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Abstract

In this work, we propose a simple yet effective semi-

supervised learning approach called Augmented Distribu-

tion Alignment. We reveal that an essential sampling bias

exists in semi-supervised learning due to the limited num-

ber of labeled samples, which often leads to a considerable

empirical distribution mismatch between labeled data and

unlabeled data. To this end, we propose to align the em-

pirical distributions of labeled and unlabeled data to al-

leviate the bias. On one hand, we adopt an adversarial

training strategy to minimize the distribution distance be-

tween labeled and unlabeled data as inspired by domain

adaptation works. On the other hand, to deal with the

small sample size issue of labeled data, we also propose

a simple interpolation strategy to generate pseudo training

samples. Those two strategies can be easily implemented

into existing deep neural networks. We demonstrate the

effectiveness of our proposed approach on the benchmark

SVHN and CIFAR10 datasets. Our code is available at

https://github.com/qinenergy/adanet.

1. Introduction

Semi-Supervised Learning (SSL) aims to learn a robust

model with a limited number of labeled samples and a abun-

dant number of unlabeled samples. As a classical learn-

ing paradigm, it has gained many interests from both ma-

chine learning and computer vision communities. Many

approaches have been proposed in recent decades, includ-

ing label propagation, graph regularization, etc. [7, 6, 3, 22,

5, 55]. Recently, there is an increasing interest in train-

ing deep neural networks in the semi-supervised learning

scenario[33, 47, 32, 37, 39, 11, 10]. This is partially due

to the data-intensive nature of the conventional deep learn-

ing techniques, which often impose heavy demands on data

annotation and bring high cost.

∗The corresponding author

Figure 1. Illustration of the empirical distribution mismatch be-

tween labeled and unlabeled samples with the two-moon data. The

labeled and unlabeled samples are shown in the bottom left and

bottom middle figures, and the kernel density estimations of their

x-axis projection are plotted in the top left and top middle figures,

respectively. Our approach aims to address the empirical distribu-

tion mismatch by aligning sample distributions in the latent space

(top right) and augmenting training samples with interpolation

between labeled and unlabeled data (bottom right).

While many strategies have been proposed to utilize the

unlabeled data for boosting the model performance, the es-

sential sampling bias issue in SSL has rarely been discussed

in the literature. That is, the empirical distribution of la-

beled data often deviates from the true samples distribu-

tion, due to the limited sampling size of labeled data. We

illustrate this issue with the classical two-moon data in Fig-

ure 1, in which we plot 6 labeled samples (bottom left) and

1, 000 unlabeled samples (bottom middle). It can be ob-

served the two-moon structure is well depicted by the un-

labeled samples. However, due to the randomness in sam-

pling and the small sample size, it can hardly tell the un-

derlying distribution with the labeled data, though it is also

sampled from the same two-moon distribution. In terms of

empirical distribution, this also leads to a considerable dif-

ference between labeled and unlabeled data, as shown by

the density estimation results on their x-axis projection (top

left and top middle).
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Similar empirical distribution mismatch is also observed

in real world datasets for SSL (see Section 5.3). As ob-

served in domain adaptation works, the model performance

can often be significantly degraded when applying on a

sample set with considerable empirical distribution differ-

ence. Therefore, the SSL models could also be potentially

affected by the empirical distribution mismatch between

labeled and unlabeled data when exploiting different SSL

strategies, e.g., label propagation from labeled data to unla-

beled data.

To tackle this issue, we propose to explicitly reduce the

empirical distribution mismatch in SSL. Specifically, we

develop a simple yet effective approach called Augmented

Distribution Alignment. On one hand, we adopt the adver-

sarial training strategy to minimize the distribution distance

between labeled and unlabeled data, such that the feature

distributions are well aligned in the latent space, as illus-

trated in the top right of Figure 1. On the other hand, to

alleviate the small sampling size issue and enhance the dis-

tribution alignment, we also propose a data augmentation

strategy to generate pseudo samples by interpolating be-

tween labeled and unlabeled training sets, as illustrated in

the bottom right of Figure 1. It is also worth mentioning

that both strategies can be implemented easily, where the

adversarial training could be achieved with a simple gradi-

ent reverse layer, and the data augmentation can be imple-

mented by interpolation. Thus, they can be readily incorpo-

rated into existing neural networks for SSL with little effort.

We demonstrate the effectiveness of our proposed approach

on the benchmark SVHN and CIFAR10 datasets, on which

we achieve new state-of-the-art classification performance.

Our contributions are summarized as follows:

• We offer a new perspective of empirical distribution

mismatch to understand semi-supervised learning. The

empirical distribution mismatch problem commonly

exists in SSL scenarios, however, has not been revealed

by existing semi-supervised learning works.

• We propose an augmented distribution alignment ap-

proach to explicitly address the empirical distribution

mismatch for SSL.

• Our approach can be easily implemented into existing

neural networks for SSL with little efforts.

• Despite of the simplicity, our proposed approach

achieves new state-of-the-art classification perfor-

mance on the the benchmark SVHN and CIFAR10

datasets for the SSL task.

2. Related Work

Semi-supervised learning: As a classical learn-

ing paradigm, many works have been proposed for semi-

supervised learning with various methods, including label

propagation, graph regularization, co-training, etc. [52, 42,

6, 36, 22, 5, 29, 1]. We refer interested readers to [55]

for a comprehensive survey. Recently, there is an increas-

ing interest in training deep neural networks in the semi-

supervised learning scenario[47, 32, 37, 39, 11, 10]. This

is partially due to the data-intensive nature of the conven-

tional deep learning techniques, which often impose heavy

demands on data annotation and bring high cost. Different

models have been designed for deep semi-supervised learn-

ing. For example, [32, 47, 37] proposed to add small pertur-

bations to unlabeled data, and enforce a consistency regu-

larization [39] on the output of model. Other works [10, 11]

adopt the idea of self-training and used propagated labels

with a memory module or regularized by training speed.

The ensemble approach was also explored, where [32] used

an averaged prediction using the outputs of the network-in-

training over time to regularize the model, while [47] in-

stead used accumulated parameters to for prediction.

Different from above works, we tackle the SSL prob-

lem with a new perspective of empirical distribution mis-

match, which was rarely discussed in the literature. By

simply dealing with the distribution mismatch, we show

that our newly proposed augmented distribution alignment

with vanilla neural networks performs competitively with

the state-of-the-arts SSL methods. Moreover, since we deal

the SSL problem in a new way, our approach is potentially

complementary to those approaches, and is shown to be able

to further boost their performance.

Sampling bias problem: Sampling bias was usually

discussed in the literature under the supervised learning

and domain adaptation scenarios [44, 14, 27, 13]. Many

works have been proposed to measure or address the sam-

pling bias in the learning process [15, 16, 34, 45]. Re-

cently, following the generative adversarial networks [20],

the adversarial training strategy was widely used to ad-

dress the empirical distribution mismatch in domain adap-

tation [16, 48, 51, 54, 9, 19, 8]. Although people generally

assume samples in two domains are sampled from two dif-

ferent distributions, while in SSL the labeled and unlabeled

samples are from the identical distribution, the techniques

for reducing domain distribution mismatch used in domain

adaptation can be readily used to solve the empirical distri-

bution mismatch in SSL. In this work, we employ the adver-

sarial training strategy proposed in [16]. A potential chal-

lenge as discussed in this paper is the small sample size of

labeled data might lead to a lack of supports problem when

aligning distribution, for which we additionally employ a

sample augmentation strategy.

Other related works: Our work is also related to the re-

cent proposed interpolation based data augmentation meth-

ods for training neural networks [53, 28, 49]. In particu-

lar, the Mixup method [53] proposed to generate new train-

ing samples using convex combinations of pairs of train-
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ing samples and their labels. In order to address the small

sample size issue when aligning distributions, we general-

ize their approach to the semi-supervised learning by us-

ing pseudo-labels for unlabeled samples in the interpolation

process. Moreover, we also show that by interpolating be-

tween labeled and unlabeled data, the empirical distribution

of generate data actually gets closer to the unlabeled sam-

ples.

3. Problem Statement and Motivations

In semi-supervised learning, we are given a small

amount of labeled training samples and a large set of un-

labeled training samples. Formally, let us denote by Dl =
{(xl

1, y1), . . . , (x
l
n, yn)} as the set of labeled training data,

where x
l
i is the i-th sample, yi is its corresponding label,

and n is the total number of labeled samples. Similarly,

the set of unlabeled training data can be represented as

Du = {xu
1 , . . . ,x

u
m}where xu

i is the i-th unlabeled training

sample, and m is the number of unlabeled samples. Usually

n is a small number, and we have m≫ n. The task of semi-

supervised learning is to train a classifier which performs

well on the test data drawn from the same distribution with

the training data.

3.1. Empirical Distribution Mismatch in SSL

In semi-supervised learning, the labeled training samples

Dl and unlabeled training samples Du are assumed to be

drawn from an identical distribution. However, due to the

limited number of labeled training samples, a considerable

difference of empirical distributions can often be observed

between the labeled and unlabeled training samples.

More concretely, we take the two-moon data as an exam-

ple to illustrate the empirical distribution mismatch problem

in Figure 1. In particular, the 1, 000 unlabeled samples well

describe the underlying distribution (bottom middle), while

the labeled samples can hardly represent the two-moon dis-

tribution (bottom left). This can be further verified by their

distribution by projecting to the x-axis (upper left and up-

per middle), from which we observe an obvious distribu-

tion difference. Actually, when performing multiple rounds

of sampling on labeled samples, the empirical distribution

of labeled data varies significantly, due to the small sample

number.

This phenomenon was also discussed as the sampling

bias problem in the literature [23, 24, 30]. In particu-

lar, Greton et al. [23] pointed out that the difference be-

tween two samplings measured by Maximum Mean Dis-

crepancy(MMD) depends on their sampling sizes. In semi-

supervised learning where the underlying distribution of la-

beled and unlabeled data is assumed identical, the MMD

of labeled and unlabeled data tends to vanish if and only if

both sizes of two sampling are large, which is described as

follows,

Figure 2. MMD between labeled and unlabeled samples in two-

moon example with varying number of labeled samples. Number

of unlabeled sample is fixed as 1, 000.

Proposition 1. Let us denote F as a class of witness func-

tions f : x → R in the reproduced kernel Hilbert space

(RKHS) induced by a kernel function k(,̇)̇, and assume

0 ≤ k(,̇)̇ ≤ K, then the MMD distance of Dl and Du

can be bounded by Pr{MMD[F ,Dl,Du] > 2(
√

(K/n) +
√

(K/m) + ǫ)} ≤ 2 exp −ǫ2nm
2K(n+m) ,

Proof. The proof can be derived with Theorem 7 in [23] by

assuming the two distributions p and q are identical.

In semi-supervised learning, the number of labeled sam-

ples n is usually small, which would lead to a notable em-

pirical distribution difference with the unlabeled samples as

stated in above proposition. Specifically, we illustrate the

sampling bias problem with the two-moon data in the semi-

supervised learning scenario in Figure 2. We plot the MMD

between labeled and unlabeled samples with regard to dif-

ferent numbers of labeled samples. As shown in the figure,

when the sample size of labeled data is small, both the mean

and variance of MMD are large, and the MMD tends to be

minor only when n becomes sufficiently large.

This implies that in SSL the small sampling size often

causes the empirical approximation of labeled data deviates

from the true sample distribution. Consequentially, a model

trained from this empirical distribution is unlikely to gen-

eralize well on the test data. While various strategies have

been exploited for utilizing the unlabeled data in conven-

tional SSL methods [33, 11, 10], the empirical distribution

mismatch issue was rarely discussed, which is one of the

hidden factors of potentially unstable problem for conven-

tional SSL methods. This was also verified by the recent

work [39], which shows that the performance of SSL meth-

ods could be degraded when the size of labeled dataset is

decreased.
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3.2. Healing the Empirical Distribution Mismatch

To overcome the empirical distribution mismatch issue

in SSL, in this work, we propose an augmented distribution

alignment approach. In addition to training the classifier

with supervision from labeled data, we also simultaneously

minimize the distribution divergence between labeled and

unlabeled data, such that the empirical distributions of la-

beled and unlabeled samples are well aligned in the latent

space (as illustrated in upper right of Figure 1).

Formally, let us denote the loss function as ℓ(f(xl
i), yi)

where f is the classifier to be learnt. We also define

Ω(Dl,Du) as the distribution divergence of labeled and un-

labeled data measured with certain metric. Then, our main

idea can be formulated as the following objective,

min
f

n
∑

i=1

ℓ(f(xl
i), yi) + γΩ(Dl,Du), (1)

where γ is a trade-off parameter to balance two terms.

An issue with the above solution is that the small num-

ber of labeled samples (i.e., n) potentially makes the opti-

mization of (1) unstable. To address this issue, we further

propose a data augmentation strategy. Inspired by the re-

cent mixup approach for supervised learning, we iteratively

generate new training samples by interpolating between the

labeled samples and unlabeled samples, and feed them for

both learning the classifier and reducing the empirical distri-

bution divergence. We refer to our approach as Augmented

Distribution Alignment, and detail it in the following sec-

tion.

4. Augmented Distribution Alignment for SSL

In this section, we introduce our augmented distribution

alignment method for SSL, in which we respectively pro-

pose two strategies, adversarial distribution alignment and

cross-set sample augmentation, to tackle the empirical dis-

tribution mismatch and the small sample issues.

4.1. Adversarial Distribution Alignment

We employ H-Divergence [4, 12] to measure distribu-

tion divergence Ω as inspired by recent domain adaptation

works.

In particular, let us denote by g(·) a feature extractor

(e.g., convolutional layers) which maps sample x into a la-

tent feature space. Moreover, let h : g(x) → {0, 1} be a

binary discriminator which predicts 0 for labeled samples

and 1 for unlabeled samples. The H-Divergence between

labeled and unlabeled samples can be written as:

dH(Dl,Du)=2

{

1−min
h∈H

[err(h, g,Dl) + err(h, g,Du)]

}

,

where err(h, g,Dl) = 1
n

∑

x
l [h(g(xl)) 6= 0] is the pre-

diction error of the discriminator h on labeled samples, and

err(h, g,Du) is similarly defined for unlabeled samples.

Intuitively, when the empirical distribution mismatch is

large, the discriminator could easily distinguish the labeled

and unlabeled samples, thus its prediction errors would

be small, and the H-divergence is higher, and vice versa.

Therefore, to reduce the empirical distribution mismatch of

labeled and unlabeled samples, we then minimize the distri-

bution distance dH(Dl,Du) to enforce the feature extractor

g to generate a latent space in which two sets of features

are well aligned. This is therefore achieved by solving the

following problem:

min
g

dH(Dl,Du)=max
g

min
h∈H

[err(h, g,Dl) + err(h, g,Du)].

The above max-min problem can be optimized with the

adversarial training methods. In [17], Ganin and Lempit-

sky showed that it can be implemetned as a simple gradient

reverse layer (GRL) which automatically reverse the gradi-

ent after discriminator, thus one can directly minimize the

classification loss of the discriminator h with the standard

propagation optimization library.

4.2. Crossset Sample Augmentation

As discussed in Section 3, in SSL, the limited sampling

size of labeled data often causes unstable in optimization

and leads to performance degradation. In order to reinforce

the alignment, as inspired by [53], we propose to generate

new training samples by interpolating between labeled and

unlabeled samples. In particular, for each x
u, we assign it a

pseudo-label ŷu, which is generated by using the prediction

from the model trained in previous iteration in this work.

Then, given a labeled sample x
l and an unlabeled sample

x
u, the interpolated sample can be represented as,

x̃ = λxl + (1− λ)xu, (2)

ỹ = λyl + (1− λ)ŷu, (3)

z̃ = λ · 0 + (1− λ) · 1, (4)

where λ is a random variable that is generated from an prior

β distribution, i.e. λ ∼ β(α, α) with α being a hyperpa-

rameter to control the shape of the β distribution, x̃ is the

interpolated sample, ỹ is its class label, and z̃ is its label for

the distribution discriminator.

The benefits of such cross-set sample augmentation are

two-fold. First, the interpolated samples greatly enlarged

the training data set, making the learning process more sta-

ble, especially for deep neural networks models. It was also

shown in [53] that such data augmentation helps to improve

model robustness.

Second, each pseudo-sample is generated by interpolat-

ing between a labeled sample and an unlabeled sample, thus
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Interpolated Sample

CNNs                   

Sample Augmentation Classifier

Unlabeled Sample

FC
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Classification 

Loss

Adversarial 

Loss

…

Reverse

Gradient     FC

1 0 0…

0.5 0.1 0.4…
Labeled Sample

Figure 3. The network architecture of our proposed ADA-Net, in which we append an additional discriminator classifier branch with a

gadient reverse layer to the vanilla CNN (shown in the bottom right part). In training time, the cross-set sample interpolation is performed

between labeled and unlabeled samples, and we feed the interpolated samples into the network. Pesudo-labels of unlabeled samples are

obtained using the classifier trained in last iteration (see explanation in Section 4.3) for details.

the distribution of pseudo-samples is expected to be closer

to the real distribution than that of the original labeled train-

ing samples. We prove this using the euclidean generalized

energy distance [46] in below.

Let us denote Pl and Pu as the empirical distributions

of labeled and unlabeled data, their euclidean generalized

energy distance [46] can be written as,

J2(Pl, Pu)=E[‖xl − x
u‖2]−E[‖xl− x

l′‖2−E[‖xu − x
u′‖2].

where ‖ · ‖ is the euclidean distance, x
l and x

l′ (resp.,

x
u and x

u′) are two samples independent sampled from Pl

(resp., Pu). Then, we show that cross-set sample augmen-

tation helps to bridge the gap between two distributions by

the following proposition,

Proposition 2. Let P̃ be the empirical distribution of

the pseudo sample x̃ generated using (2), then we have

J2(P̃ , Pu) = 1
4J

2(Pl, Pu). In other words, the euclidean

generalized energy distance between the empirical distri-

bution of the pseudo and unlabeled samples is smaller or

equal than that of labeled and unlabeled samples.

Proof. Using Proposition 2 from [46], we rewrite the en-

ergy distance J2(Pl, Pu) as follows,

J2(Pl, Pu) = 2‖E[xl]− E[xu]‖2

In addition, we have

E[λxl + (1− λ)xu] =
1

2
E[xl] +

1

2
E[xu],

because the expectation of λ ∼ β(α, α) is 0.5, and the same

applies to 1− λ. Therefore,

J2(P̃ , Pu) = 2‖
1

2
E[xl] +

1

2
E[xu]− E[xu]‖2

= 2‖
1

2
E[xl]−

1

2
E[xu]‖2

=
1

4
J2(Pl, Pu)

Here we complete the proof.

This implies that the new generated pseudo-samples can

be deemed as being sampled from the intermediate distribu-

tions between the empirical distributions of labeled and un-

labeled samples. As shown in previous domain adaptation

works [21, 18], such intermediate distributions are benefi-

cial to alleviate the gap between two distributions, and learn

more robust models.

4.3. Summary

We unify the adversarial distribution alignment and

cross-set sample augmentation strategies into one frame-

work, finally leading to our augmented distribution align-

ment approach.

In Figure 3, we demonstrate an example of incorpo-

rating our augmented distribution alignment approach into

a vanilla convolutional neural networks, which is referred

to as ADA-Net. Specifically, in addition to the classifica-

tion branch, we add several fully connected layers as the

discriminator to distinguish labeled and unlabeled samples

(i.e., h discussed in Section 4.1). A gradient reverse layer

is added before the discriminator, which will automatically

reverse the sign of gradient from the discriminator during
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Algorithm 1: A training step for ADA-Net.

Input : A batch of labeled samples {(xl, yl), . . .}, a

batch of unlabeled samples {xu, . . .},
classifier f and discriminator h.

1. Run one forward step to get pseudo-labels for

unlabeled samples, i.e., ŷu ←− f(xu)

2. Sample λ of batch size from β(α, α), and generate a

batch of samples {(x̃, ỹ, z̃), . . .} using (2),(3),(4).

3. Perform a forward pass by feeding {(x̃, ỹ, z̃), . . .}.

4. Perform a backward pass by minimizing (5).

Output: classifier f and discriminator h

back-propagation. Then, for each mini-batch, we use the

cross-set sample augmentation strategy in (2),(3),(4) to gen-

erate interpolated samples and labels, and use them as train-

ing data to train our ADA-Net. The objective for training

the network can be obtained by replacing the training sam-

ples and Ω(·, ·) term in (1), i.e.,

min
f,g,h

∑

x̃

λℓ(f(g(x̃)), ỹ) + γℓ(h(g(x̃)), z̃), (5)

where g, f, h are respectively the feature extractor, classi-

fier, and discriminator, and ℓ(·, ·) is the loss function for

which we use the cross-entropy in this work. λ is the weight

for classification loss, which corresponds to the λ for gener-

ating the interpolated sample x̃ (see (2)). The reason for ap-

plying this weight is as follows. The higher λ is, the higher

proportion of x̃ coming from labeled set is, and we are more

confident on its label ỹ, and vice versa.

We depict the training pipeline Algorithm 1. Aside from

the simple sample interpolation, the network can be opti-

mized with the standard propagation approaches. There-

fore, our augmented distribution alignment can be eas-

ily incorporated into existing neural networks by append-

ing a discriminator with the GRL layer, and adding the

proposed cross-set sample augmentation during mini-batch

data preparation.

5. Experiments

In this section, we evaluate our proposed ADA-Net for

semi-supervised learning on benchmark datasets including

SVHN, and CIFAR10.

5.1. Experimental Setup

SVHN: The Street View House Numbers (SVHN)

dataset [38] is a dataset consists of real-world digit photos.

It includes ten classes and 73,257 training images of 32×32

size. Following [37], out of the full training set, 1000 im-

ages are used with labels for supervised learning. The rest

training photos are provided without labels. Random trans-

lation is the only augmentation used for this dataset.

CIFAR10: The CIFAR10 dataset [31] contains 10

classes, and consists of 50,000 training images as well as

10,000 test images. All images are of the size 32×32. 4,000

samples from the training images are used as labeled set for

our experiments, the rest are used as unlabeled samples.

We use the PreAct-ResNet-18 [26] as the backbone net-

work, and implement our ADA-Net in Tensorflow based on

the open source TensorPack library [50]. For the class clas-

sifier, a single fully connected layer is used to map the fea-

tures to logits. For the domain classifier, two dense layers,

each with 1,024 units, followed by another dense layer are

used to produce two channels of soft domain labels.

The batch size is set as 128. The learning rate starts from

0.1, and is divided by 10 when 50%, and 75% epochs are

reached. The network is trained for 100 epochs in total for

SVHN, and 300 epochs for CIFAR10, where one epoch is

defined as one iteration over all unlabeled data. We use a

momentum optimizer with 0.9 as the momentum. The fol-

lowing hyperparameters are used for our reported results:

weight-decay= 0.0001, interpolation α = 0.1 for SVHN

and α = 1.0 for CIFAR10. The experiments on SVHN and

CIFAR10 share the exact same network and protocol. We

followed [37] to use a separate validation set of 1,000 im-

ages to select α for all methods.

5.2. Experimental Results

We summarize the classification error rates on the SVHN

and CIFAR10 dataset in Table 1. We include the baseline

CNN model that is trained with labeled data only as a ref-

erence. To validate the effectiveness of the two modules in

our ADA-Net, we also report two variants of our proposed

approach. In the first variant, we do not use cross-set sam-

ple augmentation and apply the distribution alignment using

original labeled and unlabeled samples. In the second vari-

ant, we remove the discriminator and perform only cross-set

sample augmentation for learning the classifier.

As shown in Table 1, our ADA-Net significantly im-

proves the classification performance on both datasets. We

also observe that both the distribution alignment and cross-

set sample augmentation are important for improving the

performance. The distribution alignment module brings

1.30% and 3.04% improvement on CIFAR10 and SVHN,

and the cross-set sample augmentation module gives 6.18%

and 3.06% improvement, respectively. By integrating both

modules, the classification error rates can be reduced by our

ADA-Net from 19.97% and 13.80% to 8.87% and 5.90%

on the CIFAR10 and SVHN datasets, respectively. The ex-

perimental results clearly validate our motivations, and also
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Baseline

ADA-Net

Labeled Data                    Unlabeled Data                   Augmented Data                         All        

Figure 4. Visualization of SVHN features obtained by baseline CNN and our ADA-Net using t-SNE. We generated the t-SNE using labeled,

unlabeled, and interpolated samples together, and show them separately for a better comparison. For baseline CNN, empirical distribution

mismatch between labeled and unlabeled samples can be observed, and the augmented samples bridge the gap to some extent. For our

ADA-Net, with the augmented distribution alignment, empirical distribution mismatch are well reduced.

demonstrate the effectiveness of our proposed approach.

5.3. Experimental Analysis

Feature visualization: To better understand how our

ADA-Net works, we use the base CNN block as a fea-

ture extractor, and visualize with the t-SNE approach for

the labeled samples, unlabeled samples, and the generated

pseudo-samples on the SVHN dataset in Figure 4. The fea-

tures extracted using the baseline CNN trained with only

labeled data are also visualized for comparison. As shown

in Figure 4, a considerable distribution difference between

labeled and unlabeled samples can be observed for the base-

line CNN model, and the generated pseudo-samples dis-

tribute in between those two sets. Nevertheless, with our

ADA-Net, the distributions of three types of samples are

similar since we explicitly align the distributions of labeled

and unlabeled samples in the training procedure.

Table 1. Classfication error rates of our proposed ADA-Net and

its variants on the CIFAR10 and SVHN datasets. “dist” denotes

the distribution alignment module, and “aug” denotes the cross-

set sample augmentation module. PreAct-ResNet-18 [26] is used

as the backbone network.

dist aug CIFAR10 SVHN

Baseline 19.97% 13.80%

Ours

X 18.67% 10.76%

X 13.79% 10.74%

X X 8.87% 5.90%

Feature distribution: To further show the effectiveness

of our ADA-Net in reducing the distribution mismatch, we

take the first three activations of the baseline CNN model

and our ADA-Net as examples, and plot the distribution of

labeled and unlabeled samples on each dimension individu-

ally. The distribution is obtained by performing kernel den-

sity estimation [40, 43] on each type of samples and each

dimension individually. As shown in Figure 6, we again ob-

serve a considerable mismatch between the estimated em-

pirical distribution of labeled and unlabeled samples for the

baseline CNN model. And also, such distribution mismatch

is then well reduced in our ADA-Net model. We have sim-

ilar observations for other feature activations.

Figure 5. Classification Error rates on SVHN of our ADA-Net and

baseline CNN when varying the number of labeled samples.

Varying number of labeled samples: As discussed in

Section 3.1, the distribution mismatch in SSL is correlated

with the number of labeled samples. It often becomes more

serious when the number of labeled samples is less. To val-

idate the effectiveness of ADA-Net with different sampling

size, we conduct experiments on the SVHN dataset by vary-

ing the number of labeled samples. In particular, we train

models using 200, 400, 600, 800 and 1, 000 labeled sam-

ples, and all other experimental settings remain the same.

The error rates of ADA-Net and the baseline CNN are plot-

ted in Figure 5. We observe that the error rate of baseline

CNN model increases dramatically when reducing the num-

ber of labeled samples, which indicates that the sampling

bias makes the learning problem more challenging. Never-

theless, our ADA-Net consistently improves the classifica-
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Figure 6. Kernel density estimation of labeled and unlabeled sam-

ples of the SVHN Dataset based on the first three feature activa-

tions of the baseline CNN and our ADA-Net. Considerable dis-

tribution mismatch between labeled and unlabeled data can be ob-

served for the baseline CNN model (top row), while two distribu-

tions are generally aligned well with our ADA-Net (bottom row).

tion performance by alleviating such sampling bias with the

augmented distribution alignment, the relative improvement

is more obvious when the labeled samples are rare.

5.4. Comparison with Stateofthearts

Table 2. Classification error rates of different methods on CI-

FAR10 and SVNH. Conv-Large [47] is used as the backbone net-

work. Results of baseline methods are taken from the papers.

Method CIFAR10 SVHN

Π Model [32] 12.36% 4.82%

Temporal ensembling [32] 12.16% 4.42%

Mean Teacher[47] 12.31% 3.95%

VAT [37] 11.36% 5.42%

VAT+Ent [37] 10.55% 3.86%

SaaS [11] 13.22% 4.77%

MA-DNN [10] 11.91% 4.21%

VAT+Ent+SNTG [35] 9.89% 3.83%

Mean Teacher+fastSWA* [2] 9.05% -

ADA-Net (Ours) 10.30% 4.62%

ADA-Net+ (Ours) 10.09% 3.54%

ADA-Net*(Ours) 8.72% -
*

Larger translation range (4 instead of 2), and without ZCA whitening.

Table 3. Classification error rates of different methods on Ima-

geNet dataset. ResNet-18 is used as the backbone network.

Method Top-1 Top-5

100% Supervised 30.43% 10.76%

10% Supervised 52.23% 27.54%

Mean Teacher [47] 49.07% 23.59%

Dual-View Deep Co-Training [41] 46.50% 22.73%

ADA-Net (Ours) 44.91% 21.18%

We further compare our ADA-Net with recently pro-

posed state-of-the-art SSL learning approaches [32, 47, 37,

37, 11, 10, 35, 2]. As discussed in [39], minor modification

in the network structure and data processing method often

lead to different results. To ensure a fair comparison, we

take the VAT method [37] as a reference, and strictly follow

their experimental setup. In particular, we re-implement our

ADA-Net based on the released codes from [37]. The same

Conv-Large architecture and hyper-parameters are used.

We report the results of different methods on the CI-

FAR10 and SVHN datasets in Table 2. Our ADA-Net

achieves competitive results with those state-of-the-art SSL

methods. Despite the simplicity of our augmented distribu-

tion alignment, the results clearly validate the importance

on dealing with the empirical distribution mismatch in the

semi-supervised learning, and also demonstrates the effec-

tiveness of our ADA-Net. Furthermore, by adopting a sim-

pler augmentation setup used by [2], our vanilla ADA-Net

approach pushes the envelope of SSL on CIFAR10, and

achieves new state-of-the-art error rates of 8.72%.

More importantly, as we solve the SSL problem from a

new perspective that was not revealed by previous works,

our augmented distribution alignment strategy is generally

complementary to other methods. Therefore, the perfor-

mance of existing SSL methods can be boosted by incorpo-

rating the distribution alignment and cross-set sample aug-

mented modules proposed in this work. As shown in Ta-

ble 2, combining our ADA-Net with the VAT+Ent method

(denoted as “ADA-Net+”), we achieve new state-of-the-art

error rates of 3.54% on SVHN.

We additionally report our result on 1000-class Ima-

geNet in Table 3, with 10% labels. We compare our results

with previous state-of-the-art methods Mean Teacher [47]

and Deep Co-Training [41]. The result of Deep Co-

Training is quoted from their paper, and the performance

of Mean Teacher is from running their official implementa-

tion by [41]. Following [41], we train ResNet-18 [25] for

600 epochs with a batch size of 256, and we set α = 1.0.

ADA-Net performs better than both methods and outper-

forms Dual-View Deep Co-Training by 1.59% on Top-1 er-

ror rate and 1.55% on Top-5 error rate.

6. Conclusions

In this work, we have proposed a new semi-supervised

learning method called augmented distribution alignment.

In particular, we tackle the semi-supervised learning prob-

lem from a new perspective that labeled and unlabeled data

often exhibits a considerable difference in terms of the em-

pirical distribution. We therefore employed an adversarial

training strategy to align the distributions of labeled and

unlabeled samples when training the neural networks. A

cross-set sample augmentation was further proposed to deal

with the limited sampling size and bridge the distribution

gap. Those two strategies can be readily unified into the ex-

isting deep neural networks, leading to our ADA-Net. Ex-

periments on the benchmark CIFAR10 and SVHN datasets

have validated the effectiveness of our approach.
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