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iron bioavailability from bouillon 
fortified with a novel ferric phytate 
compound: a stable iron isotope 
study in healthy women (part II)
Susanne Dold1, Michael B. Zimmermann1, Frederike Jeroense1, Christophe Zeder1, 
Edwin Habeych2, Nicola Galaffu2, Dominik Grathwohl2, Jasmin Tajeri Foman2,  
Sylvie Merinat2, Brigitte Rey2, Magalie Sabatier2 & Diego Moretti  1,3*

Bouillon cubes are widely consumed and when fortified with iron could contribute in preventing iron 
deficiency. We report the development (part I) and evaluation (current part II) of a novel ferric phytate 
compound to be used as iron fortificant in condiments such as bouillon. Ferric pyrophosphate (FePP), 
is the compound of choice due to its high stability in foods, but has a modest absorption in humans. 
Our objective was to assess iron bioavailability from a novel iron fortificant consisting of ferric iron 
complexed with phytic acid and hydrolyzed corn protein (Fe-PA-HCP), used in bouillon with and without 
an inhibitory food matrix. In a randomised single blind, cross-over study, we measured iron absorption 
in healthy adult women (n = 22). In vitro iron bioaccessibility was assessed using a Caco-2 cell model. 
Iron absorption from Fe-PA-HCP was 1.5% and 4.1% in bouillon with and without inhibitory matrix, 
respectively. Relative iron bioavailability to FeSO4 was 2.4 times higher than from FePP in bouillon (17% 
vs 7%) and 5.2 times higher when consumed with the inhibitory meal (41% vs 8%). Similar results were 
found in vitro. Fe-PA-HCP has a higher relative bioavailability versus FePP, especially when bouillon is 
served with an inhibitory food matrix.

Iron fortification of condiments like bouillon cubes has the potential to reach large populations in sub-Saharan 
Africa1–3. It has been estimated that per capita bouillon cube intake ranges from 1.9 g/day in Cameroon to 8.6 g/
day in urban Senegal1,4. Challenges when fortifying bouillon with iron include iron bioavailability and product 
stability.

Currently, ferric pyrophosphate (FePP) is the compound of choice for bouillon cube fortification due to its 
high stability in food preparations3, however, iron absorption from FePP tends to be low compared to ferrous 
sulfate (FeSO4), the reference compound for assessing iron bioavailability5–8. Alternative iron compounds with 
higher bioavailability and similar stability in products would therefore be valuable for fortification of condiments 
like bouillon cubes9,10. Several approaches have been proposed to increase iron bioavailability, especially in diets 
containing significant amounts of inhibitors, such as phytic acid (PA), while keeping stable sensory properties in 
the chosen food vehicles.

Microencapsulation of bioavailable iron may be used to separate the iron fortificant from the food matrix, 
reducing sensory changes. Potential drawbacks are the reduction of bioavailability as well as the cost-increase 
due to encapsulation7. Degradation of PA in staple foods may be used to increase iron absorption, however, 
virtual elimination of the PA is needed7,11,12. Particle size reduction of poorly soluble compounds like ferric phos-
phate or ferric oxides can improve their rate of dissolution in gastric juices and, therefore, bioavailability may 
be increased13, but regulatory uncertainty on the use of nanoparticles has limited their applicability14. Further, 
biological systems have been proposed as carriers for iron fortification, such as the use of iron-enriched yeast or 
the use of iron-enriched Aspergillus oryzae15,16. Another approach is the addition of enhancers for iron absorption 
such as organic acids for FePP fortification of rice17, galacto-oligosaccharides18 and, in bouillon cubes, phos-
phates19,20. Diphosphate sodium salt has been proposed as an enhancer for iron absorption in bouillon20, reporting 
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a fractional absorption of 6.4% compared to 4.4% with and without the diphosphate added, respectively20.  
However, relative bioavailability remained low (13–23%)20. While iron complexation and chelation with organic 
ligands (e.g. ferrous bisglycinate, sodium iron ethylenediaminetetraacetic acid, and ferrous picolinate) has been 
proposed, the use of these compounds is matrix dependent, limiting their applicability7,21.

Natural ligands such as phytic acid are common in plant foods22 and may be promising compounds for iron 
stabilization in fortified foods. Iron complexation with PA, in combination with hydrolyzed corn protein (HCP) 
that is used to keep the iron in solution23, lead to organoleptically stable Fe-PA-HCP fortificants that may limit 
sensory changes in food products (part I)24. PA is recognized as an absorption inhibitor25, but monoferric phytate, 
a major form of iron present in cereals, has been shown to be soluble and highly bioavailable to rats and dogs26–28. 
In humans, the bioavailability of the monoferric phytate moiety may be similar to that of the common non-heme 
iron pool29,30.

Our objectives were: (1) to determine fractional iron absorption (FIA) and relative iron bioavailability 
(RBV) from a new iron fortificant based on monoferric phytate in combination with hydrolyzed corn protein 
(Fe-PA-HCP), in comparison to FePP-and FeSO4-fortified reconstituted bouillon with and without the addition 
of an inhibitory meal rich in phytate (in vivo); (2) to compare the RBV of Fe-PA-HCP in bouillon with the inhibi-
tory meal (in vivo) and; (3) to validate in vitro relative bioaccessibility (IVRBA) of Fe-PA-HCP, FePP and FeSO4 in 
bouillon and the inhibitory meal as determined with a Caco-2 cell assay against the in vivo data.

Results
Participant characteristics. A total of 36 women were screened for participation in the human study. 
Twenty three were found to be eligible, one woman decided to withdraw for personal reasons, 22 women were 
randomised and all 22 women completed the study. The majority of participants (72.7%, n = 16) reported no 
particular food habits, 22.7% (n = 5) reported to be lacto or ovo-lacto vegetarian and one woman reported to be 
pesco-ovo-lacto vegetarian. Most of the participants (90.9%, n = 20) were of Caucasian ethnicity, two women 
were of Asian ethnicity. Anthropometrics as well as iron and inflammatory status at study baseline are presented 
in Table 1. Based on PF, three women were iron deficient (5.08, 10.30, and 4.56 µg/l) at the beginning of the study, 
two of them remained deficient throughout the study. Two other women had elevated CRP values at the begin-
ning of the study (65.0 and 13.4 mg/L), which then decreased to <10 mg/L during the study. Neither important 
harms nor unintended effects were reported during the trial.

Iron bioavailability. FIA from FeSO4, FePP and Fe-PA-HCP when consumed with bouillon or with the 
inhibitory meal are shown in Table 2. Compared to bouillon, FIAs were lower in the inhibitory meal by factors 
of 6.8, 5.9, 2.8, for FeSO4, FePP, Fe-PA-HCP, respectively. In contrast, RBVs were higher in the inhibitory meal, 
compared to bouillon, by factors 1.2 and 2.5 for FePP and Fe-PA-HCP, respectively (Fig. 1).

Influence of plasma ferritin on iron bioavailability. Influence of PF was investigated by applying a cut-off 
of 40 µg/L and displaying the FIA and RBV accordingly (Table 3). Approximately half of the participants were 
below the cut-off. The effect modification by PF on FIAs was statistically significant (P = 0.011), and on RBVs was 

mean/median SD/IQR

Age (years) 22.1 2.5

Weight (kg) 57.1 4.6

Height (cm) 165.3 5.5

BMI (kg/m2) 20.9 1.3

Hb (g/L) 139.1 8.5

PF (µg/L) 29.9 17.6

CRP (mg/L) 0.2 0.0–1.0

Table 1. Anthropometrics, iron and inflammatory status of participants (n = 22) at study baselinea. aValues 
are means and standard deviations in all variables except for CRP presented as median and interquartile range 
(IQR). BMI, body mass index; Hb, hemoglobin; PF, plasma ferritin; CRP, C-reactive protein.

(%)

Bouillon Bouillon + inhibitory meal

geo-mean 95% CI (%) geo-mean 95% CI (%)

FIA

FeSO4 24.6 17.7 34.4 3.6 2.6 5.0

FePP 1.7 1.2 2.4 0.3 0.2 0.4

Fe-PA-HCP 4.1 3.0 5.7 1.5 1.1 2.1

Table 2. Fractional iron absorption (FIA) (n = 22) from: (1) FeSO4, FePP and Fe-PA-HCP fortified 
reconstituted bouillon; and (2) FeSO4, FePP and Fe-PA-HCP fortified reconstituted bouillon co-ingested with 
an inhibitory meal rich in phytatea. aValues are geometric means and 95% confidence intervals. The differences 
in log-transformed FIA between the six meals were evaluated using mixed model analysis. All FIAs are 
statistically significantly different (P < 0.001) from zero.
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borderline significant (P = 0.065). Therefore, mixed model analysis was repeated within the PF categories. FIA of 
Fe-PA-HCP in bouillon was modified from 3.9% to 4.2% by <40 to ≥40 µg/L PF, respectively, and for the inhibitory 
meal, FIA of Fe-PA-HCP was modified from 2.0% to 1.1% by <40 to ≥40 µg/L PF, respectively.

In vitro bioaccessiblity. IVFBA from FeSO4, FePP and Fe-PA-HCP fortified bouillons and bouillons added 
to the inhibitory meal, calculated based on ferritin formation in the Caco-2 cells are shown in Table 4. The 
IVFBAs were lower in the inhibitory meal by factors of 5.5, 1.6, 2.4, for FeSO4, FePP, Fe-PA-HCP, respectively. 
However, Fe-PA-HCP had higher IVRBA than FePP (Fig. 2).

Figure 1. Relative bioavailability (RBV) compared to FeSO4 (n = 22) from FePP and Fe-PA-HCP fortified 
reconstituted bouillon and from FePP and Fe-PA-HCP fortified reconstituted bouillon when co-ingested with 
an inhibitory meal rich in phytate. Columns and values are geometric means, error bars are 95% confidence 
intervals. All RBVs are statistically significantly different (P < 0.001) from 100%.

(%)

Bouillon Bouillon + inhibitory meal

factorgeo-mean 95% CI (%) geo-mean 95% CI (%)

PF < 40 µg/L

FIA

FeSO4 32.9 22.0 49.3 4.0 2.6 6.1 8.2

FePP 1.9 1.3 2.9 0.3 0.2 0.4 6.7

Fe-PA-HCP 3.9 2.6 6.0 2.0 1.3 3.0 2.0

RBV
FePP 5.8 4.0 8.5 7.1 4.8 10.5 1.2

Fe-PA-HCP 12.0 8.1 17.6 50.2 34.1 73.9 4.2

PF ≥ 40 µg/L

FIA

FeSO4 19.3 11.3 32.8 3.3 2.0 5.6 5.8

FePP 1.7 1.0 2.9 0.3 0.2 0.5 6.2

Fe-PA-HCP 4.2 2.5 7.1 1.1 0.6 1.9 3.8

RBV
FePP 8.8 5.3 14.7 8.3 5.1 13.6 0.9

Fe-PA-HCP 21.9 13.2 36.3 33.2 20.0 55.0 1.5

Table 3. Fractional iron absorption (FIA) according to iron status (plasma ferritin (PF) concentration) of the 
participants from bouillon and bouillon co-ingested with an inhibitory meal rich in phytate, fortified with 
FeSO4, FePP and Fe-PA-HCPa. aValues are geometric means and 95% confidence intervals.

(%)

Bouillon Bouillon + inhibitory meal

geo-mean 95% CI (%) geo-mean 95% CI (%)

IVFBA

FeSO4 9.6 9.0 10.3 1.8 1.5 2.0

FePP 1.5 1.4 1.7 0.9 0.7 1.1

Fe-PA-HCP 3.0 2.5 3.5 1.2 1.1 1.4

Table 4. In vitro fractional bioaccessibility (IVFBA) from: (1) FeSO4, FePP and Fe-PA-HCP fortified 
reconstituted bouillon; and (2) FeSO4, FePP and Fe-PA-HCP fortified reconstituted bouillon when co-ingested 
with an inhibitory meal, calculated based on ferritin formation in the Caco-2 cellsa. aValues are geometric means 
and 95% confidence intervals. The differences in log-transformed IVFBA between the six meals were evaluated 
using robust ANOVA. All IVFBAs are statistically significantly different (P < 0.001) from zero.
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Discussion
The main finding of this study is that Fe-PA-HCP, a novel iron fortificant consisting of ferric iron complexed with 
phytic acid and hydrolyzed corn protein, had significantly higher bioavailability than FePP, the compound cur-
rently used for condiment fortification. The bouillon fortified with Fe-PA-HCP provided 2.4 times more absorbed 
iron than the bouillon fortified with FePP when consumed as such, and 5.2 times more absorbed iron when con-
sumed with an inhibitory corn meal rich in phytate. Inhibitory matrices are common in staple foods consumed 
by target populations for condiment fortification. While absorption from Fe-PA-HCP was significantly lower than 
from FeSO4, the reference compound for iron absorption, our results suggest that Fe-PA-HCP is less affected by 
the presence of phytate than FeSO4 and FePP. This is indicated by the strong decrease in FIA from FeSO4 (factor 
6.8) and the lower decrease from Fe-PA-HCP (factor 2.7) when consumed with the high phytate corn meal, 
resulting in a 2.5 times higher RBV of Fe-PA-HCP fortified bouillon when co-ingested with the inhibitory meal 
than from Fe-PA-HCP fortified bouillon consumed alone. The effects were also observed in the in vitro Caco-2 
cell study, where upon addition of the inhibitory meal, the reduction in IVFBA for Fe-PA-HCP (factor 2.4) was 
less than for FeSO4 (factor 5.5). This is consistent with the reported decrease in IVFBA in part I24 of this series 
using Fe-PA-His-Glu and Fe-PA-His-Gln.

To our knowledge, these are the first in vivo and in vitro studies investigating the bioavailability of a monofer-
ric compound with phytate and hydrolyzed corn protein. Further research is needed to understand which part of 
the compound is responsible for the protective effect in presence of phytic acid. We speculate that the complexed 
form of iron in Fe-PA-HCP may exert this effect7,31. Our in vivo data further indicates that the protective effect 
may be greater in individuals with low iron status (PF < 40 µg/L). In these individuals, RBV of Fe-PA-HCP in 
the inhibitory meal was 4.2 times higher than RBV of Fe-PA-HCP in bouillon alone, while only 1.5 times in the 
individuals with higher iron status (PF ≥ 40 µg/L). In conclusion, Fe-PA-HCP seems to be a promising candidate 
for condiment fortification in alternative to FePP, especially in populations with medium to low iron status and 
consuming phytic acid rich diets.

Our study confirms the low bioavailability of FePP found in previous studies20,32. However, the RBVs of FePP 
from bouillon (7%) and from bouillon plus the inhibitory meal (8%) in our study are lower than the range of 
15% to 75% previously reported for other food matrices5,32,33. Nevertheless, the RBV of FePP is known to be 
highly variable and depending on the food matrix, the subject’s iron status and likely particle size32,34. For poorly 
water-soluble iron compounds such as FePP, the use of a single RBV value to predict potential efficacy of various 
food vehicles may be of limited value32. In another human study assessing iron absorption from fortified bouil-
lon cubes, RBV of FePP was 13%, only slightly higher than what we found in our study20. This difference may be 
explained by the lower mean PF of the participants in that study (9.4 µg/L) compared to our study (29.9 µg/L)20. 
The relatively high absorption from FeSO4 compared to FePP observed in our study confirms previous findings 
and is likely explained by the lower solubility of FePP compared to FeSO4

7,10,20.
In our human study, the RBVs of Fe-PA-HCP given with bouillon were 17%, and 41% when co-ingested with 

the inhibitory meal. In our in vitro study, the IVRBA of Fe-PA-HCP was 31% when given with bouillon and 70% 
with the inhibitory meal. An explanation for the lower bioavailability for Fe-PA-HCP relatively to FeSO4 could be 
that the large number of binding sites of Fe-PA-HCP potentially available for binding with dietary components 
may negatively influence solubility and absorption compared to simple salts like FeSO4. Although it has been 
suggested that monoferric phytate may not be soluble at low pH, such as in gastric conditions35–37, part I of this 
series reports high solubility of Fe-PA-HCP in a range of pH conditions. In a rat study, the relative biological value 
of iron as monoferric phytate was reported equivalent to common iron fortificants such as ferrous ammonium 
sulfate27. In a study in dogs, the absorption of monoferric phytate was equal to the major pool of dietary inor-
ganic iron when added to meals28. To our knowledge, only few human studies have investigated the absorption of 
monoferric phytate. In one study, iron from monoferric phytate was absorbed at least as well as the common pool 
of non-heme dietary iron in humans29. Further research (see also part I of this series) is needed to better describe 

Figure 2. Model-based in vitro relative bioaccessibility (IVRBA) from FePP and Fe-PA-HCP fortified bouillon 
and bouillon added to the inhibitory meal rich in phytate, calculated based on ferritin formation in the Caco-2 
cells. Ferritin values were corrected by unfortified samples. Columns and values are geometric means, error bars 
are 95% confidence intervals. All IVRBAs are statistically significantly different (P < 0.001) from 100%.
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the absorption behavior of Fe-PA-HCP compared to other monoferric phytate compounds, to FeSO4 and to other 
potential iron fortificants.

Strengths of our study include testing the bioavailability of Fe-PA-HCP in bouillon alone and in bouillon 
added to an inhibitory meal; and using combined in vivo and in vitro approaches to assess bioavailability. Our 
study also has limitations. We tested bioavailability in two idealized model systems, bouillon and a high phytate 
corn meal, both may not be entirely representative of the diet of condiment consumers. Potential impact of 
Fe-PA-HCP when consumed with a wider range of foods, such as stews with variable content of absorption 
enhancers and inhibitors, remains to be tested in further studies.

In summary, we have found that Fe-PA-HCP is a promising fortificant for condiments, especially when 
co-ingested with an inhibitory meal. Our results show that, in iron-depleted women consuming one bouillon 
cube per day fortified with Fe-PA-HCP at a fortification level of 4 mg Fe/cube, on average 0.356 mg and 0.128 mg 
iron would be absorbed if consumed alone and when co-ingested with an inhibitory meal, respectively. This 
equals to 24% and 9% of the daily absorbed iron needs of 1.46 mg/day38. The efficacy of iron fortification depends 
on the absolute absorption from the fortified food, which is determined by the daily consumption by the target 
population as well as on the amount of iron added to the food vehicle34.

Methods
Study design. The human study was a controlled, single blind (to the subjects), single center trial. Healthy 
adult women (n = 23) consumed 6 different types of investigational products in random order with a cross-over 
design: bouillon with and without corn porridge fortified either with [58Fe]-PA-HCP, [54Fe]-SO4, or [57Fe]-PP, 
resulting in 6 different test meal sequences. The sequences built up a Partial Williams Latin square, balanced for 
first order carry over. The experimental phase lasted for a period of 33 days.

Sample size. The objective of the human study was to determine the FIA from Fe-PA-HCP, FePP and FeSO4 
in fortified reconstituted bouillon, the RBV of Fe-PA-HCP and FePP and the effect modification by the meal. If 
the effect modification was shown, the other effects would follow; therefore the trial was powered on the effect 
modification. The RBV of Fe-PA-HCP for bouillon was expected to be 10%/10% = 1. The RBV of Fe-PA-HCP 
for the inhibitory meal vs the RBV of Fe-PA-HCP for the bouillon was expected to be 10%/7%/10%/10%~ = 1.4. 
On a log-scale, the effect modification was expected with log(1.4) = 0.34 (FIA is approximately log-normally 
distributed). The within-subject standard deviation was estimated on former data by a mixed model with 0.25 
(log-scale). The within subjects standard deviation has to be multiplied by a factor of √2 in order to use the one 
sample t-test formula for powering the trial. Since effect modification is the difference of a difference, the factor 
√2 has to be taken twice into account. In order to show the effect modification as statistically significant with 
an experiment-wise false positive rate of 5% and a power of 80%, n = 20 subjects were necessary to complete the 
study. Twenty-two participants were enrolled to assure against dropouts.

Participants. Female participants were recruited among students and staff population of the ETH Zurich 
and the University of Zurich (Switzerland). Inclusion criteria were: 1) women aged between 18 to 40 years old; 2)  
healthy subjects, assessed on the medical screening visit; 3) BMI of 18.5–25.0 kg/m2; 4) weight less than 65 kg. 
Exclusion criteria were: (1) anemia or polycythemia (evidenced by one of the following parameters being out of 
range: number of erythrocytes 4.0–5.8 T/L, hemoglobin (Hb) 120–160 g/L, hematocrit (Ht) 35–55%); (2) sig-
nificant blood loss over the past 6 months; (3) plasma ferritin (PF) >80 μg/L, chosen to exclude subjects with 
hemochromatosis; (4) any therapy or medication taken for infectious and/or inflammatory disease in the past two 
weeks; (5) relevant digestive, renal and/or metabolic disease; (6) diagnosed food allergy; (7) pregnancy (tested 
in plasma at screening) and/or lactation; (8) history of cancer within the past year; (9) 10% or more weight loss 
during the last 3 months; (10) any medication or supplement which may impact erythrocytes, Hb or Ht; (11) iron 
supplementation therapy or perfusion in the last three months; (12) smoking; (13) high alcohol consumption (>2 
drinks/day); (14) consumption of illicit drugs.

Study procedures. The human study was conducted between December 2016 and February 2017 at the 
Laboratory of Human Nutrition of the ETH Zurich. During the screening visit, about 1 month before the first 
test meal administration, 36 women were assessed for eligibility. The study procedure was explained in detail 
and written informed consent was obtained. An interview was conducted, weight and height were measured 
and a venous blood sample was drawn to assess whether participants fulfilled inclusion and exclusion crite-
ria (Hb, Ht, number of erythrocytes, PF). Finally, 22 eligible women were invited to participate. The labelled 
iron-fortified test meals were administered on days 1, 2, 3, 17, 18 and 19 (Fig. 3). Test meals were administered 
between 07:00 and 09:30 after an overnight fast. The participants consumed the complete test meal and a glass 
of 300 mL ultrapure water in the presence of the investigators. Each test meal corresponded to a dose of 4.2 mg 
labeled iron. Quantitative consumption of the investigational product was ensured by washing the glass test meal 
container 2 times with 10 mL of ultrapure water. After consuming the test meals, participants were not allowed 
to eat or drink for 3 h.

Venous blood samples were collected after an overnight fast on day 1 (baseline), day 17 and day 33 (endpoint) 
to determine iron status and iron absorption from the test meals. Iron absorption was determined by quantifying 
the incorporation of oral stable isotopic labels into erythrocytes39. Adverse events and concomitant medication 
were inquired and documented during the entire study. All experiments were performed in accordance with 
relevant guidelines and regulations. The study was approved by the ethics Committee of the Canton Zurich, 
Switzerland (KEK-ZH-Nr. 2016–01472). Participants gave informed written consent before participation in the 
study and received a symbolic reimbursement at the end of the trial. The study was registered at clinicaltrials.gov 
as NCT02993835 on December 15, 2016.
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Production of stable labelled iron compounds. Isotopically labelled [54Fe]-SO4 (anhydrous) and 
[57Fe]-PP and [58Fe2]-(SO4)3 (58Ferric Sulfate as precursor of [58Fe]-PA-HCP) were prepared in powder form by 
Dr. Paul Lohmann GmbH KG (Emmerthal, Germany) from isotopically enriched elemental iron ([54Fe]-metal: 
99.9% enriched; [57Fe]-metal: 95.1% enriched; [58Fe]-metal: 96.2%; all ISOFLEX, USA). The preparation of 
[58Fe]-PA-HCP was carried out in a double-jacked reactor equipped with mechanical stirrer. In short, 6.2 g of 50% 
phytic acid solution (Tongxiang Xinyang Food Additives Co. Ltd., Tongxiang, China) was diluted with 50 mL of 
Milli-Q® water (18.2 MΩ) under stirring (500 rpm). The temperature of the reactor was kept at −2 °C and 760 mg 
of [58Fe2]-(SO4)3 dissolved in 40 mL Milli-Q® water was added drop-wise at pH 1.7 under agitation (500 rpm) to 
generate mono ferric phytate as a white precipitate. Subsequently, 2.2 g of Hydrolyzed Corn Proteins (Exter B.V., 
Zaandam, The Netherlands) dissolved in 30 mL Milli-Q® water was added to the mixture. Subsequently, the solu-
tion was neutralized with 29% ammonium hydroxide (Spectrum Chemicals MFG Corp, NJ, USA) to a final pH of 
6.5 ± 0.5. Then, the resulting mix was stirred overnight (16 h) to achieve a clear solution and the preparation was 
pasteurized (65 °C, 30 min), freeze dried (Telstar, LyoBeta 15, Terrassa, Spain), milled (Retsch, Ultra Centrifugal 
Mill ZM 200, Haan, Germany), and sieved (≤2 mm mesh) yielding a light yellow/white powder.

Test meal preparation and iron fortification. The bouillon meal was prepared from 300 g ultrapure 
water and 7 g commercial vegetable bouillon powder (Maggi Gemüse Bouillon, Maggi, Singen, Germany) per 
serving. The bouillon contained iodized salt, dehydrated vegetables (onion, carrot, spinach, celery), yeast extracts, 
white sugar, potato starch, vegetable extracts (carrot, leek, onion, garlic), sunflower seed oil, natural flavours, 
spices (curcumin, paprika, nutmeg), chervil, caramelized sugar and natural celery flavour. Due to the strong 
dilution it contained negligible amounts of iron and other nutrients. The inhibitory meal was a corn porridge, 
prepared from 300 g ultrapure water, 7 g commercial vegetable bouillon powder and 50 g whole corn flour per 
serving (Farina per polenta integrale, Paolo Bassetti, Pianezzo, Switzerland) to achieve an absorption-inhibiting 

Figure 3. Schematic diagram of the human study design. Six different test meals consisting of bouillon fortified 
with isotopically labeled [54Fe]-SO4, [57Fe]-PP and [58Fe]-PA-HCP, respectively, each with and without the 
addition of an inhibitory corn meal rich in phytate, were randomly administered on study days 1, 2, 3, 17, 18 
and 19.
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PA:Fe molar ratio of 5.031,40, representative of a moderately inhibitory meal. Whole corn flour has a phytic acid 
content of about 1–2%, which is higher than in wheat (0.9%) and rice (0.7%)12,41. Test meals were prepared the day 
before each feeding and stored in individual portions in a refrigerator overnight. On the day of administration, 
test meals were heated in a microwave oven. The pre-weighed vials containing the labeled iron compounds were 
added to the test meals and were rinsed 2 times with 2 mL of ultrapure water. Subjects received a total of 4.2 mg 
fortification iron per test meal, equaling to 19 mg of [57Fe]-PP, 12 mg of [54Fe]-SO4 and 80 mg of [58Fe]-PA-HCP. 
Bouillon meals further contained 0.1 mg intrinsic iron and the inhibitory meals contained 0.8 mg Fe from the 
corn flour. Test meals were stirred and served to the participants for complete consumption.

Biochemical analysis. PF and C-reactive protein (CRP) were measured from plasma samples collected on 
V0, V1 and V4 of the human study and were frozen until analysis which was conducted with an IMMULITE 
1000 system (Siemens Healthcare) following the manufacturer’s instructions. Hb was measured in whole blood 
collected on V0, V4 and V7 on the day of collection by using either a Sysmex XE 5000 (Sysmex Corporation) or 
an Advia 2120 (Siemens Healthcare) hematology analyser.

Each blood sample was analysed in duplicate for its isotopic composition. Whole blood was mineralized by 
microwave digestion, and iron was separated by anion exchange chromatography and a subsequent precipitation 
step with ammonium hydroxide42. Iron isotope composition was determined by a Multicollector-Inductively 
Coupled Plasma Mass Spectrometer (MC-ICP-MS) instrument (Neptune; Thermo Finnigan).

The PA concentration of the corn flour was analysed as earlier described43 and was used for calculation of the 
molar ratio of PA to iron.

Calculation of iron bioavailability. FIA was calculated based on the measured shift of iron isotope ratios 
in the blood 14 days after the test meal administrations, from the blood samples collected on days 1, 17 and 35. 
For the calculation on day 35, the isotopic ratio of day 17 was considered as a new baseline. The amounts of 54Fe, 
57Fe and 58Fe in the blood were calculated on the principle of isotope dilution by considering that iron isotopic 
labels are not mono-isotopic39,44. Circulating iron was calculated based on blood volume and Hb concentration45. 
Blood volume was indirectly measured based on height and weight and calculated using the formula proposed by 
Brown et al.46. For calculations of fractional absorption, 80% incorporation of the absorbed iron into red blood 
cells was assumed47.

The bioavailability of iron compounds relative to FeSO4 was used to rank the iron compounds under study for 
bouillon cube fortification34,41. The RBV from each meal was calculated on the basis of FIA relative to FIA from 
the FeSO4 reference meal for each subject.

In vitro bioaccessiblity via Caco-2 cells. In parallel to the in vivo human study, in vitro bioaccessibility of 
the iron compounds was assessed using a Caco-2 cell assay by assessing the amount of ferritin formed in response 
to the exposure to different digests. Iron fortified bouillon and bouillon with whole corn flour were prepared 
following the same procedure reported for the human study using [58Fe]-PA-HCP, [57Fe]-PP and [54Fe]-SO4 at 
the level of 2.1 mg iron/3.3 g of bouillon mass through dry mixing. The resulting fortified bouillon mass was split 
in five fractions. Three fractions were analysed to assess iron homogeneity in the sample via Inductively Coupled 
Plasma Optical Emission Spectrometry (ICP-OES) as reported earlier48 and the remaining two fractions were sent 
to USDA-ARS Robert Holley Center for Agriculture and Health (Ithaca, NY, USA) to determine in vitro fractional 
bioaccessibility (IVFBA). From the 5 g sample, 1 g of each of the three repetitions was used in the Caco-2 cell assay 
as reported earlier48.

In vitro relative bioaccessibility (IVRBA) of iron from the 2 meals with the 3 iron compounds was calculated 
based on ferritin formation in the Caco-2 cells:

=





















×In vitro relative bioaccessibility IVRBA( ) 100
ng ferrittin of fortified sample
mg protein of fortified sample

ng ferrittin of sample fortified with Fe SO
mg protein of sample fortified with Fe SO

[ ]
[ ]

54
4

54
4

Statistical analysis. FIA was approximately log-normally distributed. Log-transformed FIA was analysed by 
a mixed model. Fixed-effects were molecule, meal and visit, and random-effect was subject. The model-based FIA 
is the exponent of the model-based estimate of the predicted mean. The RBV is the exponent of the model-based 
treatment difference. The model-based effects are presented in this report. The experiment-wise false positive rate 
was controlled on a 5% level, by applying a hierarchy: 1) the RBVs of Fe-PA-HCP (a) and FePP (b) in bouillon 
were tested; 2) the RBVs of Fe-PA-HCP (a) and FePP (b) in inhibitory meals were tested; and 3) the effect modifi-
cation was tested. In the in vitro study, the IVFBAs were also approximately log normally distributed and analysed 
by robust ANOVA. Units under investigation were the three repeats of the experiments.

Received: 16 August 2019; Accepted: 4 March 2020;
Published: xx xx xxxx

References
 1. Hess, S. Y. et al. Results of Fortification Rapid Assessment Tool (FRAT) surveys in sub-Saharan Africa and suggestions for future 

modifications of the survey instrument. Food Nutr. Bull. 34, 21–38 (2013).
 2. Engle-Stone, R., Ndjebayi, A. O., Nankap, M. & Brown, K. H. Consumption of potentially fortifiable foods by women and young 

children varies by ecological zone and socio-economic status in Cameroon. J. Nutr. 142, 555–565 (2012).
 3. Klassen-Wigger, P. et al. In Food Fortification in a Globalized World (eds Venkatesh Mannar M. G. & Hurrell R. F.) Ch. 39, 363–371 

(Academic Press, 2018).

https://doi.org/10.1038/s41598-020-62307-1


8Scientific RepoRtS |         (2020) 10:5339  | https://doi.org/10.1038/s41598-020-62307-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

 4. Spohrer, R. et al. Estimation of population iodine intake from iodized salt consumed through bouillon seasoning in Senegal. Ann. 
N. Y. Acad. Sci. 1357, 43–52 (2015).

 5. Hurrell, R. F. et al. Iron fortification of infant cereals: a proposal for the use of ferrous fumarate or ferrous succinate. Am. J. Clin. Nutr. 
49, 1274–1282 (1989).

 6. World Health Organization. Fortification of condiments and seasonings with vitamins and minerals in public health: from proof of 
concept to scaling up. (New York Academy of Sciences, 2014).

 7. World Health Organization & Food and Agricultural Organization of the United Nations. Guidelines on food fortification with 
micronutrients. (World Health Organization, 2006).

 8. Moretti, D., Lee, T. C., Zimmermann, M. B., Nuessli, J. & Hurrell, R. F. Development and evaluation of iron-fortified extruded rice 
grains. J. Food Sci. 70, S330–S336 (2005).

 9. Moretti, D., Hurrell, R. F. & Cercamondi, C. I. Bouillon Cubes in Food Fortification in a Globalized World (eds. Venkatesh Mannar, 
M. G. & Hurrell, R. F.) 159–165 (Academic Press, 2018).

 10. Hurrell, R. How to ensure adequate iron absorption from iron-fortified food. Nutr. Rev. 60, S7–S15 (2002).
 11. Hurrell, R. F. Phytic acid degradation as a means of improving iron absorption. Int. J. Vitam. Nutr. Res. 74, 445–452 (2004).
 12. Reddy, N. R., Sathe, S. K. & Salunkhe, D. K. Phytates in legumes and cereals. Adv. Food Res. 28, 1–92 (1982).
 13. Hilty, F. M. et al. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat. 

Nanotechnol. 5, 374–380 (2010).
 14. Umair, M. et al. Nanotoxicity of Inert Materials: The Case of Gold, Silver and Iron. J. Pharm. Pharm Sci. 19, 161–180 (2016).
 15. Sabatier, M. et al. Iron bioavailability from fresh cheese fortified with iron-enriched yeast. Eur. J. Nutr. 56, 1551–1560 (2017).
 16. Reddy, M. B., Armah, S. M., Stewart, J. W. & O’Brien, K. O. Iron Absorption from Iron-Enriched Aspergillus oryzae Is Similar to 

Ferrous Sulfate in Healthy Female Subjects. Curr. Dev. Nutr. 2, nzy004 (2018).
 17. Hackl, L. S. et al. Micronutrient-fortified rice can be a significant source of dietary bioavailable iron in schoolchildren from rural 

Ghana. Sci. Adv. 5, eaau0790 (2019).
 18. Jeroense, F. M. D., Michel, L., Zeder, C., Herter-Aeberli, I. & Zimmermann, M. B. Consumption of Galacto-Oligosaccharides 

Increases Iron Absorption from Ferrous Fumarate: A Stable Iron Isotope Study in Iron-Depleted Young Women. J. Nutr. 149, 
738–746 (2019).

 19. Hurrell, R. F. et al. Enhancing the absorption of fortification iron. A SUSTAIN Task Force report. Int. J. Vitam. Nutr. Res. 74, 387–401 
(2004).

 20. Cercamondi, C. I. et al. Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate. 
Br. J. Nutr. 116, 496–503 (2016).

 21. Sabatier, M. et al. The bioavailability of iron picolinate is comparable to iron sulfate when fortified into a complementary fruit 
yogurt: a stable iron isotope study in young women. Eur J Nutr (2019).

 22. Reddy, N. K. & Sathe, S. K. Food Phytates (CRC Press, 2001).
 23. Li, Y., Jiang, H. & Huang, G. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption. Nutrients 9 (2017).
 24. Gupta, S. et al. The development of a novel ferric phytate compound for iron fortification of bouillons (part I). Sci Rep, https://doi.

org/10.1038/s41598-020-61833-2 in press (2020).
 25. Schlemmer, U., Frolich, W., Prieto, R. M. & Grases, F. Phytate in foods and significance for humans: food sources, intake, processing, 

bioavailability, protective role and analysis. Mol. Nutr. Food Res. 53(Suppl 2), S330–375 (2009).
 26. Morris, E. R. & Ellis, R. Isolation of monoferric phytate from wheat bran and its biological value as an iron source to the rat. J. Nutr. 

106, 753–760 (1976).
 27. Ellis, R. & Morris, E. R. Effect of Sodium Phytate on Stability of Monoferric Phytate Complex and the Bioavailability of the Iron to 

Rats. Nutr. Rep. Int. 20, 739–747 (1979).
 28. Lipschitz, D. A., Simpson, K. M., Cook, J. D. & Morris, E. R. Absorption of Monoferric Phytate by Dogs. J. Nutr. 109, 1154–1160 

(1979).
 29. Simpson, K. M., Morris, E. R. & Cook, J. D. The Inhibitory Effect of Bran on Iron-Absorption in Man. Am. J. Clin. Nutr. 34, 

1469–1478 (1981).
 30. Cook, J. D. et al. Absorption of fortification iron in bread. Am. J. Clin. Nutr. 26, 861 (1973).
 31. Hurrell, R. & Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 91, 1461S–1467S (2010).
 32. Moretti, D. et al. Iron status and food matrix strongly affect the relative bioavailability of ferric pyrophosphate in humans. Am. J. 

Clin. Nutr. 83, 632–638 (2006).
 33. Hurrell, R. F., Reddy, M. B., Dassenko, S. A. & Cook, J. D. Ferrous fumarate fortification of a chocolate drink powder. Br. J. Nutr. 65, 

271–283 (1991).
 34. Hurrell, R. Linking the bioavailability of iron compounds to the efficacy of iron-fortified foods. Int. J. Vitam. Nutr. Res. 77, 166–173 

(2007).
 35. Sharp, P. A. Intestinal iron absorption: regulation by dietary & systemic factors. Int. J. Vitam. Nutr. Res. 80, 231–242 (2010).
 36. Carpenter, C. E. & Mahoney, A. W. Contributions of heme and nonheme iron to human nutrition. Crit. Rev. Food Sci. Nutr. 31, 

333–367 (1992).
 37. Cook, J. D. & Monsen, E. R. Food iron absorption in human subjects. III. Comparison of the effect of animal proteins on nonheme 

iron absorption. Am. J. Clin. Nutr. 29, 859–867 (1976).
 38. World Health Organization & Food and Agricultural Organization of the United Nations. Vitamin and mineral requirements in 

human nutrition. Report of a joint FAO/WHO expert consultation (2004).
 39. Walczyk, T., Davidsson, L., Hurrell, R. F. & Zavaleta, N. Stable isotope labels as a tool to determine the iron absorption by Peruvian 

school children from a breakfast meal. Fresenius’ J. Anal. Chem. 359, 445–449 (1997).
 40. Hurrell, R. F. et al. Soy protein, phytate, and iron absorption in humans. Am. J. Clin. Nutr. 56, 573–578 (1992).
 41. Moretti, D., Biebinger, R., Bruins, M. J., Hoeft, B. & Kraemer, K. Bioavailability of iron, zinc, folic acid, and vitamin A from fortified 

maize. Ann. Ny. Acad. Sci. 1312, 54–65 (2014).
 42. Hotz, K., Krayenbuehl, P. A. & Walczyk, T. Mobilization of storage iron is reflected in the iron isotopic composition of blood in 

humans. J. Biol. Inorg. Chem. 17, 301–309 (2012).
 43. Cercamondi, C. I. et al. Afebrile Plasmodium falciparum parasitemia decreases absorption of fortification iron but does not affect 

systemic iron utilization: a double stable-isotope study in young Beninese women. Am. J. Clin. Nutr. 92, 1385–1392 (2010).
 44. Cercamondi, C. I. et al. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that 

from regular millet meals but less than that from post-harvest iron-fortified millet meals. J. Nutr. 143, 1376–1382 (2013).
 45. Kastenmayer, P. et al. A double stable isotope technique for measuring iron absorption in infants. Br. J. Nutr. 71, 411–424 (1994).
 46. Brown, E. et al. Red cell, plasma, and blood volume in the healthy women measured by radiochromium cell-labeling and hematocrit. 

J. Clin. Invest. 41, 2182–2190 (1962).
 47. Hosain, F., Marsaglia, G., Noyes, W. & Finch, C. A. The nature of internal iron exchange in man. Trans. Assoc. Am. Physicians 75, 

59–63 (1962).
 48. DellaValle, D. M., Vandenberg, A. & Glahn, R. P. Seed coat removal improves iron bioavailability in cooked lentils: studies using an 

in vitro digestion/Caco-2 cell culture model. J. Agric. Food Chem. 61, 8084–8089 (2013).

https://doi.org/10.1038/s41598-020-62307-1
https://doi.org/10.1038/s41598-020-61833-2
https://doi.org/10.1038/s41598-020-61833-2


9Scientific RepoRtS |         (2020) 10:5339  | https://doi.org/10.1038/s41598-020-62307-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
Dr. Peter Kastenmayer for his contribution on the setting of the clinical trial protocol, Dr. Rachid Bel Rhlid for his 
involvement on the preparation of [58Fe]-PA-HCP, Dr. Stephane Dubascoux and Céline Fragnière Rime for the 
ICP-MS analysis of tested iron compounds (Nestlé Research Center, Lausanne, Switzerland), Dr. Raymond Glahn 
(Cornell University, Ithaca, NY, USA) for his involvement on the Caco-2 cell test and Adam Krzystek (Laboratory 
of Human Nutrition, ETH Zurich, Switzerland) for his assistance with ICP-MS analysis for the human study.

Author contributions
M.B.Z., E.H., N.G., D.G., M.S. and D.M. designed the study; S.D., F.J., C.Z., J.T.F., S.M., B.R. and D.M. conducted 
the study; S.D., F.J., C.Z., E.H., D.G. and D.M. analysed the data; S.D., F.J., E.H., N.G., D.G. and D.M. wrote the 
paper; S.D., M.B.Z., E.H., N.G., D.G. and D.M. had primary responsibility for final content. All the authors read 
and approved the final version of the manuscript.

Competing interests
S.D., M.B.Z., F.J., C.Z., and D.M. declare no conflict of interest. E.H., N.G., S.M. and B.R. are affiliated with 
the Nestlé Research Center, Lausanne, Switzerland and are inventors on a patent filed (Application No.: 
WO2018EP53614 20180214; Status: Pending) on the composition of iron (lll)- phytic acid- hydrolysed corn 
protein compound described herein and wish to mention that this compound may have further potential as 
commercial fortificant for food and/or beverages.

Additional information
Correspondence and requests for materials should be addressed to D.M.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-62307-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

