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Abstract

Urban building energy models (UBEM) have the potential to become integral
planning tools for district energy systems due to the dynamic, interactive and
complex nature of temporal building energy demand patterns. Although the
demand patterns are related to the occupancy profiles of buildings supplied
by district energy systems, occupant behavior in current UBEM approaches
does not usually consider diversity in occupancy profiles among buildings of
the same use-type.

In this work, a novel method to create context-specific, data-driven com-
mercial building occupancy profiles was used to generate, diverse and non-
diverse urban building occupant presence models (UBOP). Diverse UBOP
randomly assigned occupancy profiles to buildings. Non-diverse UBOP as-
signed the data-driven mean or median profile to all buildings. ASHRAE
standard profiles and occupant densities served as a baseline for comparison.

The impact of diverse vs. non-diverse UBOP was assessed by comparing
UBEM simulations for district energy efficiency benchmarking, renewable
energy integration potential, and district energy system design, using a case
study in Singapore. The results demonstrate that, because of the relationship
between occupant presence and building systems operation, occupancy pro-
files are highly sensitive parameters for district energy demand predictions.
For the case study, the energy demand estimation is significantly influenced
by the shape of occupancy profiles. In particular, the choice of UBOP influ-
ences the cooling demand to the degree that district cooling system design
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decisions might be impacted. Therefore, it is advisable to use diverse UBOP
and to run probabilistic UBEM simulations for district energy system design.

Keywords: Urban building energy model, energy-related occupant
behavior, data-driven urban building occupant presence model, district
energy system

1. Introduction1

1.1. Urban Building Energy Models and Occupant Behavior2

Urban building energy models (UBEM) [1] have the potential to become3

integral planning tools for urban design and district energy systems [2, 3].4

The first step of such bottom-up, physics-based models is the prediction of the5

dynamic energy demands of individual buildings in the district. This energy6

demand prediction is dependent on the various modeling assumptions related7

to building physics, building systems, and energy-related occupant behavior,8

which are sensitive [4, 5, 6]. Due to this sensitivity, it is still unclear to what9

extent and for what exact purposes UBEM will be suitable decision-making10

tools for urban design and infrastructure planning. One purpose of UBEM11

could be the planning of district heating systems (DHS) and district cooling12

systems (DCS).13

One main argument for DHS and DCS is the reduction in capital cost14

due to the load diversity, which “can substantially reduce the total equip-15

ment capacity requirement” [7]. What this means is that the “total heating16

and cooling capacities do not need to be as large as the sum of capacities17

that would occur in individual buildings, because peak demands will not18

all occur at the same time” [8]. This effect has to do with the diversity of19

building geometries, construction properties, and building use-types within20

a district. This diversity leads to differences in the temporal energy demand21

patterns of buildings, which can also be beneficial for achieving renewable22

energy supply targets in the district [9]. Current UBEM approaches are able23

to consider differences in geometry and construction. However, they mostly24

rely on standard assumptions regarding the occupant behavior of specific25

building use-types, which are then applied for all buildings of the same use-26

type [10]. The usual approach for urban building occupant presence modeling27

(UBOP) consists of typical occupant density values and relative occupancy28

profiles, which are multiplied with the buildings’ floor area to obtain the29

number of people present at any given hour of the year. Such typical values30

2



are published by professional associations like the American Society of Heat-31

ing, Refrigerating and Air-Conditioning Engineers (ASHRAE) for example32

[11, 12] or the Swiss Society of Engineers and Architects (SIA) [13]. While33

these approaches consider differences between use-types, the variability within34

use-types is often neglected. This simplification could affect the UBEM sim-35

ulation results, especially in mixed-use districts with a considerable share36

of commercial buildings. Such buildings, for example restaurants and retail37

buildings, can have highly variable occupancy profiles.38

Figure 1: Possible causes and examples of variability in building occupancy profiles on the
district and urban scale.

Fig. 1 introduces some of the causes that could lead to variability in occu-39

pancy profiles within buildings of the same use-type. We use the terminology40

diversity, stochasticity, and seasonality to describe them. Diversity is used41

to describe fundamental differences between buildings of the same use-type.42

E.g., a clothing store vs. a grocery store or a fast-food restaurant vs. a fine43

dining restaurant. Stochasticity is used to describe the random variations in44

regular daily profiles of a specific building. E.g., the timing and height of the45

regular Monday lunchtime peak in a restaurant might vary randomly from46

week to week within certain bounds. Finally, seasonality is used to describe47

underlying behavioral trends influencing all types of buildings, such as the48

weather or holidays. E.g., people might generally spend more time outdoors49
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during pleasant weather, which might reduce the overall occupancy of shop-50

ping malls. Diversity was selected as the focus of this work because to date,51

1) this critical aspect has not been addressed in the literature, and 2) because52

commercial building occupancy profiles with ‘real’ observed diversity can be53

collected to provide novel insight into district energy systems [14].54

In the next section, existing modeling approaches dealing with variability55

in occupancy profiles on the district- and urban-scales are introduced. On56

the building-scale, occupant behaviour is extensively studied in the context57

of the International Energy Agency (IEA) Annex 66 [15] and its follow-up58

Annex 79 [16] that is working on “dynamic, stochastic, agent-based, and59

data-driven” occupant models [17].60

1.2. Advanced Urban-Scale Occupant Behavior Models61

Currently, there are few publications focused on advanced occupant be-62

havior modeling approaches in district or urban energy simulations [10]. So63

far, approaches that consider stochasticity and/or diversity in occupant pres-64

ence profiles focused on mono-functional residential [18, 19, 20, 21, 22, 23, 24,65

25, 26] or office [27, 28, 29, 30] districts and are mostly based on building-66

scale approaches, which are in turn based on residential time-use survey67

(TUS) data, e.g. [31], or observed data in offices, e.g. [32].Additionally more68

recently, novel approaches that couple urban mobility models with UBEM69

have been addressed in the literature [33]. For more detail on the previously70

mentioned approaches, please refer to the literature review by Happle et al.71

[10] .72

In the following subsections, advanced approaches for UBOP that con-73

sider stochasticity and/or diversity are introduced, and the categories of74

space-based and person-based approaches from [10] are used to describe them.75

To our knowledge, the only approach that considers seasonality is the SIA76

standard that contains monthly multiplication factors to adjust the occu-77

pancy profiles throughout the year [13].78

1.2.1. Space-based approaches that add stochasticity to regular profiles79

Stochasticity can be added to otherwise regular profiles with the concept80

of Monte-Carlo Markov-Chains (MCMC), as proposed by Page et al. [32]81

and Richardson et al. [31]. DELORES, for example, is a tool that uses the82

MCMC approach to generate stochastic occupancy profiles, energy use for83

appliances and lights, and thermal comfort settings in buildings [34]. The84
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MCMC concept has recently been applied on the district-scale in Ref. [35]85

to compare different modeling approaches.86

A different approach was used in Ref. [36]. In Switzerland, a building87

stock modeling tool introduced stochasticity into yearly standard schedules88

of occupancy from SIA via random vertical variability and horizontal vari-89

ability. In the context of that work, vertical variability stands for randomly90

perturbing each hourly value around its nominal value. Horizontal variability91

stands for the creation of blocks of hourly periods, and within these blocks92

shuffling the nominal schedules values with each other [36].93

1.2.2. Person-based approaches with single building interactions94

Diversity and stochasticity in person-based approaches can be achieved95

by considering different categories of occupants in buildings. This kind of96

diversity is usually based on statistical data. For example, for residential97

buildings in the context of Europe, StROBe [25] has the ability to generate98

stochastic occupant behavior profiles based on the number of household mem-99

bers and their employment status (‘minor’, ‘full-time employed’, ‘part-time100

employed’, ‘unemployed’ or ‘retired’). The approach is data-driven, relying101

on statistical data from TUS, Household Budget Surveys, and Qualitative102

House Registration Surveys. Another example is SOB by [26] for stochastic103

behavior modeling of residents in China. For typical households, e.g., ‘two104

office workers, one student, and one retiree’, the occupant presence, appliance105

use, window operation, and air-conditioning (AC) use are modeled by com-106

bining different probabilistic models from the literature. Typical household107

compositions and behavior patterns were based on a large-scale questionnaire108

survey. Other parameter values were assumed. In [37], various models from109

the literature are integrated into a room-level stochastic occupancy simulator110

for office buildings. For a category of occupant, e.g., a ‘researcher’, arrival111

and departure events from the office buildings, random movements between112

different rooms, and meeting events are stochastically generated based on113

probability distributions and transition probability matrices, which are in-114

put data. Such input data could be based on measurements or assumptions.115

1.2.3. Person-based approaches with multiple building interactions116

Recently, some studies have integrated agent-based urban mobility mod-117

els with UBEM. In [33], an urban mobility model for Boston based on mobile118

phone data was used to infer building occupancy. The urban mobility model119

simulates the daily individual trajectories of 3.54 million people, including120
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2.10 million ‘workers’ and 1.44 million ‘non-workers’ in Boston. Each tra-121

jectory consists of a series of stay point coordinates that are characterized122

as ‘home’, ‘work’, or ‘other’. The buildings in Boston were classified as123

’residential’, ’commercial’, or ‘industrial’. Stay points of people were then124

probabilistically mapped to buildings to infer building occupancy, whereas125

‘home’ was mapped to ‘residential’, ‘work’ was mapped to ‘commercial’ or126

‘industrial’, and ‘other’ was mapped to ‘commercial’. In an UBEM, this oc-127

cupancy is then used to simulate energy demands for one representative day128

in each season for 1266 buildings.129

The integration of agent-based urban mobility models and UBEM is130

promising for applications in existing neighborhoods. However, a space-131

based, data-driven UBOP might be a suitable and more straightforward al-132

ternative for applications in the early design stage of a district. UBOP and133

urban mobility models could share data sources, instead of full integration134

of the models.135

1.3. Data sources for urban building occupant presence models136

Space-based building occupancy models usually require two input param-137

eters, the occupant density and the relative occupancy profiles of buildings.138

In previous work, it was demonstrated that context-specific occupancy pro-139

files can be created from location-based services (LBS) data [14]. While140

individual buildings’ occupant densities constitute valuable information, it is141

difficult to obtain them on a large scale due to the limitations associated with142

determining the absolute number of people from LBS data [10]. An alter-143

native is to obtain data on the total occupancy of a neighbourhood instead144

of individual buildings. Urban mobility modellers are already extensively145

relying on such totals in their data-driven models. For example in [38], the146

absolute number of people performing certain activities in a district was esti-147

mated from a combination of public transport passenger data and TUS data.148

In [39], similar information was obtained from mobile phone data. A data-149

driven UBOP could use these totals as an input and model the occupant150

presence in buildings in a way that satisfies the total district occupancy as151

well as the relative occupancy profiles of buildings. For new developments,152

the total district occupancy could be approximated by using data of existing153

districts with similar characteristics.154
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1.4. Objective and Research Questions155

The objective of this work has been to better understand the possible156

impacts of diversity in commercial building occupancy profiles on simulated157

district energy demand patterns. Furthermore, the potential impacts on158

district energy supply systems planning and design decisions have been ex-159

plored using a case study in the cooling-dominated climate of Singapore.160

For this purpose, a space-based, data-driven UBOP approach to generate di-161

verse commercial building occupancy patterns has been employed for a high-162

density, mixed-use, future district of Waterfront Tanjong Pagar. A UBEM163

tool was then used to simulate end-use energy demand patterns for different164

choices of UBOP. These demand patterns were then analyzed in relation to165

the following main research question:166

(Q1) How relevant is it to consider diversity in commercial building oc-167

cupancy profiles for UBEM simulations?168

In order to address this high level research question, the following concrete169

questions regarding the UBEM modeling purpose, the UBOP approach, and170

the context will be addressed using a case study:171

(Q2) What are the impacts of diversity in commercial building occupancy172

profiles on different phases of the energy system analysis process? (Q3)173

Is diversity in commercial building occupancy profiles relevant in a district174

dominated by buildings with regular operational patterns? (Q4) What are175

the appropriate UBOP modeling approaches for different UBEM simulation176

purposes and contexts?177

In terms of broader impact, urban planners and energy systems planners178

could make use of this information to choose appropriate UBOP approaches179

for their context and purpose of UBEM simulation.180

To address (Q2), UBEM simulation results of a case study have been181

produced in sequential order: District occupancy, district demand, renew-182

able energy integration potential, and supply systems design. To address183

(Q3), the simulation results have been analysed separately for different ag-184

gregations of buildings in the district. We considered the aggregation of only185

commercial buildings in the district and the aggregation of all buildings in186

the district, including a large share of office and residential buildings with187

assumed regular operation patterns. To address (Q4), different UBOP have188

been be developed. They entail a model representing the status-quo and189

multiple data-driven models. Probabilistic diverse models and deterministic190

uniform models have been created based on data. Comparing the results of191
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these different UBOP highlights under what circumstances diversity can be192

neglected and diverse profiles can be substituted with a uniform mean or193

median profile per building use-type. Such comparisons also provide insight194

on situations where diversity is highly influential on the results. In these195

contexts, multiple probabilistic simulations are necessary because single sim-196

ulation based deductions would present too high levels of uncertainty to be197

effectively useful.198

This paper is organized as follows: Section 2 introduces the methods used199

for data-driven UBOP, the UBEM tool, and the methods for demand pattern200

analysis. Section 3 introduces the case study. The results are presented201

in section 4 in four subsections ordered according to the sequential UBEM202

simulation results: District occupancy, district demand, renewable energy203

integration potential, and supply system design. The discussion in section204

5 is followed by the assessed limitations in section 6 and the conclusions205

in section 7. Furthermore, Appendix A details the occupancy modeling206

and Appendix B urban building energy modeling. Appendix C provides207

reference comparison of the models to statistical data.208

2. Methods209

The methods used in this work are comprised of three parts. They are:210

(1) data-driven urban occupant presence modeling for commercial buildings,211

(2) urban building energy simulation with a UBEM tool, and (3) the analysis212

of the district energy potentials and demand patterns. The three parts are213

introduced in the next sections.214

2.1. Data-driven Urban Building Occupant Presence Modeling215

The data-driven UBOP in this work is based on location-based services216

data that serve as a proxy for real measured occupant presence data. In the217

following sections, the data collection, the occupant presence models, and218

the relationship of occupancy to internal building loads are described. The219

methods for data collection and processing are based mainly on previous220

work in Ref. [14].221

2.1.1. Data Collection and Processing222

The workflow of [14] was used to collect data in an area of 4km by 4km223

around the Downtown Core in Singapore, an area immediately adjacent to224

the proposed development used as the case study. See Fig. 2. Popular times225
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data was collected for commercial buildings from Google Maps [40]. Opening226

hours and place-type information was obtained from the Google Places API227

[41].228

The collected popular times data was categorized into the two use-types,229

restaurant and retail, based on the place-type information and filtered for230

seven days of data availability based on the opening hours information.231

Meaning that places without popular times data during closed days were232

included, and places with missing data during open days were excluded.233

With this procedure, 567 weekly retail occupancy profiles and 1767 weekly234

restaurant occupancy profiles for the Singapore Downtown and its neigh-235

boring areas were obtained. These diverse weekly relative profiles can be236

directly used as a proxy for measured relative occupancy data in UBEM237

tools. For example the profiles could be used to replace standard schedules238

of occupancy.239

Figure 2: Data collection site (red) and case study site (green) in Downtown Singapore.
Background map from [42].

The occupant behavior model in this work generates the inputs for the240

UBEM simulation in a two-step process. First, the number of people in each241

building is determined with a UBOP. Second, occupant-building interactions,242

such as metabolic heat gains, required ventilation rates, appliance, lights, and243

hot water use, are calculated based on the number of people in each building.244

The different UBOP are introduced next.245

2.1.2. Occupant Presence Modeling246

In total, we compared ten space-based UBOP. See Fig. 3. On the left a247

baseline model is illustrated (Fig. 3 left) and is based on standard assump-248
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tions. On the right nine different data-driven models are shown (Fig. 3 right).249

All of the models consist of a distinct combination of (a) profiles of relative250

building occupancy with (b) values of use-type occupant density. District-251

occupancy constraints derived from the baseline, determined the occupant252

density in the data-driven UBOP.253

Figure 3: Definition of the different UBOP approaches used in this study. Each model with
the standard approach (left) or the data-driven approach (right) consists of a combination
of occupancy profile assignment and occupant density parameter values. The occupant
density values for the data-driven approaches are based on the constraints derived from
the results of the base model.

All ten UBOP are defined according to Eq. 1:254

Npeople,b(t) = AGFA,b/Du ∗ pb(t) (1)

where Npeople,b(t) in pers. is the count of people in building b at hour t of the255

week, AGFA,b in m2 is the gross floor area of the building b, Du in m2/pers. is256

the occupant density of the building use-type u, and pb(t) in % is the relative257

occupancy of the building b at hour t of the week. Each relative occupancy258

profile pb = (pb(1) . . . pb(t) . . . pb(168)) is one week long and consists of 168259

hourly values in %.260

Next, the reasoning leading to ten different UBOP and the terminology261

used to describe the models is introduced here. The base model was based262

on standard assumptions for profiles and occupant density by ASHRAE [12].263

It serves as a baseline throughout this work to which all UBEM simulation re-264

sults were compared. Details and parameter values are provided in Appendix265
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A.266

We compare different categories of data-driven UBOP: One category with267

diversity in building occupancy profiles, and another category with single,268

non-diverse or uniform profiles. The models with diversity were using ran-269

domly chosen subsamples of profiles from the collected data sample. Individ-270

ual profiles were applied to each of the buildings belonging to the use-type.271

For the non-diverse models, we considered the hourly mean or the median of272

the entire data sample as single profile in accordance with research question273

(Q4). This single profile was then applied uniformly to all buildings of the274

use-type.275

The main departure point of this work was based on the observation that276

only using standard occupant densities for data-driven UBOP would provide277

limited insight into the paper’s primary research question, which aims to bet-278

ter characterize building to district interaction. The standard assumptions of279

the base model provide a package consisting of temporal relative occupancy280

profile and occupant density at full occupancy (or design conditions) resulting281

in the number of people present in all buildings in the district. To compare282

data-driven UBOP to the base model, we propose three mutually exclusive283

assumptions in line with the considerations introduced in section 1.3. First,284

we assume that the ASHRAE default occupant densities are good estimates285

for full occupancy in individual buildings. Second, the ASHRAE standard286

assumptions are good estimates for the district peak occupancy, which is the287

maximum hourly count of people during the week within a group of build-288

ings. Third, the ASHRAE standard assumptions are good estimates for the289

cumulative district occupancy, which is the sum of hourly people counts of290

the week within a group of buildings.291

Additionally, all three assumptions presented are relevant because they292

highlight varied aspects of district occupancy of interest to different stake-293

holders involved in building and district planning.294

The three assumptions in this work have been translated into modeling295

constraints that can be fixed as an anchor at the district-level. These con-296

straints can be met either by scaling the occupant density or by scaling the297

relative occupancy profiles. Since the occupancy profiles and their diversity298

are the focus of this work, the occupant density was treated as a variable.299

The cap (capacity) constraint fixes the total space capacity (the full
occupancy values) of all buildings in the district belonging to one use-type
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Capu in pers.. See Eq. 2:

Capu =
Bu∑
b=1

AGFA,b/Du ∗ 100% = Const. (2)

where b ∈ {1 . . . Bu} are the buildings in the use-type u. The cap constraint300

is straightforward to meet and does not require adjustments of the occupant301

density because it is independent of the buildings’ relative occupancy profile.302

The peak constraint fixes the weekly maximum hourly count of all people
in all buildings of a certain use-type Peaku in pers. See Eq. 3.

Peaku = max
1≤t≤168

Bu∑
b=1

AGFA,b/Du ∗ pb(t) = Const. (3)

where t ∈ {1 . . . 168} are all hourly time steps in a week. The peak con-303

straint requires scaling the occupant density of the use-type depending on304

the relative occupancy profiles.305

The sum constraint fixes the weekly sum of hourly counts of all people
in all buildings of a certain use-type Sumu in pers. See Eq. 4.

Sumu =
168∑
t=1

Bu∑
b=1

AGFA,b/Du ∗ pb(t) = Const. (4)

The sum constraint requires scaling the occupant density of the use-type306

depending on the relative occupancy profiles. The peak and sum constraint307

can be met with one iteration of scaling occupant density. After relative308

profiles are assigned to each building with an initial guess for occupant den-309

sity, the number of people in each building can be recalculated using a linear310

scaling factor so that the chosen constraint is met.311

Resulting from the combinations of profiles and constraints, we considered312

nine data-driven UBOP in this work in addition to the base model. Each313

model is named according to its combination of profile and constraint. See314

Fig. 3.315

Three data-driven div (diverse) models were created and consist of ran-316

dom subsamples of context-specific profiles in combination with the three317

constraints. These models are referenced as div-cap, div-peak, and div-318

sum according to the specific constraint they meet.319
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In addition, six uniform data-driven models were created and consist of320

the combinations of the mean and med (median) profiles with the three321

constraints. These models are referenced as mean-cap, mean-peak, mean-322

sum, med-cap, med-peak, and med-sum according to their combination323

of profile and constraint.324

All div models are probabilistic because of the random choice of profiles325

from the collected data. Each of these three models can be executed N326

times so that N probabilistic UBEM simulation results are generated that327

can be statistically analyzed. The single profile base, mean, and med328

models generate one deterministic simulation result each. The values of the329

constraints are derived from the results of the base model.330

In the next section, the models for relationships between occupant pres-331

ence in buildings and energy-related occupant behavior are introduced.332

2.1.3. Occupant-building-interaction modeling333

The second step of the occupant behavior model calculates the passive and334

active energy-related interactions of occupants with buildings required for the335

UBEM simulations. Occupants interact with the building systems in various336

ways. The extent of these interactions depends on the building use-type.337

While residents control almost all systems in their houses, retail customers’338

interactions with the building are mostly passive. Which of those interactions339

can be considered also depends on the choice of UBEM (introduced in the340

next section below).341

In our case, occupant behavior is a UBEM simulation input consisting of342

the following yearly vectors with hourly values: Occupants have metabolic343

activity. Their presence causes sensible heat gains Qs in Whth/h and latent344

heat gains X in gwater/h. Occupants’ presence also impacts the indoor air345

quality, which necessitates a fresh air flow rate Ve in l/s. Their activities346

in buildings directly or indirectly cause electricity consumption due to the347

use of lights El in Whel/h and appliances Ea in Whel/h, and the flow rate348

of hot water Vww in l/h. Occupants might also impact heating, ventilation,349

and air-conditioning (HVAC) system operation schedules, in the form of the350

cooling system set-point temperature Tcs schedule for each hour of the week351

in ◦C or the fresh air flow rate.352

Our modeling approach for restaurant and retail buildings used rule-based353

algorithms to calculate the quantities mentioned above from the values of354

absolute and relative occupancy and the respective nominal values, i.e., the355

lighting and appliance power density of buildings, and the per-person hourly356
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heat gains, ventilation requirements, and water use. These rule-based al-357

gorithms were designed to emulate the implicit relationships between occu-358

pant presence and occupant behavior, as presented in the ASHRAE standard359

schedules [12, 11]. They are described in detail in Appendix A. Notewor-360

thy is the algorithm determining the cooling set-point temperature and the361

required ventilation flow rate, which was assumed to be presence-controlled.362

This means that the mechanical ventilation and space cooling systems in com-363

mercial buildings are operating during the time when occupants are present364

(i.e., during the retail and restaurant buildings’ opening hours). The required365

ventilation rate was modeled after a context-specific building code that man-366

dates minimum flow rates per person as well as per area [43]. This results367

in high V e(t) even during periods of low occupancy. During zero-occupancy,368

ventilation systems are switched off, and cooling systems are set-back to a369

higher temperature of 30◦C. Another point to keep in mind is that in our370

approach, the electricity consumption for lights and appliances in commer-371

cial buildings was not directly related to the absolute number of people in372

the building. We used only the relative value of occupancy to determine373

the electricity consumption for lights and appliances. Meaning that changes374

in occupant density do not influence these electricity demands. All other375

quantities depend on the absolute number of occupants in the space. See376

Appendix A. Based on one week of occupant presence generated with the377

UBOP, yearly vectors of occupant behavior for each building in the district378

were generated and input into the UBEM simulation.379

2.2. Urban Building Energy Modeling380

The CityEnergyAnalyst (CEA) tool [2] was used for the UBEM simula-381

tions in this work. The CEA is a python open-source urban energy simulation382

toolbox, including functionality to simulate urban solar radiation, building383

energy demand forecasting, energy potential assessment, and thermal net-384

work and supply systems simulation and optimization. All simulations were385

carried out with CEA version 2.29 [44]. The next two subsections introduce386

the building energy demand and solar potential features used in this work.387

2.2.1. District Energy Demand388

The building energy demand model of the CEA is based on an hourly389

single-zone resistance-capacitance model based on ISO standards [45]. The390

solar heat gains of buildings are calculated with the DAYSIM simulation391

engine [46], which is integrated in CEA. Inputs are the building geometry,392
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defined by the building footprint and the height, the building construction393

properties, such as the window-to-wall ratio, the window, wall, and roof ther-394

mal properties, the building system properties, and the occupant-building-395

interactions mentioned above in section 2.1.3. The outputs are the hourly396

end-use energy demands for sensible and latent space heating and cooling, the397

flow rates and supply and return temperatures of the space heating and cool-398

ing systems, the thermal energy demand for water heating, and the electricity399

consumption of auxiliary systems, such as fans and pumps. The outputs also400

include the estimated final electricity or fuel consumption of decentralized401

heating and cooling supply systems.402

The typical building and construction properties used in this work were403

based on context-specific literature and introduced in detail in Appendix B.404

The weather file used for the simulations is the typical meteorological year405

for Singapore [47]. A comparison to average energy consumption data in406

Singapore for all considered building use-types is provided in Appendix C.407

From the CEA demand simulation outputs the yearly vectors for each408

building of hourly thermal demands for space cooling systems QCsys,b and409

water heating Qwwsys,b in kWhth/h and the electrical demands for appli-410

ances Ea,b, lights El,b, and auxiliary systems Eaux,b in kWhel/h were ana-411

lyzed. These demands were aggregated when electric end-use demands were412

considered. CEA also converts space cooling and water heating to electric413

loads Ecs,b, Eww,b in kWhel/h assuming default conversion systems. These414

outputs were added to electric end-uses when all-electric, decentralized build-415

ing supply systems were considered.416

2.2.2. District Solar Potential417

The solar potential analysis tool of the CEA [2] was used to calculate the418

district’s renewable energy potential. The inputs into the tool are the selec-419

tion of pre-defined photovoltaics (PV) technology from the CEA database420

and the annual radiation threshold in kWhsol/m
2/yr to select roof and fa-421

cades to install PV panels. The output is the hourly electricity yield from all422

PV panels installed on the roofs and facades on each building in the district423

EPV,gen,b in kWhel/h.424

We used a generic monocrystalline PV technology from the CEA database425

(CEA PV1) with panels installed on every roof and wall surface with annual426

irradiation of more than 250 kWhsol/m
2/yr. The threshold was based on427

life cycle assessment data and was selected so that the panels receiving this428

value of annual irradiation are yielding electricity with greenhouse gas (GHG)429
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emission intensity parity with the Singaporean national electricity grid supply430

mix [48].431

The next section introduces the methods for the post-processing of the432

hourly UBEM simulation results.433

2.3. District Demand and Potentials Analysis434

The UBOP produces annual hourly district occupancy patterns. The435

UBEM simulation results deliver the annual hourly energy end-use patterns436

and annual peak demands. The total all-electric energy demand of all build-437

ings, assuming electric decentralized space cooling and hot water supply sys-438

tems, is an output of the CEA as well. For the analysis of district occupancy439

and total energy demand, there was, therefore, no post-processing of the440

results required. The next two sections introduce the additional metrics cal-441

culated to assess the district’s potential to integrate on-site renewable energy442

generation and the metrics used to assess the potential to construct a cen-443

tralized DCS.444

2.3.1. District Renewable Energy Potential Assessment445

The potential to integrate decentralized renewable electricity from stochas-446

tic sources, such as PV electricity, depends on the expected demand patterns.447

The self-consumption potential determines how much of the generated elec-448

tricity can be consumed instantaneously on-site. The self-sufficiency poten-449

tial determines how much of the electricity demand can be instantaneously450

produced on-site.451

We used the hourly electricity yield from all the PV panels in the district452

EPV,gen,district to calculate the district’s solar self-consumption SCPV and453

self-sufficiency SSPV potentials assuming no storage with Eq. 5 and Eq.454

6. We calculated the potential of overall renewable energy share RESPV ,455

assuming perfect storage, in the district with Eq. 7.456

SCPV =

∑8760
t=1 min(EPV,gen,district(t), ED,district(t))∑8760

t=1 EPV,gen,district(t)
(5)

SSPV =

∑8760
t=1 min(EPV,gen,district(t), ED,district(t))∑8760

t=1 ED,district(t)
(6)

RESPV =

∑8760
t=1 EPV,gen,district(t)∑8760

t=1 ED,district(t)
(7)
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where t ∈ {1 . . . 8760} are all hourly time steps in a year and ED,district is457

the electrical energy demand considered in the district. We used two different458

electrical energy demands for the renewable energy potential assessment. The459

electrical end-use demands were calculated either as ED,el,district with Eq. 8,460

or if all-electric decentralized building supply systems were considered, as461

ED,el,district with Eq. 9.462

ED,el,district =

Bdistrict∑
b=1

Ea,b +

Bdistrict∑
b=1

El,b +

Bdistrict∑
b=1

Eaux,b (8)

ED,all,district = ED,el,district +

Bdistrict∑
b=1

Ecs,b +

Bdistrict∑
b=1

Eww,b (9)

where b ∈ {1 . . . Bdistrict} are all buildings in the case study district.463

2.3.2. Thermal District Supply System Design Metrics464

We analyzed the district’s thermal cooling demand in order to assess the465

potential impacts of the different UBOP onto DCS design. We aggregated466

the thermal space-cooling demand of buildings in the district to create the467

annual load duration curves. We then analyzed these load duration curves468

with the design of a hypothetical centralized DCS in mind.469

We compared the annual peak demand as a proxy for the investment cost470

and the annual energy demand as a proxy for the operation costs. We also471

calculated the diversity factor and the capacity factor of the space cooling472

demand. The diversity factor DFcool quantifies the ratio of the aggregated473

peak demand in the district to the sum of individual peak demands in the474

buildings [49]. It provides indications on the potential savings on investment475

costs when considering a DCS as compared to a decentralized supply system.476

We then sized a hypothetical centralized cooling plant according to the peak477

demand in the district. The capacity factor CFcool of that plant quantifies the478

ratio of the energy provided by the system to its supply capacity. It provides479

indications on whether the installed capacity is underutilized. In [49] the480

authors minimized the fluctuation index f = 1 − CFcool to optimize the481

building-mix served by a DCS to maximize the plant utilization for a shorter482

payback period of investment costs. The value of CFcool might also influence483

the system choice directly. A low capacity factor might cause engineers to484

propose a DCS design with lower installed cooling generation capacity and485

a thermal energy storage (TES) instead.486
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We used Eq. 10 and Eq. 11 to calculate DFcool and CFcool for three487

options of connected buildings. We were considering all commercial podi-488

ums connected, all commercial podiums and office towers connected, and all489

buildings in the district connected in order to address research question (Q3).490

DFcool =
max1≤t≤8760

∑BDCS

b=1 QCsys,b(t)∑BDCS

b=1 max1≤t≤8760 QCsys,b(t)
(10)

where b ∈ {1 . . . BDCS} are all buildings b connected to the DCS and t ∈491

{1 . . . 8760} are all hourly time steps in a year.492

CFcool =

∑8760
t=1

∑BDCS

b=1 QCsys,b(t)

max1≤t≤8760

∑BDCS

b=1 QCsys,b(t) ∗ 8760h
(11)

In the next section, the mixed-use high-density case study district in493

Singapore is introduced.494

3. Case Study495

Our case study is a proposed urban re-development in Singapore, neigh-496

boring the existing central business district. As part of a future large urban497

transformation, called the Greater Southern Waterfront, shipping port ter-498

minals will be converted into high-density mixed-use urban districts. The499

overall project comprises around 2000 ha of land [50, 51, 52]. The Water-500

front Tanjong Pagar Project at the Future Cities Laboratory (FCL) looked501

specifically at the re-development of the port’s City Terminals. A transdisci-502

plinary team proposed a phasing plan, including 21 precincts, to be developed503

over the next 50 years [53]. Different precincts have different urban design504

and follow a phasing strategy based on predicted space demand in Singapore.505

For our case study, we selected Precinct 1.1, which is planned to be built first506

and will be the direct extension of Singapore’s central business district.507

3.1. Urban Geometry and Population508

Two sets of planning information were obtained from the design team:509

A 3D representation of the district, including the footprints of the selected510

’tower & podium’ block typology, and the design requirements of the district511

in terms of total GFA, the total population of residents, and the number of512

office jobs. See Table 1. The geometry was simplified by removing intermedi-513

ate roof-gardens and other details, such as the setbacks with increasing tower514
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height. In the simplified geometry, all towers were assumed to be straight515

without setback. The land-use allocation was not provided. Based on the516

total GFA requirements, the district’s population, and the typical occupant517

density for office buildings in Singapore [54], the building heights were deter-518

mined. The towers were assumed to be office use or residential use, whereas519

the podiums were assumed to be commercial (retail and restaurant). Large520

podiums were split into smaller buildings in order to assign specific occupancy521

profiles and vary the share between retail and restaurant use flexibly between522

different urban design scenarios. The final case study geometry consisted of523

a total of 145 buildings. They were 29 residential towers and 12 office towers524

with between 17 to 44 floors and 104 podium parts with five floors each. See525

Fig. 4. The case study’s final design characteristics and original design goals526

are given in Table 1. The overall use-mix in terms of GFA was 63% residen-527

tial, 21% office, and 16% commercial. The detailed UBEM parameters are528

provided in Appendix B.529

Table 1: Case study characteristics of Precinct 1.1 - comparison of the simplified geometry
used in this work and the original design by FCL.

parameter simplified geometry original design
total GFA (m2) 1,333,861 1,333,300
no. jobs (pers.) 27,700 27,700
office occupant density (m2/pers.) 10.0a n/a
office GFA (m2) 277,000 n/a
no. residents (pers.) 24,000 24,000
residential GFA (m2) 845,040b n/a
residential occupant density (m2/pers.) 34.6c n/a
commercial GFA (m2) 211,821d n/a

a 10 (m2/pers.) is the occupant density of the benchmark large office building devel-
oped by researchers of the Singapore-Berkeley Building Efficiency and Sustainabil-
ity in the Tropics (SinBerBEST) program together with the Singaporean Building
Construction Authority (BCA) [54].
b The residential GFA is the GFA of all remaining towers after 12 office towers with
a total of 277,000 (m2) have been selected via linear optimization.
c This is the result of dividing the total GFA of residential towers by the number of
residents.
d The commercial GFA is the total area of all podiums.
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Figure 4: 3D representation of the case study geometry. Retail podium parts are colored
in dark green, restaurants in purple. Office towers are light blue and residential towers are
khaki.

3.2. Land-use and Occupancy of Commercial Buildings530

The case study design did not include the share of use-types in the com-531

mercial podiums. For our experiments, we assumed an urban design scenario532

based on typical Singaporean shopping malls. Due to the increase in online533

commerce, shopping malls in Singapore are retrofitting to substitute some of534

the retail space with more food & beverage space. Experts cited in a news-535

paper article estimate that in the future, restaurants could take up to 40%536

of the area in malls, as compared to 20–30% in the past [55]. In this work537

a near-future land-use scenario with 35% restaurant space and 65% retail538

space was considered. Linear optimization was used to assign commercial539

podium buildings to the restaurant or retail use-type in a way that matched540

the desired land-use ratio in terms of GFA.541

In this way, 37 buildings were selected as restaurant use-type, and 67542

were retail buildings. They are indicated in Fig. 4. In a single div UBOP543

simulation, 37 relative restaurant occupancy profiles and 67 retail profiles544

were chosen randomly from the collected data (see section 2) to calculate the545

number of people in each commercial building.546

The next section presents the results of the district occupancy and UBEM547

simulations for the case study with all different UBOP.548
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4. Results549

4.1. District Occupancy550

In this section, the cumulative results of the different UBOP on restaurant551

and retail buildings in the case study are presented first. Then, the impacts552

on the total district occupancy, including all buildings in the case study, are553

shown.554

4.1.1. Occupancy in Commercial Buildings555

Fig. 5 and Fig. 6 show the results of the different UBOP for commercial556

buildings. The lines in Fig. 5 indicate the number of people in restaurants557

obtained with the mean and med models under the three constraints cap558

(a), peak (b), sum (c). The colored shaded area is the range obtained with559

the div models. The grey shaded area is the number of people obtained with560

the base model. Fig. 6 shows the same information for the retail buildings561

in the district.562
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Figure 5: Weekly absolute occupancy in restaurant buildings in the case study district.
mean and med model results are represented by lines. div model results (N=50) are
given as colored areas between the minimum and maximum of hourly values. The three
graphs show approaches under different occupant density constraints: cap (a), peak (b),
and sum (c). All graphs contain the base occupancy as grey shaded areas.
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Figure 6: Weekly absolute occupancy in retail buildings in the case study district. mean
and med model results are represented by lines. div model results (N=50) are given as
colored areas between the minimum and maximum of hourly values. The three graphs
show approaches under different occupant density constraints: cap (a), peak (b), and
sum (c). All graphs contain the base occupancy as grey shaded areas.

Comparing Fig. 5 and Fig. 6 shows that the impact of UBOP choice on563

restaurants was more pronounced than on retail. While restaurants repre-564

sent only around 5.5% of the district’s land-use, they hosted around 150,000565

people in the most extreme case (med-sum). Comparing the different mod-566
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els, it can be observed that the med were below the div results during low567

occupancy, i.e., in the early morning, the late evening, and in the afternoon568

valley between the peaks. At the same time the med-sum during high oc-569

cupancy was above the div-sum. The mean models were in the middle570

of the div range, as expected. The mean and med occupancy were rela-571

tively close. Differences occured mainly at very low occupancy (morning and572

evening) and during peak hours. For restaurants, the data-driven models’573

peak occupancy usually occured on Friday night. However, peaks can also574

be observed at other times, especially under the peak constraint. The dif-575

ferences in models for retail buildings are less drastic than for restaurants.576

The difference in peaks between the different constraints was less than 10,000577

people. The data-driven occupancy for retail is generally lower on weekdays578

and generally higher on Sundays as compared to standard schedules.579

4.1.2. Total District Occupancy580

Fig. 7 depicts the resulting total weekly district occupancy patterns ob-581

tained with the different UBOP. For visualization purposes, only the days582

from Thursday to Sunday are shown. Monday to Wednesday is identical583

to Thursday and Friday for the base model and similar to Thursday for584

data-driven models. See Fig. 5 and Fig. 6. The base occupancy for the585

entire district is shown in Fig. 7(a), the data-driven occupancy for the cap586

constraint is shown in Fig. 7(b), (c) shows peak, and (d) shows sum.587

In the base model, the regular weekly peak of 93 thousand people occured588

at 1 PM every weekday from Monday to Friday. When data-driven models589

were used, the peak was shifted to Friday or Saturday evening. The tallest590

peak in all models (med-sum) was 186 thousand people. The smallest was591

around 69 thousand people (minimum of div-cap).592

Fig. 8 shows the district’s weekly cumulative occupancy (a) and weekly593

peak occupancy (b) for all data-driven models relative to the base. De-594

terministic results are indicated with markers. Probabilistic results are pre-595

sented as boxplots. The whiskers of all boxplots in this paper show the entire596

range of div results of N=50 simulations. The interquartile range is shaded597

in the graphs to serve as a visual aid.598

Models using the cap constraint resulted in 24–32% lower cumulative oc-599

cupancy and 7–26% lower peak occupancy compared to the base occupancy.600

This was due to the overall lower data-driven profiles compared to the stan-601

dard profiles. See Fig. 5 and Fig. 6. The peak constraint resulted in similar602

peaks compared to the base, as expected. However, the cumulative occu-603
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Figure 7: Total district occupancy with different UBOP. The base(a) indicates the com-
position of the district occupancy in terms of building use-types. Data-driven UBOP with
different constraints cap(b), peak(c), and sum(d) indicate the range of probabilistic div
results as colored areas and mean and med profiles as lines. Graphs (b,c,d) also show
the base occupancy as shaded area for comparison.
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Figure 8: Total district cumulative occupancy (a) and peak occupancy (b) of data-driven
UBOP relative to the base. The whiskers of the boxplots indicate the minimum and
maximum of N=50 div simulation results each.
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pancy was 9–28% lower. Only models with the sum constraint, as intended,604

matched the sum of the base. However, those models resulted in 21–100%605

higher peaks. The med-sum model produced the most pronounced result.606

For all constraints, the mean results were, as expected, in the middle of the607

interquartile range of the div models. The med results were below the min-608

imum of cumulative occupancy or above the maximum of peak occupancy in609

some cases.610

4.2. District Energy Demand611

In this section, the UBEM energy demand simulation results for commer-612

cial buildings in the district are presented first, and the relationship between613

occupancy and energy demands in commercial buildings are addressed to un-614

cover the modeling mechanisms leading to differences in simulation results.615

Then, the total energy demand simulation results of the case study for all616

UBOP, assuming decentralized all-electric supply systems, are presented.617

4.2.1. Energy Demand of Commercial Buildings618

Fig. 9 shows the annual energy demand (a) and peak demand (b) for the619

retail buildings in the district. Fig. 10 shows the annual energy demand (a)620

and peak demand (b) for restaurant buildings in the district.621
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Figure 9: Annual all-electric energy demand (a) and peak demand (b) for all retail build-
ings in the district obtained with different data-driven UBOP. All results are normalized
to the results of the base model.
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Figure 10: Annual all-electric energy demand (a) and peak demand (b) for all restau-
rant buildings in the district obtained with different data-driven UBOP. All results are
normalized to the results of the base model.

Comparing Fig. 9 to Fig. 10 shows that the impacts of UBOP choice on622

energy demand were more pronounced for restaurants as compared to retail623

buildings. Aggregated annual demands in retail buildings of div and med624

models were 13–24% lower compared to the base. mean results were 2–4%625

higher. The peak demand in retail buildings was similar for all models. div626

models resulted in maximum 15% lower peak demands. mean and med627

models tended to result in higher peaks compared to the interquartile range628

of div models. Aggregated annual demands in restaurant buildings of div629

and med models were 15–51% lower compared to the base. mean results630

were above the range of div results. At the same time, mean results were631

between 20% lower to 6% higher compared to the base. The peak demand in632

restaurant buildings was highly variable. The data-driven models covered a633

range of 28% lower to 109% higher compared to the base case. The extreme634

value was obtained with the med-sum model, which was also much higher635

than the div-sum results.636

To understand this behavior, the 2D histograms of occupancy and energy637

demand in commercial buildings are presented in Fig. 11 and 12.638

Fig. 11 shows the relationship between occupancy in retail buildings and639

the space cooling energy demand for different models under the peak con-640

straint as an example. Fig. 12 shows the same information for restaurant641

buildings. Colors indicate the frequency of occurrence of specific situations642

in the district. Please note that the color scale is not linear for better vi-643
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sualization. In Fig. 11 (a), (b), and (c), as compared to the div models in644

(d), it can be observed that models using single uniform profiles frequently645

generated situations with relatively high cooling demands during relatively646

low occupancy. This effect was especially pronounced for mean models. See647

Fig. 11 (b). During low district occupancy in div models, the people were648

distributed to few buildings. In contrast, the uniform profiles in the base,649

mean, and med models distributed a similar total number of people to all650

buildings in the district. This caused more buildings to operate ventilation651

and cooling systems and therefore resulted in more space cooling energy de-652

mand. The behavior in restaurant buildings was similar. See Fig. 12.653
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Figure 11: 2D histogram of hourly retail district occupancy (no. of people) vs. hourly
space cooling demand in retail buildings. Results of the base (a) and the data-driven
models under the peak constraint are shown. The plots show the mean-peak (b), med-
peak, and the average of N=50 div-peak simulations. The colors indicate the frequency
of the situations. Please note that the color scale is not linear. One pixel is 1,200 people
wide and 0.333 MW high.

4.2.2. Total District Energy Demand654

In this section, the impacts of UBOP choice for commercial buildings onto655

the demand of the entire mixed-use district are presented. In this analysis,656

all building energy demands of the district, with its predominant office and657

residential land-use, are aggregated. Fig. 13 shows the annual all-electric,658

decentralized energy demand (a) and peak demand (b) of the case study659

district for the different UBOP relative to the base occupancy.660

The trends in the results were not very different when compared to com-661

mercial buildings only (see above). However, the magnitude of differences was662

29



0 20 40 60
people in restaurant buildings (thousands)

0

2

4

6

8

el
ec

tri
ci

ty
 d

em
an

d 
fo

r c
oo

lin
g 

(M
W

h/
h) (a)

base

0 20 40 60
people in restaurant buildings (thousands)

0

2

4

6

8

el
ec

tri
ci

ty
 d

em
an

d 
fo

r c
oo

lin
g 

(M
W

h/
h) (b)

mean-peak

0 20 40 60
people in restaurant buildings (thousands)

0

2

4

6

8

el
ec

tri
ci

ty
 d

em
an

d 
fo

r c
oo

lin
g 

(M
W

h/
h) (c)

med-peak

0 20 40 60
people in restaurant buildings (thousands)

0

2

4

6

8

el
ec

tri
ci

ty
 d

em
an

d 
fo

r c
oo

lin
g 

(M
W

h/
h) (d)

div-peak

0.1%
9 h/yr

1%
88 h/yr

5%
438 h/yr

10%
876 h/yr

20%
1752 h/yr

0.1%
9 h/yr

1%
88 h/yr

5%
438 h/yr

10%
876 h/yr

20%
1752 h/yr

0.1%
9 h/yr

1%
88 h/yr

5%
438 h/yr

10%
876 h/yr

20%
1752 h/yr

0.1%
9 h/yr

1%
88 h/yr

5%
438 h/yr

10%
876 h/yr

20%
1752 h/yr

Figure 12: 2D histogram of hourly restaurant district occupancy (no. of people) vs. hourly
space cooling demand in restaurant buildings. Results of the base (a) and the data-driven
models under the peak constraint are shown. The plots show the mean-peak (b), med-
peak, and the average of N=50 div-peak simulations. The colors indicate the frequency
of the situations. Please note that the color scale is not linear. One pixel is 4,000 people
wide and 0.5 MW high.
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lower. Regarding annual demand, results of div models were 8–20% lower663

compared to the base. They were lower even when the sum constraint was664

met. The mean results were close (-6% to +3%) to the base. However,665

they were far above the range of results of the div models. Regarding the666

district’s peak demand, all data-driven model results were from 14% lower667

to 13% higher compared to the base. Mean and med results were within668

the range of the respective div models.669
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Figure 13: Annual all-electric energy demand (a) and peak demand (b) for the entire
district obtained with different data-driven UBOP. All results are normalized to the results
of the base model.

4.3. District Renewable Energy Potential670

In this section, the potential to integrate decentralized renewable elec-671

tricity generation on the district level is analyzed.672

The results obtained with the different UBOP for the overall solar energy673

share, the solar self-sufficiency, and the self-consumption for two options in674

terms of demands are compared.675

Fig. 14 shows the district’s potentials for overall solar energy share (a,b),676

solar self-sufficiency (c,d), and self-consumption (e,f) obtained with different677

UBOP. The figure shows two different options in terms of district energy678

demands considered. The left column (a,c,e) assumes the total all-electric679

energy demand of the district, including decentralized space cooling and hot680

water supply systems. The right column (b,d,f) considers only the electric681

end-use energy demands in the district (appliances, lights, and auxiliary elec-682

tricity). The results are presented in absolute terms.683
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For both cases, UBOP approaches with data-driven profiles lead to simu-684

lation results that suggest higher renewable energy share, higher self-sufficiency,685

and lower self-consumption as compared to the base standard assumptions.686

Although the absolute differences were relatively small. While the occu-687

pant density and the choice of uniform (mean, med) occupancy profile688

had a considerable impact, the diversity of profiles did not lead to a sig-689

nificant spread in results. In general, compared to probabilistic div simu-690

lations, the mean was underestimating self-sufficiency and overestimating691

self-consumption. Whereas the med models displayed the opposite behav-692

ior for self-consumption. However, all results remained in a relatively nar-693

row range. The total spread in data-driven results was never significantly694

larger than ±1.5%-points. The largest differences between the base and695

data-driven models for any of the metrics did not exceed ±3%-points. The696

self-consumption was around 96–100%, which can be expected for a district697

of this density. However, it is important to note that the spread in results698

of the div models was smaller than the difference between mean and med699

models. In general, none of the mean or med model results were within the700

interquartile range of results of their div counterparts.701
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Figure 14: District potential of solar energy share (top row, a, b), district potential of
solar self-consumption (middle row, c, d) and solar self-sufficiency (bottom row, e, f),
for the case when all demands are converted to electricity (left column, a, c, e) and for
the case when only electric end-use energy for lights, appliances, and auxiliary systems is
considered (right column, b, d, f).
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Figure 15: Annual district cooling energy demand (top row, a, b, c) and peak demand
(bottom row, c, d, e) with different occupancy models and different combinations of cooling
demands. Demands of all commercial buildings (left, a, d), all commercial and office
buildings (center, b, e), and all commercial, office, and residential buildings (right, c, f).
All values are shown relative to the base results.

4.4. Cooling Demand Analysis for District Infrastructure Design702

In this section, the district’s space cooling demand patterns with respect703

to the design of a centralized DCS are analyzed. Three options of build-704

ing interconnections were considered to address the research question (Q3):705

All commercial buildings are connected to a DCS, all commercial and office706

buildings are connected, and the entire district (all commercial, office, and707

residential buildings) is connected.708

Fig. 15 shows the annual cooling energy demand (top row) and the annual709

peak cooling demand (bottom row) for the three options from left (only the710

commercial buildings are connected) to right (all buildings in the district are711

connected). The results are presented relative to the results obtained with712

the base model.713

From Fig. 15 (d) it can be observed that the peak cooling demand ex-714

perienced a huge spread when considering only the commercial buildings in715
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the district. The spread reached from -20% to +83% compared to the results716

of the base model. This variation became smaller when all use-types in the717

district were considered. See Fig. 15 (e, f). One interesting observation is718

that when commercial buildings’ demand patterns were combined with of-719

fice demand patterns, the mean-cap and mean-peak models resulted in720

higher peaks, outside of the range, compared to the respective div-cap and721

div-peak results. See Fig. 15 (d, e).722

The annual cooling demand was generally smaller than the base when723

modeled with any of the div or med models. For div and med models it724

was -18% to -42% smaller when only commercial buildings were considered725

and -11% to -25% smaller when all buildings in the district were considered.726

However, mean models resulted in a up to 9% higher annual cooling energy727

demand compared to the base. Also, for the annual energy demand, the728

differences in results became smaller when more use-types were considered.729

See Fig. 15 (a, b, c).730

Fig. 16 shows the diversity factor (top row) and the capacity factor731

(bottom row) of the district cooling demand for the three options from left732

(only the commercial buildings are connected) to right (all buildings in the733

district are connected). The results are presented in absolute terms. As734

can be expected, the diversity in commercial building occupancy profiles735

directly impacted the diversity factor of the space cooling peak demand for736

commercial buildings in the district. See Fig. 16 (a). The diversity factor737

was between 59–78% with div models compared to around 92–97% with738

the uniform base, mean, and med models. When more use-types were739

considered, the diversity factor became smaller, and the range of simulation740

results became narrower. All non-diverse models, in all cases, resulted in741

higher diversity factors as compared to the div models.742

The capacity factor estimation with different UBOP was highly variable743

when only the commercial buildings in the district were considered. See Fig.744

16 (d). mean models resulted in higher capacity factors and med models in745

rather lower capacity factors, when compared to the respective probabilistic746

div results. When offices were included in the DCS, the med model results747

fell within the range of div results. When office and residential buildings748

were included, the base model and the div models produced similar results.749
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Figure 16: DCS diversity factors (top row, a, b, c) and capacity factors (bottom row, d,
e, f) with different UBOP and different combinations of cooling demands: Demands of all
commercial buildings (left, a, d), all commercial and office buildings (center, b, e), and all
commercial, office, and residential buildings (right, c, f). All values are shown in absolute
terms.

In order to better understand these differences in capacity factors, the750

district’s cooling load duration curves are presented here.751

Fig. 17 shows the case study district’s cumulative load duration curve752

for space cooling simulated with different occupancy models. The top graph753

includes the loads of all commercial buildings. The middle graph includes the754

loads of all office and commercial buildings. The bottom graph includes the755

loads of all residential, office, and commercial buildings. All load duration756

curves are presented normalized to the respective peak demand.757

The similarity of the different models’ load duration curves can be as-758

sessed qualitatively in terms of duration. All div models generated similar759

load characteristics. When considering only the commercial buildings in the760

district, the mean results showed the same characteristics compared to the761

div results for around 3000 hours. See Fig. 17(a). The med curves were sim-762

ilar to the div for around 4500 hours. All uniform UBOP (base,mean,med)763

were resulting in very different low-load demand patterns compared to the764
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div models. The base and mean models generated higher loads for 3000–765

4000 hours of the year. The med models generated lower loads for around766

4000 hours of the year.767

When all buildings in the district were considered, all models were gen-768

erating similar thermal load characteristics. See Fig. 17(c).769
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Figure 17: Normalized cooling load duration curves of the case study district for different
UBOP and different building aggregations. Graph (a) aggregates the space cooling loads
of all commercial buildings. Graph (b) aggregates the loads of all office and commercial
buildings. And graph (c) aggregates the loads of all residential, office, and commercial
buildings.
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5. Discussion770

In this section, the results presented above are discussed in the same se-771

quence of district occupancy, demand, energy potentials, and supply systems772

metrics. At the end of this section, the findings are summarized to answer773

the research questions.774

5.1. Occupant Presence775

In general, all UBOP produced expected district occupancy results. The776

different constraints used for the data-driven models reveal that the occupant777

density in commercial buildings is a very sensitive parameter for occupant778

presence prediction. This is not surprising, given that the assumed densities,779

especially for restaurants, are very high compared to other use-types. Under780

the sum constraint, unrealistically high district occupancy peaks were pre-781

dicted. The med-sum model generated an extreme peak value of more than782

186,000 people in the district on Friday evenings, including around 150,000783

people in restaurants. We consider this to be unrealistic in relation to the784

district’s residential population of 24,000 people and office-working popula-785

tion of 27,000 people, which will likely have some overlaps. Meaning that786

the residents of the district might probably will hold some of the office jobs.787

However, it is not possible to completely rule out one or the other model,788

because the future district might attract many people from other districts789

or even tourists from outside the country. This highlights one of the draw-790

backs of space-based occupancy modeling approaches for UBEM — more791

buildings (more GFA) automatically ‘attract’ more people, irrespective of792

the surrounding context. In this work a way to overcome this limitation793

by imposing constraints on the number of people on the district-level was794

proposed. Our data-driven UBOP adjusted the occupant density of build-795

ings according to the selected constraints. In this work, the constraints were796

based on standard values for occupant density and profiles for comparison.797

However, it will be difficult to determine realistic values for the constraints798

for a non-existing development without having access to data from similar,799

existing neighborhoods in the same context. Such data could be obtained800

from mobile phone companies that determine the dynamic number of cus-801

tomers in each cell of their network. This kind of data is increasingly used802

as input for urban mobility models [39].803
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5.2. Energy Demand804

The district energy demand prediction of the UBEM depends on the805

underlying modeling mechanisms that couple occupant presence to energy806

demand. In this work, a conservative approach was employed, mimicking as807

much as possible the implicit relationships between occupant presence and808

light use, appliance use, water use, fresh air requirements, and cooling set-809

point temperatures as found in standards [12, 11, 43] and literature [54]. The810

observed differences in energy demand of our case study were primarily due811

to the assumed presence-controlled HVAC systems operation in commercial812

buildings. This assumption is considered to be valid because, in commercial813

buildings, occupant presence should correspond to the operating or opening814

hours. The models based on the med profiles provided better estimations for815

probabilistic results from div models. This is likely due to the more realistic816

building operating hours compared to the mean or base models. The mod-817

els based on mean profiles generated high demands during low commercial818

district occupancy because all buildings were occupied and air-conditioned819

in early mornings and late evenings. Interestingly, these unrealistic building820

operation patterns generated the only results close to the base model. This821

strong influence of occupant presence and operating hours on space cool-822

ing energy demand was most likely a climate-specific effect, related to the823

year-round need for air-conditioning in Singapore. More research in other824

contexts could reveal the interplay of different climates and diversity in oc-825

cupancy profiles on district energy demand. However, this also highlights the826

importance of realistic occupant-building-interaction models for commercial827

building use-types in UBEM, such as restaurant and retail buildings. For828

example, if an HVAC system operation schedule independent of occupant829

presence was assumed, the results and differences between the models would830

look very different.831

5.3. Energy Potentials832

The urban renewable energy potential assessment is related to occupancy833

via the UBEM demand pattern simulation. The overprediction of the energy834

demand with mean compared to div occupancy profiles translated directly835

to a higher PV self-consumption potential and a lower self-sufficiency. In836

general, our data-driven UBOP predicted a higher renewable energy share837

potential from PV compared to the base model. This could potentially have838

implications on electricity supply system considerations and GHG emission839

benchmarking of districts. However, in our particular case study, due to840
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the high urban density of the district, all UBOP resulted in similar absolute841

values. Especially because the self-consumption of PV electricity was very842

close to 100%, the impact of diversity in occupancy profiles is negligible in843

this case. This could change if districts with lower urban density, for example,844

suburban districts, or districts with different urban forms and use-mix were845

modeled.846

5.4. Centralized Cooling Supply System Design847

The relevant outputs of the UBEM for the design of a centralized DCS848

were analyzed. The annual space cooling peak demand, the space cooling849

energy demand, the diversity factor, the capacity factor, and the annual load850

duration curve serve as indicators for system design decisions, as well as in-851

vestment and operation costs. The peak cooling demand serves as a proxy852

for capital investment costs for the district cooling system. It directly im-853

pacts the plant size and pipe size. The annual cooling energy demand serves854

as a proxy for operational cost and GHG emissions of the district system. If855

only the commercial buildings in our case study are considered, the different856

data-driven UBOP yielded peak cooling demands in a range of around -20%857

to +80% compared to the base model. At the same time, the cooling en-858

ergy demand results were in a range of around -40% to +10% compared to859

the base. These are both very large ranges of results, especially considering860

that usually buildings of similar types are connected in DCS. The spread of861

energy demand and peak demand among all models became much smaller862

when the entire district demand was aggregated. It was around 30% (-25%863

to +5% relative to base) for both, the energy demand and the peak demand.864

This is still considerable, given that the buildings affected by the choice of865

UBOP constitute only 16% of the GFA in our case study. This trend indi-866

cates that diversity withing use-types becomes less significant if the district867

is highly mixed, meaning that it contains buildings of multiple use-type cat-868

egories with distinct occupancy and operation profiles. In [56], a DCS for869

a mixed-use district in Hong Kong was designed based on the cooling load870

profiles of typical buildings. The chiller plant capacity was sized to be 20%871

higher than the predicted peak cooling load to account for uncertainties in cli-872

mate and system design. Later the authors designed the same system under873

uncertainty using a UBEM with variable parameters for demand prediction874

[57, 58]. They considered uncertainty in weather, building construction, and875

internal gain densities (occupant density, equipment and lighting density,876

and ventilation rate), but not in temporal building occupancy and opera-877
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tion profiles. Their results predicted peak cooling loads of -21% to +9%878

compared to the reference case. The occupant density and ventilation rate879

were identified to be the most important variables for annual cooling de-880

mand and peak prediction [58]. The range of the peak demand predictions881

run here is comparable. However, in this study only two parameters (i.e.882

occupancy profiles and occupant densities) of 16% of the district’s GFA were883

modified. The spread within div models under occupant density constraints884

was around ±5% (div-cap) to ±10% (div-sum) of the peak demand for the885

entire district. Meaning that without modifying the most sensitive variables886

according to [58] and only by shuffling occupancy profiles of a minor use in887

the district, the uncertainty in peak demand prediction can become as large888

as the safety factor for chiller plant sizing [56]. This highlights once more889

the need for UBEM to adequately model the energy demands of commercial890

buildings in terms of operation and occupant behavior, even if they do not891

constitute the major use-types in the district. However, the exact land-use892

mix among commercial buildings, such as restaurants, retail, and other ser-893

vices, will be unknown for green-field and brown-field developments, which894

adds additional complexity.895

The diversity factor of the peak cooling demand is an important metric896

to argue in favor of or against a DCS. A lower diversity factor translates897

to higher potential savings in equipment investment costs due to the overall898

lower capacity requirement. Diversity factors for district cooling system de-899

sign are often based on the experience of operators. For example, [59, 60, 61]900

all mention a value of 0.8 based on experience. For a district cooling applica-901

tion in Hong Kong, the diversity factor was determined as 0.81 in a district902

comprised of 12 building use-types (45% retail GFA) with uniform load pro-903

files [62, 63]. With the presented div UBOP, diversity factors were below 0.8904

when considering only the two commercial building use-types. This suggests905

that uniform load profiles for commercial buildings will result in a too high906

diversity factor estimate. This might ultimately result in decision-makers907

disregarding the option of a centralized DCS. However, it is important to908

note that we did not consider any diversity in terms of construction and909

building system properties. When all four use-types in our case study were910

considered, the diversity factor reached values of 0.5 and lower with div mod-911

els. Uniform models still predicted higher values in this case, but the med912

models were relatively close to the upper range of div results.913

The capacity factor relates the annual energy demand to the installed914

capacity. In [49], the building use-type mix in a district in Hong Kong was915
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optimized to maximize the capacity factor of a DCS plant. Five use-types916

with uniform load profiles were considered. The maximum achievable ca-917

pacity factors ranged from 0.4 to 0.45. In the Singapore case study, when918

only commercial demands were aggregated, the capacity factor results ranged919

from around 0.2 to 0.6. This range became narrower to 0.4 to 0.5 when of-920

fice and residential buildings were connected. Base and med model results921

were both within the range of div results. mean models predicted higher922

values. A broad range of values are interpreted in these models, especially923

for commercial buildings, as potentially influencing the technology choice for924

a DCS. A high capacity factor of 0.6 indicates that a system with a large925

cooling generation capacity (close to the peak demand) will be the appro-926

priate system choice. Whereas, a low capacity factor of 0.2, might shift the927

decision towards a system consisting of a smaller cooling generation capacity928

and a TES. The higher capacity factors of mean models were caused by929

the much higher energy demand predictions at part-load conditions. At the930

same time, the peak demands were comparable to the other models. This931

can be seen from the differences in the relative load duration curves. These932

differences in part-load and low-load energy demand will not impact system933

design decisions based on peak demands. However, DCS design and sizing934

methods using optimization for plant size and storage size [64] or network [65]935

might produce significantly different results when one or the other UBOP is936

used. For this reason, methods that design DCS under uncertainty might be937

better-suited [57, 58] to be integrated with UBEM.938

5.5. Summary939

Fig. 18 summarizes the most important case-study-specific results in940

relation to the stated research questions (Q1–Q4). The range of UBEM941

results obtained with different data-driven UBOP is provided in the form of942

a matrix. Columns represent different UBOP and rows represent different943

UBEM simulation purposes. The values in each cell indicate the range of944

results relative to the average of div simulations (N=50) for a given occupant945

density constraint.946
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Figure 18: Range of UBEM results for different simulation purposes obtained with three
different data-driven UBOP for three occupant density constraints. Columns represent
different UBOP and rows represent different UBEM simulation purposes. The values
in each cell indicate the range of results relative to the average results of N = 50 div
simulations for a given occupant density constraint. Cells are color-coded according to
their value.

Green colored cells represent simulation results within a range of less947

than ±10% of the respective average of div results (N = 50). This range948

was chosen in accordance with the safety factor for DCS plant sizing in [56].949

Broader ranges of results fall outside of this safety factor and are indicated950

with yellow and red colors. The results matrix, for a given occupant density951

constraint, allows the following three possible interpretations: (a) Diversity952

in occupancy profiles is not relevant if div cells are green and mean or med953

cells are green as well. In this case, any of the green models can be used. This954

also means that probabilistic simulations are not necessary. (b) Diversity is955

relevant, but probabilistic simulations are not necessary if div cells are green956

and mean or med are not. And (c) diversity is relevant, and probabilistic957

simulations should be considered if div cells are not green. In this way, we958

observe that diversity can be relevant for DCS planning purposes. More-959

over, especially in high occupant density situations, probabilistic simulations960

should be considered for DCS design.961

It is also observable in Fig. 18 that diversity in profiles tends to be more962

important when occupant densities are higher (cap < peak < sum). In963

the same way, it is noticeable that diversity tends to become less important964
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if more building use-types are considered. Furthermore, mean occupancy965

profiles often result in large deviations of energy simulation results when966

compared to div models. This is somewhat counterintuitive, given that967

the total district occupancy of mean models is much closer to average div968

occupancy as compared to the med models, as described in section 4.1. This969

means that in our case study, realistic building operating hours were more970

important than realistic district occupancy patterns, and therefore mean971

profiles are not suitable for district energy demand benchmarking. However,972

this finding is specific to our modeling assumptions of occupant-building-973

interactions.974

6. Limitations975

In this study, only the variability of commercial building occupancy pro-976

files due to diversity within two building use-types was considered. Many977

other factors are contributing to variability in UBEM simulation results. For978

example, occupant density itself is also a potentially diverse parameter on979

the building level. Nevertheless, we decided to use one value per use-type.980

Future studies could treat these parameter values as probabilistic as well.981

Also, we only considered one option of building systems and controls per982

use-type. Notably, future buildings might have new types of cooling systems983

and control systems that could be considered together with different UBOP.984

Furthermore, we did not consider any variability in the behavior of office985

occupants and residents. It can be argued that office buildings behave ac-986

cording to more regular schedules and that residential energy consumption987

in a mixed-use district in Singapore is not dominant. Also, residences will988

probably not be connected to DCS. Nonetheless, variability in these buildings989

should be included in future UBOP. We also did not consider variability in990

climate and weather, and we only considered one exemplary PV technology991

to assess the renewable energy potential for the district. The uncertainty in992

climate combined with variability in UBOP might have significant impacts993

on other renewable energy potentials, such as solar thermal technologies.994

7. Conclusion995

In this paper, the impacts of UBOP choice onto the simulation results996

of UBEM were assessed. The main research question was to investigate the997

relevance of diversity in occupancy profiles among commercial buildings of998
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the same use-type for different UBEM simulation purposes and contexts. To999

address this question, space-based occupant presence models for retail and1000

restaurant buildings were generated. The baseline (base) model represents1001

the status-quo and is based on occupant densities and relative occupancy1002

profiles from ASHRAE [12]. Next, data-driven models with diversity (div)1003

and without diversity (mean, med) in building occupancy profiles were cre-1004

ated. Diversity was based on the random choice of weekly profiles based1005

on LBS data from Singapore downtown. For that purpose, popular times1006

profiles from more than 500 retail places and 1700 restaurants from Google1007

Maps [40] were collected.1008

The models were applied to a case study of a future district in Singapore1009

where retail and restaurant buildings constitute 16% of the total GFA. The1010

two primary building use-types were residential and office. Using the dis-1011

trict occupancy of the base model as a baseline, we imposed constraints on1012

the data-driven models to keep either the occupant capacity (cap), the occu-1013

pancy peak, or the occupancy sum constant in the district. The combination1014

of data-driven profiles and constraints produced three diverse probabilistic1015

UBOP and six non-diverse deterministic UBOP.1016

CEA was used as our UBEM tool to simulate the district’s energy demand1017

and PV potential using the ten UBOP. The district energy demand patterns1018

were analyzed to compare relevant metrics for centralized DCS design and1019

operation.1020

From this case study, several conclusions can be drawn. First in general,1021

occupant density and occupancy profiles are both highly sensitive parameters1022

for district occupancy and district energy demand predictions. Second, the1023

research findings suggests that standard assumptions are conservative. All1024

data-driven UBOP produce lower peaks and lower demands unless the cumu-1025

lative sum of occupants is kept constant, resulting in unrealistic, but not im-1026

possible, extreme values of peak occupancy. Third, the interactions between1027

occupant presence and building systems operation are mainly responsible for1028

the differences in energy demand caused by the UBOP choice. In this work,1029

the occupant presence in commercial buildings was assumed to coincide with1030

opening hours and determined the operation patterns of HVAC systems. The1031

major difference between diverse and non-diverse UBOP is the distribution1032

of occupants to buildings in the district. Models with single profiles, such1033

as the base, mean, and med models, generate people in all buildings in1034

the district. In contrast, div models with diverse building occupancy pro-1035

files can generate a similar total number of people in fewer buildings. This1036
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effect was especially pronounced in the mean model where periods of very1037

low occupancy resulted in more than 20% higher annual energy demand in1038

commercial buildings compared to div and med models. This means that1039

GHG emission estimates could be off by 20% just due to the shape of relative1040

occupancy profiles.1041

Forth, in the considered climatic context, differences in cooling energy1042

demand are mainly responsible for the differences in annual energy demand.1043

The choice of UBOP influences the cooling demand to such a degree that1044

system design decisions might be impacted. The peak cooling demand in the1045

entire case study district was influenced by up to 30% by varying occupant1046

profiles and density in only the commercial buildings (16% of the total GFA).1047

The diversity factor of the cooling load varied in a range that might impact1048

the technology choice and sizing of chillers and TES systems.1049

Fifth, the PV energy potential assessment results are influenced by the1050

choice of UBOP. However, due to the high demand density in our particular1051

case study, the absolute range of results was not significant.1052

To summarize, the findings suggest that diversity should be considered1053

for DCS design and probabilistic demand simulations should be conducted1054

for high occupant densities.1055

8. Outlook1056

Our results highlight the need for further research on UBOP as well as1057

on building energy modeling of all use-types in cities. Especially retail and1058

restaurant buildings are highly influential on the energy demand and supply1059

in mixed-use districts.1060

To improve UBOP and to calibrate the very sensitive occupant density1061

parameter, novel data sources could be explored. Such data could come from1062

telco companies that know the temporal patterns of absolute numbers of1063

people in districts.1064

Furthermore, our results are specific to the climate and case study. Fur-1065

ther research on the interplay between occupancy, climate, and urban design1066

is needed. For this purpose, UBEM should consider different building systems1067

and control strategies, and explore uncertainties in construction, building sys-1068

tems, and control parameters together with diversity in occupant behavior.1069
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Appendix A. Occupant-building Interaction Modeling Details1075

Occupant-building-interactions are modeled according to ASHRAE stan-1076

dards [12, 11] and context-specific building codes [43] Sensible and latent heat1077

gains as well as ventilation air flow requirements were obtained by multipli-1078

cation of per-person values with the number of occupants in the buildings.1079

The Singapore Standard 553 also requires a minimum fresh air flow rate per1080

area [43]. The AC systems are assumed to be presence-controlled. See Table1081

A.2 and Table A.3. For the other two use-types in the case study district1082

(office and residential) assumptions and schedules were based on literature1083

and standards. They are introduced as part of Appendix B.1084

Regarding the relative energy use of lights, appliances, and hot water in1085

commercial buildings, we think that, conceptually, it is important to depict1086

the bandwidth between minimal base load and peak load. Therefore we1087

create rule-based algorithms that can be adjusted without compromising this1088

bandwidth. All algorithms follow the same concept: The minimum load1089

share is fixed according to the minimum observed in the respective standard1090

schedules. The maximum load share is fixed according to the peak defined1091

in the standard schedules. Rules define, when the minimum and maximum1092

occur, based on the current relative value of occupancy, and for water use1093

in restaurants, based on past values of occupancy. For occupancy values in1094

between minimum and maximum consumption, either a linear relationship1095

or a fixed part-load is considered. The algorithms are introduced below in1096

sections Appendix A.1 and Appendix A.2.1097

Appendix A.1. Restaurant1098

According to [12] the minimum lighting use in restaurants is 15%, and the1099

maximum is 90% of the installed power density. 15% is observed during zero1100

occupancy. The peak of 90% can be observed for occupancy values ≥20%.1101

For our model we implement a simple 3-step control, independent of time of1102

the day and day of the week emulating the general behavior of ASHRAE.1103
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I.e., 15% during no occupancy, 40% during intermediate occupancy, and 90%1104

during peak occupancy. See Alg. 11105

Algorithm 1 Relative light power use in restaurants l(t) based on the rela-
tive occupancy value o(t).

for all t do
if o(t) = 0 then

l(t)← 0.15 . small consumption when not occupied
else if 0 < o(t) < 0.2 then

l(t)← 0.4 . intermediate consumption during low occupancy
else if o(t) ≥ 0.2 then

l(t)← 0.9 . peak consumption during high occupancy
end if

end for

According to ASHRAE [12] the minimum appliance use in restaurants is1106

2% and the maximum is 29%. The schedule is identical for all types of days.1107

The peak of appliance use is reached at 50% occupancy. Between zero and1108

50% occupancy the relationship is more or less linear. We translate this to1109

our model to Alg. 21110

Algorithm 2 Relative appliance use in restaurants a(t) based on the relative
occupancy value o(t).

for all t do
if 0 ≤ o(t) < 0.5 then

a(t)← 0.02 + o(t) ∗ 0.27/0.5 . linear relationship with minimum use
else if o(t) ≤ 0.5 then

a(t)← 0.29 . peak consumption during high occupancy
end if

end for

According to [11] the water use in restaurants is 0% when the building is1111

not occupied and 15–60% when the building is occupied. The peak is reached1112

twice per day: The first peak occurs immediately after opening during low1113

occupancy, the second peak occurs when 80% occupancy is reached. It seems1114

that a further increase in occupancy does not impact the water consumption1115

(e.g., 90% occupancy on Saturday coincides with 55% water use). During1116

other times the water consumption is more or less linear. We translate this1117

behavior to Alg. 31118

Based on the cooling system temperature schedule in [12] the HVAC1119

system operation is approximated with a presence-based set-point, set-back1120

control. The ventilation system provides the minimum fresh air flow rate1121

based on the larger value of the per-person or per-area requirement. During1122
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Algorithm 3 Hourly relative hot water consumption w(t) for restaurant-use
based on the hourly relative value of occupancy o(t).

for all t do
if o(t) = 0 then

w(t)← 0 . no consumption when not occupied
else if o(t) > 0.0∧ ((o(t− 4) = o(t− 3) = o(t− 2) = o(t− 1) = 0)∨ (o(t− 4) = o(t− 3) = o(t− 2) =

0 ∧ o(t− 1) > 0)) then
w(t)← 0.6 . peak consumption during first two hours after minimum of 4 hours closing period

else if 0 < o(t) < 0.8 ∧ ¬((o(t − 4) = o(t − 3) = o(t − 2) = o(t − 1) = 0) ∨ (o(t − 4) = o(t − 3) =
o(t− 2) = 0 ∧ o(t− 1) > 0)) then

w(t) = 0.2 + 0.5 ∗ o(t) . linear behavior during off-peak hours
else if o(t) ≥ 0.8 then

w(t)← 0.6 . peak consumption during peak occupancy
end if

end for

Table A.2: UBEM occupant behavior model parameters for the restaurant use-type.
parameter value remarks source
default occupant den-
sity

1.11 m2/pers average of fast-food and family
dining

[12]

ventilation rate larger value of 5.1 l/s/pers or 3.4 l/s/m2 Singapore standard [43]
sensible heat gains 80.6 W/pers [12]
latent heat gains 130.1 gwater/h/pers calculated from energy value [12]
cooling set point tem-
perature

24◦C [12]

cooling set back tem-
perature

30◦C [12]

appliance power den-
sity

64.6 W/m2 [12]

light power density 15.1 W/m2 ASHRAE Standard 90.1-2016
PRM value

[66]

maximum hot water
use

2 l/pers/h calculated from BTU value, as-
suming water has to be heated
by ∆T = 50◦C

[11]

zero occupancy the ventilation system is switched off. Table A.2 provides all1123

model parameters for the restaurant use-type.1124

Appendix A.2. Retail1125

According to [12] lighting use in retail-use buildings is minimum 5% and1126

maximum 90%. 5% is observed during non-occupied hours. 90% is observed1127

during more than 50% relative occupancy. During off peak hours light-use is1128

somewhere in between. We translate this into a 3-step light control algorithm1129

for retail-use. See Alg. 4.1130

According to [12] the minimum appliance use in retail buildings is 20%,1131

the maximum is 90%. The peak is reached at 50% relative occupancy. Be-1132

tween zero occupancy and 50% the relationship is relatively linear. We trans-1133
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Algorithm 4 Algorithm to determine relative light use in retail buildings
l(t) based on the relative value of occupancy o(t).

for all t do
if o(t) = 0 then

l(t)← 0.05 . light during zero occupancy
else if 0 < o(t) < 0.5 then

l(t)← 0.4 . part load during low occupancy
else if o(t) ≥ 0.5 then

l(t)← 0.9 . peak load during high occupancy
end if

end for

late this into Alg. 5.1134

Algorithm 5 Algorithm to determine relative appliance use in retail build-
ings a(t) based on the relative value of occupancy o(t).

for all t do
if 0 ≤ o(t) < 0.5 then

a(t)← 0.2 + o(t) ∗ 0.7/0.5 . linear relationship with minimum load
else if o(t) ≥ 0.5 then

a(t)← 0.9 . peak during high occupancy
end if

end for

According to [11] the minimum water consumption in retail buildings is1135

4% and the maximum is 62%. The peak consumption is reached at 70% of1136

occupancy. Between zero and 70% the water consumption is relatively linear.1137

We translate these observations into Alg. 6.1138

Algorithm 6 Rules to determine relative water use in retail buildings w(t)
based on the relative value of occupancy o(t).

for all t do
if 0 ≤ o(t) < 0.7 then

w(t)← 0.04 + o(t) ∗ 0.58/0.7 . linear relationship with minimum use
else if o(t) ≥ 0.7 then

w(t)← 0.62 . peak during high occupancy
end if

end for

The HVAC systems follow the same control as in the restaurant buildings.1139

Table A.3 provides all model parameters for the retail use-type.1140

Appendix B. UBEM Modeling Details1141

Important building energy model parameters used in the UBEM are pro-1142

vided here. They are based on context-specific literature. Office towers1143
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Table A.3: UBEM occupant behavior model parameters for the retail use-type.
parameter value remarks source
default occupant den-
sity

6.22 m2/pers [12]

ventilation rate larger value of 5.5 l/s/pers or 1.1 l/s/m2 during occupancy Singapore Standard [43]
sensible heat gains 73.3 W/pers [12]
latent heat gains 94.6 gwater/h/pers calculated from energy value [12]
cooling set point tem-
perature

24◦C [12]

cooling set back tem-
perature

30◦C [12]

appliance power den-
sity

3.23 W/m2 [12]

light power density 16.1 W/m2 ASHRAE Standard 90.1-2016
PRM value

[66]

maximum hot water
use

0.7 l/pers/h calculated from BTU value, as-
suming water has to be heated
by ∆T = 50◦C

[11]

and commercial podiums (retail and restaurant buildings) share the same1144

construction properties. They are provided in Appendix B.1. The same1145

section also contains the sources of the occupant behavior parameters for of-1146

fice buildings. The model parameters for residential towers are introduced in1147

Appendix B.2. All parameters that are not explicitly mentioned are default1148

parameters in the CEA databases for Singapore as of version 2.29 [44].1149

Appendix B.1. Office towers building energy modeling parameters1150

The office building models are inspired by the benchmark model for an1151

energy efficient office in Singapore by [54]. The model was created for Energy1152

Plus, some adjustments for the use in CEA had to be made. The original1153

model is a 20 storey building with a naturally ventilated car park on storey1154

1-3 and office space on storey 4-20. For this work we did not consider the1155

car park. We also did not consider exterior lighting, facade lighting, and1156

electricity consumption from lifts. Table B.4 provides the construction and1157

systems properties. For the commercial podiums the same construction and1158

system properties as for office towers were assumed. Table B.5 provides the1159

office use-type occupant behavior parameters.1160

Appendix B.2. Residential towers1161

Residential tower construction and systems properties are modeled after1162

the Singapore public housing archetype described in [67]. Ranges of typi-1163

cal values for wall and window construction, window-to-wall ratio and light1164

power density are provided. For our model we assume the lowest U-values,1165
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Table B.4: UBEM building model construction and systems properties for office, retail,
and restaurant use-type buildings. Most values are based on the SinBerBest benchmark
BEM [54].

parameter value remarks source
construction type CEA T2 medium construction assumption
envelope leakiness CEA T1 highly tight, bench-

mark model has 0.2
ACH at peak time

[54]

roof U-value 0.6 W/m2/K - [54]
wall U-value 0.4 W/m2/K - [54]
window U-value 2.2 W/m2/K double glazed on all

facades, benchmark
model has single glazed
windows on south and
north facade

[54]

window g-value 0.22 SHGC = g-value,
double glazed on all
facades, benchmark
model has single glazed
windows on south and
north facade

[54]

WWR 0.59 - [54]
shading system CEA T1 - assumption
HVAC system CEA T3, CEA T1 central AC and me-

chanical ventilation
with demand con-
trol, similar to office
Benchmark

[54]

fraction of conditioned
GFA

1.0

Table B.5: UBEM office use-type occupant behavior and system operation parameters.
parameter value remarks source
occupant density 10 m2/pers used to calculate GFA of case

study
[54]

occupancy schedule benchmark schedule see Fig. 3 in [54] Appendix [54]
lights schedules benchmark schedules see Fig. 5 and Fig. 6 in [54]

Appendix
[54]

lights power density 14.4 W/m2 composed of office, toilet, and
staircase

[54]

appliance schedule benchmark schedule see Fig. 7 in [54] Appendix [54]
appliance power density 14 W/m2

HVAC system operation weekdays 7am - 6pm,Saturdays 7am - 1pm benchmark model starts at
7.30 with 50% operation, see
Fig. 1 and 2 in [54] Appendix

[54]

ventilation rate larger value of 5.5 l/s/pers or 0.6 l/s/m2 [54]
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Table B.6: UBEM building model construction and systems properties for residential use-
type buildings.
parameter value remarks source
construction type CEA T2 medium construction assumption
envelope leakiness CEA T3 medium assumption
Wall U-value 1.2 W/m2/K [67]
Window U-value 2.2 W/m2/K [67]
Window g-value 0.22 same window as commercial/office assumption
fraction of conditioned GFA 0.33 - [70]
WWR 0.35 average of range in literature [67]
HVAC system CEA T2 + CEA T0 mini split-unit and window ventilation assumption

Table B.7: UBEM residential use-type occupant behavior and system operation parame-
ters.
parameter value remarks source
maximum hot water use 3.1 l/h/pers standard assumption of 8.6

l/pers/h adjusted to match
EUI

[66]

hot water schedule COMNET Residential - [68]
cooling set point 24 C - [67]
cooling schedule ON during the night from 22PM-7AM every day of the week [67, 69]
light schedule ASHRAE schedule D - [12]
light power density 1.1 W/m2 initial guess of 2.7 W/m2 [67]

adjusted to match EUI
assumption

occupancy schedule ASHRAE schedule D - [12]
occupant sensible heat gain 73.3 W/pers from ASHRAE BTU value [12]
occupant latent heat gain 94.6 g-water/pers/h from ASHRAE BTU value [12]
appliance schedule ASHRAE schedule D - [12]
occupant density 34.6m2/pers from case study design, see sec-

tion 3, very close to ASHRAE
value of

appliance power density 6.2 W/m2 fitted to EUI statistics,
ASHRAE value is 6.7 W/m2

assumption

Ventilation rate 0.3 l/s/m2 based on ASHRAE [12]

projecting some improvement in average future construction. Residential1166

schedules for occupancy, lights, and appliances are taken from [12]. Values1167

and schedules relating to hot water were taken from [68]. The use of AC1168

systems was modeled after the assumptions in [67], which generally agree1169

with the results of a household survey in [69]. The assumptions are: AC use1170

during sleeping, i.e., from 22 PM - 7 AM. The air-conditioned area is 33%1171

of the GFA, based on [70]. We are assuming that in the new district, all1172

residential flats will be equipped with AC systems, which is a conservative1173

overestimation.1174
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Appendix C. Comparison of UBEM EUI to Statistics and Liter-1175

ature1176

This section aims at adding credibility to the UBEM energy demand1177

simulation. Retail and restaurant buildings are compared to statistical data1178

for energy efficient buildings in Singapore.1179

Appendix C.1. Retail and Restaurant Building EUI Comparison1180

Singapore’s Building and Construction Authority (BCA) publishes build-1181

ing energy benchmarking reports based on building energy consumption re-1182

ported by building owners [71]. The published energy use intensity (EUI)1183

data for retail and mixed developments for the year 2018 are provided in1184

Table C.8. There is no specific data available for restaurants.1185

Table C.8: Reported EUI of retail buildings and mixed developments in Singapore [71].
building type Top 10% EUI

(kWh/m2/yr)
Top Quartile
EUI
(kWh/m2/yr)

2nd Quartile
EUI
(kWh/m2/yr)

3rd Quartile
EUI
(kWh/m2/yr)

Bottom Quar-
tile EUI
(kWh/m2/yr)

Large Retail ≤164 ≤236 236-422 422-515 >515
Small Retail ≤147 ≤238 238-370 370-478 >478
Mixed Devel-
opment

≤135 ≤201 201-269 269-345 >345

Table C.9 provides the average EUI of commercial buildings in the case1186

study obtained with different UBOP. Retail buildings’ EUI is in the range1187

of 140-190 kWh/m2/yr, which is in the top quartile of the reported EUI in1188

Table C.8. Restaurant buildings separately are around 360-790 kWh/m2/yr.1189

When the commercial use-mix is considered as a whole, the EUI is in the1190

range of 220-400 kWh/m2/yr. This is within the likely range of large and1191

small retail buildings in Singapore. The BCA report only includes electricity1192

in the EUI values. Gas use in kitchens of restaurants might result in higher1193

EUI in reality in Singapore as reported here. Therefore we consider our1194

UBEM values realistic for energy efficient commercial buildings in Singapore.1195
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Table C.9: Average EUI of retail and restaurant building energy models for different
occupancy models.

UBOP retail EUI(kWh/m2/yr) restaurant EUI(kWh/m2/yr) commercial use-mix EUI(kWh/m2/yr)
base 183 742 378

mean-cap 186 600 331
med-cap 145 403 235
div-cap 138-153 360-437 221-248

mean-peak 189 649 350
med-peak 146 424 243
div-peak 143-159 387-531 231-284
mean-sum 190 786 399
med-sum 149 632 318
div-sum 142-158 536-606 283-311

Appendix C.2. Office Towers EUI Comparison1196

The simulation results for the office towers obtained from CEA match1197

well with the results of the SinBerBest benchmark model [54]. See Table1198

C.101199

Table C.10: Comparison of case study office building model to SinBerBest benchmark
building model.

demand CEA model
(kWh/m2/yr)

Benchmark model
(kWh/m2/yr)

remarks

total EUI 131 131 (excluding carpark, ex-
terior lights, and lifts)

EUI cooling
electricity

59 63

EUI lights and
appliances

72 68

share cooling 46% 47%

Appendix C.3. Residential EUI Comparison1200

We estimated the average EUI of residential buildings in Singapore via1201

statistical data of household energy consumption [72], housing type statistics1202

[73], and approximate flat sizes of public [74] and private housing [75]. The1203

EUI of residential towers in Singapore (public and private housing, but ex-1204

cluding landed properties) is roughly 50 - 65 kWh/m2/yr electricity, plus 6 -1205

7 kWh/m2/yr gas (depending on the assumed average flat sizes). The target1206

EUI for our, all-electric residential building model is therefore somewhere be-1207

tween 56 - 72 kWh/m2/yr. The shares of different energy end-uses (cooling,1208

appliances, lights, and hot water) was estimated based on household energy1209

consumption studies in 2012 and 2017 [76, 77]. Table C.11 shows the EUI of1210

residential buildings in the case study district simulated with the CEA.1211

55



Table C.11: Comparison of case study residential building model EUI to Singapore statis-
tical data.

demand CEA building model
(kWh/m2/yr)

SG statistical
(kWh/m2/yr)

remarks

total EUI elec-
tric

64.4 56-72 statistical data incl.
gas

EUI lights 3.1 2 - 4 6-4% of electricity con-
sumption

EUI appliances 31.3 20-40 (26-47 incl. gas) 39-61% of electric EUI
EUI water
heating

14.2 6 - 14 (only electric) 11 - 21% of electric EUI

EUI cooling 15.8 12-23 24-36% of electric EUI
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