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Optimal Parameter Tuning of Feedback Controllers with Application to
Biomolecular Antithetic Integral Control

Maurice Filo and Mustafa Khammash

Abstract— We consider the deterministic setting of a general
nonlinear plant in feedback with a nonlinear controller that
is parameterized by a finite number of unknown constants
to be tuned. This setting is particularly useful in applications
where the architecture of the feedback controller is constrained
to have a specific structure, but the controller parameters
can be tuned to optimize a given performance measure (e.g.
biomolecular controllers, PID controllers, etc.). We first cast
the tuning problem as a dynamically constrained optimization
problem, then we convert the latter to an unconstrained one
by introducing a suitable nonlinear operator. It is shown
that the necessary conditions of optimality can be written as
a parameter-dependent Two-Point Boundary Value Problem
(TPBVP) that is difficult to solve analytically. Hence, we derive
and compare two (first order) numerical methods to solve the
optimization problem based on the Gradient Descent (GD) and
the Conjugate Gradient Descent (CGD) algorithms. Finally,
we apply the developed algorithms to tune a biomolecular
antithetic integral controller. Tuning this controller has the
advantages of shaping the dynamic response of the plant and
minimizing the effect of dilution of the controller species.

I. INTRODUCTION

Feedback control has proven to be a very important
tool on which numerous industrial applications rely. These
applications span a broad range of engineering disciplines
such as mechanical, electrical and chemical engineering.
More recently, feedback control has found its way to molec-
ular biology ([1], [2], [3] among others). In fact, feedback
control mechanisms proved to be indispensable for engi-
neering biomolecular systems that are capable of rejecting
disturbances or achieving robust perfect adaptation [4]. Fur-
thermore, it was shown that feedback control mechanisms
exist naturally in the living cells and their role is to robustly
regulate various cellular behaviors ([5], [6], [7]).

In general, to design and implement a suitable feedback
controller that regulates a particular plant, two layers of
challenges must be overcome. The first layer is to design
a suitable control law that respects a particular architecture
(i.e. design the functions g and κ in Figure 1). In many
applications, one does not have the luxury of freely designing
the structure (or architecture) of the feedback controllers. For
example, one cannot implement a biomolecular controller
that has the simple structure of a linear PID [4]. This is
opposed to digital controllers where a PID implementation
is trivial. Particularly, in biomolecular systems, feedback
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controllers should respect the structure of chemical reaction
networks [4]. The second challenge is to make sure that
the controller is physically implementable. That is, find the
suitable mechanical, electrical or biological parts that dy-
namically interact with each other according to the designed
control law. The first challenge is purely mathematical and
is typically overcome by resorting to theoretical tools such
as control theory, chemical reaction network theory, etc.
However, the second challenge is less mathematical but more
practical, and it heavily depends on the application at hand.

In digital control systems, where the controller is imple-
mented on a computer, the second challenge is practically
nonexistent (assuming that the computational power is not
a limitation). However, in biomolecular applications for
example, both challenges are equally important. In these
applications, the designed feedback controllers are limited
to have a particular structure (g and κ in Figure 1) to (a) be
biologically implementable and (b) guarantee certain robust
properties such as disturbance rejection or robust perfect
adaptation [4] (see Section VII). Yet, the controller may
possess a set of tunable parameters (Θ in Figure 1). As a
result, tuning these parameters is important to get the best out
of that particular feedback control architecture and to shape
the dynamic response of the plant. Parameter tuning is most
common to PID controllers (eg. [8], [9] among others) and
more general linear controllers with Iterative Feedback Tun-
ing (IFT) [10]. Furthermore, tuning of nonlinear controllers
using a data-driven gradient descent method is developed in
[11].

In this paper, we cast the parameter tuning problem as
a model-based optimization problem, and adopt an operator
approach to derive the necessary conditions of optimality.
Then we develop two first order numerical methods based on
the Gradient Descent (GD) and Conjugate Gradient Descent
(CGD) algorithms. We apply the GD and CGD algorithms
to a nonlinear biomolecular controller called the Antithetic
Integral Controller [3], and demonstrate that the CGD outper-
forms GD without adding a significant computational load.

The paper is organized as follows. We first introduce some
useful notation that will be exploited throughout the paper.
In Section III, we describe the problem statement where the
tuning problem is cast as an optimization problem in a finite
dimensional space. The necessary conditions of optimality
are presented in Section IV leaving the detailed mathematical
derivations to Section VI. Two numerical methods that solve
the optimization problem are shown in Section V. Finally,
before concluding, we apply the algorithms to a biomolecular
controller in Section VII and discuss the biological implica-



tions of the tuning.

II. PRELIMINARIES AND NOTATION

This section is devoted to introduce some useful notation
that will be adopted throughout the paper.

1) Function Space & Inner Product: Let L2
n[0, T ] denote

the set of n−vector valued functions, whose entries are all
real-valued, square-integrable functions over the finite time
horizon [0, T ]. Furthermore, let 〈., .〉 (resp. 〈., .〉R) denote
the inner product in L2[0, T ] (resp. R) with the appropriate
dimension, i.e. if x, y ∈ L2

n[0, T ] and v, w ∈ Rn then

〈x, y〉 :=

∫ T

0

xT (t)y(t)dt and 〈v, w〉Rn := vTw,

where xT denotes the transpose of x.
2) Partial Derivatives and Jacobians: Suppose that

f(x, y) is a differentiable function in both vectors x and
y. Then the partial derivatives of f with respect to x and y,
evaluated at some trajectory (x̄, ȳ), is denoted by ∂xf(x̄,ȳ)

and ∂yf(x̄,ȳ), respectively. If the index of ∂ is dropped, then
the derivative is understood to be with respect to all the
variables, i.e. ∂f(x̄,ȳ) :=

[
∂xf(x̄,ȳ) ∂yf(x̄,ȳ)

]
.

3) Directional Derivatives and Adjoints: Suppose that
M : Rp → L2

m[0, T ] is an operator that acts on a constant
vector Θ ∈ Rp to yield a vector-valued function y =
M(Θ) ∈ L2

m[0, T ]. Then the directional derivative of M
evaluated at Θ̄ is denoted by ∂MΘ̄. In fact, the directional
derivative ∂MΘ̄ : Rp → L2

m[0, T ] is a linear operator whose
action on some Θ̃ ∈ Rp is defined as

∂MΘ̄(Θ̃) := lim
ε→0

M(Θ̄ + εΘ̃)−M(Θ̄)

ε
.

Furthermore, the adjoint of ∂MΘ̄ is denoted by a ∂M∗
Θ̄

:
L2
m[0, T ]→ Rp and is defined as〈

y, ∂MΘ̄(Θ̃)
〉

=
〈
∂M∗Θ̄(y), Θ̃

〉
Rp ,

for all y ∈ L2
m[0, T ] and Θ̃ ∈ Rp.

4) Gradients: Suppose that J : L2
m[0, T ] × Rp → R is

a (sufficiently smooth) nonlinear functional that takes y ∈
L2
m[0, T ] and Θ ∈ Rp as inputs to yield a scalar real number
J (y; Θ). The partial directional derivatives of J with respect
to y and Θ, evaluated at (ȳ; Θ̄), are denoted by ∂yJ(ȳ;Θ̄) :
L2
m[0, T ]→ R and ∂ΘJ(ȳ;Θ̄) : Rp → R, respectively. These

derivatives are, in fact, linear functionals whose actions can
be expressed using the appropriate inner product, that is

∂yJ(ȳ;Θ̄)(ỹ) := lim
ε→0

J (ȳ+εỹ;Θ̄)−J (ȳ;Θ̄)
ε =: 〈∇yJ(ȳ;Θ̄), ỹ〉

∂ΘJ(ȳ;Θ̄)(Θ̃) := lim
ε→0

J (ȳ;Θ̄+εΘ̃)−J (ȳ;Θ̄)
ε =: 〈∇ΘJ(ȳ;Θ̄), Θ̃〉Rp ,

where ∇yJ(ȳ;Θ̄) and ∇ΘJ(ȳ;Θ̄) denote the gradients of J at
(ȳ; Θ̄) with respect to y and Θ, respectively.

III. PROBLEM STATEMENT

Consider the feedback setting depicted in the block dia-
gram of Figure 1. Both, the plant and the feedback controller
are represented as nonlinear dynamical systems described by
a state differential equation and an output algebraic equation.
We assume that the output y of the plant does not depend
explicitly on the inputs u and w (i.e. no feedthrough term).
We also assume that all of the functions f, h, g, κ and J
are sufficiently smooth. The main objective of this paper

Plant

Controller

ẋ = f(x, u, w); x(0) = x0

y = h(x)

ż = g(z, y, v; Θ); z(0) = z0

u = κ(z, y, v; Θ)

w

u

J
y

v

Fig. 1. Nonlinear Feedback Control System. The plant considered here
is represented as a general nonlinear dynamical system whose inputs are
denoted by u ∈ Rnu and w ∈ Rnw , where w may represent an exogenous
input to the plant and/or plant parameters (that is known). The plant’s output,
that is “sensed” by the controller, is denoted by y ∈ Rm, and J represents
some performance measure (a cost functional). The plant is in feedback
with a nonlinear controller whose architecture is assumed to be known and
fixed; however, the controller is parameterized by a tunable constant vector
Θ ∈ Rp. Furthermore, let x ∈ Rn and z ∈ Rl denote the internal states
of the plant and the controller, respectively. The objective of this paper is
to tune Θ to optimize the performance measure J . Note that v ∈ Rnv

may play the role of an exogenous input to the controller or a known fixed
controller parameter (for example a reference set-point).

is to tune the controller parameters Θ to optimize some
performance measure J . More precisely, the goal is to solve
the following optimization problem

minimize
Θ

J (y; Θ)

subject to


ẋ = f(x, u, w); x(0) = x0

ż = g(z, y, v; Θ); z(0) = z0

u = κ(z, y, v; Θ)

y = h(x),

(1)

where the cost functional J : L2
m[0, T ] × Rp → R is taken

to be

J (y; Θ) =
1

2

∫ T

0

(
y(t)− yr(t)

)T
Q(t)

(
y(t)− yr(t)

)
dt+ b(Θ),

(2)
such that yr is some desired output-tracking trajectory, Q ∈
Rm×m is a symmetric matrix-valued signal, and b : Rp → R
is a differentiable functional. Note that the first term in J
penalizes the output-tracking error, while the second term
(if present) may represent a penalty term on Θ or a barrier
function that replaces possible inequality constraints (see [12,
chapter 17]) that arise due to feasibility constraints on Θ. The
matrix-valued signal Q is an optimization design parameter
that allows us to penalize particular performance measures
related to the transient and/or steady-state response such as
the rise-time, overshoot, steady-state error, etc.



The optimization problem presented in (1) is fundamen-
tally different from the classical open-loop optimal control
problem. In the latter, we search for optimal control laws
in function space; whereas in (1) we search for a constant
parameter in Rp, after fixing a particular feedback control
architecture.

IV. NECESSARY CONDITIONS OF OPTIMALITY

In this section, we present the necessary conditions of
optimality of (1). The operator approach adopted in this
paper is similar in spirit to that adopted in [13] and [14].
This approach has the advantage of making the optimization
procedure conceptually transparent by hiding the details of
the calculations. In fact, by introducing a new operator (we
call it the parameter-to-output operator, see (5)) that maps the
controller parameters Θ to the output signal y, we convert
the constrained optimization problem given in (1) into an
unconstrained one. As a result, one can easily write down
the (abstract) necessary conditions of optimality and treat the
detailed calculations separately.

Define the augmented (plant-controller) state variable χ,
the augmented exogenous input variable ω, and the functions
F and H as

χ =

[
x
z

]
, χ0 =

[
x0

z0

]
, ω =

[
w
v

]
, H(χ) = h(x),

F (χ, ω; Θ) =

[
f
(
x, κ

(
z, h(x), v; Θ

)
, w
)

g(z, h(x), v; Θ)

]
.

(3)

With the augmented variables and functions at hand, one can
rewrite the optimization problem (1), more compactly, as

minimize
Θ

J (y; Θ)

subject to

{
χ̇ = F (χ, ω; Θ); χ(0) = χ0

y = H(χ).

(4)

This is a constrained optimization problem that can be con-
verted to an unconstrained one by exploiting the parameter-
to-output operator M : Rp → L2

m[0, T ] defined as

y =M(Θ) ⇐⇒
{
χ̇ = F (χ, ω; Θ); χ(0) = χ0

y = H(χ).
(5)

This operator takes the parameter Θ as an input to produce
the output y (for a given exogenous input ω). Hence, by
substituting y = M(Θ) in the cost functional J (y; Θ),
we arrive at an unconstrained optimization problem that is
equivalent to (1) and (4)

minimize
Θ

J(Θ) := J
(
M(Θ); Θ

)
. (6)

This is an unconstrained optimization problem in Rp, where
the new cost functional J : Rp → R is now written abstractly
in terms of Θ only. It is now straight forward to write
down the abstract necessary condition of optimality which
is obtained by simply setting the gradient of J to zero, i.e.
∇JΘ̄ = 0. The gradient is calculated separately in Section VI
and the result is shown in (15). In fact, by setting the gradient

in (15) to zero, we obtain the following necessary conditions
of optimality

˙̄ξ = −
[
B̄C̄Θ

B̄Θ

]T
λ̄; ξ̄(0) = −∇bΘ̄, ξ̄(T ) = 0

˙̄λ = −
[
Ā+ B̄D̄cC̄ B̄C̄c

B̄cC̄ Āc

]T
λ̄−

[
C̄TQ(ȳ − yr)

0

]
; λ̄(T ) = 0

˙̄x = f(x̄, ū, w); x̄(0) = x0

ȳ = h(x̄)

˙̄z = g(z̄, ȳ, v; Θ̄); z̄(0) = z0

ū = κ(z̄, ȳ, v; Θ̄),
(7)

where Ā, B̄, C̄, Āc, B̄c, C̄c, D̄c, B̄Θ and C̄Θ are time-
varying matrices defined in (13), and ∇bΘ̄ is the gradient of
the barrier function b evaluated at Θ̄. The set of equations in
(7) represent a nonlinear two-point boundary value problem
with an unknown parameter Θ̄ [15]. Therefore, solving
∇JΘ̄ = 0 for the optimal parameter Θ̄ is equivalent to
solving (7) for Θ̄. In general this not analytically tractable,
and one has to resort to numerical methods.

V. NUMERICAL METHODS

Equipped with the gradient of the cost functional J (15),
one can easily devise a first order numerical method to
solve the unconstrained optimization problem given in (6).
Furthermore, the Hessian of J can also be calculated to
devise a second order (Newton) method. In this paper, we
only treat first order methods, namely Gradient Descent (GD)
and Conjugate Gradient Descent (CGD), and leave second
order methods for future work.

A general numerical method can be stated as follows:
given the current approximation Θi of the optimal parameter
Θ̄, a new approximation Θi+1 is given by the following
iterative equation

Θi+1 = Θi + αisi, (8)

where αi and si are the step size and update direction at
iteration i, respectively. The choice of the update direction
si depends on the particular numerical method. For the GD
method, si is chosen to be the negative of the gradient,
evaluated at the current estimate Θi, i.e. si := −∇JΘi . For
the CGD method, si is chosen as follows

si =


−∇JΘi

i = 0

−∇JΘi
+
||∇JΘi

||2
||∇JΘi−1 ||2

si−1 i > 0,

where ||∇JΘi ||2 := ∇JTΘi
∇JΘi . As for the choice of the

step size, theoretically one can pick the optimal step size αi
by solving the following scalar optimization problem at each
iteration

αi = argmin
α

J(Θi + αsi).

However, in practice, the step size αi can be chosen to be
some constant, or it can be chosen by using other rules.
For the numerical results in this paper, the Armijo rule [16]
is employed. Finally, our two proposed numerical methods



(GD and CGD) to solve the optimization problem (1) are
given in Algorithm 1. The algorithm can be applied when
the following criteria are available
• The closed loop dynamics: f, g, h, κ, v, w, x0 and z0.
• A desired tracking output signal: yr(t).
• Penalty matrix and barrier function: Q(t) and b.
• An initial guess Θ0.

The algorithm produces a local minimum Θ̄ of the cost
functional J(Θ). The usual procedure to avoid local minima
for this class of algorithms is to start from several different
initial guesses Θ0.

Algorithm 1 (Conjugate) Gradient Descent Algorithm
1: Start with an initial guess Θ0 ∈ Rp and set i = 0.
2: Compute the gradient at Θi, ∇JΘi :

(a) Simulate the closed-loop dynamics with Θ = Θi:

ẋi = f(xi, ui, w); xi(0) = x0

żi = g(zi, yi, v; Θi); zi(0) = z0

ui = κ(zi, yi, v; Θi)

yi = h(xi).

(b) Compute the time-varying Jacobians:

Ai = ∂xf(xi,ui,w), Bi = ∂uf(xi,ui,w)

Ci = ∂hxi , Aci = ∂zg(zi,yi,v;Θi)

Bci = ∂yg(zi,yi,v;Θi), Cci = ∂zκ(zi,yi,v;Θi)

Dc
i = ∂yκ(zi,yi,v;Θi) BΘ

i = ∂Θg(zi,yi,v;Θi)

CΘ
i = ∂Θκ(zi,yi,v;Θi).

(c) Solve for λi(t), with λi(T ) = 0:

λ̇i = −
[
Ai +BiD

c
iCi BiC

c
i

BciCi Aci

]T
λi −

[
CTi Q

0

]
(yi − yr).

(d) Compute ξi(0):

ξ̇i = −
[
BiC

Θ
i

BΘ
i

]T
λi; ξi(T ) = 0.

(e) ∇JΘi
= ξi(0) +∇bΘi

.
3: Compute the update direction si:

(a) For a Gradient Descent Method: si = −∇JΘi
.

(b) For a Conjugate Gradient Descent Method:

si =


−∇JΘi

i = 0

−∇JΘi
+
||∇JΘi

||2
||∇JΘi−1 ||2

si−1 i > 0.

4: Pick a step size: αi = argmin
α

J(Θi + αsi).

5: Update the estimate: Θi+1 = Θi + αisi.
6: Set i = i + 1 and go back to step 2. Repeat until

convergence.

VI. MATHEMATICAL DERIVATION OF THE GRADIENT

The objective of this section is to calculate the gradient
of the cost functional J(Θ) := J

(
M(Θ); Θ

)
where J and

M are given in (2) and (5), respectively. Let ∂JΘ̄ denote the
directional derivative of J evaluated at Θ̄. Then ∂JΘ̄ : Rp →
R is a linear functional whose action on some Θ̃ ∈ Rp can
be calculated by invoking the chain rule

∂JΘ̄(Θ̃) = ∂yJ(ȳ;Θ̄)

(
∂MΘ̄(Θ̃)

)
+ ∂ΘJ(ȳ;Θ̄)(Θ̃), (9)

where ȳ := M(Θ̄) and ∂MΘ̄ is the directional derivative
of M evaluated at Θ̄ (refer to Section II-.3). Let us now
calculate the partial directional derivatives ∂yJ and ∂ΘJ .

Directional Derivatives of J :

Observe that J given in (2) can be equivalently rewritten
in terms of the inner product as

J (y; Θ) =
1

2
〈Q(y − yr), y − yr〉+ b(Θ), (10)

where the inner product is defined in Section II-.1. Then, the
directional derivative of J with respect to y can be calculated
using the definition in Section II-.4 to obtain

∂yJ(ȳ;Θ̄)(ỹ) = lim
ε→0

1

2ε

{〈
Q(ȳ + εỹ − yr), ȳ + εỹ − yr

〉
−
〈
Q(ȳ − yr), ȳ − yr

〉}
= 〈Q(ȳ − yr), ỹ〉,

where the last equality is obtained by exploiting the symme-
try of the matrix-valued signal Q and by neglecting second
orders of ε in the limit as ε→ 0. The directional derivative
of J with respect to Θ is written in terms of the gradient of
the barrier function ∇bΘ̄ as

∂ΘJ(ȳ;Θ̄)(Θ̃) = 〈∇bΘ̄, Θ̃〉Rp .

By recalling that ȳ :=M(Θ̄) and substituting for ∂yJ and
∂ΘJ in (9), we arrive at the following expression for the
directional derivative of the unconstrained cost functional J

∂JΘ̄(Θ̃) =
〈
Q
(
M(Θ̄)− yr

)
, ∂MΘ̄(Θ̃)

〉
+ 〈∇bΘ̄, Θ̃〉Rp .

Finally, to explicitly calculate the gradient ∇JΘ̄, we move
the operator ∂MΘ̄ to the other side of the inner product by
taking its adjoint

∂JΘ̄(Θ̃) =
〈
∂M∗Θ̄

(
Q
(
M(Θ̄)− yr

))
+∇bΘ̄, Θ̃

〉
Rp

=: 〈∇JΘ̄, Θ̃〉Rp ,
(11)

where ∂M∗
Θ̄

is the adjoint of ∂MΘ̄ defined in Section II-.3,

and ∇JΘ̄ := ∂M∗
Θ̄

(
Q
(
M(Θ̄) − yr

))
+ ∇bΘ̄ is a column

vector that represents the gradient of J at Θ̄. The directional
derivative ∂MΘ̄ and the adjoint ∂M∗

Θ̄
are both linear

operators whose actions can be calculated (the derivations
are omitted in this paper for lack of space) as shown in
Table I.



The gradient can now be calculated by exploiting the
expression of the adjoint operator ∂M∗

Θ̄
in Table I. Hence,

∇JΘ̄ = ξ̄(0) +∇bΘ̄

with


˙̄ξ = −∂ΘF

T
(χ̄,v;Θ̄)λ̄; ξ̄(T ) = 0

˙̄λ = −∂χFT(χ̄,v;Θ̄)λ̄− ∂HT
χ̄Q(ȳ − yr); λ̄(T ) = 0

and

{
˙̄χ = F (χ̄, v; Θ̄); χ̄(0) = χ0

ȳ = H(χ̄).
(12)

Finally, to write the gradient ∇JΘ̄ in terms of the original
controller and state variables (x, z), we express the Jacobians
∂χF, ∂ΘF and ∂H in terms of the various Jacobians of
f, g, h and κ using (3). For notational convenience, define
the following time-varying matrices

Ā = ∂xf(x̄,ū,w), B̄ = ∂uf(x̄,ū,w), C̄ = ∂hx̄,

Āc = ∂zg(z̄,ȳ,v;Θ̄), B̄c = ∂yg(z̄,ȳ,v;Θ̄),

C̄c = ∂zκ(z̄,ȳ,v;Θ̄), D̄c = ∂yκ(z̄,ȳ,v;Θ̄),

B̄Θ = ∂Θg(z̄,ȳ,v;Θ̄), C̄Θ = ∂Θκ(z̄,ȳ,v;Θ̄).
(13)

Hence, by recalling that χ :=
[
xT zT

]T
and invoking the

chain rule, we have

∂χF(χ̄,v;Θ̄) =

[
Ā+ B̄D̄cC̄ B̄C̄c

B̄cC̄ Āc

]
,

∂ΘF(χ̄,v;Θ̄) =

[
B̄C̄Θ

B̄Θ

]
, ∂Hχ̄ =

[
C̄ 0

]
,

(14)

where ū := κ(z̄, ȳ, v; Θ̄) and ȳ := h(x̄). Therefore, by
substituting (14) in (12), we arrive at the final expression
for the gradient

∇JΘ̄ = ξ̄(0) +∇bΘ̄

with


˙̄ξ = −

[
B̄C̄Θ

B̄Θ

]T
λ̄

˙̄λ = −
[
Ā+ B̄D̄cC̄ B̄C̄c

B̄cC̄ Āc

]T
λ̄−

[
C̄TQ

0

]
(ȳ − yr)

ξ̄(T ) = 0; λ̄(T ) = 0

and


˙̄x = f(x̄, ū); x̄(0) = x0

ȳ = h(x̄)

˙̄z = g(z̄, ȳ, v; Θ̄); z̄(0) = z0

ū = κ(z̄, ȳ, v; Θ̄),
(15)

where all the time-varying matrices are given in (13). Equa-
tion (15) gives a recipe to compute the gradient at Θ̄.

VII. OPTIMAL TUNING OF THE ANTITHETIC INTEGRAL
CONTROLLER

Recently, several biomolecular feedback controllers have
been designed (e.g. [3], [17], [18], [19], [20]). Particularly,
the Antithetic Integral Feedback Controller [3] overcomes
both challenges discussed in Section I and succeeds, under
certain assumptions, in achieving robust perfect adaptation.

That is, a plant species is regulated to have a zero steady-
state error in the presence of plant uncertainties and dis-
turbances. However, in the presence of controller species
dilution (γ 6= 0 in Figure 2), the steady-state error increases
[21], [22]. Furthermore, most of the biomolecular controllers
developed so far only address steady-state behavior, although
dynamic transient behavior is equally important (e.g. [21]).
In this section, we consider the deterministic setting of the
Antithetic Integral Feedback Controller introduced in [3].
We show that by optimally tuning the controller parameters
(using Algorithm 1), we minimize the effect of controller
species dilution and shape the transient response. We also
compare the performance of the GD and CGD algorithms.

Consider the reaction network diagram depicted in Fig-
ure 2 which shows the antithetic integral controller sensing
and actuating a particular plant taken here as an example.
It is fairly straight forward to write down the differential
equations using mass-action kinetics and show that the closed
loop system fits the general setting of Figure 1 with

x :=

[
x1

x2

]
z :=

[
z1

z2

]
f(x, u) :=

[
u− δx1

kx1 − δx2

]
h(x) := x2

g(z, y; Θ) :=

[
µ− ηz1z2 − γz1

θy − ηz1z2 − γz2

]
κ(z, y; Θ) := νz1,

(16)
where Θ can be any combination of the controller parameters
µ, θ, η and ν. Note that we set the exogenous inputs v and
w to zero in this section. For simplicity, the cost functional
considered here is given by

J =
1

2

∫ T

0

(
y(t)− yr(t)

)2
dt, (17)

where yr(t) is shown in Figure 2. Of course for the param-
eters to be biologically feasible, one should add inequality
constraints to the optimization problem to force the param-
eters to be positive. In general one can design a barrier
function b(Θ) to incorporate the inequality constraints in J .
However, in the following numerical examples, the optima
are all positive, and therefore, there is no need to add
inequality constraints. We consider three scenarios. In the
first scenario, we assume that the dilution (or degradation)
of the controller species Z1 and Z2 is negligible, i.e. γ = 0. In
this case, it is easily verified that the controller has an integral
feedback action that achieves robust perfect adaptation [3],
[22]. The integral feedback action can be seen by using (16)
to write ż1 − ż2 = µ− θy. Then we have

z1(t)− z2(t) =

∫ t

0

(
µ− θy(τ)

)
dτ.

On the other hand, robust perfection adaptation can be seen
by examining the steady state at which the time derivatives
of z1 and z2 are set to zero. This implies that

lim
t→∞

y(t) =
µ

θ
=: yss. (18)

This means that, as long as the closed-loop system is stable,
the concentration of X2, denoted by y = x2, goes to µ/θ at
steady state no matter what the plant is. However, during the



Operator Differential Equations

M : Rp → L2
m[0, T ] ȳ =M(Θ̄) ⇐⇒

{
˙̄χ = F (χ̄, ω; Θ̄); χ̄(0) = χ0

ȳ = H(χ̄).

∂MΘ̄ : Rp → L2
m[0, T ] ỹ = ∂MΘ̄(Θ̃) ⇐⇒

{
˙̃χ = ∂χF(χ̄,ω;Θ̄)χ̃+ ∂ΘF(χ̄,ω;Θ̄)Θ̃; χ̃(0) = 0

ỹ = ∂Hχ̄χ̃

∂M∗
Θ̄

: L2
m[0, T ]→ Rp Θ̂ = ∂M∗

Θ̄
(ŷ) ⇐⇒ Θ̂ = ξ̄(0) where


˙̄ξ = −∂ΘF

T
(χ̄,ω;Θ̄)

λ̄; ξ̄(T ) = 0

˙̄λ = −∂χFT(χ̄,ω;Θ̄)
λ̄− ∂HT

χ̄ ŷ; λ̄(T ) = 0

TABLE I
THE PARAMETER-TO-OUTPUT OPERATORM

Antithetic Integral Controller

Z1 Z2φ φ

φ
φ φ

ηµ θx2
γ γ

Plant

X2

X1

φ

φ

φ

φ

νz1
kx1

δ

δ

SensingActuating

Desired Response

t

yr(t)

τ T

yss

Fig. 2. Reaction network diagram of the antithetic integral controller
interacting with a given plant. The output of the plant is the concentration
of the species X2, i.e. y(t) := x2(t). The goal here is to tune the accessible
parameters of the controller to obtain a dynamic response that is as close as
possible to the desired reference signal yr(t) shown on the right. For all of
the numerical experiments, we let k = δ = 1, η = 100, τ = 5, T = 100
and set all the initial conditions to zero.

transient phase several undesirable features may occur such
as overshoots, oscillations, sluggish response, etc. In the first
scenario, we fix the steady-state value yss to some desired
constant and tune θ to shape the transient dynamics without
affecting the steady state of y = x2. More precisely, let the
first scenario be denoted by S1 such that

S1 : γ = 0, ν = 1, yss = 10, µ = yssθ, Θ = θ.

Observe from (18) that the steady state of y is fixed to yss
for any value of θ. Therefore, tuning θ in S1 guarantees that
the controller (1) maintains robust perfect adaptation and (2)
produces a desired transient response.

In the second scenario, we allow the controller species to
have nonzero dilution rates. We also assume that we have
access to tune θ only and all other parameters are fixed, i.e.

S2 : γ = 0.5, ν = 1, µ = 10, Θ = θ.

Note that the nonzero dilution rate in scenario S2 gives rise
to a steady-state error [22]. The optimization problems for
both scenarios S1 and S2 are only one dimensional, i.e. we
tune only θ to minimize (17). This minimization penalizes
both steady-state error and undesired transient reponse. In

one dimension, both GD and CGD algorithms are the same
and thus only GD is used for S1 and S2. The results for
both scenarios are illustrated in Figure 3, where θ̄ denotes
the optimal value of θ. A Brute-force search is carried out
to illustrate the effectiveness of our optimization algorithm.

Scenario S1 Scenario S2
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Fig. 3. Parameter Optimization under Scenarios S1 and S2. The parameter
spaces in both scenarios are one dimensional: only θ is tuned. In scenario
S1, the dilution rate γ of the controller species is set to zero, unlike in
scenario S2 where γ = 0.5. Furthermore, in scenario S1, µ is automatically
tuned with θ (µ = yssθ) to maintain the same steady-state value, unlike
scenario S2 where µ = 10 and is fixed. A brute-force search was carried out
over the range [0, 2] for θ to plot the cost functional (17). Example values
of θ are taken to show the corresponding output responses. In scenario
S1, the optimal parameter is θ̄ = 0.4. As θ deviates from θ̄, the response
either becomes slow or oscillatory while maintaining the same steady-state
value yss = 10. On the other hand, in scenario S2, the optimal parameter
is θ̄ = 0.5. As θ deviates from θ̄, the response exhibits a larger steady-
state error. The bottom plots show the convergence of Algorithm 1 toward
the optimal parameter in both scenarios. The convergence is achieved in
less than ten iterations. This figure demonstrates that optimal tuning of the
Antithetic Integral Controller is capable of shaping the transient dynamics
and/or minimizing the effect of dilution of the controller species.

Finally, we consider a two dimensional optimization prob-
lem where we have access to tune both θ and ν, i.e.

S3 : γ = 0.5, µ = 10, Θ =
[
θ ν

]T
.



The results are illustrated in Figure 4. A brute-force search
is also carried out here to illustrate the effectiveness of our
algorithm. Clearly, CGD outperforms GD because the latter
exhibits the “zigzag” effect resulting in slower convergence.

Figures 3 and 4 show that by optimally tuning the con-
troller parameters, we achieve the desired output response.
The advantage of scenario S1 over S2 and S3 is that the
controller is structurally robust to plant uncertainties. That is,
the control architecture guarantees a zero steady-state error;
whereas the parameter tuning shapes the transient response
without affecting the steady state of the output. This is
feasible when the controller species have zero or negligible
degradation rate (e.g. in silico control [23]). We should note
that Algorithm 1 can be applied to any number of parameters.
In this paper, we limit the number of parameters to two so
that the cost functionals can be visualized.

Fig. 4. Parameter Optimization under Scenario S3 where the dilution rate
of the controller species is nonzero. The parameter space is two dimensional:
θ and ν are both tuned. A brute-force search was carried out over the range
(θ, ν) ∈ [0, 1.5]× [0, 1.5] to plot the two dimensional cost functional (17).
The two intensity plots on the top correspond to the same cost functional
where the one on the right is zoomed in to demonstrate the undesirable “zig-
zag” behavior of the Gradient Descent Algorithm. Both algorithms converge
to the optimal parameters θ̄ = 0.36 and ν̄ = 0.77, but the GD algorithm
converges much slower (≈ 180 iterations) as compared to the Conjugate
GD algorithm (≈ 30 iterations) as illustrated by the convergence plot to the
lower left. Finally, the optimal output trajectory is shown in the lower right
plot which demonstrates that the desired response is achieved.

VIII. CONCLUSION

This paper develops two numerical methods to optimally
tune feedback controllers, based on the GD and CGD algo-
rithms. A nonlinear operator is introduced to cast the tuning
problem as an abstract unconstrained optimization problem.
This makes the derivations of the necessary conditions of op-
timality and the numerical methods conceptually transparent.
The algorithm is tested on a biomolecular controller, and it
is shown that optimally tuning the controller parameters can
shape the dynamic and steady-state response of the output.
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