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Abstract: The entropic lattice Boltzmann method for the simulation of compressible flows is studied
in detail and new opportunities for extending operating range are explored. We address limitations
on the maximum Mach number and temperature range allowed for a given lattice. Solutions to
both these problems are presented by modifying the original lattices without increasing the number
of discrete velocities and without altering the numerical algorithm. In order to increase the Mach
number, we employ shifted lattices while the magnitude of lattice speeds is increased in order to
extend the temperature range. Accuracy and efficiency of the shifted lattices are demonstrated
with simulations of the supersonic flow field around a diamond-shaped and NACA0012 airfoil, the
subsonic, transonic, and supersonic flow field around the Busemann biplane, and the interaction of
vortices with a planar shock wave. For the lattices with extended temperature range, the model is
validated with the simulation of the Richtmyer–Meshkov instability. We also discuss some key ideas
of how to reduce the number of discrete speeds in three-dimensional simulations by pruning of the
higher-order lattices, and introduce a new construction of the corresponding guided equilibrium by
entropy minimization.

Keywords: entropy; lattice Boltzmann method; compressible flow; nonlinear acoustics; shock waves

1. Introduction

Predicting behavior of compressible flows is crucial in a variety of natural phenomena and
technological applications, ranging from magnetohydrodynamics and astrophysics to high speed
aerodynamic, turbomachinery, and abrasive blasting, to mention a few. While compressible flows
are well established by the Navier–Stokes and energy equations, computations remain difficult in
practice [1,2]. Particularly challenging is the interaction of shock waves with turbulence which requires
special treatment by conventional flow solvers. Indeed, higher-order discretization methods used for the
direct numerical simulation (DNS) of turbulent flows can cause Gibbs oscillations, leading to instabilities
in the presence of shocks, whereas typical methods used to regularize shock computations demonstrate
numerical dissipation which degrades accuracy of DNS in regions of high turbulence [2]. Therefore,
hybrid schemes combining higher-order methods with (W)ENO schemes through state-of-the-art
shock sensors is the preferred approach to the simulation of high-speed compressible flows. The main
drawback of these approaches is the complexity of resulting numerical schemes, requiring flow-specific
parameter tuning. Thus, development of efficient, high-fidelity, robust DNS solvers which can treat
seamlessly a wide range of compressible turbulent sub-, trans- and supersonic flow is a topic of
paramount importance.

The lattice Boltzmann method (LBM) gained attention as an alternative for complex flows
simulations including turbulence, micro-scale flows, porous media, multiphase flows, and beyond [3].
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In LBM, one solves numerically a set of fully discrete (in time-space-velocity) kinetic equations for the
populations fi(x, t), designed to recover the target equations of fluid dynamics in the hydrodynamic
limit. Populations are associated with discrete velocities vi which fit into a regular spatial lattice with
nodes x. LBM is realized by an explicit stream-along-links-and-equilibrate-at-nodes algorithm which
achieves both computational efficiency and numerical accuracy. Moreover, the entropic version of LBM
(ELBM) for incompressible flows [4–6] enabled high Reynolds number simulations by restoring the
second law of thermodynamics (Boltzmann’s H-theorem). This basic physical requirement rendered
the method nonlinearly stable numerically.

Extension of LBM to compressible flows requires lattices with more discrete velocities (multi-speed
or higher-order lattices) in order to adequately represent the moment system necessary to recover the
compressible Fourier–Navier–Stokes equations. Early attempts to introduce higher-order lattices were
based on a discretization the Maxwell–Boltzmann distribution on the roots of Hermite polynomials [7].
While this route of higher-order Gauss–Hermite quadratures promised a systematic derivation of
new complete Galilean-invariant LB models, the corresponding discrete velocities cannot be fitted
into a regular space-filling lattice. Thus, one of the most important advantages of the LB methods,
the exact space discretization of the advection step, is lost with the Gauss–Hermite quadrature-based
off-lattice models. Regular space-filling lattices were obtained based on a quadrature representation of
the equilibrium moments not necessarily Gauss–Hermite [8–11], where the nodes of the quadrature
are chosen empirically in such a way as to reflect higher-order isotropy. However, none of these
derivations so far could deliver an accurate numerical scheme without employing some stabilization
techniques in the simulation of compressible flows [12].

An alternative way of deriving space-filling higher-order lattices was set by the development of
the theory of admissible higher-order lattices [13,14]. This enabled a systematic derivation of lattices
supported by the entropy function and thus providing for ELBM realization. First, application of
admissible higher-order lattices to turbulent flows simulations was demonstrated in [15].

This paper reviews and extends the results by the authors for compressible ELBM on higher-order
lattices [16–19] and includes new findings first presented in the Doctoral Thesis of the first author
in 2017 [20]. We review a generic lattice Boltzmann model for polyatomic molecules which enables
variable specific heat and Prandtl number, together with a brief reminder of the theory of admissible
lattices [13,14]. While our previous publications have already used the construction of the corresponding
lattice equilibria by a direct numerical minimization of the entropy function, here we discuss at length
the advantages of this method over the conventional polynomial approximation. We address restrictions
on the maximum Mach number and the temperature range allowed for a given lattice. Extension of
the operation domain in terms of Mach number and temperature range is presented by modifying
the original lattices without increasing the number of discrete velocities and without modification
of the numerical algorithm. In order to increase the Mach number, we employ shifted lattices while
the magnitude of lattice speeds is increased in order to extend the temperature range. Accuracy and
efficiency of the shifted lattices are demonstrated with simulations of the supersonic flow field around
a diamond-shaped and NACA0012 airfoil, the subsonic, transonic and supersonic flow field around
the Busemann biplane, and the interaction of vortices with a planar shock wave. For the lattices with
extended temperature range, the model is validated with the simulation of the Richtmyer–Meshkov
instability. We also demonstrate application to an engineering-relevant flow over the Onera M6 wing.
We conclude the paper with a discussion of reducing the number of lattice speeds by pruning and
guided entropic equilibrium construction first presented in the Doctoral Thesis of the first author in
2017 [20].

2. Compressible Lattice Boltzmann Models

2.1. Discrete Kinetic Equations

With the compressible entropic lattice Boltzmann model, we solve two sets of kinetic equations
for the populations fi and gi:
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fi(x + vi, t + 1)− fi(x, t) = Ω f
i , (1)

gi(x + vi, t + 1)− gi(x, t) = Ωg
i . (2)

The locally conserved fields, the mass density ρ, the momentum density ρu, where u is the flow velocity,
and the total energy density ρE are assembled with the help of the populations f and g as follows:

ρ =
n

∑
i=1

fi, (3)

ρu =
n

∑
i=1

fivi, (4)

2ρE = 2ρCvT + ρu2 =
n

∑
i=1

fiv2
i +

n

∑
i=1

gi. (5)

Here, T is the temperature and Cv is specific heat at constant volume which we assume to be
independent of the temperature below.

For a D-dimensional monatomic ideal gas, the specific heat is Cv = D/2 (gas constant R = 1 in
the following) and the adiabatic exponent becomes fixed to γ = D+2

D . In this case, the first Equation (1)
suffices and can be employed to recover also the temperature equation by satisfying conservation of
the total kinetic energy,

2ρK = ρDT + ρu2 =
n

∑
i=1

fiv2
i . (6)

For polyatomic gases, in order to overcome the fixed adiabatic exponent constraint arising from
Equation (1) alone, several approaches have been proposed in the literature [21,22]; however, they
are limited to models with a prescribed closed-form expression of the equilibrium. As it will be
explained below, the equilibrium employed in the present model does not offer a closed-form solution;
therefore, we employ an alternative way, which follows the idea of Rykov’s kinetic model for diatomic
molecules [23] and which was already presented for the lattice Boltzmann method in [24]. To that end,
a second set of populations gi Equation (2) is introduced; these populations carry the energy related to
internal degrees of freedom (rotational and vibrational) and thus enables a variable γ. It is interesting
to note that the two-population approach in LBM is similar to the rational extended thermodynamics
modeling of polyatomic gases [25].

The left-hand side of Equations (1) and (2) is the standard lattice Boltzmann shift operator while
the right-hand side is the collision operator representing the relaxation of the populations to the
equilibrium. The collision operator Ω f

i is given by the quasi-equilibrium model [26] combined with
the entropic collision [6,13]:

Ω f
i = αβ1

(
f eq
i − fi

)
+ 2 (β1 − β2) [ f ∗i − f eq

i ]. (7)

The first term in Equation (7) becomes the conventional LBGK model with α = 2 while it represents
the entropic collision when α is computed by satisfying the discrete-time H-theorem, i.e., when it is
computed as the positive root of the entropy condition:

H( f + α( f eq − f )) = H( f ) (8)

where H is the entropy function [4],

H( f ) =
n

∑
i=1

fi ln
(

fi
Wi

)
. (9)

For more details about the entropic estimate in the context of the compressible model, the reader is
referred to [18].
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The second term in Equation (7) represents the relaxation to a quasi-equilibrium state and is
employed to modify the Prandtl number [18]. The collision operator for the second set of populations
gi is designed to be consistent with the fi equations and reads:

Ωg
i = αβ1

(
geq

i − gi

)
+ 2 (β1 − β2) [g∗i − geq

i ]. (10)

Note that the equilibrium geq
i is dictated by f eq

i ,

geq
i =

(
Cv −

D
2

)
T f eq

i . (11)

In both collision operators, f eq
i denotes equilibrium states while f ∗i is the quasi-equilibrium state. Since

equilibrium is a central point in the construction of the compressible model, we shall provide some
details of it in a separate Section 2.4. The quasi-equilibrium states need to be chosen depending on the
Prandtl number [16], and, in particular, for the case Pr ≤ 1, the quasi-equilibrium state conserves the
tensor of centered third-order moments Q. It can be written in the compact form as:

f ∗i = f eq
i + Wi

(
Q−Qeq) : [vi ⊗ vi ⊗ vi − 3Tvi I]

6T3 , (12)

where

Q =
n

∑
i=1

fi(vi − u)⊗ (vi − u)⊗ (vi − u). (13)

This is similar to the Shakhov’s S-model [27]; the difference is that the full third-order moment tensor
is used in the quasi-equilibrium (12) rather than the once-contracted form thereof as in [27], cf. [18].
Quasi-equilibrium populations g∗i are chosen consistently with the populations f ∗i and read:

g∗i = geq
i +

Wi (q− qeq) · vi
T

, (14)

where q is the energy flux associated with the internal degrees of freedom of the polyatomic gas:

q =
n

∑
i=1

gi(vi − u). (15)

In the above expressions, Wi = Wi(T) are the lattice-dependent weights that will be detailed later.
While the present model is generic in nature, the construction of the equilibrium and the choice of the
lattice still need to be specified.

2.2. Thermo-Hydrodynamic Equations

Provided that the discrete velocity set is sufficiently isotropic [18], the above kinetic systems
(1) and (2) recover, in the hydrodynamic limit, the continuity, the momentum, and the temperature
equations as follows (detailed derivation is given in [18]):

∂tρ +∇ · (ρu) = 0, (16)

∂tu + u · ∇u +
1
ρ
∇(ρT) +

1
ρ
∇ ·Πneq = 0, (17)

∂tT + u · ∇T +
T
Cv
∇ · u +

1
ρCv
∇u : Πneq +

1
ρCv
∇ · qeq = 0. (18)

Here, the nonequilibrium stress tensor is defined as
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Πneq = −µ

(
S− 2

D
(∇ · u)I

)
+ ξ(∇ · u)I, (19)

with the strain rate tensor,
S = ∇u +∇u†. (20)

Furthermore, the nonequilibrium heat flux follows the Fourier law:

qneq = −κ∇T. (21)

Transport coefficients, the dynamic viscosity µ, the bulk viscosity ξ, and the thermal conductivity κ are

µ =

(
1

2β1
− 1

2

)
ρT, (22)

κ = Cp

(
1

2β2
− 1

2

)
ρT, (23)

ξ =

(
1

Cv
− 2

D

)
µ, (24)

while the adiabatic exponent γ reads

γ =
Cp

Cv
, Cp = Cv + 1. (25)

Thus, the Prandtl number is expressed in terms of the two parameters of the model, β1 and β2

as follows:

Pr =
(1− β1) β2

(1− β2) β1
. (26)

2.3. Lattices

In order to simulate thermal or fully compressible flows, we here employ higher-order lattices. We
consider those emerging from the theory of admissible higher-order lattices, presented for the first time
in [13,14,28]. The construction of the admissible lattices in any space dimension begins with identifying
the one-dimensional velocity sets Vn. A weight wi(T) > 0 corresponds to each discrete velocity
vi ∈ Vn provided the temperature is within a range T ∈ [Tmin, Tmax]. Outside the temperature range,
the weights and hence the equilibrium populations become negative and the scheme may become
numerically unstable. Therefore, the ratio Tmax/Tmin is an important characteristic to determine which
lattice can be employed for the problem at hand. A summary is provided in Table 1 for one-dimensional
admissible velocity set up to n = 11. Table 1 shows, for each one-dimensional discrete velocity set Vn,
the temperature range, the reference temperature T0, the reduced temperature θ = T/T0 − 1 range,
and the ratio between the maximal and the minimal temperature Tmax/Tmin. Another restriction is
the deviation of the third- and fourth-order equilibrium moments from their Maxwell–Boltzmann
(continuous) counterparts. As the number of velocities is increased, for a given Mach number, the
errors in the recovering of the Maxwell–Boltzmann equilibrium moments are reduced, as it will be
shown below in Section 2.4.

In higher dimensions, the weight Wi of each discrete velocity vi in the natural Cartesian reference
frame, vi = (vix, viy, viz), is the algebraic product of the corresponding one-dimensional weights,

Wi = wixwiywiz. (27)

It has been shown elsewhere [17,18] that, in order to simulate compressible flows, the minimum
number of velocities is n = 7. With this lattice, the errors in the third-and fourth-order moments are
kept small up to a moderately supersonic Mach number and the temperature range is sufficient to
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guarantee positivity of the populations for moderate temperature jumps across shock waves. Therefore,
in the remainder of this paper, the reference lattice for compressible flows will be DdQ7d, D = d is the
space dimension; the lattice is constructed by the tensor product of D one-dimensional velocity sets V7.
For this lattice, the one-dimensional weights read:

w0 =
36− 49T + 42T2 − 15T3

36
,

w±1 =
12T − 13T2 + 5T3

16
,

w±2 =
−3T + 10T2 − 5T3

40
,

w±3 =
4T − 15T2 + 15T3

720
. (28)

In Figure 1, the DdQ7d lattice is shown for the two-dimensional case, d = 2.

Table 1. One-dimensional lattices with odd number of velocities n. In order: lattice velocities set Vn,
minimal temperature Tmin, maximal temperature Tmax, reference temperature T0, minimal reduced
temperature θmin, maximal reduced temperature θmax and temperature ratio Tmax/Tmin.

n Vn Tmin Tmax T0 θmin θmax
Tmax
Tmin

3 {0,±1} 0.0 1.0 1/3 −1 2 ∞
5 {0,±1,±3} 1/3 3.0 1±

√
2/5 −0.09308 0.83772 9

7 {0,±1,±2,±3} 1−
√

2/5 1 +
√

2/5 0.69795 −0.47340 1.33892 4.44
9 {0,±1,±2,±3,±5} 0.69795 2.88131 0.75608, 2.17538 −0.07688 0.32451 4.13
11 {0,±1,±2,±3,±4,±5} 0.75608 2.17538 1.06279 −0.28859 1.04685 2.88

Figure 1. Visualization of the D2Q49 lattice.

2.4. Equilibrium

The equilibrium computation is one of the key elements of the compressible entropic lattice
Boltzmann model. We start by presenting the equilibrium derivation based on the entropy function
minimization. Next, we access the computational cost of the accurate equilibrium evaluation and
make a comparison with other types of approximation of the equilibrium. We proceed by detailing the
accuracy, in terms of Mach number and temperature that can be achieved with the present approach.
We conclude this section with further details about the equilibrium by presenting related properties
such as positivity of the entropic equilibrium.

2.4.1. Equilibrium Construction

We proceed with the definition of the equilibrium which is derived by minimization of the entropy
function H (9) under constraints of local conservation of mass ρ, momentum ρu and kinetic energy K:
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{ρ, ρu, 2ρK} = {ρ, ρu, DρT + ρu2} =
n

∑
i=1
{1, vi, v2

i } fi(ρ, u, T). (29)

The minimization problem is solved with the method of the Lagrange multipliers (LM), leading to

f eq
i = ρWi exp

(
χ + ζ · vi + λv2

i

)
, (30)

where χ(u, T), ζ(u, T) and λ(u, T) are Lagrange multipliers corresponding to conservation of mass,
momentum and kinetic energy, respectively. The closed form of f eq

i is computed by applying the
conservation laws (29) to the equilibrium populations (30). This results in D + 2 equations for D + 2
unknown LM. For the standard lattice (vi = {0,±1}), this problem was solved analytically in [6].
However, for higher-order lattices, subject to energy conservation, this leads to a system of higher-order
algebraic equations to which one fails to find a closed-form solution.

We suggest a direct numerical evaluation of the Lagrange multipliers using rapidly converging
Newton–Raphson iterations [17]. Our simulations shows that such an approach converges to an
accurate solution (with the error of the order∼ 10−14) within five iterations when Lagrange multipliers
from the previous time step are used as the initial guess for the Newton–Raphson solver. At first glance,
the proposed evaluation of the equilibrium at every node and every time step appears computationally
demanding. In the following, we analyze how the numerical computation of the equilibrium impacts
the overall computational load of the algorithm.

2.4.2. Computational Costs of Numerical Equilibrium

In order to estimate performance of the accurate numerical equilibrium, and to compare it to the
standard polynomial equilibrium evaluation, we report here the computational time required to run
a constant homogeneous advection flow at Mach number Maa = 0.05. It must be noted that these
computational times are evaluated for the full implementation (advection and collision) of the LBGK
algorithm with periodic boundary conditions. We consider the accurate numerical equilibrium (30),
and a fourth-order polynomial approximation thereof. The fourth-order approximation is theoretically
applicable only if the number of the discrete velocities is large enough, i.e., if the lattice velocity
space can accommodate all higher order moments required for recovering the compressible flow
hydrodynamic equations. The fourth order approximation is given by:

f eq
i = ρWi

(
1 +

uαviα
T

+
uαuβXiαβ

2T2 +
uαuβuγYiαβγ

6T3 +
uαuβuγuµZiαβγµ

24T4

)
, (31)

with Xiαβ = viαviβ − Tδαβ, Yiαβγ = Xiαβviγ − viαTδβγ − viβTδαγ, and Ziαβγµ = Yiαβγviµ − XiαβδγµT −
XiαγδβµT − XiβγδαµT. Note that the polynomial equilibrium (31) can only be used for the simulation
of low Mach number flows due to truncation errors and loss of positivity of the populations at higher
Mach numbers, as it will be discussed in more detail in Section 2.4.4. In Table 2, we report the
computational time normalized by the fastest evaluation, namely the polynomial evaluation on the
DdQ3d lattice, for the two different equilibrium evaluations, for three lattices, DdQ3d, DdQ5d, and
DdQ7d, in two and three dimensions.

It is interesting to notice that the computational time required by the numerical equilibrium on
every lattice is not more than twice the computational time of the polynomial equilibrium. Once the
number of speeds is increased, the difference between the numerical equilibrium and the polynomial
form decreases, in both two and three dimensions. This is explained by the fact that numerical
equilibrium computes D + 2 Lagrange multipliers, independently of the number of discrete speeds n,
while, for the polynomial form, the n fourth-order polynomials need to be computed. Table 2 suggests
that the computational cost depends mainly on the number of discrete lattice velocities, while the type
of the equilibrium plays a secondary role. This analysis shows that the use of the accurate form of the
equilibrium is not heavily penalizing the performance of the simulation relative to a polynomial form
of the equilibrium.
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Table 2. Evaluation of the equilibrium using the polynomial and the numerical method, for three
lattices DdQ3d, DdQ5d and DdQ7d, in two and three dimensions. Computational time is normalized
by the fastest implementation, i.e., with the polynomial form on the DdQ3d lattice.

DdQ3d DdQ5d DdQ7d

2D
Polynomial 1 4.12 8.13
Numerical 2.02 4.83 8.74

3D
Polynomial 1 8.91 25.66
Numerical 1.58 10.83 29.77

A general comment on the computational cost of the present model is in order. As just seen, the
computational cost of the present compressible model is one order higher than its incompressible
counterpart, the DdQ3d lattice. However, for compressible (or high Mach number) simulations,
the time step δtU/L, where U and L are characteristic velocity and length, is in general one to
two orders of magnitude larger than for the incompressible flow simulations since the time step is
directly proportional to the characteristic Mach number. This implies that no significant increase of
computational cost may be observed in present simulations with respect to incompressible LBM.

It is also interesting to analyze the influence of computational load with the variation of the flow
field (ρ, u and T) for the numerical evaluation of the equilibrium. In fact, since the Newton–Raphson
solver for the equilibrium employs previous time step LM as an initial guess, one would expect that
a high time variability of the flow could influence the performance. We propose here to measure
the influence of the time variability of the flow field with the simulation of compressible decaying
isotropic turbulence similar to the one presented in [17], for different initial turbulent Mach numbers
Mat. The initial turbulent Mach number is considered here as the quantitative measure of the time
variability of the flow. In Table 3, we show the influence of the time-variability of the flow (in terms of
Mat) by measuring the computational time of the various decaying turbulence simulations. The lattice
employed for the simulations is the D3Q73.

Table 3. Computational time dependence on turbulent Mach number Mat. The reference time t0 is
measured for a very low turbulent Mach number Mat ' 0.

Mat 0 0.1 0.2 0.3 0.4 0.5 0.6

t/t0 1.000 1.047 1.023 1.059 1.062 1.070 1.067

As one can notice, the computational time for the simulation increases only slightly with increasing
turbulent Mach number. In fact, the computational time is increased at most by 7%, when the turbulent
Mach number is quite high (the local Mach number may reach values above Maloc ' 2.0).

2.4.3. Numerical Equilibrium Accuracy

In this section, we analyze the numerical equilibrium accuracy in terms of deviation of the
pertinent moments from their Maxwell–Boltzmann counterparts,

εm =
Meq

m −MMB
m

MMB
m

. (32)

Superscript MB denotes the moments computed with the continuous Maxwell–Boltzmann distribution
of a general moment of order m. In Figure 2, we compare the D2Q52 and D2Q72 lattices with respect
to the errors in the equilibrium heat flux qeq

x and in the equilibrium contracted fourth order moment
Req

xx at various Mach numbers. Two types of Mach number are here defined: Mat stands for turbulent
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Mach number and Maa is the advection Mach number. The equilibrium is computed for a Mach
number Maa in the x-direction plus a Mach number Mat superimposed in both the x- and y-directions.
In the same plot, for completeness, the errors of the D2Q112 lattice are also shown.

(a) (b)

Figure 2. Deviation of the equilibrium moments from the Maxwell–Boltzmann values as a function of
the turbulent and the advection Mach number Mat and Maa, respectively, for three different lattices,
D2Q52, D2Q72, and D2Q112. (a) The x-component of the third-order moment qeq

x = ∑n
i=1 vixv2

i f eq
i ;

(b) The xx-component of fourth-order moment Req
xx = ∑n

i=1 vixvixv2
i f eq

i .

It is important to note that the aforementioned moments need to be matched as accurately as
possible by the given lattice in order to recover the correct thermo-hydrodynamic limit. One can notice
that the errors in the moments remain small up to the advection Mach number Maa ≤ 1.2 for the
D2Q72 lattice, while for the D2Q52 lattice the errors grow rapidly already in the subsonic regime. This
implies that, in order to perform supersonic simulations, the minimum number of lattice velocities
is n = 7D in D dimensions. For this reason, from now on, we will consider the D2Q72 lattice as the
minimal (among the lattices built by a direct product of the one-dimensional velocity sets) in order to
perform compressible flow simulations.

In Figure 3, the same errors as for Figure 2 are plotted as a function of the reduced temperature θ,
for two different lattices, D2Q52 and D2Q72, at different Mach numbers. Errors are shown within the
reduced temperature range appropriate for the lattice as discussed in Section 2.3.

(a) (b)

Figure 3. Deviation of the equilibrium moments from the Maxwell–Boltzmann values as a function of
the reduced temperature θ. (a) The x-component of the third-order moment qeq

x ; (b) The xx-component
of the fourth-order moment Req

xx. Results for the D2Q52 lattice at the local Mach Maloc = 0.1 and for
the D2Q72 lattice at local Mach Maloc = 0.1 and Maloc = 1 are shown.

One can notice that, by increasing the number of velocities, the errors decrease by an order of
magnitude, and the same is valid even when moving away from the reference temperature. Moreover,
we can see that, by increasing the Mach number, the errors increase with the deviation from the
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reference temperature. However, considering that moderately strong shock waves have a reduced
temperature jump of the order of ∆θ ' 0.3, we can state that supersonic flow simulations with shocks
are permitted by the DdQ7d lattice.

2.4.4. Equilibria Positivity

In order to conclude this section, we point out a remarkable property of the numerical equilibrium.
For the DdQ7d lattice discussed in Section 2.3, we provide a quantitative evidence of the difference
between evaluating the equilibrium with the accurate numerical procedure and with a polynomial
approximation. In Figure 4, we plot, for the one-dimensional case D1Q7, the equilibrium populations
f eq
0 , f eq

2 and f eq
−2 evaluated in three different ways as a function of the Mach number Ma: a third-

and a fourth-order polynomial approximation (in terms of u) of equilibrium (30), and the accurate
equilibrium (Newton–Raphson evaluation).

(a) (b) (c)

Figure 4. Equilibrium populations as a function of the Mach number. (a) f eq
0 ; (b) f eq

2 ; (c) f eq
−2. Line:

Third-order polynomial approximation; Dash: Fourth-order polynomial approximation; Symbol:
Accurate numerical evaluation.

It is clear that, as the Mach number is increased, especially after the Mach number reaches the
sonic value, the polynomial approximations start to diverge from the exact solution to the minimization
problem, leading to accumulation of errors. Moreover, an increase of the order of approximation from
third to fourth has only a minor influence on the convergence to the correct solution. Moreover, after
a certain value of the Mach number, the populations evaluated with a polynomial approximation
become negative, violating the positivity constraints imposed by the construction of the equilibrium.
From Figure 4, it is possible to conclude that numerical evaluation of the equilibrium is not just more
accurate, but it is also unavoidable for compressible lattice Boltzmann simulations.

However, the constraint of positivity on the entropic equilibrium comes along with a cost: as seen
in Section 2.4.3, the equilibrium moments starts to deviate from their continuous Maxwell–Boltzmann
counterparts when the Mach number is increased above a certain limit or/and the temperature deviates
from the reference value T0. In general, from the above analysis of errors as a function of Mach number
Ma and reduced temperature θ, we observe that the DdQ7d lattice has all the minimal characteristics
required to run compressible flows simulations, i.e., accuracy at relatively high Mach numbers and a
wide enough temperature range to guarantee positivity of the populations. In Section 3, we extend the
operation window in terms of Mach number and temperature range by simply modifying the lattice
configuration and without increasing the number of the discrete velocities.

3. Extension of Operation Domain

As outlined in the previous section, the accuracy for a given lattice is restricted in terms of
deviation of a local Mach number and of the temperature from their reference values (reference Mach
Ma = 0, and reference temperature T0). In this section, we address this issue by retaining the same
number of discrete velocities. A brute force way to overcome these issues would be, in fact, to increase
the number of discrete velocities. For example, when going from the DdQ7d lattice to the DdQ11d
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lattice, the deviation from Maxwell–Boltzmann moments reduces; between an advection Mach number
of Maa = 1 and Maa = 2, the reduction of errors is one to two orders of magnitude, see Figure 2.
However, as also demonstrated in Table 2, the computational cost increases at least linearly with the
number of populations, so that the simulation with the D2Q112 and especially the D3Q113 would
quickly become prohibitively demanding. In the next two sections, we suggest how the Mach number
can be increased and how the temperature range can be extended without enlarging the number
of velocities. To that end, the lattice DdQ7d is considered, as it has already been benchmarked for
compressible flows simulations [17,18].

3.1. Shifted Lattices

We follow [19] in order to extend the Mach number range. This method is particularly useful when
the mean flow has a preferential direction, for example, in the simulation of supersonic flow around
obstacles, or a flow with stationary shocks and mean cross-flow like the simulation of shock–vortex or
shock–turbulence interaction.

We wish to challenge the notion of a reference frame at rest; instead, we prefer to define the
equilibrium in a frame moving, say, with the velocity U in the x-direction. This is achieved by
considering a shifted discrete velocity set V′n with the velocities

v′i = vi + U, vi ∈ Vn, (33)

and finding the shifted weights wi(U, T) by matching the moments of the Maxwellian computed at
velocity U and temperature T, f M

v (U, T):

f M
v (U, T) =

√
1

2πT
exp

{
− (v−U)2

2T

}
. (34)

Key observation of [19] is that the weights wi(U, T) are Galilean invariant: For any set Vn and for any
shift U, we have

wi(U, T) = wi(0, T). (35)

The proof of (35) follows immediately from Galilean invariance of the moments of the Maxwellian;
see [19].

Figure 5. Visualization of the shifted D2Q49 lattice with U = 1.

Galilean invariance of the weights (35) has a number of important implications. First, the
construction of the discrete velocities through tensor products in higher dimensions remains as
before. For example, in two dimensions, the shift U in the x-direction corresponds to tensor product
V′nx ⊗ Vny. We shall use this example below. Second, the symmetric integer velocity sets generate
space-filling lattices. This is crucial for the realization of the time-marching LB scheme (1). Now, if the
shift U is itself integer, the corresponding shifted lattice is also space-filling. For example, with U = 1,
the shifted set V′7 becomes V′7 = {−2,−1, 0, 1, 2, 3, 4}. The shifted lattice, with the discrete velocities
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V′7x ⊗V7y is shown in Figure 5. Next, the weights corresponding to the velocities of the shifted lattice
are the same as for the symmetric case: Wi(U, T) = wix(0, T)wiy(0, T). Moreover, since the weights do
not change under a transformation to a co-moving reference frame, the entropy function is Galilean
invariant, and is given by Equation (9). Consequently, the equilibrium populations are form-invariant.
They are found by the same minimization techniques as in the familiar symmetric case.

The errors associated with the shifted lattices are shown in Figure 6, for the same quantities as
presented in Figure 2. Errors for the lattice with no shift, and with a shift U = 1 and U = 2 are shown.
The errors, in Figure 2, are plotted now as a function of the ux velocity in order to show the effect of
the lattice shift. When the velocity matches the shift velocity, the errors in the moments vanish.

(a) (b)

Figure 6. Deviation of the equilibrium moments from the Maxwell–Boltzmann values as a function of
the x-component of the local velocity. (a) The third-order moment qeq

x ; (b) The fourth-order moment
Req

xx. Line: Non-shifted lattice, U = 0; Dash: Shifted lattice, U = 1; Dotted-dash: Shifted lattice, U = 2.

In order to understand the effect of the shifted lattice, we run test simulations of a vortex advected
at different Mach numbers. After a certain Mach number, the non-shifted lattice is expected to
feature some numerical errors due to the lack of Galilean invariance as noted in Figure 6. Due to
these numerical errors, the vortex is no longer advected correctly and starts to deform. The same
is expected also for the shifted lattice, but around a higher Mach number. This is demonstrated in
Figure 7 for a characteristic vortex Mach number of Mav = 0.5 and different advection Mach numbers,
Maa = {0.3, 0.8, 1.3, 1.8, 2.3}, by means of pressure contours.

Figure 7. Vortex advection comparison at different advection Mach number. Top row: symmetric
lattice. Bottom row: shifted lattice with U = 1.

Second order convergence was checked for lattices without and with the shifts U = 1 and U = 2,
by simulating the Green–Taylor vortex with a mean advection speed of U = 0, U = 1, U = 2,
respectively. We evaluate the L2 norm of the error defined as,
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L2 =

√√√√√∑i

(
ui,LBM − ui,re f

)2

∑i u2
i,re f

, (36)

where ui,LBM is the velocity at sample i with the present simulations, and ui,re f is the velocity of
computed from analytical solution. The result of the grid convergence study is presented in Figure 8
and shows no difference between the results of a non- and shifted lattices.

Figure 8. Grid convergence study for the Green–Taylor vortex. Results are shown for non-shifted
lattice and lattices with the shift U = 1 and U = 2.

3.2. Lattices with Increased Temperature Range

The range of temperatures supported by the lattice is increased based on the following observation:
By considering a generic velocity set V7 = {0,±1,±2,±r}, where the above lattice for compressible
flow is obtained for r = 3 [17], we notice that, by increasing the longest lattice link to r = 4,
the temperature range increases significantly while the lattice still belongs to the same hierarchy
of the admissible higher-order lattices. In Table 4, we report the minimum Tmin and maximum
Tmax temperatures, the reference temperature T0, the reduced temperatures θmin and θmax, and the
temperature ratio Tmax/Tmin.

Table 4. Temperature range comparison for the original DdQ7d lattice and its expanded version for
increased temperature range.

V7 Tmin Tmax T0 θmin θmax Tmax/Tmin

{0,±1,±2,±3} 0.36754 1.63246 0.69795 −0.473397 1.33892 4.44158
{0,±1,±2,±4} 0.34969 2.71682 1.91103 −0.817014 0.42165 7.76922

The temperature ratio Tmax/Tmin is the most important parameter to characterize the temperature
range. An increase of the temperature range, however, comes at the expense of increased errors in the
higher-order moments qeq

α and Req
αβ when the Mach number is increased, as shown in Figure 9.

In Figure 10, the same errors are shown as a function of the temperature. At the specified Mach
number Maloc = 0.1, the errors remain small over the entire temperature range for both lattices.

Summarizing, since the errors of the D2Q72-0124 lattice are higher than for the D2Q72-0123 lattice,
the latter should be the preferred choice. However, it may happen that for certain simulations the
temperature range that needs to be achieved is greater than the maximum allowed by the DdQ7d-0123
lattice, while the flow remains subsonic. In such cases, the DdQ7d-0124 lattice may become particularly
useful. We demonstrate shall demonstrate this with the simulation of Richtmyer–Meshkov instability
in the next section.
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(a) (b)

Figure 9. Deviation of the equilibrium moments from the Maxwell–Boltzmann values as a function
of Mach number. (a) The third-order moment qeq

x ; (b) The fourth-order moment Req
xx. Line: The

D2Q72-0123 lattice. Dash: The D2Q72-0124 lattice.

(a) (b)

Figure 10. Deviation of the equilibrium moments from the Maxwell–Boltzmann values as a function
of the reduced temperature θ, at the local Mach number Maloc = 0.1. (a) The third-order moment qeq

x .
(b) The fourth-order moment Req

xx. Line: The D2Q52-0123 lattice; Dash: The D2Q72-0124 lattice.

4. Numerical Results

In this section, we validate the model, the shifted lattices, and the lattice with greater temperature
range by means of five different set-ups: the supersonic inviscid flow around a diamond airfoil, the
flow around the Busemann biplane from subsonic to supersonic Mach numbers, supersonic viscous
flow around a NACA0012 airfoil, and the interaction of a vortex and of a pair of vortices with a shock
wave. The increased temperature range lattice is validated by means of the Richtmyer–Meshkov
simulation. Finally, we demonstrate a three-dimensional simulation of a transonic flow over the Onera
M6 wing. The boundary conditions developed in [18] are employed for all the validations.

4.1. Supersonic Diamond Airfoil

We start by showing, in Figure 11, the two-dimensional simulation of the supersonic flow field
around a diamond-shaped airfoil. The inflow Mach number is set to Main = 2.2, while the Reynolds
number is Re = 106 based on the chord length, and the chord is resolved with C = 500 grid points; the
wedge angle is ⊆ = 12◦. This setup has been already discussed in detail in [18] for the non-shifted
(standard) lattice where the maximum Mach number of the order Main = 1.5 could be achieved.
Here, using the shifted lattice with U = 1 and the same boundary, inlet and outlet conditions, we
demonstrate that the simulation can be performed at higher Mach number without any change in
the algorithm.
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Figure 11. Steady state solution of the Mach number distribution around a diamond-shaped airfoil at
the inlet Ma = 2.2, Re = 106 and AoA = 3◦.

One can notice the characteristic oblique shocks appearing at the leading and trailing edges of the
airfoil and the expansion wave propagating from the midspan of the airfoil. In Table 5, we compare
the results obtained with the ELBM solver for pressure distribution, Mach number distributions, and
oblique shock angles with analytical solution using thin airfoil approximation [29].

Table 5. Comparison between analytical quantities and ELBM results for the diamond-shaped airfoil.
We compare the pressure ratio P∗/P∞ and the Mach number Ma∗ for the first half and the second half
of the airfoil, denoted 1 and 2, respectively, and the leading edge oblique shock angle β; Each quantity
is reported for both the upper and lower surfaces of the airfoil.

P1/P∞ P2/P∞ M1 M2 β

Up Analytical 1.1944 0.5616 2.0860 2.5693 29.4033
ELBM 1.1951 0.5615 2.0859 2.5702 29.6203
Error 5.861× 10−4 1.781× 10−4 4.794× 10−4 3.503× 10−4 7.3810× 10−3

Down Analytical 1.6717 0.8334 1.8609 2.3077 34.7915
ELBM 1.6708 0.8334 1.8581 2.3074 34.7091
Error 5.384× 10−4 1.780× 10−4 1.5046× 10−3 1.300× 10−4 2.3684× 10−3

Agreement between theory and simulation is excellent and demonstrates the accuracy of the
shifted lattice.

4.2. Busemann Biplane

In order to validate the model and the shifted lattices over a wide range of Mach numbers, we show
here the simulation of the Busemann biplane [30] in its two-dimensional configuration. The Busemann
biplane is composed of two half-diamond airfoils as shown in the insets in Figure 12, and was originally
conceived in order to reduce the wave-drag for supersonic flight. It is well known that conventional
airfoils experience a dramatic increase of the drag coefficient cd near sonic conditions and, after that,
with the Mach number increasing, the drag coefficient starts to progressively decrease again.

The same happens in the case of the Busemann biplane where the drag coefficient increases
dramatically near sonic condition and, similar to a conventional diamond airfoil, it starts to decrease
when the Mach number is further increased. However, for the Busemann biplane, after a critical
Mach number, the drag coefficient drops well below that of the normal diamond-shaped airfoil. This
is shown in Figure 12 where we compare the drag coefficient computed with the ELBM model to
the simulation reported in [30]. We performed simulations of the Busemann biplane in its simplest
configuration, with two symmetric half-diamond airfoils with zero angle of attack. The chord of the
airfoil was resolved with C = 400 grid points. The range of simulated Mach numbers varies tenfold
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from Mamin = 0.3 to Mamax = 3.0. Along with the increasing Mach number, different lattices were
employed: from Mach number Mamin = 0.3 to Ma = 1.3, the conventional symmetric lattice D2Q49
(U = 0) was used. From Ma = 1.4 to Ma = 2.0, the lattice with a shift of U = 1 was considered. Finally,
for the two highest Mach numbers, a lattice with a shift of U = 2 in the x-direction was chosen. The
results of the ELBM model agree well with the simulations of [30]. In particular, the sensitive drag
crises happening between Ma = 1.6 and Ma = 1.7 are well captured. This condition of drag crises
corresponds to a free-stream Mach number at which the oblique shock waves developing from the
leading edges reattach to the mid-point of the opposite airfoil, thus reflecting nearly onto its own
trailing edge.

Figure 12. Drag coefficient cd as a function of the free stream Mach number for the Busemann biplane
simulations. Reference: [30]. Inset: snapshots of the pressure distribution around the biplane for three
different Mach numbers: Ma = 1.5, top; Ma = 1.7, bottom left; Ma = 2.0, bottom right. The pressure is
shown between pmin = 0.5 (white) and pmax = 1.9 (pink), in lattice units.

The inset in Figure 12 shows the pressure distribution around the biplane at three representative
Mach numbers: before, near, and after the drag crises. At Ma = 1.5, before the drag crises, a detached
bow shock is formed in front of the airfoils, responsible for a dramatic rise of the pressure which in
turn increases the wave drag of the biplane. After the Mach number becomes sufficiently high, the bow
shock approaches gradually the leading edge of the airfoils and finally it transforms into two attached
oblique shocks at leading edges. At this point, the drag dramatically decreases. The minimum drag
coefficient is obtained at about Ma = 1.7 which is represented by the lower left inset. As anticipated
above, for this case, the oblique shocks of the leading edges attain an optimal configuration in terms of
drag coefficient. This is due to a combination of the geometric angle of the oblique shock wave and
the geometry of the airfoil; at this Mach number, the oblique shock matches the middle edge of the
opposite half-diamond airfoil. This has two effects: an influence on the expansion wave formed there,
and a reflection of the oblique shock which reaches exactly the trailing edge of the proper airfoil [30].
This perfect matching induces the minimum drag coefficient reported in Figure 12. When the Mach
number is further increased, e.g., like in the case represented by the lower right inset, Ma = 2.0, the
oblique shock configuration does not match the geometry of the biplane any longer, and the drag
coefficient starts to increase again. The present example clearly demonstrates the capability of the
model to accurately perform simulations over a wide range of Mach numbers. This highlights the
typical use of the shift velocity: as the mean Mach number increases, we increase the shift velocity,
thus minimizing the errors arising from the non-optimal use of the standard reference frame.
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4.3. Supersonic NACA0012 Airfoil

A further validation of the model for high Mach flow is carried out by the simulation of viscous
supersonic flow field around a NACA0012 airfoil. Here, we set the free stream Mach number Ma∞ = 1.5,
the Reynolds number Re = 104, and zero angle of attack AoA = 0◦. The chord was resolved with a
uniform grid of C = 800 points. Figure 13 shows the temperature distribution around the airfoil at a
time t/(C/Uin) = 232.3.

Figure 13. Snapshot of the temperature around the NACA0012 airfoil with a free stream Mach of
Ma = 1.5, Reynolds number Re = 104, and angle of attack AoA = 0◦.

One can observe the typical bow shock forming in front of the airfoil for supersonic conditions as
well as the the oblique shocks starting as a lambda-shock from the trailing edge. Moreover, due to the
shear layer developing from the trailing edge of the airfoil, vortex shedding is initiated downstream.
In order to validate the simulation, we plot in Figure 14 the pressure coefficient along the upstream,
airfoil surface and downstream direction and we compare it with reference [31].

Figure 14. Pressure coefficient in front of the airfoil, on the airfoil surface and behind the airfoil for the
simulation of the NACA0012 airfoil at free stream Mach of Ma = 1.5, a Reynolds number Re = 104,
and an angle of attack AoA = 0◦.

The plot demonstrates the capability of ELBM on shifted lattices to correctly compute the pressure
distribution. It is clear that the introduction of stationary walls is possible also for shifted lattices which
assume a mean flow. This is due to the presence of a rest particle that resides at the grid node.

4.4. Shock–Vortex Interaction

In the following, we present simulation of a well-studied problem of vortex–shock interaction
where the D2Q72 lattice with a shift U = 1 was used. We compare our solutions to the DNS simulation
of [32]. A two-dimensional vortex characterized by a vortex Mach number Mav is advected at a
Mach number Maa and subsequently interacts with a stationary shock wave. The advection Mach
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number corresponds to the relative Mach number of the shock with respect to the upstream velocity,
Mas = Maa; the shock is kept stationary. The initial flow field of the vortex is given by:

uθ(r) =
√

γTMavr exp ((1− r2)/2), ur = 0. (37)

Here, uθ and ur are the tangential and the radial velocity of the vortex, respectively, and r is the reduced
radius r = r

′
/R, with R the characteristic radius. Pressure and density distributions are initialized

as follows:

p(r) =
1
γ

[
1− γ− 1

2
Ma2

v exp (1− r2)

]γ/(γ−1)
, (38)

ρ(r) =
[

1− γ− 1
2

Ma2
v exp (1− r2)

]1/(γ−1)
. (39)

The vortex flow field is superimposed on a constant flow with Maa upstream of the shock front; see [32]
for the details of the numerical set-up. Three different configurations were simulated: Maa = 1.2,
Mav = 0.5 and Re = 400; Maa = 1.2, Mav = 0.25 and Re = 800; Maa = 1.05, Mav = 0.25 and Re = 400.
The Reynolds number was defined as Re = a∞R/◦, with the speed of sound a∞ =

√
γT.

In Figure 15, the contours of density ρ for the case Maa = 1.2, Mav = 0.5 and Re = 400 are
compared to the results reported in [32] at the time instance t′ = t/(R/a∞) = 8. One can notice
the deformed shock at x = 0, the deformed vortex at x ' −5 and y ' 0, and the reflected shocks
developing from the original planar shock, one of which is still connected to the vortex. The density
contours show in general a good comparison between DNS and ELBM simulations.

Figure 15. Snapshot of the density in the vortex–shock interaction simulation. Left: DNS [32]; Right:
ELBM. Maa = 1.2, Mav = 0.5 and Re = 400. Contour levels are from ρmin = 0.92 to ρmax = 1.55 with
an increment of ∆ρ = 0.0053.

In Figure 16, we compare the radial and tangential sound pressure distribution, respectively.
The sound pressure is defined as ∆p = (p− ps)/ps, where ps is the pressure behind the shock wave.
The radial sound pressure distribution was measured in cylindrical coordinates with the origin at
the vortex center, at an angle θ = −45◦ with respect to the x-axis and at different times t′ = 6, t′ = 8,
t′ = 10. The tangential sound pressure distributions were measured in the tangential coordinate at two
different radii r = 6 and r = 37, at time t = 6. From the radial distribution, one can notice how both
the sound precursor (upper sound pressure peak) and the second sound propagate radially from the
vortex center with time. Moreover, the peak sound ∆pm corresponding to the maximum peak pressure
decays with time, for both the precursor and second sound. From the tangential distribution, it is
possible to observe the quadrupole nature of the sound generated by the vortex–shock interaction [32]:
the second sound measured at r = 3.7 has the opposite sign with respect to the precursor at r = 6.
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(a)

(b)

Figure 16. The sound pressure distribution ∆p in the radial and tangential directions for the case
Maa = 1.2, Mav = 0.25 and Re = 800. (a) The radial sound pressure distribution ∆p measured at an
angle θ = −45◦ with respect to the x-axis. Times: t′ = 6, t′ = 8, t′ = 10. (b) The tangential sound
pressure distribution ∆p measured at two radii, r = 6 and r = 3.7. Time: t = 6. Symbol: ELBM. Line:
DNS [32].

In Figure 17, we plot the peak sound pressure ∆pm of the precursor measured at θ = −45◦ at
different times, and the corresponding radial position. We can remark that the amplitude of the
generated sound grows with the increase of both shock and vortex Mach numbers.

Finally, we show in Figure 18 the simulation of a pair of vortices interacting with a shock wave
using the same parameters as in Figure 15: Maa = 1.2, Mav = 0.5, and Re = 400. We compared the
sound pressure of the ELBM simulation with the DNS of [32]. In addition, in this case, the comparison
shows good agreement between the DNS and the ELBM method. This simulation indicates a low
artificial dissipation of ELBM.

Before proceeding with the next set-up, we would like to highlight the following observation
about the non-dimensional time step of our simulations as compared to DNS: The non-dimensional
time step for the present ELBM is δt · a∞/R = 1.67 × 10−2, while, for the reference DNS [32], it
is ∆t · a∞/R = 1.75× 10−4. This shows one of the advantages of ELBM, requiring two orders of
magnitude less time steps as compared to the DNS. Strong coupling of lattice Boltzmann time step



Entropy 2020, 22, 370 20 of 28

with the advection velocity (or Mach number) is a disadvantage for the LBM for low Mach number
applications; however, this coupling becomes an advantage for compressible flows.

Figure 17. The decay of the peak sound pressure at different Mach numbers. Symbol: ELBM. Lines:
DNS [32].

Figure 18. Snapshot of the sound pressure, Maa = 1.2, Mav = 0.5 and Re = 400. Left: DNS [32], ⊕ and
	 indicate positive and negative sound pressure, respectively; Right: ELBM. Contour levels are from
∆pmin = −0.459 to ∆pmax = 0.301 with an increment of ∆ρ = 0.027.

4.5. Richtmyer–Meshkov Instability

We proceed to the validation of the lattice with increased temperature range and consider the
simulation of Richtmyer–Meshkov instability (RMI) [33]. In order to reproduce the experiment
of [34], a minimum temperature ratio of Tmax/Tmin ' 4.5 has to be allowed by the lattice; therefore, the
D2Q72-0123 lattice cannot be used and the D2Q72-0124 lattice of Section 3.2 has to be employed instead.

In the RMI problem, a shock wave characterized by a shock Mach number Mas is passing through
a stratified fluid with a density interface of a sinusoidal shape with an initial amplitude a0 and
characterized by the pre-shock Atwood number A = (ρ2 − ρ1)/(ρ1 + ρ2). Here, ρ1 and ρ2 are the
density upstream and downstream of the interface. After the shock front passes through the interface,
the amplitude starts growing and the RMI develops. Experimental conditions of [34] were adopted in



Entropy 2020, 22, 370 21 of 28

the simulation: the incident shock strength was Mas = 1.21 while the pre-shock Atwood number was
A = 0.601. The fluid was characterized by a mean adiabatic exponent γ = 1.276. The initial interface
amplitude is ka0 = 0.21, where k is the wavenumber of the perturbation k = 2π/λ. For further
details, the reader is referred to [34]. In the simulation, we adopted λ = 1878 grid points in the
transversal direction.

In Figure 19, we report eight snapshots of the evolution of the density. The normalized time
τ is defined as τ = (t − t0)ku0, where u0 is the flow speed behind the density interface after the
shock wave has passed through it. The initial conditions are represented by τ = −0.03 at which the
shock wave is on the left of the sinusoidal density interface. After the passage of the shock, as shown
for τ = 0.09, a part of the shock travels in the same direction while the other part is refracted back
upstream (see left interface). During the passage of the shock, vorticity is deposed near the density
interface, thus initiating the growth of the amplitude of the sinusoidal interface, τ = 1.13–2.29. After the
initial growth, the instability presents the typical formation of a mushroom-like plume, τ = 3.44–6.92.

Figure 19. Snapshots of the evolution of the density for the Richtmyer–Meshkov instability. Time
instants from left to right and from top to bottom; Top row: τ = −0.03, τ = 0.09, τ = 1.13, τ = 2.29.
Bottom row: τ = 3.44, τ = 4.60, τ = 5.76, τ = 6.92.

The simulation was validated by measuring the non-dimensional growth rate of the instability
a(τ) and was compared with the experimental measurements of [34] and with the WENO simulations
of [35]. WENO results were made non-dimensional with the experimental parameters (u0 = 628 cm/s).
Results are reported in Figure 20 and show a good match of the ELBM simulation with the experiment.

Figure 20. Normalized amplitude growth rate for the Richtmyer–Meshkov instability simulation as a
function of normalized time. Solid line: ELBM; Symbol: the experiment [34]; Dashed line: the WENO
simulation [35]; Dotted line: the original analytical prediction of Richtmyer [36] for the initial growth.
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4.6. Transonic Onera M6 Wing

Our final example is the simulation of the transonic, inviscid flow field around the Onera M6
wing being reported. This kind of swept wing of intermediate aspect ratio is the standard benchmark
for numerical methods for transonic three-dimensional flows, also thanks to the formation of a
significant vortex above the wing tip which interacts with the lambda-shock forming due to the
transonic conditions. The inflow Mach number was set to Ma = 0.839 while the Reynolds number was
Re = 11.7× 106 and angle of attack AoA = 3.06◦. The mean chord was resolved with Cm = 108.9 grid
points. Details of wing geometry and the set-up can be found in [37]. ELBM simulation was performed
with the D3Q73 lattice.

In Figure 21, an overview of the flow field is shown by streamlines colored by vorticity, and by the
iso-surface of sonic condition. The flow field demonstrates the features typical of the transonic flow
around a three-dimensional finite wing: at the tip of the wing, a characteristic tip vortex is formed,
demonstrated by the helical pattern of the streamlines and with the increase of the vorticity (from
green to red). Moreover, a lambda-shock forms on the upper part of the wing, shown by the sonic
iso-surface which divides the domain into supersonic and subsonic regions. The shock, furthermore,
continues toward the tip of the wing and reaches also the lower part; this is consistent with the results
reported in the literature [37,38].

Figure 21. Snapshot of the flow field around the Onera M6 wing in a transonic flow at Ma = 0.839,
Re = 11.7× 106 and AoA = 3.06◦—the streamlines colored by vorticity and the iso-surface of the sonic
condition are shown.

The shock formation is also revealed by the sectional stream-wise plots of pressure coefficient
cp shown in Figure 22, where ELBM results are compared to the experiment and Euler solver
simulations [37]. In particular, the pressure coefficient profiles along the span-wise direction reveal
the formation of the lambda-shock on the upper wing surface: the upstream leg of the lambda-shock,
located near the leading edge, is the foot of a three-dimensional shock, whereas the downstream leg
of the lambda-shock is a 3D shock terminating the local supersonic region (see cp distributions at
y/b = 0.2 and y/b = 0.65). Near the tip of the wing, the two shocks merge into a single one due
to the presence of a strong tip vortex influencing the flow on the upper side of the wing (see the cp

distribution at y/b = 0.95). Even more insight into the characteristic of the flow field is provided by
the sectional span-wise plots of cp (fore, mid and aft chord), in Figure 23, where the ELBM solution is
compared again with the experimental results and the simulation of the Euler solver [37]. Inboard,
the pressure varies only slowly with the distance from the root demonstrating the two-dimensional
character of the flow until it approaches the tip of the wing. There, the most intriguing features of the
three-dimensional flow are present: at section x/C = 0.27, a small amount of negative lift is produced
near the tip; in the next two sections, this contribution returns again positive. This further confirms the
presence of the rotational flow visualized by streamlines and vorticity in Figure 21.
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(a) (b) (c)

Figure 22. Pressure coefficient cp on the Onera M6 wing at three wing sections in the stream-wise
direction. (a) y/b = 0.2; (b) y/b = 0.65; (c) y/b = 0.95. Line: ELBM. Symbol: Experiment and Euler
solver [37].

(a) (b) (c)

Figure 23. Pressure coefficient cp on the Onera M6 wing at three sectional span-wise positions.
(a) x/C = 0.27; (b) x/C = 0.69; (c) x/C = 0.89. Line: ELBM. Symbol: Experiment and Euler
solver [37].

5. Conclusions and Outlook: Pruned Lattices and Entropic Guided Equilibrium Construction

We reviewed some main issues arising in the framework of the compressible lattice Boltzmann
method. For any finite set of discrete velocities, there is always a limit in terms of the Mach number
and the temperature range to which the compressible LBM can be applied. While we have focused on
the admissible lattices in our discussion, these limitations are universal by the nature of finiteness of
the velocity set. Similarly, the two-population approach using the quasi-equilibrium is universally
applicable to any discrete velocity set. We have demonstrated that the entropic equilibrium construction
is superior to the conventional polynomial approximations in the context of compressible LBM.

In order to extend the operation domain of a given lattice, we proposed two modifications. First,
the shifted lattice allows for increasing the Mach number by formulating the ELBM in a reference frame
more suitable for a problem at hand. This extension requires no change in the ELBM algorithm. Second,
increasing the lattice link length extends the temperature range without an increase of the number of
discrete velocities. Both of these modifications were benchmarked with a number of two-dimensional
simulations: The supersonic flow field around a diamond-shaped airfoil, subsonic, transonic and
supersonic flow field around the Busemann biplane, viscous supersonic flow field around a NACA0012
airfoil, interaction of vortices with a shock wave, and the Richtmyer–Meshkov instability. All of the
benchmarks were successfully compared, confirming the capabilities of the compressible ELBM and its
extension to higher Mach numbers. We have also demonstrated a three-dimensional transonic Onera
M6 wing simulation which allows for considering the ELBM approach useful for compressible flow of
engineering interest.
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We conclude this paper by addressing the question of how to reduce the number of populations
in order to save memory and reduce the overall computational cost in the three-dimensional
simulations [20]. To that end, we first suggest a pruning of the admissible lattice by dropping certain
discrete velocities based on their energy shell. Second, we propose a modification of the equilibrium
construction on pruned lattices by extending the guided equilibrium approach [39] which enforces
accuracy on the required equilibrium moments through an extended set of constraints in the entropy
minimization problem. These two techniques, lattice pruning and guided equilibrium, are considered
below. The combination of both allows for decreasing by one order of magnitude the memory overhead,
by three to four times the computational cost, and at the same time to increase the accuracy at high
Mach numbers.

5.1. Lattice Pruning

Lattice pruning has already been employed in the past to reduce the number of velocities of
a given lattice; as an example, the D3Q15 and the D3Q19 lattices are prunes of the D3Q33 lattice.
A systematic theory of pruning of higher-order admissible lattices was developed in [28]; in particular,
the D3Q41 lattice was derived from from the D3Q53 model [14,15]. Here, the pruning procedure is
further extended to the D3Q73 lattice employed for the simulation of compressible flows. Elimination
of discrete velocities from a given lattice becomes simple when symmetry considerations are taken into
account. If one wants to discard an arbitrary discrete velocity (i, j, k), in order to maintain symmetry
along the x-direction, and then to conserve the x-momentum, the discrete velocity (−i, j, k) also
needs to be discarded. Similar considerations apply in the y- and z-directions. At this point, since
(i,−j, k) have also been discarded, x- and z-reflections (−i,−j, k) and (i,−j,−k) need to be discarded.
This procedure is further applied until, at the end, all discrete velocities (±i,±j,±k) are discarded.
Equivalently, populations belonging to the same energy shell ε = i2 + j2 + k2 and within the same
velocity shell η = |i|+ |j|+ |k| can be discarded. For the D3Q73 lattice, the number of energy shells is
19, while the number of velocity shells is 20. These are given in Table 6.

Table 6. Energy and velocity shells of the D3Q73 lattice.

ε η Representative Velocity Number of Velocities

0 0 (0, 0, 0) 1
1 1 (±1, 0, 0) 6
2 2 (±1,±1, 0) 12
3 3 (±1,±1,±1) 8
4 2 (±2, 0, 0) 6
5 3 (±2,±1, 0) 24
6 4 (±2,±1,±1) 24
8 4 (±2,±2, 0) 12
9 3 (±3, 0, 0) 6
9 5 (±2,±2,±1) 24
10 4 (±3,±1, 0) 24
11 5 (±3,±1,±1) 24
12 6 (±2,±2,±2) 8
13 5 (±3,±2, 0) 24
14 6 (±3,±2,±1) 48
17 7 (±3,±2,±2) 24
18 6 (±3,±3, 0) 12
19 7 (±3,±3,±1) 24
22 8 (±3,±3,±2) 24
27 9 (±3,±3,±3) 8

A large number of combinations can be chosen in order to discard velocity and energy shells.
Among others, the lattice composed by the velocity and energy shells presented in Table 7 is here
considered as an example, with a total number of discrete velocities n = 39. The D3Q39 lattice is
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visualized in Figure 24. This number of discrete velocities allows for decreasing by at least one order
of magnitude the memory overhead of the computations and, in case the numerical equilibrium
of Section 2.4 would be employed, to also gain one order of magnitude in the computational cost.
However, the already restricted accuracy of the DdQ7d lattice would further degrade with discarding
the discrete velocities. A modification of the entropic equilibrium construction is thus required in
order to enforce the pertinent equilibrium moments to be recovered correctly. To this end, a modified
version of the entropic guided equilibrium is presented in the next section.

Table 7. Energy and velocity shells of the D3Q39 lattice.

ε η Representative Velocity Number of Velocities

0 0 (0, 0, 0) 1
1 1 (±1, 0, 0) 6
3 3 (±1,±1,±1) 8
4 2 (±2, 0, 0) 6
8 4 (±2,±2, 0) 12
9 3 (±3, 0, 0) 6

Figure 24. Visualization of the D3Q39 lattice. Red: ε = 1, orange: ε = 3, yellow: ε = 4, green: ε = 8,
blue: ε = 9.

5.2. Entropic Guided Equilibrium

In order to remove the aforementioned errors in the pertinent equilibrium moments, the method
of guided equilibrium [39–41] is here employed. As for the equilibrium derivation of Section 2.4.1, an
entropy function, which will be defined later, is minimized under constraints of local conservation
laws of mass, momentum and energy, and, additionally, under the conditions some pertinent moments
are of the Maxwell–Boltzmann form. In the present case, the conservations and enforced moments
are the same as in the Grad’s thirteen moments method, i.e., the density and the momentum, the
pressure tensor,

Peq
αβ =

n

∑
i=1

viαviβ f eq
i = ρTδαβ + ρuαuβ, (40)

and the heat flux vector,

qeq
α =

n

∑
i=1

viαv2
i f eq

i = 2ρuα(K + T)δαβ + ρuαuβ. (41)
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Note that the kinetic energy K = (D/2)T + u2/2 is not included in the conservations since it is
automatically recovered by the inclusion of the pressure tensor. We consider the entropy function of
the form,

H =
n

∑
i=1

fi ln fi (42)

Differently from the H function (9), the weights are not included here for two reasons: First, the
inclusion of the weights imply the equilibrium distribution to be valid only within a certain temperature
range because of the positivity constraint. Second, the inclusion of the weights is not needed in the
present construction since the equilibrium moments are directly enforced and do not need to be
recovered by only enforcing the conservation laws. The minimization problem is expressed in terms of
Lagrange multipliers, and results in

f eq
i = ρ exp

(
ξ + ζαviα + παβviαviβ + λαviαv2

i

)
, (43)

where ξ(u, T), ζα(u, T), παβ(u, T), and λα(u, T) are Lagrange multipliers. As for the accurate entropic
equilibrium, the closed form of f eq is computed by inserting (43) into the specified conservation laws
and equilibrium higher-order moments. In three dimensions, this results in thirteen equations for
Lagrange multipliers. In addition, in this case, direct numerical evaluation of Lagrange multipliers
using a rapidly converging Newton–Raphson method is employed. Clearly, inclusion of more
constraints in the minimization problem leads to higher computational cost of the equilibrium.
However, this is largely compensated by the reduction in the computational cost related to the
lattice, and, with regard to simulations with large number of CPUs or with grid refinement [42], the
advantage becomes even larger. By measuring the computational time of simulations, it has been
found that the gain is of the order of 3 to 4 times with respect to the original compressible model in
three dimensions.

Figure 25. Vortex advection comparison at different advection Mach number. Top row: D3Q343 lattice
with the standard entropic equilibrium. Bottom row: D3Q39 lattice with the guided entropic equilibrium.

In order to show the accuracy of combining the pruned D3Q39 lattice with the guided entropic
equilibrium, in Figure 25 advection of vortices at various Mach numbers is shown for the original
compressible model and the present modification. The vortex Mach number is Mav = 0.2. Vortices are
visualized by means of pressure contours. The behavior of the vortex in Figure 25 is similar to the one
of Figure 7 where the symmetric lattice was compared to the shifted (U = 1) lattice: for relatively low
Mach numbers, from Maa = 0.6 to Maa = 0.9, both models behave similarly, with the vortex advected
correctly. Starting from a Mach number of about Maa = 1.2, the vortex for the case of the original
compressible model starts to slightly deform; this is even more visible for the higher Mach number
Maa = 1.5. Differently, the vortex in the case of the guided equilibrium model is not deformed, and it
is advected correctly until a Mach number of around Maa = 1.5. The improvements brought about by
the guided equilibrium on pruned lattices are evident: the reduction of the computational cost by a
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factor of 3–4 together with the much lower memory overhead and higher accuracy at higher Mach
numbers. This renders the present optimization very promising, allowing for tackling more complex
and computationally demanding simulations.
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