds that62

(42) P- lim
n→∞

∑
k∈K+:ξk<T

ϕ(ξk, vk)h̄k =

∫ Cugξ
∧T

C`gξ
∧T

E [ϕ(ξ, v)|ξ = x] dx

uniformly in T ∈ K.

Proof. For T ≤ C`gξ both sides of (42) are zero, thus we restrict ourselves to T > C`gξ . By

uniform continuity of ϕ and 1
gξ

in ξ, for any ε > 0 there exists a δ(ε) such that for every

|ξ′ − ξ| < δ(ε) we have |ϕ(ξ, v) 1
gξ(ξ)

− ϕ(ξ′, v) 1
gξ(ξ′)

| < ε uniformly in v. W.l.o.g. assume

supp(gξ) is an interval. Thus, by splitting the interval [C`gξ , C
u
gξ
∧T ] into disjoint strips63 of

62The same statement as (42) is analogously true if one replaces K+ by K− of course. Also

P- lim
n→∞

∑
k:ξk<T

ϕ(ξk, vk)
h̄k

2
=

∫ Cugξ
∧T

C`gξ
∧T

E [ϕ(ξ, v)|ξ = x] dx

holds analogously. Without Assumption 3b) the statement (42) needed to be reformulated as:

P- lim
n→∞

∑
k∈K+:ξk<T

ϕ(ξk, vk)h̄+
k =

∫ Cu
g
+
ξ

∧T

C`
g
+
ξ

∧T
E [ϕ(ξ, v)|ξ = x, v > 0] dx

P- lim
n→∞

∑
k∈K−:ξk<T

ϕ(ξk, vk)h̄−k =

∫ Cu
g
−
ξ

∧T

C`
g
−
ξ

∧T
E [ϕ(ξ, v)|ξ = x, v < 0] dx

63Assume ∃`1, `2 ∈ Z : C`gξ = δ`1, Cugξ = δ`2 to make the notation simpler. For a cleaner proof, one

should choose a suitable partition of supp(gξ).

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537


HOW IMPLICIT REGULARIZATION OF NEURAL NETWORKS AFFECTS THE LEARNED FUNCTION 37

equal length δ ≤ δ(ε), we have64

∑
k∈K+

ξk<T

ϕ(ξk, vk)h̄k =

63
=

∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

∧T ]

 ∑
k∈K+

ξk∈[δ`,δ(`+1))

ϕ(ξk, vk)h̄k



≈
∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

∧T ]

 ∑
k∈K+

ξk∈[δ`,δ(`+1))

(
ϕ(`δ, vk)

2

ngξ(`δ)
± ε

n

)
|{m ∈ K+ : ξm ∈ [δ`, δ(`+ 1))}|
|{m ∈ K+ : ξm ∈ [δ`, δ(`+ 1))}|


≈

∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

∧T ]


∑

k∈K+

ξk∈[δ`,δ(`+1))

ϕ(`δ, vk)

|{m ∈ K+ : ξm ∈ [δ`, δ(`+ 1))}|
2|{m ∈ K+ : ξm ∈ [δ`, δ(`+ 1))}|

ngξ(`δ)

± ε.

The number of nodes within a δ-strip follows a binomial distribution with

E
[
|{m ∈ K+ : ξm ∈ [δ`, δ(`+ 1))}|

]
= P [vk > 0]n

∫
[δ`,δ(`+1))

gξ(x) dx ≈ 1

2
n(δgξ(`δ)± δε̃),

for any δ ≤ δ(ε, ε̃), since gξ is uniformly continuous on supp(gξ) by Assumption 2b). For
δ ≤ δ(ε, ε̃) small enough, we have L(vk) ≈ L(v|ξ = `δ) ∀k ∈ K+ : ξk ∈ [δ`, δ(`+ 1)) and we
may apply the law of large numbers to further obtain

∑
k∈K+:ξk<T

ϕ(ξk, vk)h̄k ≈
∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

∧T ]

(
E [ϕ(ξ, v)|ξ = `δ]

P
± ˜̃ε

)
δ

(
1± ε̃

gξ(`δ)

)
± ε

≈

 ∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

∧T ]

(
E [ϕ(ξ, v)|ξ = `δ] δ

)
P
± ˜̃ε|Cugξ − C

`
gξ
|


·
(

1± ε̃

gξ(`δ)

)
± ε

64The notation ±ε from footnote 61 on page 35 and slight adaptions of it will be used in this proof a lot.

The relations of all the epsilons will be explicitly described in (43).
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Since 1/gξ(·) and E [ϕ(ξ, v)|ξ = ·] are bounded on supp(gξ), and ε, ε̃ depend on δ only, we
may for some ε∗, ρ∗ ∈ (0, 1) define

ε :=
ε∗

3
,(43a)

ε̃ :=
ε∗minx∈supp(gξ) gξ(x)

3|Cugξ − C`gξ |
(
maxx∈supp(gξ) E [ϕ(ξ, v)|ξ = x] + 1

) ,(43b)

˜̃ε :=
ε∗

3|Cugξ − C`gξ |
,(43c)

˜̃ρ := (ρ∗)
δ

|Cugξ
−C`gξ

|
,(43d)

n∗0 := ˜̃n0(˜̃ε, ˜̃ρ).(43e)

With the above, it follows that for any ε∗, ρ∗ ∈ (0, 1) there exists a n∗0 such that ∀n > n∗0 :

P


∣∣∣∣∣∣∣∣∣

∑
k∈K+:ξk<T

ϕ(ξk, vk)h̄k −
∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

∧T ]

E [ϕ(ξ, v)|ξ = `δ] δ

∣∣∣∣∣∣∣∣∣ ≤ ε
∗

 > ρ∗.

For δ small enough, the above Riemann sum converges uniformly in T to yield the desired
result. �

Lemma A.12 (step 0). For any choice of the penalty parameter λ > 0 and K ⊂ R com-

pact, the spline approximating RSN RN w̃ converges to the adapted regression spline f∗,λg,±
in probability w.r.t. ‖·‖W 1,∞(K) with increasing number of nodes, i.e. for any λ > 0 and

K ⊂ R we have

P- lim
n→∞

∥∥∥RN w̃ − f∗,λg,±
∥∥∥
W 1,∞(K)

= 0.65

Proof. Let λ > 0 and K ⊂ R compact with [C`g, C
u
g ] ⊂ K. Directly from the definition (35)

of RN+
w̃+ and RN+

w̃+ and the Definitions 3.5 and A.3 of f∗,λg,±, it follows that it is sufficient
to show:

P- lim
n→∞

∥∥∥RN+
w̃+ − f∗,λg,+

∥∥∥
W 1,∞(K)

= 0 and(44a)

P- lim
n→∞

∥∥∥RN−w̃− − f∗,λg,−∥∥∥
W 1,∞(K)

= 0 .(44b)

W.l.o.g. we restrict ourselves to proving (44a), as the latter limit follows analogously. By
Lemma A.10 it suffices to show that

(45) P- lim
n→∞

∥∥∥∥RN+
w̃+

′

− f∗,λg,+
′
∥∥∥∥
L∞(K)

= 0.

65Using the definition of the P- lim, we get:

∀ε ∈ R>0 : ∀ρ ∈ (0, 1) : ∃n0 ∈ N : ∀n ≥ n0 : P
[∥∥∥RN w̃ − f∗,λg,±∥∥∥

W1,∞(K)
< ε

]
> ρ.

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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Since for any x ∈ K

RN+
w̃+

′

(x) =
∑
k∈K+

w̃kvk =
∑
k∈K+

f∗,λg,+

′′

(ξk)
v2
k

E [v2|ξ = ξk]
h̄k,

we may employ Lemma A.1166 with ϕ(z, y) = f∗,λg,+

′′

(z) y2

E[v2|ξ=z] to obtain

P- lim
n→∞

RN+
w̃+

′

(x) =

∫ Cugξ
∧x

C`gξ
∧x

E
[
f∗,λg,+

′′

(ξ)
v2

E [v2|ξ = z]
|ξ = z

]
dz =

∫ Cugξ
∧x

C`gξ
∧x

f∗,λg,+

′′

(z) dz

uniformly in x ∈ K. Employing the fundamental theorem of calculus we further obtain

P- lim
n→∞

RN+
w̃+

′

(x) = f∗,λg,+

′

(Cugξ ∧ x)− f∗,λg,+
′

(C`gξ ∧ x) ∀x ∈ R.

By Remark 3.6, we have that f∗,λg,+

′

(C`gξ ∧ x) = 0 for any x ∈ R. Since by the same remark,

f∗,λg,+

′

is constant on [Cugξ ,∞), we finally obtain

P- lim
n→∞

RN+
w̃+

′

(x) = f∗,λg,+

′

(x) uniformly in x ∈ K.

Hence (45) follows.
�

Lemma A.13 (L(fn)→ L(f)). For any data (xtrain
i , ytraini ) ∈ R2, i ∈ {1, . . . , N}, let (fn)n∈N

be a sequence of functions that converges point-wise67 in probability to a function f : R→ R,
then the training loss L (c.p. Definition A.1) of fn converges in probability to L (f) as n
tends to infinity, i.e.

(46) P- lim
n→∞

L(fn) = L(f).

Proof. By continuity, the result follows directly:

P- lim
n→∞

L (fn) = P- lim
n→∞

N∑
i=1

li
(
fn(xtrain

i )
)

=

N∑
i=1

li

(
P- lim
n→∞

fn(xtrain
i )

)
=

N∑
i=1

li
(
f(xtrain

i )
)

= L (f) .

�

66Note that ϕ(x, y) is uniformly continuous on supp(gξ) since, by definition, f∗,λg,+ ∈ C2(R) and supp(gξ)

is compact by Assumption 2.
67If P- limn→∞ ‖fn − f‖W1,∞(K) = 0, then fn converges point-wise in probability to f (by using

Sobolev’s embedding theorem [1] or by assuming fn and f to be continuous). Hence Lemma A.13 can

be used together with Lemma A.12 to show P- limn→∞ L(RN w̃) = L(f∗,λg,±) or together with Lemma A.18

to show P- limn→∞ L
(
RN ∗,λ̃

)
= L

(
fw
∗,λ̃
)

.

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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Lemma A.14 (step 2). For any λ > 0 and data (xtrain
i , ytraini ) ∈ R2, i ∈ {1, . . . , N}, we

have

(47) P- lim
n→∞

F λ̃n (RN w̃) = Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
,

with λ̃ and g as defined in Theorem 3.8.

Proof. We start by showing

(48) P- lim
n→∞

λ̃ ‖w̃‖22 = λ2g(0)


∫

supp(g)

(
f∗,λg,+

′′

(x)

)2

g(x)
dx+

∫
supp(g)

(
f∗,λg,−

′′

(x)

)2

g(x)
dx

 .

Since ‖w̃‖22 = ‖w̃+‖22 + ‖w̃−‖22, we restrict ourselves to proving

(49) P- lim
n→∞

λ̃
∥∥w̃+

∥∥2

2
= λ2g(0)

∫
supp(gξ)

(
f∗,λg,+

′′

(x)

)2

g(x)
dx.

With the definitions of w̃+, λ̃ and h̄ we have

λ̃
∥∥w̃+

∥∥2

2
= λ̃

∑
k∈K+

(
f∗,λg,+

′′

(ξk)
h̄kvk

E [v2|ξ = ξk]

)2

= λ̃
∑
k∈K+

((
f∗,λg,+

′′
)2

(ξk)
h̄kv

2
k

E [v2|ξ = ξk]
2

)
h̄k

= λ2g(0)
∑
k∈K+

((
f∗,λg,+

′′
)2

(ξk)
2v2
k

gξ(ξk)E [v2|ξ = ξk]
2

)
h̄k.

An application of Lemma A.11 with ϕ(x, y) =

(
f∗,λg,+

′′
)2

(x) 2y2

gξ(x)E[v2|ξ=y]2
further yields (49)

via

P- lim
n→∞

λ̃
∥∥w̃+

∥∥2

2
= λ2g(0)

∫
supp(gξ)

E

[(
f∗,λg,+

′′
)2

(ξ)
2v2

gξ(ξ)E [v2|ξ = x]
2

∣∣∣∣ξ = x

]
dx

= λ2g(0)

∫
supp(gξ)

2

(
f∗,λg,+

′′
)2

(x)

gξ(x)E [v2|ξ = x]
dx

= λ2g(0)

∫
supp(gξ)

(
f∗,λg,+

′′

(x)

)2

g(x)
dx.

Thus we have proved the convergence of the penalization terms (48). Together with Lem-
mas A.12 and A.13, (47) follows.

�
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Before we prove the very important Lemma A.16, we need an auxiliary Lemma A.15 that
would be quite easy to prove in the case of square loss (i.e. li(y) := (y − ytrain

i )2), but gets
a bit more envolved in the case of more general forms of training losses li.

Lemma A.15 (li
′

-bound). Using the notation of Definition 3.2, there exists an upper
bound: ∃Cl′ ∈ R>0 : ∀n ∈ N : ∀ω ∈ Ω : ∀i ∈ {1, . . . , N} :

(50)
∣∣∣li′ (RN ∗,λ̃(xtrain

i )
)∣∣∣ ≤ Cl′

Proof. The optimality (11) of RN ∗,λ̃ implies

(51) L
(
RN ∗,λ̃

)
+ λ̃

∥∥∥w∗,λ̃∥∥∥2

2︸ ︷︷ ︸
≥0

optimality

≤ L ( 0︸︷︷︸
RN 0

) + ‖ 0︸︷︷︸
∈Rn
‖22,

which further implies, that ∀i ∈ {1, . . . , N} :

(52) li

(
RN ∗,λ̃(xtrain

i )
) lι≥0

≤
N∑
ι=1

lι

(
RN ∗,λ̃(xtrain

ι )
)

Def. A.1
= L

(
RN ∗,λ̃

) (51)

≤ L (0) .

In other words, ∀i ∈ {1, . . . , N} the evaluated ridge network

(53) RN ∗,λ̃(xtrain
i )

(52)
∈ li

−1 ((−∞, L (0)]) := { y ∈ R | li (y) ≤ L(0) }

lies in a certain sublevel set of li.
This implies that ∀i ∈ {1, . . . , N}:

(54)
∣∣∣li′ (RN ∗,λ̃(xtrain

i )
)∣∣∣ (53)

≤ sup
y∈li−1((−∞,L(0)])

∣∣∣li′(y)
∣∣∣ =: ci ∈ R̄.

So we want to show that the right-hand side ci of (54) is finite. For this, we need a better
understanding of the sublevel set li

−1 ((−∞, L (0)]).
The sublevel sets of convex functions are convex (li is convex by Assumption 4b)). Convex

subsets of R are always intervals. Since li ∈ C1 is continuous by Assumption 4c), the
preimage of the closed set (−∞, L(0)] is closed.

Hence, li
−1 ((−∞, L (0)]) is a closed interval. There are only four types of closed intervals:

[α, β], [α,∞), (−∞, β] and (−∞,∞), where α, β ∈ R. As the domain of li is unbounded
and as li is continuous, we know that α, β ∈ li−1 (L (0)).

Consider these four cases for each i ∈ {1, . . . , N} separately:

case 1: li
−1 ((−∞, L (0)]) = [α, β] is compact:

Since li is convex, li
′

is monotonically increasing. Hence, the minimum of li
′

must
be attained at the left boundary α and the maximum at the right border β. So, we
can bound

(55) ci
(54)
:= sup

y∈li−1((−∞,L(0)])

∣∣∣li′(y)
∣∣∣ = max

{∣∣∣li′(α)
∣∣∣ , ∣∣∣li′(β)

∣∣∣} ∈ R

as a finite number (i.e. the maximum of two finite numbers).
case 2: li

−1 ((−∞, L (0)]) = [α,∞) is not compact:
This case allows to imply that

(56) li
′
(y) ≤ 0 ∀y ∈ R⊇ li−1 ((−∞, L (0)]),
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because of the following contraposition:
Assume ∃y+ ∈ R : li

′
(y+) > 0 then, ∀y ∈ [y+,∞) : li

′
(y) ≥ li

′
(y+), because of

monotonicity. Then ∀y ∈ [y+,∞) : li(y) ≥ li(y+) + (y − y+)li
′
(y+), and further(

y+ +
L(0)− li(y+)

li
′(y+)

,∞
)
∩ li−1 ((−∞, L (0)]) = ∅,

which would contradict the assumption of case 2. This contraposition has proven
ineq. (56).
With the help of ineq. (56) we can bound

(57) ci
(54)
:= sup

y∈li−1((−∞,L(0)])

∣∣∣li′(y)
∣∣∣ (56)

=

∣∣∣∣ inf
y∈li−1((−∞,L(0)])

li
′
(y)

∣∣∣∣ monotonicity
=

∣∣∣li′(α)
∣∣∣ ∈ R.

case 3: li
−1 ((−∞, L (0)]) = (−∞, β] is not compact:

Analogously to (56) we get

(56-) li
′
(y) ≥ 0 ∀y ∈ R⊇ li−1 ((−∞, L (0)]),

which implies analogously to (57) that we can bound

(57-) ci
(54)
:= sup

y∈li−1((−∞,L(0)])

∣∣∣li′(y)
∣∣∣ (56-)

=

∣∣∣∣∣ sup
y∈li−1((−∞,L(0)])

li
′
(y)

∣∣∣∣∣ monotonicity
=

∣∣∣li′(β)
∣∣∣ ∈ R.

case 4: li
−1 ((−∞, L (0)]) = (−∞,∞) is not compact:

Analogously to (56) and (56-) we get

(560) li
′
(y) = 0 ∀y ∈ R⊇ li−1 ((−∞, L (0)]),

which directly implies that we can bound

(570) ci
(54)
:= sup

y∈li−1((−∞,L(0)])

∣∣∣li′(y)
∣∣∣ (560)

= 0 ∈ R.

Since this case analysis showed that in each case ci ∈ R is finite, we can use (54) to
conclude ∀n ∈ N : ∀ω ∈ Ω : ∀i ∈ {1, . . . , N} :

(58)
∣∣∣li′ (RN ∗,λ̃(xtrain

i )
)∣∣∣ (54)

≤ ci ≤ max
i∈{1,...,N}

ci =: Cl′
cases 1–4
< ∞.

An equivalent more explicit definition would be:

(59) Cl′ := max
(
{0} ∪

{
li
′
(yi)

∣∣∣ i ∈ {1, . . . , N} , yi ∈ li−1(L(0))
})

.

�

Lemma A.16. Using the notation of Definitions 2.6 and 3.2, the following statement holds:

∀ε ∈ R>0 : ∃δ ∈ R>0 : ∀n ∈ N : ∀ω ∈ Ω : ∀k̀, ḱ ∈ {1, . . . , n} :
∣∣ ξk̀(ω)− ξḱ(ω)︸ ︷︷ ︸

=:∆ξ(ω)

∣∣ < δ ∧ sgn
(
vk̀(ω)

)
= sgn

(
vḱ(ω)

)⇒
∣∣∣∣∣∣w
∗,λ̃
k̀

(ω)

vk̀(ω)
−
w∗,λ̃
ḱ

(ω)

vḱ(ω)

∣∣∣∣∣∣ < ε

n

 ,

if we assume that vk is never zero.
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Proof. We will prove the even stronger statement:∣∣∣∣∣∣w
∗,λ̃
k̀

vk̀
−
w∗,λ̃
ḱ

vḱ

∣∣∣∣∣∣ 1.
≤

conditioned on
sgn(vk̀)=sgn(vḱ)

|∆ξ|
λ̃

N∑
i=1

∣∣∣li′ (RN ∗,λ̃(xtrain
i )

)∣∣∣ 2.
≤(60a)

2.
≤ |∆ξ|

λ̃
NCl′(60b)

because with the help of inequality (60), δ := ελ2g(0)
NC

l
′

would be a valid choice of δ in the

statement of Lemma A.16.

1. Proof of (60a): First we define the disturbed weight vector w∆s such that

w∆s
k := w∗,λ̃k +


+ ∆s

|vk̀|
k = k̀

− ∆s

|vḱ|
k = ḱ

0 else-wise

by shifting a little bit of the distributional second derivative ∆s from the ḱth kink

to the k̀th kink. By a case analysis (or by drawing a sketch) one can easily show
that conditioned on sgn

(
vk̀
)

= sgn
(
vḱ
)
:

(61) ∀x ∈ R :
∣∣∣RN ∗,λ̃(x)− (RNw∆s(x))

∣∣∣ ≤ ∆ξ∆s.

As RN ∗,λ̃ is optimal the derivative

(62) 0 =
dF λ̃n (RNw∆s)

d∆s

∣∣∣∣∣
∆s=0

= λ̃2

w∗,λ̃k̀
vk̀
−
w∗,λ̃
ḱ

vḱ

+
dL (RNw∆s)

d∆s

∣∣∣∣
∆s=0

has to be zero. Transforming this equation and taking absolute values on both sides
gives:

(63)

∣∣∣∣∣∣λ̃2

w∗,λ̃k̀
vk̀
−
w∗,λ̃
ḱ

vḱ

∣∣∣∣∣∣(62)
=

∣∣∣∣∣∣ dL (RNw∆s)

d∆s

∣∣∣∣
∆s=0

∣∣∣∣∣∣
(61)

≤ 2

N∑
i=1

∣∣∣li′ (RN ∗,λ̃(xtrain
i )

)
∆ξ
∣∣∣ .

Dividing both sides by 2λ̃ results in (60a).
2. (60a)≤(60b) holds because of Lemma A.15

�

Lemma A.17 (w
∗,λ̃

v ≈ O( 1
n )). For any λ > 0 and data (xtrain

i , ytraini ) ∈ R2, i ∈ {1, . . . , N},
we have

(64) max
k∈{1,...,n}

w∗,λ̃k
vk

= P-O
n→∞

(
1

n

)
.68

68Using the definition of P-O, eq. (64) reads as:

∀ρ ∈ (0, 1) : ∃C ∈ R>0 : ∃n0 ∈ N : ∀n > n0 : P
[

max
k∈{1,...,n}

< C
1

n

]
> ρ.
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Proof. Let k∗ ∈ arg maxk∈{1,...,n}
w∗,λ̃k
vk

and thus
w∗,λ̃
k∗
vk∗

= maxk∈{1,...,n}
w∗,λ̃k
vk

. W.l.o.g. assume

k∗ ∈ K+.

Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
λ̃

Lemma A.14
P
≥ 1

2λ̃
F λ̃n

(
RN ∗,λ̃

)
(65a)

≥ 1

2

∑
k∈K+:ξk∈(ξk∗ ,ξk∗+δ)

w∗,λ̃k
2

(65b)

=
1

2

∑
k∈K+:ξk∈(ξk∗ ,ξk∗+δ)

w∗,λ̃k
2

v2
k

v2
k(65c)

Lemma A.16
≥ 1

4

w∗,λ̃k∗
2

v2
k∗

∑
k∈K+:ξk∈(ξk∗ ,ξk∗+δ)

v2
k(65d)

P
≥ 1

8

w∗,λ̃k∗
2

v2
k∗

nδgξ(ξk∗)

2
E
[
v2
k

∣∣ξk = ξk∗
]
.(65e)

Transforming inequality (65) and using the definition λ̃ := λn2g(0) gives:

(66)
w∗,λ̃k∗

2

v2
k∗

P
≤ 16

n2

Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
δgξ(ξk∗)λ2g(0)

.

Taking the square root of both sides and bounding gξ with its minimum69, we get:

(67)
w∗,λ̃k∗

vk∗

P
≤ 4

n

 Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
δminx∈supp(g) gξ(x)λ2g(0)


1
2

.

This proves statement (64) by choosing C from footnote 68 as:

(68) C := 4

 Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
δminx∈supp(g) gξ(x)λ2g(0)


1
2

.

�

Lemma A.18 (step 3). For any λ > 0 and data (xtrain
i , ytraini ) ∈ R2, i ∈ {1, . . . , N}, we

have

(69) P- lim
n→∞

∥∥∥RN ∗,λ̃ − fw∗,λ̃∥∥∥
W 1,∞(K)

= 0,

with λ̃ as defined in Theorem 3.8.

Proof. By Lemma A.10 (as RN ∗,λ̃, fw∗,λ̃ are zero outside of supp(g) + supp(κx) like de-
scribed in Remark 3.6), we only need to show that for all ε > 0:

lim
n→∞

P

[∥∥∥∥RN ∗,λ̃′ − fw∗,λ̃ ′∥∥∥∥
L∞(K)

< ε

]
= 1.

69Assumption 2a) and c) guarantee that minx∈supp(g) gξ(x) > 0.

https://en.wikipedia.org/w/index.php?title=Sobolev_space&oldid=910223537
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W.l.o.g. it is sufficient to prove:

lim
n→∞

P

[∥∥∥∥RN ∗,λ̃+

′

− fw
∗,λ̃

+

′∥∥∥∥
L∞(K)

< ε

]
= 1.

For every x ∈ K and ω ∈ Ω, using the Definition A.8 of fw
∗,λ̃

+ we have

RN ∗,λ̃+

′

(x)− fw
∗,λ̃

+

′

(x) = RN ∗,λ̃+

′

(x)−
(
RN ∗,λ̃+

′

∗ κx
)

(x)

=

∫
R
RN ∗,λ̃+

′

(x)κx(t) dt−
∫
R
RN ∗,λ̃+

′

(x− t)κx(t) dt

=

∫
R

(
RN ∗,λ̃+

′

(x)−RN ∗,λ̃+

′

(x− t)
)
κx(t) dt.

Using the definition of RN ∗,λ̃+ we get:

(70) RN ∗,λ̃+

′

(x) =
∑

k∈K+:ξk<x

w∗,λ̃k vk

and hence with rn := 1
2
√
ngξ(x)

we can get after some algebraic calculations:

RN ∗,λ̃+

′

(x)− fw
∗,λ̃

+

′

(x) =
∑

k∈K+:x−rn<ξk<x

w∗,λ̃k vk

∫ ξk

x−rn
κx(s− x)ds

−
∑

k∈K+:x<ξk<x+rn

w∗,λ̃k vk

∫ x+rn

ξk

κx(s− x)ds =

=
∑

k∈K+:x−rn<ξk<x

w∗,λ̃k
vk

v2
k

∫ ξk

x−rn
κx(s− x)ds

−
∑

k∈K+:x<ξk<x+rn

w∗,λ̃k
vk

v2
k

∫ x+rn

ξk

κx(s− x)ds

Thus, we can use the triangle inequality70 and the properties of the kernel κx to get:∣∣∣∣RN ∗,λ̃+

′

(x)− fw
∗,λ̃

+

′

(x)

∣∣∣∣ ≤ 1

2

∑
k∈K+:x−rn<ξk<x+rn

∣∣∣∣∣w∗,λ̃kvk v2
k

∣∣∣∣∣(71a)

≤ 1

2
max
k∈K+

∣∣∣∣∣w∗,λ̃kvk
∣∣∣∣∣ ∑
k∈K+:x−rn<ξk<x+rn

v2
k(71b)

Lemma A.17
≤ P-O

n→∞

(
1

n

)
P-O
n→∞

(√
n
)

= P-O
n→∞

(
1√
n

)
(71c)

70Actually, one could use a much tighter bound the triangle inequality used in inequality (71a), because
in asymptotic expectation the positive and negative summands would cancel each other instead of adding

up.
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uniformly in x on supp(gξ) and thus on K (since outside of supp(gξ) + (−rn, rn) both
functions and there derivatives are zero). �

Lemma A.19 (step 4). For any λ > 0 and data (xtrain
i , ytraini ) ∈ R2, i ∈ {1, . . . , N}, we

have

(72) P- lim
n→∞

∣∣∣F λ̃n (RN ∗,λ̃)− Fλ,g+−

(
fw
∗,λ̃

+ , fw
∗,λ̃

−

)∣∣∣ = 0,

with λ̃ as defined in Theorem 3.8.

Proof. Lemmas A.13 and A.18 combined show that

P- lim
n→∞

∣∣∣L(RN ∗,λ̃)− L(fw∗,λ̃+ , fw
∗,λ̃

−

)∣∣∣ = 0.

So it is sufficient to show:
(73)

P- lim
n→∞

∣∣∣∣∣∣∣∣∣λ̃
∥∥∥w∗,λ̃∥∥∥2

2
− λ2g(0)


∫

supp(g)

(
fw
∗,λ̃

+

′′

(x)

)2

g(x)
dx+

∫
supp(g)

(
fw
∗,λ̃

−

′′

(x)

)2

g(x)
dx


∣∣∣∣∣∣∣∣∣ = 0.

Since
∥∥∥w∗,λ̃∥∥∥2

2
=
∑
k∈K+ w

∗,λ̃
k

2

+
∑
k∈K− w

∗,λ̃
k

2

, we restrict ourselves to proving

(74) P- lim
n→∞

∣∣∣∣∣∣∣∣∣λ̃
∑
k∈K+

w∗,λ̃k
2

− λ2g(0)

∫
supp(gξ)

(
fw
∗,λ̃

+

′′

(x)

)2

g(x)
dx

∣∣∣∣∣∣∣∣∣ = 0.

Using the Definition A.8 of fw
∗,λ̃

+ we get:

fw
∗,λ̃

+

′′

(x)
Definition A.8

=
∑

k∈K+:|ξk−x|< 1
2
√
ngξ(x)

√
ngξ(x)w∗,λ̃k vk(75a)

=
∑

k∈K+:|ξk−x|< 1
2
√
ngξ(x)

√
ngξ(x)

w∗,λ̃k
vk

v2
k(75b)

Lemma A.16
≈

w∗,λ̃lx
vlx
± ε

n

 ∑
k∈K+:|ξk−x|< 1

2
√
ngξ(x)

√
ngξ(x)v2

k(75c)

≈

w∗,λ̃lx
vlx
± ε

n

(1
P
± ε1

)
P [vk > 0]ngξ(x)

(
E
[
v2
k

∣∣ξk = x
] P
± ε2

)
(75d)

Lemma A.17
≈

w∗,λ̃lx
vlx

P [vk > 0]ngξ(x)E
[
v2
k

∣∣ξk = x
] P
± ε3(75e)
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uniformly in x on K for any lx satisfying lx ∈ K+ : |ξl − x| < 1
2
√
ngξ(x)

∀x ∈ supp(gξ).

Therefore we can plug this into the right-hand term of eq. (74):

λ2g(0)

∫
supp(gξ)

(
fw
∗,λ̃

+

′′

(x)

)2

g(x)
dx ≈ λ2g(0)

∫
supp(gξ)

(
w∗,λ̃lx
vlx

P [vk > 0]ngξ(x)E
[
v2
k

∣∣ξk = x
] P
± ε3

)2

g(x)
dx

≈ λ2g(0)

∫
supp(gξ)

(
w∗,λ̃lx
vlx

P [vk > 0]ngξ(x)E
[
v2
k

∣∣ξk = x
])2

g(x)
dx︸ ︷︷ ︸

=
λ̃n

2

∫
supp(gξ)

w∗,λ̃lx
vlx

2

gξ(x)E
[
v2
k

∣∣ξk = x
]
dx

P
±ε4

by uniformity of approximation (75) and by using the definitions of λ̃ := λn2g(0) and
g(x) := gξ(x)E

[
v2
k

∣∣ξk = x
]

1
2 . In the next steps we show that the left-hand term of eq. (74)

converges to the same term as the right-hand side did:71

λ̃
∑
k∈K+

w∗,λ̃k
2 71

= λ̃
∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

]

 ∑
k∈K+

ξk∈[δ`,δ(`+1))

(
w∗,λ̃k
vk

)2

v2
k


Lemma A.16
≈ λ̃

∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

]


w∗,λ̃lδ`
vlδ`

± ε5
n

2 ∑
k∈K+

ξk∈[δ`,δ(`+1))

v2
k

︸ ︷︷ ︸
≈
(

1
P
±ε6

)
n
2 δgξ(δ`)

(
E[v2

k|ξk=δ`]
P
±ε7

)



Lemma A.17
≈ λ̃n

2

∑
`∈Z

[δ`,δ(`+1))⊆[C`gξ
,Cugξ

]


w∗,λ̃lδ`
vlδ`

2

δgξ(δ`)
(
E
[
v2
k

∣∣ξk = δ`
]) P
± ε8


Riemann
≈ λ̃n

2

∫
supp(gξ)

w∗,λ̃lx
vlx

2

gξ(x)E
[
v2
k

∣∣ξk = x
]
dx

P
± ε9

This proves eq. (72). �

71Assume ∃`1, `2 ∈ Z : C`gξ = δ`1, Cugξ = δ`2 to make the notation simpler. For a cleaner proof, one

should choose a suitable partition of supp(gξ).
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Definition A.20 (extended feasible set T̃ ). The extended feasible set T̃ is defined as:

T̃ :=

{
(f+, f−) ∈ H2(R)×H2(R)

∣∣∣∣ supp(f ′′+) ⊆ supp(g), supp(f ′′−) ⊆ supp(g),

f+(x) = 0 = f ′+(x) ∀x ≤ C`g,

f−(x) = 0 = f ′−(x) ∀x ≥ Cug
}
.

by replacing C2(R) by the Sobolev space [1] H2(R) := W 2,2(R) ⊃ C2(R) in T from Defini-
tion 3.5.

Remark A.21. If one replaces C2(R) by the Sobolev space H2(R) := W 2,2(R) in Defini-

tions 3.5 and A.3 the minimizer
(
f∗,λg,+, f

∗,λ
g,−

)
does not change—i.e.:

arg min
(f+,f−)∈T

Fλ,g+− (f+, f−) = arg min
(f+,f−)∈T̃

Fλ,g+− (f+, f−) .

Lemma A.22 (step 7). For any λ > 0 and data (xtrain
i , ytraini ) ∈ R2, i ∈ {1, . . . , N}, for any

sequence of tuples of functions
(
fn+, f

n
−
)
∈ H2(R)×H2(R) such that

(76) P- lim
n→∞

Fλ,g+−
(
fn+, f

n
−
)

= Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
,

then it follows that:

(77) P- lim
n→∞

∥∥∥(fn+ + fn−
)
− f∗,λg,±︸︷︷︸
f∗,λg,++f∗,λg,−

∥∥∥
W 1,∞(K)

= 0.

Proof. Define the tuple of H2(R)-functions

(78)
(
un+, u

n
−
)

:=
(
f∗,λg,+, f

∗,λ
g,−

)
−
(
fn+, f

n
−
)

as the difference. The difference
(
un+, u

n
−
)

of elements from T and T̃ obviously lies in T̃ .

Recall that the penalty term of Fλ,g+− is given by

(79) P g+− (f+, f−) := 2g(0)

∫
supp(g)

(
f+

′′
(x)
)2

g(x)
dx+

∫
supp(g)

(
f−
′′
(x)
)2

g(x)
dx

 .

This penalty P g+− is obviously a quadratic form. Note that
(fn+,f

n
−)+(f∗,λg,+,f

∗,λ
g,−)

2 ∈ T̃ . Since
the training loss L is convex, we get the inequality

(80) L

(
fn+ + fn− + f∗,λg,+ + f∗,λg,−

2

)
≤
L
(
fn+ + fn−

)
2

+
L
(
f∗,λg,+ + f∗,λg,−

)
2

.

Since the penalty P g+− is a quadratic form, we get with the help of some algebraic calculations
the inequality

(81) P g+−

(fn+, fn−)+
(
f∗,λg,+, f

∗,λ
g,−

)
2

 ≤ P g+−
(
fn+, f

n
−
)

2
+
P g+−

(
f∗,λg,+, f

∗,λ
g,−

)
2

−
P g+−

(
un+, u

n
−
)

4
.
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Combining the inequalities (80) and (81) results in
(82)

Fλ,g+−

(fn+, fn−)+
(
f∗,λg,+, f

∗,λ
g,−

)
2

 ≤ Fλ,g+−
(
fn+, f

n
−
)

+ Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
2︸ ︷︷ ︸

(76)
≈ Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

) P
± ε

−λ
P g+−

(
un+, u

n
−
)

4
.

Together with the optimality of
(
f∗,λg,+, f

∗,λ
g,−

)
this result leads directly to

Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

) optimality
Remark A.21
≤ Fλ,g+−

(fn+, fn−)+
(
f∗,λg,+, f

∗,λ
g,−

)
2

(83a)

(82)

/ Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

) P
± ε− λ

P g+−
(
un+, u

n
−
)

4
.(83b)

By subtracting

(
Fλ,g+−

(
f∗,λg,+, f

∗,λ
g,−

)
− λP

g
+−(un+,u

n
−)

4

)
from both sides of ineq. (83) and mul-

tiplying by 4 we get

λP g+−
(
un+, u

n
−
) (83)

/
P
±4ε,

which implies that

(84) P- lim
n→∞

P g+−
(
un+, u

n
−
)

= 0.

First, we will show that the weak second derivative un+
′′

converges to zero. We have∥∥∥un+′′∥∥∥
L2(K)

≤
maxx∈supp(g)g(x)

2g(0)
P g+−

(
un+, u

n
−
)
∀K ⊆ R,(85)

because
(
un+, u

n
−
)
∈ T̃ has zero second derivative outside supp(g). Thus,

P- lim
n→∞

∥∥∥un+′′∥∥∥
L2(K)

= 0

(by combining eqs. (84) and (85)). This can be used to apply two times the Poincaré-typed

Lemma A.10 (first on un+
′′

then on un+
′
) to get for every compact set K ⊂ R

(86) P- lim
n→∞

∥∥un+∥∥W 1,∞(K)
= 0,

as
(
un+, u

n
−
)
∈ T̃ satisfies the boundary conditions at C`g (cp. Remark 3.6) because of the

compact support of g. Analogously, P- limn→∞
∥∥un−∥∥W 1,∞(K)

= 0 for every compact set

K ⊂ R and hence

(87) P- lim
n→∞

∥∥un+ + un−
∥∥
W 1,∞(K)

= 0.

Thus, by the definition (78) of
(
un+, u

n
−
)

we get

P- lim
n→∞

∥∥∥(fn+ + fn−
)
− f∗,λg,±︸︷︷︸
f∗,λg,++f∗,λg,−

∥∥∥
W 1,∞(K)

(78)
= P- lim

n→∞

∥∥un+ + un−
∥∥
W 1,∞(K)

(87)
= 0,

which shows (77). �
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A.2. Proof of Theorem 3.17 (RNwT ,ω → RN
∗, 1
T

ω ). In this section we prove all the
results (Lemma 3.15, Remark 3.16 and Theorem 3.17) presented in Section 3.2. These
results are analogous to the results presented in [4, 9, 29, 12], but we will repeat the proofs
briefly in this appendix.

Proof of Lemma 3.15. We need to show that for any ω ∈ Ω,

(“(21)”) wT (ω) = − exp
(
−2TX>(ω)X(ω)

)
w∗,0+(ω) + w∗,0+(ω),

satisfies (GD). Let ω ∈ Ω be fixed and set y := (ytrain
1 , . . . , ytrain

N )>. Clearly, w0 = 0. Since

∇wL(RNw) = 2X>(Xw − y),

(GD) reads as

(88) dwt = −2(X>Xwt −X>y) dt.

Differentiating (21) we obtain

d

dt
wt = 2X>X exp

(
−2tX>X

)
w∗,0+.(89)

Moreover, since

−2(X>Xwt −X>y) = 2X>X exp
(
−2tX>X

)
w∗,0+ − 2X>yw∗,0+ + 2X>yw∗,0+

= 2X>X exp
(
−2tX>X

)
w∗,0+

the result follows (by the Picard—Lindelöf theorem the solution of linear ODEs is unique).
�

Proof of Remark 3.16. Using basic results on the Moore-Penrose pseudoinverse [2] and sin-
gular value decomposition it directly follows that the minimum norm solution w∗,0+ does
not have any singular-value-components in the null-space of the matrix X. Combining this
with basic knowledge about the matrix exponential of diagonalizable matrices, the result
follows. Since the matrix-exponential in eq. (21) only preserves the null-space of X, every
singular-value-component outside the null-space is scaled down to zero as T →∞. �

Proof of Theorem 3.17. First, we note that obviously

(90) lim
T→∞

w∗,
1
T (ω) = w∗,0+(ω) ∀ω ∈ Ω

holds by Definition 3.3.
Secondly, the continuity of the map (Rn, ‖·‖2) → W 1,∞(K) : w 7→ RNw,ω implies:

∀ω ∈ Ω:

lim
T→∞

∥∥∥RN ∗, 1
T

ω −RNw∗,0+(ω),ω

∥∥∥
W 1,∞(K)

= 0, because of eq. (90)(91a)

lim
T→∞

∥∥RNwT (ω),ω −RNw∗,0+(ω),ω

∥∥
W 1,∞(K)

= 0, because of Remark 3.16.(91b)

Thirdly, by applying the triangle inequality on eqs. (91) the result (22) follows. �
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A.3. Proof of Corollary 2.3 and Lemma 2.4.

Lemma A.23 (Uniform continuity w.r.t. first-layer weights). Let NN θ be a shallow neural
network as introduced in Definition 1.4 and define (b, v) ∈ Rn×(d+1) to be the collection of
the network’s first layer parameters. Then, for every ε > 0 and for any compact K ⊂ Rd
there exists a δ > 0 such that,

∀(b̃, ṽ) ∈ Uδ(b, v) :

∥∥∥∥∥∥
n∑
k=1

wkσ

b̃k +

d∑
j=1

ṽk,jxj

−NN θ

∥∥∥∥∥∥
L∞(K)

<
ε

2
,

with

Uδ(b, v) :=

{
(b̃, ṽ) ∈ Rn×(d+1)

∣∣∣∣ max
k∈{1,...,n}

∥∥∥(bk, vk)− (b̃k, ṽk)
∥∥∥

2
< δ

}
.

Proof. For any x ∈ K, we have

∂NN θ(x)

∂bk
= wkσ

′

bk +

d∑
j=1

vk,jxj

 ,

∂NN θ(x)

∂vk,i
= wkσ

′

bk +

d∑
j=1

vk,jxj

xi.

Both derivatives can be bounded by above by L := max
k∈{1,...,n}

|wk|LσcK , with Lσ the Lipschitz

constant corresponding to σ and cK > 0 s.t. ‖x‖2 ≤ cK∀x ∈ K as K was assumed to be
compact. Since the bound L is independent of x and w, the statement follows. �

Proof of Corollary 2.3. By uniform approximation in the sense of [22], we have for any ε > 0,
that there exists an N ε/2 ∈ N, NN ε/2 : Rd → R with

NN ε/2(x) :=

Nε/2∑
k=1

θkσ

bk +

d∑
j=1

vk,jxj


with θk, bk, vk,j ∈ R such that

(92)
∥∥∥NN ε/2 − f

∥∥∥
L∞(K)

<
ε

2
.

We now like to consider the probability that a randomly chosen vector of weights (b̃k, ṽk)
corresponding to the kth neuron in the hidden layer is close to a specific weight vector (bi, vi)
of NN ε/2. Since λd+1(Uδ(bi, vi)) > 0 it follows from µ � λd+1 that µ(Uδ(bi, vi)) > 0.
Therefore,

0 < p := min
i∈{1,...,Nε/2}

µ(Uδ(bi, vi)) ≤ 1.

The probability that none of the sampled weights (b̃k, ṽk), k = 1, . . . , n is in the δ-neighborhood
of a specific vector (bi, vi) can be bounded as follows:

Pn
([
∀k ∈ {1, . . . , n} : (b̃k, ṽk) /∈ Uδ(bi, vi)

])
= (1− µ(Uδ(bi, vi)))

n ≤ (1− p)n.
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This implies

Pn

[∃i ∈ {1, . . . , N ε/2} : ∀k ∈ {1, . . . , n} : (b̃k, ṽk) /∈ Uδ(bi, vi)
]

︸ ︷︷ ︸
=:B


= Pn

Nε/2⋃
i=1

[
∀k ∈ {1, . . . , n} : (b̃k, ṽk) /∈ Uδ(bi, vi)

]
≤
Nε/2∑
i=1

Pn
([
∀k ∈ {1, . . . , n} : (b̃k, ṽk) /∈ Uδ(bi, vi)

])

≤
Nε/2∑
i=1

(1− p)n = (1− p)n ·N ε/2 −→
n→∞

0.

For every ω ∈ Bc define

ι :
{

1, . . . , N ε/2
}
→ {1, . . . , n},

i 7→ ι(i),

with (b̃ι(i), ṽι(i))(ω) ∈ Uδ(bi, vi). Without loss of generality, ι is injective (choose δ small

enough s.t. Uδ(bi, vi), i = 1, . . . , N ε/2 are disjoint). For those ω ∈ Bc we further define
RNw as in the statement of the corollary, with trainable last layer weights

wk :=

{
θk, ∃i ∈ {1, . . . , N ε/2} : ι(i) = k,

0, @i ∈ {1, . . . , N ε/2} : ι(i) = k.

By Lemma A.23, it follows that
∥∥RNw −NN ε/2

∥∥
L∞(K)

< ε/2 on Bc. Hence, an application

of the triangle inequality, together with (92) yield that

∀ω ∈ Bc : ‖RNw − f‖L∞(K) < ε.

�

Proof of Lemma 2.4. We show that P-almost surely, {ψ(b,v)(x1), . . . , ψ(b,v)(xN )} are linearly
independent, for then the terminal linear regression can be (uniquely in case N = n) solved.
Consider first the one-dimensional subspace L1 := [ψ(b,v)(x1)] ⊆ range(ψ(b,v)), i.e. the linear
hull of ψ(b,v)(x1) restricted to the latent space. By assumption, P#(ψ(b,v)(x2))[L1] = 0 and
hence P-almost surely, ψ(b,v)(x2) /∈ [ψ(b,v)(x1)]. Analogously,

LN−1 := [ψ(b,v)(x1), . . . , ψ(b,v)(xN−1)] ⊆ range(ψ(b,v))

constitutes a (N−1)-dimensional subspace of range(ψ(b,v)) for which

P#(ψ(b,v)(xN ))[LN−1] = 0,

and thus ψ(b,v)(xN ) /∈ LN−1 P-almost surely. Thus, almost surely there exists w ∈ Rn such

that
∑n
k=1 wkψ(b,v)(xi)k = yi for all i = 1, . . . , N . �



HOW IMPLICIT REGULARIZATION OF NEURAL NETWORKS AFFECTS THE LEARNED FUNCTION 53

Appendix B. Intuition about adapted regression spline f∗,λg,±

Coming soon...72
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72The adapted regression spline f∗,λg,± is a very intuitive, easy to interpret concept, but without the right

guidance it can take a few hours instead of a few minutes to acquire this intuition. This is why we will add

this section in the next version to make this intuition more accessible, so that it becomes easy to see why

the adapted regression spline f∗,λg,± is very close to the regression spline f∗,λ under typical circumstances

and in which scenarios they differ from each other and how they differ from each other.


