
diss . eth no. 26410

D ATA M O V E M E N T O P T I M I Z AT I O N F O R
H I G H - P E R F O R M A N C E C O M P U T I N G

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

tobias gysi

Dipl. Informatik-Ing. ETH
ETH Zurich

born on the 7th of July 1980

citizen of Buchs AG, Switzerland

accepted on the recommendation of

Prof. Dr. Torsten Hoefler, examiner
Prof. Dr. Thomas C. Schulthess, co-examiner

Dr. Albert Cohen, co-examiner

2019

Tobias Gysi: Data Movement Optimization for High-Performance Computing, ©
2019

A B S T R A C T

Tuning codes to make efficient use of high-performance computing systems
is known to be hard. Programmers have to schedule their computations to
thousands of compute cores having the compute and data movement costs
in mind. The necessary code transformations – for example, to overlap com-
putation and inter-node communication – are well known. But the complex
interplay of hardware and software often prevents programmers from iden-
tifying performance bottlenecks and selecting good code transformations.
This dissertation introduces compilation frameworks, performance tools,
and programming models to tackle these programmability challenges.

Over the last decades, the compute performance improved at a much
faster pace than memory performance. Data-movement optimizations to
reduce the communication and memory access costs thus became much
more pressing. We address the problem by automating the selection of data-
locality transformations (absinthe) and by adapting the programming
model (dcuda) to overlap computation and inter-node communication
automatically. The performance models needed to automate the tuning
(absinthe and haystack) also provide the programmers with valuable
insights when optimizing codes manually.

An important algorithmic motif in high-performance computing is the
sequential execution of multiple but different stencils. Our compilation
framework (absinthe) automates the selection of data-locality transfor-
mations for such stencil programs. It has three main components: 1) a
transformation algebra, 2) a performance model, and 3) an optimizer. The
transformation algebra (modesto) defines the space of possible code trans-
formations and the learned performance model (absinthe) guides the
selection of good code transformations.

In summary, this dissertation contributes compilation frameworks, per-
formance tools, and programming models to foster the application of data
movement optimizations in high-performance computing. In particular, we
automate the selection of data-locality transformations for stencil programs.
We believe our work lays the foundation for future compilation frameworks
that support even broader application domains.

iii

Z U S A M M E N FA S S U N G

Es ist bekannt, dass die Optimierung von Codes zur effizienten Nutzung
von Hochleistungsrechnern schwierig ist. Programmierer müssen, unter
Berücksichtigung von Rechenaufwand und Datenübertragungskosten, ihre
Berechnungen auf Tausende von Rechenkernen verteilen. Die notwendigen
Code-Transformationen – zum Beispiel zur Überlappung der Kommuni-
kation zwischen den Rechenknoten mit den Berechnungen – sind allge-
mein bekannt. Das komplexe Zusammenspiel von Hardware und Software
hindert Programmierer jedoch häufig daran, Performance-Probleme zu
identifizieren und gute Code-Transformationen auszuwählen. In dieser
Dissertation werden Kompilierungs-Frameworks, Performance-Tools und
Programmiermodelle vorgestellt, um die Programmierbarkeit von Hoch-
leistungsrechnern zu verbessern.

In den letzten Jahrzehnten hat sich die Rechenleistung deutlich schneller
verbessert als die Speicherleistung. Optimierungen zur Reduzierung der
Kommunikations- und Speicherzugriffskosten wurden daher dringlicher.
Wir gehen das Problem an, indem wir die Auswahl von Transformationen
zur Verbesserung der Datenlokalität automatisieren (absinthe) und das
Programmiermodell anpassen (dcuda), um die Kommunikation zwischen
den Rechenknoten automatisch mit den Berechnungen zu überlappen. Die
zur Automatisierung erforderlichen Performance-Modelle (absinthe und
haystack) bieten den Programmierern zudem wertvolle Einblicke bei der
manuellen Code Optimierung.

Ein wichtiges algorithmisches Motiv im Hochleistungsrechnen ist die
sequentielle Ausführung mehrerer, aber unterschiedlicher Stencil Berech-
nungen. Unser Kompilierungs-Framework (absinthe) automatisiert die
Auswahl von Code-Transformationen zur Verbesserung der Datenlokali-
tät von Stencil Programmen. Es besteht aus drei Hauptkomponenten: 1)
einer Transformations-Algebra, 2) einem Performance-Modell und 3) einem
Optimierer. Die Transformations-Algebra (modesto) definiert den Raum
möglicher Code-Transformationen und das erlernte Performance-Modell
(absinthe) steuert die Auswahl guter Code-Transformationen.

Zusammenfassend leistet diese Dissertation einen Beitrag zur Entwick-
lung von Kompilierungs-Frameworks, Performance-Tools und Program-
miermodellen, um die Anwendung von Datenlokalitätsoptimierungen im
Hochleistungsrechnen zu fördern. Insbesondere automatisieren wir die

v

Optimierung von Stencil Programmen. Wir glauben, dass unsere Arbeit
den Grundstein für zukünftige Kompilierungs-Frameworks legt, die noch
breitere Anwendungsbereiche unterstützen.

vi

A C K N O W L E D G E M E N T S

I want to thank Torsten Hoefler for supervising my Ph.D. studies here
at ETH Zurich. His scientific guidance was essential to address the right
research questions and helped to widen the scope of my work. I am also
grateful to Torsten Hoefler and Thomas Schulthess for providing me with
the opportunity to return to academia after spending multiple years in the
industry. I furthermore want to thank my co-examiners, Albert Cohen and
Thomas Schulthess, for their effort and their valuable feedback. Special
thanks go to Tobias Grosser who was co-supervising my Ph.D. studies and
contributed key ideas to my research.

I value the contributions of all my co-authors, collaborators, and students.
I especially enjoyed working with Tobias Grosser, Jeremia Bär, Laurin Brand-
ner, Grzegorz Kwasniewski, Aditya Konduri, Siddharth Bhat, and Alain
Denzler on published and yet to be published works. The contributions of
my co-authors were essential for the success of my projects.

I also want to thank the entire group for the fun birthday parties at the
lake and many other memorable moments. Last but not least, I want to
thank my family for their support and my dance friends for many good
moments and great dances that were a welcome change to my research
work.

vii

P U B L I C AT I O N S

Publications that form the basis of this thesis:

• Tobias Gysi, Tobias Grosser, and Torsten Hoefler.
“MODESTO: Data-centric Analytic Optimization of Complex Sten-

cil Programs on Heterogeneous Architectures.”

ICS 2015. [1].

• Tobias Gysi, Tobias Grosser, and Torsten Hoefler.
“Absinthe: Learning an Analytical Performance Model to Fuse and

Tile Stencil Codes in One Shot.”

PACT 2019. [2].

• Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler.
“A Fast Analytical Model of Fully Associative Caches.”

PLDI 2019. [3].

• Tobias Gysi, Jeremia Bär, and Torsten Hoefler.
“dCUDA: Hardware Supported Overlap of Computation and Com-

munication.”

SC 2016. [4].

Additional publications not part of this thesis:

• Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco, and Thomas
C. Schulthess.
“STELLA: A Domain-specific Tool for Structured Grid Methods in

Weather and Climate Models.”

SC 2015. [5].

• Oliver Fuhrer, Carlos Osuna, Xavier Lapillonne, Tobias Gysi, Ben Cum-
ming, Mauro Bianco, Andrea Arteaga, and Thomas C. Schulthess.
“Towards a Performance Portable, Architecture Agnostic Implemen-

tation Strategy for Weather and Climate Models.”

Supercomputing Frontiers and Innovations. April 2014. [6].

ix

C O N T E N T S

1 introduction 1

1.1 Automatic Data-Locality Optimization 2

1.2 User-Guided Data Movement Optimization 4

1.3 Importance of the Programming Model 7

1.4 Thesis Contributions 7

2 a stencil algebra 9

2.1 Stencil Algebra 10

2.1.1 Definition of a Stencil Program 10

2.1.2 Example 11

2.1.3 Data Locality Transformations 13

2.1.4 Stencil Algebra Definition 15

2.1.5 Performance Modeling 17

2.1.6 Stencil Program Analysis 19

2.2 Case Study 28

2.2.1 STELLA 28

2.2.2 Stencil Program Optimization 30

2.3 Evaluation 31

2.4 Related Work 34

2.5 Summary of the Approach 35

3 a learned performance model 37

3.1 Background 39

3.1.1 Architecture Overview 39

3.1.2 Stencil Sequences 40

3.1.3 Data-Locality Transformations 40

3.2 Modeling 41

3.2.1 Stencil Sequences 43

3.2.2 Data-Locality Transformations 44

3.2.3 Performance Model 45

3.2.4 Learning the Performance Model 49

3.3 Optimization 51

3.3.1 Linearizing Multiplications 51

3.3.2 Modeling Stencil Groups 52

3.4 Evaluation 53

3.4.1 Setup & Methodology 53

3.4.2 Implementation 55

xi

xii contents

3.4.3 Learning the Target Systems 55

3.4.4 Tuning the Application Kernels 58

3.4.5 Comparison with Halide and Polymage 61

3.5 Related Work 62

3.6 Summary of the Approach 63

4 an analytical cache model 65

4.1 Background 67

4.1.1 Hardware Model 67

4.1.2 Cache Misses 67

4.1.3 Integer Sets and Maps 68

4.1.4 Static Control Programs 69

4.2 Cache Model 70

4.2.1 Computing the Stack Distance 71

4.2.2 Counting the Capacity Misses 76

4.2.3 Eliminating Non-Affine Terms 79

4.2.4 Counting the Compulsory Misses 81

4.2.5 Computational Complexity 82

4.3 Evaluation 82

4.3.1 Setup and Methodology 84

4.3.2 Accuracy Overview 84

4.3.3 Performance Overview 87

4.3.4 Comparison to PolyCache and Dinero 92

4.3.5 Performance for Tiled Codes 92

4.4 Related Work 93

4.5 Summary of the Approach 95

5 a communication-hiding programming model 97

5.1 Programming Model 98

5.1.1 Distributed Memory 99

5.1.2 Combining MPI & CUDA 100

5.1.3 Example 103

5.1.4 Discussion 104

5.2 Implementation 105

5.2.1 Architecture Overview 105

5.2.2 Communication Control 107

5.2.3 Performance Optimization 108

5.2.4 Discussion 110

5.3 Evaluation 111

5.3.1 Experimental Setup & Methodology 111

5.3.2 Microbenchmarks 112

contents xiii

5.3.3 Mini-applications 114

5.4 Discussion 119

5.5 Related Work 120

5.6 Summary of the Approach 121

6 conclusions and future work 123

6.1 Future Work 123

6.1.1 Automatic Performance Model Design 124

6.1.2 Scaling to Real-World Applications 125

6.1.3 Cache Optimal Programs 125

bibliography 127

1
I N T R O D U C T I O N

Over time the cost of data movement steadily gained importance and started
to dominate the overall computational cost – both in terms of execution
time and energy consumption. Analyzing and reducing the cost of data
movement became an important concern in high-performance comput-
ing [7]. But applying data movement optimizations [8–10] increases the
code complexity and often requires non-trivial parameterization. Domain-
specific tools [5, 11–13] or compilers [14, 15] may hide the increased code
complexity, but choosing optimal parameters remains hard. Examples for
the necessary parameterization are tile size and fusion choices or the ra-
tio of the inner to the outer domain when overlapping computation and
inter-node communication.

The hardware landscape in high-performance at the same time got much
more diverse. Heterogeneous systems equipped with accelerators more
and more supersede the previously dominating multi-core machines. The
resulting diversity complicates the development of single source code that
performs well on today’s and tomorrow’s systems. Especially since data-
locality transformations are very much system-specific. As a result, the
model of having expert programmers that in a heroic effort tune the codes
for every new hardware generation does not scale anymore.

In this thesis, we use the COSMO atmospheric model [16] as our primary
motivational example. The code is used for operational weather forecast-
ing [17] and climate modeling [18]. COSMO consists of more than 300,000

lines of code that mostly implement stencil computations (finite-differences).
Its low arithmetic intensity in combination with the sheer size makes the
real-world application a good testbed for data-locality transformations.

The current version of COSMO already targets both CPU and GPU
systems [6] using a single source code. To this end, the dynamical core of
COSMO was rewritten in the domain-specific language STELLA [5] that
implements target specific data-locality transformations for both CPU and
GPU. STELLA automates the code generation but still requires manual
interventions to select the tile sizes and to fuse stencils. The goal of this
thesis is to enable the development of domain-specific languages that
provide true performance portability by automatically selecting good data-
locality transformations.

1

2 introduction

Auto-tuning is the swiss-army knife for the selection and parameteri-
zation of good code transformations. It relies on the empiric evaluation
of different implementation variants to select good code transformations.
Existing auto-tuning frameworks [19–22] implement ready-to-use search
strategies that enable the efficient search space exploration. Yet, compiling
and running different implementation variants requires target system access
during compilation and can become prohibitively expensive depending on
the size of the search space.

An alternative are optimization frameworks [13, 23–25] relying on heuris-
tics and analytical models. In this thesis, we focus on the development of
analytical performance models and optimization strategies for selecting
data-locality transformations. We show that analytical performance models
enable the fast search space exploration while being accurate enough to
guide the optimization. Model-based optimization is a promising approach
that in many cases provides a good set of initial transformations that if
required may be further refined using auto-tuning.

1.1 automatic data-locality optimization

All programming models and domain-specific languages that aim at perfor-
mance portability have to apply target system-specific code transformations.
Loop fusion and tiling [8, 26, 27] are examples of important data-locality
transformations in high-performance computing. The fusion space alone is
exponential in the number of loop nests, and for every fused loop nest, a
range of possible tile sizes exists. The large search space and the interdepen-
dence of the parameter choices – fusion and tile size need to be considered
in tandem – make the optimization challenging.

An automatic optimization framework has to formalize the space of
possible code transformations and select the most beneficial ones. Several
approaches to describe the search space for polyhedral programs [28–30],
high-level programs written using algorithmic skeletons [31], and domain-
specific programs [12, 32, 33] exist. Possible techniques to select code trans-
formations are heuristics [34], performance models [24, 35], and empiric
evaluation [19, 20]. We focus on the performance model guided selection of
data-locality transformations. The mathematical structure and the fast eval-
uation of a well-designed performance model can considerably accelerate
the search space exploration compared to empirical tuning. A downside of
the model-based approach is the limited model accuracy that prevents us
from guaranteeing optimality for the selected code transformations.

1.1 automatic data-locality optimization 3

optimal solution

optimizer3

program variants

P y ≈ f(x)

learned model

transformation algebra1 performance model2

min f(x)
x ∈ P

Figure 1.1: An optimization problem that implements transformation algebra and
performance model enables the automatic selection of data-locality
transformations.

Data-locality transformations adapt the program schedule to improve the
spatial and temporal locality of the computation. After the optimization
computations that access the same data are ideally scheduled to the same
compute core and the shared data is stored in cache or registers. At the same
time, increasing data-locality often reduces the available parallelism. We
thus need to balance data-locality and parallelism [36, 37] while scheduling
the computations.

Figure 1.1 shows the main components of a typical automatic optimiza-
tion framework: 1) an algebra that defines the space of possible code trans-
formations, 2) a performance model to evaluate the effects of the selected
code transformations, and 3) an optimizer to explore the search space. All
components need to interface with the code generation to automate the
optimization process.

transformation algebra The core of every automatic optimization
framework is a transformation algebra that formalizes the space of pos-
sible code transformations. We defined the stencil algebra modesto to
enumerate the space of possible data-locality transformations for stencil

4 introduction

programs. The algebra specifies the execution order and the fusion and tile
size choices for all stencils of the program. Every element of the algebra
represents a program variant that performs the same computation but has
different performance characteristics.

performance model The performance model estimates the cost of
the different program variants. We developed the stencil program optimizer
absinthe and the analytical cache model haystack. Both of them can
be used to select code transformations. absinthe models the latency and
throughput of the stencil loop nests. The simple linear model enables the ef-
ficient program optimization using linear integer programming. haystack

models fully associative caches with a least recently used replacement
policy. The model is more complex but can compute the cache misses for
arbitrary polyhedral programs.

optimizer An automatic optimization framework searches the program
variant that minimizes the cost, for example, by integrating the transforma-
tion algebra and the performance model into a single optimization problem.
absinthe uses linear integer programming to select optimal code trans-
formations with respect to the performance model. We thereby rely on an
existing state-of-the-art solver [38] that is guaranteed to find the optimal
solution.

In general, data-locality transformations such as tiling and fusion are
interdependent. For example, the optimal tile size of a fused loop nest
typically decreases due to the larger memory footprint after fusion. The
optimization problem formulated by absinthe performs single shot fusion
and tile size choices to account for the interdependence of the different
data-locality transformations. The simplicity of both transformation algebra
and performance model additionally enables the formulation of a linear
optimization problem that can be solved efficiently. We thus believe the
development of an automatic optimization framework requires a holistic
view of transformation algebra, performance model, and optimization
method.

1.2 user-guided data movement optimization

Automatic tuning is only available for some application domains, and
the results may be suboptimal. In these cases, programmers have to fall
back to manual optimization. But the large space of possible data-locality

1.2 user-guided data movement optimization 5

Figure 1.2: Screenshot of haystack analyzing matrix multiplication.

6 introduction

transformations and the complexity and heterogeneity of the available
hardware architectures make the manual tuning challenging. Tools that
help programmers to identify performance bottlenecks and to evaluate the
effectiveness of their code transformations are thus an important concern.

Almost all modern processors rely on caches to reduce data movement
and to hide memory access latencies. Caches not only improve performance
but unfortunately also make understanding the memory access cost hard.
Hence, programmers need to know the state of the cache to estimate the
memory access cost. As a result, the cost of data movement depends on
global state and does not compose.

The state of the cache depends on the exact memory access history. Minor
changes of the memory access history can have significant effects on the
cache efficiency. Let us assume a least recently used replacement policy. If
a program implements two identical loop nests that access an array with
the size of the cache, then all access of the second loop nest are cache hits.
But if the program performs an additional memory access between the
two loop nests, then all memory accesses of the second loop nest are cache
misses. This example illustrates that understanding the cache state requires
an exact rather than an approximate understanding of the memory access
history.

Programmers may have a notion of the relative cost of different imple-
mentation variants. But having the exact memory access history in mind
is hard. We thus developed the analytical cache model haystack that
computes exact cache miss information to provide programmers the means
to estimate the cost of data movement.

The screenshot in Figure 1.2 shows the output of haystack for gener-
alized matrix multiplication. The tool analyzes the cache misses for every
memory access of the program and prints the percentage of compulsory
and capacity misses relative to the total number of memory accesses. This
fine-grained analysis allows programmers to estimate the memory access
cost of individual loop nests and statements. The tool also computes the
total number of compulsory and capacity misses. These absolute numbers
are helpful when comparing different implementation variants. For exam-
ple, we may determine if a tiling is effective by running the tool on a tiled
and an untiled implementation variant of the same program.

1.3 importance of the programming model 7

1.3 importance of the programming model

A high-performance computing programming model ideally abstracts low-
level implementation details of the target system to improve performance
portability. At the same time, the programming model should provide
the necessary control to attain optimal performance. These two targets
are conflicting and sometimes result in design choices that make specific
hardware features inaccessible.

Overlapping computation and inter-node communication [10, 39] is an
important data movement optimization in distributed memory computing.
We can manually implement it by splitting the compute domain of every
node into an inner and an outer domain. We may then overlap the inter-node
communication with the computation on the inner domain. The manual
application of this optimization is tedious, and its effectiveness depends on
the size of the two domains. The computation on the inner domain has to
take long enough to overlap the communication. At the same time, both the
inner and the outer domain have to be large enough to avoid performance
penalties due to the reduced parallelism.

In GPU computing, sufficient amounts of parallelism are a prerequisite to
attain optimal performance [40]. Splitting the compute domain to overlap
computation and inter-node communication may thus harm the overall
performance. Instead, it seems desirable to use the built-in hardware latency
hiding – over-subscription and hardware threading – to hide the inter-node
communication. But the existing GPU programming models do not provide
communication primitives that benefit from this hardware latency hiding.

We developed the dcuda programming model that implements device-
side communication primitives to take advantage of the hardware latency
hiding. If a thread waits for incoming data, the GPU immediately proceeds
with the execution of another thread that is ready for execution and thus
automatically hides the inter-node communication latency. The project
demonstrates the importance of an expressive programming model that
provides access to all relevant hardware features.

1.4 thesis contributions

This thesis makes the following main contributions:

• In Chapter 2, we present the stencil algebra modesto that defines the
space of possible data-locality transformations for stencil programs. A

8 introduction

stencil program executes a sequence of different stencils that depend
on each other.

• In Chapter 3, we introduce the stencil program optimizer absinthe

that learns a performance model to select good data-locality transfor-
mations. A single integer linear program optimizes loop fusion and
loop tiling in tandem.

• In Chapter 4, we discuss the analytical cache model haystack that
computes the cache misses for polyhedral programs. The model pro-
vides both programmers and compilers with exact cache miss infor-
mation to support the choice of suitable data-locality optimizations.

• In Chapter 5, we introduce the programming model dcuda that
enhances the CUDA programming model with device-side inter-
node communication. This extension enables the automatic overlap of
communication and computation.

We believe that optimizing the data movement of high-performance
computing codes requires better tools, compilers, and programming models.
This thesis contributes to all three domains and also motivates further
research. The ultimate goal is the development of code generators that learn
the performance of the target system and then lower domain-specific code
to optimized code that makes optimal use of the hardware. absinthe

demonstrates the feasibility of this vision for the stencil domain.

2
A S T E N C I L A L G E B R A

Stencil computations on regular domains are one of the most important
algorithmic motifs in embedded, high-performance, and scientific comput-
ing. Applications range from climate modeling [41], seismic imaging [42],
fluid dynamics, heat diffusion and electromagnetic simulations [43] through
image processing [12] to machine learning. Given their importance, numer-
ous optimization strategies [44–46] and domain-specific languages [11, 12,
22] exist. Yet, most of these schemes consider the optimization of a single
stencil in isolation. Many applications, however, require nested stencils [35]
that are applied in succession. The data dependencies of these nestings can
form complex directed acyclic stencil graphs where multiple stencils need to
be optimized in tandem to achieve highest performance.

Stencils programs perform element-wise computations on a fixed neigh-
borhood called the stencil. Such stencils often have low arithmetic intensity
because they have a fixed number of operations per loaded value. The
biggest challenge is to map stencil programs to modern architectures with a
growing gap between memory and compute bandwidth. Such architectures
require data-centric optimizations that arrange data accesses to efficiently
use the available memory bandwidth. Complex stencil graphs can be op-
timized using various techniques such as loop fusion, tiling, and various
communication strategies on subgraphs. We model all possible combina-
tions of optimizations for a particular stencil program (graph) using a stencil
algebra and apply mathematical optimization techniques to find the best
combination specific to an abstract hierarchical machine model.

Since typical stencil programs contain hundreds of stencils arranged in
paths with dozens of stages and several input arrays, manual tuning of
all options is infeasible. In fact, the number of stencil program variants
is usually exponential in the number of stencils. In addition, the optimal
stencil program variant is specific to each architecture. We show how to
fully automate the optimization and implement it in our open-source tool
modesto, a model driven stencil optimization framework. We demonstrate
the efficacy of our method using the real-world application COSMO [41],
a numerical weather prediction and regional climate model used by more
than 10 national weather services and many other institutions. The dynami-
cal core of COSMO, a central part of its implementation, applies more than

9

10 a stencil algebra

150 stencils, each operating on 13 arrays on average. This most performance-
critical code has been rewritten using the STELLA library and was carefully
tuned by experts for optimal performance. modesto-optimized stencil
graphs match or improve upon the expert-tuned code by a factor of 1.0-
1.8x. This demonstrates how our technique enables next generation stencil
libraries that completely abstract optimizations from the library interface.
Hence, we are able to improve usability as well as performance portabil-
ity compared to state-of-the-art stencil libraries such as STELLA [6] or
Halide [12]. In summary, we make the following contributions:

• We introduce a set of data-centric code transformations, an algebraic
formulation of the transformation space, and a compile-time perfor-
mance model that enables the automatic optimization of complex
stencil programs.

• We evaluate our approach by modeling the optimization of stencil
codes written using the STELLA library and successfully tune kernels
of a real-world application.

• We formulate the automatic tuning of stencil programs as a mathemat-
ical optimization problem and solve it using dynamic programming
techniques.

2.1 stencil algebra

Although the stencil motif appears in a wide range of codes from various
application domains, common patterns can be identified. Using them,
we introduce a stencil algebra that formalizes stencil computations and
facilitates their analysis and optimization.

2.1.1 Definition of a Stencil Program

The following core elements describe a stencil program:
A field F defines a dense, multi-dimensional and commonly hyperrectan-

gular set of data values, which can be read and modified.
A stencil S is a computation that derives a value located in an output

field from a set of input field values located within bounded distance
to the output value. It is described by the triple (ops, out, in). The first
element, ops, specifies the (possibly approximated) computational cost of
executing this stencil. The second element, out, is the output field of the

2.1 stencil algebra 11

stencil. The third element, in, is a set that defines the input elements of the
stencil. The elements of the input set are so-called “named vectors” that
are named according to the field the input is read from and the vector
itself describes the location of the input element as a relative offset to the
position of the element the stencil computes. The set of input elements in is
not allowed to contain elements of the output field. We define an example
stencil s that computes the value F0(i, j) from the inputs F1(i, j), F1(i, j + 1)
and F2(i, j) with 5 computational operations using the following notation:
s := (5, F0, {F1(0, 0), F1(0, 1), F2(0, 0)})

A stencil program P = T ∪O consists of a set of temporary stencils T
as well as a set of output stencils O, where the results computed by the
output stencils form the result of the stencil program, but the results of the
temporary stencils are not made available outside of the stencil program.
All stencils and fields have the same dimensionality.

The program definition just introduced is formulated minimalistic way
and with a strong focus on stencil graphs. As a consequence, it omits aspects
that in the context of this work are of limited importance, e.g., boundary
conditions, variable input field dimensionality, as well as complex dynamic
control flow. However, programs that use such concepts can, in many cases,
still be modeled. For example, stencils with varying input sets, due to the
use of special boundary conditions, can often be modeled with an over-
approximated input set and iterative stencil computations can be modeled
by (partially) unrolling the relevant time loop.

2.1.2 Example

We now present an example stencil program which is derived from a
horizontal diffusion kernel used by the COSMO atmospheric model [41].
We define the stencil program Phd in terms of the temporary stencils slap,
s f li, and s f l j necessary to evaluate the output stencil sout. A data dependency
either refers to an input field loaded by the stencil program, such as in or

12 a stencil algebra

a

d = c (a ᴜ b)

in

wgt

out

fli

flj

lap

b

c

d

Figure 2.1: Horizontal diffusion dependency graph annotated with stencil (c)
and stencil program (a, b, and d) access patterns

wgt, or to a temporary field computed by the corresponding temporary
stencil, such as f li, f l j, or lap:

slap := (5, lap, {in(−1, 0), in(1, 0), in(0,−1), in(0, 1), in(0, 0)})

sfli := (1, fli, {lap(1, 0), lap(0, 0)})

sflj := (1, flj, {lap(0, 1), lap(0, 0)})

sout := (5, out, {fli(−1, 0), fli(0, 0), flj(0,−1), flj(0, 0), wgt(0, 0)})

Phd := {slap, sfli, sflj} ∪ {sout}

Figure 2.1 illustrates the data flow of the stencil program using a directed
graph, whose black and white nodes represent input fields and stencils,
respectively. Arrows that do not point to a node and consequently exit the
stencil graph model the outputs of the stencil program. A directed edge
in the graph corresponds to a flow dependency between two nodes. We
annotate each incoming edge of a stencil with the access pattern necessary
for a single stencil evaluation. For instance, a single evaluation of the lap
stencil accesses the in field at the five offsets shown by c. In addition,
we annotate all outgoing edges of a stencil or an input field with the
accumulated access pattern necessary to evaluate the out stencil at a single
position. E.g., the lap stencil is evaluated at the positions defined by the
union of the sets a and b. We compute the accumulated in field access
pattern d as the Minkowski sum d = (a ∪ b)⊕ c, with a⊕ b = {a′ + b′ |
a′ ∈ a, b′ ∈ b}. Figure 2.2 shows a naive implementation of the horizontal
diffusion kernel, which executes each stencil using a separate loop nest.
While such an implementation may be straightforward to write, it is not
efficient in terms of data locality, memory usage, or parallelism.

2.1 stencil algebra 13

1 // allocate temporary storage

2 Field[double] lap(ibegin,iend), fli(ibegin,iend), flj(ibegin,iend);

3 // apply the lap stencil

4 for(int i=ibegin-1; i<iend+1; ++i)

5 for(int j=jbegin-1; j<jend+1; ++j)

6 lap(i,j) = -4.0 * in(i,j) +

7 in(i-1,j) + in(i+1,j) + in(i,j-1) + in(i,j+1);

8 // apply the fli stencil

9 for(int i=ibegin-1; i<iend; ++i)

10 for(int j=jbegin; j<jend; ++j)

11 fli(i,j) = lap(i+1,j) - lap(i,j);

12 // apply the flj stencil

13 for(int i=ibegin; i<iend; ++i)

14 for(int j=jbegin-1; j<jend; ++j)

15 flj(i,j) = lap(i,j+1) - lap(i,j);

16 // apply the out stencil

17 for(int i=ibegin; i<iend; ++i)

18 for(int j=jbegin; j<jend; ++j)

19 out(i,j) = wgt(i,j) *

20 (fli(i-1,j) - fli(i,j) + flj(i,j-1) - flj(i,j));

Figure 2.2: Naive implementation of the simplified horizontal diffusion example
used by the COSMO [41] atmospheric model

2.1.3 Data Locality Transformations

To improve the data locality of stencil programs, we discuss code transfor-
mations that combine loop tiling and loop fusion. While tiling sub-divides
the loop domain into typically hyperrectangular tiles of limited size, fusion
substitutes a sequence of loops by a single loop. Applied to stencil codes, we
divide the stencil evaluation domain into tiles and apply multiple stencils
tile-by-tile. Consequently, we can store temporary values in smaller buffers
that hold the working set of a single tile instead of the full evaluation
domain.

While tiling increases the data locality, it causes additional synchroniza-
tion efforts at the tile boundaries. As shown in Figure 2.1, a single stencil
evaluation depends on one or more input or temporary fields accessed in a
local neighborhood. When combining multiple stencils the neighborhoods
grow depending on the stencil access patterns and the longest path in the
dependency graph. We call all dependencies outside of the tile domain the
halo points of a tile. In addition, we suggest three halo strategies that trade
off parallelism against computation. Figure 2.3 shows the iteration space

14 a stencil algebra

hs

i-
d

im
e

n
s

io
n

hpofno tiling

Figure 2.3: Tile shapes (shaded) for different tilings applied to a subset of the
horizontal diffusion example projected to the i-dimension

of one dependency path in the horizontal diffusion example, once without
any tiling and then with different tiles as they result from the suggested
halo strategies. Shaded regions mark the points that belong to a specific
tile.

computation on-the-fly (of) satisfies all halo point dependencies
using redundant computation at the tile boundaries. Hence, we load input
fields and evaluate temporary stencils in an extended domain covering the
tile itself as well as its halo points. Using computation on-the-fly, we can
update different tiles independently postponing synchronization at the cost
of additional computation. As shown by Figure 2.3, computation on-the-fly
results in overlapping tiles and is therefore often referred to as overlapped
tiling [8, 9, 12].

halo exchange parallel (hp) satisfies all halo point dependencies
using communication with neighboring tiles. More precisely, we update
all tiles in parallel and perform at least one halo exchange communication
per edge in the longest dependency chain of the stencil dependency graph.
Hence, halo exchange parallel avoids redundant computation at the cost of
additional synchronizations.

halo exchange sequential (hs) modifies the tile shape such that all
unsatisfied halo point dependencies point in one direction. By iterating over
the tiles in reverse dependency direction, we can update all tiles sequentially
using a single sweep. While halo exchange sequential in general applies
to one-dimensional tilings only, we can complement it with other halo

2.1 stencil algebra 15

(256, 256) / of

(32, 32) / hp

(32, 32) / hp

lap fli

flj out

in in lap

lap

lap

fli

fli

fljwgt wgt

Figure 2.4: Stencil dependency graph of the horizontal diffusion example anno-
tated with two tiling hierarchy levels.

strategies to support higher dimensional tilings. In summary, halo exchange
sequential avoids redundant computation and synchronizations at the cost
of being sequential.

As the surface to volume ratio decreases with increasing tile size, we
preferably update small tiles using halo exchange communication and large
tiles using computation on-the-fly. Depending on the hardware architecture
high synchronization costs make computation on-the-fly attractive. Overall,
choosing the optimal data locality transformations is not straight forward
and motivates the use of a performance model.

2.1.4 Stencil Algebra Definition

Using the data locality transformations introduced in the previous section,
we are able to generate a large number of stencil program implementation
variants. In particular, we can repeatedly apply our tiling transformations
to obtain a hierarchical tiling that leverages multiple levels of the memory
hierarchy. By combining our data locality transformations, we are therefore
able to cover most of the established stencil implementation techniques.
Next, we formally define a stencil algebra whose elements express different
stencil program implementation variants and show how to enumerate them.
Figure 2.4 shows an implementation variant of the horizontal diffusion
example, introduced in Section 2.1.2, annotated with two tiling hierarchy
levels. Each white node corresponds to a stencil and each black node to a
storage region that buffers either an input or a temporary field. We extend

16 a stencil algebra

the dependency graph with boxes that represent the tiling hierarchy. More
precisely, the boxes form a tiling tree where each box corresponds to a tiling
that executes all contained boxes respectively stencils. Finally, we annotate
each box with the tile size and the halo strategy of the tiling. In Figure 2.4
we employ an on-the-fly tiling at the bottom of the tiling hierarchy with
two nested halo exchange parallel tilings.

In order to specify an element of our stencil algebra, we initially define a
tiling hierarchy. More precisely, we define a tile size tl ∈ Z

n for each level l
of the tiling hierarchy. In case of the horizontal diffusion example we define
two tiling hierarchy levels:

t1
hd = (256, 256) t2

hd = (32, 32)

Next, we specify a stencil program implementation variant as a bracket
expression. We put all stencils that correspond to a specific tiling hierarchy
level into brackets. A hierarchical tiling thus results in a nested bracket
expression with the outermost bracket term representing the bottom of
the tiling hierarchy. We can define the horizontal diffusion implementation
variant shown by Figure 2.4 using a twofold nested bracket expression.

[[slap, sfli], [sflj, sout]]

In the following, we call each bracket term representing a tiling hierarchy
a stencil group. A stencil group can be seen as a node of the tiling tree
containing nested stencils or stencil groups that as a whole define the stencil
program implementation variant.

Let g be a stencil group, then g.child is the set of all children of the
stencil group g, where a child is either a stencil or a nested stencil group.
In addition, g.sten is the set of all stencils in the subtree defined by the
stencil group g. Finally, g.in and g.out define the input and output sets
of a stencil group g, where an input and an output correspond to an
incoming respectively to an outgoing data dependency. As an example, we
provide the stencil properties of the horizontal diffusion example shown in
Figure 2.4.

g0 = [g1, g2] g1 = [slap, sfli] g2 = [sflj, sout]

First, we define the tree properties.

g0.child = {g1, g2} g0.sten = {slap, sfli, sflj, sout}

Next, we define the external data dependencies.

g0.in = {in, wgt} g0.out = {out}

2.1 stencil algebra 17

We enumerate all stencil program implementation variants using two
operations: 1) shuffle the stencils respecting their topological order and 2)
group stencils on different tiling hierarchy levels.

2.1.5 Performance Modeling

In order to understand the performance characteristic of a stencil program
implementation variant, we next introduce a performance model. Similar
to the Roofline model [47], we estimate the execution time based on the
peak compute and communication throughput of the target hardware. In
addition, we do not only distinguish between cached and global memory
accesses but model additional memory hierarchy levels.

To model our target hardware we use an abstract machine that is built
around a processing unit that performs computations on a limited set of
local registers. All data is by default stored in a global memory (e.g., DRAM)
with limited bandwidth to the processing unit. Data is transferred from
global memory to local registers before any computation is performed and
the results of a computation are transferred back to global memory before
becoming externally visible. Between global memory and local registers
there is a set of additional hierarchically organized memory levels, each
with limited size, but increasing bandwidth to the processing unit.

When mapping a parallel hardware architecture to our model, the band-
width of a given memory hierarchy level is the combined bandwidth of all
(possibly multiple) memories at this level. The size of a memory hierarchy
level is not the combined size, but the size of an individual memory at this
level. E.g., assuming there are multiple L1 caches, we consider the size of a
single L1 cache. Finally, assuming sufficient parallelism to simultaneously
use all processing resources, the compute throughput of our model is the
combined peak compute throughput of the hardware architecture.

We now consider again Figure 2.4, an illustration of a stencil program
implementation variant with two tiling hierarchy levels that was introduced
in the previous section. Each tiling hierarchy targets one specific level
of the memory hierarchy, such as the DDR memory or the L1 cache of
a CPU. We assume all input and temporary values of a stencil group
are stored in the associated memory hierarchy level. Whenever a stencil
program communicates data from one tiling hierarchy level to the next
higher one, we model the communication time using the bandwidth of the
associated memory hierarchy level. Therefore, we define a communication
bandwidth V l ∈ R as well as a memory capacity Ml ∈ Z for each level

18 a stencil algebra

tlap tfli

t[lap,fli]

t[[lap,fli],[flj,out]]

t[flj,out]

tflj tout

time

ti
li

n
g

 h
ie

ra
rc

h
y

Figure 2.5: The time estimation for the horizontal diffusion example

l of the tiling hierarchy. In addition to this vertical communication, a
stencil code might also perform lateral halo exchange communication
between neighboring tiles of the tiling hierarchy. Hence, we define a lateral
communication bandwidth Ll ∈ R for each level l of the tiling hierarchy.
Typical representatives of lateral communication links are interconnect
networks or the scratch pad memory of a GPU. Finally, we define the
compute throughput C ∈ Z of the target architecture. Thereby, we define
storage sizes in terms of floating point values instead of bytes. In case two
nested tiling hierarchy levels are associated to the same memory hierarchy
level, we set the vertical communication bandwidth to infinity. Just like
the Roofline model, we assume that we can overlap communication and
computation on all communication links respectively compute units of the
system.

When modeling the performance of a stencil program, we assume that
the arithmetic intensity remains constant during the execution of a single
stencil. On the other hand, the arithmetic intensities of different stencils
might vary. Figure 2.5 illustrates the time estimation for the horizontal
diffusion implementation variant shown by Figure 2.4. At the top of the
tiling hierarchy, black boxes denote the stencil execution times. Below, gray
boxes (with flashes) denote the communication times between parents and
children in the tiling hierarchy. Furthermore, white boxes denote the stencil
group execution times computed as the sum of the maximum between
stencil execution times and communication times.

In particular, we estimate the execution time ts of a stencil s that performs
cs floating point operations as the time needed to compute the stencil
without considering any communication cost.

ts = cs/C

2.1 stencil algebra 19

Using the child execution time tc of a child stencil or stencil group c that
causes vc vertical and l1

c , . . . , ll
c lateral data movements, we compute the

execution time tg of a stencil group g that corresponds to level l of the tiling
hierarchy as the sum of the maximum of the child execution times, the
vertical communication between the stencil group and its children, and the
lateral communication necessary to update the halo points of the tempo-
rary fields. We thereby optimistically assume the lateral communication
overlaps with the child execution, which assumes the later communication
is sufficiently balanced over the stencil group execution.

tg = ∑
c∈g.child

max(tc, vc/V l , l1
c /L1, . . . , ll

c/Ll)

We model the performance of an entire stencil program as the estimated
execution time of the stencil group at the bottom of the tiling hierarchy.
Furthermore, we complement the performance estimation with a feasibility
check that compares the storage requirements of the stencil program to the
available memory capacity on all tiling hierarchy levels.

2.1.6 Stencil Program Analysis

In order to evaluate our performance model, we analyze stencil programs
using the mathematical concept of affine sets and affine maps. In particu-
lar, we show how to count the number of floating point operations, data
movements, and storage locations required during the stencil program
execution. Using the performance model introduced in Section 2.1.5, our
analysis finally allows us to estimate the execution time and the feasibility
of a stencil program.

2.1.6.1 Affine Sets and Maps

An affine set S = {~i | ~i ∈ Z
n ∧ cons(~i)} is a set of n-dimensional integer

vectors, where the elements of the set are constrained by a Presburger
formula cons(~i). Presburger formulas consist of comparisons (<,≤,=, 6=,≥
,>) between expressions (quasi-)affine in vector dimensions and external
parameters that are combined by Boolean operations (∧,∨,¬). For affine
sets set operations such as union, intersection, subtraction, projection as
well as cardinality are defined.

An affine map M = {~i→~j |~i ∈ Z
n,~j ∈ Z

m ∧ cons(~i,~j)} is a relation, that
relates n-dimensional input (domain) vectors with m-dimensional output
(range) vectors. The elements are again constraint by a Presburger formula

20 a stencil algebra

cons(~i,~j). Besides the normal set operations, there exist map-specific opera-
tions such as the application of a map m on a set s (m(s)), the composition
of two maps (m0 ◦ m1), or the inverse of a map (m−1), which switches
input and output of a map. We define the following set of important map
operations in more detail.
The range product of two maps R1 and R2 is defined as:

R1 ×ran R2 = {~i→ (~j1,~j2) |~i→~j1 ∈ R1 ∧~i→~j2 ∈ R2}

The range intersection of a map R with a set S is:

R ∩ran S = {~i→~j |~i→~j ∈ R ∧~j ∈ S}

The range-projection of a map R projects the n output dimensions of a map
onto the first k + 1 output dimensions:

P ran
[0−k](R) = {~i→ (j0, . . . , jk) | ∃xk+1, . . . , xn−1 ∈ Z :

~i→ (j0, . . . , jk, xk+1, . . . , xn−1) ∈ R}

R+ is the transitive closure of R:

R+ = {~i→~j | ∃m ≥ 0 :~j = (R ◦ · · · ◦ R
︸ ︷︷ ︸

m times

)(~i)}

We use |S| to specify the cardinality of a set and |R| to specify the cardinality
of a map, where the cardinality of a map is defined as the number of related
domain and range pairs.

We also define named sets and named maps as affine sets and maps that
contain so-called “named vectors”. The elements of these sets can either be
written as tuples of a string and a vector, for example {(“A”,~i), (“B”,~j) |
~i ∈ Z

n,~j ∈ Z
m}, or as named vectors {A(~i), B(~j) |~i ∈ Z

n,~j ∈ Z
m}. Named

sets (maps) allow differently named elements to have vectors of different
dimensionality. On named sets and maps the operations introduced above
are applied individually to subsets or submaps that share the same name
and dimensionality. To extract a set from a named set S, we define a
bracket operator S[“x”] = {(“x”,~i) | (“x”,~i) ∈ S}. The bracket operator
applied on a map, filters the maps according to the name of their domains
R[“x”] = {(“x”,~i)→ (name,~j) | (“x”,~i)→ (name,~j) ∈ R}.

Computations on integer sets can be performed with isl [48] and counting
of integer sets is possible using the Barvinok algorithm [49].

2.1 stencil algebra 21

2.1.6.2 Data Dependencies

Given a stencil program P the set of flow dependencies in P can be de-
rived from the stencil data dependencies. To obtain them, we define for
each stencil s ∈ P a map Ds that associates the stencil evaluations to the
corresponding input data dependencies.

Ds = {s.out(~u)→ d(~u +~v) | d(~v) ∈ s.in}

Next, we define the union of all stencil data dependencies.

D =
⋃

s∈P

Ds

2.1.6.3 Stencil Tiling Maps

We model the tiling transformations discussed in Section 2.1.3 using affine
maps that relate the stencil evaluation domain to the tile domain. More
precisely, we define for each stencil a tiling map that maps each point
in the n-dimensional stencil evaluation domain to an n-dimensional tile
identifier, such that all points that belong to the same tile are associated
with a common tile identifier. We initially consider only a single tiling level
and later generalize the concept to nested tilings.

Given a multi-dimensional tile size vector ~t = (t0, . . . , tn−1) ∈ Z
n, we

define a hyperrectangular tiling of a single stencil s as a named map T�
s

that associates each point~i = (i0, . . . , in−1) ∈ Z
n of the stencil evaluation

domain with exactly one tile identifier.

T�
s = {(s,~i)→ (⌊i0/t0⌋, . . . , ⌊in−1/tn−1⌋)}

Depending on size and alignment of tiles and stencil evaluation domains,
such a tiling may yield truncated tiles at the stencil evaluation domain
boundaries. In case a given dimension of the stencil evaluation domain
should not be tiled (indicated by tile size ∞), the corresponding dimension
of the tile identifiers is set to zero.

We represent the tiling of a stencil group g by computing a named map
that contains a tiling map for each stencil of the stencil group. We distin-
guish here between the three halo strategies introduced in Section 2.1.3.

Computation on-the-fly satisfies halo point dependencies using redun-
dant computation. The corresponding tiling map is therefore a relation
which maps the halo point stencil evaluations at the tile boundaries to mul-
tiple overlapping tiles. Given a stencil group g, we construct a tile map Tg

22 a stencil algebra

in two steps. First, all output stencils of g are tiled with a rectangular tiling
map. This does not yet introduce any redundant computation. Next, we
compute for each tile all stencil evaluations that are required to compute the
output points already assign to this tile. We do this by first defining the set
of data dependencies Dg that are local to g and then composing the inverse
transitive hull of Dg with the tiling map already defined for the output
stencils. The resulting map connects the temporary stencil evaluations via
the dependent output stencil evaluation to the corresponding tile identifier.
This map may now possibly relate one temporary stencil evaluation to
multiple tiles and can consequently introduce redundant computation.

Tg =
⋃

s∈g.out

T�
s ◦ (D+

g)
−1

Halo exchange parallel satisfies halo point dependencies using communi-
cation. We therefore assign each point in the stencil evaluation domain to
exactly one tile and use tiles of identical size, shape and alignment for all
stencils in our stencil group. The tiling map Tg describes such a tiling for a
stencil group g.

Tg =
⋃

s∈g.sten

T�
s

Halo exchange sequential is a variant of halo exchange parallel, whose
tiling map is constructed accordingly. In contrast to halo exchange parallel,
we shift the stencil tiling maps such that all unsatisfied halo point depen-
dencies between tiles point in one direction. Figure 2.3 illustrates the tile
shape of shifted stencil tiling maps and their halo point dependencies. We
define a shifted tiling map by subtracting the shift offset form the stencil
evaluation domain before computing the associated tile identifiers.

nested tilings We now describe the construction of nested tilings,
tilings that result from recursively applying the previously introduced tiling
transformations. To give a first intuition of such tilings, Figure 2.6 shows the
different nested tilings that can be constructed from combining on-the-fly
and halo exchange parallel tiling on two tiling levels. It shows for each
combination one full outer tile, one full inner tile, and, using dashed lines,
the remaining inner tiles placed inside the outer tile. Most combinations are
rather straightforward, but it is interesting to note, that in case of on-the-
fly tiling being nested inside halo exchange parallel tiling, the redundant
computation of the on-the-fly tiles may require the computation of points
located outside of the surrounding tile.

2.1 stencil algebra 23

of - of hp - of of - hp

i-
d

im
e

n
s

io
n

hp - hp

(0,1)

(0,0)

(0,-1)

(0,2)

(0,0)

(0,1)(0,1)

(0,0)(0,0)

(0,1)

Figure 2.6: Tile shapes (shaded) for a nested tiling applied to a subset of the
horizontal diffusion example projected to the i-dimension

As visible in the illustration just discussed, we identify each nested
tile with a tile vector whose first and second entry correspond to the tile
identifiers of the first and second tiling level, respectively. Hence, we can
model a nested tiling with l tiling hierarchy levels with a tiling map that
relates each point in the n-dimensional stencil evaluation domain to a tile
identifier with n · l dimensions. To construct such a map for a given stencil
group g nested in another stencil group p we first define tiling maps for
the output stencils of g. These tiling maps are formed by combining for
each stencil the tiling map Tp[s] that we derive for this stencil from p (not
considering any nested groups) with an additional hyperrectangular tiling
that uses the tile sizes specified for g. We define the tiling map Tg,s of such
a stencil s as the range product of the tiling map T�

s with the recursively
computed parent tiling map Tp[s].

Tg,s = Tp[s]×ran T�
s

When computing the tiling map of a nested stencil group Tg, we adapt the
previously introduced on-the-fly and halo exchange tiling maps to use Tg,s

instead of T�
s . The resulting tiling maps for halo exchange parallel and

on-the-fly tiling are

Tg =
⋃

s∈g.sten

Tg,s and Tg =
⋃

s∈g.out

Tg,s ◦ (D+
g)
−1.

We can now define for each stencil a tiling map Ts that maps each evaluation
of this stencil to a tile identifier with l · n dimensions, that identifies for all
levels of the tiling hierarchy the tiles the stencil evaluation is assigned to.

24 a stencil algebra

We obtain Ts by extracting the tile map that corresponds to s from the tile
map of the stencil group g at the top of the tiling hierarchy that contains s.

Ts = Tg[s]

When constructing hierarchical tilings that involve halo exchange sequen-
tial, we inherit the shift offsets introduced by the sequential execution to
all nested tiling hierarchy levels. Thereby, we align the nested tiles to the
parent tile boundaries.

2.1.6.4 I/O Maps

While the tiling maps alone allow the analysis of computational aspects, we
introduce auxiliary maps that support the analysis of data movements and
storage usage.

First, we define for each stencil s an input map Is that relates a set of
inputs (stencil evaluations or input fields) used by a certain evaluation of s
to the tile(s) this evaluation is assigned to. The construction of Is is similar
to the construction of the on-the-fly tiling. We compose the stencil tiling
map Ts with the reversed stencil data dependencies D−1

s . Furthermore, we
define the input map of an entire stencil group g as the union of all nested
stencil input maps.

Is = Ts ◦ D−1
s Ig =

⋃

s∈g.sten

Is

Second, we define for each child stencil or stencil group c an output
map Oc that relates the set of outputs written by the child to the tiles they
are assigned to. In case the parent stencil group applies halo exchange
communication, we define the output map Oc as the union of the child
output stencil tiling maps.

Oc =
⋃

s∈c.out

Ts

In case the parent stencil group applies computation on-the-fly, we compute
the output map by following the data dependencies starting from the
parent stencil group output stencils. While this construction is similar to
the computation of the on-the-fly stencil evaluation tiling map, it differs
by the fact that we only consider the data dependencies of the stencils
executed after the child stencil or stencil group. Thereby, we make sure we
do not consider internal dependencies between the output stencils of the

2.1 stencil algebra 25

child stencil group. Initially, we define the partial input map Ip,c of a parent
stencil group p and a child stencil or stencil group c considering all input
dependencies of children executed after the child c.

Ip,c =
⋃

ci∈p.child
c<ci

Ici

Then the output map Oc of a child stencil or stencil group is the union of
all partial input and parent output dependencies.

Oc =
⋃

s∈c.out

(
Ip,c[s] ∪

⋃

o∈p.out

Tp,o

 [s]
)

2.1.6.5 Tile Selection

We analyze the characteristics of a stencil program by counting stencil
evaluations, data movements, or storage requirements on a limited domain.
As we are interested in the relative rather than the absolute performance
and as our performance model does not consider low hardware utilization
due to strong scaling, we can choose an arbitrary but limited domain size.
We therefore perform our analysis on the origin tile of the lowest tiling
hierarchy level. Assuming m tiling hierarchy levels, we select the origin tile
of the lowest tiling hierarchy level using the tile selection set S that contains
all tile identifiers with the first n-dimensions fixed to zero.

S = {(x0, . . . , xn−1, yn, . . . , ynm) | xi = 0∧ yj ∈ Z}

When analyzing the storage requirements, we want to make sure a single
tile fits the memory capacity of the corresponding memory hierarchy level.
We thus define an additional tile selection set S∗ that selects the origin tile
on all levels of the tiling hierarchy.

S∗ = {(x0, . . . , xnm) | xi = 0}

In order to limit the domain of a tiling map, we finally intersect the range
of the tiling map with a selection set.

2.1.6.6 Analysis

Relying on the previously introduced stencil program formulation, we now
discuss the analyses we use to obtain the program properties needed for

26 a stencil algebra

evaluating the performance model introduced in Section 2.1.5. Using the
previously introduced maps, we count the points that correspond to the
number of stencils evaluations, the amount of data moved, and the amount
of storage used when evaluating a given stencil program on a limited
domain.

computation In order to analyze the amount of computation per-
formed by a stencil program, we count the stencil evaluations associated to
the origin tile of the lowest tiling hierarchy level. We obtain these evalua-
tions by intersecting the range of the stencil evaluation tiling map with the
origin tile selection set S. We then count all stencil evaluations associated to
the remaining tile identifiers. Hence, we define the amount of computation
cs performed by a stencil s as the cardinality of the constraint tiling map
times the number of floating point operations performed by a single stencil
evaluation.

cs = |Ts ∩ran S| · s.ops

vertical communication As discussed in Section 2.1.5, vertical
communication refers to the data movements between a parent stencil group
and its child stencils or stencil groups. We therefore analyze the number
of loads and stores performed by a child stencil or stencil group when
executed by a parent stencil group. We analyze the vertical communication
on a restricted domain that corresponds to the origin tile of the lowest tiling
hierarchy level.

In order to compute the number of loads performed by a stencil or stencil
group c, we count the elements in the constraint input map of c. More
precisely, we intersect the range with the origin tile selection set and project
out any dimension above the parent stencil group tiling hierarchy level l.
Due to the projection, the points in the resulting map describe all elements
loaded by the child stencil or stencil group not considering redundant
stencil evaluations on nested tiling hierarchy levels. Hence, we define the
number of loads rc performed by a child stencil or stencil group c as the
cardinality of the constraint and projected child input map.

rc = ∑
s∈c.in

|P ran
[0−nl](Ic[s] ∩ran S)|

Accordingly, we define the number of stores wc performed by a child stencil
or stencil group c as the cardinality of the constraint and projected child
output map.

wc = ∑
s∈c.out

|P ran
[0−nl](Oc[s] ∩ran S)|

2.1 stencil algebra 27

Finally, we define the total amount of vertical communication of a child
stencil or stencil group c as the sum of its loads and stores.

vc = rc + wc

lateral communication Lateral communication refers to the halo
exchange communication between neighboring tiles of the same tiling
hierarchy level. We therefore compute the lateral communication performed
by a stencil group as the difference between the amount of computed and
the amount of consumed temporary values, which corresponds to the
unsatisfied halo point dependencies between the children of the stencil
group. We analyze the lateral communication on a restricted domain that
corresponds to the origin tile of the lowest tiling hierarchy level.

We compute the amount of lateral communication necessary to update
the outputs of a child stencil or stencil group, as the difference of the
elements used by subsequent children and the elements written by the
child itself. We thus intersect the range of this difference with the origin
tile selection set and project out any dimensions above the parent stencil
group tiling hierarchy level l. Hence, we define the amount of halo points lc
communicated by a child stencil or stencil group c as the cardinality of the
difference between the projected and constraint partial input and output
maps.

lc = ∑
s∈c.out

|P ran
[0−nl]((Ip,c[s] \Oc[s]) ∩ran S)|

In case multiple nested tiling hierarchy levels employ halo exchange com-
munication, we possibly run lateral communication on all these levels. By
projecting out one level after the other, we assign the lateral communication
to the different levels of the tiling hierarchy. Thereby, we get the sum of
the lateral communication on the remaining tiling hierarchy levels not yet
projected out. By computing the difference of adjacent levels, we finally get
the lateral communication assigned to exactly one level.

storage requirements We analyze the feasibility of a stencil program
by computing an upper bound for the storage necessary in order to execute
a single tile on each level of the tiling hierarchy. We therefore analyze the
storage requirements on a restricted domain that corresponds to the origin
tile on all levels of the tiling hierarchy. In case the upper bound exceeds
the capacity of one memory hierarchy level, we say a stencil program is
infeasible.

28 a stencil algebra

We compute the storage requirement of a stencil group as the amount of
storage necessary to evaluate the stencil group on a single tile. As shown
by Figure 2.4, we reserve storage for each input and temporary field used
during the evaluation of the stencil group. In contrast, output fields are
immediately written to storage managed outside of the stencil group. We
overestimate the storage requirement, for example, since the lifetime of
some fields might allow sharing a common buffer. We evaluate the storage
requirements using the input map intersected with the tile selection set S∗.
Furthermore, we project out any dimension above the parent stencil group
tiling hierarchy level l. Hence, we define the amount of storage mp required
by a parent stencil group p as the cardinality of the constraint and projected
input maps.

mp = ∑
c∈p.child

∑
s∈c.in

|P ran
[0−nl](Ip[s] ∩ran S∗)|

In order to determine the feasibility of a stencil program, we compare
the memory requirements of each stencil group to the available memory
capacity.

2.2 case study

We evaluate our approach using the real-world application COSMO. Its
dynamical core was recently rewritten using the STELLA [6] stencil library,
which exposes the possibility to manually fuse or split stencils on multiple
tiling hierarchy levels. In this case study we show how to automatically
tune STELLA programs.

2.2.1 STELLA

STELLA is a domain-specific embedded language for finite difference
methods that is designed to separate the stencil specification from the
hardware architecture specific implementation strategy. When executing a
stencil program STELLA uses two levels of parallelism: 1) coarse-grained
parallelization that decomposes the stencil evaluation domain into blocks
executed on different processing units and 2) fine-grained parallelization
that executes the individual blocks on a single processing unit possibly
using vectorization and hardware threads. STELLA supports stencil fusion
on three different tiling hierarchy levels. We can apply consecutive stencils
using a single loop over a block, using multiple separate loops over a block,
or using multiple separate loops over the full domain.

2.2 case study 29

Hierarchy Vertical Tile Size Strategy

1 DDR (256, 256, 64) of

2 L2 (8, 8, 64) of

Table 2.1: CPU tiling hierarchy

Hierarchy Vertical/Lateral Tile Size Strategy

1 GDDR/- (256, 256, 64) of

2 GDDR/- (64, 4, 64) of

3 Register/Register (∞, ∞, 1) hs

4 Register/Shared (1, 1, 1) hp

Table 2.2: GPU tiling hierarchy

At compile-time, STELLA generates target architecture specific loop
code using C++ template meta-programming. With two available backends,
STELLA can currently target CPU and GPU architectures using the OpenMP
and CUDA programming models, respectively. Thereby, STELLA employs
a fixed but platform specific tiling hierarchy, which we will model using
our stencil algebra.

We model the CPU backend of STELLA using the two tiling hierarchy
levels shown by Table 2.1. As discussed in Section 2.1.6, we compute all
stencil program performance characteristics for the origin tile of the base
tiling hierarchy level. Therefore, we introduce a first tiling hierarchy level
that represents the stencil program evaluation domain. A second tiling
hierarchy level models the coarse-grained parallelism of STELLA. Currently,
the CPU backend does not implement fine-grained parallelism. Hence, there
is no need to model the third tiling hierarchy level of STELLA.

We model the GPU backend of STELLA using the four tiling hierarchy
levels shown by Table 2.2. Just as in the case of the CPU backend, we
introduce two tiling hierarchy levels to model the stencil program evaluation
domain and the coarse-grained parallelism. We also add two additional
tiling hierarchy levels to represent the fine-grained parallelism. The GPU
backend allocates one thread per ij-position (tiling hierarchy level 4) that
iterates over all points in the k-dimension (tiling hierarchy level 3). The
different threads communicate via shared memory, while consecutive loop

30 a stencil algebra

iterations executed by the same thread communicate via registers. Tile size
infinity indicates that there is no tiling in the corresponding dimension.

2.2.2 Stencil Program Optimization

When implementing a stencil program using STELLA, we have multiple
degrees of freedom. As discussed in Section 2.1.4, we can change the stencil
evaluation order and fuse or split the execution of successive stencils on
multiple levels of the tiling hierarchy. We therefore split the optimization
in two steps and apply different optimization methods: 1) we optimize the
stencil evaluation order using brute force search 2) we optimize the tiling
for a given stencil evaluation order using dynamic programming. During
our optimization we do not consider tile size choices, but rely on the tile
sizes that are used by COSMO and have proven robust for a wide range of
stencil programs and their implementation variants.

In order to optimize the stencil evaluation order, we enumerate all topo-
logical sorts of the stencil dependency graph using brute force search. In
general, a graph may have up to O(n!) valid topological orders. However,
due to its data dependency chains a typical stencil dependency graph has
less topological orders resulting in a much smaller search space.

In a second step, we search the optimal tiling given a stencil evaluation
order. Using a tiling hierarchy and an abstract machine model, we search for
a tiling with minimal estimated execution time and a storage requirement
that fits all levels of the memory hierarchy. We estimate execution time
and storage requirements using the analysis introduced in Section 2.1.6. In
order to enumerate the search space, we fuse all pairs of subsequent stencils
on all levels of the tiling hierarchy. Thereby, we assume the subsequent
stencils are executed by nested stencil groups that represent the full tiling
hierarchy. Given m tiling hierarchy levels and n stencils, up to m tiling
hierarchies can be split between each pair of neighboring stencils. Overall,
this means there are O(mn) ways to split the stencil program. Given the set
of stencil program implementation variants I and the functions t(x) and
ml(x) that estimate the execution time and the maximal storage requirement
at the level l of the tiling hierarchy, respectively, we define the following
optimization problem:

minimize
x∈I

t(x)

subject to ml(x) ≤ Ml l = 1, . . . , m

2.3 evaluation 31

uv divhd uv&div

2inputs
1output
4stencils

8inputs
2outputs
8stencils 10inputs

3outputs
11stencils

5inputs
1output
3stencils

Figure 2.7: Example kernel stencil dependency graphs

We can either solve the optimization problem using brute force search or
employ our dynamic programming approach reducing the search space
from O(mn) to O(mn4) elements. We can apply dynamic programming as
the problem has optimal substructure. In particular, we compute for each
tiling hierarchy level an n2 matrix that contains the optimal stencil group
executing a continuous subset of the stencil program. Thereby, one matrix
dimension corresponds to the start index and the other matrix dimension
to the stop index of the subset. We compute a matrix entry using a second
dynamic programming algorithm1 that constructs the optimal stencil group
using a combination of the previously computed optimal child stencil
groups. More precisely, we compute the optimum for a given start and stop
index either using the optimal child stencil group containing all stencils
or using a child stencil group containing all stencils from an intermediate
index to the stop index plus the recursively computed optimum from the
start index to the intermediate index. By increasing the intermediate index
step-by-step and storing partial solutions, we compute a single entry of our
n2 matrix using O(n2) steps.

2.3 evaluation

We evaluated our framework using three example kernels from the COSMO
atmospheric model. In addition to the horizontal diffusion kernel “hd”
introduced in Section 2.1.2, we use two kernels that are part of the most

1 Our nested dynamic programming step is not guaranteed to find the optimal solution. For all four example kernels discussed in Section 2.3,
exhaustive search based tests confirmed the optimality of the dynamic programming results for several stencil evaluation orders.

32 a stencil algebra

Hierarchy Vertical (V) Memory (M)

1 26 GB/s ∞

2 768 GB/s 512 KB

Table 2.3: Intel Core i5-3330

Hierarchy Vertical (V) Lateral (L) Memory (M)

1 208 GB/s - ∞

2 208 GB/s - ∞

3 ∞ 1174 GB/s 4096 Registers

4 ∞ ∞ 32 Registers

Table 2.4: Nvidia Tesla K20c

time-consuming component in COSMO, the sound wave forward integra-
tion. More precisely, the “uv” kernel updates the horizontal wind velocity
components by computing the horizontal pressure gradient, whereas the
“div” kernel computes the divergence of the three-dimensional wind field.
Figure 2.7 illustrates all kernels used during the evaluation including a
combination of the “uv” and “div” kernels.

We perform our experiments using adapted standalone kernels: 1) we
replace divisions by multiplications to increase the numerical stability on
random input data and 2) we replace one-dimensional constant fields by
scalar constants as our framework does only support n-dimensional fields.
We implement for each kernel three different variants: 1) “no fusion” refers
to a naive implementation without loop fusion, 2) “hand-tuned” refers to
a manually tuned implementation as used in production by COSMO, and
3) “optimized” refers to an automatically tuned version using modesto.
All kernel variants are written using STELLA and therefore are parallel
and employ tiling. Similar to the production configuration, we run our
experiments using a (256, 256, 64) point domain that provides sufficient
parallelism to fully utilize the hardware.

We measure the performance of our example kernels using two target
architectures: 1) an Intel Core i5-3330 CPU with a dual channel DDR3-1600

memory interface and 2) a Nvidia Tesla K20c GPU. Table 2.3 and Table 2.4
define the machine model of the target architectures for the STELLA tiling

2.3 evaluation 33

m ~ 1.6e

0

40

80

120

0 20 40 60 80m
 =

 m
e

a
su

re
d

 t
im

e
 [

m
s]

e = estimated time [ms]

(a) CPU

m ~ 1.5e

0

4

8

12

0 2 4 6 8m
 =

 m
e

a
su

re
d

 t
im

e
 [

m
s]

e = estimated time [ms]

(b) GPU

Figure 2.8: Comparison of measured and estimated execution time

hierarchy discussed in Section 2.2.1. We thereby use the peak bandwidth
of the individual memory hierarchy levels except for the register file and
the shared memory used to buffer lateral communication. Since every
lateral communication triggers a write and a read operation, we divide
the peak bandwidth of these memories by two. We also underestimate the
capacity of the GPU register file since it is not uniquely used to buffer
lateral communication. We finally set the peak performance C of the target
architectures to 48 Gflops and 585 Gflops, respectively (without fused
multiply-add).

To evaluate the accuracy of our performance model, we compare the
measured execution time of our example kernels to the modeled execu-
tion time. Figure 2.8 shows the accuracy of the model for both target
architectures. Using linear regression, we fit trend lines that show a close
correlation of modeled and measured performance. Hence, the relative per-
formance of modeled and measured execution times for different kernels
are in accordance, which is of key importance for our approach. However,
we consistently overestimate the absolute performance as the kernels can
not leverage the peak performance of both target architectures. Our per-
formance model shows that our kernels are heavily memory bandwidth
limited. Consequently, the correlation factors of 1.5x respectively 1.6x can
be attributed to the fact that the kernels attain only a fraction of the peak
main memory bandwidth.

Figure 2.9 shows the speedup of hand-tuned and automatically tuned
implementation variants for both target architectures. As discussed in
Section 2.2.2, modesto optimizes topological order and stencil fusion.
Overall, modesto achieves the same or better performance compared to

34 a stencil algebra

1
.0

1
.0

1
.0

1
.0

3
.1

2
.7

2
.1 2

.4

3
.1

2
.7

2
.1 2

.4

hd uv div uv&div

no fusion hand-tuned optimized

(a) CPU

1
.0

1
.0

1
.0

1
.0

2
.3

2
.1

1
.1 1

.5

2
.3 2
.4

2
.0 2
.1

hd uv div uv&div

no fusion hand-tuned optimized

(b) GPU

Figure 2.9: Speedup of hand-tuned and optimized kernels

the hand-tuned kernels used by COSMO. Starting from a naive STELLA
implementation, we are able to improve the performance by a factor 2.0x–
3.1x. The first three experiments achieve optimal performance by fusing
all stencils on the highest level of the tiling hierarchy. In contrast, for the
last experiment fusing all stencils exceeds the memory capacity. Hence,
the optimization splits the stencils in two separate groups. To verify this
decision, we implemented an additional variant of the last experiment that
fuses all stencils. On CPU and GPU fusing all stencils results in a 10% and
8% performance reduction, respectively.

2.4 related work

Optimal and close-to-optimal stencil arrangements have been investigated
for several decades. Many approaches rely on empirical methods to derive
efficient implementations. Datta et al. [50] optimize an example stencil for
a wide range of hardware architectures using autotuning. Patus [22] is a
DSL autotuning framework for single stencil computations on multi-core
CPUs and single GPUs. Zhang et al. [51] present an iterative compilation
approach for single stencil computations on single and multi GPU systems
which focuses on deriving optimal block sizes.

Overtile [9] is a DSL code generator for iterative stencils that uses overlap
tiling to generate efficient GPU code also relying on iterative compilation.
There is also a cache-oblivious tiling strategy for iterative stencil com-
putations [45] for which the number of expected cache misses has been
analytically computed and empirically evaluated for single CPU systems
and one caching level.

2.5 summary of the approach 35

For stencil graphs, there is Halide [12], a DSL based approach focused
on image processing. Halide uses again compilation based autotuning to
choose stencil program implementation variants considering a set of tiling
strategies and further optimizations. PolyMage [13] is an image processing
DSL that guides the optimization using a model-driven heuristic. Basu et
al. [44] perform loop fusion, overlapped tiling and wave front execution
for optimizing a geometric multigrid stencil graph. They do not consider
hierarchical tiling and do not use any analytical model. Olschanowsky et
al. [46] optimize an iterative, but multi-kernel stencil computation resulting
from solving partial differential equations and study different inter-loop
optimizations using empirically evaluation on multi-core CPUs.

There has also been work that discusses analytical performance models.
There is work not limited to stencil computations that provides lower
bounds for tile sizes selection [52]. Renganarayana et al. [53] use geometric
optimization to model tiling and related problems on one and multiple
levels and to derive optimal tile sizes. Zhou et al. [8] present work on
hierarchical overlapped tiling and optimize OpenCL programs for multi-
core CPUs. They provide basic performance models for the number of
stencils to fuse into one tile focusing on (possibly unrolled) kernels that
process only one stencil repeatedly and do not consider varying tiling and
fusion strategies. Finally, Wahib et al. [35] take arbitrary stencil graphs from
larger scientific applications and present an analytical performance model
for choosing an optimal execution strategy. Even though closely related,
they limit themselves to kernel fusion using computation on-the-fly only
considering shared memory and apply their work on NVIDIA GPUs only.

2.5 summary of the approach

With modesto we have presented an approach for modeling and auto-
matically selecting efficient implementation strategies for stencil programs.
Focusing not only on single, possibly iterative applications of stencils, but
on directed acyclic graphs of stencils we consider the effects of three dif-
ferent tiling strategies in combination with different fusion choices, all
applied on possibly multiple hierarchy levels. We model the effects of these
implementation strategies on the use of both lateral and vertical memory
bandwidth, and estimate the cost of possibly redundant computation by
using a analytical model that allows to predict the amount of data transfer
and computation for a given stencil program implementation variant. In
combination with a given CPU or GPU model we estimate the relative

36 a stencil algebra

performance of the different implementation variants and show using a
combination of exhaustive search and dynamic programming how to choose
the best implementation variant.

We evaluated modesto by means of the STELLA stencil library that
implements different stencil program transformations for CPU and GPU
architectures. In particular, we successfully model the tiling hierarchy of
STELLA and automatically tune kernels of the COSMO atmospheric model.
We thereby achieve speedups of 2.0–3.1x against naive and speedups of
1.0–1.8x against expert-tuned implementation variants.

3
A L E A R N E D P E R F O R M A N C E M O D E L

The cost of data movement in terms of energy and time has long exceeded
the cost of computation. Thus, data locality recently became the most im-
portant optimization target for performance engineers [7]. Today, most
programmers either rely on the compilation toolchain or manually optimize
data locality by tiling and fusing loops. Manual loop optimizations are
tedious and require a high porting effort to exploit different architectures
efficiently because tiling and fusion parameters need to be adjusted for each
target system. Various frameworks such as Halide [12] and Polymage [13] fo-
cus their tuning on this parameter selection, but they either apply heuristics
or optimize tiling and fusion separately to control the exponential search
space. However, fusion and tiling are inherently linked—for optimizing one,
one needs to assume a specific configuration for the other. For example,
the optimal tile size depends on the memory footprint of the loop, which
changes with fusion. This missing modularity of the problem requires us to
consider tiling and fusion in tandem.

Stencil computations on regular grids are ubiquitous in scientific com-
puting applications such as climate modeling [16], seismic imaging [42],
and electromagnetic simulations [43]. In this work, we use the COSMO
atmospheric model [16], which is used in operational weather forecasting
in most of Europe [17] as well as in large-scale climate modeling [18], as a
motivating example. The 300, 000 lines of code contain more than 16, 000
loops, most of which implement single stencils. These stencils logically
form complex producer-consumer relationships, called stencil programs [1].
We select three representative COSMO stencil programs to evaluate the
effectiveness of our approach. Due to the very low arithmetic intensity
of every single stencil, tiling and fusion are crucial for achieving good
performance for stencil programs.

We show an example in Figure 3.1—COSMO’s fastwaves stencil program
which implements parts of the sound wave forward integration. The di-
rected graphs show the data-flow (edges) between the stencils (nodes) of
the fastwaves program. Our optimization framework, absinthe, uses an
automatically learned performance model to guide the program optimiza-
tion. The figure plots the model prediction versus the measured execution

37

38 a learned performance model

absinthe

64x4x3

64x4x5

20 1
3 4

6

5

7 8

unfused
tiled

64x64x1
20 1

3 4

6

5

7 8

auto-tuning

64x4x1

64x4x4

model prediction [ms]

m
ea

su
re

d
ex

ec
ut

ion
 tim

e [
m

s]

1.080.730.67

0.94

0.62
0.58 -6.5%

20 1
3 4

6

5

7 8

Figure 3.1: absinthe optimization example

time for the tile size (annotated) and fusion (shaded shapes) choices of
absinthe compared to auto-tuning and an unfused tiled implementation.

absinthe consists of three main pieces: (1) a model learner, (2) an opti-
mizer, and (3) a code generator. The model learner generates a performance
model specific to each target architecture. The optimizer derives an integer
linear program encoding the structure of the stencil program and the per-
formance model to tune tiling and fusion together. The code generator then
emits an implementation with the optimal tiling and fusion parameters
returned by the integer linear programming solver. In this way, absinthe

combines automated model learning with integer linear programming to
control the exponential search space and to automatically find the best
configuration for each target architecture.

In summary, we make the following key contributions:

• A linear formulation of parametric tiling for bound tile sizes (assumed
to be non-linear in general).

• A linear performance model that learns the target system characteris-
tics and enables the use of integer linear programming to explore the
search space.

3.1 background 39

target
system

model learner

benchmarkparameters

optimizer

code generator

C++
transfor-
 mations

P, B
1

2

3

ILP solver

stencil DSL

Figure 3.2: absinthe architecture overview

• A single holistic optimization problem which applies the linear perfor-
mance model to derive optimal fusion and tile size selection choices
for stencil codes.

3.1 background

The execution of stencils in succession provides plenty of opportunities for
data locality improvements.

3.1.1 Architecture Overview

absinthe lowers stencil programs written in a high-level domain-specific
language (DSL) to efficient C++ code. An automatically learned perfor-
mance model drives the selection of target system-specific code transforma-
tions. Figure 3.2 shows the interplay of the absinthe components.

The model learner (1) runs once for every target system to learn the model
parameters. The optimizer (2) combines the model parameters with the
memory access patterns of the stencil program to instantiate a target-specific
performance model. An integer linear programming (ILP) solver searches
the optimal data-locality transformations with respect to the performance
model. The code generator (2) applies the optimal data-locality transforma-
tions to the high-level stencil program representation and generates tuned
C++ code.

absinthe targets three-dimensional stencil programs and optimizes
them to utilize all processors of the target system, assuming exclusive
system access. Our implementation has the following limitations: 1) we

40 a learned performance model

1 for(int x=xbeg; x<=xend; ++x)

2 for(int y=ybeg; y<=yend; ++y)

3 for(int z=zbeg; z<=zend; ++z)

4 s0(x,y,z) = 0.5 * (i0(x+1,y,z) + i0(x,y,z));

5 for(int x=xbeg; x<=xend; ++x)

6 for(int y=ybeg; y<=yend; ++y)

7 for(int z=zbeg; z<=zend; ++z)

8 s1(x,y,z) = i1(x,y,z) * (s0(x,y+1,z) - s0(x,y-1,z));

Figure 3.3: Example stencil sequence with length N = 2

support only three-dimensional arrays, 2) we do not optimize the boundary
conditions, and 3) we tile the codes only for one memory hierarchy level.

3.1.2 Stencil Sequences

A stencil is an element-wise computation with a position independent access
pattern. Every stencil evaluation accesses the input arrays at fixed offsets
relative to the updated output array element. We assume that every stencil
writes a single array. We apply stencils to all array elements except for a
constant width halo at the array boundary which prevents out-of-bounds
accesses.

A stencil sequence is a program formed of several subsequent stencil
applications. Figure 3.3 shows an example stencil sequence with length N =
2. The short example sequence allows us to illustrate our approach with
less complexity compared to the fastwaves kernel introduced in Figure 3.1.

3.1.3 Data-Locality Transformations

absinthe combines rectangular tiling with redundant computation at
the tile boundaries to satisfy the data dependencies of fused stencils. This
overlapped tiling [8] enables major performance improvements. The tuned
fastwaves kernel shown by Figure 3.1 executes 1.5× faster compared to the
unfused tiled implementation variant.

Loop tiling decomposes the domain into hyper-rectangular tiles of equal
size. To increase the data-locality, we evaluate the stencil on the entire
tile before proceeding with the next one. We thus introduce an additional
outermost loop that iterates over all tiles. To support arbitrary domain sizes,
we cut the tiles at the domain boundary.

3.2 modeling 41

target system
STENCILS = {
 S0 :
 0.5 * (
 i0(x+1,y,z) +
 i0(x,y,z))
 S1 :
 i1(x,y,z) * (
 s0(x,y+1,z) +
 s0(x,y-1,z))
}

stencil sequence

performance model
fast memory slow memory

data-locality transformations
loop fusion loop tiling

parameters

Ai, Bi
x, Bi

y, Bi
z

N, Dx, Dy, Dz, T, C

Pf, Bf, Pb, Bb, Pv, Bv learn
analyze

min t
ILP

Figure 3.4: absinthe ILP parameters and components

Loop fusion replaces the tile loops of consecutive stencils with a single
tile loop that evaluates one stencil after another before proceeding with the
next tile. After fusion, the data dependencies of producer-consumer stencils
cross the tile boundaries. To enable the parallel tile execution, we extend the
loop bounds of the producer stencils to perform redundant computation at
the tile boundaries which satisfies all data dependencies locally.

The combination of fusion and tiling effectively increases the spatial and
temporal locality for stencils with overlapping working sets. The code gener-
ator introduces one tile loop for every group of fused stencils and allocates
temporary storage to buffer intra-tile data dependencies with minimal
memory footprint.

3.2 modeling

The optimizer automatically instantiates an integer linear program (ILP) to
find good data-locality transformations. Figure 3.4 shows the main compo-
nents of the ILP: the parameters component captures the stencil sequence
and target system properties that provide the basis for the optimization, the
data-locality transformations component defines the optimization variables
that span the space of possible transformations, and the performance model
component estimates the execution time for the selected code transforma-
tions. At optimization time, the ILP solver searches the code transformations
with minimal estimated execution time.

We present the ILP for three-dimensional stencils, but the formulation
generalizes to stencils with different dimensionality. If not mentioned oth-
erwise, the variables are positive and integer-valued, while lowercase and

42 a learned performance model

constants

N number of stencils in the stencil sequence

Dx, Dy, Dz domain sizes

Hx, Hy, Hz halo widths

T number of processors

C cache capacity

P f , B f fast memory peel & body parameters

Pb, Bb slow memory peel & body base parameters

Pv, Bv slow memory peel & body variable parameters

variables

gi group index

nx
i , n

y
i , nz

i tile counts

p
f
i , b

f
i fast memory peel & body cost

pb
i , bb

i slow memory peel & body base cost

pv
i , bv

i slow memory peel & body variable cost

ex+
i , e

y+
i , ez+

i evaluation boundary widths (positive axis direction)

ex−
i , e

y−
i , ez−

i evaluation boundary widths (negative axis direction)

Table 3.1: Important constants and variables

3.2 modeling 43

uppercase identifiers distinguish optimization variables and constants, re-
spectively. Table 3.1 lists important constants and variables.

3.2.1 Stencil Sequences

The optimizer requires an analysis of the stencil access patterns to instantiate
the ILP shown by Figure 3.4. The access patterns provide the basis to
compute the data-flow and to estimate the performance of the stencil
sequence.

We use positive indexes to number the stencils in execution order and
negative indexes to identify the input arrays. For example, the indexes [0, 1]
refer to the stencils [s0, s1] and the indexes [−1,−2] to the input arrays
[i0, i1] of the example stencil sequence shown by Figure 3.3. The stencil
indexes also map one-to-one to the output arrays since every stencil writes
precisely one output. The resulting index space thus uniquely identifies the
input and output arrays of the stencil sequence.

To specify the data access patterns, we define for every stencil i the
access set Ai holding (index, offset) tuples that define the array and the
three-dimensional relative offset of every input element access. The access
sets

A0 = {(−1, (1, 0, 0)), (−1, (0, 0, 0))},

A1 = {(−2, (0, 0, 0)), (0, (0, 1, 0)), (0, (0,−1, 0))}

include all accesses of the example stencils. We also compute minimal
bounding boxes that contain all access offsets. To represent the bounding
boxes, we define for every stencil i and dimension d the bounds set Bd

i
holding (index, range) tuples that specify the array and the minimal and
maximal access offset along the dimension. The bounds sets

Bx
0 = {(−1, (0, 1))}, B

y
1 = {(−2, (0, 0)), (0, (−1, 1))}

contain all accesses of the example stencils along the selected dimensions.
To execute the stencil sequence, we define for every dimension d the

constant domain size Dd and the constant halo width Hd along the dimen-
sion. The domain sizes determine the stencil loop bounds, while the halo
sizes together with the domain sizes specify the array allocation size. For
example, we may execute the example stencils on the domain

Dx = 64, Dy = 64, Dz = 60

44 a learned performance model

and select the halo widths

Hx = 1, Hy = 1, Hz = 0

to accommodate the transitive stencil access offsets, which results in the
array allocation size 66× 66× 60.

3.2.2 Data-Locality Transformations

The optimizer also defines the optimization variables that span the space of
possible data-locality transformations and introduces constraints to exclude
solutions that suffer from load imbalance or exceed the cache capacity.

To model loop tiling, we select for every stencil i ∈ [0, N) and every

dimension d the tile count nd
i along the dimension from the range

[

1, Dd
]

.

For example, the tile counts

nx
0 = 2, n

y
0 = 2, nz

0 = 2

split the domain of the first stencil in the example stencil sequence into two
tiles along every dimension.

To model loop fusion, we select for every stencil i ∈ [0, N) the group index
gi and fuse stencils with the same group index. We set the group index of
the first stencil to zero and increment the group index with every additional
group along the stencil sequence. For every stencil, we thus have the choice
to retain or increment the group index of the preceding stencil, which spans
an exponential search space in the number of stencils. For example, the
group index tuples

(g0, g1) ∈ {(0, 0), (0, 1)}

enumerate all possible group assignments for the example stencil sequence.
The group indexes g0 = 0, g1 = 0 assign the stencils to the same group to
model fusion while the group indexes g0 = 0, g1 = 1 assign the stencils
to different groups that execute consecutively. To quantify the redundant
computation, we also extend for every stencil i ∈ [0, N) and for every
dimension d the tile size with the evaluation boundary widths ed+

i and ed−
i

along both directions. For example, the evaluation boundary widths

e
y+
0 = 1, e

y−
0 = 1

extend the tile size of the first stencil to satisfy all data dependencies of the
example stencil sequence locally. We define the tile sizes for every stencil,

3.2 modeling 45

but the stencils of each group share the same tile loop and tile size. We
thus enforce tile count equality for succeeding stencils with the same group
index.

To guarantee data-locality, we exclude tile sizes that exceed the cache
capacity C (L2 cache). To estimate the cache utilization, we multiply for
every stencil group the tile size with the number of accessed arrays. This
approximation optimistically models a fully associative cache with a least
recently used cache replacement policy and does not consider the accesses
at the tile boundaries. We thus enforce the cache utilization for a single tile
to be lower than one-third of the cache capacity. This choice compensates
for our optimistic cache modeling and ensures that not only the current but
also the next and the previous tile executed by the same processor mostly
fit the cache. As a result, the data-locality improves since the overlapping
boundaries of consecutive tiles stay in cache.

To guarantee parallel efficiency, we enforce a total number of tiles within
5% of an integer multiple of the number of processors T and for every
dimension a tile count within 2% of an integer multiple of the domain size.

3.2.3 Performance Model

The optimizer finally instantiates the performance model based on the stencil
sequence and target system parameters shown by Figure 3.4.

The performance model distinguishes two cost components: (1) the peel
cost models the latency and (2) the body cost models the throughput of the
innermost loop executions. In other words, the peel cost accounts for loop
startup overheads – examples are the over fetch at the loop boundaries
or the execution of scalar peel loops – while the body cost models the
steady-state of the loop execution. For both components, we model the
memory accesses for two memory hierarchy levels: (1) the fast memory (L2

cache) and (2) the slow memory (L3 cache or DDR memory). For every data
element, we assume the slow memory handles the first and the fast memory
all subsequent accesses during the tile execution. To estimate the execution
time, the performance model multiplies the number of memory accesses
with the learned model parameters.

The loop startup overheads make long tiles along the innermost loop
dimension more efficient. To model this effect, we distinguish the peel cost
proportional to the number of innermost loop executions (peel domain)
and the body cost proportional to the number of innermost loop iterations
(body domain). This separation allows us to assign a higher cost to memory

46 a learned performance model

nx=ny=2
Dx=Dy=4

DxDy

body domain
nxny

peel domain

nxDy

DxnyDynx

y

x

y

x

y

x
Figure 3.5: Illustration of the peel and body domain computation for domain

size 8× 8 split into 2× 2 tiles with boundary width one along the
positive axis directions.

accesses executed during the loop startup. The two cost components and
the goal to employ efficient integer linear programming solvers result in
linear cost functions of the form Px + By that sum the peel cost Px and the
body cost By. The variables x and y denote the number of memory accesses
for the peel and body domains, respectively. The learned model parameters
P and B convert the memory accesses to execution times. Section 3.2.4
details how the model learner determines the model parameters.

The performance model combines multiple cost functions to estimate
the stencil sequence execution time. To define the cost functions, we next
introduce the peel and body functions that compute the weighted size of
the peel and body domains, respectively. Figure 3.5 shows the computation
of the peel domain (left) and the body domain (right) for a simplified two-
dimensional domain (middle) with all weights set to one. The peel domain
counts the blue points (squares) while the body domain counts all points
(squares and circles). The peel and body functions extend this computation
with additional terms and factors to model our three-dimensional domain
and parametric weights.

peel function The peel cost is proportional to the number of innermost
loop executions. Without loss of generality, we assume the innermost loops
execute along the x-dimension, which means the number of innermost loop
executions corresponds to the size of the tiles projected to the yz-plane.

The product DyDz of the domain sizes is equal to the sum of the tile
domains and the products Dzn

y
i and Dynz

i of the tile counts with the
perpendicular domain size approximate the tile boundaries. To sum the

3.2 modeling 47

tiles along the innermost loop dimension, we multiply the terms with the
tile count along the x-dimension. This approximation is exact except for the
tile corners. To evaluate the peel cost, we define for every stencil i ∈ [0, N)
the peel function

f
p
i (w, wy, wz) = nx

i (DyDzw + Dzn
y
i wy + Dynz

i wz)

which scales the inner domain and the boundary terms with the inner
weight w and the boundary weights wy and wz, respectively. For example,
we set the inner weight to one and the boundary weights to the evaluation
boundary widths to count the innermost loop executions.

body function The body cost is proportional to the number of inner-
most loop iterations scaled with cost function-specific weights. The number
of innermost loop iterations is equal to the sum of the tile volumes. To
compute the volume of the overlapping tiles, we add the product DxDyDz

of the domain sizes to the tile counts multiplied with the perpendicular
domain sizes. This approximation again includes the tile domains and the
tile boundaries without the tile corners. To evaluate the body cost, we define
for every stencil i ∈ [0, N) the body function

f b
i (w, wx, wy, wz) = DxDyDzw+DyDznx

i wx+

DxDzn
y
i wy+DxDynz

i wz

which scales the inner domain and the boundary terms with the inner
weight w and the boundary weights wx, wy, and wz, respectively. For
example, we set the inner weight to one and the boundary weights to the
evaluation boundary widths to count the innermost loop iterations.

The peel and body functions next allow us to define the cost functions
for the two memory hierarchy levels.

fast memory The fast memory model counts the memory accesses to
estimate the stencil execution time. We assume that every evaluation of the
stencil i loads the entire access set Ai and stores the result. The stencil i thus
performs 1 + |Ai| memory accesses per evaluation. To count the memory
accesses, we set for every stencil i ∈ [0, N) the weight

ci = 1 + |Ai|

to the number of memory accesses per stencil evaluation and for every
dimension d the boundary weight

cd
i = (1 + |Ai|)(e

d−
i + ed+

i)

48 a learned performance model

to the number of memory accesses per stencil evaluation scaled with the
evaluation boundary widths. The multiplication reflects that the stencils are
evaluated at every evaluation boundary line. We then set for every stencil

i ∈ [0, N) the peel cost p
f
i and the body cost b

f
i of the fast memory model to

the products

p
f
i = P f f

p
i (ci, c

y
i , cz

i), b
f
i = B f f b

i (ci, cx
i , c

y
i , cz

i)

which evaluate the peel and body functions to obtain the number of memory
accesses for the peel and body domains, respectively. The learned model
parameters P f and B f convert the memory accesses to execution times.

slow memory The slow memory model determines the communica-
tion volume to estimate the execution time. We observe that the memory
throughput improves with the number of parallel access streams. To model
this behavior, we sum two cost functions that estimate the base cost and the
variable cost with respect to the number of access streams. We assume that
every stencil group loads and stores an array only once. Repeated accesses
of the same array hit the fast memory and are not relevant for the slow
memory model.

We compute the slow memory loads and stores based on the group
indexes. A stencil only loads an array from slow memory if the group index
of the stencil that accessed the array last differs. Otherwise, the array was
already loaded to the fast memory. A stencil only stores an array to slow
memory if the group index of the last stencil that accesses the array differs.
Otherwise, the array is not used outside of the stencil group, and storing to
slow memory is not necessary.

To estimate the base cost, we set for every stencil i ∈ [0, N) the weight mi

to one if the stencil loads or stores at least one array and to zero otherwise.
We also set for every dimension d the boundary weight

md
i = mi(e

d−
i + ed+

i)

to the weight times the evaluation boundary widths. We then set for every
stencil i ∈ [0, N) the peel cost pb

i and the body cost bb
i of the base cost to the

products

pb
i = Pb f

p
i (mi, m

y
i , mz

i), bb
i = Bb f b

i (mi, mx
i , m

y
i , mz

i)

which evaluate the peel and body functions to obtain the number of stencil
evaluations that access at least one array for the peel and body domains,

3.2 modeling 49

respectively. The learned model parameters Pb and Bb convert the stencil
evaluations to execution times.

To estimate the variable cost, we set for every stencil i ∈ [0, N) the weight
si to the number of accessed arrays and for every dimension d the boundary
weights sd

i to the sum of the array access boundary widths along the
dimension. We consider only arrays and boundary lines that have not been
accessed by a preceding stencil of the same stencil group. To compute access
boundary widths, we extend for every data dependency (j, (B−, B+)) ∈ Bd

i
the evaluation boundary widths with the access bounds B− and B+. We
then set for every stencil i ∈ [0, N) the peel cost pv

i and the body cost bv
i of

the variable cost to the products

pv
i = Pv f

p
i (si, s

y
i , sz

i), bv
i = Bv f b

i (si, sx
i , s

y
i , sz

i)

which evaluate the peel and body functions to obtain the number of access
streams for the peel and body domains, respectively. The learned model
parameters Pv and Bv convert the access streams to execution times.

The slow memory model finally sums the base cost and the variable cost to
estimate the execution time.

To estimate the overall stencil execution time, we assume that the fast
memory and the slow memory accesses overlap. We thus compute for every
stencil the maximum peel cost and the maximum body cost of the two memory
hierarchy levels. The sum

∑
N−1
i=0 max(p

f
i , pb

i + pv
i) + max(b f

i , bb
i + bv

i)

accumulates the individual stencil execution times to obtain the execution
time of the entire stencil sequence. The term

∑
N−1
i=0 2 · 3(Bb + Bv)nx

i n
y
i nz

i

emulates the slow memory access cost to load the two precomputed tile
loop bounds for all three dimensions to account for the tile execution
overheads. We include this term in the estimated execution time to favor
implementation variants with fewer tiles. Together, the estimated execution
time and the tile execution overheads define the objective function of the
integer linear program.

3.2.4 Learning the Performance Model

The model learner adapts the performance model parameters to the perfor-
mance characteristics of the target system. To learn the parameters, we

50 a learned performance model

implemented training stencils that either stress the slow or the fast memory
and measure their execution time for different tile sizes. We then compute
the model parameters using least absolute deviations (LAD) [54] regression,
which compared to least squares regression has better outlier robustness.

As the performance depends on the tile shape, we benchmark the training
stencils with tile sizes ranging from 10 to 80 elements along the x-dimension
and from 1 to 55 elements along the other dimensions. We exclude tiles
with a volume below 500 or above 2000 elements to ensure that the tiles fit
the fast memory (L2 cache). In total, we run 103 tile size configurations.

When learning the fast memory model, the fast memory accesses have to
dominate the execution times of the training stencils. We used three training
stencils that access 12, 16, and 20 array positions. We always connect nine
identical stencils that access the same input array to one training sequence.
The repeated accesses of the same input array guarantee that the fast
memory accesses dominate the execution time.

We benchmark the three training sequences for all tile size configurations.
For every run r ∈ [0, R), we collect the measured execution time tr and
compute the number of fast memory accesses xr and yr for the peel and
body domain, respectively. The LAD regression

(P f , B f) = argmin
(P,B)∈R2

∑r∈[0,R) |(Pxr + Byr)− tr|

then selects the fast memory model parameters P f and B f that minimize the
L1-norm of the prediction error.

When learning the slow memory model, the slow memory accesses have to
dominate the execution times. We used nine training stencils that access 1, 2,
or 3 input arrays with access boundary width 0, 1, or 2. The stencils access
the input arrays at three diagonal offsets to avoid unnecessary fast memory
accesses. We always connect nine identical stencils that access different input
and output arrays to one training sequence. The many loaded and stored
arrays guarantee that the slow memory accesses dominate the execution
time.

We benchmark the nine training sequences for all tile size configurations.
For every run r ∈ [0, R), we collect the measured execution time tr. To learn
the base cost, we compute the number of stencil evaluations xr and yr that
perform slow memory accesses for the peel and body domain, respectively.

3.3 optimization 51

To learn the variable cost, we compute the number of slow memory accesses
ur and vr for the peel and body domain, respectively. The LAD regression

(Pb, Bb, Pv, Bv) = argmin
(P′ ,B′ ,P′′ ,B′′)∈R4

∑r∈[0,R) |(P′xr+

B′yr + P′′ur+B′′vr)− tr|

then selects the slow memory model parameters Pb, Bb, Pv, and Bv that
minimize the L1-norm of the prediction error.

All training sequences are synthetic and differ from the application
kernels tuned in Section 3.4.4.

3.3 optimization

The number of possible data-locality transformations defined in Sec-
tion 3.2.2 makes the manual tuning of stencil programs difficult. To automate
the process, we could exhaustively search for the optimal data-locality
transformations according to the performance model introduced in Sec-
tion 3.2.3. However, for stencil sequences of length N the search space
contains O(2N NDxDyDz) implementation variants which decompose into
2N fusion choices multiplied with up to N stencil groups and DxDyDz

tile size choices. This large search space motivates advanced optimization
methods.

To explore the search space, we rely on the well established mixed-
integer linear programming (MILP) approach, which finds or approximates
the optimal solution within some predefined objective function gap. The
optimizer translates the performance model and the space of data-locality
transformations to an MILP that defines the optimization problem. We
next detail the automatic translation of the performance model to linear
constraints.

3.3.1 Linearizing Multiplications

The performance model multiplies the tile count variables with other vari-
ables. Linear programs cannot directly express the product of two integer
variables. An implementation trick [55] nevertheless allows us to multiply
two variables x and y with known upper bounds X and Y.

52 a learned performance model

We first observe that the product of the binary variable b and the variable
x with known upper bound X translates to three constraints. The constraint
0 ≤ p ≤ x limits the product p to the range [0, x], while the constraints

p− Xb ≤ 0 and p− x− Xb ≥ −X

force the product to zero if b is zero and to x otherwise.
To express the product of two variables x and y with the known upper

bounds X and Y, we next encode the variable y with the sum

y = ∑
⌊log2(Y)⌋
i=0 2iyi

where the binary variables yi represent the digits of y. Then the product
p = xy corresponds to the sum

p = ∑
⌊log2(Y)⌋
i=0 2ixyi

of the binary products xyi scaled with the power of two associated with
the respective digit. All binary products are translated to the constraints
introduced before.

The optimizer implements the performance model by introducing binary
representations for all tile count variables and lowers the products as shown
above. This solution works since we know that for every dimension d the
range [1, Dd] limits the tile count variables.

3.3.2 Modeling Stencil Groups

The number of stencil groups is an optimization variable not known dur-
ing the generation of the optimization problem. Allocating one variable
per stencil group to store group properties such as the tile count is thus
not possible. Instead, we model stencil group properties with the help of
stencil specific variables. At optimization time, the group index variables
of Section 3.2.2 allow us to compute stencil group properties and to assign
them to all stencil specific variables of the group.

The group indexes increase monotonically along the stencil sequence.
The constraint g0 = 0 sets the group index of the first stencil to zero. To
limit the remaining group indexes, we define for every stencil i ∈ [0, N − 1)
the constraint

0 ≤ gi+1 − gi ≤ 1,

which sets the group index difference of succeeding stencils to zero or one
for fusion and no fusion, respectively.

3.4 evaluation 53

1 STENCILS = {

2 "s0":"auto res = 0.5*(i0(x+1,y,z)+i0(x,y,z));",

3 "s1":"auto res = i1(x,y,z)*(s0(x,y+1,z)+s0(x,y-1,z));"}

Figure 3.6: absinthe version of the example stencil sequence

With the help of the group indexes, we define constraints that apply to
the stencil groups. For example, the tile counts have to be equal within the
stencil group. To enforce equality, we define for every stencil i ∈ [0, N − 1)
and for every dimension d the constraints

nd
i+1 − nd

i + Dd(gi+1 − gi) ≥ 0,

nd
i+1 − nd

i − Dd(gi+1 − gi) ≤ 0

which limit the tile count difference to zero if the stencils have the same
group index. Otherwise, the group index difference gi+1 − gi is positive
since the indexes increase along the stencil sequence. Then the group index
difference multiplied with the upper bound Dd for the tile count difference
nd

i+1 − nd
i disables the constraints for all possible tile count assignments.

The upper bound follows from the observation that the tile counts range
from one to the domain size Dd.

The optimizer uses the group index variables to model the tile counts, the
cache utilization, and the number of slow memory accesses.

3.4 evaluation

To validate our approach, we learn the performance model for three tar-
get systems and compare application kernels tuned with absinthe to
heuristically tuned, hand-tuned, and auto-tuned implementation variants.

3.4.1 Setup & Methodology

The target systems feature Xeon E5-2695 v4, Xeon Phi 7210, and Power8NVL
sockets. We configure the Xeon Phi sockets with two NUMA domains,
each of them with 32 processors and three DDR channels, and run the
experiments on one of the two NUMA domains. We optimize the linear
programs with CPLEX 12.6.3 and compile the generated C++ codes with
GCC 5.3 on the Xeon and Xeon Phi systems and with GCC 5.4 on the Power
system.

54 a learned performance model

1 #pragma omp parallel for schedule(static)

2 for(int idx = 0; idx < 1 * 3 * 12; ++idx) {

3 // views of the input and output arrays

4 loop_info l = _tiles_group0[idx];

5 array_view_3d i1(&__i1(l.xbeg, l.ybeg, l.zbeg));

6 array_view_3d i0(&__i0(l.xbeg, l.ybeg, l.zbeg));

7 array_view_3d s1(&__s1(l.xbeg, l.ybeg, l.zbeg));

8 // stack allocated temporary arrays

9 tarray0_3d ___s0;

10 tarray0_view_3d s0(&___s0(HX, HY, HZ));

11

12 { // apply s0 stencil

13 int xbeg = _loops_s0[idx].xbeg;

14 int xend = _loops_s0[idx].xend;

15 int ybeg = _loops_s0[idx] ybeg;

16 int yend = _loops_s0[idx].yend;

17 int zbeg = _loops_s0[idx].zbeg;

18 int zend = _loops_s0[idx].zend;

19 for(int z = zbeg; z < zend; ++z)

20 for(int y = ybeg; y < yend; ++y)

21 #pragma omp simd

22 for(int x = xbeg; x < xend; ++x) {

23 auto res = 0.5 (i0(x+1,y,z) + i0(x,y,z));

24 s0(x,y,z) = res;

25 }}

26

27 { // apply s1 stencil

28 int xbeg = _loops_s1[idx].xbeg;

29 int xend = _loops_s1[idx].xend;

30 int ybeg = _loops_s1[idx] ybeg;

31 int yend = _loops_s1[idx].yend;

32 int zbeg = _loops_s1[idx].zbeg;

33 int zend = _loops_s1[idx].zend;

34 for(int z = zbeg; z < zend; ++z)

35 for(int y = ybeg; y < yend; ++y)

36 #pragma omp simd

37 for(int x = xbeg; x < xend; ++x) {

38 auto res = i1(x,y,z) * (s0(x,y+1,z) + s0(x,y-1,z));

39 s1(x,y,z) = res;

40 }}

41 }

Figure 3.7: Optimized code for the example stencil sequence

3.4 evaluation 55

To perform the experiments, we set the domain size to 64 × 64 × 60
elements with 3× 3× 3 halo elements similar to the COSMO [16] produc-
tion configuration. All experiments are performed using double-precision
floating-point numbers.

We set the number of processors to the available cores T = 18, T = 32,
and T = 10 for the Xeon, Xeon Phi, and Power systems, respectively.

To measure the execution time, we repeat every experiment 64 times and
discard the first 16 measurements to warmup the memory hierarchy. Before
every run, except when learning the fast memory model, we flush the L1

and L2 caches with dummy data. As we assume exclusive system access,
we run one thread per processor. We time only the stencil executions, which
excludes the initialization logic and the boundary conditions. All plots
show median values and nonparametric 95% confidence intervals [56] to
visualize the distribution of the measurements.

3.4.2 Implementation

absinthe provides a high-level stencil DSL to implement stencil programs.
Figure 3.6 and Figure 3.7 show the DSL version and the generated code
for the example stencil sequence introduced in Section 3.1.2, respectively.
absinthe parses the DSL to extract the accesses patterns. Based on this
analysis, the optimizer derives the integer linear program and determines
the optimal solution using the CPLEX solver [38]. After the optimization,
the code generator emits C++ code that implements the fusion and tile size
choices of the optimal solution.

The code generator performs overlapped tiling [8] with one tiling hierarchy
level and periodic boundary conditions. In addition to the stencil sequence,
we also generate the boilerplate necessary to execute, benchmark, and verify
the stencil sequence. The verification compares the results of the parallel
implementation to naive sequential code. The code generator utilizes the
Jinja2 template engine to specialize a generic stencil sequence template with
the program-specific logic.

3.4.3 Learning the Target Systems

absinthe learns the performance model parameters once for every target
system and then tunes all stencil programs using the same parameter set.
Section 3.2.4 discusses the performance model learning. We next evaluate
the quality of the learned model parameters.

56 a learned performance model

p=12

p=16

p=20

P
f
= 2e-07 B

f
= 1.8e-080.00

0.05

0.10

20 40 60 80

x

e
xe

c
u

ti
o

n
 t

im
e

 [
m

s
]

fast memory (Xeon)

i=1,b=1

i=2,b=1

i=3,b=1

P
b
= 1.7e-06 B

b
= 7.5e-08

P
v
= 8.9e-07 B

v
= 6.5e-080.00

0.05

0.10

0.15

0.20

20 40 60 80

x

e
xe

c
u

ti
o

n
 t

im
e

 [
m

s
]

slow memory (Xeon)

p=12

p=16

p=20

P
f
= 4.4e-07 B

f
= 1.9e-080.00

0.10

0.20

0.30

20 40 60 80

x

e
xe

c
u

ti
o

n
 t

im
e

 [
m

s
]

fast memory (Xeon Phi)

i=1,b=1

i=2,b=1

i=3,b=1

P
b
= 3.4e-06 B

b
= 2.6e-07

P
v
= 7.9e-07 B

v
= 1.8e-070.00

0.25

0.50

0.75

20 40 60 80

x

e
xe

c
u

ti
o

n
 t

im
e

 [
m

s
]

slow memory (Xeon Phi)

p=12

p=16

p=20

P
f
= 1.6e-07 B

f
= 1.7e-080.00

0.02

0.04

0.06

20 40 60 80

x

e
xe

c
u

ti
o

n
 t

im
e

 [
m

s
]

fast memory (Power)

i=1,b=1

i=2,b=1

i=3,b=1

P
b
= 4.7e-06 B

b
= 2.4e-07

P
v
= 1.8e-07 B

v
= 3.7e-080.00

0.03

0.06

0.09

20 40 60 80

x

e
xe

c
u

ti
o

n
 t

im
e

 [
m

s
]

slow memory (Power)

Figure 3.8: Measured (polygons) and estimated (lines) execution times for the
fast memory (p=positions) and slow memory (i=input arrays and
b=boundary width) training stencils and variable tile sizes along the
x-dimension.

3.4 evaluation 57

absinthe

hand

min

max

(74.0%)

auto-tuning

(-6.5%)
0.5

0.7

0.9

1.1

1.3

0.5 0.7 0.9 1.1 1.3

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

fastwaves (Xeon)

absinthe

hand

min

max

auto-tuning

(-0.8%)
0.4

0.8

1.2

1.6

0.4 0.8 1.2 1.6

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

diffusion (Xeon)

absinthe
hand

min
max

auto-tuning

(-3.4%)

0.3

0.4

0.5

0.6

0.7

0.8

0.3 0.4 0.5 0.6 0.7 0.8

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

advection (Xeon)

absinthe

hand min
max

auto-tuning

(-0.7%)

1.5

2.0

2.5

1.5 2.0 2.5

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

fastwaves (Xeon Phi)

absinthe
hand

min

max

auto-tuning

(-7.8%)1.0

2.0

3.0

4.0

1.0 2.0 3.0 4.0

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

diffusion (Xeon Phi)

absinthe

hand

min

max

auto-tuning

(-7.1%)

1.0

1.5

2.0

1.0 1.5 2.0

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

advection (Xeon Phi)

absinthe
hand

min

max

auto-tuning

(-6.1%)
0.6

0.8

1.0

1.2

0.6 0.8 1.0 1.2

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

fastwaves (Power)

absinthe

hand

min

max

auto-tuning

(-2.5%)0.4

0.8

1.2

1.6

0.4 0.8 1.2 1.6

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

diffusion (Power)

absinthe

hand

min

max

auto-tuning

(-1.7%)

0.8

1.2

1.6

0.8 1.2 1.6

estimated time [ms]

m
e

a
s
u

re
d

 t
im

e
 [

m
s
]

advection (Power)

Figure 3.9: Measured and estimated execution times for the optimal (triangle),
selected (squares), and random (dots) implementation variants of the
fastwaves (N = 9), diffusion (N = 16), and advection (N = 8) kernels.

58 a learned performance model

To improve the noise robustness, we use all 48 measurements per ex-
periment when learning the model parameters using LAD regression [54].
We use the median of the repeated measurements when computing the R2

values.
Figure 3.8 compares for the tile sizes 5× 5× x the measured execution

times of the training stencils to the learned fast memory and slow memory
models. We observe that for the shown tile sizes, the execution times
increase almost linearly with the tile size along the x-dimension with
model predictions close to the measured execution times of the training
stencils. The annotations mark the different training stencils. For example,
the annotation p = 12 refers to the training stencil that accesses twelve
positions, and the annotation i = 3, b = 1 refers to the training stencil that
accesses three input arrays with boundary width one.

The R2 values of 0.87, 0.95, and 0.94 for the fast memory model and of 0.96,
0.96, and 0.90 for the slow memory model confirm the quality of the learned
model parameters for the Xeon, Xeon Phi, and Power systems, respectively.

3.4.4 Tuning the Application Kernels

Existing benchmark suites such as PolyBench [57] often contain stencil
programs that iterate only one stencil instead of multiple different stencils.
To evaluate the quality of our fusion and tile size selection choices, we
thus implement three stencil sequences from the COSMO atmospheric
model [16]. These real-world benchmark kernels contain one-, two-, and
three-dimensional stencils from first to fifth order. The fastwaves kernel
consists of nine stencils that compute the pressure gradient, update the
horizontal wind speeds, and compute the wind divergence. The diffusion
kernel consists of sixteen stencils that update the pressure and the wind
speeds. The advection kernel consists of eight stencils that transport the
horizontal wind speeds. The two-dimensional advection and diffusion
stencils access only neighbor elements in the horizontal xy-plane, while the
fastwaves stencils perform three-dimensional accesses.

To perform the experiments, we adapt the COSMO stencils to match the
current implementation of our code generator, which supports only three-
dimensional arrays and periodic boundary conditions. We thus replace the
original boundary conditions and remove accesses to lower-dimensional
arrays.

Figure 3.9 shows the performance of absinthe for all application kernels
and target systems. We compare the measured and estimated execution

3.4 evaluation 59

times of the optimal solution found by absinthe to selected and random
implementation variants with group index and tile size constraints. Data
points close to the diagonal imply good model prediction. The dashed lines
delimit the region with 20% prediction error. The timings include the stencil
computation without boundary conditions.

Additionally, we add the following selected implementation variants:
the min and max heuristics combine minimal and maximal fusion with the
absinthe tile size selection, the hand approach reproduces the hand-tuned
fusion and tile size choices of the COSMO production code, and the auto-
tuning approach combines tile size auto-tuning with the absinthe fusion
choices. As the hand and auto-tuning variants may violate the cache size or
load imbalance constraints, their estimated execution times are possibly
invalid.

The optimal solutions for the three application kernels contain at most
four stencil groups. To sample random implementation variants, we se-
lect 20 random group index assignments with at most four groups and
repeat the optimization with constraints that fix the group indexes. To ex-
amine different tile sizes, we also introduce tile size constraints that enforce
smaller or larger tiles along one dimension. In total, we sample 60 random
implementation variants.

The auto-tuning exhaustively searches for every stencil group the tile
sizes 1, 2, 4, 12, 30, and 60 in the z-dimension and the powers of two in the
xy-plane. The tuning of isolated stencil groups does not consider the cache
reuse of consecutive stencil groups. However, the approach circumvents
the joint evaluation of all stencil group tile size combinations. We use the
absinthe fusion strategy to avoid auto-tuning the exponential fusion
search space.

fastwaves The optimal solution for all target systems splits the fast-
waves kernel into two groups (Figure 3.1 shows the optimal solution for the
Xeon system). The tile shapes reflect the three-dimensional access patterns
detailed in Figure 3.10.

diffusion The optimal solutions split the diffusion kernel into two, one,
and four groups of equal sizes with tile size 64× 13× 1, 64× 16× 1, and
64× 32× 1 for the Xeon, Xeon Phi, and Power systems, respectively. These
choices reflect the two-dimensional access pattern of the stencils and the
different L2 cache capacities. Most implementation variants perform better
than expected. We attribute this bias to the peel cost of the slow memory

60 a learned performance model

j+1
k+1

j+1,k+1

i+1
k+1

i+1,k+1

k-1

k+1

i+1
i+1j+1

j+1

j+1 i+1

j+1 i+1
k-1k-1

i-1j-1

i-1
k+1

i-1,k+1

j-1
k+1

j-1,k+1

j-1 i-1

input

temp

output

arrays: example:

y(i,j,k) =
 x(i,j,k) +
 x(i+1,j,k);

i+1x y

Figure 3.10: Data-flow graph of the fastwaves kernel. All edges are annotated
with the non-center access offsets that the stencils read in addition
to the center position (i,j,k).

3.4 evaluation 61

model, which do not consider the cache reuse of consecutive innermost
loop executions that span the full domain.

advection The optimal solution of the advection kernel fuses all stencils
with tile size 64× 16× 1, 64× 32× 1, and 64× 32× 1 for the Xeon, Xeon
Phi, and Power systems, respectively. The fast memory model dominates
the predicted execution time of the compute-intensive seven-point stencils.
Especially for the Xeon Phi and Power systems, the fast memory model
tends to underestimate the measured execution times. For example, since
the cache accesses may not fully overlap with the actual stencil computation.

The auto-tuned versions of the fastwaves, diffusion, and advection ker-
nels perform 6.5%, 0.8%, and 3.4% faster than absinthe for the Xeon
system, 0.7%, 7.8%, and 7.1% faster than absinthe for the Xeon Phi sys-
tem, and 6.1%, 2.5%, and 1.7% faster than absinthe for the Power system,
respectively. The small performance penalty compared to the much slower
auto-tuning and the relative agreement of estimated and measured exe-
cution times demonstrate the effectiveness of our approach for different
stencils and hardware architectures.

The hand-tuned kernels perform well, but the manual optimization of
large codes is tedious and time-consuming. The combination of fusion
heuristics with absinthe demonstrates the challenge of independent
fusion and tile size selection.

The auto-tuning approach always works best since it does not depend on
the performance model assumptions. For example, the auto-tuned tile sizes
violate the cache capacity constraints of the Power system, which means
tiles fitting the L2 cache are not optimal for this architecture. Auto-tuning
generates 277 implementation variants for every stencil group, which on
the Xeon system results in 40 minutes search time for the diffusion kernel.
Extending the auto-tuning to the 215 fusion choices increases the search
time beyond 10, 000 hours. absinthe explores the full search space in 40
seconds.

3.4.5 Comparison with Halide and Polymage

To compare absinthe, we implement the application kernels with Poly-
mage [13] (git:a8a101b) and Halide [12] (git:3af2386). We optimize the stencil
sequences with the built-in auto-schedulers [23, 58], compile the absinthe

and Polymage kernels with GCC 5.3, and adapt the scheduling parameters
to match the processor count of the Xeon system.

62 a learned performance model

1.66x

1.29x

1x

2.03x

3.7x

1x

1.4x

1.06x1x

0

10

20

fastwaves advection diffusion

e
xe

c
u

ti
o

n
 t

im
e

 [
m

s
]

Absinthe

Halide

Polymage

Figure 3.11: Execution times of the absinthe, Halide, and Polymage tuned
application kernels for domain size 256 × 256 × 60 on the Xeon
system (slowdowns relative to absinthe).

Figure 3.11 compares the execution times for the absinthe, Polymage,
and Halide tuned application kernels. We set the domain size to 256×
256× 60 elements since Halide and Polymage do not perform well for small
domains. absinthe and Polymage apply the same code transformations
and use the same compiler, which makes the results comparable. Halide
compiles with LLVM and performs loop reordering and stencil inlining,
which reduces the significance of the results. absinthe performs best
for all kernels, which emphasizes the quality of the fusion and tile size
selection choices.

3.5 related work

Tile size selection is a well-researched topic with two main directions:
purely analytic approaches [59–68] and empirical approaches [52, 69–71]
that search different configurations for optimal performance. Yuki et al. [72]
learn machine-specific static tile size selection models. Artificial neuronal
networks are also effective for both instruction throughput prediction [73]
and tile size selection [74].

D. Cociorva et al. [75] observe that program scheduling and tile size
selection are intertwined and propose a dynamic programming based
approach for combined scheduling and tile size selection specific for tensor
sequences. Their work does not consider stencil computations. Quasem
and Kennedy [76] propose a model guided empirical approach for loop
fusion and tiling. Beaugnon et al. [77] also combine analytical modeling

3.6 summary of the approach 63

and empirical search space exploration. They present an analytical model
to compute a lower bound for the execution time of partially-specified
program variants that allows them to prune the search space early-on. None
of these works provide a linear programming formulation.

There exist several approaches for generating code for iterative stencils.
Patus [22] is a code generator for iterative stencils on CPUs and GPUs.
Henretty et al. [78] introduced a code generator for iterative multi-statement
stencils that implements the DLT [79] data layout transformation. Both code
generators rely on tile size auto-tuning. Pochoir [11] is an iterative stencil
compiler that uses cache-oblivious tiling techniques to avoid the tile size
selection problem. Prajapati et al. [80] manually derive tile size selection
models for single statement stencils executed on GPUs. They require non-
linear integer programming which takes hours to terminate and commonly
does not guarantee optimal solutions.

STELLA [5] is a domain-specific language for climate modeling, while
Halide [12] and Polymage [13] are domain-specific languages for image
processing pipelines. All approaches support the optimization of stencil
programs with data-locality transformations. MODESTO [1] is an analytic
performance model to derive optimal fusion patterns for stencil programs
based on memory bandwidth estimates. However, the model does not
consider loop overheads and other metrics important for good tile size
selection. For Polymage, Jangda and Bondhugula [58] employ dynamic
programming to explore the space of fusion choices according to a cost
function. During the optimization, a heuristic selects suitable tile sizes. For
Halide, Liao et al. [81] and Mullapudi et al. [23] suggest cost functions and
custom optimization strategies to perform automatic scheduling, which
covers tile size selection. These solutions do not integrate the fusion and tile
size selection choice in a single linear model. absinthe thus provides the
first holistic integer linear programming formulation that simultaneously
schedules stencil programs and chooses matching tile sizes.

3.6 summary of the approach

absinthe instantiates an optimization problem that evaluates a learned
performance model to select target system-specific data-locality transforma-
tions for stencil codes. Surprisingly six performance model parameters are
sufficient to capture the relevant target system characteristics. The evalua-
tion of the performance model is fast and requires no complex operations.
We also demonstrate how to linearize the performance model for stencil

64 a learned performance model

codes with known domain sizes of limited range. These properties facili-
tate the efficient exploration of the exponential search space with the help
of powerful linear solvers. Our empirical evaluation provides strong evi-
dence that learning a target-specific performance model is a competitive
alternative to auto-tuning.

4
A N A N A LY T I C A L C A C H E M O D E L

Most programmers know the time complexity of their algorithms and tune
codes by minimizing computation. Yet, ever increasing data-movement
costs urge them to pay more attention to data-locality as a prerequisite for
peak performance. When considering different implementation variants of
an algorithm, we typically have a good understanding of which variant
performs less computation or can be vectorized well. Selecting the optimal
tile size or deciding which loop fusion choice is optimal is far less intuitive.
Essentially, we lack a perception of the cache state that allows us to reason
about data movement.

Data-locality optimizations are often pushed to the end of the devel-
opment cycle when the code is available for benchmarking. But at this
stage eliminating fundamental design flaws may be hard. We believe a
cache model responsive enough to be part of the day-to-day workflow of a
performance engineer can provide the necessary guidance to make good
design choices upfront. After the completion of the development, the very
same model could provide the necessary data for accurate model driven
automatic memory tuning.

We present haystack the first cache model for fully associative caches
with least recently used (LRU) replacement policy which is both fast and
accurate. At the core of our model, we calculate the LRU stack distance [82]
(also called reuse distance [83–85]) symbolically for each memory access.
The stack distance counts the distinct memory accesses between two sub-
sequent accesses of the same memory location. All memory accesses with
distance shorter than the cache size hit a fully associative LRU cache.

We show in Figure 4.1 the scaling of haystack compared to the
Dinero IV [86] cache simulator for increasing problem sizes. The simu-
lation times are proportional to the problem size since simulators [86–89]
enumerate all memory accesses. We use the Barvinok algorithm [49] to
count the cache misses. The algorithm avoids explicit enumeration by de-
riving symbolic expressions that evaluate to the cardinality of the counted
affine integer sets and maps. As demonstrated by the flat GEMM scal-
ing curve, this symbolic counting makes the model execution time prob-
lem size independent. Even for Cholesky factorization, with its known

65

66 an analytical cache model

106 107 108 109 1010

#memory accesses

10−1

100

101

102

103

104

105

ex
ec

ut
io

n
tim

e
[s

]

co
ffe

e
br

ea
k

re
sp

on
siv

e

 25x

 26x

 2039x

 54285x

haystack (analytical model)
dinero IV (simulation)

cholesky
gemm

Figure 4.1: Scaling of the cache model compared to simulation.

non-linearities [90] that prevent full symbolic counting, the scaling of the
execution time remains flat compared to simulation.

While computing stack distances for static control programs is a well
known technique, reducing stack distance information for all dynamic
memory accesses to a single cache miss count is difficult. Beyls et al. [90]
show that stack distances in general are non-affine. The divisions introduced
when modeling cache lines add even more non-affine constraints. While
symbolic summation over affine constraint sets is possible with the Barvinok
algorithm, symbolic counting over non-affine constraints is considered hard
in general.

In this work, we show that this generally hard problem can in practice
become surprisingly tractable if non-linearities are carefully eliminated by
either specialization or partial enumeration. As a result we contribute:

• The first efficient cache model to accurately predict static affine pro-
grams on fully associative LRU caches.

• An efficient hybrid algorithm that combines symbolic counting with
partial enumeration to reduce the asymptotic cost of the cache miss
counting.

4.1 background 67

• A set of simplification techniques that exploit the regular patterns
induced by the cache line structure to make the stack distance poly-
nomials affine.

• An exhaustive evaluation which shows that our cache model performs
well in practice with large speedups compared to existing approaches
while achieving high accuracy compared to measurements on real
hardware.

4.1 background

We first introduce our hardware model, provide background on cache
misses, explain the concept of affine integer sets and maps, and discuss the
set of considered programs.

4.1.1 Hardware Model

A cache implements various complex and sometimes undisclosed policies
that define the exact behavior. We deliberately model a generic cache with
full associativity and LRU replacement policy. When writing, we assume
the caches allocate a cache line and load the memory reference if necessary
(write-allocate) and then forward the write to all higher-level caches (write-
through). We parametrize our cache model with the cache line size L and
the cache size C in bytes. When modeling multiple cache hierarchy levels,
we assume inclusive caches and specify the cache size for every hierarchy
level. These design choices avoid an overly detailed model that is only
correct in a very controlled environment with know data alignment and
allocation. As shown by Section 4.3.2, we still model enough detail to
produce actionable and accurate results in practice.

4.1.2 Cache Misses

We assume that the modeled programs run in isolation and that their
execution starts with an empty cache. We count data accesses and ignore
instruction fetches.

According to Hill [91], we distinguish three types of cache misses; 1)
compulsory misses happen if a program accesses a cache line for the first
time, 2) capacity misses happen if a program accesses too many distinct cache
lines before accessing a cache line again, and 3) conflict misses happen if a

68 an analytical cache model

program accesses to many distinct cache lines that map to the same cache
set of an associative cache before accessing a cache line again. We model
fully associative caches and thus compute only compulsory and capacity
misses.

Not every access of a program variable translates in a cache access as the
compiler may place scalar variables in registers. Compiler and hardware
techniques such as out-of-order execution also change the order of the
memory accesses. We assume all scalar variables are buffered in registers
and count only array accesses in the order provided by the compiler front
end.

The cache misses measured when profiling a program depend on many
factors generally unknown to an analytical cache model, for example,
concurrent programs or the operating system may pollute the caches or
the hardware prefetchers may load more data than necessary. We do not
consider this system noise and instead provide an approximate but deter-
ministic cache model.

4.1.3 Integer Sets and Maps

We use sets and maps of integer tuples to count the cache misses. We
next define the relevant set and map operations necessary for the model
implementation. These operations are a subset of the functionality provided
by the integer set library (isl) [48].

An affine set
S = {(i0, . . . , in) : con(i0, . . . , in)}

defines the subset of integer tuples (i0, . . . , in) ∈ Z
n that satisfy the con-

straints con(i0, . . . , in). The constraints are Presburger formulas that com-
bine affine expressions with comparison operators, boolean operators, and
existential quantifiers. Presburger arithmetic [92] also admits floor division
and modulo with a constant divisor.

An affine map

R = {(i0, . . . , in)→ (j0, . . . , jm) : con(i0, . . . , in, j0, . . . , jm)}

defines the relation from integer tuples (i0, . . . , in) ∈ Z
n to integer tuples

(j0, . . . , jm) ∈ Z
m that satisfy the constraints con(i0, . . . , in, j0, . . . , jm) where

the constraints have the same restrictions as the set constraints. The domain
Rdom defines the set of the integer tuples (i0, . . . , in) of the input dimensions
for which a relation exists, and conversely the range Rran defines the set

4.1 background 69

1 int sum = 0;

2 for(int i=0; i<4; ++i)

3 S0: M[i] = i;

4 for(int j=0; j<4; ++j)

5 S1: sum += M[3-j];

Figure 4.2: Example program used for illustration.

of integer tuples (j0, . . . , jm) of the output dimensions for which a relation
exists.

Both sets and maps support the set operations intersection S1 ∩ S2, union
S1 ∪ S2, projection, and cardinality |S|. The domain intersection R ∩dom S

intersects the domain of the map R with the set S. Maps also support the
map operations composition R2 ◦R1 and inversion R−1. The operator

lexmin(R) = {(i0, . . . , in)→ (m0, . . . , mm) :

∄(i0, . . . , in)→ (j0, . . . , jm) ∈ R,

s.t. (j0, . . . , jm) ≺ (m0, . . . , mm)}

computes for every input tuple (i0, . . . , in) the lexicographic smallest output
tuple (m0, . . . , mm) of all tuples (j0, . . . , jm) related to the input tuple.

A named set or map prefixes the integer tuples with names that convey
semantic information. For example, we prefix the array element M(2) with
the array name and the statement instance S0(1) with statement name. We
use statement names starting with the letter S and array names starting with
any other letter. The names are semantically equivalent to an additional
tuple dimension.

4.1.4 Static Control Programs

Our cache model analyzes affine static control programs consisting of loop
nests with known loop bounds that perform array accesses with affine index
expressions. Figure 4.2 shows an example program with two statements:
the statement S0 initializes an array M and the statement S1 accumulates the
array elements. Before analyzing a program, we extract the sets and maps
that specify the statement execution order and the memory access offsets.

The iteration domain

I = {S0(i) : 0 ≤ i < 4; S1(j) : 0 ≤ j < 4}

70 an analytical cache model

S-1

A-1S

A

schedule values
(0,i); (1,j) : i,j=[0..3]

memory locations
M(k) : k=[0..3]

statement instances
S0(i); S1(j) : i,j=[0..3]

Figure 4.3: The statement instances and the related schedule values (schedule S)
and memory accesses (access map A) are sufficient to compute the
cache misses of a program.

defines the set of all executed statement instances. For the two statements
of the example program, the loop variables i and j are limited to the range
zero to three. To define the execution order, the schedule

S = {S0(i)→ (0, i); S1(j)→ (1, j)} ∩dom I

maps the statement instances to a multi-dimensional schedule value. The
statement instances then execute according to the lexicographic order of
the schedule values. The intersection with the iteration domain I limits the
schedule domain to the program loop bounds. The access map

A = {S0(i)→ M(i); S1(j)→ M(3− j)}

maps the array accesses of the statement instances to the accessed array
elements. The iteration domain I, the schedule S, and the access map A

capture all relevant program properties necessary to evaluate the cache
model. Figure 4.3 shows how the schedule S and the access map A relate
statement instances, schedule values, and memory locations.

4.2 cache model

Our cache model computes for every memory access the stack distance
parametric in the loop variables and counts the instances with a stack
distance larger than the cache capacity to determine the capacity misses.
All memory accesses with undefined backward stack distance access the
cache line for the first time and count as compulsory misses.

Figure 4.4 shows the computation of the capacity misses for the example
program introduced by Figure 4.2: (1) enumerates the statement instances
according to the schedule S and (2) applies the access map A to the state-
ment instances to compute the memory trace. Assuming the array element
size is equal to the cache line size, the stack distance corresponds to the

4.2 cache model 71

S0(2) S0(3) S1(0) S1(1)S0(1)S0(0) S1(2) S1(3)(1)

M(2) M(3) M(3) M(2)M(1)M(0) M(1) M(0)(2)
in cache?

cache hit = 1, if |{M(1), M(2), M(3)}| ≤ cache size
0, otherwise

Figure 4.4: The (1) statement instance and the (2) memory access trace of the
example program allow us to compute if the access M(1) of the state-
ment S1(2) hits the cache.

cardinality of the set {M(1), M(2), M(3)} which contains the array elements
accessed between and including the two subsequent accesses of M(1). The
second access of M(1) hits the cache if the cardinality of the set is lower than
or equal to the cache capacity.

4.2.1 Computing the Stack Distance

The stack distance computation counts the number of distinct memory
accesses between subsequent accesses of the same memory location. We
determine for every memory reference the last access to the same memory
location and count the set of memory accesses since this last access to obtain
the stack distance parametric in the loop variables.

For our example program, the stack distance of the memory access in
statement S1 is equal to the loop variable j plus one. We can thus express
the stack distance of the memory access with the map

D = {S1(j)→ j + 1 : 0 ≤ j < 4}

limited to the statement iteration domain. As the statement S0 accesses all
array elements for the first time its backward stack distance is undefined
and the accesses count as compulsory misses.

Our discussion of the stack distance computation initially assumes that
every statement performs at most one access of a one-dimensional array
with an element size equal to the cache line size. At the end of this section,
we show how to overcome these limitations.

72 an analytical cache model

The memory accesses execute according to the statement execution order
defined by the schedule. The map

L≺ = {(i0, . . . , in)→ (j0, . . . , jn) :

(i0, . . . , in) ≺ (j0, . . . , jn)∧

(i0, . . . , in), (j0, . . . , jn) ∈ Sran}

relates the schedule values (i0, . . . , in) to all lexicographically larger sched-
ule values (j0, . . . , jn) and the map

L� = {(i0, . . . , in)→ (j0, . . . , jn) :

(i0, . . . , in) � (j0, . . . , jn)∧

(i0, . . . , in), (j0, . . . , jn) ∈ Sran}

relates the schedule values (i0, . . . , in) to all lexicographically larger or equal
schedule values (j0, . . . , jn). Later on, we use these helper maps to filter
relations by execution order.

The stack distance computation first identifies all accesses to the same
array element. The equal map

E = S ◦A−1 ◦A ◦ S−1

relates each schedule value to all schedule values that access the same
array element. The concatenation A ◦ S−1 maps the schedule values to the
accessed array elements and its reverse S ◦A−1 maps the accesses back to
the schedule values. For our example program, the composition

A ◦ S−1 = {(0, i)→ M(i) : 0 ≤ i < 4;

(1, j)→ M(3− j) : 0 ≤ j < 4}

relates the schedule values to the accesses of the array M. The equal map
then relates all schedule values that access the same array element. For
example, the relations (0, i) → M(i) and (1, j) → M(3− j) access the same
array element if i is equal to 3− j. The resulting equal map

E = {(0, i)→ (0, i) : 0 ≤ i < 4;

(1, j)→ (1, j) : 0 ≤ j < 4;

(0, i)→ (1, j) : j = 3− i ∧ 0 ≤ i < 4;

(1, j)→ (0, i) : i = 3− j ∧ 0 ≤ j < 4}

4.2 cache model 73

S0(2) S0(3) S1(0) S1(1)S0(1)S0(0) S1(3)F S1(2)
N-1

S-1◦L≤◦S

S0(2) S0(3) S1(0) S1(1)S0(1)S0(0) S1(2) S1(3)
B

S-1◦L≤
-1◦ S

S0(2) S0(3) S1(0) S1(1)S0(1)S0(0) S1(3)
F∩B

S1(2)

M(2) M(3) M(3) M(2)M(1)M(0) M(1) M(0)

S0(2) S0(3) S1(0) S1(1)S0(1)S0(0) S1(3)
A◦(F∩B)

S1(2)

Figure 4.5: The relations of the forward map F and the backward map B for
the statement instance S1(2) of the example program (the forward
map F corresponds to the concatenation of the blue backward arrow
and the black forward arrows). The map intersection defines the
statement instance between and including the two accesses of M(1).
The concatenation with the map A yields the related memory accesses.

74 an analytical cache model

contains the relation (0, i) → (1, j) with j = 3− i and its reverse but also
the self relations of the schedule values.

The lexicographically shortest relations of the equal map denote the
subsequent accesses to the same array element which are closest in time.
The next map

N = S−1 ◦ lexmin(L≺ ∩ E) ◦ S

intersects the equal map E with the map L≺ to filter out all backward in
time and self relations and the lexmin operator removes all forward in time
relations except for the shortest ones. We compose the result with S and
S−1 to convert the schedule values to statement instances. The next map
consequently relates every statement instance to the next statement instance
that accesses the same array element. For our example program, the equal
map contains only the forward relation (0, i) → (1, j) which means the
lexmin operator has no effect since there is only one relation per statement
instance. The next map

N = {S0(i)→ S1(j) : j = 3− i ∧ 0 ≤ i < 4}

thus relates the instances of statement S0 to the instances of statement S1
that access the same array element.

The next map contains subsequent statement instances that access the
same array element but not the statement instances executed in between. To
compute them, we intersect the set of statement instances executed after the
first access with the set of statement instances executed before the second
access of the same array element. Figure 4.5 illustrates this intersection. The
backward map

B = S−1 ◦ L−1
� ◦ S

relates the statement instances to all statement instances with lexicographi-
cally smaller or equal schedule value. The maps S and S−1 convert from
statement instances to schedule values and back. The forward map

F = (S−1 ◦ L� ◦ S) ◦N−1

relates the statement instances to all statement instances with lexicographi-
cally larger or equal schedule value than the statement instance that last
accessed the same array element. We reverse the next map N to compute
the statement instance that accessed the array element last. The intersection
of the forward map and the backward map contains all statement instances
executed between subsequent accesses of the same array element.

4.2 cache model 75

Figure 4.5 shows the forward and backward map relations for the state-
ment instance S1(2) of the example program that accesses the array element
M(1). The forward map F corresponds to the concatenation of the blue
backward arrow and the black forward arrows. The intersection of the two
maps contains the statement instances executed between the subsequent
accesses of the array element M(1). We finally concatenate this intersection
with the access map A to obtain the stack distance map that relates every
statement instance to the array accesses performed since the last access of
the same array element.

The number of related array elements defines the stack distance of the
statement instances in the stack distance map. We use the isl [48] implemen-
tation of the Barvinok algorithm [49] to count the relations symbolically.
The algorithm computes the map cardinality by counting the points of the
range related to every point of the domain. The result of the computation
are quasi polynomials parametric in the input dimensions of the map that
evaluate to the number of related range points. As the domain is not always
homogeneous, the algorithm splits the map domain into pieces that consist
of a quasi polynomial and the subdomain of the map domain where the
polynomial is valid. After counting the stack distance map, the distance set

D = {|A ◦ (F∩ B)|}

contains pieces with quasi polynomials parametric in the schedule input
dimensions that for a subdomain of the iteration domain evaluate to the
stack distance. The pieces do not overlap and together cover the full iteration
domain. For our example program, the distance set

D = {S1(j)→ j + 1 : 0 ≤ j < 4}

contains one piece with the polynomial S1(j) → j + 1 and the domain
0 ≤ j < 4 covering the entire iteration domain.

cache lines and multi-dimensional arrays An adapted access
map A that relates statement instances to cache lines instead of array
elements suffices to support cache lines and multi-dimensional arrays. Let
us assume our example program initializes the diagonal elements of a
two-dimensional array M(i, i). Then the access map

A = {S0(i)→ M(i, c = ⌊i ∗ E/L⌋)}

models the accessed cache lines given the size of the array elements E and
cache line size L in bytes. We replace the innermost dimension of the array

76 an analytical cache model

access with the cache line index c, which multiplies the array index with
the element size and divides the result by the cache line size. As a result,
accesses of neighboring array elements map to the same cache line. The
outer dimensions of the array index remain unchanged since we assume
the innermost dimension is cache line aligned and padded to an integer
multiple of the cache line size. This restriction can be lifted at the expense
of a more complex formulation.

multiple memory accesses per statement An extension of the
schedule S and the access map A with an additional schedule dimension
that orders the memory accesses of the statements allows us to model more
than one memory access per statement. Let us assume the statement S0 of
the example program reads the array element I(i) and writes the result to
the array element M(i). We then extend the schedule

S = {S0(i, a)→ (0, i, a); S1(j, a)→ (1, j, a)}

with the access dimension a that orders the memory accesses of the state-
ment. Then the access map

A = {S0(i, 0)→ I(i); S0(i, 1)→ M(i); S1(j, 0)→ M(3− j)}

assigns every array access to a unique statement instance since the ac-
cess dimension enumerates the array accesses of every statement in the
order provided by the compiler front end. The extended schedule executes
only one array access per statement instance and thus requires no further
modifications of the stack distance computation.

The output of the stack distance computation is a set of polynomials
that defines the backward stack distance for every array access of the static
control program.

4.2.2 Counting the Capacity Misses

All memory accesses with stack distance larger then the cache size count as
capacity miss. As discussed in Section 4.2.1, the stack distance computation
splits the iteration domain into pieces. Each piece defines the stack distance
for a subdomain of the iteration domain. To obtain the capacity misses, we
count for every piece the points of the subdomain for which the polynomial
evaluates to a stack distance larger than the cache size.

4.2 cache model 77

P = {S0(i,j) → i+j2 : i,j=[0..3]}

(0,2) (1,2) (2,2)
(0,1) (1,1) (2,1)
(0,0) (1,0) (2,0)

2
1
0

E = {j : j=[0..3]}
Pj=0 = {S0(i) → i+0 : i=[0..3]}

Pj=1 = {S0(i) → i+1 : i=[0..3]}

Pj=2 = {S0(i) → i+4 : i=[0..3]}

0 1 2

0 1 2

0 1 2

πi

Figure 4.6: To count the non-affine piece P, we project out the affine i-dimension
to obtain the enumeration domain E. We next bind the j-dimension of
the piece P to the j-values in the enumeration domain and separately
count the cache misses for the resulting affine pieces Pj=0, Pj=1, and
Pj=2.

The piece with polynomial S1(j)→ j + 1 and domain 0 ≤ j < 4 defines
the stack distance for the entire iteration domain of our example program.
The cache miss set

M = {S1(j) : j + 1 > C ∧ 0 ≤ j < 4}

contains all points of the piece with stack distance larger than cache size
C which means the cardinality of the cache miss set |M| is equal to the
number of capacity misses. Assuming cache size two, the cache miss set
contains the statement instances S1(2) and S1(3) that cause two capacity
misses.

The distance set specifies the stack distance for all program statements.
To count the capacity misses per statement, we split the distance set by state-
ment and compute the cache misses separately. Without loss of generality,
we discuss the cache miss computation for a statement S0.

The Barvinok algorithm also computes the set cardinality by counting the
points symbolically. We use the algorithm to count affine cache miss sets and
resort to explicit enumeration for non-affine sets. As explicit enumeration
is expensive, we only enumerate the non-affine polynomial dimensions and
count the affine dimensions symbolically. This partial enumeration technique
splits cache miss sets into pieces with affine lower-dimensional polynomials.
Figure 4.6 demonstrates the technique for an example polynomial with
non-affine j-dimension. Section 4.2.3 discusses further techniques to split
non-affine pieces into multiple affine pieces.

78 an analytical cache model

Algorithm 1: counting the capacity misses

input : D distance set of pieces
output : T total number of cache misses
parameter : C cache size

1 T← 0

2 foreach P in D do

3 if isPieceAffine(P) then

4 T← T+ countAffinePiece(P, C)

5 else

6 E←getNonAffineDomain(P)

7 foreach pt in E do

8 Ppt ←bindNonAffineDimensions(P, pt)

9 T← T+ countAffinePiece(Ppt, C)

10 end

11 end

12 end

13 return T

Algorithm 1 counts the total number of cache misses T given the distance
set D of the program. The algorithm enumerates all pieces P of the distance
set (lines 2-12). Every piece P consists of a polynomial and a domain
that define the stack distance of a memory access for a subdomain of
the iteration domain. If the polynomial of the piece P is affine we count
the cache misses symbolically (lines 3-4), otherwise the partial enumeration
projects the non-affine dimensions out of the domain of the piece P and
enumerates all points of the resulting non-affine enumeration domain E

(lines 6-9). For every such point pt, we bind the non-affine dimensions of
the piece P to the coordinates of the point pt and count the cache misses
of the affine piece Ppt symbolically. Figure 4.6 illustrates the splitting of
non-affine pieces (lines 6-9).

The method countAffinePiece counts the cache misses of the piece P with
affine stack distance polynomial. A polynomial is affine if its degree is zero
or one. We first compute the cache miss set

M = {S0(i0, . . . , in) : Pp(i0, . . . , in) > C ∧ (i0, . . . , in) ∈ PD}

where Pp denotes the polynomial and PD the domain of the piece P. The
cache miss set contains all memory accesses with stack distance larger than

4.2 cache model 79

cache size C. To count the cache misses, we compute the cardinality |M|
using the Barvinok algorithm.

The method getNonAffineDomain projects all points of the piece P to the
non-affine dimensions to obtain the enumeration domain E. For example,
Figure 4.6 projects the piece

P = {S0(i, j)→ i + j2 : 0 ≤ i < 3∧ 0 ≤ j < 3}

which contains the quadratic term j2. We project the points to the non-affine
j-dimension to compute the enumeration domain E = {j : 0 ≤ j < 3}.
The enumeration always spans all dimensions with degree larger than
one. But the polynomial may also contain product terms with multiple
dimensions. We then greedily select the dimensions that conflict with most
other dimensions. For example, if the polynomial contains the products
ij and ik we enumerate the i-dimension since it conflicts with both other
dimensions.

The method bindNonAffineDimensions binds the non-affine dimensions of
the piece P to the values of the point pt. For example, Figure 4.6 binds the
j-dimension of the piece

P = {S0(i, j)→ i + j2 : 0 ≤ i < 3∧ 0 ≤ j < 3}

to the value two and obtains the piece

Pj=2 = {S0(i)→ i + 4 : 0 ≤ i < 3}

which we can count with the method countAffinePiece.
The counting algorithm works for all static control programs and avoids

complete enumeration except all dimensions are non-affine.

4.2.3 Eliminating Non-Affine Terms

Many stack distance polynomials contain non-affine terms that prevent fast
symbolic counting. We develop rewrite strategies that eliminate non-affine
terms containing floor expressions. The floor expressions themselves are
quasi-affine but often appear in products with other non-constant operands
modeling effects such as the stack distance variation for different cache line
offsets. We specialize the stack distance polynomials for different cache line
offsets to make them affine which enables the efficient symbolic counting.

The floor expressions of some polynomials differ only by a constant offset.
For example, the piece

P = {S0(i, j)← (⌊(1 + i)/3⌋ − ⌊i/3⌋)j : 0 ≤ i < 3∧ 0 ≤ j < 2}

80 an analytical cache model

(0,1) (1,1)

(2,1)

(0,0) (1,0)

(2,0)

Pi%3<2 = {S0(i,j) → 0 j : i%3<2
ᴧ i=[0..2] ᴧ j=[0..1]}

Pi%3=2 = {S0(i,j) → 1 j : i%3=2
ᴧ i=[0..2] ᴧ j=[0..1]}(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0)

P = {S0(i,j) → (⌊(1+i)/3⌋-⌊i/3⌋) j :
i=[0..2] ᴧ j=[0..1]}

Figure 4.7: Equalization replaces the non-affine piece P with the affine pieces
Pi%3<2 and Pi%3=2 to model a stack distance that varies at the last
cache line offset.

(0,1) (1,1) (2,1)
(0,0) (1,0) (2,0)

P = {S0(i,j) → (i-3⌊i/3⌋) j :
i=[0..2] ᴧ j=[0..1]}

Pi%3=1 = {S0(i,j) → 1 j : i%3=1
ᴧ i=[0..2] ᴧ j=[0..1]}

(0,1)
(0,0)

Pi%3=0 = {S0(i,j) → 0 j : i%3=0
ᴧ i=[0..2] ᴧ j=[0..1]}

(2,1)
(2,0)

Pi%3=2 = {S0(i,j) → 2 j : i%3=2
ᴧ i=[0..2] ᴧ j=[0..1]}

(1,1)
(1,0)

Figure 4.8: Rasterization replaces the non-affine piece P with the affine pieces
Pi%3=0, Pi%3=1, and Pi%3=2 to model a stack distance that varies at
every cache line offset.

4.2 cache model 81

contains the floor expressions ⌊(1 + i)/3⌋ and ⌊(i)/3⌋. The two floor ex-
pressions are equal except if i modulo three is equal to two. Then the second
floor expression is larger by one. The difference of the two floor expressions
thus evaluates to zero for the first two elements and to one for the last
element of every cache line. Figure 4.7 shows how to introduce simplified
polynomials for the first two and the last element of every cache line. This
equalization technique splits the cache line in multiple regions that typically
contain more than one element.

The polynomials may also contain terms with the plain variable and
other terms which compute the floor of the variable. For example, the piece

P = {S0(i, j)→ (i− 3 ⌊i/3⌋)j : 0 ≤ i < 3∧ 0 ≤ j < 2}

contains the floor expression 3 ⌊i/3⌋ which is equal to i except for a constant
that depends on the cache line offset. Figure 4.8 shows how to replace the
polynomial with one simplified polynomial per cache line offset. This
rasterization technique enumerates all cache line offsets.

We apply the two floor elimination techniques in the order of presentation
and only keep the results if the degree of at least one simplified polynomial
is lower than the degree of the original polynomial.

4.2.4 Counting the Compulsory Misses

All memory accesses that touch a cache line for the first time are compulsory
misses.

As the array M of our example program is initialized by the statement S0,
the first map

F = {M(i)→ S0(i) : 0 ≤ i < 4}

relates every array element to the statement instance that accesses the
element first which means the cardinality |Fdom| of the first map domain
counts the compulsory misses.

The compulsory misses are the memory accesses with lexicographically
minimal schedule value. The first map

F = S−1 ◦ lexmin(S ◦A−1)

thus selects for every memory access the lexicographically minimal relation
of the composition S ◦A−1 that relates memory accesses to schedule values
and composes the result with the inverse schedule S−1 to obtain the related
statement instances. The composition with the inverse schedule allows us

82 an analytical cache model

to intersect the range of the first map with the iteration domain of the
individual statements to count the compulsory misses per statement. For
our example program, the composition

S ◦A−1 = {M(i)→ (0, i) : 0 ≤ i < 4;

M(j)→ (1, 3− j) : 0 ≤ j < 4}

contains two accesses for every array element. The lexmin operator removes
the second access due to the lexicographically larger schedule value. Af-
ter the composition with the inverse schedule S−1, we use the Barvinok
algorithm to count the compulsory misses |Fdom|.

4.2.5 Computational Complexity

All compute-heavy parts of our cache model perform Presburger arith-
metic that in general is known to have very high computational complex-
ity [92, 93]. The established complexity bounds range from polynomial
time decidable [94] for expressions with fixed dimensionality and only exis-
tential quantification to double exponential [95] for arbitrary expressions.
Haase [92] presents further results that show a complexity increase with the
dimensionality and the number of quantifier alternations of the Presburger
expression.

The Presburger relations computed by our cache model have only exis-
tential quantification and the dimensionality is limited by the loop depth
suggesting polynomial complexity. Yet, the cache model may introduce
further variables to model divisions or modulo operations making the
complexity exponential in the number of dimensions.

Although the cache model has exponential worst-case complexity, the
empirical performance evaluation presented in Section 4.3.3 shows that
our cache model performs well for typical input programs. The dimen-
sionality of the observed Presburger relations remains limited since most
real-world programs do not make extensive use of branch conditions and
index expressions that result in integer divisions or modulo operations.

4.3 evaluation

We next evaluate the performance of haystack and compare its accuracy
to simulated and measured results.

4.3 evaluation 83

0
10
20

er
ro

r [
%

]

due to associativity
2m

m
3m

m ad
i

at
ax

bi
cg

ch
ol

es
ky

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d
flo

yd
-w

ar
sh

al
l

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

he
at

-3
d

ja
co

bi
-1

d
ja

co
bi

-2
d lu

lu
dc

m
p

m
vt

nu
ss

in
ov

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk
tri

so
lv

trm
m

0

25

50

75

100

ac
ce

ss
es

 [%
]

e(g) = 0.6%

hits
misses
measured

(a) L1 cache

0
10
20

er
ro

r [
%

]

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rre
la

tio
n

co
va

ria
nc

e
de

ric
he

do
itg

en
du

rb
in

fd
td

-2
d

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
id

t
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d lu
lu

dc
m

p
m

vt
nu

ss
in

ov
se

id
el

-2
d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m

0

25

50

75

100

ac
ce

ss
es

 [%
]

e(g) = 0.2%

hits
misses
measured

(b) L2 cache

Figure 4.9: Cache misses and hits predicted by haystack compared to the mea-
sured cache misses (median of 10 measurements) for the PolyBench
kernels with the prediction error relative to the number of memory
accesses on top.

84 an analytical cache model

4.3.1 Setup and Methodology

We evaluate on a test system with two 18-core Intel Xeon Gold 6150 proces-
sors. Every core has a 32KiB L1 cache (8-way set associative) and an inclusive
1MiB L2 cache (16-way set associative). The non-inclusive 18x1.375MiB L3

cache (11-way set associative) is shared among all cores. A non-inclusive
cache may and an inclusive cache has to duplicate all cache lines stored
by the lower-level caches. All caches load the cache line before writing
(write-allocate) and forward the write only if the cache line is evicted
(write-back).

We compile with GCC 6.3 and use the Dinero IV cache simulator [86]
to compute and the PAPI-C library [96] to measure the number of cache
misses. We evaluate the model for a number of different kernels. PolyBench
4.2.1-beta [57] is a collection of static control programs that implement
algorithmic motifs from scientific computing. If not stated otherwise the
PolyBench experiments use the default configuration (large) and the model
emulates fully associative L1 and L2 caches with the capacities of the test
system.

All performance measurements run single-threaded using only one core
of the test system. To quantify measurement noise, the execution times
show the median and the non-parametric 95% confidence intervals [56] of
10 measurements.

4.3.2 Accuracy Overview

All mathematical models are a trade-off between accuracy and complexity. A
static cache model cannot predict dynamic measurement noise for example
due to concurrent code execution. We aim at an accurate prediction of the
cache misses without modeling too many implementation details.

A comparison to measurements on a real system is the main bench-
mark for every cache model. To measure the cache misses, we compile the
PolyBench [57] kernels with PAPI [96] support using GCC optimization
level O2. PolyBench [57] flushes the caches before every kernel execution
which allows us to measure compulsory and capacity misses. We collect
the counters PAPI_L1_DCM and PAPI_L2_DCM that sum the data cache misses
for the L1 and L2 caches, respectively. Figure 4.9 compares the sum of the
compulsory and capacity misses predicted by haystack to the measured
cache misses shown by black lines. Most kernels cause more cache misses
than predicted which is expected since we model idealized fully associative

4.3 evaluation 85

0
10
20

er
ro

r [
%

]

due to associativity
2m

m
3m

m ad
i

at
ax

bi
cg

ch
ol

es
ky

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d
flo

yd
-w

ar
sh

al
l

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

he
at

-3
d

ja
co

bi
-1

d
ja

co
bi

-2
d lu

lu
dc

m
p

m
vt

nu
ss

in
ov

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk
tri

so
lv

trm
m

0

25

50

75

100

ac
ce

ss
es

 [%
]

e(g) = 0.6%

hits
misses
measured

(a) L1 cache (fully associative)

0
10
20

er
ro

r [
%

]

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rre
la

tio
n

co
va

ria
nc

e
de

ric
he

do
itg

en
du

rb
in

fd
td

-2
d

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
id

t
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d lu
lu

dc
m

p
m

vt
nu

ss
in

ov
se

id
el

-2
d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m

0

25

50

75

100

ac
ce

ss
es

 [%
]

e(g) = 0.4%

hits
misses
measured

(b) L1 cache (8-way associative)

Figure 4.10: Cache misses and hits simulated by Dinero IV compared to the mea-
sured cache misses (median of 10 measurements) for the PolyBench
kernels with the prediction error relative to the number of memory
accesses on top.

86 an analytical cache model

ja
co

bi
-1

d
ge

m
m

ge
su

m
m

v
bi

cg
at

ax
trm

m
tri

so
lv

sy
rk

2m
m

m
vt

se
id

el
-2

d
do

itg
en

sy
r2

k
3m

m
gr

am
sc

hm
id

t
du

rb
in

fd
td

-2
d

sy
m

m
ja

co
bi

-2
d

ge
m

ve
r

co
va

ria
nc

e
co

rre
la

tio
n

de
ric

he
flo

yd
-w

ar
sh

al
l

he
at

-3
d

ad
i

lu
dc

m
p lu

nu
ss

in
ov

ch
ol

es
ky

0

10

20

ex
ec

ut
io

n
tim

e
[s

]
4.1s

19.5s

0.1s 0.5s

0.0

0.5

1.0

#p
ie

ce
s

1e5
other
capacity misses
stack distances
#pieces

Figure 4.11: Execution times for the main components of haystack compared
to the number of separately counted pieces for the PolyBench kernels
sorted by execution time.

caches with LRU instead of pseudo-LRU replacement policy. We also do not
consider possible overfetch due to the hardware prefetchers. To quantify
the error, Figure 4.9 shows for every kernel the prediction error relative to
the total number of memory accesses computed by the model. Most kernels
have low single digit prediction errors with a geometric mean error of 0.6%
and 0.2% for the L1 cache and the L2 cache, respectively. Only doitgen and
gramschmidt have prediction errors above 10%.

We also execute the PolyBench kernels with Dinero IV [86] to simulate the
number of cache misses with full associativity and with the associativity of
our test system. Figure 4.10 compares the sum of the simulated compulsory,
capacity, and conflict misses to the measured cache misses shown by black
lines. We observe that the simulation results for the fully associative L1 cache
qualitatively agree with the model. All simulation results are within 0.1%
of the model for the L1 cache and within 3% of the model for the L2 cache
(relative to the total number of memory accesses). We conclude that our
design decisions of padding the innermost dimension of multi-dimensional
arrays, discussed in Section 4.2.1, and modeling only array accesses and
not scalar accesses, discussed in Section 4.1.2, have no significant impact
on the accuracy of the model. The simulation results with test system
associativity eliminate the error for the doitgen kernel. We conclude that
modeling set associativity is only relevant for one of the PolyBench kernels.
The error of the remaining kernels is dominated by other error sources such
as the difference between LRU and pseudo-LRU replacement policy that
are neither considered by the simulator nor by the model.

4.3 evaluation 87

ja
co

bi
-1

d
ge

m
m

ge
su

m
m

v
bi

cg
at

ax
trm

m
tri

so
lv

sy
rk

2m
m

m
vt

se
id

el
-2

d
do

itg
en

sy
r2

k
3m

m
gr

am
sc

hm
id

t
du

rb
in

fd
td

-2
d

sy
m

m
ja

co
bi

-2
d

ge
m

ve
r

co
va

ria
nc

e
co

rre
la

tio
n

de
ric

he
flo

yd
-w

ar
sh

al
l

he
at

-3
d

ad
i

lu
dc

m
p lu

nu
ss

in
ov

ch
ol

es
ky

0

20

40
ex

ec
ut

io
n

tim
e

[s
]

4.0|4.1|4.0s

0.1|0.1|0.1s 0.5|0.5|0.5s

3.1|19.5|50.4s

0.0

0.5

1.0

1.5

2.0

#p
ie

ce
s

1e5
XL overhead
L overhead
M only
#pieces XL
#pieces L
#pieces M

Figure 4.12: Execution times for the extra large (XL), large (L), and medium (M)
problem sizes of PolyBench compared to the number of counted
pieces.

haystack reproduces the simulation results for full associativity and
the associativity mismatch compared to the test system does not dominate
the modeling error.

4.3.3 Performance Overview

We next analyze the performance of haystack and its sensitivity to model
parameters such as the problem size or the number of cache hierarchy
levels.

Two components dominate the model execution time: 1) the stack distance
computation discussed in Section 4.2.1 and 2) the capacity miss counting
discussed in Section 4.2.2. Figure 4.11 shows the cost of the two components
compared to the total model execution times for the PolyBench kernels. The
analysis of most kernels terminates within 5 seconds (jacobi-1d to heat-3d)
while the more expensive kernels take up to 20 seconds (adi to cholesky).
The capacity miss counting dominates the cost of the expensive kernels.
When counting the capacity misses, the partial enumeration and to a lesser
extend the equalization and rasterization, discussed in Section 4.2.3, split the
iteration domain into pieces with affine stack distance polynomials that
support symbolic counting. The solid line in Figure 4.11 shows the number
of counted pieces. We observe that the expensive kernels require more splits
due to non-affine stack distance polynomials and that the counting costs
correlate with the number of pieces.

Other than for a cache simulator, the model execution time is not pro-
portional to the number of memory accesses. Figure 4.12 shows the model

88 an analytical cache model

ja
co

bi
-1

d
ge

m
m

ge
su

m
m

v
bi

cg
at

ax
trm

m
tri

so
lv

sy
rk

2m
m

m
vt

se
id

el
-2

d
do

itg
en

sy
r2

k
3m

m
gr

am
sc

hm
id

t
du

rb
in

fd
td

-2
d

sy
m

m
ja

co
bi

-2
d

ge
m

ve
r

co
va

ria
nc

e
co

rre
la

tio
n

de
ric

he
flo

yd
-w

ar
sh

al
l

he
at

-3
d

ad
i

lu
dc

m
p lu

nu
ss

in
ov

ch
ol

es
ky

0

10

20

ex
ec

ut
io

n
tim

e
[s

]
4.0|4.1|4.1s

0.4|0.5|0.7s0.1|0.1|0.1s

15.2|19.5|23.2sL3 overhead
L2 overhead
L1 only

Figure 4.13: Comparison of the execution times when modeling one, two, or
three cache hierarchy levels.

execution times for the three largest PolyBench problem sizes. The large (L)
and the extra large (XL) problem size perform roughly 100 and 1000 times
more memory access than the medium (M) problem size, respectively. Yet,
the execution times remain constant for a majority of the kernels. Only the
execution times of the expensive kernels increase since the partial enumera-
tion requires more splits. The number of counted pieces, shown by the solid,
dashed, and dotted lines in Figure 4.12, correlate with the cost increase for
the larger problem sizes. Even for the expensive kernels, the increase of
the execution time is not proportional to the number of memory accesses
since we enumerate only the non-affine dimensions of the stack distance
polynomials.

When counting the cache misses for multiple cache hierarchy levels,
we reuse the stack distance polynomials and enumerate the non-affine
dimensions only once. The counting of the individual pieces is the only
step repeated for every cache size. As the Barvinok algorithm [49] supports
parametric counting, we can count the capacity misses parametric in the
cache size which avoids any additional overhead when modeling additional
cache hierarchy levels. We benchmark the non-parametric version of the
code as it runs faster even when modeling three cache hierarchy levels.
Figure 4.13 shows minor increases of the total execution time for two and
three cache hierarchy levels.

The partial enumeration, discussed in Section 4.2.2, combines enumeration
of the non-affine dimensions with symbolic counting of the affine dimen-
sions. Figure 4.14 compares partial enumeration to the explicit enumeration
of all points. When considering only kernels with non-affine stack distance
polynomials, we measure a geometric mean speedup of 12.4x with pieces

4.3 evaluation 89

100

101

sp
ee

du
p

equalization (without rasterization)

 1
.9

x

100

101

sp
ee

du
p

rasterization

 1
.9

x

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rre
la

tio
n

co
va

ria
nc

e
de

ric
he

do
itg

en
du

rb
in

fd
td

-2
d

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
id

t
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d lu
lu

dc
m

p
m

vt
nu

ss
in

ov
se

id
el

-2
d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m
ge

om
. m

ea
n

100

101

102

sp
ee

du
p

partial enumeration

 1
2.

4x

Figure 4.14: Speedup due to equalization, rasterization, and partial enumeration.
All kernels without speedup (gray bars) are not included in the
geometric mean. Only few kernels run fast without any optimization
(gray labels).

90 an analytical cache model

3m
m

ad
i

ch
ol

es
ky

co
rr

el
at

io
n

co
va

ri
an

ce
de

ri
ch

e
ge

m
ve

r
lu lu

dc
m

p
m

vt
nu

ss
in

ov

0d-affine 3 4 3 7

1d-affine 7 11 3 3 6 4 48 52 2 18

2d-affine 1 59 85 1 1 27 20 48

Table 4.1: Number of non-affine polynomials with zero, one, or two affine di-
mensions.

that contain 4,400 points on average. The more points per piece the bigger
the efficiency gain due to our hybrid counting approach. We still require
explicit enumeration for all non-affine polynomials without affine dimen-
sion. Table 4.1 shows that most non-affine polynomials have at least one
affine dimension. For these polynomials, partial enumeration reduces the
asymptotic complexity of the capacity miss counting.

As discussed by Section 4.2.3, the floor elimination techniques simplify
non-affine stack distance polynomials with less splits than partial enumera-
tion but are less generic and do not apply to all polynomials. Figure 4.14

shows the speedups for equalization compared to a baseline without equal-
ization and rasterization. We disable both techniques since otherwise ras-
terization optimizes the polynomials normally handled by equalization. We
observe a geometric mean speedup of 1.9x for the kernels that benefit. Fig-
ure 4.14 also compares the speedups for rasterization to a baseline without
rasterization. We measure a geometric mean speedup of 1.9x for cholesky, lu,
ludcmp, nussinov, and seidel-2d. Overall the floor elimination techniques
reduce the number of counted pieces by more than 80% which results in
bigger pieces with better counting performance.

A majority of the kernels perform well independent of problem size and
number of cache hierarchy levels. Yet, the model execution times for kernels
with non-affine polynomials are higher and problem size dependent. We
mitigate this with efficient enumeration and floor elimination techniques.

4.3 evaluation 91

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rre
la

tio
n

co
va

ria
nc

e
do

itg
en

du
rb

in
dy

np
ro

g
fd

td
-2

d
fd

td
-a

pm
l

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
id

t
ja

co
bi

-1
d

ja
co

bi
-2

d lu
m

vt
re

g_
de

te
ct

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk
tri

so
lv

trm
m

 g
eo

m
. m

ea
n

100

101

102

sp
ee

du
p

 2
1x

1 core vs 1024 cores (PolyCache)

(a) PolyCache

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rre
la

tio
n

co
va

ria
nc

e
de

ric
he

do
itg

en
du

rb
in

fd
td

-2
d

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
id

t
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d lu
lu

dc
m

p
m

vt
nu

ss
in

ov
se

id
el

-2
d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m
 g

eo
m

. m
ea

n

100

101

102

103

sp
ee

du
p 3

70
x

(b) Dinero IV

Figure 4.15: Speedup of haystack compared to PolyCache and Dinero for the
PolyBench 3.2 and 4.2.1 kernels, respectively.

92 an analytical cache model

4.3.4 Comparison to PolyCache and Dinero

The polyhedral cache model PolyCache [97] and the cache simulator
Dinero IV [86] are alternative cache modeling tools. We compare their
performance to haystack .

PolyCache models set associative caches with an LRU replacement policy.
We compare to the published results that show the performance for the
default problem size of PolyBench 3.2 and adapt the configuration of our
model to match the cache sizes of the published experiments (32KiB of L1

cache and 256KiB of L2 cache). The only difference is that we model fully
associative caches instead of 4-way associative caches. Figure 4.15a shows
an average speedup of 21x (geometric mean) of haystack compared to
PolyCache even though PolyCache computes the cache misses for all 1024

cache sets in parallel.
Dinero IV is a trace driven cache simulator which means the expected

simulation cost are proportional to the number of memory accesses (Fig-
ure 4.1). Figure 4.15b shows the speedup of haystack compared to
the Dinero IV simulation times that include the trace generation with
QEMU [98]. Dinero IV simulates the associativity of our test system while
we model fully associative caches. As simulation and model run single
core, the execution times are comparable. We measure an average speedup
of 370x (geometric mean) for the large problem size that would be even
bigger for the extra large problem size. Simulating full associativity further
increases the average simulation time by factor 2.2x (geometric mean).

PolyCache models cache behavior in-depth, which allows developers to
analyze the effects of set associativity and different write policies, but its
high accuracy can make it costly to compute. Dinero IV works for small
problem sizes but the cost increase for realistic problem sizes is dramatic.

4.3.5 Performance for Tiled Codes

A tiled code decomposes the iteration domain into tiles and executes tile-
by-tile to improve the spacial locality. Tiling can double the loop nest depth
which allows us to evaluate our approach for more complex codes. At the
same time, estimating the benefits of tiling or even selecting optimal tile
sizes is an important application for a cache model.

We employ the PPCG [15] source-to-source compiler to tile all PolyBench
kernels with tile size 16. We limit the sum of all scheduling coefficients
to one and disable loop fusion to obtain a rectangular tiling without loop

4.4 related work 93

240

260
256.5s

ja
co

bi
-1

d
ge

su
m

m
v

m
vt

se
id

el
-2

d
at

ax
du

rb
in

bi
cg

ge
m

m
ge

m
ve

r
sy

rk
de

ric
he

trm
m

tri
so

lv
2m

m
gr

am
sc

hm
id

t
sy

r2
k

3m
m

do
itg

en
co

va
ria

nc
e

fd
td

-2
d

sy
m

m
co

rre
la

tio
n

ja
co

bi
-2

d
flo

yd
-w

ar
sh

al
l

lu
dc

m
p

ch
ol

es
ky

nu
ss

in
ov ad

i lu
he

at
-3

d

0

20

40

0.4s

16.8s
7.3s

39.3s
ex

ec
ut

io
n

tim
e

[s
] total

capacity misses
stack distances

Figure 4.16: Execution times for the main components of haystack for tiled
versions of the PolyBench kernels. A few kernels (gray labels) have
no rectangular tiling.

skewing (time-tiling). All kernels except for jacobi-1d, durbin, seidel-2d, and
nussinov have a rectangular tiling. Figure 4.16 shows the model execution
times for the tiled kernels. Tiling makes the cache miss computation more
expensive. Especially the stack distance computation of the head-3d kernel
runs long. We attribute the cost increase to the more complex iteration
domains and memory access patterns.

Tiling increases the model execution times but for a majority of the
kernels the cache miss computation still takes only a few seconds.

4.4 related work

Cache behavior analysis is a prerequisite when tuning for the memory
hierarchy. We distinguish three main approaches: 1) simulation, 2) profiling,
and 3) analytical modeling.

simulators Dinero [86] and CASPER [87] are examples of trace-based
cache simulators that compute the cache misses for the full memory hierar-
chy. Sniper [88] and gem5 [89] have a broader scope and simulate the full
system including the caches. All simulators execute the program to count
the cache misses which means the simulation costs are proportional to the
number of executed memory accesses.

profiling Multiple works discuss the analysis of memory access traces
to extract locality metrics. Mattson et al. [82] compute the stack distance

94 an analytical cache model

using a linked list and derive the cache hit rate for different cache sizes.
Tree based implementations [99–101] reduce the cost of the stack distance
computation. Kim et al. [102] apply hashing and approximation to increase
the efficiency. Ding et al. [84] discuss tree based approximate algorithms
that reduce the time and space complexity of the stack distance computation
and predict the stack distance histogram for arbitrary problem sizes given
training inputs for few different problem sizes. Eklov et al. [103] sample the
reuse distance for a few memory accesses and employ statistics to estimate
stack distances and cache miss ratio. Xiang et al. [85] discuss five different
locality metrics and show how to derive miss rate and reuse distance given
the a single measure called average footprint which they compute with
an efficient linear time algorithm [104]. A disadvantage of the profiling
approaches is the acquisition and the handling of the large program traces.
Chen et al. [105] sample the reuse time during compilation which allows
them to estimate the cache miss ratio of complex loop nests.

analytical models Agarwal et al. [106] develop an analytical model
that uses parameters extracted from the program trace. Harper et al. [107]
model set associative caches for regular loop nests. Cost models [14, 36,
108] allow compilers to decide if data-locality transformations are beneficial.
All of these models only approximate the number of cache misses.

Ferdinand et al. [109] use abstract interpretation to model set associative
LRU caches. Model-checking [110, 111] increases the accuracy of this analy-
sis that distinguishes always hit, always miss, and not classified. Touzeau et
al. [112] show how to attain high accuracy without costly model-checking.
The abstract interpretation approaches are complementary to our cache
model since they support dynamic control flow but approximate the cache
misses of loop nests by classifying all instances of a memory access at once.

Ghosh et al. [113] derive cache miss equations to count the cache misses
for perfect loop nests with data dependencies represented by reuse vec-
tors [27]. Assuming an LRU replacement policy, a cache miss occurs if the
number of solutions to a cache miss equality exceeds the cache associativity.
Counting the solutions for every point of the iteration domain is expensive.
Vera and Xue et al. [114, 115] thus sample the iteration domain to speedup
the cache miss computation which allows them to perform approximate
whole-program analysis. Cascaval et al. [116] compute the stack distance
histogram symbolically for perfect loop nests with uniform data dependen-
cies. They model fully associative caches with an LRU replacement policy
and use statistics to model set associative caches. Chatterjee et al. [117] use

4.5 summary of the approach 95

Presburger formulas to express the set of compulsory and capacity misses
of imperfect loop nests for associative caches. At the time, their approach
was limited to small problem sizes and low associativity since the computa-
tion of analytical results for realistic hardware and even small benchmarks
kernels was prohibitively complex. While Beyles et al. [90] did not address
the cache miss problem, they use analytically computed stack distance to
generate cache hints at runtime. Their stack distance computation, extended
by our cache miss counting technique for non-affine polynomials, is the
foundation of our cache model. PolyCache [97] presented the first analytical
approach fast enough to compute the cache behavior of static control pro-
grams for interesting benchmark kernels and realistic hardware parameters.
Its analytical model relates for every cache set successive accesses of distinct
cache lines and repeatedly removes the shortest relations to model set asso-
ciativity with LRU replacement policy. While PolyCache also uses symbolic
counting techniques to avoid a complete enumeration of the computation,
its complexity increases with high associativity. Our work provides a fast
analytical model for fully associative caches and shows that fully associative
models introduce only small errors compared to measurements on actual
hardware.

4.5 summary of the approach

As memory behavior depends on the cache state, understanding the cost
of memory accesses is much more difficult than understanding the cost of
arithmetic instructions. With haystack , we close this gap by providing
developers with accurate information about the interaction of memory
accesses with the large and deep cache hierarchy of modern processors.
haystack allows the programmer to predict memory access costs accu-
rately and to develop programs well optimized for the memory hierarchy.
When striving for ultimate performance, both a good baseline and an accu-
rate surrogate model accelerates empirical tuning. As a result, cache-aware
program optimization becomes accessible.

Responsiveness is key for the adoption of any cache model. We demon-
strate excellent often problem size independent response times that for the
first time make analytical cache modeling practical. In addition, the cache
size independent costs allow our model to easily scale to future hardware.
We show the practicality of our deliberate decision against high fidelity and
in favor of a generic fully associative cache model. The proposed model
is robust to memory layout choices and hardware implementation details

96 an analytical cache model

and yet reaches very high accuracy on real hardware across a wide range
of computations.

5
A C O M M U N I C AT I O N - H I D I N G P R O G R A M M I N G M O D E L

Today we typically target GPU clusters using two programming models
that separately deal with inter-node and single-node parallelization. For ex-
ample, we may use MPI [118] to move data between nodes and CUDA [119]
to implement the on-node computation. MPI provides point-to-point com-
munication and collectives that allow synchronizing concurrent processes
executing on different cluster nodes. Using a fork-join model, CUDA allows
offloading compute kernels from the host to the massively parallel de-
vice. MPI-CUDA programs usually combine the two programming models
by alternating between on-node kernel invocations and inter-node com-
munication. While being functional, this approach also entails serious
disadvantages.

The main disadvantage is that application developers need to know the
concepts of both programming models and understand several intricacies
to work around their inconsistencies. For example, the MPI software stack
in meantime has been adapted to support direct device-to-device [120]
data transfers. However, the control path remains on the host which causes
frequent host-device synchronizations and redundant data structures on
host and device.

On the other hand, the sequential execution of on-node computation and
inter-node communication inhibits efficient utilization of the costly compute
and network hardware. To mitigate this problem, application developers
can implement manual overlap of computation and communication [10,
39]. In particular, there exist various approaches [121, 122] to overlap the
communication with the computation on an inner domain that has no inter-
node data dependencies. However, these code transformations significantly
increase code complexity which results in reduced real-world applicability.

High-performance system design often involves trading off sequential
performance against parallel throughput. The architectural difference be-
tween host and device processors perfectly showcases the two extremes of
this design space. Both architectures have to deal with the latency of hard-
ware components such as memories or floating point units. While the host
processor employs latency minimization techniques such as prefetching
and out-of-order execution, the device processor employs latency hiding
techniques such as over-subscription and hardware threads.

97

98 a communication-hiding programming model

To avoid the complexity of handling two programming models and to
apply latency hiding at cluster scale, we introduce the dcuda (distributed
CUDA) programming model. We obtain a single coherent software stack
by combining the CUDA programming model with a significant subset
of the remote memory access capabilities of MPI [123]. More precisely,
a global address space and device-side put and get operations enable
transparent remote memory access using the high-speed network of the
cluster. We thereby make use of over-decomposition to over-subscribe
the hardware with spare parallelism that enables automatic overlap of
remote memory accesses with concurrent computation. To synchronize the
program execution, we additionally provide notified remote memory access
operations [124] that after completion notify the target via notification
queue.

We evaluate the dcuda programming model using a stencil code, a
particle simulation, and an implementation of sparse matrix-vector multi-
plication. To compare performance and usability, we implement dcuda

and MPI-CUDA versions of these mini-applications. Two out of three
mini-applications show excellent automatic overlap of communication and
computation. Hence, application developers not only benefit from the con-
venience of device-side remote memory access. More importantly, dcuda

enables automatic overlap of computation and communication without
costly, manual code transformations. As dcuda programs are less network
latency sensitive, our development might even motivate more throughput
oriented network designs. In brief, we make the following contributions:

• We implement the first device-side communication library that pro-
vides MPI like remote memory access operations and target notifica-
tion for GPU clusters.

• We design the first GPU cluster programming model that makes use
of over-subscription and hardware threads to automatically overlap
inter-node communication with on-node computation.

5.1 programming model

The CUDA programming model and the underlying hardware architecture
have proven excellent efficiency for parallel compute tasks. To achieve high
performance, CUDA programs offload the computation to an accelerator
device with many throughput optimized compute cores that are over-
subscribed with many more threads than they have execution units. To

5.1 programming model 99

overlap instruction pipeline latencies, in every clock cycle the compute cores
try to select among all threads in flight some that are ready for execution.
To implement context switches on a clock-by-clock basis, the compute cores
split the register file and the scratchpad memory among the threads in
flight. Hence, the register and scratchpad utilization of a code effectively
limit the number of threads in flight. However, having enough parallel
work is of key importance to fully overlap the instruction pipeline latencies.
Little’s law [125] states that this minimum required amount of parallel work
corresponds to the product of bandwidth and latency. For example, we need
200kB of data on-the-fly to fully utilize a device memory with 200GB/s
bandwidth and 1µs latency. Thereby, 200kB translate to roughly 12,000

threads in flight each of them accessing two double precision floating point
values at once. We show in Section 5.3 that the network of our test system
has 6GB/s bandwidth and 19µs latency. We therefore need 114kB of data
or roughly 7,000 threads in flight to fully utilize the network. Based on the
observation that typical CUDA programs make efficient use of the memory
bandwidth, we conclude there should be enough parallelism to overlap
network operations. Consequently, we suggest to use hardware supported
overlap of computation and communication to program distributed memory
systems.

5.1.1 Distributed Memory

One main challenge of distributed memory programming is the decompo-
sition and distribution of program data to the different memories of the
machine. Currently, most distributed memory programming models rely
on manual domain decomposition and data synchronization since handling
distributed memory automatically is hard.

Today, MPI is the most widely used distributed memory programming
model in high-performance computing. Many codes thereby rely on two
sided communication that simultaneously involves sender and receiver. This
combination of data movement and synchronization is a bad fit for extend-
ing the CUDA programming model. On the one hand, CUDA programs
typically perform many data movements in the form of device memory
accesses before synchronizing the execution using global barriers. On the
other hand, CUDA programs over-subscribe the device by running many
more threads than there are hardware execution units. As sender and re-
ceiver might not be active at the same time, two sided communication is
hardly practical. To avoid active target synchronization, MPI alternatively

100 a communication-hiding programming model

provides one sided put and get operations that implement remote memory
access [123] using a mapping of the distributed memory to a global address
space. We believe that remote memory access programming is a natural
extension of the CUDA programming model.

Finally, programming large distributed memory machines requires more
sophisticated synchronization mechanisms than the barriers implemented
by CUDA. We propose a notification based synchronization infrastruc-
ture [124] that after completion of the put and get operations enqueues
notifications on the target. To synchronize, the target waits for incoming
notifications enqueued by concurrent remote memory accesses. This queue
based system enables to build linearizable semantics.

5.1.2 Combining MPI & CUDA

CUDA programs structure the computation using kernels, which embody
phases of concurrent execution followed by result communication and
synchronization. More precisely, kernels write to memory with relaxed
consistency and only after an implicit barrier synchronization at the end
of the kernel execution the results become visible to the entire device. To
expose parallelism, kernels use a set of independent thread groups called
blocks that provide memory consistency and synchronization among the
threads of the block. The blocks are scheduled to the different compute cores
of the device. Once a block is running its execution cannot be interrupted as
todays devices do not support preemption [126]. While each compute core
keeps as many blocks in flight as possible, the number of concurrent blocks
is constraint by hardware limits such as register file and scratchpad memory
capacity. Consequently, the block execution may be partly sequential and
synchronizing two blocks might be impossible as one runs after the other.

MPI programs expose parallelism using multiple processes called ranks
that may execute on the different nodes of a cluster. Similar to CUDA,
we structure the computation in phases of concurrent execution followed
by result communication and synchronization. In contrast to CUDA, we
write the results to a distributed memory and we use either point-to-point
communication or remote memory accesses to move data between the
ranks.

Todays MPI-CUDA programs typically assign one rank to every de-
vice and whenever necessary insert communication in between kernel
invocations. However, stacking the communication and synchronization
mechanisms of two programming models makes the code unnecessarily

5.1 programming model 101

MPI-CUDA (traditional) dCUDA

1

2 3

1

4

2

4

3

1

2

1

3

4

3

4

2

4

3

1

2

1

1

2

3

4

3

1

2 3

1

4

2

4

3

1

2

1

3

4

2

2

1

1

3

4

4

3
1

2

4

3

4

device compute core active block

Figure 5.1: Block scheduling for MPI-CUDA and dcuda.

complex. Therefore, we suggest to combine the two programming models
into a single coherent software stack.

dcuda programs implement the application logic using a single CUDA
kernel that performs explicit data exchange during execution. To enable
synchronization, we limit the over-subscription to the maximal number
of concurrent hardware threads supported by the device. To move data
between blocks no matter if they run on the same or on remote devices,
we use device-side remote memory access operations. We identify each
block with a unique rank identifier that allows to address data on the entire
cluster. We map MPI ranks to CUDA blocks, as they represent the most
coarse-grained execution unit that benefits from automatic latency overlap
due to hardware threading. Hereafter, we use the terms rank and block
interchangeably. To synchronize the rank execution, we implement remote
memory access operations with target notification. An additional wait
method finally allows to synchronize the target execution with incoming
notifications.

Figure 5.1 compares the execution of an MPI-CUDA program to its
dcuda counterpart. We illustrate the program execution on two dual-core
devices each of them over-subscribed with two blocks per core. We indicate
communication using black arrows and synchronization using black lines.
Both programs implement sequential compute and communication phases.
While the dcuda program uses over-subscription to automatically overlap

102 a communication-hiding programming model

1 __shared__ dcuda_context ctx;

2 dcuda_init(param, ctx);

3 dcuda_comm_size(ctx, DCUDA_COMM_WORLD, &size);

4 dcuda_comm_rank(ctx, DCUDA_COMM_WORLD, &rank);

5

6 dcuda_win win, wout;

7 dcuda_win_create(ctx, DCUDA_COMM_WORLD,

8 &in[0], len + 2 * jstride, &win);

9 dcuda_win_create(ctx, DCUDA_COMM_WORLD,

10 &out[0], len + 2 * jstride, &wout);

11

12 bool lsend = rank - 1 >= 0;

13 bool rsend = rank + 1 < size;

14

15 int from = threadIdx.x + jstride;

16 int to = from + len;

17

18 for (int i = 0; i < steps; ++i) {

19 for (int idx = from; idx < to; idx += jstride)

20 out[idx] = -4.0 * in[idx] +

21 in[idx + 1] + in[idx - 1] +

22 in[idx + jstride] + in[idx - jstride];

23

24 if (lsend)

25 dcuda_put_notify(ctx, wout, rank - 1,

26 len + jstride, jstride, &out[jstride], tag);

27 if (rsend)

28 dcuda_put_notify(ctx, wout, rank + 1,

29 0, jstride, &out[len], tag);

30

31 dcuda_wait_notifications(ctx, wout,

32 DCUDA_ANY_SOURCE, tag, lsend + rsend);

33

34 swap(in, out); swap(win, wout);

35 }

36

37 dcuda_win_free(ctx, win);

38 dcuda_win_free(ctx, wout);

39 dcuda_finish(ctx);

Figure 5.2: Stencil program with halo exchange communication.

5.1 programming model 103

out

in

memory 1 memory 2

halo overlapwindow

Figure 5.3: Overlapping windows of four ranks in two memories.

the communication and compute phases of competing blocks, the MPI-
CUDA program leaves this optimization potential unused.

5.1.3 Example

Figure 5.2 shows an example program that uses dcuda to implement a
two-dimensional stencil computation. Using pointers adjusted to rank local
memory, the program reads from an "in" array and writes to an "out" array.
To distribute the work, the program performs a one-dimensional domain
decomposition in the j-dimension. To satisfy all data dependencies, in
every iteration the program exchanges one halo line with the left and right
neighbor rank. For illustration purposes, the program listing highlights all
methods and types implemented by the dcuda framework. The calling
conventions require that all threads of a block call the framework methods
collectively with the same parameter values. To convert the example into
a working program, we need additional boilerplate initialization logic
that, among other things, performs the input/output and the domain
decomposition.

On line 2, we initialize the context object using the "param" kernel pa-
rameter that contains framework information such as the notification queue
address. The context object stores the shared state used by the framework
methods.

On lines 3–4, we get size and identifier of the rank with respect to
the world communicator. A communicator corresponds to a set of ranks
that participate in the computation. Each rank has a unique identifier
with respect to this communicator. We currently provide two predefined
communicators that either represent all ranks of the cluster called "world
communicator" or all ranks of the device called "device communicator".

104 a communication-hiding programming model

On lines 6–10, we create two windows that provide remote memory
access to the "in" and "out" arrays. When creating a window all participat-
ing ranks register their own local memory range with the window. The
individual window sizes may differ and windows of shared memory ranks
might overlap. We use windows to define a global address space where
rank, window, offset tuples denote global distributed memory addresses.
Figure 5.3 illustrates the overlapping windows of the example program.
Each cell represents the memory of one j-position that stores "jstride" values
in the i-dimension. Colors mark cells that belong to the domain boundaries
of the rank. More precisely, the windows of shared memory ranks overlap
and the windows of distributed memory ranks allocate additional halo cells
that duplicate the domain boundaries.

On lines 24–30, we move the domain boundaries of the "out" array to the
windows of the neighbor ranks. We address the remote memory using the
window, rank, and offset parameters. Once the data transfer completes, the
put operation additionally places a notification in the notification queue
of the target rank. We can mark the notification with a tag that, in case
of more complex communication patterns, allows disentangling different
notification sources.

On lines 31–32, we wait until the notification of the neighboring ranks
arrive in the notification queue. Our program waits for zero, one, or two
notifications depending on the values of the lsend and rsend flags. We
consider only notifications with specific window, rank, and tag values. To
match multiple notifications at once, we can optionally use wildcard values
that allow us to match notifications with any window, rank, or tag value.

On lines 37–39, we free the window objects to cleanup after the program
execution. Overall, our implementation closely follows the MPI remote
memory access specification [123]. On top of the functionality demonstrated
by the example, we implement the window flush operation that allows
to wait until all pending window operations are done. Furthermore, we
cannot only put data to remote windows but also get data from remote
windows. Finally, the barrier collective allows to globally synchronize the
rank execution.

5.1.4 Discussion

Compared to MPI-CUDA, dcuda slightly simplifies the code by moving
the communication control to the device. For example, we have direct access
to the size information of dynamic data structures and there is less need for

5.2 implementation 105

separate pack kernels that bundle data for the communication phase. While
the distributed memory handling causes most of the code complexity for
both programming models, with dcuda we remove one synchronization
layer and implement everything with a distributed memory view. We may
thereby generate redundant put and get operations in shared memory, but
our runtime can optimize them out.

5.2 implementation

Moving the MPI functionality to the device-side raises multiple challenging
implementation questions. To our knowledge so far there is no device-side
MPI library, which might be partly attributed to the fact that calling MPI
from the kernel conflicts with multiple CUDA mantras. On the one hand, the
weak consistency memory model prevents shared memory communication
during kernel execution. On the other hand, the missing block scheduling
guarantees complicate the block synchronization.

5.2.1 Architecture Overview

Our research prototype consists of a device-side library that implements
the actual programming interface and a host-side runtime system that
controls the communication. More precisely, we run one library instance
per rank and one runtime system instance per device. Connected via MPI,
the runtime system instances control data movement and synchroniza-
tion of any two ranks in the system. However, the data movement itself
either takes place locally on the device or using direct device-to-device
communication [120].

While a design without host involvement seems desirable, existing at-
tempts to control the network interface card directly from the device are
not promising [127] in terms of performance and system complexity. Fur-
thermore, the host is a good fit for the synchronization required to order
incoming notifications from different source ranks. To avoid device-side syn-
chronization, we go even one step further and loop device local notifications
through the host as well.

Moving data between ranks running on the same device requires memory
consistency. In CUDA atomics are the only coherent memory operations at
device-level. However, we did not encounter memory inconsistencies on
Kepler devices with disabled L1 cache (which is the default setting). When

106 a communication-hiding programming model

MPI

context

logging

queue

command

queue

ack

queue

notification

queue

h
o

st
d

e
v

ic
e m

o
re

 b
lo

c
k
s

event handler

device library

block manager

Figure 5.4: Architecture overview of the dcuda runtime system.

polling device memory, we additionally use the volatile keyword to make
sure the compiler issues a load instruction for every variable access.

To implement collectives such as barrier synchronization [128], all par-
ticipating ranks have to be scheduled actively. Otherwise, the collective
might deadlock. As discussed in Section 5.1.2, hardware constraints, such
as the register file size and the lack of preemption, result in sequential
block execution once we exceed the maximal number of concurrent hard-
ware threads. Our implementation thus limits the number of blocks to the
maximum the device can have in flight at once. However, we might still
encounter starvation as there are no guarantees regarding the hardware
thread scheduling implemented by the compute cores. For example, the
compute cores might only run the threads that are waiting for notifications
and pause the threads that send notifications.

Figure 5.4 illustrates the software architecture of the dcuda runtime
system. A host-side event handler starts and controls the execution of
the actual compute kernel. To communicate with the blocks of the run-
ning kernel, we create separate block manager instances that interact with
the device-side library components using queues implemented as circular
buffers. The event handler dispatches incoming remote memory access
requests to the matching target block manager and continuously invokes
the block manager instances to process incoming commands and pending
MPI requests. More precisely, using the command queue the device-side
library triggers block manager actions such as window creation, notified
remote memory access, and barrier synchronization. To guarantee progress
using a single worker thread, the block manager implements these actions

5.2 implementation 107

origin

block manager

origin

device library

target

event handler

target

block manger

target

device library

info

info

info

notification

flush id

datafree info

post receive

store info

store info

free info

1

2

3

4

5 6

7

Figure 5.5: Sequence diagram of a notified distributed memory put.

using non-blocking MPI operations. Once the pending MPI request sig-
nals completion, the block manager notifies the device-side library using
separate queues to acknowledge commands and to post notifications. An
additional logging queue allows to print debug information during kernel
execution. The device-side library uses a context object to store shared state
such as queue or window information. Most of the times, the device-side
library initiates actions on the host and waits for their completion. However,
all remote memory accesses to shared memory ranks are directly executed
on the device. We thereby perform no copy if source and target address
of the remote memory access are identical, which commonly happens for
overlapping shared memory windows. Furthermore, the device-side library
implements the notification matching.

5.2.2 Communication Control

Figure 5.5 shows the end-to-end control flow for a distributed memory
put operation with target notification. Initially, the origin device-library
assembles a tuple containing data pointer, size, target rank, target window
and offset, tag, and flush identifier of the transfer and 1) sends this meta
information to the associated block manager. Using two non-blocking sends,
2) the origin block manager forwards the meta information to the target
event handler and 3) copies the actual data directly from the origin device
memory to the target device memory. Once the MPI requests signal that
the send buffers are not in use anymore, 4) the origin block manager frees
the meta information and updates the flush counter on the device. Using
pre-posted receives, the target event handler waits for meta information
arriving from an arbitrary origin rank and 5) immediately forwards the

108 a communication-hiding programming model

incoming meta information to the associated target block manager. Finally,
6) the target block manager posts a non-blocking receive for the actual data
transfer and 7) after completion notifies the target device-side library and
frees the meta information.

The control flow for shared memory is simpler. Initially, the origin device-
side library performs the actual data transfer. We thereby perform no copy
in case source and target pointers are identical. Finally, we notify the target
device-side library via the origin block manager.

The device-side library uses a counter to generate unique window identi-
fiers. These counters get out of sync whenever only a subset of the ranks
participate in the window creation. The block manager thus uses a hash
map to translate the device-side identifiers to globally valid identifiers.
Similarly, we use a counter to generate unique flush identifiers for remote
memory access operations. The block manager keeps a history of the pro-
cessed remote memory access operations and updates the device about
the progress using a single variable set to the flush identifier of the last
processed remote memory access operation whose predecessors are done
as well.

5.2.3 Performance Optimization

As an efficient host-device communication is of key importance for the
performance of our runtime system, we spend considerable effort in op-
timizing queue design and notification matching. Due to the Little’s law
assumption, we rather focus on throughput than on latency optimizations.

memory mapping To move large amounts of data between host and
device, the copy methods provided by the CUDA runtime are the method
of choice. However, the DMA engine setup causes a considerable startup
latency. Alternatively, we can directly access the device memory mapped in
the address space of the host memory and vice versa. This approach is a
much better fit for the small data transfers prevalent in queue operations.
While CUDA out of the box provides support to map host memory in the
device address space, we can map device memory in the host address space
using an additional kernel module [129].

queue design On todays machines the PCI-Express link between host
and device is a major communication bottleneck. We therefore employ a
circular buffer based queue design that provides an enqueue operation with

5.2 implementation 109

an amortized cost of a single PCI-Express transaction. To facilitate efficient
polling, we place the circular buffer including its tail pointer in receiver
memory. For example, Figure 5.4 shows that we allocate the notification
queue in device memory and the command queue in host memory. To
implement the enqueue operation using a single PCI-Express transaction,
we embed an additional sequence number with every queue entry. The
receiver then determines valid queue entries using the sequence number
instead of the head pointer. Furthermore, we use a credit-based system
to keep track of the available space. The sender starts with a free counter
that is set to the queue size. With every enqueue operation, we decrement
the free counter until it is zero. To recompute the available space, we
then load the tail pointer from the receiver memory. The number of free
counter updates depends on queue size and queue utilization. Overall,
every enqueue operation requires one PCI-Express transaction to write the
queue entry including its sequence number and an occasional PCI-Express
transaction to update the free counter. We thereby assume queue entry
accesses using a single vector instruction are atomic. On our test system,
we never encountered inconsistencies when limiting the queue entry size to
the vector instruction width.

notification matching The notification matching is the most com-
plex device-side library component. Two methods allow us to wait or test
for a given number of incoming notifications. We can thereby filter the
notifications depending on window identifier, source rank, and tag [124].
The matching happens in the order of arrival and after completion we
remove the matched notifications. To fill potential gaps, we additionally
compress the notification queue starting from the tail. Our implementation
performs the matching using eight threads that work on separate four byte
notification chunks. We read incoming notifications using coalesced reads
and once the sequence number matches each thread compares the assigned
notification chunk to a thread private query value. We initialize the query
value depending on the thread index position with the window identifier,
the source rank, the tag, or with a wild card value. To determine if the
matching was successful, we reduce the comparison result using shuffle
instructions. In case of a mismatch each thread buffers his notification
chunk in a stack-allocated array. Otherwise, we increment a counter that
keeps track of the successful matches. Finally, we remove the processed
notification from the queue and repeat the procedure until we have enough
successful matches. Once this is done, we copy the mismatched notifications

110 a communication-hiding programming model

back from the stack-allocated array to the queue. We thereby assume the
number of mismatched notifications is low enough for the stack-allocated
array to fit in the L1 cache.

5.2.4 Discussion

To make our programming model production ready, additional modifica-
tions may be necessary. For example, we partly rely on undocumented
hardware behavior and we could further optimize the performance. To de-
velop a more reliable and efficient implementation, we suggest the following
improvements to the CUDA environment.

scheduling of computation & communication Our program-
ming model packs the entire application logic in a single kernel. As dis-
cussed in Section 5.2.1, this approach conflicts with the scheduling guar-
antees and the weak memory consistency model of CUDA. For example,
we might encounter starvation because the scheduler does not consider the
ranks that are about to send notifications, or we might work with outdated
data since there is no clean way to guarantee device-level memory consis-
tency during kernel execution. We suggest an execution model with one
master thread per rank that handles the communication using remote mem-
ory access and notifications. Similar to the dynamic parallelism feature of
CUDA, the master thread additionally launches parallel compute phases in
between the communication phases. To guarantee memory consistency, our
execution model clears the cache before every compute phase. To prevent
starvation, we suggest a yield call that guarantees execution time for all
other ranks running on the same processing element. Hence, the master
thread can yield the other ranks while waiting for incoming notifications.
Currently, the compute phase with maximal register usage limits the avail-
able parallelism for the entire application. With the proposed execution
model, we can adapt the number of threads for every compute phase and
increase the overall resource usage.

notification system An effective and low overhead notification sys-
tem is crucial for the functioning of our programming model. Despite our
optimization efforts, the current notification matching discussed in Sec-
tion 5.2.3 increases register pressure and code complexity and consequently
may impair the application performance. We suggest to at least partly inte-
grate the notification infrastructure with the hardware. On the one hand, the

5.3 evaluation 111

network may send data and notifications using a single transmission. Low
level interfaces, such as uGNI [130] or InfiniBand Verbs, already provide the
necessary support. On the other hand, the device may provide additional
storage and logic for the notification matching or hardware support for
on-chip notifications.

communication control While we move data directly from device-
to-device, we still rely on the host to control the communication. We expect
that moving this functionality to the device improves the overall perfor-
mance of the system. Mellanox and NVIDIA recently announced a technol-
ogy called GPUDirect Sync [131] that will enable device-side communication
control.

5.3 evaluation

To analyze the performance of our programming model, we implement a set
of microbenchmarks that measure latency, bandwidth, and the overlap of
computation and communication for compute and memory bound tasks. We
additionally compare the performance of mini-applications implemented
using both dcuda and MPI-CUDA.

5.3.1 Experimental Setup & Methodology

We perform all our experiments on the Greina compute cluster at the
Swiss National Supercomputing Center CSCS. In total, Greina provides ten
Haswell nodes equipped with one Tesla K80 GPU per node and connected
via 4x EDR Infiniband. Furthermore, we use version 7.0 of the CUDA
toolkit, the CUDA-aware version 1.10.0 of OpenMPI, and the gdrcopy
kernel module [129]. We run all experiments using a single GPU per node
with default device configuration. In particular, auto boost remains active
which makes device-side time measurements unreliable.

To measure the performance of dcuda and MPI-CUDA codes, we time
the kernel invocations on the host-side and collect the maximum execution
time found on the different nodes. In contrast, dcuda programs pack
the application code in a single kernel invocation that also contains a fair
amount of setup code such as the window creation. To get a fair comparison,
we therefore time multiple iterations and subtract the setup time estimated
by running zero iterations. Furthermore, we repeat each time measurement
multiple times and compute the median and the nonparametric confidence

112 a communication-hiding programming model

1057.9MB/s

5724.6MB/s

distributed memory

shared memory

0

2000

4000

6000

0 100 200 300 400 500

packet size [kB]

b
a
n
d
w

id
th

 [
M

B
/s

]

Figure 5.6: Put-bandwidth of shared and distributed memory ranks.

interval. More precisely, we perform 20 independent measurements of 100

and 5,000 iterations for the mini-applications and the microbenchmarks,
respectively. Our plots visualize the 95% confidence interval using a gray
band.

The dcuda programming model focuses on multi-node performance. To
eliminate measurement noise caused by single-node performance variations,
we use the same launch configuration for all kernels (208 blocks per device
and 128 threads per block), and we limit the register usage to 63 registers
per thread which guarantees that all 208 blocks are in flight at once.

5.3.2 Microbenchmarks

To evaluate latency and bandwidth of our implementation, we run a ping-
pong benchmark that in every iteration moves a data packet forth and
back between two ranks using notified put operations. We either place the
two ranks on the same device and communicate via shared memory, or
we place the ranks on different devices and communicate via the network.
We then derive the latency as half the execution time of a single ping-
pong iteration and divide the packet size by the latency to compute the
bandwidth. Figure 5.6 plots the put-bandwidth for shared and distributed
memory ranks as function of the packet size. The low put-bandwidth of
shared memory ranks can be explained by the fact that a single block
cannot saturate the memory interface of the device. However, in real-world
scenarios hundreds of blocks are active concurrently resulting in high

5.3 evaluation 113

compute & exchange

compute only

halo exchange
500

1000

50 100 150 200

of Newton iterations per exchange

e
xe

c
u
ti
o
n
 t
im

e
 [
m

s
]

Figure 5.7: Overlap for square root calculation (Newton-Raphson).

aggregate bandwidth. For empty data packets, we measure a latency of
7.8µs and 19.3µs for shared and distributed memory, respectively. Hence,
the latency of a notified put tops the device memory access latency [132]
by one order of magnitude. We are aware that these numbers motivate
further tuning. However, in the following we demonstrate that the dcuda

programming model is extremely latency agnostic.
The dcuda programming model promises automatic overlap of compu-

tation and communication. To measure this effect, we design a benchmark
that iteratively executes a compute phase followed by a halo exchange
phase. To determine the overlap, we implement runtime switches that allow
us to separately disable the compute and halo exchange phases. We use
runtime switches to avoid code generation effects that might influence the
overall performance of the benchmark. We expect that the execution time
of the full benchmark varies between the maximum of compute and halo
exchange time for perfect overlap and the sum of compute and halo ex-
change time for no overlap. To investigate the effect of different workloads,
we additionally implement square root calculation (Newton-Raphson) and
memory-to-memory copy as examples for compute-bound and memory
bandwidth-bound computations. To demonstrate the overlap of computa-
tion and communication, Figure 5.7 and Figure 5.8 compare the execution
time with and without halo exchange for increasing amounts of compu-
tation. An additional horizontal line marks the halo exchange only time.
We run all experiments on eight nodes of our cluster. Each halo exchange
moves 1kB packets, each copy iteration moves 1kB of data, and each square

114 a communication-hiding programming model

compute & exchange

compute only

halo exchange

0

500

1000

30 60 90

of copy iterations per exchange

e
xe

c
u
ti
o
n
 t
im

e
 [
m

s
]

Figure 5.8: Overlap for memory-to-memory copy.

root iteration performs 128 divisions per rank. We measure perfect overlap
for memory bandwidth-bound workloads and good overlap for compute-
bound workloads. We explain the slightly lower overlap for compute-bound
workloads by the fact that the notification matching itself is relatively
compute heavy.

5.3.3 Mini-applications

To evaluate the absolute performance of our programming model, we com-
pare MPI-CUDA and dCUDA variants of mini-applications that implement
a particle simulation, a stencil program, and sparse matrix-vector multi-
plication. Three algorithmic motifs that are prevalent in high-performance
computing. The main loops of the MPI-CUDA variants run on the host,
invoke kernels, and communicate using two-sided MPI, while the main
loops of the dCUDA variants run on the device and communicate using
notified remote memory access. Otherwise, the implementation variants
share the entire application logic and the overall structure. None of them
implements manual overlap of computation and communication.

particle simulation Our first mini-application simulates particles
in a two-dimensional space that interact via short-range repulsive forces.
We integrate the particle positions using simplified Verlet integration con-
sidering only forces between particles that are within a parameterizable
cutoff distance. Just like the particle-in-cell method used for plasma simu-

5.3 evaluation 115

dCUDA

halo exchange

MPI−CUDA

0

50

100

150

200

2 4 6 8

of nodes

e
xe

c
u
ti
o
n
 t
im

e
 [
m

s
]

Figure 5.9: Weak scaling for the particle simulation example.

lations [133], we decompose our wide rectangular domain into cells that
are aligned along the wide edge of the domain. Furthermore, we chose
the cell width to be lower or equal to the cutoff distance and consequently
only compute forces between particles that are either in the same cell or
in neighboring cells. After each integration step we update the particle
positions and move them to neighboring cells if necessary.

We organize the data using a structure of arrays that hold position,
velocity, and acceleration of the particles. We thereby assign the cells to fixed-
size, non-overlapping index ranges and use additional counters to keep
track of the number of particles per cell. To deal with non uniform particle
distributions among the cells, we allocate four times more storage than
necessary to fit all particles. To support distributed memory, we decompose
the arrays and allocate an additional halo cell at each sub-domain boundary.

The main loop of the particle simulation performs the following steps: 1)
we perform a halo cell exchange between neighboring ranks, 2) we compute
the forces and update the particle positions, 3) we sort out the particles
that move to a neighbor cell, 4) we communicate the particles that move
to a neighbor rank, and 5) we integrate the particles that arrived from a
neighbor cell. To copy the minimal amount of data, the MPI-CUDA variant
continuously fetches the book keeping counters to the host memory. In
contrast, the main loop of the dCUDA variant runs on the device and
has direct access to all data. Each rank registers one window per array
that spans the cells assigned to the rank plus two halo cells. The windows
of neighboring shared memory ranks physically overlap, which means,

116 a communication-hiding programming model

as in case of the MPI-CUDA variant, actual data movement only takes
place for distributed memory ranks. However, in contrast to MPI-CUDA the
synchronization is much more fine-grained enabling overlap of computation
and communication.

Figure 5.9 shows weak scaling for both implementation variants as well
as the halo exchange time measured by the MPI-CUDA variant. We thereby
use a constant workload of 416 cells and 41,600 particles per node. Typi-
cally, the simulation would be compute-bound, but as we are interested in
communication we reduced the cutoff distance so that there are very few
particle interactions. Consequently, the simulation becomes more memory
bandwidth-bound. We perform two memory accesses in the innermost loop
that computes the particles distances. Aggregated over 100 iterations and
assuming a total execution time of 200ms, we get an estimated bandwidth
requirement of roughly 100GB/s compared to 240GB/s peak bandwidth.
This estimate shows that our implementation utilizes the available band-
width well, especially considering the code also performs various other
steps. While the two implementation variants perform similarly up to three
nodes, the dCUDA variant clearly outperforms the MPI-CUDA variant for
higher node counts. The scaling costs of the MPI-CUDA variant roughly
correspond to the halo exchange time, while the dCUDA variant can partly
overlap the halo exchange costs. However, the particle simulation is dy-
namic and during execution load imbalances evolve. For example, the
minimal and maximal halo exchange times measured on eight nodes differ
by a factor of two. We therefore do not expect an entirely flat scaling.

stencil program Our second mini-application iteratively executes a
simplified version [1] of the horizontal diffusion kernel derived from the
COSMO atmospheric model [16]. The kernel consists of four dependent
stencils that are applied to a three-dimensional regular grid with a limited
number of vertical levels. The stencils themselves are small and consume
between two and four neighboring points in the horizontal ij-plane.

Our implementation organizes the data using five three-dimensional
arrays that are stored in column-major order. We perform a one-dimensional
domain decomposition along the j-dimension and extend the sub-domains
with a one-point halo in both j-directions. Consequently, the halos consist
of one continuous storage segment per vertical k-level.

The main loop of the stencil program contains three compute phases each
of them followed by a halo exchange. In total, we execute four stencils and
communicate four one-point halos per loop iteration. To apply the stencils,

5.3 evaluation 117

dCUDA

halo exchange

MPI−CUDA

0

50

100

2 4 6 8

of nodes

e
xe

c
u
ti
o
n
 t
im

e
 [
m

s
]

Figure 5.10: Weak scaling of the stencil program example.

we assign each block to an ij-patch that covers the full i-dimension. For
each array, the dCUDA variant registers a window that spans the ij-patch
assigned to the rank plus one halo line in each j-direction. The windows
of neighboring shared memory ranks overlap and data movements only
take place between distributed memory ranks. To improve the performance,
the MPI-CUDA variant additionally copies the data to a continuous com-
munication buffer that allows to wrap the entire halo exchange in a single
message.

Figure 5.10 shows weak scaling for both implementation variants as well
as the halo exchange time measured by the MPI-CUDA variant. We chose
a domain size of 128×320×26 grid points per device. The stencil program
accesses eight different arrays per iteration. Aggregated over 100 iterations
and assuming a total execution time of 70ms, we compute an approximate
bandwidth requirement of 100GB/s compared to 240GB/s peak bandwidth.
Hence, the overall performance of our implementation is reasonable. While
both implementation variants have similar single-node performance, the
dCUDA variant excels in multi-node setups. The scaling costs of the MPI-
CUDA variant roughly correspond to the halo exchange time, while the
dCUDA variant can completely overlap the significant halo exchange costs.
This is possible since the stencil program is perfectly load balanced and the
halo exchange costs are the only contribution the scaling costs. To achieve
better bandwidth, OpenMPI by default stages messages larger than 30kB
through the host. The MPI-CUDA variant sends one 26kB message per halo,
while the dCUDA variant sends 26 separate 1kB messages (one per vertical

118 a communication-hiding programming model

layer). Hence, with the given configuration both implementation variants
perform direct device-to-device communication. However, introducing ad-
ditional vertical layers improves the relative performance of the MPI-CUDA
variant as it benefits from the higher bandwidth of host staged transfers.

sparse matrix-vector multiplication Our last mini-application
implements sparse matrix-vector multiplication followed by a barrier syn-
chronization. The barrier synchronization emulates possible follow up steps
that synchronize the execution, the worst-case for dcuda’s overlap philos-
ophy. For example, the normalization of the output vector performed by
the power method.

We store the sparse matrix using the compressed row storage (CSR) for-
mat and distribute the data using a two-dimensional domain decomposition
that splits the matrix into square sub-domains. Furthermore, we store the
sparse input and output vectors along the first row and the first column of
the domain decomposition, respectively. To process the matrix sub-domains,
we assign each row of the matrix patch to exactly one block.

The main loop of the application performs the following steps: 1) we
broadcast the input vector along the columns of the domain decomposition,
2) each rank locally computes the matrix-vector product, 3) we aggregate
the result vectors along the rows of the domain decomposition, and 4) we
synchronize the execution of all ranks. We manually implement the broad-
cast and reduction collectives using a binary tree communication pattern.
The dCUDA variant over-decomposes the problem along the columns of
the domain decomposition. Hence, the depth of the broadcast tree is higher,
while the message size corresponds to the MPI-CUDA variant. In contrast,
along the rows of the domain decomposition the reduction tree has the
same depth while the dCUDA variant sends more but smaller messages.

Figure 5.11 shows the weak scaling for both implementation variants as
well as the halo exchange time measured by the MPI-CUDA variant. We
run our experiments using a 10,816×10,816 element matrix per device and
randomly populate 0.3% of the elements. Our matrix-vector multiplication
performs roughly a factor two slower than the cuSPARSE vendor library.
While the MPI-CUDA variant performs slightly better for small node counts,
the dCUDA variant seems to catch up for larger node counts. However,
due to the tight synchronization, we do not observe relevant overlap of
computation and communication. The scaling cost for both implementation
variants corresponds roughly to the communication time. We therefore
conjecture that the short and tightly synchronized compute phases provide

5.4 discussion 119

dCUDA

communication

MPI−CUDA

0

50

100

150

200

1 4 9

of nodes

e
xe

c
u
ti
o
n
 t
im

e
 [
m

s
]

Figure 5.11: Weak scaling of the sparse matrix-vector example.

not enough room for overlap of computation and communication. Further-
more, the MPI-CUDA variant stages the reduction messages through the
host, while the dCUDA variant due to the higher message rate uses direct
device-to-device communication. Therefore, the dCUDA variant suffers
from lower network bandwidth which might overcompensate potential
latency hiding effects. We show this example to demonstrate that, even
in the worst-case of very limited overlap, dcuda performs comparable
to MPI-CUDA. Advanced algorithmic methods could be used to enable
automatic overlap even in Krylov subspace solvers [134].

5.4 discussion

To further improve the expressiveness and the performance of the dcuda

programming model, we briefly discuss possible enhancements.

collectives Over-decomposition makes collectives more expensive as
the their cost typically increase with the number of participating ranks.
We suggest to implement highly-efficient collectives that leverage shared
memory [135, 136]. Furthermore, one can imagine non-blocking collectives
that run asynchronously in the background and notify the participating
ranks after completion.

multi-dimensional storage Our implementation currently only
supports one-dimensional storage similar to dynamically allocated memory

120 a communication-hiding programming model

in C programs. We suggest to add support for multi-dimensional storage
as it commonly appears in scientific applications. For example, we could
provide a variant of the put method that copies a rectangular region of a
two-dimensional array.

shared memory With our programming model hundreds of ranks
work on the same shared memory domain. We suggest to add functionality
that makes better use of shared memory. For example, we could provide a
variant of the put method that transfers data only once and then notifies all
ranks associated to the target memory.

host ranks To fully utilize the compute power of host and device, we
suggest to extend our programming model with host ranks that like the
device ranks communicate using notified remote memory access.

5.5 related work

Over the past years, various GPU cluster programming models and ap-
proaches have been introduced. For example, the rCUDA [137] virtualiza-
tion framework makes all devices of the cluster available to a single node.
The framework intercepts calls to the CUDA runtime and transparently for-
wards them to the node that hosts the corresponding device. Consequently,
CUDA programs that support multiple devices require no code changes to
make use of the full cluster. Reaño et al. [138] provide an extensive list of
the different virtualization frameworks currently available.

Multiple programming models provide some sort of device-side com-
munication infrastructure. The FLAT [139] compiler transforms code with
device-side MPI calls into traditional MPI-CUDA code with host-side MPI
calls. Consequently, the approach provides the convenience of device-side
MPI calls without actually implementing them. GPUNet [140] implements
device-side sockets that enable MapReduce-style applications with the de-
vice acting as server for incoming requests. Key design choices of dcuda,
such as the circular buffer based host-device communication and the map-
ping of ranks to blocks, are inspired by GPUNet. DCGN [141] supports
device-side as well as host-side compute kernels that communicate using
message passing. To avoid device-side locking, the framework introduces
the concept of slots that limit the maximum number of simultaneous com-
munication requests. In a follow-up paper [142] the authors additionally dis-
cuss different rank to accelerator mapping options. GGAS [143] implements

5.6 summary of the approach 121

device-side remote memory access using custom-built network adapters
that enable device-to-device communication without host interaction. How-
ever, the programming model synchronizes the device execution before
performing remote memory accesses and therefore prevents any hardware
supported overlap of computation and communication. GPUrdma [144]
was developed in parallel with dcuda and implements device-side remote
memory access over InfiniBand using firmware and driver modifications
that enable device-to-device communication without host interaction.

Multiple works discuss technology aspects that are relevant for the pro-
gramming model design. Oden et al. [127] control InfiniBand network
adapters directly from the device without any host interaction. Their im-
plementation relies on driver manipulations and system call interception.
However, the host controlled communication nevertheless excels in terms of
performance. Furthermore, Xiao and Feng [128] introduce device-side bar-
rier synchronization and Tanasic et al. [126] discuss two different hardware
preemption techniques.

5.6 summary of the approach

With dcuda we introduce a unified GPU cluster programming model that
follows a latency hiding philosophy. We enhance the CUDA programming
model with device-side remote memory access functionality. To hide mem-
ory and instruction pipeline latencies, CUDA programs over-decompose
the problem and run many more threads than there are hardware execution
units. In case there is enough spare parallelism, this technique enables effi-
cient resource utilization. Using the same technique, dcuda additionally
hides the latency of remote memory access operations. Our experiments
demonstrate the usefulness of the approach for mini-applications that im-
plement different algorithmic motifs. We expect that real-word applications
will draw significant benefit from automatic cluster-wide latency hiding and
overlap of computation and communication. Especially since implementing
manual overlap results in seriously increased code complexity. Overall,
dcuda stands for a paradigm shift away from coarse-grained sequential
communication phases towards more fine-grained overlapped communi-
cation. Although the high message rate of fine-grained communication is
clearly challenging for todays networks, our experiments show that the
potential of the approach outweighs this drawback.

6
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we present compiler framework, performance tool, and pro-
gramming model advances that enable data movement optimizations. Our
main contribution is the automatic end-to-end optimization of stencil pro-
grams. We automatically learn a performance model to perform fusion and
tile size choices that minimize the predicted execution times. The presented
techniques lay the foundation for domain-specific tools that automatically
select good high-level code transformations while providing a smooth user
experience similar to existing compilers. But automatic compilation does
not work in all cases. We thus also discuss tool and programming model
support to enable manual data movement optimizations.

Developing performance portable high-performance computing applica-
tions is a long-standing open problem. Data movement optimizations are
an important aspect of performance portability. We contribute three projects
to tackle the data movement challenge: 1) absinthe is a stencil program
optimizer that learns performance characteristics of the target system, 2)
haystack is an analytical cache model that helps programmers to under-
stand the cost of data movement, and 3) dcuda is a communication-hiding
programming model that enables the automatic overlap of computation
and inter-node communication. All of our tools support the development
of performance portable applications. But none of them solves the full prob-
lem since our tools are either domain-specific or solve only a subproblem.
Solving the general problem independent of the application domain re-
mains challenging. We believe domain-specific approaches are the method
of choice to perform target system-specific code transformations for the
time being.

6.1 future work

Our work motivates further research mainly to extend the scope of our
tools to a broader class of programs. A prominent research direction is the
development of compilers that learn a performance model to guide the
selection of data-locality transformations.

123

124 conclusions and future work

6.1.1 Automatic Performance Model Design

absinthe learns parameters that model latency and throughput of the
innermost loop executions. The approach works well for the tested architec-
tures. But some architectures may require performance model adaptations
that go beyond choosing different parameters. For example, modeling the
available parallelism is essential for architectures that hide the memory ac-
cess latency using over-subscription and hardware threading. In these cases,
learning the entire performance model function and not only parameters or
weights is desirable – especially considering the increasingly diverse space
of hardware architectures.

The manual performance model design is challenging. We typically per-
form three main steps: 1) identify the program features that determine
the execution time, 2) identify the hardware components that limit the
execution time, and 3) derive a function that estimates the execution time
given the program features and the performance characteristics of the rele-
vant hardware components. The learning of the performance characteristics
may also require the design of benchmarks that stress the individual hard-
ware components. The key to a successful performance model design is
then to find the right balance of model accuracy and model complexity.
Repeating this process for many different hardware architectures is very
time-consuming. We thus believe an automatic performance model design
will enhance the model availability and improve the model quality.

The rise of machine learning over the last decade further motivates
the automatic performance model learning. Modern machine learning
algorithms – provided sufficient amounts of data – demonstrate excellent
results for many challenging tasks. The ability of automatic optimization
frameworks to enumerate a lot of implementation variants will help us to
collect enough data to enable the automatic performance model learning.
Adams et al. [25] sample random programs to learn an artificial neuronal
network that derives weight coefficients for twenty-seven hand-designed
performance model terms. Their approach is an important step towards
learning the entire performance model function but still relies on the manual
design of the individual performance model terms. Once efficient learning
techniques are in place, they will quickly supersede the manual performance
model design.

6.1 future work 125

6.1.2 Scaling to Real-World Applications

We evaluated our tools on benchmark kernels that perform significant
amounts of work but that are small compared to real-world applications.
Scaling our stencil optimizer absinthe or the analytical cache model
haystack to full applications is challenging due to their computational
complexity. Scaling our tools to large programs is thus an interesting
research direction.

Splitting the applications into smaller kernels and processing the indi-
vidual kernels is one way of dealing with large programs. The approach
sacrifices optimality, but if the kernels are well-chosen, the results should
remain relevant. Often the codes anyways contain natural optimization
barriers such as calls to external libraries to perform I/O or inter-node
communication. If this is not the case, then methods that split programs
into smaller pieces that can be optimized well are of interest. We could, for
example, consider the data flow graph between the loop nests and search
splits with minimal data-flow.

dynamic programming The space of possible data-locality transfor-
mations is exponential in the number of stencils. Instead of optimizing
the whole program, we may compute optimal fusion and tile size choices
for kernels up to a maximal size and combine the results using dynamic
programming. The approach limits fusion to the maximal kernel size but
otherwise produces optimal results.

surrogate model Presburger arithmetic is known to be computa-
tionally expensive. Instead of running the cache model directly on large
programs, we may thus learn a surrogate model. The cache model allows
us to generate a lot of training data for different programs and problem
sizes. We could use this data to train a neuronal network that approximates
the cache misses given input program and problem size. The approach
sacrifices accuracy to speedup the cache miss computation.

6.1.3 Cache Optimal Programs

Already the current version of haystack can be used to derive cache
optimal programs. But there are two areas of possible improvement: 1) the
model execution times hinder the exhaustive search space exploration and
2) the model does not consider the parallel program execution.

126 conclusions and future work

parametric stack distance An automatic optimization framework
does not necessarily need to evaluate the entire cache model. Instead, we
can compute the stack distance for all data dependencies local to a tile and
its neighbor tiles. We then introduce optimization constraints that ensure
the stack distances are lower than or equal to the cache size. The solution
guarantees all data dependencies local to the tile and its neighbor tiles
are in cache. The advantage of the approach is that the stack distance can
be computed parametric in the tile size. The parametric formulation has
the potential to accelerate the tile size optimization significantly. We thus
believe the stack distance is an interesting measure for future optimization
frameworks.

parallel cache model Modeling the cache behavior of parallel pro-
grams is a long-standing open problem. We may use a sequential cache
model to analyze the memory accesses of individual tiles that execute on a
single core. But the sequential analysis fails to detect the data movement
between tiles that execute in parallel on different cores. Unwanted effects
such as false sharing – two cores access seemingly different data stored
by the same cache line – may result in cache line ping-pong and other
effects that hider the parallel execution. A parallel cache model can capture
such effects but typically faces the challenge that the parallel schedule is
unknown. Assuming we know the schedule, the model can compute the
stack distance to detect the cache misses and on top identify the data move-
ment between different cores. We can then repeat the analysis for several
random schedules or determine a worst-case (fully parallel schedule) and a
best-case (sequential schedule) scenario to gather statistics for the extreme
cases. If the inter-core data movement heavily depends on the schedule, the
program likely suffers from unwanted parallelization effects such as cache
line ping-pong. A tool that helps programmers to detects such problems
would be an important contribution to tackle the data movement challenge.

B I B L I O G R A P H Y

1. Gysi, T., Grosser, T. & Hoefler, T. MODESTO: Data-centric Analytic
Optimization of Complex Stencil Programs on Heterogeneous Architec-
tures in Proceedings of the 29th ACM on International Conference on
Supercomputing (ACM, Newport Beach, California, USA, 2015), 177.
http://doi.acm.org/10.1145/2751205.2751223 (cit. on pp. ix, 37,
63, 116).

2. Gysi, T., Grosser, T. & Hoefler, T. Absinthe: Learning an Analytical
Performance Model to Fuse and Tile Stencil Codes in One Shot Accepted
at the 28th International Conference on Parallel Architectures and
Compilation Techniques. 2019 (cit. on p. ix).

3. Gysi, T., Grosser, T., Brandner, L. & Hoefler, T. A Fast Analytical Model
of Fully Associative Caches in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (ACM,
Phoenix, AZ, USA, 2019), 816. http://doi.acm.org/10.1145/
3314221.3314606 (cit. on p. ix).

4. Gysi, T., Bär, J. & Hoefler, T. dCUDA: Hardware Supported Overlap
of Computation and Communication in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (IEEE Press, Salt Lake City, Utah, 2016), 52:1. http://dl.acm.
org/citation.cfm?id=3014904.3014974 (cit. on p. ix).

5. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M. & Schulthess, T. C. STELLA:
A Domain-specific Tool for Structured Grid Methods in Weather and Climate
Models in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (ACM, Austin, Texas,
2015), 41:1. http://doi.acm.org/10.1145/2807591.2807627 (cit. on
pp. ix, 1, 63).

6. Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco,
M., Arteaga, A. & Schulthess, T. Towards a Performance Portable,
Architecture Agnostic Implementation Strategy for Weather and Cli-
mate Models. Supercomput. Front. Innov.: Int. J. 1, 45. http://dx.doi.
org/10.14529/jsfi140103 (2014) (cit. on pp. ix, 1, 10, 28).

127

http://doi.acm.org/10.1145/2751205.2751223
http://doi.acm.org/10.1145/3314221.3314606
http://doi.acm.org/10.1145/3314221.3314606
http://dl.acm.org/citation.cfm?id=3014904.3014974
http://dl.acm.org/citation.cfm?id=3014904.3014974
http://doi.acm.org/10.1145/2807591.2807627
http://dx.doi.org/10.14529/jsfi140103
http://dx.doi.org/10.14529/jsfi140103

128 bibliography

7. Unat, D., Dubey, A., Hoefler, T., Shalf, J., Abraham, M., Bianco, M.,
Chamberlain, B. L., Cledat, R., Edwards, H. C., Finkel, H., Fuerlinger,
K., Hannig, F., Jeannot, E., Kamil, A., Keasler, J., Kelly, P. H. J., Leung,
V., Ltaief, H., Maruyama, N., Newburn, C. J. & Pericás, M. Trends
in Data Locality Abstractions for HPC Systems. IEEE Transactions on
Parallel and Distributed Systems 28, 3007 (2017) (cit. on pp. 1, 37).

8. Zhou, X., Giacalone, J.-P., Garzarán, M. J., Kuhn, R. H., Ni, Y. &
Padua, D. Hierarchical Overlapped Tiling in Proceedings of the Tenth
International Symposium on Code Generation and Optimization (ACM,
San Jose, California, 2012), 207. http://doi.acm.org/10.1145/
2259016.2259044 (cit. on pp. 1, 2, 14, 35, 40, 55).

9. Holewinski, J., Pouchet, L.-N. & Sadayappan, P. High-performance Code
Generation for Stencil Computations on GPU Architectures in Proceedings
of the 26th ACM International Conference on Supercomputing (ACM, San
Servolo Island, Venice, Italy, 2012), 311. http://doi.acm.org/10.
1145/2304576.2304619 (cit. on pp. 1, 14, 34).

10. Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo, T.,
Nukada, A., Maruyama, N. & Matsuoka, S. An 80-Fold Speedup, 15.0
TFlops Full GPU Acceleration of Non-Hydrostatic Weather Model ASUCA
Production Code in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis (IEEE Computer Society, Washington, DC, USA, 2010), 1.
https://doi.org/10.1109/SC.2010.9 (cit. on pp. 1, 7, 97).

11. Tang, Y., Chowdhury, R. A., Kuszmaul, B. C., Luk, C.-K. & Leiserson,
C. E. The Pochoir Stencil Compiler in Proceedings of the Twenty-third
Annual ACM Symposium on Parallelism in Algorithms and Architectures
(ACM, San Jose, California, USA, 2011), 117. http://doi.acm.org/
10.1145/1989493.1989508 (cit. on pp. 1, 9, 63).

12. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F. & Ama-
rasinghe, S. Halide: A Language and Compiler for Optimizing Parallelism,
Locality, and Recomputation in Image Processing Pipelines in Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (ACM, Seattle, Washington, USA, 2013), 519.
http://doi.acm.org/10.1145/2491956.2462176 (cit. on pp. 1, 2, 9,
10, 14, 35, 37, 61, 63).

13. Mullapudi, R. T., Vasista, V. & Bondhugula, U. PolyMage: Automatic
Optimization for Image Processing Pipelines in Proceedings of the Twen-
tieth International Conference on Architectural Support for Programming

http://doi.acm.org/10.1145/2259016.2259044
http://doi.acm.org/10.1145/2259016.2259044
http://doi.acm.org/10.1145/2304576.2304619
http://doi.acm.org/10.1145/2304576.2304619
https://doi.org/10.1109/SC.2010.9
http://doi.acm.org/10.1145/1989493.1989508
http://doi.acm.org/10.1145/1989493.1989508
http://doi.acm.org/10.1145/2491956.2462176

bibliography 129

Languages and Operating Systems (ACM, Istanbul, Turkey, 2015), 429.
http://doi.acm.org/10.1145/2694344.2694364 (cit. on pp. 1, 2, 35,
37, 61, 63).

14. Bondhugula, U., Hartono, A., Ramanujam, J. & Sadayappan, P. A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer in Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (ACM, Tucson, AZ, USA, 2008), 101.
http://doi.acm.org/10.1145/1375581.1375595 (cit. on pp. 1, 94).

15. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Ten-
llado, C. & Catthoor, F. Polyhedral Parallel Code Generation for
CUDA. ACM Trans. Archit. Code Optim. 9, 54:1. http://doi.acm.org/
10.1145/2400682.2400713 (2013) (cit. on pp. 1, 92).

16. Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.
& Reinhardt, T. Operational Convective-Scale Numerical Weather
Prediction with the COSMO Model: Description and Sensitivities.
Monthly Weather Review 139, 3887 (2011) (cit. on pp. 1, 37, 55, 58, 116).

17. Consortium for Small-scale Modeling http://www.cosmo-model.org/

(2018) (cit. on pp. 1, 37).

18. Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X.,
Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C. & Vogt,
H. Near-global climate simulation at 1 km resolution: establishing a
performance baseline on 4888 GPUs with COSMO 5.0. Geoscientific
Model Development 11, 1665. https://www.geosci-model-dev.net/
11/1665/2018/ (2018) (cit. on pp. 1, 37).

19. Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J.,
O’Reilly, U.-M. & Amarasinghe, S. OpenTuner: An Extensible Framework
for Program Autotuning in Proceedings of the 23rd International Confer-
ence on Parallel Architectures and Compilation (ACM, Edmonton, AB,
Canada, 2014), 303. http://doi.acm.org/10.1145/2628071.2628092
(cit. on p. 2).

20. Ţapuş, C., Chung, I.-H. & Hollingsworth, J. K. Active Harmony: Towards
Automated Performance Tuning in Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing (IEEE Computer Society Press, Balti-
more, Maryland, 2002), 1. http://dl.acm.org/citation.cfm?id=
762761.762771 (cit. on p. 2).

http://doi.acm.org/10.1145/2694344.2694364
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://www.cosmo-model.org/
https://www.geosci-model-dev.net/11/1665/2018/
https://www.geosci-model-dev.net/11/1665/2018/
http://doi.acm.org/10.1145/2628071.2628092
http://dl.acm.org/citation.cfm?id=762761.762771
http://dl.acm.org/citation.cfm?id=762761.762771

130 bibliography

21. Tiwari, A., Chen, C., Chame, J., Hall, M. & Hollingsworth, J. K. A
scalable auto-tuning framework for compiler optimization in 2009 IEEE
International Symposium on Parallel Distributed Processing (2009), 1 (cit.
on p. 2).

22. Christen, M., Schenk, O. & Burkhart, H. PATUS: A Code Generation
and Autotuning Framework for Parallel Iterative Stencil Computations on
Modern Microarchitectures in Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium (IEEE Computer Society,
Washington, DC, USA, 2011), 676. https://doi.org/10.1109/IPDPS.
2011.70 (cit. on pp. 2, 9, 34, 63).

23. Mullapudi, R. T., Adams, A., Sharlet, D., Ragan-Kelley, J. & Fatahalian,
K. Automatically Scheduling Halide Image Processing Pipelines.
ACM Trans. Graph. 35, 83:1. http://doi.acm.org/10.1145/2897824.
2925952 (2016) (cit. on pp. 2, 61, 63).

24. Low, T. M., Igual, F. D., Smith, T. M. & Quintana-Orti, E. S. Analytical
Modeling Is Enough for High-Performance BLIS. ACM Trans. Math.
Softw. 43, 12:1. http://doi.acm.org/10.1145/2925987 (2016) (cit. on
p. 2).

25. Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.-M., Gharbi, M.,
Steiner, B., Johnson, S., Fatahalian, K., Durand, F. & Ragan-Kelley, J.
Learning to Optimize Halide with Tree Search and Random Programs.
ACM Trans. Graph. 38, 121:1. http://doi.acm.org/10.1145/3306346.
3322967 (2019) (cit. on pp. 2, 124).

26. McKinley, K. S., Carr, S. & Tseng, C.-W. Improving Data Locality
with Loop Transformations. ACM Trans. Program. Lang. Syst. 18, 424.
http://doi.acm.org/10.1145/233561.233564 (1996) (cit. on p. 2).

27. Wolf, M. E. & Lam, M. S. A Data Locality Optimizing Algorithm in
Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation (ACM, Toronto, Ontario, Canada,
1991), 30. http://doi.acm.org/10.1145/113445.113449 (cit. on
pp. 2, 94).

28. Chen, C., Chame, J. & Hall, M. CHiLL: A framework for composing
high-level loop transformations tech. rep. (2008) (cit. on p. 2).

29. Bastoul, C., Cohen, A., Girbal, S., Sharma, S. & Temam, O. Putting
Polyhedral Loop Transformations to Work in LCPC (2003) (cit. on p. 2).

https://doi.org/10.1109/IPDPS.2011.70
https://doi.org/10.1109/IPDPS.2011.70
http://doi.acm.org/10.1145/2897824.2925952
http://doi.acm.org/10.1145/2897824.2925952
http://doi.acm.org/10.1145/2925987
http://doi.acm.org/10.1145/3306346.3322967
http://doi.acm.org/10.1145/3306346.3322967
http://doi.acm.org/10.1145/233561.233564
http://doi.acm.org/10.1145/113445.113449

bibliography 131

30. Baghdadi, R., Ray, J., Romdhane, M. B., Del Sozzo, E., Akkas, A.,
Zhang, Y., Suriana, P., Kamil, S. & Amarasinghe, S. Tiramisu: A Poly-
hedral Compiler for Expressing Fast and Portable Code in Proceedings of
the 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (IEEE Press, Washington, DC, USA, 2019), 193. http:
//dl.acm.org/citation.cfm?id=3314872.3314896 (cit. on p. 2).

31. Steuwer, M., Fensch, C., Lindley, S. & Dubach, C. Generating Perfor-
mance Portable Code Using Rewrite Rules: From High-level Func-
tional Expressions to High-performance OpenCL Code. SIGPLAN
Not. 50, 205. http://doi.acm.org/10.1145/2858949.2784754 (2015)
(cit. on p. 2).

32. Puschel, M., Moura, J. M. F., Johnson, J. R., Padua, D., Veloso, M. M.,
Singer, B. W., Jianxin Xiong, Franchetti, F., Gacic, A., Voronenko, Y.,
Chen, K., Johnson, R. W. & Rizzolo, N. SPIRAL: Code Generation for
DSP Transforms. Proceedings of the IEEE 93, 232 (2005) (cit. on p. 2).

33. Spampinato, D. G. & Püschel, M. A Basic Linear Algebra Compiler
in Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization (ACM, Orlando, FL, USA, 2014), 23:23.
http://doi.acm.org/10.1145/2581122.2544155 (cit. on p. 2).

34. Kennedy, K. Fast Greedy Weighted Fusion. Int. J. Parallel Program.
29, 463. https://doi.org/10.1023/A:1012241830762 (2001) (cit. on
p. 2).

35. Wahib, M. & Maruyama, N. Scalable Kernel Fusion for Memory-bound
GPU Applications in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (IEEE Press,
New Orleans, Louisana, 2014), 191. https://doi.org/10.1109/SC.
2014.21 (cit. on pp. 2, 9, 35).

36. Kennedy, K. & McKinley, K. S. Optimizing for Parallelism and Data
Locality in Proceedings of the 6th International Conference on Supercom-
puting (ACM, Washington, D. C., USA, 1992), 323. http://doi.acm.
org/10.1145/143369.143427 (cit. on pp. 3, 94).

37. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam,
J., Rountev, A. & Sadayappan, P. Automatic Transformations for
Communication-minimized Parallelization and Locality Optimization in
the Polyhedral Model in Proceedings of the Joint European Conferences on
Theory and Practice of Software 17th International Conference on Com-
piler Construction (Springer-Verlag, Budapest, Hungary, 2008), 132.

http://dl.acm.org/citation.cfm?id=3314872.3314896
http://dl.acm.org/citation.cfm?id=3314872.3314896
http://doi.acm.org/10.1145/2858949.2784754
http://doi.acm.org/10.1145/2581122.2544155
https://doi.org/10.1023/A:1012241830762
https://doi.org/10.1109/SC.2014.21
https://doi.org/10.1109/SC.2014.21
http://doi.acm.org/10.1145/143369.143427
http://doi.acm.org/10.1145/143369.143427

132 bibliography

http://dl.acm.org/citation.cfm?id=1788374.1788386 (cit. on
p. 3).

38. IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual
(2011) (cit. on pp. 4, 55).

39. Phillips, J. C., Stone, J. E. & Schulten, K. Adapting a Message-driven
Parallel Application to GPU-accelerated Clusters in Proceedings of the 2008
ACM/IEEE Conference on Supercomputing (IEEE Press, Austin, Texas,
2008), 8:1. http://dl.acm.org/citation.cfm?id=1413370.1413379
(cit. on pp. 7, 97).

40. Hong, S. & Kim, H. An Analytical Model for a GPU Architecture with
Memory-level and Thread-level Parallelism Awareness. SIGARCH
Comput. Archit. News 37, 152. http://doi.acm.org/10.1145/1555815.
1555775 (2009) (cit. on p. 7).

41. Doms, G. & Schättler, U. The nonhydrostatic limited-area model LM
(Lokal-Model) of the DWD. Part I: Scientific documentation tech. rep.
(German Weather Service (DWD), Germany, 1999). http://www.
cosmo-model.org/ (cit. on pp. 9, 11, 13).

42. McMECHAN, G. A. Migration by extrapolation of time-dependent
boundary values*. Geophysical Prospecting 31, 413. http://dx.doi.
org/10.1111/j.1365-2478.1983.tb01060.x (1983) (cit. on pp. 9, 37).

43. Taflove, A. Review of the formulation and applications of the finite-
difference time-domain method for numerical modeling of electro-
magnetic wave interactions with arbitrary structures. Wave Motion
10. Special Issue on Numerical Methods for Electromagnetic Wave In-
teractions, 547. http://www.sciencedirect.com/science/article/
pii/0165212588900121 (1988) (cit. on pp. 9, 37).

44. Basu, P., Venkat, A., Hall, M., Williams, S., Van Straalen, B. & Oliker, L.
Compiler generation and autotuning of communication-avoiding operators
for geometric multigrid in 20th Annual International Conference on High
Performance Computing (2013), 452 (cit. on pp. 9, 35).

45. Frigo, M. & Strumpen, V. The Memory Behavior of Cache Oblivious
Stencil Computations. J. Supercomput. 39, 93. http://dx.doi.org/10.
1007/s11227-007-0111-y (2007) (cit. on pp. 9, 34).

http://dl.acm.org/citation.cfm?id=1788374.1788386
http://dl.acm.org/citation.cfm?id=1413370.1413379
http://doi.acm.org/10.1145/1555815.1555775
http://doi.acm.org/10.1145/1555815.1555775
http://www.cosmo-model.org/
http://www.cosmo-model.org/
http://dx.doi.org/10.1111/j.1365-2478.1983.tb01060.x
http://dx.doi.org/10.1111/j.1365-2478.1983.tb01060.x
http://www.sciencedirect.com/science/article/pii/0165212588900121
http://www.sciencedirect.com/science/article/pii/0165212588900121
http://dx.doi.org/10.1007/s11227-007-0111-y
http://dx.doi.org/10.1007/s11227-007-0111-y

bibliography 133

46. Olschanowsky, C., Strout, M. M., Guzik, S., Loffeld, J. & Hittinger, J.
A Study on Balancing Parallelism, Data Locality, and Recomputation in
Existing PDE Solvers in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (IEEE
Press, New Orleans, Louisana, 2014), 793. https://doi.org/10.
1109/SC.2014.70 (cit. on pp. 9, 35).

47. Williams, S., Waterman, A. & Patterson, D. Roofline: An Insightful
Visual Performance Model for Multicore Architectures. Commun.
ACM 52, 65. http://doi.acm.org/10.1145/1498765.1498785 (2009)
(cit. on p. 17).

48. Verdoolaege, S. isl: An Integer Set Library for the Polyhedral Model in
Proceedings of the Third International Congress Conference on Mathematical
Software (Springer-Verlag, Kobe, Japan, 2010), 299. http://dl.acm.
org/citation.cfm?id=1888390.1888455 (cit. on pp. 20, 68, 75).

49. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V. & Bruynooghe, M.
Counting Integer Points in Parametric Polytopes Using Barvinok’s
Rational Functions. Algorithmica 48, 37. http://dx.doi.org/10.
1007/s00453-006-1231-0 (2007) (cit. on pp. 20, 65, 75, 88).

50. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L.,
Patterson, D., Shalf, J. & Yelick, K. Stencil Computation Optimization and
Auto-tuning on State-of-the-art Multicore Architectures in Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing (IEEE Press, Austin,
Texas, 2008), 4:1. http://dl.acm.org/citation.cfm?id=1413370.
1413375 (cit. on p. 34).

51. Zhang, Y. & Mueller, F. Autogeneration and Autotuning of 3D Stencil
Codes on Homogeneous and Heterogeneous GPU Clusters. IEEE
Transactions on Parallel and Distributed Systems 24, 417 (2013) (cit. on
p. 34).

52. Shirako, J., Sharma, K., Fauzia, N., Pouchet, L.-N., Ramanujam, J.,
Sadayappan, P. & Sarkar, V. Analytical Bounds for Optimal Tile Size
Selection in Proceedings of the 21st International Conference on Compiler
Construction (Springer-Verlag, Tallinn, Estonia, 2012), 101. http://dx.
doi.org/10.1007/978-3-642-28652-0_6 (cit. on pp. 35, 62).

53. Renganarayana, L. & Rajopadhye, S. Positivity, Posynomials and Tile
Size Selection in ACM/IEEE Conf. on Supercomputing, Proc. of (IEEE
Press, Austin, Texas, 2008), 55:1. http://dl.acm.org/citation.cfm?
id=1413370.1413426 (cit. on p. 35).

https://doi.org/10.1109/SC.2014.70
https://doi.org/10.1109/SC.2014.70
http://doi.acm.org/10.1145/1498765.1498785
http://dl.acm.org/citation.cfm?id=1888390.1888455
http://dl.acm.org/citation.cfm?id=1888390.1888455
http://dx.doi.org/10.1007/s00453-006-1231-0
http://dx.doi.org/10.1007/s00453-006-1231-0
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dx.doi.org/10.1007/978-3-642-28652-0_6
http://dx.doi.org/10.1007/978-3-642-28652-0_6
http://dl.acm.org/citation.cfm?id=1413370.1413426
http://dl.acm.org/citation.cfm?id=1413370.1413426

134 bibliography

54. Cade, B. S. & Richards, J. D. Permutation Tests for Least Absolute
Deviation Regression. Biometrics 52, 886 (1996) (cit. on pp. 50, 58).

55. ILP Part 6 – Faster multiplication https://blog.adamfurmanek.pl/

2015/09/26/ilp-part-6/. 2015 (cit. on p. 51).

56. Hoefler, T. & Belli, R. Scientific Benchmarking of Parallel Computing
Systems: Twelve Ways to Tell the Masses when Reporting Performance
Results in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (ACM, Austin, Texas,
2015), 73:1. http://doi.acm.org/10.1145/2807591.2807644 (cit. on
pp. 55, 84).

57. Pouchet, L.-N. Polybench: The polyhedral benchmark suite https://

sourceforge.net/projects/polybench/. 2012 (cit. on pp. 58, 84).

58. Jangda, A. & Bondhugula, U. An Effective Fusion and Tile Size Model
for Optimizing Image Processing Pipelines in Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(ACM, Vienna, Austria, 2018), 261. http://doi.acm.org/10.1145/
3178487.3178507 (cit. on pp. 61, 63).

59. Lam, M. D., Rothberg, E. E. & Wolf, M. E. The Cache Performance and
Optimizations of Blocked Algorithms in Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ACM, Santa Clara, California, USA, 1991), 63.
http://doi.acm.org/10.1145/106972.106981 (cit. on p. 62).

60. Dongarra, J. & Schreiber, R. Automatic Blocking of Nested Loops tech.
rep. (Knoxville, TN, USA, 1990) (cit. on p. 62).

61. Coleman, S. & McKinley, K. S. Tile Size Selection Using Cache Orga-
nization and Data Layout in Proceedings of the ACM SIGPLAN 1995

Conference on Programming Language Design and Implementation (ACM,
La Jolla, California, USA, 1995), 279. http://doi.acm.org/10.1145/
207110.207162 (cit. on p. 62).

62. Hsu, C.-h. & Kremer, U. A Quantitative Analysis of Tile Size Selection
Algorithms. J. Supercomput. 27, 279. https://doi.org/10.1023/B:
SUPE.0000011388.54204.8e (2004) (cit. on p. 62).

63. Sarkar, V. & Megiddo, N. An Analytical Model for Loop Tiling and Its
Solution in Proceedings of the 2000 IEEE International Symposium on
Performance Analysis of Systems and Software (IEEE Computer Society,
Washington, DC, USA, 2000), 146. http://dl.acm.org/citation.
cfm?id=1153923.1154542 (cit. on p. 62).

https://blog.adamfurmanek.pl/2015/09/26/ilp-part-6/
https://blog.adamfurmanek.pl/2015/09/26/ilp-part-6/
http://doi.acm.org/10.1145/2807591.2807644
https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/
http://doi.acm.org/10.1145/3178487.3178507
http://doi.acm.org/10.1145/3178487.3178507
http://doi.acm.org/10.1145/106972.106981
http://doi.acm.org/10.1145/207110.207162
http://doi.acm.org/10.1145/207110.207162
https://doi.org/10.1023/B:SUPE.0000011388.54204.8e
https://doi.org/10.1023/B:SUPE.0000011388.54204.8e
http://dl.acm.org/citation.cfm?id=1153923.1154542
http://dl.acm.org/citation.cfm?id=1153923.1154542

bibliography 135

64. Mitchell, N., Högstedt, K., Carter, L. & Ferrante, J. Quantifying the
multi-level nature of tiling interactions. International Journal of Parallel
Programming 26, 641 (1998) (cit. on p. 62).

65. Yotov, K., Xiaoming Li, Gang Ren, Garzaran, M. J. S., Padua, D.,
Pingali, K. & Stodghill, P. Is Search Really Necessary to Generate
High-Performance BLAS? Proceedings of the IEEE 93, 358 (2005) (cit. on
p. 62).

66. Esseghir, K. Improving data locality for caches PhD thesis (Rice Univer-
sity, 1993) (cit. on p. 62).

67. Rivera, G. & Tseng, C.-W. A Comparison of Compiler Tiling Algorithms in
Proceedings of the 8th International Conference on Compiler Construction,
Held As Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS’99 (Springer-Verlag, Berlin, Heidelberg, 1999), 168.
http://dl.acm.org/citation.cfm?id=647475.727610 (cit. on p. 62).

68. Mehta, S., Beeraka, G. & Yew, P.-C. Tile Size Selection Revisited. ACM
Trans. Archit. Code Optim. 10, 35:1. http://doi.acm.org/10.1145/
2541228.2555292 (2013) (cit. on p. 62).

69. Whaley, R. C. & Dongarra, J. J. Automatically Tuned Linear Algebra
Software in SC ’98: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing (1998), 38 (cit. on p. 62).

70. Knijnenburg, P. M. W., Kisuki, T., Gallivan, K. & O’Boyle, M. F. P. The
Effect of Cache Models on Iterative Compilation for Combined Tiling
and Unrolling: Research Articles. Concurr. Comput. : Pract. Exper. 16,
247. http://dx.doi.org/10.1002/cpe.v16:2/3 (2004) (cit. on p. 62).

71. Fraguela, B. B., Carmueja, M. G. & Andrade, D. Optimal tile size
selection guided by analytical models. parameters 10, 14 (2005) (cit. on
p. 62).

72. Yuki, T., Renganarayanan, L., Rajopadhye, S., Anderson, C., Eichen-
berger, A. E. & O’Brien, K. Automatic Creation of Tile Size Selection
Models in Proceedings of the 8th Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization (ACM, Toronto, Ontario,
Canada, 2010), 190. http://doi.acm.org/10.1145/1772954.1772982
(cit. on p. 62).

73. Mendis, C., Renda, A., Amarasinghe, S. & Carbin, M. Ithemal: Ac-
curate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks (2018) (cit. on p. 62).

http://dl.acm.org/citation.cfm?id=647475.727610
http://doi.acm.org/10.1145/2541228.2555292
http://doi.acm.org/10.1145/2541228.2555292
http://dx.doi.org/10.1002/cpe.v16:2/3
http://doi.acm.org/10.1145/1772954.1772982

136 bibliography

74. Rahman, M., Pouchet, L.-N. & Sadayappan, P. Neural Network Assisted
Tile Size Selection in (2010) (cit. on p. 62).

75. Cociorva, D., Wilkins, J. W., Lam, C., Baumgartner, G., Ramanujam, J.
& Sadayappan, P. Loop Optimization for a Class of Memory-constrained
Computations in Proceedings of the 15th International Conference on Su-
percomputing (ACM, Sorrento, Italy, 2001), 103. http://doi.acm.org/
10.1145/377792.377814 (cit. on p. 62).

76. Qasem, A. & Kennedy, K. Profitable Loop Fusion and Tiling Using Model-
driven Empirical Search in Proceedings of the 20th Annual International
Conference on Supercomputing (ACM, Cairns, Queensland, Australia,
2006), 249. http://doi.acm.org/10.1145/1183401.1183437 (cit. on
p. 62).

77. Beaugnon, U., Pouille, A., Pouzet, M., Pienaar, J. & Cohen, A. Op-
timization Space Pruning Without Regrets in Proceedings of the 26th
International Conference on Compiler Construction (ACM, Austin, TX,
USA, 2017), 34. http://doi.acm.org/10.1145/3033019.3033023
(cit. on p. 62).

78. Henretty, T., Veras, R., Franchetti, F., Pouchet, L.-N., Ramanujam, J. &
Sadayappan, P. A Stencil Compiler for Short-vector SIMD Architectures
in Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing (ACM, Eugene, Oregon, USA, 2013), 13.
http://doi.acm.org/10.1145/2464996.2467268 (cit. on p. 63).

79. Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam,
J. & Sadayappan, P. Data Layout Transformation for Stencil Compu-
tations on Short-vector SIMD Architectures in Proceedings of the 20th
International Conference on Compiler Construction: Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software (Springer-Verlag,
Saarbrücken, Germany, 2011), 225. http : / / dl . acm . org /

citation.cfm?id=1987237.1987255 (cit. on p. 63).

80. Prajapati, N., Ranasinghe, W., Rajopadhye, S., Andonov, R., Djidjev,
H. & Grosser, T. Simple, Accurate, Analytical Time Modeling and Optimal
Tile Size Selection for GPGPU Stencils in Proceedings of the 22Nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(ACM, Austin, Texas, USA, 2017), 163. http://doi.acm.org/10.
1145/3018743.3018744 (cit. on p. 63).

81. Liao, S. W., Tsai, S. J., Yang, C. H. & Lo, C. K. Locality-Aware Scheduling
for Stencil Code in Halide in 2016 45th International Conference on Parallel
Processing Workshops (ICPPW) (2016), 72 (cit. on p. 63).

http://doi.acm.org/10.1145/377792.377814
http://doi.acm.org/10.1145/377792.377814
http://doi.acm.org/10.1145/1183401.1183437
http://doi.acm.org/10.1145/3033019.3033023
http://doi.acm.org/10.1145/2464996.2467268
http://dl.acm.org/citation.cfm?id=1987237.1987255
http://dl.acm.org/citation.cfm?id=1987237.1987255
http://doi.acm.org/10.1145/3018743.3018744
http://doi.acm.org/10.1145/3018743.3018744

bibliography 137

82. Mattson, R. L., Gecsei, J., Slutz, D. R. & Traiger, I. L. Evaluation
Techniques for Storage Hierarchies. IBM Syst. J. 9, 78. http://dx.doi.
org/10.1147/sj.92.0078 (1970) (cit. on pp. 65, 93).

83. Beyls, K. & D’Hollander, E. H. Reuse Distance as a Metric for Cache
Behavior in In Proceedings of the IASTED Conference on Parallel and
Distributed Computing and Systems (2001), 617 (cit. on p. 65).

84. Ding, C. & Zhong, Y. Predicting Whole-program Locality Through Reuse
Distance Analysis in Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (ACM, San Diego,
California, USA, 2003), 245. http://doi.acm.org/10.1145/781131.
781159 (cit. on pp. 65, 94).

85. Xiang, X., Ding, C., Luo, H. & Bao, B. HOTL: A Higher Order Theory
of Locality in Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ACM, Houston, Texas, USA, 2013), 343. http://doi.acm.org/10.
1145/2451116.2451153 (cit. on pp. 65, 94).

86. Elder, J. & Hill, M. D. Dinero IV Trace-Driven Uniprocessor Cache Simula-
tor http://www.cs.wisc.edu/~{}markhill/DineroIV/. 2003 (cit. on
pp. 65, 84, 86, 92, 93).

87. Iyer, R. On modeling and analyzing cache hierarchies using CASPER in
11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems, 2003. MASCOTS
2003. (2003), 182 (cit. on pp. 65, 93).

88. Carlson, T. E., Heirman, W. & Eeckhout, L. Sniper: Exploring the Level
of Abstraction for Scalable and Accurate Parallel Multi-core Simulation in
Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (ACM, Seattle, Washington,
2011), 52:1. http://doi.acm.org/10.1145/2063384.2063454 (cit. on
pp. 65, 93).

89. Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu,
A., Hestness, J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R.,
Sewell, K., Shoaib, M., Vaish, N., Hill, M. D. & Wood, D. A. The Gem5

Simulator. SIGARCH Comput. Archit. News 39, 1. http://doi.acm.
org/10.1145/2024716.2024718 (2011) (cit. on pp. 65, 93).

90. Beyls, K. & D’Hollander, E. H. Generating Cache Hints for Improved
Program Efficiency. J. Syst. Archit. 51, 223. http://dx.doi.org/10.
1016/j.sysarc.2004.09.004 (2005) (cit. on pp. 66, 95).

http://dx.doi.org/10.1147/sj.92.0078
http://dx.doi.org/10.1147/sj.92.0078
http://doi.acm.org/10.1145/781131.781159
http://doi.acm.org/10.1145/781131.781159
http://doi.acm.org/10.1145/2451116.2451153
http://doi.acm.org/10.1145/2451116.2451153
http://www.cs.wisc.edu/~{}markhill/DineroIV/
http://doi.acm.org/10.1145/2063384.2063454
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://dx.doi.org/10.1016/j.sysarc.2004.09.004
http://dx.doi.org/10.1016/j.sysarc.2004.09.004

138 bibliography

91. Hill, M. D. Aspects of Cache Memory and Instruction Buffer Performance
AAI8813907. PhD thesis (1987) (cit. on p. 67).

92. Haase, C. A Survival Guide to Presburger Arithmetic. ACM SIGLOG
News 5, 67. http://doi.acm.org/10.1145/3242953.3242964 (2018)
(cit. on pp. 68, 82).

93. Nguyen Luu, D. The Computational Complexity of Presburger Arithmetic
PhD thesis (UCLA, 2018) (cit. on p. 82).

94. JR. H.W., L. Integer Programming with a Fixed Number of Variables.
Report 81-03, Mathematisch Instituut Amsterdam (1981) 8 (1983) (cit. on
p. 82).

95. Fischer, M. J. & Rabin, M. O. SUPER-EXPONENTIAL COMPLEXITY
OF PRESBURGER ARITHMETIC tech. rep. (Cambridge, MA, USA,
1974) (cit. on p. 82).

96. Terpstra, D., Jagode, H., You, H. & Dongarra, J. Collecting Performance
Data with PAPI-C in Tools for High Performance Computing 2009 (eds
Müller, M. S., Resch, M. M., Schulz, A. & Nagel, W. E.) (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010), 157 (cit. on p. 84).

97. Bao, W., Krishnamoorthy, S., Pouchet, L.-N. & Sadayappan, P. Ana-
lytical Modeling of Cache Behavior for Affine Programs. Proc. ACM
Program. Lang. 2, 32:1. http://doi.acm.org/10.1145/3158120 (2017)
(cit. on pp. 92, 95).

98. Bellard, F. QEMU, a Fast and Portable Dynamic Translator in Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference
(USENIX Association, Anaheim, CA, 2005), 41. http://dl.acm.org/
citation.cfm?id=1247360.1247401 (cit. on p. 92).

99. Bennett, B. T. & Kruskal, V. J. LRU Stack Processing. IBM J. Res. Dev.
19, 353. http://dx.doi.org/10.1147/rd.194.0353 (1975) (cit. on
p. 94).

100. Olken, F. Efficient methods for calculating the success function of
fixed space replacement policies (1981) (cit. on p. 94).

101. Sugumar, R. A. & Abraham, S. G. Efficient Simulation of Caches Under
Optimal Replacement with Applications to Miss Characterization in Pro-
ceedings of the 1993 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (ACM, Santa Clara, California, USA,
1993), 24. http://doi.acm.org/10.1145/166955.166974 (cit. on
p. 94).

http://doi.acm.org/10.1145/3242953.3242964
http://doi.acm.org/10.1145/3158120
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dx.doi.org/10.1147/rd.194.0353
http://doi.acm.org/10.1145/166955.166974

bibliography 139

102. Kim, Y. H., Hill, M. D. & Wood, D. A. Implementing Stack Simulation
for Highly-associative Memories in Proceedings of the 1991 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems
(ACM, San Diego, California, USA, 1991), 212. http://doi.acm.org/
10.1145/107971.107995 (cit. on p. 94).

103. Eklov, D. & Hagersten, E. StatStack: Efficient modeling of LRU caches in
2010 IEEE International Symposium on Performance Analysis of Systems
Software (ISPASS) (2010), 55 (cit. on p. 94).

104. Xiang, X., Bao, B., Ding, C. & Gao, Y. Linear-time Modeling of Program
Working Set in Shared Cache in Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques (IEEE
Computer Society, Washington, DC, USA, 2011), 350. http://dx.doi.
org/10.1109/PACT.2011.66 (cit. on p. 94).

105. Chen, D., Liu, F., Ding, C. & Pai, S. Locality Analysis Through Static
Parallel Sampling in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (ACM, Philadelphia,
PA, USA, 2018), 557. http : / / doi . acm . org / 10 . 1145 / 3192366 .

3192402 (cit. on p. 94).

106. Agarwal, A., Hennessy, J. & Horowitz, M. An Analytical Cache Model.
ACM Trans. Comput. Syst. 7, 184. http://doi.acm.org/10.1145/
63404.63407 (1989) (cit. on p. 94).

107. Harper, J. S., Kerbyson, D. J. & Nudd, G. R. Analytical Modeling of
Set-Associative Cache Behavior. IEEE Trans. Comput. 48, 1009. https:
//doi.org/10.1109/12.805152 (1999) (cit. on p. 94).

108. Carr, S., McKinley, K. S. & Tseng, C.-W. Compiler Optimizations for
Improving Data Locality in Proceedings of the Sixth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ACM, San Jose, California, USA, 1994), 252. http:
//doi.acm.org/10.1145/195473.195557 (cit. on p. 94).

109. Ferdinand, C., Martin, F., Wilhelm, R. & Alt, M. Cache Behavior
Prediction by Abstract Interpretation. Sci. Comput. Program. 35, 163.
http://dx.doi.org/10.1016/S0167-6423(99)00010-6 (1999) (cit. on
p. 94).

110. Chattopadhyay, S. & Roychoudhury, A. Scalable and precise refine-
ment of cache timing analysis via path-sensitive verification. Real-
Time Systems 49, 517. https://doi.org/10.1007/s11241-013-9178-0
(2013) (cit. on p. 94).

http://doi.acm.org/10.1145/107971.107995
http://doi.acm.org/10.1145/107971.107995
http://dx.doi.org/10.1109/PACT.2011.66
http://dx.doi.org/10.1109/PACT.2011.66
http://doi.acm.org/10.1145/3192366.3192402
http://doi.acm.org/10.1145/3192366.3192402
http://doi.acm.org/10.1145/63404.63407
http://doi.acm.org/10.1145/63404.63407
https://doi.org/10.1109/12.805152
https://doi.org/10.1109/12.805152
http://doi.acm.org/10.1145/195473.195557
http://doi.acm.org/10.1145/195473.195557
http://dx.doi.org/10.1016/S0167-6423(99)00010-6
https://doi.org/10.1007/s11241-013-9178-0

140 bibliography

111. Touzeau, V., Maïza, C., Monniaux, D. & Reineke, J. Ascertaining Un-
certainty for Efficient Exact Cache Analysis in (2017), 22 (cit. on p. 94).

112. Touzeau, V., Maïza, C., Monniaux, D. & Reineke, J. Fast and Exact
Analysis for LRU Caches. Proc. ACM Program. Lang. 3, 54:1. http:
//doi.acm.org/10.1145/3290367 (2019) (cit. on p. 94).

113. Ghosh, S., Martonosi, M. & Malik, S. Cache Miss Equations: A Com-
piler Framework for Analyzing and Tuning Memory Behavior. ACM
Transactions on Programming Languages and Systems 21 (2000) (cit. on
p. 94).

114. Vera, X. & Xue, J. Let’s Study Whole-Program Cache Behaviour An-
alytically in Proceedings of the 8th International Symposium on High-
Performance Computer Architecture (IEEE Computer Society, Washing-
ton, DC, USA, 2002), 175. http://dl.acm.org/citation.cfm?id=
874076.876456 (cit. on p. 94).

115. Xue, J. & Vera, X. Efficient and Accurate Analytical Modeling of
Whole-Program Data Cache Behavior. IEEE Trans. Comput. 53, 547.
http://dx.doi.org/10.1109/TC.2004.1275296 (2004) (cit. on p. 94).

116. CaBcaval, C. & Padua, D. A. Estimating Cache Misses and Locality
Using Stack Distances in Proceedings of the 17th Annual International
Conference on Supercomputing (ACM, San Francisco, CA, USA, 2003),
150. http://doi.acm.org/10.1145/782814.782836 (cit. on p. 94).

117. Chatterjee, S., Parker, E., Hanlon, P. J. & Lebeck, A. R. Exact Analysis of
the Cache Behavior of Nested Loops in Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Implementation
(ACM, Snowbird, Utah, USA, 2001), 286. http://doi.acm.org/10.
1145/378795.378859 (cit. on p. 94).

118. Forum, M. MPI: A Message-Passing Interface Standard. Version 3.1 http:

//www.mpi-forum.org. 2015 (cit. on p. 97).

119. Nickolls, J., Buck, I., Garland, M. & Skadron, K. Scalable Parallel
Programming with CUDA. Queue 6, 40. http://doi.acm.org/10.
1145/1365490.1365500 (2008) (cit. on p. 97).

120. Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D. & Panda,
D. K. Efficient Inter-node MPI Communication Using GPUDirect RDMA
for InfiniBand Clusters with NVIDIA GPUs in Proceedings of the 2013

42Nd International Conference on Parallel Processing (IEEE Computer
Society, Washington, DC, USA, 2013), 80. http://dx.doi.org/10.
1109/ICPP.2013.17 (cit. on pp. 97, 105).

http://doi.acm.org/10.1145/3290367
http://doi.acm.org/10.1145/3290367
http://dl.acm.org/citation.cfm?id=874076.876456
http://dl.acm.org/citation.cfm?id=874076.876456
http://dx.doi.org/10.1109/TC.2004.1275296
http://doi.acm.org/10.1145/782814.782836
http://doi.acm.org/10.1145/378795.378859
http://doi.acm.org/10.1145/378795.378859
http://www.mpi-forum.org
http://www.mpi-forum.org
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://dx.doi.org/10.1109/ICPP.2013.17
http://dx.doi.org/10.1109/ICPP.2013.17

bibliography 141

121. White III, J. B. & Dongarra, J. J. Overlapping Computation and Com-
munication for Advection on Hybrid Parallel Computers in 2011 IEEE
International Parallel Distributed Processing Symposium (2011), 59 (cit.
on p. 97).

122. Phillips, E. H. & Fatica, M. Implementing the Himeno benchmark with
CUDA on GPU clusters in 2010 IEEE International Symposium on Parallel
Distributed Processing (IPDPS) (2010), 1 (cit. on p. 97).

123. Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W.
& Underwood, K. Remote Memory Access Programming in MPI-3.
ACM Trans. Parallel Comput. 2, 9:1. http://doi.acm.org/10.1145/
2780584 (2015) (cit. on pp. 98, 100, 104).

124. Belli, R. & Hoefler, T. Notified Access: Extending Remote Memory Access
Programming Models for Producer-Consumer Synchronization in Proceed-
ings of the 2015 IEEE International Parallel and Distributed Processing
Symposium (IEEE Computer Society, Washington, DC, USA, 2015),
871. http://dx.doi.org/10.1109/IPDPS.2015.30 (cit. on pp. 98, 100,
109).

125. Little, J. D. C. A Proof for the Queuing Formula: L = λW. Oper. Res.
9, 383. http://dx.doi.org/10.1287/opre.9.3.383 (1961) (cit. on
p. 99).

126. Tanasic, I., Gelado, I., Cabezas, J., Ramirez, A., Navarro, N. & Valero,
M. Enabling Preemptive Multiprogramming on GPUs in Proceeding of the
41st Annual International Symposium on Computer Architecuture (IEEE
Press, Minneapolis, Minnesota, USA, 2014), 193. http://dl.acm.org/
citation.cfm?id=2665671.2665702 (cit. on pp. 100, 121).

127. Oden, L., Fröning, H. & Pfreundt, F. Infiniband-Verbs on GPU: A Case
Study of Controlling an Infiniband Network Device from the GPU in 2014

IEEE International Parallel Distributed Processing Symposium Workshops
(2014), 976 (cit. on pp. 105, 121).

128. Xiao, S. & Feng, W. Inter-block GPU communication via fast barrier syn-
chronization in 2010 IEEE International Symposium on Parallel Distributed
Processing (IPDPS) (2010), 1 (cit. on pp. 106, 121).

129. Rosetti, D. A fast GPU memory copy library based on NVIDIA GPUDirect
RDMA technology https://github.com/NVIDIA/gdrcopy. 2015 (cit.
on pp. 108, 111).

130. Inc., C. Using the GNI and MAPP APIs. Ver. S-2446-52. http://docs.
cray.com/. 2014 (cit. on p. 111).

http://doi.acm.org/10.1145/2780584
http://doi.acm.org/10.1145/2780584
http://dx.doi.org/10.1109/IPDPS.2015.30
http://dx.doi.org/10.1287/opre.9.3.383
http://dl.acm.org/citation.cfm?id=2665671.2665702
http://dl.acm.org/citation.cfm?id=2665671.2665702
https://github.com/NVIDIA/gdrcopy
http://docs.cray.com/
http://docs.cray.com/

142 bibliography

131. Goldenberg, D. Co-Desing Architecture http : / / slideshare . net /

insideHPC/co-design-architecture-for-exascale. 2016 (cit. on
p. 111).

132. Micikevicius, P. GPU Performance Analysis and Optimization http:

//on-demand.gputechconf.com/gtc/2012/presentations/S0514-

GTC2012-GPU-Performance-Analysis.pdf. 2012 (cit. on p. 113).

133. Dawson, J. M. Particle simulation of plasmas. Rev. Mod. Phys. 55, 403.
http://link.aps.org/doi/10.1103/RevModPhys.55.403 (2 1983)
(cit. on p. 115).

134. Ghysels, P. & Vanroose, W. Hiding Global Synchronization Latency
in the Preconditioned Conjugate Gradient Algorithm. Parallel Comput.
40, 224. http://dx.doi.org/10.1016/j.parco.2013.06.001 (2014)
(cit. on p. 119).

135. Graham, R. L. & Shipman, G. MPI Support for Multi-core Architectures:
Optimized Shared Memory Collectives in Proceedings of the 15th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface (Springer-Verlag, Dublin, Ire-
land, 2008), 130. http://dx.doi.org/10.1007/978-3-540-87475-
1_21 (cit. on p. 119).

136. Li, S., Hoefler, T. & Snir, M. NUMA-aware Shared-memory Collective
Communication for MPI in Proceedings of the 22Nd International Sym-
posium on High-performance Parallel and Distributed Computing (ACM,
New York, New York, USA, 2013), 85. http://doi.acm.org/10.1145/
2493123.2462903 (cit. on p. 119).

137. Duato, J., Igual, F. D., Mayo, R., Peña, A. J., Quintana-Ortí, E. S.
& Silla, F. An Efficient Implementation of GPU Virtualization in High
Performance Clusters in Proceedings of the 2009 International Conference
on Parallel Processing (Springer-Verlag, Delft, The Netherlands, 2010),
385. http://dl.acm.org/citation.cfm?id=1884795.1884840 (cit. on
p. 120).

138. Reaño, C., Mayo, R., Quintana-Ortí, E. S., Silla, F., Duato, J. & Peña,
A. J. Influence of InfiniBand FDR on the performance of remote GPU
virtualization in 2013 IEEE International Conference on Cluster Computing
(CLUSTER) (2013), 1 (cit. on p. 120).

http://slideshare.net/insideHPC/co-design-architecture-for-exascale
http://slideshare.net/insideHPC/co-design-architecture-for-exascale
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://link.aps.org/doi/10.1103/RevModPhys.55.403
http://dx.doi.org/10.1016/j.parco.2013.06.001
http://dx.doi.org/10.1007/978-3-540-87475-1_21
http://dx.doi.org/10.1007/978-3-540-87475-1_21
http://doi.acm.org/10.1145/2493123.2462903
http://doi.acm.org/10.1145/2493123.2462903
http://dl.acm.org/citation.cfm?id=1884795.1884840

bibliography 143

139. Miyoshi, T., Irie, H., Shima, K., Honda, H., Kondo, M. & Yoshinaga,
T. FLAT: A GPU Programming Framework to Provide Embedded MPI in
Proceedings of the 5th Annual Workshop on General Purpose Processing
with Graphics Processing Units (ACM, London, United Kingdom, 2012),
20. http://doi.acm.org/10.1145/2159430.2159433 (cit. on p. 120).

140. Kim, S., Huh, S., Zhang, X., Hu, Y., Wated, A., Witchel, E. & Silber-
stein, M. GPUnet: Networking Abstractions for GPU Programs in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14) (USENIX Association, Broomfield, CO, 2014), 201. https:
/ / www . usenix . org / conference / osdi14 / technical - sessions /

presentation/kim (cit. on p. 120).

141. Stuart, J. A. & Owens, J. D. Message Passing on Data-parallel Archi-
tectures in Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing (IEEE Computer Society, Washington,
DC, USA, 2009), 1. https://doi.org/10.1109/IPDPS.2009.5161065
(cit. on p. 120).

142. Stuart, J. A., Balaji, P. & Owens, J. D. Extending MPI to Accelerators
in Proceedings of the 1st Workshop on Architectures and Systems for Big
Data (ACM, Galveston Island, Texas, USA, 2011), 19. http://doi.acm.
org/10.1145/2377978.2377981 (cit. on p. 120).

143. Oden, L. & Fröning, H. GGAS: Global GPU address spaces for efficient
communication in heterogeneous clusters in 2013 IEEE International Con-
ference on Cluster Computing (CLUSTER) (2013), 1 (cit. on p. 120).

144. Daoud, F., Watad, A. & Silberstein, M. GPUrdma: GPU-side Library
for High Performance Networking from GPU Kernels in Proceedings of
the 6th International Workshop on Runtime and Operating Systems for
Supercomputers (ACM, Kyoto, Japan, 2016), 6:1. http://doi.acm.org/
10.1145/2931088.2931091 (cit. on p. 121).

http://doi.acm.org/10.1145/2159430.2159433
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim
https://doi.org/10.1109/IPDPS.2009.5161065
http://doi.acm.org/10.1145/2377978.2377981
http://doi.acm.org/10.1145/2377978.2377981
http://doi.acm.org/10.1145/2931088.2931091
http://doi.acm.org/10.1145/2931088.2931091

	Abstract
	Zusammenfassung
	Acknowledgements
	Publications
	Contents
	1 Introduction
	1.1 Automatic Data-Locality Optimization
	1.2 User-Guided Data Movement Optimization
	1.3 Importance of the Programming Model
	1.4 Thesis Contributions

	2 A Stencil Algebra
	2.1 Stencil Algebra
	2.1.1 Definition of a Stencil Program
	2.1.2 Example
	2.1.3 Data Locality Transformations
	2.1.4 Stencil Algebra Definition
	2.1.5 Performance Modeling
	2.1.6 Stencil Program Analysis

	2.2 Case Study
	2.2.1 STELLA
	2.2.2 Stencil Program Optimization

	2.3 Evaluation
	2.4 Related Work
	2.5 Summary of the Approach

	3 A Learned Performance Model
	3.1 Background
	3.1.1 Architecture Overview
	3.1.2 Stencil Sequences
	3.1.3 Data-Locality Transformations

	3.2 Modeling
	3.2.1 Stencil Sequences
	3.2.2 Data-Locality Transformations
	3.2.3 Performance Model
	3.2.4 Learning the Performance Model

	3.3 Optimization
	3.3.1 Linearizing Multiplications
	3.3.2 Modeling Stencil Groups

	3.4 Evaluation
	3.4.1 Setup & Methodology
	3.4.2 Implementation
	3.4.3 Learning the Target Systems
	3.4.4 Tuning the Application Kernels
	3.4.5 Comparison with Halide and Polymage

	3.5 Related Work
	3.6 Summary of the Approach

	4 An Analytical Cache Model
	4.1 Background
	4.1.1 Hardware Model
	4.1.2 Cache Misses
	4.1.3 Integer Sets and Maps
	4.1.4 Static Control Programs

	4.2 Cache Model
	4.2.1 Computing the Stack Distance
	4.2.2 Counting the Capacity Misses
	4.2.3 Eliminating Non-Affine Terms
	4.2.4 Counting the Compulsory Misses
	4.2.5 Computational Complexity

	4.3 Evaluation
	4.3.1 Setup and Methodology
	4.3.2 Accuracy Overview
	4.3.3 Performance Overview
	4.3.4 Comparison to PolyCache and Dinero
	4.3.5 Performance for Tiled Codes

	4.4 Related Work
	4.5 Summary of the Approach

	5 A Communication-Hiding Programming Model
	5.1 Programming Model
	5.1.1 Distributed Memory
	5.1.2 Combining MPI & CUDA
	5.1.3 Example
	5.1.4 Discussion

	5.2 Implementation
	5.2.1 Architecture Overview
	5.2.2 Communication Control
	5.2.3 Performance Optimization
	5.2.4 Discussion

	5.3 Evaluation
	5.3.1 Experimental Setup & Methodology
	5.3.2 Microbenchmarks
	5.3.3 Mini-applications

	5.4 Discussion
	5.5 Related Work
	5.6 Summary of the Approach

	6 Conclusions and Future Work
	6.1 Future Work
	6.1.1 Automatic Performance Model Design
	6.1.2 Scaling to Real-World Applications
	6.1.3 Cache Optimal Programs

	 Bibliography

