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ABSTRACT

Deterministic parallel programming models are a beacon of hope in the

stormy, concurrency-bug-ridden seas of parallel programming. These mod-

els guarantee that any parallel execution of a program produces the same

results as a sequential execution, implying the absence of any kind of

concurrency bugs. However, most existing deterministic models rely on

compile-time techniques and on complex program annotations to achieve

this goal. While such an approach ensures high performance, it negatively

a�ects the simplicity of a language, making it unsuitable for non-expert

programmers.

This dissertation explores a relatively uncharted area in the design space

of parallel programming models and presents an approach that is determin-

istic, but relies primarily on runtime checking to guarantee this property. In

this programming model, every object plays a role in every concurrent task,

for example, the readwrite role or the readonly role. When an object is

shared with a new task, it adapts to the new sharing pattern by changing its

roles and therefore its behavior, namely, by changing the set of permitted

operations that can be performed with this object. This mechanism can

be leveraged to prevent interfering accesses from concurrently executing

tasks and makes parallel execution deterministic.

To this end, the dissertation presents a role-based programming language

that includes several novel concepts (role transitions, guarding, slicing) to

enable practical deterministic parallel programming. Unlike previous deter-

ministic languages, this language can express a variety of parallel patterns

without relying on complex language constructs or rigorous restrictions.

A prototype implementation demonstrates that this dynamic approach

yields high performance for a range of programs, despite the overhead that

stems from the necessary runtime checks. In particular, the implementa-

tions of 8 widely used programming problems achieve substantial parallel

speedups, as a result of a combination of optimizations speci�cally tailored

towards this programming model.

In summary, this dissertation demonstrates that deterministic parallel

programming can be realized with a dynamic instead of a static approach,

yielding vastly di�erent—and much simpler—language designs.
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ZUSAMMENFAS SUNG

Deterministische Modelle für paralleles Programmieren sind Ho�nungs-

träger in der Concurrency-Bug-verseuchten Welt der parallelen Program-

mierung. Diese Modelle garantieren, dass jede parallele Ausführung ei-

nes Programms die selben Resultate wie eine sequenzielle Ausführung

produziert, was die Abwesenheit jeglicher Art von Concurrency Bugs be-

deutet. Jedoch basieren die meisten bisherigen deterministischen Modelle

auf Kompilierzeit-Techniken und auf komplexen Programm-Annotationen.

Ein solcher Ansatz sorgt für hohe Leistung, aber er beein�usst die Ein-

fachheit einer Programmiersprache negativ und ist deshalb ungeeignet für

Nicht-Experten.

Diese Dissertation erkundet ein relativ unbekanntes Gebiet im Design-

Raum von parallelen Programmiermodellen und präsentiert einen Ansatz,

welcher deterministisch ist, aber in erster Linie Laufzeit-Checks verwendet

um Determinismus zu garantieren. In diesem Modell spielt jedes Objekt

eine Rolle in jeder gleichzeitig ausgeführten Task, zum Beispiel die read-

write-Rolle oder die readonly-Rolle. Wenn ein Objekt mit einer neuen

Task geteilt wird, dann passt es sich an das neue Sharing-Muster an, indem

es seine gespielten Rollen und damit sein Verhalten ändert. Genauer gesagt,

wenn ein Objekt geteilt wird, ändern die für dieses Objekt erlaubten Ope-

rationen. Mit diesem Mechanismus werden Zugri�e verhindert, die von

zwei gleichzeitig ausgeführten Tasks gemacht werden und sich gegenseitig

störend beein�ussen, und damit wird die Ausführung deterministisch.

Zu diesem Zweck präsentiert diese Dissertation eine Rollen-basierte Pro-

grammiersprache, welche verschiedene neue Konzepte (“role transitions”,

“guarding”, “slicing”) enthält, welche praktisches und deterministisches

paralleles Programmieren ermöglichen. Im Gegensatz zu früheren deter-

ministischen Sprachen kann diese Sprache eine Vielfalt von parallelen

Programm-Muster ausdrücken, ohne sich dabei auf komplexe Sprachkon-

strukte oder strikte Einschränkungen zu verlassen.

Eine Prototyp-Implementierung zeigt, dass dieser dynamische Ansatz

hohe Leistung für verschiedene Programme liefert, trotz des Overheads der

nötigen Laufzeit-Checks. Insbesondere erreichen die Implementierungen

von 8 verbreiteten Programmierproblemen beträchtliche parallele Speedups,

unter anderem dank einer Kombination von Optimierungen, welche speziell

auf dieses Programmiermodell zugeschnitten wurden.

Insgesamt zeigt diese Dissertation auf, dass deterministisches paralleles

Programmieren anstelle eines statischen auch mit einem dynamischen

Ansatz möglich ist, welcher ganz andere—deutlich einfachere—Sprach-

Designs ermöglicht.
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1

I N TRODUCT ION

1.1 thesis

a deterministic parallel programming model can be realized with

a small number of new language concepts and few restrictions,

while yielding high performance.

Most widely-used programming models and languages today provide little

assistance in engineering bug-free parallel software. They follow an ap-

proach that—for the sake of performance or language simplicity—employs

no safety checks with respect to correct parallel execution, neither at run-

time nor at compile time. Thus, parallel programs often contain various

concurrency bugs, leading to race conditions or deadlock.

Such bugs have been studied extensively, and a myriad of models, lan-

guages, programming methodologies, and software engineering tools have

been created to prevent or at least detect them. Yet, concurrency bugs are

only the symptoms of a much more fundamental issue: nondeterminism. A Nondeterminism
parallel programming model is nondeterministic if a program that follows

this model can produce di�erent results, even when all programmer- and

user-controlled factors, such as input or operating environment, remain

the same. In other words, the result of a program execution is a�ected by

uncontrollable factors, which depend on the concrete programming model.

A well-known nondeterministic model is the thread-based model, in Thread-Based
Concurrency Modelwhich parallel execution is achieved by distributing the workload among

multiple concurrently executing threads. These threads share a common

memory space that all of them can access. To ensure maximum performance,

many thread-based languages by default provide extremely weak guaran-

tees about the visibility, ordering, and atomicity of concurrently executed

operations on this shared memory. For example, the Java language gives

no guarantee that multiple read or write operations performed by a thread

are executed atomically* or even that a normal write operation is ever
*

that is, they cannot be

interleaved with operations

from a di�erent thread

seen by other threads. It is the programmer’s responsibility to ensure such

properties, for example, by using locks or speci�c memory operations such

as compare-and-swap. Should the programmer fail to employ such explicit

synchronization correctly, the program will be nondeterministic and may

crash, deadlock, or—worst of all—silently produce incorrect results.

1



2 introduction

Other programming models, such as the Actor Model (Agha, 1986, 1990;

Hewitt et al., 1973) or the Active Objects Model (Yonezawa et al., 1986),

address some of the issues in the thread-based model by abandoning the

shared memory concept and completely isolating concurrently executing

actors from each other. The only way for actors to communicate is by

sending and receiving messages. This model precludes many low-level

concurrency bugs, such as data races or deadlock, and frees the programmer

from reasoning about memory model intricacies. However, the Actor Model

su�ers from nondeterminism too: actors may behave di�erently depending

on the order of the messages they receive, which in turn depends on various

uncontrollable factors, like the scheduling of other actors’ execution, or the

time that passes between when a message is sent and received.

Nondeterminism poses serious challenges to software engineering. If a

program can produce di�erent results when given the same inputs, standard

testing techniques cannot guarantee that a program always behaves as ex-

pected. Simple approaches like executing tests repeatedly are unhelpful, as

many nondeterministic concurrency bugs manifest rarely—and sometimes

only in production, where they can cause incomparably higher costs. Non-

determinism also hampers the ability to debug a program, as the presence

of a debugger often changes the scheduling of operations, preventing the

programmer from analyzing a “typical” execution.

What makes the problem of nondeterminism even more delicate is that

it is speci�c to parallel (or more precisely, concurrent) programming. Se-

quential programs are typically deterministic, because they are una�ected

by the e�ects of scheduling and weak memory models. Thus, correctly

parallelizing an existing sequential program under any nondeterministic

model can be extremely di�cult and error-prone, and often requires expert

knowledge about memory models and intricate reasoning about possible

interleavings of operations. In addition, achieving high performance on

modern multi-core cpus is impossible without parallel execution, making

nondeterminism an ever more pressing issue.

While many programming models address individual symptoms of non-

determinism, for example, by preventing data races, one approach aims

at the very disease and makes parallel programming deterministic by de-
fault (Lee, 2006; Bocchino et al., 2009a). In such a deterministic parallelDeterministic Parallel

Programming Model programming model a program is guaranteed to produce results that are af-

fected only by programmer- or user-controlled factors such as the program

input—unless the programmer uses nondeterministic operations explicitly.

Usually, the results are not only deterministic, but equal to those that are

produced if the program is executed in a sequential instead of a parallel

manner.

Deterministic parallel programming (dpp) restores the e�ectiveness of

testing, the ability to debug, and—most importantly—opens the parallel

programming door to non-expert programmers who have no training in

reasoning about concurrent access to shared memory or messaging. In ad-

dition, it may ease the process of parallelizing existing sequential programs,
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as the semantics of the program is preserved as long as nondeterminism is

not introduced explicitly.

Many existing dpp models build on top of the thread-based model, be-

cause of its simplicity and popularity. Thread-based determinism can be

guaranteed using a property called noninterference, which asserts that the Noninterference
execution of one thread cannot in�uence the computation of another thread;

we say that two threads cannot interfere. If threads cannot interfere, then

each thread performs the same computation—and thus produces the same

results—as if it were the only thread in the program. Consequently, the

entire program produces the same results as if the computations in all

threads were performed in a single thread, which amounts to sequential

execution.

The di�culty of ensuring noninterference depends heavily on the prop-

erties of a programming language. For purely functional languages, non-

interference is trivial: since the evaluation of any expression is free from

side e�ects, it cannot interfere with the evaluation of any other expression.

By contrast, in an imperative language, any segment of code can have side

e�ects on some mutable state; thus, noninterference requires all pairs of

operations from two concurrent segments of code to commute with each Commuting Operations
other, i.e., that neither of the operations writes to a memory location that the

other reads from or writes to as well. For a language with object references,

this property is usually di�cult to check, as it requires aliasing information, Aliasing
i.e., information about whether two given references are guaranteed to

refer to di�erent objects.

Most of today’s widely-used languages fall into the far end of this di�-

culty spectrum: they are imperative, object-oriented languages that allow

unrestricted aliasing. While it is debatable whether such a design is the best

starting point for parallel languages for a future generation of programmers,

it is a fact that many existing programmers are unfamiliar with di�erent

language designs, for example, purely functional ones. Therefore, designing

imperative, object-oriented deterministic languages is an ongoing research

e�ort.

Most imperative dpp approaches explore one of two models to ensure

noninterference. In the �rst model, the programmer declares the e�ects (Lu- E�ects
cassen and Gi�ord, 1988; Greenhouse and Boyland, 1999; Leino et al., 2002)

of each segment of code (e.g., of each method), by summarizing the read and

write operations that are performed by this segment. Then, noninterference

is checked in two steps: �rst, by verifying that all e�ect annotations are cor-

rect, and second, by asserting that the e�ects of concurrently executing code

are free of con�ict. In the second model, noninterference is ensured using

permissions (Boyland, 2003; Boyland and Retert, 2005; Bierho� and Aldrich, Permissions
2007): A segment of code can execute a certain operation on an object only

if it has the respective permission, which is speci�c to the object and the

kind of operation, i.e., read or write. Noninterference is established by a set

of rules that prevent the creation of two or more con�icting permissions

for the same object.
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Both models a�ect programming language design. First, in addition to

the core concepts (e�ects or permissions, respectively), most languages

based on one of these models also include some concept of ownership or

grouping. As an example for an e�ect-based language, in Deterministic

Parallel Java (dpj) (Bocchino et al., 2009b; Bocchino and Adve, 2011) the

programmer declares the e�ects of a method using a rich language based

on regions, which partition the heap into disjoint parts. On the other hand,

Æminium (Stork et al., 2009, 2014), a permission-based language, has the

concept of data groups (which, like regions, partition the heap into disjoint

parts) and the related concept of group permissions. Both languages require

the programmer to master a substantial number of new concepts to write

a parallel program. Second, due to this concept of grouping, e�ect- and

permission-based languages usually impose rigid aliasing restrictions to

ensure the disjointness of regions or data groups, respectively.

The fundamental reason why these two models have such strong e�ects

on language design is that they are both static approaches, that is, theyStatic dpp Approaches
check noninterference at compile time. A major reason is performance: if

noninterference is checked at compile time, then runtime checking and

the associated runtime overhead can be avoided. However, the focus on

this performance-�rst approach also means that almost every existing de-

terministic language su�ers from at least one of two problems that a�ect

simplicity: the language contains a large number of new concepts that are

required for checking noninterference, or it imposes major restrictions that

a�ect the productivity of programmers—especially of those only familiar

with mainstream languages.

By consciously abandoning the requirement of compile-time interference

checking, and instead employing a dynamic, simplicity-�rst approach, this

dissertation shows that a deterministic parallel programming model can be
realized with a small number of new language concepts and few restrictions.
Nevertheless, by using a combination of model-speci�c optimizations, sim-

plicity is achieved while yielding high performance for programs with a

range of parallel patterns.

1.2 effect- and permission-based languages

The complexity imposed by static e�ect- or permission-based languages

is better understood using examples of program code written in such lan-

guages.

The �rst example concerns dpj (Bocchino et al., 2009b; Bocchino and

Adve, 2011), a Java-like language with a static e�ect system that supports

a wide range of parallel patterns. In dpj, the programmer writes method
e�ect summaries that state which parts of the object heap, called regions, areRegions
read and written by each method. Regions are declared and named by the

programmer, much like �elds or local variables. By additionally declaring

the region that each �eld resides in, the programmer e�ectively partitions

the heap into disjoint parts that the dpj e�ect system can reason about.
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1 class TreeNode<region P> {
2 region Links, L, R;
3 double value = 0 in P;
4 TreeNode<P:L> left in Links;
5 TreeNode<P:R> right in Links;
6 void computeSum() reads Links, writes P {
7 cobegin {
8 /* reads Links, writes P:L */
9 if (left != null) left.computeSum();

10 /* reads Links, writes P:R */
11 if (right != null) right.computeSum();
12 }
13 this.value += left != null ? left.value : 0;
14 this.value += right != null ? right.value : 0;
15 }
16 }

Figure 1.1: Example for regions and e�ects in dpj. Region and e�ect declarations

are highlighted.

The dpj example is presented in Figure 1.1 and shows a class that rep-

resents a node in a binary tree. Line 2 contains the declaration of three

regions, Links, L, and R, while Lines 3 to 5 show how �elds are assigned

to regions. The example also shows more features of the e�ect system,

including region parameters (�rst line) and region path lists, which are used Region Parameters,
Region Path Liststo specify nested regions (Lines 4 and 5). Finally, the �gure contains an

example of a method e�ect summary, on Line 6, and shows how to specify

parallel execution in dpj, using the cobegin block. All statements in such

a block may be executed in parallel, and the dpj compiler checks that the

e�ects of these statements are con�ict-free. In this example, this is indeed

the case: First, both statements access the Links region (where the left

and right �elds reside in), but only in a reading manner. Second, both

statements modify the value �eld of a number of TreeNode instances, but

the two statements operate on di�erent subtrees, i.e., di�erent regions. The

e�ects that the compiler computes for the two statements are given in

comments, but the details of the noninterference check that the compiler

performs are not discussed here.

The dpj example illustrates that a static e�ect system brings with it a

host of new concepts (regions, region parameters, region path lists) that

a programmer needs to master to e�ectively use such a language. In fact,

the concepts used in the example (with the exception of region path lists)

are considered “basic capabilities” of the language (Bocchino et al., 2009b);

to support other patterns, like data parallelism with arrays, the language

includes many more concepts, including disjointness constraints, index-
parameterized arrays, subarrays, and invocation e�ects.

Interestingly, an e�ect summary by itself is not necessarily complex;

in the example in Figure 1.1, it is simply “reads Links, writes P”, which is

simple enough to understand. The complexity lies elsewhere, namely in
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1 state LinkedListNode<internal, data> {
2 ...
3 }
4 state LinkedList<data> {
5 group<internal>
6 shared<internal> LinkedListNode<internal, data> head;
7 method void add<exclusive owner, shared data>
8 (shared<data> Object<data> o): shared<owner> {
9 /* owner: exclusive, data: shared */

10 ...
11 }
12 ...
13 }

Figure 1.2: Example for data groups in Æminium, based on the example presented

by Stork et al. (2014). Group and permission annotations are highlighted.

the declaration, the parameterization, and the instantiation of the various

regions that are required to express the e�ects of a method precisely enough.

The structure of the regions is really a compile-time re�ection of the actual

runtime structure of the object graph, i.e., how objects are connected to

each other with references. By specifying this information in the program

text, the programmer enables the compiler to check that two concurrent

statements access two disjoint sets of objects (or that objects are only read

from but not written to). On a conceptual level, regions ultimately encode

the aliasing information that is required to determine noninterference.

The second example deals with Æminium (Stork et al., 2009, 2014), a

recent deterministic-by-default language that is based on permissions. In

Æminium, every object reference is accompanied by an access permission,

which explicitly expresses constraints on aliasing and is also a simple form

of e�ect speci�cation. Permissions allow the compiler to build a depen-

dence graph among the statements in a program and then to automatically
parallelize the program. There are two basic permissions for references:

unique and immutable; the unique permission guarantees the absence of

aliasing and grants read as well as write access to an object, while immutable
references can be aliased, but grant only read access. In addition, a shared
permission indicates that an object may be aliased, but is owned by a dataData Groups
group, for which an additional group permission determines the permitted

access.

The Æminium example is given in Figure 1.2; it shows the skeleton of a

linked list implementation. Both states* have data group parameters (Lines 1
*

States are similar

to classes in Java. and 4) that de�ne to which data group each object that is part of the data

structure belongs. The objects that are actually stored in the list are in the

“data” group, while the internal list nodes belong to an “internal” group

that is declared on Line 5. The latter fact is visible on Line 6, which states

that the head node has the permission shared<internal>. Lines 7–11 show

the declaration of an add method, which has four parameters: two group
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parameters (in angle brackets), one regular parameter that corresponds to

the object o to be added to the list, and an implicit receiver parameter. The

parameter o has the permission shared<data>, while the receiver has the

permission shared<owner> (declared after the colon). This method declara-

tion expresses two conditions: �rst, that the object o must belong to the

same data group that the list is parameterized with, and second, that the list

itself be in a data group with the exclusive permission, which is a group

permission similar to the unique permission for single objects.

This example shows that a permission-based language comes with many

of the same concepts found in e�ect systems—Æminium’s data groups

and group parameters closely correspond to dpj’s regions and region

parameters—and with many of the same complexities. While Æminium’s

data groups may be less complex than dpj’s region path lists, they still

require the programmer to put a substantial e�ort into designing a static

abstraction of the heap structure that enables parallel execution—and into

expressing this abstraction with the syntax that the language provides.

1.3 parallel roles

The fact that static e�ect- and permission systems check noninterference at

compile time–and thus require virtually no runtime checking—makes such

languages an attractive option for high-performance applications and for

programs with very �ne-grained parallelism, for which the gains of parallel

execution could easily be negated by any runtime checking overhead. But

with the spreading of multi-core cpus in personal devices, parallel program-

ming has become relevant for a much broader range of applications—and

for programmers who would like to get the largest possible performance

boost without learning a new and complex language.

This dissertation goes beyond pure compile-time checking of noninter-

ference, and instead explores a programming model that is fundamentally

based on runtime checking. However, as an optimization to avoid excessive

runtime overhead, and also to avoid unexpected runtime errors, the model

can be combined with a lightweight static type system. The combination

of runtime and compile-time checking results in a programming language

that has fewer and less complex new concepts that a programmer needs

to master; it also has much fewer aliasing restrictions in comparison with

statically-checked languages such as dpj or Æminium.

The building blocks for this programming model are objects, tasks (which

are comparable to threads), and the explicit relationship between objects
and tasks. More concretely, every object plays a role in every task and may
change the roles it plays whenever it is shared with a task (or unshared). This

model, called the Parallel Roles model, de�nes three simple roles that de�ne Parallel Roles Model
the permitted operations on an object: readwrite, readonly, and pure.

The �rst two roles resemble Æminium’s unique and immutable permissions:

readwrite permits read and write access, but an object can play this role

only in a single task at every point in time; the readonly role permits only



8 introduction

read access, but can be played in multiple tasks at the same time. However,

there is a fundamental di�erence between roles and permissions: roles

are a runtime concept and accompany objects, not references. Therefore,

the number of references to an object is basically irrelevant in this model;

instead, the crucial point is which tasks an object has been shared with

(and with which role).

To specify the role that an object plays in a task, the programmer provides

role declarations, which take the form of annotations on the parameters of

the task. When a task is started, an object that is passed as an argument to

this task performs a role transition, such that the role the object plays in this

task matches the declared one. Noninterference is ensured by simultane-

ously changing the role that the object plays in the parent task (the task that

started the new task) as well. For example, if an object plays the readwrite

role in a task and is then shared as readonly with a new task (called the

child task), it performs a role transition and then plays the readonly role

in both tasks. When the child task �nishes, the inverse role transition takes

place and the object plays the readwrite role for the parent task again.

This means that a programmer should provide role declarations that

are as precise as possible, but any less precise declarations will not lead to

nondeterminism, as the runtime system ensures that an object never plays a

pair of con�icting roles at the same time. Moreover, less precise declarations

will not lead to compile-time errors either; instead, the program may simply

be serialized to a certain degree.

The dynamic nature of roles allows for much fewer aliasing restrictions—

and thus simpler language designs. As a case in point, this dissertation

presents the programming language Rolez, which enforces the rules ofRolez Language
the Parallel Roles model for every program written in that language; role

transitions and guarding are performed implicitly by the runtime system.

Besides role declarations for task parameters (which are used to determine

the role transitions at the beginning and the end of a task), Rolez also re-

quires role annotations for other kinds of variables, e.g., method parameters

and �elds. These additional annotations are required by the type system

mentioned earlier and are used by the Rolez compiler to verify that tasks

respect their role declarations; for example, if a task declares one of its

parameters as readonly, it may assign it only to other variables that are

declared as readonly. However, these additional role annotations do not

enforce any kind of aliasing restrictions and have no e�ect on the roles

of an object; in particular, an object may be assigned to any number of

variables annotated as readwrite. Instead, these annotations are used to

reduce the amount of runtime checking and to prevent errors that would

occur if a task disrespected a role declaration.

To illustrate the simplicity of Rolez, Figure 1.3 shows how the LinkedList

example in Figure 1.2 looks like when written in Rolez instead of Æminium.

While the Æminium implementation includes group parameters for both

LinkedList and LinkedListNode and for the add method, requires the dec-

laration of an internal group, and contains somewhat complex permission
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1 class LinkedListNode {
2 ...
3 }
4 class LinkedList {
5 var head: readwrite LinkedListNode
6 def readwrite add(o: readwrite Object): void {
7 ...
8 }
9 ...

10 }

Figure 1.3: Example for role declarations in the Rolez language. Role declarations

are highlighted.

declarations, the Rolez version requires only three simple role declarations,

for the head �eld (Line 5) and for the two method parameters (the explicit

parameter o and the receiver, both on Line 6). In fact, readwrite could

be de�ned as the implicit default role; then this example would need no

annotations at all.

Despite the small number of annotations, Rolez enables the parallel—and

guaranteed deterministic—use of such a linked list. When an instance of

LinkedList is shared with a task (for example, as readwrite), not only

the LinkedList object itself, but also all involved LinkedListNodes and all

objects stored in the list perform a role transition, changing the permitted

operations for the parent and child task. This behavior is due to a concept

called joint role transitions, which essentially causes all objects that are

reachable from a root object to perform the same role transition as the

root object itself. Thus, Rolez frees the programmer from designing and

expressing a static abstraction of the heap structure (as is done with regions

or data groups) and instead uses the actual runtime heap structure as the

basis for enforcing noninterference.*
*

This example assumes

that any list instance is

accessed only by a single

task at any point in time, or

that multiple tasks access it

in a read-only manner.

Permitting multiple tasks to

(deterministically) modify

the same list instance

would be more involved—

both in Rolez and in

Æminium.

This dynamic approach to the problem of grouping or ownership still

requires programmers to consider aliasing when writing a parallel program,

and may impose restrictions on the design or selection of data structures.

However, it enables reasoning about the problem in simple and familiar

terms—object references—and greatly simpli�es the use of some aliasing

patterns that are di�cult (or impossible) to describe statically.

The main challenge that comes with the Parallel Roles model is perfor-

mance. When an object is shared with a task, the runtime system needs

to perform all involved role transitions, i.e., it needs to update the roles

of that object on the heap—and, due to joint role transitions, the roles of

all objects that are reachable from that object. In addition, Rolez prevents

interference between tasks using a concept called guarding, which dynami-

cally prevents a parent task from performing operations that interfere with

its children. Both guarding and role transitions cause a runtime overhead

when compared with statically checked languages like dpj and Æminium,

and also when compared with nondeterministic languages like Java. Thus,



10 introduction

this dissertation also addresses the research question of how large this over-

head is—and by how much it can be reduced using roles-speci�c compiler

optimizations.

1.4 organization of this thesis

The dissertation is organized as follows. Chapter 2 presents the Parallel

Roles model, including a formal proof of determinism and a comparison

with other object-oriented models of concurrency. Chapter 3 discusses the

design of the Rolez programming language and evaluates its expressiveness,

using a range of patterns found in parallel programs. Chapter 4 presents

the role-based type system, which complements the dynamic concept of

guarding and increases the safety and e�ciency of Rolez, by checking for

a speci�c class of errors at compile time. Chapter 5 discusses the imple-

mentation of Rolez, focusing on two optimizations that help reducing the

runtime overhead. This chapter also features an empirical performance

evaluation, which illustrates the potential of the approach and discusses

the impact of the optimizations presented earlier. Finally, the conclusions

of this dissertation are presented in Chapter 6.

The material presented in these chapters draws upon, re�nes, and extends

our earlier published work (Faes and Gross, 2017, 2018a,b).
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PROGRAMMING MODEL

2.1 core concepts

The Parallel Roles model consists of four core concepts: roles, role decla-
rations, role transitions, and guarding. Only one of these concepts—role

declarations—is a static concept that corresponds to a programming lan-

guage construct; all others are dynamic concepts that correspond to runtime

information and actions. This dynamic nature of the model distinguishes it

from most other deterministic models.

The main idea behind Parallel Roles is to use objects as the basis to reason

about concurrent e�ects and parallelism, by making them aware of the tasks

with which they are shared. A task is simply a method that is supposed to

execute in a separate thread, in parallel to the code that calls that method. In

the standard object-oriented programming model, an object is a collection

of �elds plus a collection of methods. In the Parallel Roles model, every

object has a third component: the roles it currently plays for the di�erent Roles
tasks in the program.

The roles of an object determine which interactions are legal in which

tasks and what happens when an illegal interaction occurs. Parallel Roles

is a simple model, with only three roles: readwrite, readonly, and pure.

The readwrite role permits both �eld read and �eld write operations,

while readonly permits only read operations. pure permits neither (except

if a �eld is �nal; then it may be read). The roles an object plays may change

when the object is shared with a new task or when a task it was shared with

�nishes; this is how an object adapts to di�erent sharing patterns. There are

strict rules that de�ne when and how the roles of an object change and, as

a consequence, which combinations of roles an object may play at any point

in time. By restricting the possible combinations of roles and by enforcing

each role’s access restrictions, the model guarantees noninterference and,

by extension, determinism. We formally prove this statement in Section 2.4.

To control which role an object plays in a certain task, the programmer

provides a role declaration for that object, which can be thought of as an Role Declarations
annotation for the task parameter that corresponds to that object. Once a

task is started, all the objects that are shared with that task perform a role Role Transitions
transition, such that their roles in the new task match the ones declared by

the programmer.

11
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A role transition may also change the role an object plays in the parent
task (the task that starts the new task). For example, this is the case if the

child task (the newly started task) declares the readonly role for an object.

In that case, the object becomes readonly also in the parent task (if it is

not already). Once the child task �nishes, the object performs another role

transition and may become readwrite again in the parent task. Hence,

while an object is guaranteed to play the declared role at the beginning
of a task, a role declaration does not mean that the object plays this role

for the whole duration of the task; it only means that the declared role is

the most permissive role that this object may play in the task. For example,

if the declared role of an object is readonly, this object may play the

readonly or the pure role in that task, but never the readwrite role, since

readwrite is more permissive than readonly.

Because objects may play a less permissive role than the declared one,

some operations may become temporarily illegal, despite being legal under

the declared role. Temporarily illegal operations are handled di�erently

from erroneous operations, i.e., from operations that are illegal under the

declared role of an object: While performing a erroneous operation is con-

sidered a programmer mistake, performing a temporarily illegal operation

is allowed and does not result in any compile-time or runtime error. Instead,

a temporarily illegal operation is handled by delaying the execution of the

task that performs the operation—until the target object plays its declared

role again and the operation becomes legal once more. This way, two tasks,

a parent and its child task, can execute in parallel as long as there is no

interference between them; as soon as the parent attempts to perform an

interfering operation (as determined by the roles of the involved objects),

it is being blocked. Only once the child task has �nished, and another set

of role transitions has taken place, the parent may continue to execute.

This concept of automatically delaying the execution of a task due to a

temporarily illegal operation is called guarding.Guarding

2.2 example

Role transitions and guarding are illustrated using a code segment written in

Rolez that is shown in Figure 2.1. The illustration in Figure 2.2 demonstrates

how role transitions and guarding in�uence the execution of this code.

The illustration uses various symbols and colors: The symbols stand

for tasks; in this example, there is a parent task tparent, which is displayed

using the blue symbol , and a child task tchild with the purple symbol .

The roles that an object plays are displayed using the three symbols ,

, and , which stand for readwrite, readonly, and pure, respectively.

To indicate to which task a role belongs, a role symbol is displayed in the

respective task’s color; for example, the symbol means that an object

plays the readonly role in the blue task .

The code in Figure 2.1 contains a method foo and a task computeInterest.

The foo method, which we assume is executed in a tparent task, �rst creates
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1 def foo(): void {
2 var acc = new Account;
3 acc.deposit(10000);
4

5 var interest = start computeInterest(acc);
6

7 print(acc.balance);
8 acc.deposit(5000);
9 ...

10 }
11

12 task computeInterest(acc: readonly Account): int {
13 ...
14 }

Figure 2.1: Rolez code example for role transitions and guarding. The parts that

are related to roles and parallelism are highlighted. The execution of

this code is illustrated in Figure 2.2.

Time

new Account;

acc.deposit(…);

start compInt(acc);

print(acc.balance);

acc.deposit(…);

acc.deposit(…);

...

Account

GUARD

tparent

tchild

Account

finish Account

Tasks Heap

STOP

1

2

3

4

Figure 2.2: Execution illustration of the code in Figure 2.1. The left part shows the

key points on the time line, the center part illustrates the execution of

the two task, and the right part shows the same Account object and the

roles it plays during di�erent phases of the execution.
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an Account instance. This instance initially plays the readwrite role in

tparent, as shown in the illustration at Point 1. Therefore, tparent is permitted

to mutate the object and the call to the deposit method is legal.

Then, tparent starts an instance of the computeInterest task, which we

call tchild, and shares the Account object with it. This causes a role transition

after which the object plays the readonly role in both tasks (Point 2). While

tchild executes the code in computeInterest, tparent continues to execute the

code after the start statement, i.e., the print and the deposit methods. To

execute print, tparent only needs to read from the object, which is permitted

by the readonly role that the object currently plays in tparent. Therefore,

print is executed in parallel with computeInterest. This is desirable, since

the two methods do not interfere (both only read from the object).

On the other hand, the deposit method writes to the object and would

therefore interfere with computeInterest if the two were executed concur-

rently. In that case, computeInterest would take the balance either before or
after the deposit operation as a basis for the computation—depending on the

scheduling of the tasks. This nondeterminism is prevented by guarding: As

long as computeInterest has not �nished, the write operation is temporar-

ily illegal; it is legal under the declared role of the object, readwrite (as

explained in the next section), but illegal under the actual role, readonly.

Therefore, before tparent may perform the write operation, a guard checks

if the operation happens to be temporarily illegal. If this is the case, the

execution of tparent is blocked, as illustrated at Point 3.*
*

Note that guards are

implicit and not visible in

the program code.

Once tchild �nishes, the object performs another role transition and be-

comes again readwrite for tparent (Point 4). Now, the write operation in

tparent is legal again and the deposit method may continue to execute.

The example illustrates how little information the programmer needs to

provide in this model; in this example, only the simple readwrite annotation

for the computeInterest task. Interference is automatically prevented by

the runtime system, which keeps track of the roles of every object, performs

role transitions at the beginning and the end of a task’s execution, and

enforces access restrictions using guarding.

2.3 formal description

The formal de�nition of the Parallel Roles model comprises the core con-

cepts of role transitions and guarding, as presented above, while attempting

to be as minimal as possible, including only those elements that are essential

to the understanding of the model and for the proof of determinism. For

example, while we model read and write operations from and to objects,

the actual names and contents of an object’s �elds are not modeled. Instead,

we model only the roles that an object plays. Similarly, we do not model the

precise execution state of a task, i.e., the list of instructions a task executes

or the expressions it evaluates. Instead, we focus on the role-related aspects

of task, i.e., its role declarations, and model the execution state of a task
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ϱ ∈ Role = {rw, ro, pu} (I)

r ∈ Reference
t, τ ∈ Task ID
R ::= {ri

i ∈1..n} ∈ References = P(Reference)
T ::= 〈t, τ ,Rrw,Rro, c〉 ∈ Task = Task ID × (Task ID ∪ {•}) × (II)

References2 × (N0 ∪ {•})

Ts ::= {Ti
i ∈1..n} ∈ Tasks = P(Task)

O ::= {ti :: ϱi
i ∈1..n} ∈ Object = Task ID→ Role (III)

H ::= {ri 7→ Oi
i ∈1..n} ∈ Heap = Reference→ Object

S ::= 〈H , Ts〉 ∈ State = (Heap × Tasks) ∪ {Serror}

Figure 2.3: Formal domain of the Parallel Roles model. The important parts are

highlighted: the three roles (I), role declarations of tasks (II), and the

de�nition of objects, which are mappings from tasks to roles (III).

as a single counter, which is incremented whenever the task executes an

operation.

2.3.1 Domain

The formal domain of Parallel Roles, which describes the “structure” of the

entities that we model, is shown in Figure 2.3. The parts that are speci�c

to the Parallel Roles model are highlighted in blue and we refer to these

highlighted parts using the roman numerals on the right. We �rst de�ne

some basic entities: the three roles readwrite, readonly and pure (see

Highlight I); references, which uniquely identify objects on the heap; and

task ids, which uniquely identify tasks in a program. We assume that

references and task ids are disjoint in�nite sets.

Next, we de�ne the interesting entities in the model: tasks and objects.

First, a task T is a tuple that contains (1) the id t of the task itself, (2) the

id τ of t ’s parent task, (3) the role declarations Rrw
and Rro

, and (4) the

instruction counter c . The most important components are the role decla-

rations, which are represented as two sets of references (II). The Rrw
set

contains the references to all the objects that are supposed to be shared

with t as readwrite, while Rro
contains those shared as readonly. Note

that a Rpu
set is not required, as we explain in Section 2.3.2. Second, an

object is modeled as a mapping from task ids to roles (III). This re�ects the

fundamental idea of Parallel Roles that every object plays a speci�c role for

each task in the program, at any point in time. Also, as explained before,

the rest of an object’s state is not modeled.

Finally, the state of a complete program comprises the heap, which is a

mapping from references to objects, and the set of tasks. Note that there

are a few special values in the model. We use τ = • to denote that a task
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objH (r ) , O, s.t. (r 7→ O) ∈ H

taskTs(t) , T = 〈t, τ ,Rrw,Rro, c〉, s.t. T ∈ Ts

parentTs(t) , τ , s.t. taskTs(t) = 〈t, τ , _, _, _〉

ancest
i
Ts(t) ,


t, if i = 0 ∨ parentTs(t) = •

ancest
i−1
Ts (parentTs(t)), otherwise

ancestsTs(t) , {ancest
i
Ts(t) | i ∈ 1..∞}

step(〈t, τ ,Rrw,Rro, c〉) , 〈t, τ ,Rrw,Rro, c + 1〉

mayReadH (t, r ) , (t :: rw) ∈ objH (r ) ∨ (t :: ro) ∈ objH (r ) (I)

mayWriteH (t, r ) , (t :: rw) ∈ objH (r ) (II)

Figure 2.4: Helper functions for the state transition relation. The most important

are mayReadH (t, r ) and mayWriteH (t, r ), which indicate whether a task

is permitted to read from or to write to an object.

has no parent task (which is true exactly for the “main” task). Further, we

use c = • for tasks that have �nished (instead of removing them from the

set of tasks in the program). Finally, we use Serror to denote the program

state that results from an erroneous operation.

2.3.2 State Transition Relation

We describe the semantics of the model as a state transition relation. When-

ever a task in a program performs an operation, the program transitions

from its current state to the next one, according to the respective state

transition rule. If some operation violates the rules of the model, the pro-

gram transitions to the special Serror state. For example, this is the case

when a task attempts to write to an object that it declared as readonly.

On the other hand, temporarily illegal operations do not cause an error,

as explained in the previous sections. These operations are illegal under

the role that an object currently plays for a task t , but will become legal

later, when the object plays a more permissive role again for t . Hence, such

operations are modeled using a state transition back to the same state,

e�ectively preventing t from making any progress.

To de�ne the state transition relation, we �rst need a few helper functions,

which are de�ned in Figure 2.4. The function objH (r ) denotes the object that

the reference r refers to (for a given heap H ), while taskTs(t) denotes the

task with the id t (for a given set of tasks Ts). Further, ancestsTs(t) denotes

the set of all ancestor tasks of t , that is, t ’s parent, t ’s parent’s parent, and

so on. (Note that we use the symbol _ as a wildcard for values that are not

used.) In addition, step(T ) returns a “copy” of task T , with an incremented

instruction counter.

Most interesting are the functions mayReadH (t, r ) and mayWriteH (t, r )
(see I and II). These predicates indicate whether a task t is permitted to
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read from or to write to the object referred to by reference r , according

to the current roles of the object on the heap H . If the object contains the

mapping (t :: rw), i.e., it plays the readwrite role in t , then t may write to

the object. Similarly, if the object contains the mapping (t :: rw) or (t :: ro),
then t may read from the object. Note that objects that play the pure role

for a task t simply contain no mapping for t , instead of a mapping (t :: pu).
We use these functions, especially mayReadH (t, r ) and mayWriteH (t, r ),

to de�ne the state transition relation −→, which is given in Figures 2.5

and 2.6. First, a few notational remarks: In addition to the standard ∪ and ∩

set operators, we use − for the set di�erence. Further, given two mappings

A and B, we write A/B for the union of A and B, where B’s entries override

A’s when there is a key clash. Finally, all operators ∪,∩,−, / have the same

precedence and evaluate from left to right.

initial state The �rst part in Figure 2.5 de�nes the initial state S0,
which is the same for every program (as we do not model the program

instructions themselves). S0 is simply the tuple that contains the empty

heap and a set of one single task with some id tmain, with no parent task,

empty role declarations, and an instruction counter of 0.

object creation:

t create r
−−−−−−→ When a task t creates a new object, the

object is readwrite for t and, implicitly, pure for all other tasks, as shown

at Highlight I in Figure 2.5. In addition, the object is added to the Rrw
set

of t and of all of t ’s ancestor tasks (II). As explained in Section 2.3.1, the

Rrw
and Rro

sets represent the declared roles of objects and are, in addition

to the current roles, required to determine whether an operation is legal,
temporarily illegal, or erroneous. By adding a newly created object to t ’s
and t ’s ancestors’ Rrw

sets, this object’s implicitly declared role for these

tasks is readwrite, which means that it is legal for them to access it, or at

least only temporarily illegal. In fact, because the current role of the object

is pure for all tasks but t , only t may immediately access the object. The

parent of t , for example, would be blocked by guarding until t has �nished,

as explained below.

Note that for this case of the state transition to apply, the instruction

counter c must be , •, like for all other cases. This means that only tasks

that have not yet �nished can perform any operation. Also note that c is

incremented, indicating that the operation was successful.

read or write operation:

t read r
−−−−−→ or

t write r
−−−−−→ When a task t at-

tempts to read from or write to an object referred to by a reference r , that

object’s current and declared role for t determine whether that operation

is legal, temporarily illegal, or erroneous (Figure 2.5, III and IV). Hence,

there are three possible outcomes for such an operation: (1) If the current
role of the object permits the operation, as determined by mayReadH (t, r )
or mayWriteH (t, r ), the operation is successful. This is represented by in-

crementing t ’s instruction counter c . Since we do not model the �elds of
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The initial state at the beginning of a program:

S0 , 〈�, {〈tmain, •,�,�, 0〉}〉

Task 〈t, _, _, _, c〉 ∈ Ts, c , • creates a new object, which is identi�ed by a fresh

reference r ∈ Reference − {ri | (ri 7→ _) ∈ H }:

〈H , Ts〉
t create r
−−−−−−−→ 〈H ∪ {r 7→ {t :: rw}}, {upd(Ti ) | Ti ∈ Ts}〉,where (I)

upd(〈ti , τi ,R
rw

i ,R
ro

i , ci 〉) ,



〈ti , τi ,R
rw

i ∪ {r },R
ro, ci + 1〉, if ti = t

〈ti , τi ,R
rw

i ∪ {r },R
ro, ci 〉,

else, if ti ∈ ancestsTs(t)

〈ti , τi ,R
rw

i ,R
ro, ci 〉, otherwise

(II)

Task T = 〈t, _,Rrw,Rro, c〉 ∈ Ts, c , • reads from a �eld with reference r as the

target:

〈H , Ts〉
t read r
−−−−−→


〈H , Ts − {T } ∪ {step(T )}〉, if mayReadH (t, r )

〈H , Ts〉, else, if r ∈ Rrw∪ Rro

Serror, otherwise

(III)

Task T = 〈t, _,Rrw,Rro, c〉 ∈ Ts, c , • writes to a �eld with reference r as the

target:

〈H , Ts〉
t write r
−−−−−−→


〈H , Ts − {T } ∪ {step(T )}〉, if mayWriteH (t, r )

〈H , Ts〉, else, if r ∈ Rrw

Serror, otherwise

(IV)

Figure 2.5: De�nition of the initial state S0 and �rst part of the state transition

relation −→.
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Task T = 〈t, _,Rrw,Rro, c〉 ∈ Ts, c , • starts a new task with a fresh id of tch ∈

Task ID − {ti | 〈ti , _, _, _, _〉 ∈ Ts} and with role declarations Rrw

ch
, Rro

ch
:

〈H , Ts〉
t start tch(Rrw

ch
,Rro

ch
)

−−−−−−−−−−−−−−−→



〈H ′, Ts′〉, if ∀r ∈ Rrw

ch
: mayWriteH (t, r ) ∧

∀r ∈ Rro

ch
: mayReadH (t, r )

〈H , Ts〉, else, if Rrw

ch
⊆ Rrw∧

Rro

ch
⊆ Rro∪ Rrw

Serror, otherwise

(I)

where

H ′ , H / {r 7→ objH (r ) / {t :: ro, tch :: ro} | r ∈ Rro

ch
} (II)

/ {r 7→ objH (r ) / {t :: pu, tch :: rw} | r ∈ Rrw

ch
}, (III)

Ts′ , Ts − {T } ∪ {step(T ), 〈tch, t,R
rw

ch
,Rro

ch
, 0〉}

Task T = 〈t, τ ,Rrw,Rro, c〉 ∈ Ts, c , • is about to �nish:

〈H , Ts〉
t �nish

−−−−−→


〈H ′Ts′〉, if ∀〈ti , τi , _, _, ci 〉 ∈ Ts : τi , t ∨ ci = •

〈H , Ts〉, otherwise

(IV)

where

H ′ , H / {r 7→ objH (r ) / {τ :: ϱ(r )} − {t :: _} | r ∈ Rro} (V)

/ {r 7→ objH (r ) / {τ :: rw} − {t :: _} | r ∈ Rrw}, (VI)

ϱ(r ) ,


ro, if ∃ti , t : mayReadH (ti , r )

rw, otherwise

, (VII)

Ts′ , Ts − {T } ∪ {〈t, τ ,Rrw,Rro, •〉}

Figure 2.6: Second part of the de�nition of the state transition relation −→.

objects or the contents of local variables, no other change of program state

takes place. (2) If the current role of the object does not permit the opera-

tion, but the declared role does, as determined by t ’s Rrw
and Rro

sets, then

the operation is delayed, but no error occurs. This is an instance of guard-

ing, and is represented by a transition back to the same state. (3) Finally, if

the declared role for the object does not permit the operation, then this is

a programmer error and the program transitions to the Serror state.

task start operation:

t start tch(R
rw

ch
,Rro

ch
)

−−−−−−−−−−−−−→ Whenever a new child task

tch is started, the programmer supplies the role declarations for that task,

which we model as two sets Rrw

ch
and Rro

ch
. These sets contain the references

to all objects that should be shared with tch and play the readwrite role

or, respectively, the readonly role. When the task is successfully started,
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then those objects adapt to their new sharing pattern by performing a role
transition: (1) Objects referred to by the Rrw

ch
set become readwrite in tch

and pure in t (Figure 2.6, III), which means that t may not access those

objects anymore (until tch �nishes; see below) and (2) objects referred to

by Rro

ch
become readonly in both t and tch (II), meaning that both tasks can

still read from, but cannot write to them anymore (again, until tch �nishes).

Rrw
takes precedence, in case a reference is in both sets. Note that objects

shared as pure keep playing the same role in t and need not be explicitly

declared, e.g., in a Rpu
set. Since objects are implicitly pure for tasks in

which they play no explicit role, no role transition is required for them to

play the pure role in tch.

Like for read and write operations, there are three possible outcomes for

a start operation (I). The successful case, as described above, only applies if

the current roles for t of all involved objects match the roles declared with

Rrw

ch
and Rro

ch
: Objects in Rrw

ch
must play the readwrite role in t before tch

starts and those in Rro

ch
must play the readonly or the readwrite role. This

restriction ensures that t cannot, for example, share an object as readwrite

with more than one task at a time. Otherwise, if the declared roles for t of all

involved objects are at least as permissive as those for tch, the operation is

delayed. This is another instance of guarding. Otherwise, the start operation

results in Serror, because t may not share an object such that its declared

role is more permissive in tch than it is in t .

task finish operation:

t �nish

−−−−−→ When a task t �nishes, the sharing

patterns for the objects that were declared in t ’s Rrw
and Rro

sets (or, if

created in t or one of t ’s child tasks, were added later) changes again, so

these objects perform another role transition. The transitions make sure

that the objects that t ’s parent task τ shared with t can be accessed by τ
again once t �nishes. All objects in the Rrw

set become readwrite in τ (VI).

These objects were either shared with t as readwrite, or newly created in

t or one of t ’s children. On the other hand, an object in Rro
(and not Rrw

)

was shared as readonly and its roles depend on whether there are any

other tasks left in which the object plays the readonly role (V and VII).

The reason for this is that τ could have shared an object as readonly with

multiple tasks and such an object should only become readwrite for τ
again once all of these tasks have �nished.

A �nish operation has two possible outcomes (IV). Task t can only �nish

once all of its own child tasks have �nished, which is expressed using

the condition ∀〈ti, τi, _, _, ci〉 ∈ Ts : τi , t ∨ ci = •. This restriction is a

simpli�cation to ensure that objects only ever play the readwrite role in

one single task, which is a key invariant in the model. Thus, as long as there

are still any active child tasks, t cannot �nish and no progress happens.

However, unlike a read, write, or start operation, a �nish operation can

never result in an error, because this operation does not require any speci�c

declared role for any involved object.
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2.4 determinism

While the formal description in the previous section leaves away many

aspects of a real execution of a program, including the actual program

instructions and the content of object �elds, the description is nevertheless

complete enough to formally prove that the model is deterministic. This

section presents a sketch of the proof, while the full proof is given in

Appendix A.

The proof uses a property we call child task priority, which states the Child Task Priority
following: From the moment a task τ starts a child task t , τ may not write

to any object O as long as t may still read from or write to O , and τ may

not read from any object O as long as t may still write to O . This property

is expressed more simply using the inverse:

Theorem 2.4.1 (Child Task Priority). For any task t and for t ’s parent
τ , and for all objects O on the current heap, the following holds, for any legal
program state: If O’s roles permit τ to write to O , then O’s roles never again
permit t to read from or write to O , and if O’s roles permit τ to read from O ,
then O’s roles never again permit t to write to O .

The formal de�nition of child task priority involves a signi�cant formal

infrastructure, which is outside of the scope of this proof sketch.

Child task priority can be proved using induction over legal program

states. These are states that can be reached from the initial state S0 by a

sequence of state transitions, as de�ned by the state transition relation −→,

and that are not equal to the Serror state. For every legal program state, we

can show that if the child task priority property holds for that state, then

after any of the operations in Figures 2.5 and 2.6, the property still holds.

In particular, we can show that after a start operation
τ start t(Rrw,Rro)
−−−−−−−−−−−−−→, task

τ may not read from any object in Rrw
and may not write to any object in

Rrw
or Rro

, until the newly started task t has �nished. This is again shown

using induction, over the legal program states that can be reached from the

state after the start operation.

From child task priority follows noninterference:

Theorem 2.4.2 (Noninterference). Whenever a task τ starts a task t ,
all read or write operations in t happen before any interfering operation in τ
that follows the starting of t .

More precisely, for every legal state Sstart that results from a successful

task start operation, there cannot be two states Sτ and St , where Sτ is

reachable from Sstart and results from a successful read or write operation

in τ , and St is reachable from Sτ and results from a successful read or write

operation in t , and such that these two operations interfere, i.e., such that

they access the same object and at least one of them is a write operation.

Noninterference can be shown by proof via contradiction, using child task

priority. Again, the formal de�nition is outside the scope of this sketch.
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Finally, noninterference actually implies that all read and write e�ects

in a program logically take place as if the program were executed sequen-

tially, i.e., as if every task start operation were replaced by the sequence of

operations executed in that started task. Therefore, parallel execution of

any program is deterministic, given that the sequential execution of that

program is deterministic.

2.5 related work

While one of the main strengths of the Parallel Roles model is determinism,

it is more generally a model of concurrency for Object-Oriented Program-

ming (oop). As such, we compare it with other, not necessarily deterministic,

models here. The next chapter, which presents a language that is based

on this model, extends the discussion to concrete languages, including

speci�cally deterministic ones, such as dpj and Æminium.

A well-known concurrent oop model is the Actor Model, which was orig-

inally proposed by Hewitt et al. (1973) and developed further by Agha (1986,

1990). Actors are isolated objects that communicate with each other exclu-

sively via asynchronous messages. Due to this strict isolation, low-level

concurrency bugs like data races or deadlocks are inherently impossible.

The Actor model has been implemented in numerous libraries, such as

Akka (Allen, 2013) or the Scala Actor Library (Haller and Odersky, 2007)

for Scala, or Kilim (Srinivasan and Mycroft, 2008) for Java. The Erlang

language (Armstrong et al., 1996) is also based on actors, even though it

uses the name “processes” instead.

Yonezawa et al. (1986) presented a closely-related model called Active

Objects. In the classic Actor model, messages are processed mostly in a

functional style, where an actor e�ectively replaces its behavior with a new

one. On the other hand, active objects have their own thread of control and

their own local memory, which can be updated imperatively. Some libraries

based on active objects are ProActive (Baduel et al., 2006), salsa (Varela

and Agha, 2001), and Orleans (Bernstein et al., 2014).

In the Actor and Active Objects Model, the concepts of objects and con-

currency are closely linked: objects are not only used concurrently, objects

are the concurrent entities. In contrast, in our model, objects are aware
of concurrency, but we use the separate concept of tasks. This brings our

“concurrency-aware” model closer to the sequential oop model, and also

to mainstream oop languages like Java, C#, and C++, where concurrent

threads can communicate via shared objects. We see this as an opportunity

to make concurrency more accessible to non-expert programmers, at least

for applications where concurrency is not inherent, but only used for per-

formance reasons. Another advantage of the “concurrency-aware” model

is of course that it can provide strong, system-wide guarantees, such as

determinism. In contrast, the isolation provided by actors and active objects

only guarantees to prevent low-level bugs like data races and deadlocks,

but higher-level race conditions are still possible.
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LANGUAGE

3.1 basic language features

Rolez is a Java-like language that enforces the rules of the Parallel Roles

model in every program that is written in it, meaning that every program

bene�ts from the guarantees the model provides. In particular, every Rolez

program is guaranteed to be free of interference and is therefore determin-

istic (unless nondeterminism is introduced explicitly, for example, with a

random number generator).

Most role-speci�c entities de�ned in Section 2.3.1 correspond directly to

explicit language constructs, including tasks and role declarations. However,

the roles that an object plays at runtime do not correspond to any explicit

language construct (unlike �elds or methods); instead, the roles of all Rolez

objects are maintained implicitly by the runtime system, which updates

them whenever tasks start or �nish.

objects and values Like Java, Rolez programs are hierarchically

structured using packages, classes, and then �elds, methods, and construc-

tors. Besides objects, which are instantiated using constructors, there are

values of primitive types like int, double, etc., which are created using

literals. As in Java, primitive values cannot be shared or mutated (they are

always copied) and thus have no roles.

tasks Tasks in Rolez are declared in the same way as methods. Two

di�erent keywords, def and task, are used to distinguish the two. Likewise,

starting a task is expressed in the same way as invoking a method, except

for the keyword start, which replaces the dot. When an object is supposed

to be shared with a task, the programmer simply creates a corresponding

parameter for that task and passes the object as an argument when starting

it. Figure 3.1 shows a Rolez example program that illustrates these points.

Lines 2 to 8 contain the declarations of a method and a task, while Lines 11

and 12 show how these are called or started, respectively.

role declarations To declare the role of an object in a task, the

programmer adds the role to the corresponding task parameter, as shown

on Line 5. This line indicates that the payInterest task requires an Account

object that plays the readwrite role to be shared with it. In terms of

23
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1 class App {
2 def pure calcInterest(balance: int): int {
3 return (0.015 * balance) as int;
4 }
5 task pure payInterest(acc: readwrite Account): {
6 val intrst = this.calcInterest(acc.getBalance);
7 acc.deposit(intrst);
8 }
9 task pure main: {

10 val acc = new Account;
11 acc.deposit(1000);
12 this start payInterest(acc);
13 }
14 }
15 class Account {
16 var balance: int
17 var owner: readwrite User
18

19 def readwrite deposit(amount: int): {
20 this.balance += amount;
21 }
22 def readonly getBalance: int {
23 return this.balance;
24 }
25 }

Figure 3.1: Rolez code example for tasks and role declarations. Note that void return

types can be omitted.

the model in Section 2.3, this means that, at runtime, the Rrw
set of the

payInterest task contains the object reference that is passed as an argu-

ment to payInterest. The parameter needs to be declared as readwrite

because payInterest modi�es the balance of the given account when call-

ing deposit on Line 7. When this task is started on Line 12, the Account

object that is passed as an argument performs a role transition and becomes

readwrite for the payInterest task and pure for the main task, as de�ned

in Section 2.3.2.

Note that both the payInterest task and the main task have another,

implicit, parameter: the receiver, i.e., the “this”. The role for the receiver is

declared right after the task keyword and is pure for both of these tasks.

This means that an App instance does not perform any role transition when

used as the receiver for the payInterest or main task.

As mentioned earlier, the Rolez language includes a type system that

detects errors that result from tasks disrespecting their role declarations;

for example, if a task declares an object as readonly, it would be an error

to write to this object (because an object declared as readonly can never

play the readwrite role). To detect such errors, not only task parameters,

but all kinds of variables in Rolez that refer to objects (as opposed to

primitive values) need to be annotated with a role. In fact, these additional
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role annotations are part of the static type of a variable and are called the

variable’s static role. In the case of task parameters, their static roles serve

both as part of their type and as their role declarations, as de�ned by the

Parallel Roles model. In Figure 3.1, besides the role declarations mentioned

before, the code contains a static role for the receiver of the calcInterest

method (speci�ed after the def keyword on Line 2) and for the owner �eld

of the Account class (Line 17). Note that local variables generally require no

type annotations (and thus no static role), as these can be inferred by the

compiler. A more detailed explanation of static roles and the type system

in general are provided in Chapter 4.

3.2 joint role transitions

What di�erentiates Rolez from many other deterministic languages is how

it handles groups of objects. As outlined in Section 1.2, languages that

guarantee determinism using compile-time techniques often require the

programmer to abstract and declare the heap structure of the objects in-

volved in the execution of the program; for example, dpj uses the concept

of regions for this purpose, while Æminium has data groups. Rolez, on

the other hand, does not depend on any static abstraction for grouping or

ownership; instead, it employs a dynamic approach that uses the actual

runtime structure of the heap, i.e., the actual references between objects.

The basic underlying assumption behind the approach is that an object o1
which stores a reference to another object o2 “depends” on o2 and requires

this object for its own functionality. Thus, when o1 is shared with a task, it

is usually desirable to share o2 with that task as well (and in addition any

other object that o1 can reach via its references). In terms of role transitions,

this means that whenever o1 changes its role, all objects that are reachable

from o1 change their roles in the same way. This concept is called joint role
transitions.

For example, a Bank object, with a payAllInterest method, may store

references to all Account objects of that bank. When payAllInterest is

called, it computes and deposits the yearly interest for each of its accounts.

With joint role transitions, if a Bank object is shared with a task t , then all

of the reachable Account objects implicitly have the same declared role and

automatically perform the same role transition as the Bank itself, to ensure

that the payAllInterest method works in t as well. The Rolez example

in Figure 3.1 also contains a joint role transition: when an Account object

is shared with the payInterest task, the User object referred to by this

Account’s owner �eld performs the same transition as the Account itself.

Note that, in this example, the owner of the account is not actually accessed

in payInterest, so this extra role transition is technically unnecessary. In

case such unnecessary role transitions prove to be a problem, either because

they inhibit parallel execution or because they cause excessive runtime

overhead, Rolez provides some language constructs to re�ne the set of
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objects that are shared together with an object. This re�nement is achieved

using slicing, which is explained in Section 3.3.

How does the concept of joint role transitions relate to the formal de�ni-

tion of Parallel Roles in Section 2.3? As explained earlier, the de�nition is as

minimal as possible, to make it simple to understand and to reason about.

In particular, the formal model simply uses two sets of references, Rrw
and

Rro
, to represent the objects that are shared with a task. This simplicity

also makes the model more general and lets us de�ne joint role transitions

without modifying any de�nition in Section 2.3. Instead, we rede�ne the

meaning of Rrw
and Rro

with respect to the concrete language we want to

describe. This makes it possible to map di�erent language designs onto the

model, by de�ning how language-level task arguments translate into the

model-level sets Rrw
and Rro

.

In the case of Rolez, theRrw
set is de�ned to be the set of all objects that are

reachable from any of the arguments that correspond to a readwrite task

parameter. Similarly, the Rro
set is de�ned to be the set of objects reachable

from readonly arguments. (What happens if an object is reachable from

a readwrite and a readonly argument, i.e., if it is in both the Rrw
and

the Rro
set, is already de�ned in Section 2.3.2.) Therefore, objects that are

reachable from a task argument not only perform the same role transitions

as that argument, but they also have the same (implicitly) declared role.

3.3 slicing

As explained in the previous section, it is often desirable that a group of

reachable objects performs a role transition as if it were a single object.

However, this is not always the case. For example, in data-parallel algo-

rithms, some data items can be processed independently of other data items,

and therefore parallel processing of these items is possible. Coarse-grain

data parallelism is usually exploited by starting multiple tasks and assigning

di�erent partitions of the data space to each of them. However, with joint

role transitions, if all data items are stored in a single data structure (e.g., an

array), there is no e�cient way to share only a subset of the data items with

a task: if the data structure that contains the items is shared with one task,

all items perform the same role transition and become inaccessible for other

tasks.* Therefore, to give the programmer more control over which objects
*

We assume the general

case where full readwrite

access to the data items is

required. If the readonly

role is su�cient, then

sharing the entire set of

data items with multiple

tasks is possible anyway.

are shared with a task, and in particular to permit e�cient implementations

of data-parallel algorithms, Rolez contains the concept of slicing.

3.3.1 Overview

Slicing enables programmers to “split” an object, e.g., an array, into multiple

slices and share each of them with a di�erent task. Slices, like all objects in

Rolez, are aware of the tasks they are shared with, and adapt by changing

their individual roles. In addition, slices are partitioning-aware. That is,
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slices of the same array are aware of each other’s roles, and this awareness

allows them to detect and prevent interfering concurrent access due to an

erroneous partitioning, as explained in Section 3.3.2.

Slicing is completely virtual: an array that is “split” into slices is not

actually divided; a slice merely acts as a view onto an array, through which

only the data elements that are part of the slice can be accessed and which

may play its own role. Hence, slicing is much more e�cient than copying

data into individual arrays (and possibly back again after a parallel section),

which is the only way to achieve data parallelism in the absence of slicing.

Since the slices of an array are just views onto the same underlying data,

slices need not be disjoint. As an example, for an array with six elements

(with indices 0 to 5), there could be two slices [0 : 2] and [3 : 5], which do

not overlap. However, there could also be a slice [2 : 3], which overlaps

with both of the two former. In fact, the array itself can be considered a

slice [0 :5], which covers the entire range of indices and overlaps with all

other slices of that array. Not forcing all slices of an array to be mutually

disjoint gives programmers more �exibility, allowing them to access the

same array through di�erent sets of mutually disjoint slices in di�erent

sections of the program. This includes also the trivial, but ubiquitous case

in which one of these sets of slices consists of one single slice, which is the

entire array.

In terms of roles, two disjoint slices are completely independent. For

example, a task t may share an array slice [0 : 2] with another task tch,

while it keeps a (non-overlapping) slice [3 :5] for itself. This way, the �rst

slice might be pure in t and readwrite in tch, while the second slice is

readwrite in t and pure in tch. Thus, both tasks can safely read and modify

their slice. On the other hand, if two slices overlap, their roles are coupled,

to prevent interference between tasks. If this were not the case, for example,

if a slice [0 :1] were readwrite for one task and a slice [1 :2] of the same

array were readwrite for another task, both tasks could read and write

the element with index 1, causing interference and nondeterminism.

3.3.2 Formal De�nition and Determinism

As with joint role transitions, we de�ne slicing without extending or modi-

fying the formal model de�nition in Section 2.3. Instead, we rede�ne how

language-level objects (in particular slices) and references are mapped onto

model-level objects and references.

So far, we have implied that there is a one-to-one mapping from Rolez

objects and references to model-level objects and references. To de�ne the

semantics of slices, we use a di�erent mapping: For every Rolez object O

that contains n elements and can be sliced, e.g., an array of length n, there

is a set of model-level objects {Oi
i∈1..n}, where Oi corresponds to the i-th

element of O, e.g., the i-th array cell. For each of theseOi , there is a separate

reference ri , such that (ri 7→ Oi) ∈ H .
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A reference to a slice S of O that includes the elements i ∈ elems(S) ⊆

{1..n} is mapped to a set of references {ri
i∈elems(S)}. This means that when-

ever a reference to a slice is shared with a task in Rolez, the complete set

of references ri is shared with the corresponding task in the formal model.

Similarly, reading from (or writing to) an element of a slice S in Rolez

corresponds to a complete set of read (or write) operations in the model,

with all the references ri as targets. The operation succeeds only if all ri
permit the operation, i.e., if ∀ri : mayReadH (t, ri) (or ∀ri : mayWriteH (t, ri)).

It follows that every single element of a sliceable Rolez object plays its

own roles and that, strictly speaking, there are no roles for entire slices or

sliceable objects. Instead, by guaranteeing noninterference and determinism

on the level of individual elements, Rolez guarantees these properties also

for programs with slicing. However, although there are technically no roles

for entire slices, a slice can be thought of as playing a set of “aggregate”

roles. The aggregate role of a slice in a task t is the least permissive role that

any of its elements play in t : an operation is only permitted for the slice as

a whole if all the elements permit that operation.

3.3.3 Array Slicing

Array slicing in Rolez is supported though the rolez.lang.Array class,

which is the built-in class that all arrays are instances of. This class provides

a method with the signature

def slice(begin: int, end: int, step: int): rolez.lang.Slice[T]

which creates a new slice, i.e., an instance of rolez.lang.Slice. The re-

turned slice type has a type parameter T that de�nes the type of the elements

in the slice. T corresponds to the element type of the array the method is

invoked on. The slice method has three parameters, begin, end, and step,

which specify the set of elements that the returned slice covers. The param-

eters begin and end de�ne the �rst and “one-after-last” index of the slice.

In addition, the step parameter can be used to create non-contiguous slices

that skip elements. Such slices are useful when not all array elements are

associated with the same amount of work and a contiguous partitioning

scheme would lead to work-imbalanced partitions. Note that the slice

method does not copy any data in the array, but only creates a proxy object

through which the original array is accessed. This makes working with

slices almost as e�cient as working with the original array.

Figure 3.2 illustrates how the slice method can be used to split an array

into both contiguous and non-contiguous, striped slices. From a program-

mer’s perspective, slices are normal objects and can be passed around and

shared with tasks like any other object. Only when accessing an array

element, the Rolez runtime system checks whether the element is actually

covered by the slice it is accessed through. Since these checks can incur a

substantial overhead, they can be switched on for testing or debugging and

o� for production (if desired).
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val data = new Array[int](n);
...
val s = n / m; // n be a multiple of m
for (var i = 0; i < m; i++) {
val slice = data.slice(i*s,(i+1)*s,1);
...

}

0 0 1 1 2 2 3 3
0 1 2 3 4 5 6 7

slice
index

val data = new Array[int](n);
...

for (var i = 0; i < m; i++) {
val slice = data.slice(i,n,m);
...

}

0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7

slice
index

Figure 3.2: Example for contiguous and striped array slicing, for n = 8 and m = 4.

Note that programmers do not actually have to write code like in Fig-

ure 3.2. Instead, the Array class provides a convenience method that simply

takes the number of slices to be created, plus the partitioning scheme, and

returns a whole set of slices that are guaranteed to be mutually disjoint.

3.3.4 Class Slicing

Array slicing deals with arrays; to support a wider range of parallel algo-

rithms, Rolez also includes class slicing to de�ne partitions of an object’s

�elds. While array slicing is restricted to the built-in class Array, class slic-

ing allows programmers to slice objects that are instances of programmer-

de�ned classes. The underlying concept is identical to that of array slicing,

but applied to the �elds of an object instead of array cells. Thus, the formal

de�nition in Section 3.3.2 applies for class slicing as well, with elems(S)

representing the set of �elds of an object that the slice S includes.

While class slicing is not as widely applicable as array slicing, it similarly

enables e�cient data parallelism, but with tree-like structures instead of

with �at arrays. In addition, it gives programmers more �exibility and

�ne-grained control when sharing objects with tasks, independent of data

parallelism. This is especially helpful in conjunction with the concept of

joint role transitions explained earlier: since objects are shared together

with the objects they depend on (i.e., store references to), class slicing can

help to more precisely de�ne the set of objects that are shared with a certain

task.

To slice an object of a programmer-de�ned class, the programmer �rst

de�nes which �elds of the class belong to which slice. The left side of

Figure 3.3 shows an example of a class Body with two slices position and

velocity. The position slice contains the �elds x, y, z, while the velocity

slice contains the �elds vx, vy, vz. Then, to slice an instance of a class with

slices, the programmer uses the slice operator, as shown on Lines 16 and 18.

Like the slice method on arrays, the slice operator does not create a copy

of the �elds in the respective slice, but only creates a proxy object that

delegates to the original object when accessed.
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1 class Body {
2 slice position {
3 var x: double
4 var y: double
5 var z: double
6 }
7 slice velocity {
8 var vx: double
9 var vy: double

10 var vz: double
11 }
12 }

13 val body: Body = new Body;
14

15 val position: Body\position =
16 body slice position;
17 val velocity: Body\velocity =
18 body slice velocity;
19

20 // only the fields that are included
21 // in the slice can be accessed:
22 val x = position.x; // OK
23 val vx = velocity.vx; // OK
24 val vy = position.vy; // ERROR

Figure 3.3: Class slicing example with slice declarations on the left and two slicing

operations of the right.

Support for class slicing is built into the type system of Rolez, as so-called

slice types. A slice type has the form Class\slice, and only permits access

to those �elds and methods that are declared inside the respective class slice.

In the example in Figure 3.3, this means that the expressions position.x and

velocity.vx are legal, but the expression position.vy causes a compile-

time error, because position is of type Body\position, which does not

permit access to the vy �eld. Note that the verbose type declarations on

Lines 13–18 are not actually necessary, as Rolez infers the types of local

variables automatically; they are shown for illustrative purposes.

3.4 eager interference checking

In Rolez, any kind of parallelism is achieved by starting tasks: after a task t
has started another task tch, t simply continues to execute in parallel to tch,

resulting in a degree of parallelism (dop) of 2. To increase the dop, task t
(or tch) may simply start additional child tasks. For example, to execute the

foo method (which we assume takes some objects as arguments) in 8 tasks

in parallel, the following piece of code could be used:

for (var i = 0; i < 8; i++)
this start foo(...);

Another option is to start only 7 child tasks and execute one foo call in the

parent task, which prevents the overhead of starting one more task, but

leads to some code duplication.

This approach of forking o� tasks is simple and has straightforward

semantics: if starting one of the foo tasks interfered with a previously started

task, this operation would be blocked by guarding and the execution would

be (partially) serialized. This mechanism of “silently” reverting to sequential

execution is useful if interference may or may not occur, depending on the

input of a program. And at any rate, it is more desirable than the “silent”

concurrency bugs that could manifest in manually synchronized languages.
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However, often the programmer knows that a certain set of tasks should

never interfere (if implemented correctly) and would like to be informed

in case this assumption does not hold. In other words, the programmer

wants to check for interference eagerly, before these tasks are started, and

not rely on the lazy checks that are performed by guarding. In addition,

eager interference checking can have signi�cant performance bene�ts: after

checking for interference once before starting all the tasks, no guarding is

necessary inside these tasks anymore. For some programs, this optimization

reduces the runtime overhead of Rolez substantially.

Therefore, to give the programmers the option of eager interference

checking, Rolez provides two new constructs: the parfor loop and the

parallel–and statement.

3.4.1 Parfor Loop

The parfor loop is a drop-in replacement for the for snippet shown above:

parfor (var i = 0; i < 8; i++)
this.foo(...);

While this snippet looks similar, the semantics (and performance charac-

teristics) are very di�erent from using a plain for loop. The execution of a

parfor loop has four stages:

1. All task arguments are evaluated. The resulting object references are

collected and grouped according to the task they are shared with and

their declared roles. To do this, the parent task (i.e., the currently

executing task) executes the loop sequentially like a normal for loop,

but without actually starting the tasks in the loop body.

2. The role transitions for all objects are performed. In the same turn, the

interference checks take place: if there is a reference that is shared

with multiple tasks in a way that could lead to interference, the

program terminates with an error that indicates the mistake.

3. If no interference is detected, then all the tasks are started at once. As

an optimization, the task that corresponds to the last loop iteration

can be executed in the same underlying system thread as the parent

task, to avoid some overhead.

4. The parent task waits for all child tasks to �nish and only then

continues to execute the code that follows the parfor loop.

This execution scheme gives the programmer considerable �exibility: be-

cause the “skeleton” of the loop is executed sequentially, there are no

restrictions about the loop header. In particular, the number of iterations,

i.e., the number of started tasks, does not have to be known at compile time.
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1 task sort(b: readwrite Slice[int], a: readwrite Slice[int],
2 begin: int, end: int): {
3 if (begin == end) return;
4 // split and recursively sort both runs from a into b
5 val m = (begin + end) / 2;
6 parallel
7 this.sort(a.slice(begin, m), b.slice(begin, m), begin, m);
8 and
9 this.sort(a.slice(m, end), b.slice(m, end), m, end);

10 // merge the resulting runs from b into a
11 this.merge(b, a, begin, m, end);
12 }

Figure 3.4: Example usage of the parallel–and statement: a (simpli�ed) parallel

Mergesort implementation.

3.4.2 Parallel–And Statement

The second eager checking construct in Rolez is the parallel–and statement.

Conceptually, it works in the same way as the parfor loop, but is tailored

towards starting exactly two tasks.

Figure 3.4 shows how the parallel–and statement can be used, in a simpli-

�ed parallel Mergesort implementation. The sort task has two parameters

of type Slice, which are array slices (see Section 3.3.3). One contains the

data to be sorted, while the other is a work slice in which the data is sorted

into. First, sort splits the two slices in half and uses the parallel–and state-

ment to recursively sort the two sides, in parallel (Lines 6–9). Then, it calls

a merge method to merge the two sorted sides, e�ectively sorting the whole

range of the slice. Note that, to achieve reasonable performance, sorting

should not be parallelized “all the way to the bottom”. Instead, tasks should

only be started until a desired dop is reached, from which point on sorting

should be done sequentially, to avoid the unnecessary overhead of starting

tasks.

The parallel–and statement is well-suited for divide-and-conquer-style

parallel algorithms. Because both task calls are written explicitly (as opposed

to the parfor loop, where there is only one call in the code), this statement

makes it simple to pass di�erent arguments to each call, as is the case in

the Mergesort example, or to call two altogether di�erent tasks.

The execution of the parallel–and statement is equivalent to that of

the parfor loop: (1) Task arguments are evaluated; (2) role transitions and

interference checks are performed; (3) the two child tasks are executed in

parallel; and (4), after both calls have �nished, the parent task continues ex-

ecution. This means that the parallel–and statement, like the parfor loop,

can have a signi�cant performance advantage when compared with just

forking o� child tasks: First, no guarding is required inside the child tasks,

because interference is checked for beforehand. Second, in many situations,

guarding is also not needed for the code that follows the parallel–and state-
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/ ...

Ts′ , Ts − {T } ∪ {step(T )} ∪ {〈ti , t,R
rw

i ,R
ro

i , 0〉 | i ∈ 1..n},

{ti
i ∈1..n} ⊂ Task ID − {t | 〈t, _, _, _, _〉 ∈ Ts}

Figure 3.5: Eager checking extension for the state transition relation in Figures 2.5

and 2.6. The part that corresponds to the eager interference checks is

highlighted.

ment (or the parfor loop). Given that there are no child tasks before the

statement, there cannot be any child tasks afterwards, because the parent

task does not continue to execute until both tasks from the parallel–and

statement have �nished. Thus, if there are no child tasks, no guarding is

required, because only child tasks can possibly make an operation in the

parent task temporarily illegal. For our Mergesort example, this implies

that the whole merge method can be executed without guarding, reducing

the runtime overhead substantially.

3.4.3 Formal De�nition

To de�ne the parfor and parallel–and constructs formally, we extend the

de�nition of the state transition relation −→ from Figures 2.5 and 2.6 in

Section 2.3 with a new version of the start operation. This version starts mul-

tiple new tasks at once and checks that they cannot interfere, by comparing

their role declarations.
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The new start operation is given in Figure 3.5; it is de�ned in a similar

way as the original start operation: There are di�erent possible outcomes,

depending on the current and declared roles of the objects in the Rrw

i and

Rro

i sets of the new tasks. However, there is one new case, which is on the

very top: if the role declarations of any two tasks may cause interference,

then the start operation immediately results in Serror, meaning that the

program terminates with an error. This is the case if one task ta declares

a reference r as readwrite while another task tb declares the same r as

readwrite or readonly. Note that the de�nition of the start operation in

Figure 3.5 is actually a generalization of the earlier one: for the case n = 1,

the two de�nitions are equivalent.

Also note that the new de�nition fails to capture one aspect of the

informal descriptions of parfor and parallel–and above: in the formal

de�nition, after task t has successfully started all tasks ti , it may continue

to execute other operations, while the informal description states that the

parent task waits for all the child tasks to �nish �rst. However, this aspect

is only relevant with respect to the guarding optimization, which is why

we abstracted it away.

3.5 expressiveness evaluation

To evaluate the expressiveness of Rolez, i.e., what kinds of parallel patterns

and algorithms can be expressed with this language, we created a suite of

programs, analyzed the parallel patterns they contain, and if and how these

patterns can be implemented in Rolez.

The suite consists of a range of programs, including some from well-

known benchmark suites: parallel Quicksort and Mergesort; idea encryp-

tion and Monte Carlo �nancial simulation, both adapted from the Parallel

Java Grande benchmark suite (Smith et al., 2001); a k-means clustering

algorithm, as in the stamp Benchmark Suite (Cao Minh et al., 2008); a

simple n-body physics simulation; and two programs based on our own

implementation of a ray tracer, one that renders static images (simply called

Ray Tracer) and one that renders animated scenes (called Animator). We

identi�ed 7 parallel patterns, which we discuss next.

divide and conquer Both Quicksort and Mergesort are based on the

divide-and-conquer pattern, which can be exploited for parallel execution.

In Rolez, parallel divide-and-conquer algorithms can be expressed naturally

using a combination of slicing and the parallel–and statement, as shown

in Section 3.4.2. In each recursion step, the data array is divided into two

disjoint slices, each of which is then shared as readwrite with one of the

two child tasks.

data parallelism Data parallelism is present in the idea program,

where each 8-byte block of data can be encrypted independently; in the

two ray tracer programs, where each image pixel can be computed indepen-
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dently; in the k-means program during the assignment phase, where each

data point is independently assigned to a cluster; and also in the n-body

simulation, where the position of each body can be updated independently.

In all these programs, the data is arranged in a linear or 2d fashion, both of

which can be represented with arrays.

To parallelize these programs with Rolez, the data arrays are partitioned

into slices, each of which is passed to a di�erent task as readwrite. Rolez

has built-in support for three di�erent partitioning schemes, all of which are

needed to e�ciently parallelize some of these programs. The contiguous and

striped schemes have already been discussed in Section 3.3.3. The former

is used for k-means and n-body, where every data point or body involves

the same amount of work, while the latter is used for ray tracing, where

some pixels can be much more expensive to compute than others, because

the rays they correspond to are re�ected more often before hitting the

background. Thus, to distribute the workload evenly among tasks, striped

partitioning is used. The third scheme, block partitioning, is similar to the

contiguous scheme, but ensures that the size of each partition is a multiple

of a programmer-speci�ed block size. This scheme is required for the idea

program, which encrypts data in 8-byte blocks.

partially shared objects In some data-parallel programs, a task

that processes one object needs to read data from objects that are processed

by other tasks. This pattern is still deterministic, as long as the �elds that

are updated are distinct from those that are only read. This is the case in

the n-body simulation, where the step that computes the force that acts

on a body and updates that body’s velocity depends on all (or most) other

bodies’ positions.

With class slicing, such programs can be parallelized in Rolez without the

need for workarounds like splitting a class into two di�erent classes. The

n-body simulation can be implemented in Rolez by declaring the position

and velocity �elds in separate class slices, as shown previously in Figure 3.3.

Then, the “velocity” slices of all bodies are partitioned and shared with the

tasks as readwrite, while the “position” slices are shared with them as

readonly.

read-only data Many programs involve data that is read by multiple

tasks in parallel, but not modi�ed. In k-means, this applies to the cluster

centroids, which are read by all tasks during the assignment step. And in the

ray tracer programs, it applies to all objects that represent the 3d scene that

is rendered. In Rolez, this pattern is supported by means of the readonly

role. In the Animator program, e.g., the root object of the scene is shared

with all rendering tasks, which declare it as readonly. Thanks to joint role

transitions (Section 3.2), this causes all objects that belong to the scene to

become readonly in these tasks. Once all rendering tasks have �nished,

the scene becomes readwrite again in the main task, which can then

modify it to prepare it for the next frame.
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task-local data Another common pattern is that every task uses its

own private copy of some data to perform a computation. For example, in

the Monte Carlo simulation, every task generates random �uctuations for

a stock and computes prices and expected return rates based on these. This

pattern is straightforward in Rolez: every object that is created inside a task

is automatically task-local, as it plays the readwrite role in that task and

the pure role in all other tasks.

One speci�c pattern that uses task-local data is parallel reduction. A

reduction combines all elements in a data set into a single one, using an

associative operator. For example, in the k-means algorithm, the data points

in a cluster are reduced to a single vector, the new centroid, using vector

addition. A reduction can be parallelized by partitioning the data and having

each task perform the reduction locally for its own partition. The partial

results of all tasks are then reduced to a single element in the main task.

In Rolez, reductions can be expressed naturally. During a local reduction

in a child task, all task-local objects are readwrite inside the child task and

pure for the main task. Then, when a child task �nishes, it may return the

object that represents its partial result to the main task, where it becomes

readwrite.

task parallelism Finally, another form of parallelism is task paral-

lelism, where tasks execute di�erent pieces of code in parallel. Task par-

allelism is present in the Animator program, where the rendering of one

frame can be done in parallel to the encoding of the previous one. Task

parallelism is trivially expressed in Rolez: a piece of code that can be exe-

cuted in parallel to the next one can simply be forked o� as a separate task.

Guarding ensures that the execution of the second piece of code is blocked

as soon as it performs the �rst interfering operation, thus guaranteeing

that the result is equivalent to a sequential execution.

3.6 related work

functional approaches The earliest dpp approaches use functional

languages as a basis. For instance, in Multilisp (Baker and Hewitt, 1977;

Halstead, 1985), parallelism is expressed using futures, which are basically

annotations to evaluate expressions in parallel. Because of the general lack

of side e�ects, the evaluation of one expression does not interfere with the

parallel evaluation of any other expression.

Another notable example are I-structures (Arvind et al., 1989), imperative

data structures in an otherwise functional language. Individual parts of

I-structures can be written no more than once by a single producer, and

concurrently read by one or more consumers. If a part has not been written

to yet, the corresponding read operations will block, which can be seen as

a simple form of guarding. I-structures, or IVars, have recently appeared in

other languages, for example, in Haskell (Marlow et al., 2011) or, as part of

the Concurrent Collections system (Budimlić et al., 2010), in C++and Java.
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Recently, LVars have been proposed as a generalization of IVars (Kuper

and Newton, 2013; Kuper et al., 2014b). LVars allow multiple writes to a

particular variable, as long as its state is monotonically increasing, with

respect to a user-de�ned lattice. Every variable update (“put”) takes the

least upper bound of the variable’s current and new state with respect to

the lattice. The LVish Haskell library (Kuper et al., 2014a) implements the

LVars programming model and extends it with other deterministic parallel

patterns, such as atomically incrementing a counter.

imperative approaches Many of these functional approaches in-

clude constructs that allow imperative updates, but in entirely imperative

languages, determinism is much harder to guarantee, because any piece

of code can have e�ects on shared mutable state. If not restricted, the non-

deterministic interleaving of such e�ects leads to nondeterministic results

(Lee, 2006). And while an increasing number of mainstream languages now

enable functional-style programming, e.g., using lambda expressions and

the Stream api in Java 8 (Oracle Corporation, 2014), these languages are still

imperative at their core and cannot guarantee determinism. As an answer

to this problem, the deterministic-by-default approach for imperative oop

languages has been proposed (Lee, 2006; Bocchino et al., 2009a; Lu and

Scott, 2011; Devietti et al., 2009).

An early dpp language is Jade (Lam and Rinard, 1991; Rinard and Lam,

1998). In Jade, the programmer speci�es the e�ects of a task using arbitrary

code, which enables the runtime system to check that tasks with inter-

fering e�ects are not executed concurrently. Though extremely �exible,

this approach comes with a substantial drawback: the correctness of e�ect

speci�cations can only be checked at runtime. Such checks impact perfor-

mance and may lead to unexpected runtime errors. The same applies to

Prometheus (Allen et al., 2009), where the programmer writes code that

assigns operations to di�erent serialization sets, and to Yada (Gay et al.,

2011), where sharing types restrict how tasks may access shared data. In

contrast, the Parallel Roles model has been designed with compile-time

checking in mind, as demonstrated by the Rolez type system presented in

this chapter.

static effect systems To address the problems of dynamic e�ect

speci�cations, static e�ect systems enable checking the correctness of e�ect

speci�cations at compile time. In fact, these systems typically even check

noninterference statically, avoiding runtime checks altogether. The e�ect

system used in dpj (Bocchino et al., 2009b; Bocchino and Adve, 2011) and

TweJava (Heumann et al., 2013) brings statically checked e�ects to oop

languages. To support a wide range of parallel patterns, the e�ect system

includes many features that are relatively complex and are based on the

concept of memory regions. Rolez, on the other hand, aims to strike a bal-

ance between static guarantees and simplicity: The three roles readwrite,

readonly, and pure can be seen as simple, object-oriented e�ect speci�ca-
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tions, designed for compile-time checking of the correctness of a task’s e�ect

speci�cation, but not for compile-time noninterference checking. Instead,

noninterference is checked or enforced at runtime, using either guarding

or eager interference constructs (or a mix of both). A Rolez program that

uses only guarding is guaranteed to be deterministic and to execute with-

out errors related to parallelism, but tasks are not guaranteed to execute

in parallel. On the other hand, with eager interference checking, parallel

execution of tasks is guaranteed, but the program may abort with a runtime

error in case there are parallel tasks that would interfere.

Other e�ect systems have been proposed to make parallel programming

less error-prone, e.g., by enforcing a locking discipline or by preventing

data races or deadlocks (Boyapati et al., 2002; Jacobs et al., 2006). These

systems combine e�ects with ownership types (Clarke et al., 1998, 2001)

and generally couple the regions and e�ects of an object with those of its

owner. This idea resembles our concept of joint role transitions, which can

be interpreted as coupling the role of an object with that of its “owners”,

i.e., the objects that have a reference to it.

permission systems An alternative to e�ects are systems based on

permissions (Boyland, 2003; Boyland and Retert, 2005; Bierho� and Aldrich,

2007). Permissions accompany object references and de�ne how an object

is shared and how it may be accessed. In Æminium (Stork et al., 2009, 2014)

for instance, permissions like unique, immutable, or shared keep track of

how may references to an object exist and specify the permitted operations.

The system then automatically extracts and exploits concurrency. Similarly,

the Rust language (Matsakis and Klock, 2014) features mutable or immutable
references and guarantees at any time either a single mutable reference or

multiple immutable references to an object.

Permissions are more object-oriented than e�ects and conceptually simi-

lar to our roles. However, like static e�ect systems, permission systems aim

to guarantee noninterference at compile time, to avoid any runtime check-

ing. This approach may result in more e�cient execution and guarantees

the absence of runtime errors related to parallelism, but these guarantees

are based on restricting aliasing, to speci�c patterns that can be tracked

statically.

To enable more complex aliasing and sharing patterns, some permission-

based languages include special built-in types that can be used to work

around these restrictions. For example, Rust’s std::sync module (The Rust

Project Developers, 2011) contains wrappers like Mutex and RwLock that can

be used to concurrently access data in arbitrary patterns. In contrast, the

Parallel Roles model sacri�ces the ability to guarantee noninterference at

compile time, to foster simpler dpp languages like Rolez, which allow arbi-

trary aliasing. Instead, noninterference is checked or enforced dynamically,

leading to a noticeable but modest runtime overhead, as the performance

evaluation in Section 5.3 will show.
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speculative execution Another approach to dpp is speculative exe-
cution, where the e�ects of tasks are bu�ered by a runtime component and

rolled back in case they interfere. Two well-known speculative approaches,

Thread Level Speculation (Sohi et al., 1995; Rauchwerger and Padua, 1995;

Ste�an and Mowry, 1998) and Transactional Memory (Herlihy and Moss,

1993; Shavit and Touitou, 1995; Harris and Fraser, 2003) are not dpp models

in a strict sense: the former automatically parallelizes sequential programs,

while the latter usually provides no determinism guarantees.

Actual speculative dpp models are Safe Futures for Java (Welc et al., 2005)

and Implicit Parallelism with Ordered Transactions (von Praun et al., 2007).

In both models, the programmer de�nes which parts of a sequential program

should execute asynchronously and the runtime then executes them as

speculative tasks, enforcing their sequential order. Speculation, which often

comes with a signi�cant overhead due to bu�ering and rollbacks, is not

necessary in the Parallel Roles model, because interfering operations are

prevented by guarding and, in the case of Rolez, by the type system.
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ROLE T YPE SY STEM

4.1 role errors

When compared with languages like dpj and Æminium, which check non-

interference at compile time, it might seem that Rolez is at a substantial

disadvantage in terms of safety. Indeed, the model presented in Chapter 2

contains several state transitions that lead to the Serror state, which may

seem to imply that there is a class of runtime errors that the programmer

needs to carefully avoid. For example, if a task declares one of its parameters

as readonly, then it is an error if the corresponding object is ever written

to in this task—which applies to the code inside the task body, but also to

any code inside methods that are called by the task. Furthermore, when

taking joint role transitions into account, this rule applies not only to the

very object that is passed as an argument, but also to any reachable object.

Errors that result from disrespecting the declared role of an object are called

role errors. Role Errors
First, note that this issue of role errors is technically distinct from the

problem of nondeterminism: role errors are deterministic, i.e., if the pro-

grammer wrote code that mistakenly reads from an object declared as read-

only, then the program would always fail if this read statement is reached,

independently of the scheduling of tasks. The reason is that whether or not

a role error occurs depends only the declared role of an object, but not on its

current role. This is not obvious from the de�nition of the state transition

relation in Section 2.3.2, which states, for example, that a write operation

causes a transition to Serror if neither mayWriteH (t, r ) (which indeed de-

pends on the current role of the object at r ) nor r ∈ Rrw
holds. However,

mayWriteH (t, r ) actually implies r ∈ Rrw
, as the proof for Theorem A.3.2

in Appendix A shows. Thus, a write operation would lead to Serror if and

only if r < Rrw
, i.e., if and only if the object’s declared role is less permissive

than readwrite. Nevertheless, even if role errors are deterministic, they

could still be an issue in practice, as they may only be triggered by speci�c

inputs and could therefore be missed during testing.

For this reason, Rolez includes a type system that checks for role errors

at compile time. The type system is complementary to guarding, but it does

not replace guarding or role transitions, which are dynamic concepts. When

a task τ has started a child task t , guarding, on the one hand, prevents

temporarily illegal operations in the parent task τ , potentially blocking

41
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 pure Object

 pure Account

 pure SavingsAccount

 readwrite Object

 readwrite Account

 readwrite SavingsAccount

 readonly Object

 readonly Account

 readonly SavingsAccount

Figure 4.1: Rolez subtyping example.

τ ’s execution until t has �nished. The type system, on the other hand,

detects erroneous operations in t , that is, it detects role errors. With this

combination of static and dynamic checking, Rolez provides roughly the

same safety guarantees as purely statically checked languages like dpj and

Æminium, even though Rolez’s type system is much more lightweight.

4.2 role types

The Rolez type system is an extension of the class-based type system known

from Java and other oop languages. The type of every (non-primitive) vari-

able in Rolez contains the class of the object that this variable refers to (or a

superclass thereof), plus the declared role of the object in the currently ex-

ecuting task (or a superrole thereof—see below). Thus, all reference types in

Rolez, called role types, contain two parts, the static role and the class part. ForRole Types
example, a role type readwrite Account consists of the static role readwrite

and the class part Account. If a class has a type parameter, the class part may

also contain a type argument, as in the role type readwrite Array[int]. If

the type argument itself is a reference type, it contains again a static role,

as in the type readwrite Array[readonly Account].

Using role types, the type system tracks the declared role of every object

that is shared with a task and ensures that this declared role is respected.

This is possible because, unlike the actual current role, the declared role

of an object never changes during the execution of a task. Thus, the static

role of a variable always corresponds to the declared role of the object this

variable refers to or, due to subtyping, to a superrole thereof.

Subtyping for role types takes into account not only the class part, but

also the static role: A role type r1 C1 is a subtype of r2 C2 if and only if

the class C1 is a subclass of C2 and the role r1 is a subrole of r2, i.e., if r1 is

at least as permissive as r2. For example, the type readwrite Account is a

subtype of readonly Account, and also of readwrite SavingsAccount (given

that the class SavingsAccount extends the class Account). This is illustrated
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in Figure 4.1, which shows the complete type hierarchy for three classes,

where SavingsAccount extends Account, which in turn extends Object. Note

that every type is also technically a subtype of itself, though this is not

shown in the �gure.

Just as class-based subtyping enables code reuse, for example, by allowing

SavingsAccount instances to be used where Account objects are expected,

role-based subtyping enables safe code reuse with respect to roles. For

example, a method with a readonly Account parameter can be safely called

with a readwrite Account argument, as readwrite permits everything that

readonly permits.

Note that with role types, there are now three concepts of roles to distin-

guish: the current role of an object, the declared role of an object, and the

static role of a variable. On the one hand, the current role of an object is

always at most as permissive as the object’s declared role, but it could be less
permissive, if the object had been shared with another task. On the other

hand, the declared role of an object is always at at least as permissive as

the static role of any variable that refers to this object, but it could be more
permissive, due to subtyping. This leads to the slightly counterintuitive

fact that the current role of an object could be more or less permissive than

the static role of a variable that refers to the object. However, this is not an

actual issue, as the type system is only concerned with the declared role of

an object, while the discrepancy between the declared and the current role

is handled by guarding.

As outlined in Section 3.1, the role declarations of task parameters are

integrated into the parameters’ type annotations. For example, the acc

parameter of the foo task in Figure 4.2 is declared as readonly and hence

has the type readonly Account. Thus, role declarations for task parameters

serve two purposes: On the one hand, they are regular role type annotations

that are required by the Rolez type system. On the other hand, they serve as

the role declarations of the task they belong to and de�ne the role transitions

that are performed at the beginning of that task (see Section 3.1). This means

that role declarations for task parameters are a fundamental requirement of

the Parallel Roles model, while role type annotations for other constructs,

like local variables, �elds, or method parameters, are required exclusively

to report role errors at compile time.

4.3 example

In the example in Figure 4.2, the type system provides two guarantees: 1) the

object that acc refers to is never assigned to a variable of a role type with a

more permissive static role and 2) variables with a static role of readonly

cannot be used as targets for �eld write operations. Together, these two

ensure that acc is never modi�ed inside the foo task.

The �rst guarantee is illustrated on Lines 2 and 3. On the one hand,

assigning acc to variable ro of type readonly Account is permitted; on the

other hand, assigning it to rw is prohibited, because the type of acc is not a
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1 task pure foo(acc: readonly Account): {
2 val ro: readonly Account = acc; // OK
3 val rw: readwrite Account = acc; // ERROR
4

5 println(ro.balance); // OK
6 ro.balance += 1000; // ERROR
7 println(ro.getBalance); // OK
8 ro.deposit(1000); // ERROR
9

10 val userRw: readwrite User = ro.owner; // ERROR
11 val userRo: readonly User = ro.owner; // OK
12 }

Figure 4.2: Code example for role types, showing permitted and prohibited uses of

variables of class Account (de�ned in Figure 3.1). Note that the types of

local variables (Lines 2, 3, 10, 11) could be inferred by the compiler, but

are declared here for illustration purposes.

subtype of rw’s type readwrite Account. Note that the standard “right-hand

side is a subtype of the left-hand side” rule applies here.

Lines 5–8, together with the de�nition of the Account class in Figure 3.1,

illustrate the second guarantee. Reading from the balance �eld of the ro

variable (Line 5) is permitted, as ro’s static role is readonly. However, writ-
ing to a �eld is not permitted by this static role, so Line 6 is an error. Lines 7

and 8 illustrate how this guarantee is maintained across method bound-

aries: Line 7 reads the balance of ro by calling getBalance. This method

declares the receiver as readonly, so the type of “this” inside the method

is readonly Account and thus reading from the balance �eld is permitted.

When calling a method, the compiler checks that the target, in this case

the variable ro, has a static role that is a subrole of the declared role of the

receiver. This is the case on Line 7, but not on Line 8, because the deposit

method declares its receiver as readwrite. Hence, it is impossible to modify

the balance of the Account object that acc and ro refer to—both directly or

by calling a method.

To �x the foo task, the programmer would need to declare the acc pa-

rameter (and all the variables it is assigned to) as readwrite instead. This

would eliminate the errors reported by the type system and, at runtime,

would cause the corresponding object to play the readwrite role in foo,

allowing to modify it.

The type system not only guarantees that acc itself, but also that all the

objects that acc refers to remain unmodi�ed in the foo task. This is required

because of joint role transitions: as explained in Section 3.2, all objects that

are reachable from an object that is shared with a task implicitly have the

same declared role as that object itself. In the example in Figure 4.2, this

means that the declared role of the User object that is stored in acc’s owner

�eld is readonly, like the declared role of acc and disregarding the static

readwrite role of the owner �eld. To ensure that this User’s declared role
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CL ::= class C extends C { var f :T val f :T M } classes

M ::= def r m[p incl ϱ](x:T): T { return e; } methods

T ::= r C role types

r ::= roles:

ϱ built-in role

p role parameter

ϱ ::= rw | ro | pu built-in roles

e ::= expressions:

x variable reference

e.f �eld read

e.f = e �eld write

e.m[r](e) method invocation

new C object creation

Figure 4.3: Syntax of Featherweight Rolez. The parts in blue are related to role

parameters and are addressed in Section 4.5.

is respected too, the Rolez type system includes a special typing rule that

concerns �eld reads: The resulting static role of a �eld read expression e . f
is not simply the role of the �eld f, but the less permissive static role of f
and of the target expression e itself. This is illustrated on Lines 10 and 11

in Figure 4.2: When reading the �eld ro.owner, it is an error to assign the

result to the readwrite variable userRw, as the less permissive static role of

ro and owner is readonly. Thus, ro.owner can only be assigned to a variable

with a static role of “at most” readonly, which prevents any modi�cation.

4.4 formal description

We describe the typing rules of the role type system using a minimal

subset of Rolez. The description is inspired by Featherweight Java (fj), a

“minimal core calculus for Java” (Igarashi et al., 2001), and roughly follows

the presentation by Pierce (2002). Thus, we call this subset Featherweight Featherweight Rolez
Rolez (fr).

Note that fj is a “functional” subset of Java, i.e., it includes no notion

of assignment and thus no side e�ects, like the lambda calculus. On the

other hand, fr does include side e�ects in the form of �eld write operations,

because side e�ects are at the core of the problem that Rolez attempts to

solve. Therefore, any formal semantics for fr would be much more complex

than that for fj, and we do not provide one here. Consequently, we provide

no soundness proof either; however, we argue that a formal description of

the type system is valuable nonetheless, especially if it follows a well-known

description such as fj’s.
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Γ ` r ≺: r Γ ` rw ≺: r Γ ` r ≺: pu

p incl ρ ∈ Γ ρ ≺: ϱ

Γ ` p ≺: ϱ

Γ ` C ⊂: C
Γ ` C ⊂: D Γ ` D ⊂: E

Γ ` C ⊂: E

CT (C) = class C extends D {...}

Γ ` C ⊂: D

Γ ` r ≺: s Γ ` C ⊂: D

Γ ` r C <: s D

Figure 4.4: fj subtyping rules. The rule in blue is related to role parameters, which

are addressed in Section 4.5.

4.4.1 Syntax

The syntax of fr is given in Figure 4.3. The metavariables C , D, and E
range over class names, f and д range over �eld names, m ranges over

method names, p and q range over role parameter names (as explained

later), and x ranges over parameter names (i.e., variables). CL ranges over

class declarations, M ranges over method declarations, T , U , V range over

role types, r , s , t range over roles, ϱ and ρ range over the built-in roles

readwrite, readonly, and pure, and e ranges over expressions. We assume

that the set of variables includes the special variable this, but that this is

never used as the name of an explicit parameter of a method; instead, it is

implicitly bound in every method declaration. Note that we write “val f :T ”

as shorthand for “val f1:T1 ... val fn:Tn” (similarly var f :T and M) and

we write “p incl ϱ” for “p1 incl ϱ1, ... , pn incl ϱn” (with commas; similarly

x:T , r , e). Sequences of �eld declarations, role parameters, parameters, and

method declarations are assumed to contain no duplicate names.

A class declaration CL includes a reference to a superclass, a set of non-

�nal �elds (declared using “var”), a set of �nal �elds (declared using “val”),

and a set of methods. A method declaration M �rst includes the role of the

receiver (the this), then a list of role parameters, a list of normal parameters,

a return type, and �nally a body that includes a single return statement

with an expression. For now, we ignore role parameters and thus all parts

in Figure 4.3 that are given in blue. A role type T includes a role and a

reference to a class, as explained in Section 4.2. Finally, an expression e is

either a reference to a variable, a �eld read or write operation, a method

invocation, or a constructor invocation.

Note that fr contains no tasks, even though these are a fundamental

construct in Rolez. The reason is that, from the point of view of the type

system, tasks and methods behave exactly the same; the di�erence between

them is only apparent at runtime: starting a task causes role transitions

and changes the declared roles of objects, while a method invocation has

no e�ect on any role.
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x : T ∈ Γ

Γ ` x : T

(
T-Var

)
Γ ` newC : rwC

(
T-New

)
Γ ` e : s C vals(C) = f : r C Γ ` ri ≺: r Γ ` s ≺: r

Γ ` e.fi : r Ci

(
T-FRead

)
Γ ` e : s C Γ ` s ≺: ro

vars(C) = f : r C Γ ` ri ≺: r Γ ` s ≺: r

Γ ` e.fi : r Ci

(
T-NRead

)
Γ ` e : rwC vars(C) = f : U Γ ` eR : T Γ ` T <: Ui

Γ ` e.fi = eR : T

(
T-Write

)
Γ ` e : r C mtype(m,C) = s U → T

Γ ` e : T Γ ` T <: U Γ ` r ≺: s

Γ ` e.m(e) : T

(
T-Invoke

)
x : T , this : r C ` e : U � ` U <: T

CT (C) = class C extends D {...}

override(m,D, r T → T )

def r m(x:T): T { return e; } ok in C

(
OK-Method

)
mtype(m,D) = s U → U implies r = s ∧T = U ∧T = U

override(m,D, r T → T )

(
OK-Override

)
Figure 4.5: fr typing rules.

4.4.2 Subtyping

Figure 4.4 shows the formal subtyping rules for fr. Γ is a typing environ-

ment that contains the declared types of local variables and the bounds of

role parameters, which are used in one of the subtyping rules. Formally,

Γ ::= � | Γ, x : T | Γ, p incl ϱ.

We use ≺: for the subrole relation: every role is a subrole of itself, read-

write is a subrole of every role, and every role is a subrole of pure. The

rule in blue concerns role parameters, which are discussed later. Further, ⊂:

stands for the subclass relation, which is de�ned as follows: subclassing is

re�exive, i.e., every class is a subclass of itself; subclassing is transitive, i.e.,

ifC is a subclass of D and D is a subclass of E, thenC is a subclass of E; and

C is a subclass of D if C is declared to extend D. This is formalized using

a class table CT , which maps class names to their declarations. Finally, ≺:

and ⊂: are used to de�ne the subtype relation <: , as described earlier.



48 role type system

4.4.3 Typing Rules

Finally, the typing rules for fr are given in Figure 4.5. The type of a variable

is simply that variable’s declared type (T-Var). When an object is instanti-

ated, the resulting type is readwrite C , where C is the instantiated class

(T-New). This corresponds to the fact that the declared role of an newly

created object is readwrite, as de�ned in Figure 2.5 in Chapter 2.

When reading from a �eld of an object, there are two cases: reading

from a �nal or from a non-�nal �eld. In both cases, the target expression e
needs to be of a type s C and the �eld fi must exist in C (we use again the

notation f : r C as a shorthand for f1 : r1C1 ... fn : rnCn). The terms vals(C)
and vars(C) denote the set of �nal and non-�nal �elds in C , respectively.

Notably, the resulting role r of a �eld read expression is not simply equal to

the declared role ri of the �eld; instead, it is a (possibly non-strict) superrole

of ri and, more importantly, it is also a superrole of s , the role of the target

expression. This typing rule re�ects Rolez’s concept of joint role transitions:

An object that is reachable from a task argument has the same declared

role as that argument. Thus, the type system needs to ensure that such an

object cannot be referred to by an expression that has a more permissive

role than that of the argument. By ensuring that the static role of a �eld

read expression is always a superrole of that of the target expression, this

property holds. For example, when reading a �eld from a readonly target,

the resulting role is at most readonly (but it could be pure, if the �eld is

declared as pure). The only di�erence when reading from a non-�nal �eld

(T-NRead) as opposed to reading from a �nal �eld (T-FRead) is that the

role s of the target expression must be at least readonly. Reading a �nal

�eld is always legal, even when the target is pure.

The typing rule for writing to a �eld (T-Write) includes the standard

“right-hand side is a subtype of the left-hand side” rule, as well as the

requirement that the target �eld must be non-�nal. In addition, the role of

the target expression e must be readwrite.

Typing method invocations is slightly more involved. Given that the

target expression is of type r C , the rule uses the function mtype(...) to

determine the “type signature” of the method. This signature s U → T
includes the receiver role s , the types U of all method parameters, and the

return type T . Then, the rule states that each of the types T of the method

arguments is a subtype of the corresponding parameter type, and that the

role r of the target expression is a subrole of s .
Rule OK-Method de�nes well-typed methods and “bootstraps” the typ-

ing of an expression e , de�ning the typing environment Γ that is used

in all typing rules. Γ contains the declared types T of all explicit method

parameters x , plus the type r C of the implicit this parameter, where r is

the declared role for this andC is the class in which the method is declared.

In addition, the rule includes two premises concerning method overriding.

Valid overriding is de�ned in OK-Override, stating that if a method has
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the same name as a method in a superclass, then all parameter types, the

return type, and the this role must be the same as in that method.

We omit the de�nitions of the various auxiliary functions like mtype(...),
as these di�er only insigni�cantly from their counterparts in fj (Pierce,

2002).

4.5 role parameters

Figures 4.3 and 4.4 contain elements that are still unexplained and are related

to role parameters. (These elements are given in blue.) Role parameters Role Parameters
are an advanced feature of the Rolez type system that allows methods

to operate on objects with di�erent roles without sacri�cing type safety

(or introducing code duplication). Role parameters share some similarities

with type parameters in Java and other object-oriented languages, but they

address a much more speci�c, but ubiquitous problem.

4.5.1 Example

As explained above, the static role of a �eld read expression depends on the

role of the target. For example, if the declared type of a �eld f is readwrite

A, then the expression e .f has the same static role as the target expression

e itself. If a programmer wanted to encapsulate this �eld access in a getter

method get, it is unclear what roles to use for get: On the one hand, if the

method is declared like this:

def readwrite get(): readwrite A {
return this.f;

}

then the method can only be invoked on readwrite targets. On the other

hand, if the this role is changed to readonly, then the return type needs

to be changed to readonly too, otherwise the method body would not be

well-typed. One could work around this problem using casts or even by

de�ning two (or three) versions of the method, but such measures seem

disproportionate for a simple getter method.

With role parameters, the get method can be de�ned in a generic and

type-safe way:

def r get[r](): r A {
return this.f;

}

The square brackets enclose the role parameters of a method, like the

parentheses enclose the regular parameters. Here, a single role parameter

r is de�ned, and used both as the this role and as the role of the return

type. Thus, when this method is invoked on a readwrite target, its return

type is readwrite A, when invoked on a readonly target, the return type

is readonly A, etc.
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Γ ` e : r C mtype(m,C) = t p incl ϱ V → U

Γ ` e : T U = V \p 7→r Γ ` T <: U

s = t\p 7→r Γ ` r ≺: s T = U \p 7→r Γ ` r ≺: ϱ

Γ ` e.m[r](e) : T

(
T-Invoke

)
p incl ϱ, x : T , this : r C ` e : U p incl ϱ ` U <: T

CT (C) = class C extends D {...}

override(m,D, r p incl ϱ T → T )

def r m[p incl ϱ](x:T): T { return e; } ok in C

(
OK-Method

)
mtype(m,D) = s q incl ρ U → U implies

r = s ∧ p = q ∧ ϱ = ρ ∧T = U ∧T = U

override(m,D, r p incl ϱ T → T )

(
OK-Override

)
Figure 4.6: fr typing rules with role parameters, which replace the respective rules

in Figure 4.5.

However, this generic de�nition of get is only well-typed if the �eld

f is �nal; otherwise the T-NRead rule applies, which states that the role

of the target must be at least readonly, which does not apply to the role

parameter p, which could be instantiated with any role. To address this

issue, role parameters can have upper bounds. For example, r can be de�nedRole Parameter Bounds
to be at least as permissive as readonly:

def r get[r includes readonly](): r A {
return this.f;

}

Now, get can only be called on a readwrite or readonly target, making

the �eld read operation safe, even when f is non-�nal. Role parameter

bounds work in the same way as type parameter bounds known from other

oop languages, in that they restrict the set of arguments that a parameters

can be instantiated with.

4.5.2 Formal Description

Role parameters are the �nal missing piece in Featherweight Rolez. To

describe them formally, we include the blue parts in Figures 4.3 and 4.4,

and we replace T-Invoke, OK-Method, and OK-Override in Figure 4.5

with the versions shown in Figure 4.6.

The complete syntax of fr now includes role parameters (including

bounds) in method declarations and role arguments in method invocations.

In addition, wherever a role r can occur, a role parameter p can be used

instead of a built-in role ϱ. The additional subtyping rule in Figure 4.4 states
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that a role parameter p is a subrole of a built-in role ϱ if p’s upper bound is a

subrole of ϱ. The upper bounds of all declared role parameters are included

in the typing environment Γ.

The new T-Invoke rule in Figure 4.6 shows how method invocations

with role parameters are typed. First, the type signature of a method now

also includes all role parameter names and their upper bounds. Second,

since the this role, the parameter types, and the return type can contain

references to a role parameter, there are three new premises that relate

the parameterized types to the instantiated types, i.e., the types where all

occurrences of a role parameter p have been replaced by the respective role

argument r . For example, the premise T = U \p 7→ r states that T is equal

to U with all occurrences of p1, ...,pn replaced with the respective r1, ..., rn.

Finally, the last premise states that each role argument r must respect the

bound of the respective parameter p.

OK-Method is updated to include the role parameters and their bounds in

the typing environment when typing the expression e and when checking

that U <: T , because both U and T could contain references to a role

parameter. In addition, the override rule now includes premises stating that

all role parameter names and bounds must be equal to the corresponding

ones of the overridden method. Since role parameters are instantiated based

on their positions, the names could actually be chosen di�erently, but this

would complicate the rest of the premises.

Note that in fr, role arguments must be speci�ed explicitly for every

method invocation. However, in Rolez, the compiler can infer them auto-

matically, much like type arguments to methods are inferred automatically

in Java. Thus, the syntactic overhead for role-parameterized methods is

relatively low.

4.6 related work

One of the main distinguishing features of the Rolez type system is the

sound handling joint role transitions, which is accomplished with a special

typing rule for �eld read expressions and, for getter-like methods, with

role parameters. In essence, the Rolez type system guarantees that the

restrictions imposed by the static role of a reference r apply not only to the

state of the object represented by r itself, but to the transitive state of r , i.e.,

to the state of all objects reachable from r .

Such a guarantee is also useful for other reasons than safe parallel exe-

cution, for example, for protecting the state of an object from unauthorized

modi�cations by untrusted code, or simply for ensuring encapsulation.

Recognizing this fact, an extension for Java, called Java with Transitive

Readonly Access Control (jac) (Kniesel and Theisen, 1999), employs a type

system where for every class type C, there is also a variant readonly C, which

prohibits modi�cation. As the name of the language suggests, readonly is

transitive, i.e., when reading from a �eld of a readonly type, the resulting

type is again readonly. While this type system bears a certain resemblance
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to Rolez’s, it is less expressive: First, it includes only two types of “roles”,

readonly or full access, while Rolez includes an even stricter role, pure.

Second, jac’s handling of method calls di�ers substantially from Rolez’s:

When calling a method on a readonly target in jac, by default, the result

type is readonly as well, assuming that methods generally return objects

that belong to their transitive state. Programmers may override this behav-

ior, but only if the returned object is unconditionally mutable. Rolez, on the

other hand, allows more �exibility: using role parameters, a programmer

can link the role of a method’s return type not only to the role of the method

target, but also to the role of any other method parameter.

The more general idea behind Rolez’s and jac’s type systems is that the

way a reference may be used depends on the “context” from where the

reference was obtained: for example, if the reference was read from the

�eld of a readonly reference, it may not be used to modify the object;

but if it was obtained, for example, by creating a new object, it grants full

access. This context-dependent behavior was explored in the Accessibility-

Based Encapsulation (ace) model (Kniesel, 1996), which jac is based on. In a

broader context, the idea is also used in the Java Security Architecture (Or-

acle Corporation, 2018), where “the permission set of an execution thread

is considered to be the intersection of the permissions of all protection

domains traversed by the execution thread.”

The idea of “adapting” the role of a �eld read expression e . f to the role of

the target e is also similar to the concept of viewpoint adaptation known from

ownership type systems, in particular Generic Universe Types (Dietl et al.,

2007). That type system includes ownership modi�ers, which accompany

reference types, similar to static roles in Rolez. The ownership modi�er

of a �eld read e . f depends on the declared modi�er of �eld f as well as

on the modi�er of e . In contrast to Rolez, where static role “adaptation”

applies only to �eld reads and (using role parameters) to method results,

viewpoint adaption in Generic Universe Types is a more ubiquitous concept

that applies also to method parameters and type parameters.
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IMPLEMEN TAT ION

The main challenge that comes with the Parallel Roles model is perfor-

mance. In contrast to static dpp approaches, this model relies on runtime

mechanisms like role transitions and guarding. These mechanisms cause a

runtime overhead in Rolez programs when compared to statically checked

languages like dpj or Æminium, or nondeterministic languages like Java.

To evaluate this overhead, and the performance of a Rolez-like language

in general, we implemented a prototype compiler and runtime system for

Rolez, based on the Java platform (Section 5.1).

This overhead depends heavily on the details of the implementation. A

straight-forward implementation would be to store both the declared and

the current roles of each object (for each task) alongside the object’s �elds,

and to insert a check before every �eld access operation. Such a check would

retrieve the object’s declared and current role for the currently executing

task and then determine whether the operation is legal, temporarily illegal,

or erroneous, as de�ned in Section 2.3.2 (Figure 2.5, III and IV). Such an

implementation would incur an enormous overhead, easily negating the

gains from parallel execution.

However, there are various avenues to improve over such an ine�cient

implementation: Section 5.2 presents two speci�c optimizations that im-

prove the performance of our prototype substantially. For many programs,

the combination of these optimization raises the Rolez performance al-

most to the level of unchecked languages like Java, as we show in the

performance evaluation in Section 5.3.

5.1 prototype overview

The Rolez compiler prototype is implemented using the Xtext framework

(Eclipse Foundation, 2006) and takes as in input a set of Rolez source �les

which it transforms into a set of Java source �les. These Java �les can

be compiled with a standard Java compiler and executed on a standard,

unmodi�ed Java Virtual Machine (jvm). The runtime system is implemented

as a Java library.

objects and roles For every Rolez class, the compiler generates a

corresponding Java class, with the same �elds and methods. To keep track

of the roles of an object, the Rolez runtime library contains a class called

53
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class Account {
var balance: int
def readwrite deposit(amount: int): {

this.balance += amount;
}
def readonly getBalance(): int {

return this.balance;
}

}

class Account extends Guarded {
int balance;
void deposit(int amount) {

this.guardReadWrite();
this.balance += amount;

}
int getBalance() {

this.guardReadOnly();
return this.balance;

}
}

Figure 5.1: Rolez and generated Java class.

rolez.lang.Guarded, which every generated Java class extends (directly, if

the corresponding Rolez class extends the root class rolez.lang.Object, or

else indirectly).

The Guarded class contains a set of �elds that represent the roles of

an object. As explained above, a straight-forward implementation would

store both the current and the declared roles in every object. However, in

combination with the Rolez type system, a more e�cient scheme is possible:

to store only the current roles inside an object. The current role of an object

for any task is required to perform guarding in that task, i.e., to di�erentiate

whether an operation is legal or temporarily illegal. By contrast, the declared
role is not required for guarding or any other runtime check. According

to Section 2.3.2, it is used to determine whether an operation is erroneous,
i.e., to detect role errors. But since role errors are detected by Rolez’s type

system, the program is guaranteed to be free of role errors once it has

passed the Rolez compiler, and thus no checks for role errors need to be

performed at runtime. Consequently, the �elds of the Guarded class store

only the current role of an object.

guarding Ignoring for now the optimizations presented later, the Rolez

compiler inserts a guard for every read or write access to an object. Because

all generated classes extend Guarded, all objects are instances of that class

and can be used as targets for the methods of that class. Thus, guards are

implemented simply as calls to Guarded methods, with the same target as

that of the guarded operation.

Figure 5.1 illustrates these points using a simple Account class. The orig-

inal Rolez class is shown on the left side and the generated Java class on

the right. Note that the generated class is simpli�ed, leaving away various

aspects that are discussed in the next section. In both methods, one guard

is inserted. Two kinds of guards exist: guardReadWrite for operations that

require the readwrite role and guardReadOnly for operations that require

the readonly role. (pure never requires guarding, as it is the least permis-

sive role possible.) Technically, the += and -= operators correspond to two
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task computeInterest(acc: readonly Account): int {
// task code

}
def foo(): int {

var acc = new Account(20000);
var interest = this start computeInterest(acc);
// ...
return interest.get();

}

1 Task<Integer> computeInterest(final Account acc) {
2 return new Task<>(new Object[]{}, new Object[]{acc}) {
3 protected Integer runRolez() {
4 // generated task code
5 }
6 }
7 }
8 int foo() {
9 Account acc = new Account(20000);

10 Task<Integer> interest = this.computeInterest(acc);
11 TaskSystem.start(interest);
12 // ...
13 return interest.get();
14 }

Figure 5.2: Example of a declaration and invocation of a Rolez task and the corre-

sponding generated Java code.

operations, a read and a write. However, since the readwrite role permits

both reads and writes, only one guardReadWrite call is inserted.

tasks In addition to �elds, methods, and constructors, Rolez classes

may contain tasks. Tasks are invoked using the usual method invocation

syntax, except that the start keyword replaces the dot. A start expression

results in an object of type rolez.lang.Task[V], which acts as a wrapper

around the (future) result of the task. The type parameter V corresponds to

the return type of the task.

A task is transformed into Java by creating a method that explicitly

returns a rolez.lang.Task object, which is an instance of a class in the

Rolez runtime library. This Task class is similar to the FutureTask class

in the Java standard library, in the sense that it represents asynchronous

computations. However, when a Task object is created, all (non-primitive)

arguments to that task must be passed to the constructor, grouped by the

roles that the programmer declared for the corresponding task parameters.

This enables the Task constructor to perform the role transitions for these

arguments. Finally, a start expression is transformed into Java simply by

calling the corresponding method and starting the code in the resulting

Task object in a di�erent thread.
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Figure 5.2 illustrates these points. The top part shows the declaration of a

task and a method that starts it, while the bottom part shows the generated

Java code. Note that the Task constructor that is invoked on Line 2 takes

two arrays as arguments. The �rst contains all arguments declared as

readwrite, while the second contains those declared as readonly. In

this example, the �rst array is empty and the second contains the acc

argument. Also note that tasks are started using a method in a TaskSystem

class (Line 11). This class is also part of the Rolez runtime library and can

be used to execute a task in a new thread or in a thread from a thread

pool. A task is executed by calling the runRolez method, which contains

the generated code of the task (Line 3). As soon as the runRolez method has

�nished, its return value is stored in the Task instance and can be retrieved

using the get method, as shown on Line 13.

5.2 optimizations

The Rolez prototype is designed to be independent of any particular jvm.

In particular, it does not rely on any jvm-implementation-speci�c feature,

and it requires no modi�cations to the jvm itself. This design has a number

of advantages: First, it allows full compatibility with other languages that

run on the jvm. Since Rolez classes are transformed into Java classes, it is

possible to write the parallel parts of a program in Rolez, and implement the

rest in, e.g., Java or Scala. Second, the approach enables the use of existing

software tools; for example, Rolez code can be tested using frameworks

like JUnit or TestNG and analyzed using Java debuggers or code coverage

tools. Finally, the approach results in great portability. Because the imple-

mentation does not require any modi�cations to a jvm component, such as

the just-in-time (jit) compiler, Rolez programs that are compiled to Java

can be executed on any standard jvm.

However, since a vm-independent implementation cannot rely on custom

jit optimizations, achieving e�ciency is much more di�cult. The following

optimization techniques address this issue. While they were developed

speci�cally for Rolez, some of them are also applicable to vm-independent

implementations of other parallel languages.

5.2.1 Code-Managed Runtime Data

To achieve high performance with Rolez, e�cient guarding is paramount,

because a guard is conceptually required for every single read or write access

to an object. And even though many redundant guards can be eliminated

using concurrency analysis (Section 5.2.2), some guards may remain.

guarding overview Guarding is implemented in the Guarded class of

the Rolez runtime library, which contains �elds and methods for maintain-

ing and checking the roles of an object. As all Rolez objects are instances of
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a subclass of Guarded, they inherit these �elds and methods. The following

snippet shows how the Guarded class represents the roles of an object, using

two �elds. Note that the actual implementation is more complex, but this

simpli�ed version is more suitable for illustration purposes.

public abstract class Guarded {
private volatile int ownerId;
private AtomicInteger readers;
// ...

}

First, the ownerId �eld stores the id of the current owner task of the object.

This is the single task in which the object currently plays the readwrite

role or, if the object was shared as readonly, the last task in which it played

the readwrite role.* Second, readers stores the number of tasks in which
*

There is always a task in

which an object last played

the readwrite role, as

every object initially plays

the readwrite role in the

task that creates it.

the object currently plays the readonly role. This information is su�cient

to determine all roles of an object.

Besides the �elds that store an object’s roles, the Guarded class contains

the methods that implement role transitions and, most importantly, guard-

ing. A guard operation checks whether the role of the target object in the

current task permits the given operation and, if not, blocks the execution

of the current task. Using the above representation of roles, guarding for

readwrite can be implemented as follows:

public final void guardReadWrite() {
while(!isReadWrite()) { LockSupport.park(); }

}
private boolean isReadWrite() {

long taskId = /* get ID of current task */;
return this.ownerId == taskId && this.readers.get() == 0;

}

The isReadWrite method checks if “this” object plays the readwrite role

by comparing the id of the current task with that in the object’s ownerId

�eld. In addition, it checks that the object is not currently shared as read-

only, in which case it would currently also play the readonly role in

the owner task. The guardReadWrite method simply parks the currently

executing thread, using the LockSupport.park method from the Java stan-

dard library, until isReadWrite returns true. Whenever a role transition

happens, parked treads are unparked so that they can check the role again.

The guardReadOnly method is implemented similarly.

code generation for the current task The challenging part in

the guarding implementation is to e�ciently retrieve the “current” task, i.e.,

the task in which the given code is being executed. This information could

be stored in a thread-local variable, e.g., using the ThreadLocal class from

the Java standard library. However, we found that reading such a thread-

local variable is relatively slow in comparison with a normal heap read or

write. Thus, reading a thread-local variable for every guarded operation

would be ine�cient.
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Instead of solving this issue purely in the runtime system, we leverage a

code generation technique: To each Java method generated from a Rolez

method, the compiler adds an additional parameter for the id of the current

task. Then, each generated method invocation passes the current task in

the enclosing method on to the invoked method. Finally, when a guard

is inserted, the current task in the enclosing method is passed on to the

guard* method.

Figure 5.3 shows how this mechanism works, using two example classes

written in Rolez and the corresponding generated Java classes. Lines 11

and 16 show how an additional $task parameter is added to methods, while

Lines 6 and 7 show how these methods are called. The actual id of the

currently executing task is retrieved exactly once, at the beginning of a

task (Line 5). Finally, Line 17 shows how the id is ultimately passed to

guardReadOnly, which guards the read operation in the getBalance method.

The guardReadOnly method simply passes the id on to isReadOnly, where

it is compared with the owner of the object:

public final void guardReadOnly(int $task) {
while(!isReadOnly($task)) { LockSupport.park(); }

}
private boolean isReadOnly(int $task) {

return this.ownerId == $task || this.readers.get() > 0;
}

Adding a method parameter to every method in the program may seem

ine�cient as well. In addition, the code snippets may imply that guarding

could be implemented using, e.g., the id of the current native Java thread,

which is typically e�cient to retrieve. However, the actual Guarded im-

plementation is more complex and needs to store not only the number of

readers, but the set of readers. To query this set e�ciently, it is implemented

as a bit set, relying on speci�c properties of Rolez task ids. Since Rolez

code could be executed in arbitrary threads, using the thread id would not

work. In addition, we have conducted experiments on the jvm that showed

that adding a parameter to all methods of a program has no signi�cant

performance impact and that this approach is at least as e�cient as using

the thread id.

Once inlined into the code that performs the guarded operation, a guard

consists only of at most three �eld reads and a few comparisons. And

because the ownerId and readers �elds are in the same object as the �eld

that is accessed by the guarded operation, they are likely to be stored in

memory close-by and will bene�t from cpu caching. Thus, guards result in

very little overhead, despite being implemented without the explicit help

of a jit compiler.

5.2.2 Concurrency Analysis

Even though guards can be implemented e�ciently, actually guarding every

object access would still result in poor performance. Fortunately, this is
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class Banking {
task computeInterest(acc: readonly Account): int {

val balance = acc.getBalance();
return complexComputation(balance);

}
def complexComputation(balance: int): int { /*...*/ }

}
class Account {

var balance: int
// ...
def getBalance(): int { return this.balance; }

}

1 class Banking {
2 Task<Integer> computeInterest(final Account acc) {
3 return new Task<>(new Object[]{}, new Object[]{acc}) {
4 protected Integer runRolez() {
5 int $task = this.id();
6 int balance = acc.getBalance($task);
7 return complexComputation(balance, $task);
8 }
9 }

10 }
11 int complexComputation(int balance, int $task) { /*...*/ }
12 }
13 class Account {
14 int balance;
15 // ...
16 int getBalance(int $task) {
17 this.guardReadOnly($task);
18 return this.balance;
19 }
20 }

Figure 5.3: Code generation for passing the current task from method to method.

On the top are two Rolez classes and on the bottom the corresponding

generated Java code.
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not required, as many guards are redundant and can be eliminated, using

concurrency analysis.
Guards prevent temporarily illegal operations. Such operations are illegal

because the target object has been shared with a child task and currently

plays a less permissive role than its declared one. The main insight be-

hind concurrency analysis is that an operation in some task t can only be

temporarily illegal if t has started a child task before and that child task

has not yet �nished. Or conversely, if there exists no child task, all objects

are guaranteed to play the role that was declared for them. Concurrency

analysis statically determines if there possibly exists any child task, for

every point in the program. Where this is not the case, the compiler does

not emit any guards.

modular interprocedural analysis To be useful, concurrency

analysis needs to be interprocedural, as a sound intra-procedural analysis

would have to assume that there already exists a child task at the begin-

ning of a method’s execution. However, interprocedural analysis is usually

expensive and precludes modular compilation, a standard feature for Java-

like languages. The concurrency analysis is interprocedural and modular,

o�ering the best of both worlds. This is achieved again using a co-design

with code generation.

The key insight to make concurrency analysis both interprocedural and

modular is that the analysis computes only a single bit of information per

program point: whether there is at least one child task or not. This boolean

information can be propagated through the program without actually ana-

lyzing the whole program at once. Instead, every method is analyzed using

an intraprocedural version of the analysis, but twice: once under the as-

sumption that there are child tasks at the beginning of the method, and once

under the opposite assumption. Propagating the information through the

program is done in two steps: First, the compiler generates two versions of

every method, one for each assumption. And second, for every method call,

the compiler generates a call to the version that matches the information

computed for that program point by the intraprocedural analysis.

Because two di�erent versions are generated for every method, the

analysis is not only interprocedural, but also context-sensitive. When a

method is called from a context with child tasks, the version with guarding

is used, and when called from contexts without child tasks, the unguarded

version. This is important for programs written in languages similar to Java,

because these languages typically come with an extensive standard library

that includes classes and methods that are used in many di�erent parts of a

program.

example We illustrate concurrency analysis using the program in Fig-

ure 5.4. On the left, the �gure shows the results of the intraprocedural

version of the concurrency analysis. The symbol means that there possi-

bly exist child tasks and thus guarding is necessary, while the symbol
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N Y

1 task main(): {
2 process(/*...*/);
3 }
4 def process(accounts: Array[Account]): {
5 printTotal(accounts);
6 for (var i = 0; i < accounts.length; i++)
7 start depositInterest(accounts[i]);
8 printTotal(accounts);
9 }

10 def printTotal(accounts: Array[Account]): {
11 var total = 0;
12 for (var i = 0; i < accounts.length; i++)
13 total += accounts[i].balance;
14 println(total);
15 }
16 task depositInterest(acc: readwrite Account): {
17 val balance = acc.balance;
18 acc.deposit(/*...*/);
19 }

Figure 5.4: Concurrency analysis example.

means the opposite. There are two columns: N shows the result of the

analysis under the assumption that there are no child tasks at the beginning

of a method, and Y shows the results for the opposite assumption. Column Y

is empty for tasks; because it is impossible for new tasks to have any child

tasks, there is no need to analyze a task under this assumption.

When the program begins execution in the main task, there are no child

tasks, so no guarding is necessary on Line 2. The process method is ana-

lyzed twice. Assuming no child tasks exist initially, no guarding is necessary

on Line 5, as shown in Column N. However, since tasks are started inside

the loop (Line 7), guarding is necessary for the whole loop and subsequently

on Line 8. Under the opposite assumption, that child tasks initially exist,

guarding is necessary throughout the whole method, as shown in Col-

umn Y. The printTotal method is also analyzed twice. Since no tasks are

started inside the method, guarding is necessary or unnecessary, respec-

tively, throughout the whole method, depending on the initial assump-

tion. Finally, depositInterest is again analyzed only once, because it is a

task. Even though there may be other tasks in the program by the time a

depositInterest task is started, every instance of the task is guaranteed to

have no child tasks when it starts execution. And because depositInterest

does not start any tasks itself, no guarding is required throughout the whole

task body.

The resulting generated code for this program is shown in Figure 5.5.*

*
This code is simpli�ed,

leaving away the $task

parameters introduced in

Section 5.2.1 and

simplifying the handling of

arrays: the compiler wraps

Java arrays in instances of

the GuardedArray class

(a subclass of Guarded) and

inserts guards where

necessary.

Two versions are generated for each method, an $Unguarded and a $Guarded

one, while there is only one version for tasks. Whenever a method is called,

the compiler generates a call to the version that matches the results of the

analysis shown in Figure 5.4. For example, in process$Unguarded on Line 10,
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1 Task<Void> main() {
2 return new Task<Void>(new Object[]{}, new Object[]{}) {
3 protected Void runRolez() {
4 process$Unguarded(/*...*/);
5 return null;
6 }
7 }
8 }
9 void process$Unguarded(Account[] accounts) {

10 printTotal$Unguarded(accounts);
11 for (int i = 0; i < accounts.length; i++)
12 TaskSystem.start(depositInterest(accounts[i]));
13 printTotal$Guarded(accounts);
14 }
15 void process$Guarded(Account[] accounts) {
16 printTotal$Guarded(accounts);
17 for (int i = 0; i < accounts.length; i++)
18 TaskSystem.start(depositInterest(accounts[i]));
19 printTotal$Guarded(accounts);
20 }
21 void printTotal$Unguarded(Account[] accounts) {
22 int total = 0;
23 for (int i = 0; i < accounts.length; i++)
24 total += accounts[i].balance;
25 System.out.println(total);
26 }
27 void printTotal$Guarded(Account[] accounts) {
28 int total = 0;
29 for (int i = 0; i < accounts.length; i++) {
30 accounts[i].guardReadOnly();
31 total += accounts[i].balance;
32 }
33 System.out.println(total);
34 }
35 Task<Void> depositInterest(Account acc) { /* ... */ }

Figure 5.5: Generated code for the program in Figure 5.4.



5.2 optimizations 63

T ::= task t() { s } task

M ::= def [async] m() { s } method

S ::= statements:

start t(); task start

m(); method invocation

Figure 5.6: Simpli�ed Rolez syntax for the data�ow analysis.

the printTotal$Unguarded is called, because, for this version of the process

method, the analysis assumed that there are no child tasks at the beginning

of the method. However, after process has started some tasks, the guarded

version of printTotal is called (Line 13), as the roles of objects may now

di�er from their declared ones. On the other hand, in process$Guarded,

both calls to printTotal use the guarded version (Lines 16 and 19), because

the analysis assumed that there exist child tasks at the beginning of this

version of the process method. Note that the process$Guarded method is

not actually used anywhere in the program, but is still generated in case

the process method is used in another Rolez program, where it may be

called from a guarded context.

Finally, the two generated versions of printTotal illustrate how the

analysis actually eliminates guards. While the guarded version contains a

guard that protects the access to the Account.balance �eld (Lines 30 and 31),

the unguarded version accesses the �eld without a guard (Line 24), because

for this version there cannot be any child tasks. Hence, the information

that there are no child tasks is propagated all the way from the main task

to this �eld access, even though every method is analyzed and compiled in

isolation.

dataflow analysis The intraprocedural analysis that is illustrated

in Figure 5.4 can be expressed as a forward data�ow analysis (Nielson et al.,

1999), which is performed for every method (twice) and every task (once).

The analysis tracks the program state of interest, i.e., whether there are

child tasks, along the edges of the control �ow graph. To deal with loops,

the data�ow analysis follows an iterative �xed-point algorithm.

To present the analysis concisely, we focus on a very small subset of

the Rolez language (much smaller than Featherweight Rolez). This subset

includes only tasks and methods, and as statements just task starts and

method invocations, as shown in Figure 5.6. Statements that a�ect control

�ow, like if–else statements or loops are not included explicitly, but are

handled generally by combining program states when control �ow joins.

All other kinds of statements that Rolez supports have no e�ect on the

program state computed by the analysis and are omitted here.

As described in the literature (Nielson et al., 1999), the data�ow analysis

computes for each statement in the control �ow graph (cfg) an in-state and
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Program state domain: s ∈ {>,⊥}

Transfer functions:

fstart t();(s) , >

fm();(s) ,


>, if async(m)

s, otherwise

Initial and entry state:

sinit , ⊥

sentry ,


>, assuming there are

initially child tasks

⊥, otherwise

Combination operator: t , ∨

Figure 5.7: Data�ow analysis de�nition.

an out-state, which represent the state of the program before and after a

statement, respectively. We use s ∈ {>,⊥} to denote the program state, as

shown in Figure 5.7. If s = >, then there are possibly some child tasks; if

s = ⊥, there are none. A set of data�ow equations de�nes how a statement S
transforms the state of the program, using a set of transfer functions fS .

The out-state of a statement is the result of applying the transfer function

to the in-state.

For a start statement, the program state changes to >, as there is now at

least one child task. For a method invocation, the program state depends on

the declaration of the method. By default, a Rolez method implicitly joins

all newly started tasks at the end of the method. Therefore, if there were no

child tasks before the method invocation, there are again none afterwards.

To override this behavior, a method can be declared as async, which allows

newly started tasks to continue to execute after the method has returned.

Thus, the program state depends on the presence of the async keyword,

which is expressed using the async(m) function.

The data�ow analysis performs a �xed-point iteration over all statements

in a method’s cfg, applying the data�ow equations repeatedly until all in-

or out-states are stable. In- and out-states are initialized with the sinit state,

except for the in-state of the �rst statement in a method, which is initialized

with sentry instead. The entry state sentry depends on the initial assumption

of the analysis: for methods, the analysis is performed once with> and once

with ⊥, while tasks are analyzed once, using ⊥. When control �ow joins,

e.g., after an if–else, the combination operator t combines the out-states
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of the predecessor statements. Since the analysis is conservative, t is the

logical disjunction, i.e, if there may exist child tasks on at least one incoming

path, the analysis must assume that they may also exist after the join.

5.3 performance evaluation

The performance evaluation of the Rolez prototype addresses the following

questions:

1. How much performance can be gained using a dynamically-checked,

deterministic language like Rolez, when compared with an (unchecked)

sequential implementation? One aspect of this question, how much

parallelism can be expressed using Rolez, has already been addressed

qualitatively in Section 3.5.

2. How much runtime overhead is caused by runtime checking due to

role transitions and guarding, when compared with an unchecked

parallel implementation, e.g., in Java. This question also addresses

the simplicity–performance trade-o� when comparing Rolez with

statically-checked languages likedpj andÆminium: because statically-

checked languages add no (or very little) runtime overhead, we can

assume that their performance is virtually the same as for unchecked

languages. In addition, we investigate the overhead caused by the

runtime checks due to array slicing, even though these checks are not

speci�c to Rolez, but would a�ect also other languages that guarantee

safe access to any kind of “sub-array”.

3. How e�ective are the presented optimizations in reducing the runtime

overhead of the Rolez prototype?

To answer these questions, the parallel programs described in Section 3.5

were implemented in Rolez and, as a representative of an unchecked lan-

guage, in Java. The comparison with Java is most suitable: because the

Rolez prototype transforms Rolez programs into Java, any di�erence in

performance is likely to be related to Rolez’s runtime checking.

5.3.1 Experimental Setup

As described earlier, the Rolez compiler transforms Rolez source code into

Java source code. The generated Java code, as well as the code for the

separate Java implementations, is compiled using a standard Java compiler

and executed on a standard jvm.

We measured the performance of the aforementioned programs on a

machine with four Intel Xeon E7-4830 processors with a total of 32 cores

and 64 gb of main memory, running Ubuntu Linux. As the Java platform

we used OpenJdk 8 , using the default values for all vm options (heap size,

etc.). To minimize warm-up e�ects from the jit compiler in the jvm, we
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executed every program 15 times before measuring. Then, we repeated

every experiment 30 times inside the same jvm, taking the arithmetic mean.

We also study di�erent input sizes.

Note that the slice coverage checks, explained in Section 3.3.3, were

turned o� for the experiments in Sections 5.3.2–5.3.4, to enable a fairer

comparison with the manually synchronized Java implementations. As

explained above, these checks are independent of the main concepts in

Rolez and could just as well make sense in the Java implementations. We

evaluate their impact separately in Section 5.3.5.

5.3.2 Parallel Speedup

We compare the performance of all Rolez programs to that of equiva-

lent but unchecked sequential and parallel Java versions. Note that the

Rolez programs reuse some Java classes, such as String, System, and Math,

which contain native parts, and also classes like java.util.Random and

java.util.Scanner, to avoid the e�ort of porting these classes to Rolez. We

manually ensured that the use of these classes is deterministic.

Figure 5.8 shows the parallel speedups that the Rolez programs achieve

and compares them to those achieved by the Java implementations. Both

the Rolez and the Java speedups are relative to the single-threaded Java
execution, to show that the performance of Rolez is mostly on par with that

of Java. For this experiment, we used the largest input size for all programs.

Also, note the logarithmic scale of both axes.

Five out of the eight programs (Animator, idea, k-means, Monte Carlo,

and Ray Tracer) achieve substantial speedups, ranging from 9.5× to 25.4×

for 32 tasks. The Rolez implementations of Mergesort and Quicksort achieve

slightly less substantial speedups of 3.3–5.1× for 32 tasks, but since the Java

implementations perform very similarly, this can be attributed to the limited

scalability that is inherent in these programs.

Only for the n-body program does the Java implementation achieve

substantially higher speedups for all numbers of tasks (about twice as high).

This is due to a limitation in the current Rolez prototype, which is related to

class slicing: As explained in Section 3.5, updating a body’s velocity requires

reading the positions of other bodies, which is possible by separately sharing

the “velocity” slices as readwrite and the “position” slices as readonly.

However, Rolez currently lacks a way to share a collection of object slices

without storing them in a new array, which is why the current Rolez

implementation of n-body exhibits some overhead.

Note that the Rolez k-means implementation behaves somewhat irregu-

larly on the machine we used for the evaluation. This is probably due to

e�ects caused by the numa (non-uniform memory access) architecture, as

we observed a more regular behavior on a di�erent, non-numa machine.
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Figure 5.8: Comparison of the parallel speedups achieved by the Rolez (blue)

and Java (gray) implementations, for di�erent numbers of tasks. All

speedups are relative to the single-threaded Java execution.
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5.3.3 Overhead

To better understand the runtime overhead that is caused by role transitions

and guarding, Figure 5.9 shows the relative execution time di�erences

between the Rolez and the Java implementations, for the same input sizes

and for various numbers of tasks. A positive percentage means that the

Rolez implementation took longer to execute than the Java version, while a

negative one means that the Rolez version took actually less time.

The numbers show that, for the majority of the programs, input sizes, and

numbers of tasks, the Rolez overhead is moderate and ranges from 0% to 30%.

For some con�gurations, the Rolez versions are even slightly faster: since

Rolez objects are larger, due to the �elds required for keeping track of the

roles, di�erences in memory allocation and caching may sometimes cancel

the Rolez overhead out. We can also see that, for most programs, the input

size and the number of tasks have only a small e�ect on the overhead, which

means that Rolez is not only suitable for large-scale parallel applications,

but can also be used to speed up smaller computations on personal devices

like laptops or smart phones.

As explained before, the Rolez k-means implementation behaves some-

what erratically, which leads to large di�erences in execution time, depend-

ing on the input size and numbers of tasks. Further, Figure 5.9 shows again

the issue with the n-body implementation, which exhibits an overhead of

80% to 124%. However, as discussed earlier, even k-means and n-body still

achieve substantial speedups compared to a sequential Java implementation,

for large numbers of tasks.

5.3.4 Impact of Optimizations

To understand the impact of the presented optimizations, we also compiled

and executed all programs with four di�erent levels of optimizations.

In addition to the two optimizations discussed in Section 5.2, we imple-

mented another optimization, called role analysis. This is an intra-procedural

data�ow analysis that conservatively approximates the current (dynamic)

role of every object in the program. If the analysis determines that the role

of an object is guaranteed to be at least readonly at some point in the

program, then the compiler will not emit any �eld read guards for this point;

similarly, if an object is guaranteed to be readwrite, no �eld write guards

are emitted. Role analysis is similar to concurrency analysis, in that they

both reduce redundant guarding. However, on the one hand, role analysis

is more �ne-grained, considering a program state on the level of individual

objects, while concurrency analysis considers a “thread-global” program

state. On the other hand, concurrency analysis is more precise, due to its

inter-procedural nature, while role analysis is strictly intra-procedural.

The four levels of optimizations are: 1) no optimizations enabled, 2) task

parameters enabled, 3) task parameters and role analysis enabled, and 4) task
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S M L S M L S M L S M L
animator idea kMeans mergesort

2 tasks 8% 3% 3% 1% -1% 0% -11% -1% 6% 33% 31% 31%
8 tasks 5% 21% 1% 4% -1% 1% 6% 21% 1% 32% 30% 33%
32 tasks 14% 8% 3% 0% 3% 2% 39% 21% -1% 29% 24% 30%
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2 tasks 3% 5% 4% 80% 82% 83% -9% -10% -10% 3% 4% 3%
8 tasks 5% 9% 1% 97% 96% 88% -3% -3% -2% 8% 4% 2%
32 tasks 4% 2% 1% 91% 111% 124% 5% -3% -3% 28% 17% 8%
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Figure 5.9: Execution time overhead of the Rolez implementations compared to the

Java implementations, for the same input sizes and numbers of tasks.

“S”, “M”, and “L” stand for the small, medium, and large sizes.
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S M L S M L S M L S M L
animator idea kMeans mergesort

(none) 38% 76% 62% 15% 42% 33% 65% 74% 89% 115% 232% 249%
TP 37% 62% 63% 11% 15% 16% 51% 61% 59% 43% 65% 68%
TP,RA 34% 44% 18% 6% -3% 11% 35% 33% 28% 33% 50% 51%
TP,RA,CA 14% 8% 2% 0% 3% 2% 42% 21% 6% 30% 24% 30%
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(none) 47% 33% 42% 104% 119% 126% 207% 303% 314% 84% 99% 94%
TP 26% 16% 20% 132% 213% 211% 76% 109% 118% 53% 32% 35%
TP,RA 10% 4% 7% 129% 169% 167% 39% 51% 48% 33% 24% 16%
TP,RA,CA 4% 1% 1% 85% 111% 123% 5% -3% -3% 27% 16% 8%
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Figure 5.10: Execution time overhead of Rolez compared to Java, with 32 tasks,

for three input sizes, and for three levels of optimization: 1) no opti-

mizations, 2) with task parameters (tp), 3) with task parameters and

role analysis (ra), and 4) with task parameters, role analysis, and

concurrency analysis (ca).
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parameters, role analysis, and concurrency analysis enabled. For the �rst

level, every guard retrieves the current task using a ThreadLocal variable.*
*

When disabling these

optimizations, the compiler

still generates task

parameters and unguarded

methods, but these are not

used during execution. As

explained earlier, we have

found that adding a method

parameter has no

signi�cant impact on

performance.

Figure 5.10 shows the execution time overhead of the Rolez programs

compared to the equivalent Java implementations, when run with 32 tasks

and for the three di�erent input sizes. For some programs, like idea and

Monte Carlo, the overhead is moderate (mostly below 20%), for all input

sizes and optimization levels. In these programs, there is relatively little

access to guarded objects, so few checks are required. For others, like

Mergesort and Quicksort, the overhead is more pronounced and can be

as high as 300% without optimizations. These programs perform little

computation per access to a guarded object (in this case the array to be

sorted), so the runtime checks comprise a larger share of execution time.

When comparing the di�erent levels of optimizations, the �gure shows

that the task parameter technique alone can already reduce the runtime

overhead substantially. For example, for Mergesort and Quicksort, the

overhead is reduced roughly by 3×.

Adding role analysis and concurrency analysis, the overhead is again

reduced substantially for some programs. For example, for the Ray Tracer

program, the overhead is reduced from 32–53% (with task parameters but

without the other optimizations) to 8–27%. This program is structured like

the example program in Figure 5.4: there is a single level of concurrent

tasks that execute almost all the work in parallel. Since none of these tasks

have child tasks, concurrency analysis is able to remove almost all guards.

idea is structured similarly.

All three techniques combined reduce the overhead of Rolez over Java

substantially, for almost all programs. For example, for Ray Tracer, the

overhead is decreased by a factor of about 3–12× and, for Quicksort, it is

reduced from over 200% to almost 0%.

5.3.5 Impact of Slice Coverage Checks

For all the results discussed above, the slice coverage checks were disabled.

These runtime checks ensure that an operation on an array slice accesses

only elements that are actually covered by this slice.* Even though these
*

Note that only array

slices require runtime

checks, while class slices

are checked statically and

incur no runtime overhead.

checks have little to do with the main concepts in Rolez (roles, transitions,

guarding) and would just as well make sense in a language like Java, they are

technically required for guaranteeing determinism. Thus, strictly speaking,

there is an additional overhead to pay for Rolez’s guarantee of determinism.

This overhead is shown in Figure 5.11. The �gure contains pairs of bars,

one pair for each combination of program and number of tasks. For each pair,

the gray bar represents the execution time of the Rolez program without
slice coverage checks, normalized to 100%, and the blue bar shows the

execution time of the Rolez program with checks, relative to the gray bar.

This �gure only includes results for the large input sizes, but the numbers

for the small and medium sizes are similar.
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Figure 5.11: Impact of the slice coverage checks on execution time. The blue bars

show the execution time when slice coverage checks are enabled, rela-

tive to the execution time of the same program and the same number

of tasks when the checks are disabled (the gray bars). The large input

size is shown.
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First, the �gure shows that the overhead of enabling slice coverage checks

depends heavily on the kind of program: it is almost negligible for the

Animator, Monte Carlo, n-body, and Ray Tracer programs, staying mostly

below 2%, but it is substantial for the Mergesort and Quicksort programs,

ranging from around 70% to over 100%. This di�erence is explained by the

immense number of accesses to sliced arrays performed by the two sort

programs. The idea program exhibits a modest overhead of around 25%,

while the k-means program again shows irregular behavior on the machine

used for the evaluation.

The results also imply that the overhead is largely independent of the

number of tasks. (The only signi�cant exception is the k-means program,

where the overhead is almost negligible for 2–16 tasks, but substantially

higher for 1 and 32 tasks.) This suggests that scalability is mostly una�ected

by these checks.

discussion Figure 5.11 might suggest that some array-heavy programs

are impossible to implement e�ciently with Rolez (while maintaining the

determinism guarantee), because of the high overhead in�icted by slice

coverage checks. However, there are two arguments against this conclusion.

First, our Rolez implementation includes no speci�c optimizations for

coverage checks, i.e., the code that the compiler produces includes a check

for each and every slice access. A static analysis in the Rolez compiler,

or even more so, a dynamic analysis in a customized jit compiler, could

conceivably reduce the number of checks performed at runtime.

More importantly, slice coverage checks can be turned on and o� in

di�erent situations. A practical approach would be to enable the checks

during testing and for debugging purposes, and to disable them in produc-

tion, in case this has a signi�cant impact on the overall performance of the

application. This is an attractive option, especially when combined with

existing testing techniques like measuring test coverage: The determinism

guarantee of Rolez, combined with a su�ciently high test coverage score,

would ensure that any illegal slice access is detected during testing. Then,

the checks can con�dently be disabled for production, because (unlike, for

example, guarding) they are not required for ensuring determinism, under

the assumption that all slices accesses are legal.

5.4 related work

code-managed runtime data Besides Rolez, there are many other

languages and systems implemented on top of vms that rely on a vm-

independent approach to do runtime checking for parallelism and concur-

rency. For example, there are several software transactional memory (stm)

implementations that rely on this approach. Hindman and Grossman (2006)

add an atomic block to Java using source-to-source translation and thus

keep the implementation of the atomic block “quite separate from other

concerns”. Their checks directly use the current Java thread, which is more
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e�cient to retrieve than a ThreadLocal value, so their implementation may

not bene�t from using dedicated method parameters.

By contrast, deuce (Korland et al., 2010) is a Java stm framework, imple-

mented using bytecode instrumentation, which uses the same technique

as described in Section 5.2.1 to pass a “transaction context” from method

to method. While the reason for using method parameters is not explicitly

stated, we assume that this is done for performance reasons. However, their

evaluation does not discuss the impact of this optimization; to the best of

our knowledge, we are the �rst to describe this idea as a general technique

for e�cient concurrency runtime checking, and to evaluate its performance

impact.

Another stm-based language implemented using bytecode transforma-

tion is presented by Bättig and Gross (2017). Although not mentioned in the

paper, their implementation also makes use of a transaction context that is

passed using method parameters. In this chapter, we demonstrated that this

technique can be used as a powerful optimization for non-transactional

parallel languages as well.

concurrency analysis The analysis presented in Section 5.2.2 is

an interprocedural data�ow analysis. Such analyses have been researched

for a long time, but are traditionally considered whole-program analy-

ses (Sharir and Pnueli, 1981). While there are approaches to make data�ow

analysis “modular”, e.g., by Rountev (2005) and Rountev et al. (2006), these

approaches consider much larger “modules”, e.g., whole libraries, whereas

the presented concurrency analysis is modular on the method level, thanks

to the integration with the code generator.

The idea of generating two copies of methods and switching between

them has been employed in other contexts before. For example, Pizlo et al.

(2008) present a compiler optimization that generates multiple versions

of the program code, each optimized for a speci�c garbage collection (gc)

phase. In contrast to the technique presented here, switching between

di�erent code versions is not based on a static analysis, but is determined

at runtime, based on gc progress. The idea is also used in an stm system

by Yoo et al. (2008), where two versions of a function are generated: one

with memory barriers that is used inside atomic blocks and an optimized

version for calls outside atomic blocks. While the technique is similar to

ours, the work presented here shows that the idea can be applied more

generally to perform optimization based on interprocedural analysis in a

modular fashion.

Another technique that is used to perform interprocedural optimization

is method inlining (Richardson and Ganapathi, 1989; Davidson and Holler,

1992), and is performed by many jit compilers. Inlining a method can result

in more optimization opportunities, as its body can be optimized in the

context of the caller code. However, the vm-independent approach for im-

plementing concurrency runtime checks poses challenges to this technique

of performing interprocedural optimizations using method inlining. The
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reason is that inlining is done by the jit compiler, whereas the concurrency

checking optimizations have to be applied on the source or bytecode level,

before inlining has been performed. A trick that is used by Bättig and Gross

(2017) is to compile and execute the program once without optimizations,

record the inlining decisions made by the jit compiler, and then compile

the program again, using this information to inline ahead of time.
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CONCLUS ION

6.1 summary

This dissertation introduced a new parallel programming model that is

deterministic-by-default, but substantially di�erent from previous, statically-

checked dpp models.

Chapter 2 introduced the Parallel Rolez model, including the core con-

cepts of roles, role transitions, and guarding. The novelty of this model

is that noninterference is not checked ahead of time, i.e., at compile time

or just before a parallel section is started, but instead is enforced during
the execution of the parallel section: in case two computations interfere,

one of them is automatically being paused just before the �rst interfering

operation is performed, and resumed as soon as the other computation

has �nished. This mechanism, which is realized by the combination of role

transitions and guarding, guarantees that any parallel execution produces

the same results as if the entire computation was executed sequentially.

This property was formally described (and is proven in Appendix A).

This dynamic dpp approach provides several advantages, including the

ability to parallelize two computations just as much as a given input allows.

More importantly, it addresses one of the main challenges of deterministic

parallelism: the handling of aliasing and object groups. To demonstrate

this, Chapter 3 presented the Rolez language, which introduces two key

concepts, joint role transitions and slicing, which simplify the handling of

object groups when compared with static dpp languages. In these languages,

the programmer needs to develop and express a static abstraction of the

heap structure such that the compiler understands the aliasing patterns

in the program well enough to prove noninterference. With joint role

transitions and slicing, such an abstraction is not needed; instead, the

runtime system uses the actual heap structure to enforce noninterference.

Joint role transitions cause objects that are reachable from a task argument

to automatically perform the same role transitions as the argument itself,

serving as a sensible default behavior. Slicing can then be used to re�ne the

set of objects that are shared alongside a task argument; for example, only

part of an array may be shared with a given task, while other parts of the

same array are shared with di�erent task.

77
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Despite its dynamic nature, Rolez provides roughly the same safety

guarantees as static dpp languages. This is due to Rolez’s type system, which

checks for mistakes in the role declarations that the programmer provides,

as presented in Chapter 4. This type system is much more lightweight than,

e.g., dpj’s e�ect system and imposes no aliasing restrictions whatsoever.

Yet, it prevents programmer mistakes that would otherwise lead to runtime

errors and, in addition, it enables more e�cient execution, as fewer checks

need to be performed at runtime.

Chapter 5 further addressed the performance aspect by presenting an

e�cient prototype of the Rolez compiler and runtime system. In particular,

the chapter described two optimizations that greatly reduce the runtime

overhead otherwise caused by performing role transitions and guarding.

The prototype is implemented on top of the Java platform and yields high

performance for many Rolez programs. When compared with equivalent

Java implementations without runtime checking, most of the studied Rolez

programs are no more than 30% slower, which means most of them achieve

substantial parallel speedups relative to a sequential execution.

In summary, the dissertation has demonstrated that deterministic parallel

programming can indeed be realized without the drawbacks that many

existing dpp models carry, by stepping outside the framework of pure

compile-time checking and moving to a dynamic or mixed static–dynamic

approach.

6.2 implications

When moving from a purely static to a dynamic or mixed static–dynamic

dpp approach, a simplicity–performance trade-o� arises.

On the one hand, performing checks at runtime implies that there is a

cost in terms of performance. Indeed, our evaluation shows that there are

programs for which the overhead caused by these checks is signi�cant, and

may be intolerable for some applications.

On the other hand, we argue that the Parallel Roles model, or the dynamic

dpp approach in general, provides a much simpler and especially beginner-

friendly way to do parallel programming when compared with statically-

checkeddpp languages. Dynamicdpp frees the programmer from the burden

of expressing aliasing and grouping patterns explicitly, and instead allows a

programmer to take a sequential program and convert it to a deterministic

parallel program simply by adding role declarations and constructs for

parallel execution (e.g., by converting a method to a task). Of course, such

a simple transformation may not result in any substantial performance

improvement; often, more transformations may be required, for example,

partitioning of data or restructuring of the computation. But the model

allows the programmer to iteratively transition a program from a completely

sequential implementation to an increasingly parallel version, without

worrying about determinism and without understanding any complex new

language constructs.
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Note that his simplicity–performance trade-o� may not necessarily con-

cern raw performance in terms of total execution time. Considering that

the Rolez implementation we evaluated is a merely research prototype, and

that it employs only static optimizations (as opposed to jit optimizations),

future e�orts may reduce the execution time overhead to insigni�cant levels

for many applications. Then, other performance aspects may become more

critical: the variation and the predictability of execution time. Because the

precise functioning and performance impact of the runtime checks may

depend on implementation details, the environment, and the scheduling

of tasks, they are beyond the direct control of the programmer. Therefore,

performance variation and predictability may be more severe than those of

static dpp approaches, which would make the dynamic approach unsuitable

for some applications (e.g., in embedded, real-time, or high-performance

settings).

When comparing Rolez’s dynamic dpp approach with nondeterministic

mainstream languages, a di�erent trade-o� emerges. The simplicity of

Rolez is comparable to that of mainstream languages like Java; besides

role declarations, there are only few language constructs and concepts that

di�erentiate the two. However, on the one hand, a deterministic language

like Rolez provides substantially more safety: if a Rolez program compiles,

the programmer can be sure that it contains no concurrency bugs and

that its execution will be deterministic. On the other hand, there is again

the performance overhead of the runtime checks that the dynamic dpp

approach involves. Thus, we have a safety–performance trade-o�.

This safety–performance trade-o� is known from other, tried-and-tested

techniques that involve some form of runtime checking, including automatic

memory management like garbage collection or array bounds checking.

Again, the trade-o� may concern performance variation and predictability

rather than total execution time, as is often the case for garbage collection.

While the cost of such techniques may be intolerable for some scenarios,

many organizations or individuals are willing to pay this cost in exchange

for safety, which in turn implies maintainability and increased programmer

productivity. As a result, languages that perform some of these runtime

checking techniques, like Java, C#, Python, Javascript, etc., have largely

superseded unchecked languages like C and C++ for many applications,

and they have become the �rst choice for the majority of today’s soft-

ware projects. Given than the dynamic approach presented here brings

the simplicity of dpp languages much closer to mainstream languages, the

results in this dissertation suggest that a similar shift in the �eld of parallel

programming languages may be possible.
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DETERM IN I SM PROOF

a.1 outline

To formalize the determinism property, we use the concept of noninterfer-
ence, which states that concurrently executing tasks may not access the

same object, unless both accesses are only read operations. In Parallel Roles,

noninterference more speci�cally means that whenever a parent task starts

a child task, all read or write operations in the child happen before any

subsequent interfering operation in the parent.

Noninterference implies that all read and write e�ects in a program

logically take place as if the program were executed sequentially, i.e., as

if every task start operation were replaced by the sequence of operations

executed in that started task. Therefore, parallel execution of any program

is deterministic, given that the sequential execution of that program is

deterministic.

The proof is organized as follows. After de�ning legal program states

(Section A.2), we �rst prove soundness of role declarations, which roughly

states that the (current) role of an object in a task is never more permissive

than its declared role (as de�ned by the Rrw
and Rro

sets) in that task and

all ancestor tasks (Section A.3). Then, we show that the role transitions at

the start of a new child task guarantee that the roles of the objects that are

shared between the child and the parent always “give priority to the child”.

More precisely, as long as the roles of an object permit the child task to

read from (or write to) the object, they do not permit the parent to write to

(or read from) that object (Section A.4). This child task priority property is

�nally used to show noninterference (Section A.5).

a.2 legal program states

For the whole determinism proof, we only consider legal program states.
These are all states that a program in this model can possibly be in, except

the special Serror state, which corresponds to errors that result from pro-

grammer mistakes. (Chapter 4 discusses how these errors are handled in

Rolez.) We de�ne legal program states using the transitive state transition

83



84 determinism proof

relation, which is in turn based on the state transition relation in Figure 2.5

and 2.6.

De�nition A.2.1 (−→∗). The relation −→∗ describes all program states

that can be reached from a given one. It is the transitive closure of the state

transition relation −→:

S −→∗ S′′ , S = S′′ ∨ ∃ S′ : S −→∗ S′ ∧ S′ −→ S′′.

We write −→∗(S) to denote the set of all states that are reachable from S .

De�nition A.2.2 (Legal Program States). A program state S is legal if and

only if it can be reached from the initial state S0 and is not the error state:

legal(S) , S0 −→∗ S ∧ S , Serror.

We write “∀ legal(S) : ...” as a shorthand for “∀S : legal(S) → ...” in

the rest of this chapter. Note that the short arrow→ stands for the logical

implication and is not to be confused with the state transition relation −→.

Further, we write
legal

−−→∗(S) for −→∗(S) ∩ {Si | legal(Si)}.

a.3 soundness of role declarations

We begin the proof by showing soundness of role declarations. For this, we

need a few more helper functions, which should be self-explanatory:

refs(H ) , {r | (r 7→ _) ∈ H },

ids(Ts) , {t | 〈t, _, _, _, _〉 ∈ Ts},
�nishedTs(t) , taskTs(t) = 〈_, _, _, _, •〉.

Then, we also need to prove a preliminary lemma:

Lemma A.3.1. Whenever an object is declared as readonly in a task t
(which has not �nished), then this object plays the readonly role in at least
one other task, which is an ancestor of t :

∀ legal(〈H , Ts〉) : ∀〈t, _,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨

∀r ∈ Rro− Rrw

: ∃ti ∈ ancestsTs(t) : mayReadH (ti, r ).

Proof. Shown using induction over all legal program states S = 〈H , Ts〉.
In the base case, where S = S0, the set of references refs(H0) is empty, so

the property trivially holds. For the inductive step, there is a predecessor

state Sp = 〈Hp, Tsp〉, such that Sp −→ S . We assume the property holds for

Sp:

∀〈t, _,Rrw,Rro, _〉 ∈ Tsp : �nishedTsp(t) ∨

∀r ∈ Rro− Rrw

: ∃ti ∈ ancestsTsp(t) : mayReadHp

(ti, r ). (1)

Then, we show that the property also holds for S , for each of the �ve cases

for the state transition Sp −→ S , which correspond to the �ve operations in
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Figures 2.5 and 2.6. Note that some operations have multiple possible out-

comes. However, we only really need to consider the “successful” outcomes.

In the other outcomes, either S = Sp, where the property holds trivially for

S , or S = Serror, where ¬legal(S).

Sp
t create r
−−−−−−→ S : According to the de�nition of the create operation in Fig-

ure 2.5, the new heap H equals Hp ∪ {r 7→ {t :: rw}}. This means that the

roles of all existing objects remain unchanged. Thus, from (1) follows (note

the change from Hp to H ):

∀〈t, _,Rrw,Rro, _〉 ∈ Tsp : �nishedTsp(t) ∨

∀ri ∈ R
ro− Rrw

: ∃ti ∈ ancestsTsp(t) : mayReadH (ti, ri).

Further, all child–parent relationships remain the same, and no task starts

or �nishes during the state transition. In addition, all the Rro
sets are un-

changed, while the Rrw
sets are unchanged or even grow. Therefore, it

follows (note the change from Tsp to Ts):

∀〈t, _,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨

∀ri ∈ R
ro− Rrw

: ∃ti ∈ ancestsTs(t) : mayReadH (ti, ri).

Sp
_ read _

−−−−−→ S : There are no changes in any roles or in any Rrw
or Rro

set.

Therefore, since the property holds for Sp, it holds for S as well.

Sp
_ write _

−−−−−−→ S : Again, no changes in any roles or in any Rrw
or Rro

set.

Sp
t start tch(R

rw

ch
,Rro

ch
)

−−−−−−−−−−−−−−→ S : All tasks that are not t or tch are not a�ected by any

role transition or any change in Rrw
or Rro

sets, so from (1) follows:

∀〈ti, _,R
rw,Rro, _〉 ∈ Ts − {taskTs(ti) | ti = t ∨ ti = tch} :

�nishedTs(ti) ∨

∀r ∈ Rro− Rrw

: ∃tj ∈ ancestsTs(ti) : mayReadH (tj, r ).

The Rrw
and Rro

sets of t are also una�ected by the state transition. In

addition, if t has any ancestor task tj , then the roles in tj are una�ected as

well. Therefore, it further follows:

∀〈ti, _,R
rw,Rro, _〉 ∈ Ts − taskTs(tch) : �nishedTs(ti) ∨

∀r ∈ Rro− Rrw

: ∃tj ∈ ancestsTs(ti) : mayReadH (tj, r ).

Finally, the role transitions in Figure 2.6 de�ne that all objects in Rro

ch
− Rrw

ch

play the readonly role in t after the transition. Because t is an ancestor of

tch, the term ∀r ∈ Rro

ch
− Rrw

ch
: ∃tj ∈ ancestsTs(tch) : mayReadH (tj, r ). is true.

It �nally follows:

∀〈ti, _,R
rw,Rro, _〉 ∈ Ts : �nishedTs(ti) ∨

∀r ∈ Rro− Rrw

: ∃tj ∈ ancestsTs(ti) : mayReadH (tj, r ).
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Sp
t �nish

−−−−−→ S : All tasks that are not t or the parent of t are not a�ected by

any role transition or any change in Rrw
or Rro

sets, so from (1) follows:

∀〈ti, _,R
rw,Rro, _〉 ∈ Ts − {taskTs(ti) | ti = t ∨ ti = parentTs(t)} :

�nishedTs(ti) ∨

∀r ∈ Rro− Rrw

: ∃tj ∈ ancestsTs(ti) : mayReadH (tj, r ).

Since t �nishes during the state transition, the property trivially holds for

t . Thus:

∀〈ti, _,R
rw,Rro, _〉 ∈ Ts − {taskTs(parentTs(t))} : �nishedTs(ti) ∨

∀r ∈ Rro− Rrw

: ∃tj ∈ ancestsTs(ti) : mayReadH (tj, r ).

Finally, the Rrw
and Rro

sets of t ’s parent are not a�ected by the transition,

and neither are the roles for any of t ’s parent’s ancestors. It follows:

∀〈ti, _,R
rw,Rro, _〉 ∈ Ts : �nishedTs(ti) ∨

∀r ∈ Rro− Rrw

: ∃tj ∈ ancestsTs(ti) : mayReadH (tj, r ).

Now, we can prove soundness of role declarations, which roughly states

that the (current) role of an object in a task is never more permissive than

its declared role in that task and all ancestor tasks.

Theorem A.3.2 (Soundness of Role Declarations). An object can only
be read in a task t if it is in t ’s Rrw or Rro set, and it can only be written in t
if it is in t ’s Rrw set. In addition, the Rrw set of a task t is always a subset of
t ’s parent’s Rrw set, and the Rro set of t is always a subset of the union of t ’s
parent’s Rrw and Rro sets:

∀ legal(〈H , Ts〉) : ∀〈t, τ ,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨(
∀r ∈ refs(H ) :

(
mayReadH (t, r ) → r ∈ Rrw∪ Rro

)
∧(

mayWriteH (t, r ) → r ∈ Rrw
) )
∧(

τ = • ∨ Rrw ⊆ Rrw

τ ∧ R
ro ⊆ Rrw

τ ∪ R
ro

τ

)
,

where
taskTs(τ ) = 〈τ , _,Rrw

τ ,R
ro

τ , _〉.

In the following, we call the part on the second and third line the “�rst

part” and the rest the “second part”.

Proof. Again shown using induction over all legal program states S =
〈H , Ts〉. In the base case, where S = S0, the set of references refs(H0) is

empty, so the �rst part of the property trivially holds. Since the only task

in the program has no parent, i.e., τ = •, the second part also holds.
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For the inductive step, there is a predecessor state Sp = 〈Hp, Tsp〉, such

that Sp −→ S . We assume the property holds for Sp:

∀〈t, τ ,Rrw,Rro, _〉 ∈ Tsp : �nishedTsp(t) ∨(
∀r ∈ refs(Hp) :

(
mayReadHp

(t, r ) → r ∈ Rrw∪ Rro
)
∧(

mayWriteHp

(t, r ) → r ∈ Rrw
) )
∧(

τ = • ∨ Rrw ⊆ Rrw

τ ∧ R
ro ⊆ Rrw

τ ∪ R
ro

τ

)
. (1)

Note that we leave away the “where” clause, always just writing Rrw

τ and

Rro

τ for τ ’s Rrw
and Rro

sets.

Then, we show that the property also holds for S , for each of the �ve cases

for the state transition Sp −→ S , which correspond to the �ve operations

in Figures 2.5 and 2.6. Like in the previous proof, some operations have

multiple possible outcomes, of which we only consider the “successful”

ones.

Sp
t create r
−−−−−−→ S : First, the state transition leaves the roles of all existing ob-

jects, i.e., all objects referred to by refs(Hp) = refs(H ) − {r }, unchanged.

Also, the Rrw
and Rro

of all tasks remain unchanged with respect to the

existing objects. Therefore, from (1) follows:

∀〈t, _,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨ (2)

∀ri ∈ refs(H ) − {r } :
(
mayReadH (t, ri) → ri ∈ R

rw∪ Rro
)
∧(

mayWriteH (t, ri) → ri ∈ R
rw

)
.

The newly created object with reference r plays the readwrite role in

t and the pure role in all other tasks. Since r is added to t ’s Rrw
set, the

following also holds:

∀〈t, _,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨(
mayReadH (t, r ) → r ∈ Rrw∪ Rro

)
∧

(
mayWriteH (t, r ) → r ∈ Rrw

)
.

Together with (2), we have:

∀〈t, _,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨ (3)

∀ri ∈ refs(H ) :
(
mayReadH (t, ri) → ri ∈ R

rw∪ Rro
)
∧(

mayWriteH (t, ri) → ri ∈ R
rw

)
.

The new reference r in not only added to t ’s Rrw
set, but to all of t ancestor’s

Rrw
sets as well. Thus, the second part of the property also holds after the

transition:

∀〈t, τ ,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨(
τ = • ∨ Rrw ⊆ Rrw

τ ∧ R
ro ⊆ Rrw

τ ∪ R
ro

τ

)
.
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Combined with (3), we �nally have:

∀〈t, τ ,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨(
∀r ∈ refs(H ) :

(
mayReadH (t, r ) → r ∈ Rrw∪ Rro

)
∧(

mayWriteH (t, r ) → r ∈ Rrw
) )
∧(

τ = • ∨ Rrw ⊆ Rrw

τ ∧ R
ro ⊆ Rrw

τ ∪ R
ro

τ

)
.

Sp
_ read _

−−−−−→ S : There are no changes in any roles or in any Rrw
or Rro

set.

Therefore, since the property holds for Sp, it holds for S as well.

Sp
_ write _

−−−−−−→ S : Again, no changes in any roles or in any Rrw
or Rro

set.

Sp
t start tch(R

rw

ch
,Rro

ch
)

−−−−−−−−−−−−−−→ S : During a start transition, all object’s roles and all

Rrw
and Rro

sets for all tasks ti < {t, tch} remain the same. Thus, from (1)

follows:

∀〈ti, _,R
rw

i ,R
ro

i , _〉 ∈ Ts − {taskTs(t), taskTs(tch)} : �nishedTs(ti) ∨

∀r ∈ refs(H ) :
(
mayReadH (ti, r ) → r ∈ Rrw

i ∪ R
ro

i

)
∧(

mayWriteH (ti, r ) → r ∈ Rrw

i

)
. (4)

In the original task, all object play either the same or a less permissive role

after the transition than before, so from (1) also follows:

∀r ∈ refs(H ) :
(
mayReadH (t, r ) → r ∈ Rrw∪ Rro

)
∧(

mayWriteH (t, r ) → r ∈ Rrw
)
, (5)

where taskTs(t) = 〈t, _,R
rw,Rro, _〉. In tch, all objects that play the read-

write role are in Rrw

ch
and all objects that play the readonly role are in

Rro

ch
. All other objects implicitly play the pure role, because there cannot be

any role mapping (tch :: _) already present in an object, because “tch” is a

fresh task id that has never been used before. Therefore, it follows, again

from (1):

∀r ∈ refs(H ) :
(
mayReadH (tch, r ) → r ∈ Rrw

ch
∪ Rro

ch

)
∧(

mayWriteH (tch, r ) → r ∈ Rrw

ch

)
. (6)

(4), (5), and (6) together imply:

∀〈ti, _,R
rw

i ,R
ro

i , _〉 ∈ Ts : �nishedTs(ti) ∨

∀r ∈ refs(H ) :
(
mayReadH (ti, r ) → r ∈ Rrw

i ∪ R
ro

i

)
∧(

mayWriteH (ti, r ) → r ∈ Rrw

i

)
. (7)

According to the the de�nition of the start transition, only those objects

that t may read (in the program state Sp) may be in the Rro

ch
set and only
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those that t may write may be in the Rrw

ch
set. Otherwise, the start operation

would not be successful. Combined with the �rst part of (1), it follows:

Rrw

ch
⊆ Rrw∧ Rro

ch
⊆ Rrw∪ Rro, (8)

where taskTs(t) = 〈t, _,R
rw,Rro, _〉. Because all existing task’s Rrw

and Rro

sets are unchanged, it further follows from (1):

∀〈t, τ ,Rrw,Rro, _〉 ∈ Ts − {taskTs(tch)} : �nishedTs(t) ∨(
τ = • ∨ Rrw ⊆ Rrw

τ ∧ R
ro ⊆ Rrw

τ ∪ R
ro

τ

)
.

And together with (8):

∀〈t, τ ,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨(
τ = • ∨ Rrw ⊆ Rrw

τ ∧ R
ro ⊆ Rrw

τ ∪ R
ro

τ

)
.

Finally, together with (7):

∀〈t, τ ,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨(
∀r ∈ refs(H ) :

(
mayReadH (t, r ) → r ∈ Rrw∪ Rro

)
∧(

mayWriteH (t, r ) → r ∈ Rrw
) )
∧(

τ = • ∨ Rrw ⊆ Rrw

τ ∧ R
ro ⊆ Rrw

τ ∪ R
ro

τ

)
.

Sp
t �nish

−−−−−→ S : When task t �nishes, all object’s roles and all Rrw
and Rro

sets

for all tasks ti < {t, τ }, where τ is the parent task of t , remain the same. It

follows from (1):

∀〈ti, _,R
rw

i ,R
ro

i , _〉 ∈ Ts − {taskTs(t), taskTs(τ )} : �nishedTs(ti) ∨

∀r ∈ refs(H ) :
(
mayReadH (ti, r ) → r ∈ Rrw

i ∪ R
ro

i

)
∧(

mayWriteH (ti, r ) → r ∈ Rrw

i

)
,

and since t is �nished after the transition:

∀〈ti, _,R
rw

i ,R
ro

i , _〉 ∈ Ts − {taskTs(τ )} : �nishedTs(ti) ∨

∀r ∈ refs(H ) :
(
mayReadH (ti, r ) → r ∈ Rrw

i ∪ R
ro

i

)
∧(

mayWriteH (ti, r ) → r ∈ Rrw

i

)
. (9)

In the parent task τ , all objects in t ’s Rrw
set become readwrite. However,

because of the second part of (1), we know thatRrw ⊆ Rrw

τ (where taskTs(t) =
〈t, τ ,Rrw,Rro, •〉). Hence, all objects in Rrw

are also in Rrw

τ :

∀r ∈ Rrw

:

(
mayReadH (τ , r ) → r ∈ Rrw

τ ∪ R
ro

τ

)
∧(

mayWriteH (τ , r ) → r ∈ Rrw

τ

)
. (10)

From the second part of (1) also follows Rro ⊆ Rrw

τ ∪ R
ro

τ , so every object in

Rro
must be in Rrw

τ or Rro

τ . According to the �nish transition de�nition, these
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objects either play the readwrite or the readonly role in τ afterwards.

For those not in Rro

τ − R
rw

τ , i.e., those in Rrw

τ , the following trivially holds:

∀r ∈ Rro− (Rro

τ − R
rw

τ ) : (11)(
mayReadH (τ , r ) → r ∈ Rrw

τ ∪ R
ro

τ

)
∧

(
mayWriteH (τ , r ) → r ∈ Rrw

τ

)
.

On the other hand, objects that are in Rro
and also in Rro

τ − R
rw

τ can only

play the readonly role in τ afterwards. This follows from Lemma A.3.1: For

all references r in Rro

τ − R
rw

τ , there must be an ancestor of τ that may read

from r . (Task τ cannot have �nished before t has �nished, which follows

from the precondition of the successful case of the �nish transition, but

applied to τ instead of t .) Since there does exist another task ti < {t, τ } that

may read from r , the role of the object that r refers to becomes readonly

in τ . Therefore, the following holds as well:

∀r ∈ Rro∩ (Rro

τ − R
rw

τ ) : (12)(
mayReadH (τ , r ) → r ∈ Rrw

τ ∪ R
ro

τ

)
∧

(
mayWriteH (τ , r ) → r ∈ Rrw

τ

)
.

Finally, for all r not in Rrw
or Rro

, the roles in τ remain the same. Hence,

(1) implies:

∀r ∈ refs(H ) − (Rrw∪ Rro) : (13)(
mayReadH (τ , r ) → r ∈ Rrw

τ ∪ R
ro

τ

)
∧

(
mayWriteH (τ , r ) → r ∈ Rrw

τ

)
.

Combining (10)–(13), we can infer:

∀r ∈ refs(H ) :
(
mayReadH (τ , r ) → r ∈ Rrw

τ ∪ R
ro

τ

)
∧(

mayWriteH (τ , r ) → r ∈ Rrw

τ

)
,

and, together with (9):

∀〈ti, _,R
rw

i ,R
ro

i , _〉 ∈ Ts : �nishedTs(ti) ∨

∀r ∈ refs(H ) :
(
mayReadH (ti, r ) → r ∈ Rrw

i ∪ R
ro

i

)
∧(

mayWriteH (ti, r ) → r ∈ Rrw

i

)
.

The second part of the property holds trivially, because the Rrw
and Rro

sets

of all tasks stay the same. Therefore, we �nally arrive at:

∀〈t, τ ,Rrw,Rro, _〉 ∈ Ts : �nishedTs(t) ∨(
∀r ∈ refs(H ) :

(
mayReadH (t, r ) → r ∈ Rrw∪ Rro

)
∧(

mayWriteH (t, r ) → r ∈ Rrw
) )
∧(

τ = • ∨ Rrw ⊆ Rrw

τ ∧ R
ro ⊆ Rrw

τ ∪ R
ro

τ

)
.
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a.4 child task priority

The �nal stepping stone for the determinism proof is child task priority,

which formalizes the following property: From the moment a task τ starts

a child task t , τ may not write to any object O as long as t may read still

from or write to O , and τ may not read from any object O as long as t may

still write to O . We de�ne this property formally using the inverse:

Theorem A.4.1 (Child Task Priority). For two tasks, t and t ’s parent τ ,
and for all objectsO on the current heap (and accordingly, for all corresponding
references r ), the following always holds: If O’s roles permit τ to write to O ,
thenO ’s roles never permit t to read from or write toO again, and ifO ’s roles
permit τ to read from O , then O’s roles never permit t to write to O again.
Formally:

∀ legal(〈H , Ts〉) : ∀t ∈ ids(Ts) : ∀r ∈ refs(H ) :(
mayWriteH (τ , r ) → mayNeverRead〈H ,Ts〉(t, r )

)
∧(

mayReadH (τ , r ) → mayNeverWrite〈H ,Ts〉(t, r )
)
,

where
mayNeverReadS (t, r ) , ∀〈H

′, Ts′〉 ∈ legal

−−→∗(S) :

�nishedTs′(t) ∨ ¬mayReadH ′(t, r ),

mayNeverWriteS (t, r ) , ∀〈H
′, Ts′〉 ∈ legal

−−→∗(S) :

�nishedTs′(t) ∨ ¬mayWriteH ′(t, r ),

τ , parentTs(t).

This theorem really expresses the same property as described above:

For example, if τ may not read from an object as long as t may write to it,

then that means that once τ may indeed read from it, then t may not write

to it anymore. Note that ¬mayReadH ′(t, r ) implies ¬mayWriteH ′(t, r ), like

mayWriteH (t, r ) implies mayReadH (t, r ). Also note that from now on, we

simply write τi for parentTs(ti), when Ts is clear from the context.

Proof. We prove child task priority using induction over legal program

states S = 〈H , Ts〉. The base case, where 〈H , Ts〉 = S0, is trivial, since H
is empty. For the inductive step, if 〈H , Ts〉 is legal (and , S0), then there

exists a legal Sp = 〈Hp, Tsp〉, such that Sp −→ S . We assume that child task

priority holds for Sp:

∀ti ∈ ids(Tsp) : ∀ri ∈ refs(Hp) :(
mayWriteHp

(τi, ri) → mayNeverReadSp
(ti, ri)

)
∧(

mayReadHp

(τi, ri) → mayNeverWriteSp
(ti, ri)

)
. (1)

Then, there are �ve cases for the transition Sp −→ S , corresponding to

the �ve possible operations (for which we again assume that they are

successful):
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object creation: S p
t create r
−−−−−−−→ S Following the de�nition of

t create r
−−−−−−→,

ids(Ts) = ids(Tsp). Also, because the state transition does not change the

roles of any previously existing object or causes a task to �nish, (1) implies:

∀ti ∈ ids(Ts) : ∀ri ∈ refs(Hp) :(
mayWriteH (τi, ri) → mayNeverReadSp

(ti, ri)
)
∧(

mayReadH (τi, ri) → mayNeverWriteSp
(ti, ri)

)
. (2)

Further, because
legal

−−→∗(S) ⊂ legal

−−→∗(Sp), everything that holds for states in

legal

−−→∗(Sp) also holds for states in
legal

−−→∗(S). Thus, since mayNeverReadSp
(ti, ri)

is de�ned as ∀〈H ′
p
, Ts′

p
〉 ∈

legal

−−→∗(Sp) : �nishedTs′
p

(ti)∨¬mayReadH ′
p

(ti, ri), we

can see that mayNeverReadSp
(ti, ri) implies mayNeverReadS (ti, ri), for all

ti and ri . Similarly, mayNeverWriteSp
(ti, ri) implies mayNeverWriteS (ti, ri).

Together with (2), this implies:

∀ti ∈ ids(Ts) : ∀ri ∈ refs(Hp) :(
mayWriteH (τi, ri) → mayNeverReadS (ti, ri)

)
∧(

mayReadH (τi, ri) → mayNeverWriteS (ti, ri)
)
. (3)

Because the newly created object, which corresponds to the reference r ,

implicitly plays the pure role for all tasks except t , the terms mayReadH (τi, r )
and mayWriteH (τi, r ) are both false for all ti that are not children of t . The

implication is therefore true:

∀ti ∈ ids(Ts) − {ti | parentTs(ti) = t} :(
mayWriteH (τi, r ) → mayNeverReadS (ti, r )

)
∧(

mayReadH (τi, r ) → mayNeverWriteS (ti, r )
)
. (4)

On the other hand, for ti that are children of t , the terms mayReadH (τi, r ) and

mayWriteH (τi, r ) are true. Therefore, we show that mayNeverReadS (ti, r )
and mayNeverWriteS (ti, r ) are also true. Since mayNeverReadS (ti, r ) ac-

tually implies mayNeverWriteS (ti, r ), we only need to prove the former.

Theorem A.3.2 states mayReadH (t, r ) → r ∈ Rrw ∪ Rro
, for all t and

r in a legal program state 〈H , Ts〉. Therefore, the inverse holds as well:

r < Rrw∪ Rro→ ¬mayReadH (t, r ). As mayNeverReadS (ti, r ) is de�ned as

∀〈H ′, Ts′〉 ∈ legal

−−→∗(S) : �nishedTs′(ti) ∨ ¬mayReadH ′(ti, r ), we can instead

prove the following:

∀〈H ′, Ts′〉 ∈ legal

−−→∗(S) :

∀〈ti, t,R
rw,Rro, _〉 ∈ {taskTs′(ti) | parentTs(ti) = t} :

�nishedTs′(ti) ∨ r < R
rw∪ Rro. (5)

We show this again using induction. In the base case S′ = S , this property

holds, as the new object is added only to the Rrw
sets of t and t ’s ancestors,

but not to t ’s children. For the inductive step, where S′ , S , there exists a
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predecessor state S′
p
= 〈H ′

p
, Ts′

p
〉 ∈

legal

−−→∗(S), such that S′
p
−→ S′. We assume

that the property holds for 〈H ′
p
, Ts′

p
〉:

∀〈ti, t,R
rw,Rro, _〉 ∈ {taskTs′

p

(ti) | parentTs(ti) = t} :

�nishedTs′
p

(ti) ∨ r < R
rw∪ Rro.

Then, we have again �ve cases, which correspond to the �ve operations:

S′
p

_ create r ′

−−−−−−−→ S′: Since the property holds for S′
p
, and because the create

operation only changes the Rrw
sets with respect to the new reference

r ′, but not with respect to r (and does not change the Rro
sets at all), the

property holds for S′ as well.

S′
p

_ read _

−−−−−→ S′: There are no changes in any Rrw
or Rro

sets, so the property

still holds.

S′
p

_ write _

−−−−−−→ S′: Again, no changes in any Rrw
or Rro

sets.

S′
p

t ′ start t ′
ch
(Rrw,Rro)

−−−−−−−−−−−−−−→ S′: The start operation only “changes” the Rrw
and Rro

sets of the new task, but not of any existing task in {ti | parentTs(ti) = t}.
Note that we only have to consider tasks that are children of t when r is

created, i.e., for the program state S , but not child tasks of t that are started

later, i.e., in state S′. Hence, because the property holds for Sp, it holds

trivially for S′
p
.

S′
p

t ′ �nish

−−−−−→ S′: There are again no changes in any Rrw
or Rro

sets, so the

property still holds.

Having shown (5), it follows (as discussed above):

∀ti ∈ {ti | parentTs(ti) = t} :(
mayWriteH (τi, r ) → mayNeverReadS (ti, r )

)
∧(

mayReadH (τi, r ) → mayNeverWriteS (ti, r )
)

and, together with (4):

∀ti ∈ ids(Ts) :
(
mayWriteH (τi, r ) → mayNeverReadS (ti, r )

)
∧(

mayReadH (τi, r ) → mayNeverWriteS (ti, r )
)
. (6)

Finally, because H ′ = H ′
p
∪ {r }, it follows from (3) and (6):

∀ti ∈ ids(Ts) : ∀ri ∈ refs(H ) :(
mayWriteH (τi, ri) → mayNeverReadS (ti, ri)

)
∧(

mayReadH (τi, ri) → mayNeverWriteS (ti, ri)
)
.
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read operation: S p
t read r
−−−−−−→ S Because child task priority holds for

Sp, and because ids(S) = ids(Sp) and H = Hp, child task priority holds for S
too.

write operation: S p
t write r
−−−−−−→ S Like above, ids(S) = ids(Sp) and

H = Hp, therefore, because child task priority holds for Sp, it holds for S .

task start: S p
t start t ch (R

rw

ch
,R ro

ch
)

−−−−−−−−−−−−→ S According to the de�nition of the

start operation, refs(H ) = refs(Hp) and ids(Ts) = ids(Tsp) ∪ {tch}. Also,

because the state transition does not change the roles of any object for any

task ti’s parent τi , except for tch’s parent t , the following follows from (1):

∀ti ∈ ids(Ts) − {tch} : ∀r ∈ refs(H ) :(
mayWriteH (τi, r ) → mayNeverReadSp

(ti, r )
)
∧(

mayReadH (τi, r ) → mayNeverWriteSp
(ti, r )

)
. (7)

Further, as explained in the object creation case, everything that holds for

states in
legal

−−→∗(Sp) also holds for states in
legal

−−→∗(S). Thus, mayNeverReadSp
(ti, r )

implies mayNeverReadS (ti, r ), for all ti and r , and mayNeverWriteSp
(ti, r )

implies mayNeverWriteS (ti, r ). Together with (7), it follows:

∀ti ∈ ids(Ts) − {tch} : ∀r ∈ refs(H ) :(
mayWriteH (τi, r ) → mayNeverReadS (ti, r )

)
∧(

mayReadH (τi, r ) → mayNeverWriteS (ti, r )
)
. (8)

To show that child task priority also holds for tch, we need to separately

consider the objects that are referred to by the Rrw

ch
set, by the Rro

ch
set (but

not by Rrw

ch
), and by none of them.

For r ∈ Rrw

ch
, both mayReadH (t, r ) and mayWriteH (t, r ) are false; therefore,

the following is trivially true:

∀r ∈ Rrw

ch
:

(
mayWriteH (t, r ) → mayNeverReadS (tch, r )

)
∧(

mayReadH (t, r ) → mayNeverWriteS (tch, r )
)
. (9)

For r ∈ Rro

ch
− Rrw

ch
, mayWriteH (t, r ) is false, but mayReadH (t, r ) is true.

Therefore, we show that mayNeverWriteS (tch, r ) is also true. Theorem A.3.2

states mayWriteH (t, r ) → r ∈ Rrw
, for all t and r in a legal program state

〈H , Ts〉. Therefore, the inverse holds as well: r < Rrw→ ¬mayWriteH (t, r ).
As mayNeverWriteS (tch, r ) is de�ned as∀〈H ′, Ts′〉 ∈ legal

−−→∗(S) : �nishedTs′(tch)∨

¬mayWriteH ′(tch, r ), we can instead prove the following:

∀〈H ′, Ts′〉 ∈ legal

−−→∗(S) : ∀r ∈ Rro

ch
− Rrw

ch
: �nishedTs′(tch) ∨ r < R

rw

ch

′,

where taskTs′(tch) = 〈tch, t,R
rw

ch

′, _, _〉. (10)

We show this again using induction. In the base case S′ = S , this property

holds, because Rrw

ch

′ = Rrw

ch
. For the inductive step, where S′ , S , there
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exists a predecessor state S′
p
= 〈H ′

p
, Ts′

p
〉 ∈

legal

−−→∗(S), such that S′
p
−→ S′. We

assume that the property holds for 〈H ′
p
, Ts′

p
〉:

∀r ∈ Rro

ch
− Rrw

ch
: �nishedTs′

p

(tch) ∨ r < R
rw

ch

′,

where taskTs′
p

(tch) = 〈tch, t,R
rw

ch

′, _, _〉.

Then, we have again �ve cases, which correspond to the �ve operations:

S′
p

_ create r ′

−−−−−−−→ S′: Since the property holds for S′
p
, and because the create

operation only changes the Rrw
sets with respect to the new reference r ′,

but not with respect to any existing r ∈ Rro

ch
−Rrw

ch
, the property holds for S′

as well.

S′
p

_ read _

−−−−−→ S′: There are no changes in any Rrw
set, so the property still

holds.

S′
p

_ write _

−−−−−−→ S′: Again, no changes in any Rrw
set.

S′
p

t ′ start t ′
ch
(Rrw,Rro)

−−−−−−−−−−−−−−→ S′: The start operation only “changes” the Rrw
set of

the new task, but not of any existing task such as tch. Hence, because the

property holds for Sp, it holds trivially for S′
p
.

S′
p

t ′ �nish

−−−−−→ S′: There are again no changes in any Rrw
set, so the property

still holds.

Having shown (10), it follows:

∀r ∈ Rro

ch
− Rrw

ch
:

(
mayWriteH (t, r ) → mayNeverReadS (tch, r )

)
∧(

mayReadH (t, r ) → mayNeverWriteS (tch, r )
)
. (11)

Finally, for all r < Rrw

ch
∪ Rro

ch
, the roles stay the same. Therefore, it follows

from (1):

∀r ∈ refs(H ) − (Rrw

ch
∪ Rro

ch
) :(

mayWriteH (t, r ) → mayNeverReadS (tch, r )
)
∧(

mayReadH (t, r ) → mayNeverWriteS (tch, r )
)
,

and, when combined with (9) and (11):

∀r ∈ refs(H ) :
(
mayWriteH (t, r ) → mayNeverReadS (tch, r )

)
∧(

mayReadH (t, r ) → mayNeverWriteS (tch, r )
)
,

At last, when combined with (8), it follows:

∀ti ∈ ids(Ts) : ∀ri ∈ refs(H ) :(
mayWriteH (τi, ri) → mayNeverReadS (ti, ri)

)
∧(

mayReadH (τi, ri) → mayNeverWriteS (ti, ri)
)
.
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task finish: S p
t �nish

−−−−−→ S According to the de�nition of the

t �nish

−−−−−→

operation, refs(H ) = refs(Hp) and ids(Ts) = ids(Tsp). Also, because the state

transition does not change the roles of any object for any task ti’s parent τi ,
except for t ’s parent τ , and for t itself, the following follows from (1):

∀ti ∈ ids(Ts) − {t} − {ti | parentTs(ti) = t} : ∀r ∈ refs(H ) :(
mayWriteH (τi, r ) → mayNeverReadSp

(ti, r )
)
∧(

mayReadH (τi, r ) → mayNeverWriteSp
(ti, r )

)
. (12)

As explained before, everything that holds for states in
legal

−−→∗(Sp) also holds

for states in
legal

−−→∗(S). Thus, mayNeverReadSp
(ti, r ) implies mayNeverReadS (ti, r ),

for all ti and r , and mayNeverWriteSp
(ti, r ) implies mayNeverWriteS (ti, r ).

Together with (12), it follows:

∀ti ∈ ids(Ts) − {t} − {ti | parentTs(ti) = t} : ∀r ∈ refs(H ) :(
mayWriteH (τi, r ) → mayNeverReadS (ti, r )

)
∧(

mayReadH (τi, r ) → mayNeverWriteS (ti, r )
)
. (13)

As mayNeverReadS (t, r ) is de�ned as ∀〈H ′, Ts′〉 ∈ legal

−−→∗(S) : �nishedTs′(t)∨
¬mayReadH ′(tch, r ), and similarly mayNeverWriteS (t, r ), both are true in S ,

as t has �nished. Child tasks of t have also �nished, otherwise t could not

�nish, as de�ned by the �nish operation. Thus, from (13) follows:

∀ti ∈ ids(Ts) : ∀r ∈ refs(H ) :(
mayWriteH (τi, r ) → mayNeverReadS (ti, r )

)
∧(

mayReadH (τi, r ) → mayNeverWriteS (ti, r )
)
.

a.5 noninterference

Having shown child task priority, we can �nally prove noninterference. First,

we de�ne interference formally. Since interference concerns operations,

for which there is no explicit notion in the de�nition in Section 2.3, we

represent an operation “x” implicitly using the pair of states Sx and S′x
before and after the operation.

De�nition A.5.1 (Interference). Two operations a and b in tasks ta and tb
are said to interfere if one of them is a write operation and the other is a

read or a write operation and the two operations have the same reference r
as the target (and are successful):

interfere(Sa, Sa
′, ta, Sb, Sb

′, tb) , Sa
′ < {Sa, Serror} ∧ Sb

′ < {Sb, Serror} ∧(
∃r : Sa

ta writes r
−−−−−−−→ Sa

′ ∧ Sb
tb reads r
−−−−−−−→ Sb

′ ∨

Sa
ta writes r
−−−−−−−→ Sa

′ ∧ Sb
tb writes r
−−−−−−−→ Sb

′ ∨

Sa
ta reads r
−−−−−−−→ Sa

′ ∧ Sb
tb writes r
−−−−−−−→ Sb

′
)
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Theorem A.5.2 (Noninterference). Whenever a task τ starts a task t ,
all read or write operations in t happen before any interfering operation in
τ that follows the starting of t . Formally, if any legal state S′ is the result of
a successful start operation, then S′ cannot be followed by an operation in τ
and then by an operation in t , such that these operations interfere:

∀ legal(S′) : (∃S : S
τ start t(Rrw,Rro)
−−−−−−−−−−−−−→ S′ ∧ S , S′) → ¬∃Sτ , Sτ

′, St , St
′
:

S′ −→∗ Sτ ∧ Sτ
′ −→∗ St ∧ interfere(Sτ , Sτ

′, τ , St , St
′, t).

For the following proof, we assume S = 〈H , Ts〉, S′ = 〈H ′, Ts′〉, Sτ =
〈Hτ , Tsτ 〉, and so on.

Proof. We prove noninterference by contradiction, assuming that some

successful start operation is indeed followed by two interfering operations,

as described above. Formally, we assume:

∃S, S′, Sτ , Sτ
′, St , St

′
: legal(S′) ∧ S

τ start t(Rrw,Rro)
−−−−−−−−−−−−−→ S′ ∧ S , S′ ∧

S′ −→∗ Sτ ∧ Sτ
′ −→∗ St ∧ interfere(Sτ , Sτ

′, τ , St , St
′, t). (1)

From the de�nition of interference (De�nition A.5.1) follows that interfer-

ence takes place for a reference r in one of the three following ways:

∃r : Sτ
τ writes r
−−−−−−−→ Sτ

′ ∧ St
t reads r
−−−−−−→ St

′ ∨

Sτ
τ writes r
−−−−−−−→ Sτ

′ ∧ St
t writes r
−−−−−−−→ St

′ ∨

Sτ
τ reads r
−−−−−−→ Sτ

′ ∧ St
t writes r
−−−−−−−→ St

′.

(2)

In addition, it follows:

Sτ
′ < {Sτ , Serror} ∧ St

′ < {St , Serror}. (3)

We continue the proof for the three cases in (2) separately.

Sτ
τ writes r
−−−−−−−→ Sτ

′ ∧ St
t reads r
−−−−−−→ St

′
: Given that the write operation in τ is suc-

cessful, as implied by (3), the de�nition of the write operation implies

mayWriteTsτ(τ , r ). Further, because of child task priority (Theorem A.4.1),

it follows mayNeverReadSτ
(t, r ), which is de�ned as:

∀〈Hi, Tsi〉 ∈
legal

−−→∗(Sτ ) : �nishedTsi (t) ∨ ¬mayReadHi
(t, r ).

Because St is actually in
legal

−−→∗(Sτ ), as assumed in (1), it follows:

�nishedTst (t) ∨ ¬mayReadHt
(t, r ). (4)

However, given that the read operation in t is assumed to be successful

(implied by (3)), it follows from the de�nition of the read operation:

¬�nishedTst (t) ∧mayReadHt
(t, r ),

which contradicts (4).
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Sτ
τ writes r
−−−−−−−→ Sτ

′ ∧ St
t writes r
−−−−−−−→ St

′
: As in the case above, Equation (3) and The-

orem A.4.1 together imply mayNeverReadSτ
(t, r ), which is turn implies:

�nishedTst (t) ∨ ¬mayReadHt
(t, r ),

and, according to the de�nitions of mayReadHt
(t, r ) and mayWriteHt

(t, r ),
also:

�nishedTst (t) ∨ ¬mayWriteHt
(t, r ). (5)

Yet, it follows from the de�nition of the write operation:

¬�nishedTst (t) ∧mayWriteHt
(t, r ),

which contradicts (5).

Sτ
τ read r
−−−−−→ Sτ

′ ∧ St
t writes r
−−−−−−−→ St

′
: Similarly to the previous two cases, given

that the read operation in τ is successful, as implied by (3), the de�nition of

the read operation implies mayReadTsτ(τ , r ). Further, because of child task

priority (Theorem A.4.1), it follows mayNeverWriteSτ
(t, r ), which is de�ned

as:

∀〈Hi, Tsi〉 ∈
legal

−−→∗(Sτ ) : �nishedTsi (t) ∨ ¬mayWriteHi
(t, r ).

Because St is actually in
legal

−−→∗(Sτ ), as assumed in (1), it follows:

�nishedTst (t) ∨ ¬mayWriteHt
(t, r ). (6)

However, given that the write operation in t is assumed to be successful, it

follows from the de�nition of the write operation:

¬�nishedTst (t) ∧mayWriteHt
(t, r ),

which contradicts (6).

As all three cases lead to a contradiction, the assumption we made in (1)

is false. Therefore, the opposite, which is Theorem A.5.2, must be true.
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