
ETH Library

Forecasting Stock Market Volatility
with Search Engine Query
Statistics

Master Thesis

Author(s):
Beker, Romain

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-006422895

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006422895
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Master’s Thesis Nr. 3

Systems Group, Department of Computer Science, ETH Zurich

Forecasting Stock Market Volatility with Search Engine Query Statistics

by

Romain Beker

Supervised by

Prof. Donald Kossmann

October 2010–March 2011

Abstract

We provide a framework to design, create, test and evaluate linear forecasting
models incorporating query statistics. As part of the framework we provide al-
gorithms for identifying search terms that have forecasting power. We test the
algorithms performances empirically with Google statistics on three applications:
stock market volatility, arrivals in the Republic of Seychelles and initial unem-
ployment claims in the USA. We also showcase the framework by improving
stock market volatility forecasts. Finally we compare Google and Twitter query
statistics.

Acknowledgments

I’m grateful to my supervisor Prof. D. Kossmann for his support, his guidance, his
patience and his trust. I thank Dr. M. Grineva for her help. I also thank the Chair
of Entrepreneurial Risks at the ETH Zurich and in particular Prof. D. Sornette and
Dr. V. Filimonov for the fruitful discussions.

Last but not least I thank C. Papazian, my family and my friends for their
support.

Contents

1 Introduction 3

2 Google Insight Data Source 5

3 Twitter Data Source 7

4 Stock Market Volatility 8
4.1 Actual Volatility . 8
4.2 Implied Volatility . 8

4.2.1 Financial Options . 9
4.2.2 The VIX . 9

5 Defining Google Insight Models 11
5.1 Traditional Forecasting Models 11
5.2 Enhancing Forecasting Models 12
5.3 Training Forecasting Models . 13
5.4 Evaluating Forecasting Models 13
5.5 Time Serie Correlation . 14

6 Model Creation: The Process 15
6.1 Model Structure . 16
6.2 Incorporating Keywords . 16

6.2.1 The Naive Method . 18
6.2.2 The Incremental Increase Method 18
6.2.3 The Incremental Increase Top N Variant 20
6.2.4 The Incremental Decrease Method 21
6.2.5 The Correlation Method 22

6.3 Weighting Keywords . 23
6.4 Choosing Keyword Offsets . 24

1

7 Model Creation: Experiment Part I 26
7.1 Data . 26

7.1.1 Input Data . 26
7.1.2 Keyword Data . 28
7.1.3 In-Sample Parition . 29
7.1.4 Benchmark Structure . 30

7.2 Keyword Selection . 30
7.2.1 Initial Unemployment Claims 30
7.2.2 Arrivals in the Republic of Seychelles 35
7.2.3 Implied Volatility . 39

8 Model Creation: Experiment Part II 45
8.1 Data . 45

8.1.1 Input Data . 45
8.1.2 Keyword Data . 45
8.1.3 In-Sample Partition . 45

8.2 Benchmark . 45
8.3 Results: Benchmark . 46
8.4 Results: Machine-Created Model with Automatic Keyword and

Offset Selection . 47
8.5 Result: Model with Manual Keyword and Offset Selection 49
8.6 Results: Rolling-Window Model 51

9 Google Insight vs Twitter 52
9.1 Results for All Keywords . 53
9.2 Results for the specific Keywords Subset 54

10 Conclusion & Future Work 56

A Keyword Universe 59

2

Chapter 1

Introduction

In recent years Internet search engines have become important in the way people
inform themselves. When people type in queries on search engines they implic-
itly express their interest in the object of the query. The aggregated interests from
users all over the world provide an extremely rich source of information about so-
cial behaviors, opinions and sentiments. Search engine statistics provide a proxy
for that information and contrasts with classical means of obtaining the informa-
tion such as phone polls. Indeed among others search engine statistics are cheaper
and incorporate much larger sample sizes than traditional techniques. In the case
of the market leader Google, one can expect more than 10 billion search queries
per month 1.

This master’s thesis seeks to provide a framework for incorporating search
engine statistics in forecasting models. It also aims at demonstrating the frame-
work by improving stock market volatility forecasting models by using search
statistics. In the financial world there is a strong motivation behind predicting
volatility. Trading strategies with high profit potential can be derived from the
predictions.

Recent studies have illustrated in a variety of domains how Google statistics
can help in the process of forecasting. In particular it has been shown to improve
the forecast of seasonal influenza propagation [2] as well as initial unemployment
claims [3]. Google data has also been used in the context of modelling car, re-
tail, home and travel sales [1]. In addition, it can be shown that Google Insight
statistics for specific search terms also correlate with variables such as cinema ad-
missions [5] and the success of movies, music songs or video games [8]. Other
studies have also highlighted excellent performance when predicting stock-market
direction [9] and the movies success [10] using Twitter.

The master’s thesis is organized as follows. In chapter 2 we present our pri-

1Source: ComScore,September 2010, October 2010, November 2010, December 2010

3

http://www.comscore.com/Press_Events/Press_Releases/2010/10/comScore_Releases_September_2010_U.S._Search_Engine_Rankings
http://www.comscore.com/Press_Events/Press_Releases/2010/11/comScore_Releases_October_2010_U.S._Search_Engine_Rankings
http://www.comscore.com/Press_Events/Press_Releases/2010/12/comScore_Releases_November_2010_U.S._Search_Engine_Rankings
http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Releases_December_2010_U.S._Search_Engine_Rankings.

mary source of search engine statistics provided by Google through the Google
Insight tool. We then present in chapter 3 our secondary data source for query
statistics: Twitter. We continue in chapter 4 with a brief introduction to stock
market volatility.

In chapters 5 and 6 we provide a framework to design, create, test and evaluate
forecasting models incorporating query statistics. The framework also features
algorithms to automatically identify search terms whose statistics are relevant for
the forecasting problem at hand. As part of this master’s thesis we have developed
an accompanying software tool that implements the framework. In the chapters
7 and 8 we present experiments on empirical data to first test the algorithms for
identifying search terms and then show how we can improve volatility forecasts.
We compare results for the search statistics aware models with results for the
AR(1) benchmark model.

In chapter 9 we investigate the relation between query data from our two
sources (Google and Twitter) in order to understand whether the sources could
be used alternatively. We finally conclude with possible future work.

4

Chapter 2

Google Insight Data Source

Google Insight 1 (previously known as Google Trends) is a tool by Google that
allows to display and download search statistics for search terms given as input.
In the context of this paper we refer to search terms as ”keywords”.

Figure 2.1 shows as example the search statistics for the keyword ”visit Switzer-
land”. The y-axis displays the relative number of searches for the keyword and
the x-axis gives the date.

Figure 2.1: Search statistics for ”visit Switzerland”

For each keyword Google Insight provides us with a time serie indicating the
relative number of queries for the keyword.

1Google Insight

5

http://www.google.com/insights/search/

Timeframe

Google Insight publishes weekly aggregated search statistics. The data gets pub-
lished with a delay of one week.

Universe

Google Insight computes the search statistics for an estimated 50 million key-
words 2. Some keywords contain only monthly data due to lower number of
queries.

Classification

Google uses a classification system for the search statistics. The classifier features
two dimensions. The first is the search category (ex. travel, sports, society...) and
the second is the regional interest (ex. USA, Europe, Zurich,...) indicating the
origin of the queries. One can obtain the global search statistics or the statistics
for a subset of categories and regions.

In this paper we only explore global search statistics without investigating
categories and regional interests.

Data Normalization & Scaling

Google normalizes its data by using a proprietary process for which almost no
information is publicly available. It seems however that for a large part the pro-
cess takes into account relative number of searches across regions 3. For instance
searches for a given keyword occurring from New York, USA will be weighted
less than searches occurring from Zug, CH for the same keyword because much
more queries occur from New York overall.

The search statistics are scaled to fall between 0 and 100 4. For a keyword
time serie the normalized numbers of queries are divided by the biggest number
and multiplied by 100. When not enough data is available the relative number of
queries is zero.

2See [2]
3Google Insight normalization
4Google Insight scaling

6

http://www.google.com/support/insights/bin/answer.py?hl=en&answer=87284
http://www.google.com/support/insights/bin/answer.py?hl=en&answer=87282

Chapter 3

Twitter Data Source

While technically not a search engine, Twitter can also be exploited to extract
keyword statistics. Each tweet can be considered as a complex search query that
contains information.

In order to extract keyword statistics from Twitter tweets we start by recording
tweets in real-time using the Twitter API1. It allows to collect about one million
public tweets per day (24h).

For each tweet we record its timestamp, the username of its author and the
message itself.

To compute the keyword statistics for a specific timeframe we count, for each
keyword, its occurrences over the timeframe. For instance, if we are interested in
the daily time frame we count for every day the occurrences of each keyword. We
then normalize the number of occurrences to fall between 0 and 100.

More sophisticated strategies for computing the keyword statistics could be
the object of future work.

1We use the Twitter4J implementation for the Twitter API

7

http://twitter4j.org/en/index.html
http://apiwiki.twitter.com/w/page/22554679/Twitter-API-Documentation

Chapter 4

Stock Market Volatility

We introduce two different types of stock market volatility, the actual volatility
and the implied volatility.

4.1 Actual Volatility
Actual volatility for a given financial instrument (stock, bond, currency,..) is a
statistical measure of the dispersion of its returns within a specific time horizon.
The value of the actual volatility is obtained by computing the standard deviation
of the returns over the specific time horizon and is usually expressed in annual-
ized terms. Actual volatility expresses the amount of uncertainty and risk in the
fluctuations of a financial instrument. Commonly, the higher the volatility, the
larger the changes in price (in both directions) and the riskier the instrument. Ac-
tual volatility could also be interpreted as a measure of activity on the financial
market. The higher the volatility the higher the activity on a financial market.
We argue that rising activity on a market could lead to (or be preceded by) in-
creasing number of Google searches for some keywords such as ”buy stocks” or
”sell stocks”. And vice-versa for decreasing activity. We therefore believe that
search engine statistics can potentially contain information relevant for modeling
volatility.

4.2 Implied Volatility
The second type of volatility called implied volatility refers to the market expec-
tation of future (actual) volatility over a given time horizon. At this point in order
to explain how implied volatility is derived from market prices we briefly and su-
perficially introduce financial options and the Black&Scholes model for pricing
them. For more information we suggest consulting [18] and [19].

8

4.2.1 Financial Options
Options are financial instruments that come in two types: the call option and the
put option. The call option is characterized by the underlying asset, the strike
price and the expiration date. When one buys a call option on a given asset one
obtains the right (but not the obligation) to buy at the expiration date a preder-
timned amount of the asset at the strike price. Conversely a put option on a given
asset gives the right to sell at the expiration date a predetermined amount of the
asset at the strike price.

A prevalent way of valuing a call or put option is given by the Black&Scholes
model. The model prices options as follows:

C = SN(d1)−Xe−rTN(d2) (4.1)

P = 1− C (4.2)

with

d1 =
ln(S/X) + (r + σ2/2)T

σ
√
T

(4.3)

d2 = d1 − σ
√
T (4.4)

C and P denote the prices of the call and put option respectively. S designates
the market price of the underlying asset. X is the strike price, r is the risk-free
interest rate and T the time (in days) until the expiration date. N denotes the
cumulative normal distribution and σ is the actual volatility of the underlying
asset during the lifetime of the option. Thus the exact value of σ is unknown until
the date of expiration. In order to price options using the equations 4.1 and 4.2
one needs to provide an estimate for σ.

Implied volatility is the volatility (σ) derived from an option pricing model
such as Black&Scholes when knowing the prevailing price of an option. Option
prices can be observed on the financial markets.

For the purposes of this paper we are interested in implied volatility. Estimat-
ing implied volatility better than the market consensus allows to identify options
that are over -or under-priced and develop a profitable strategy trading them.

4.2.2 The VIX
The VIX is the market volatility index calculated by the Chicago Board Options
Exchange (CBOE)1. The index introduced in 1993 has become a popular measure

1CBOE VIX

9

http://www.cboe.com/micro/VIX/vixintro.aspx

of S&P 500’s 2 implied volatility for the next 30-day period. The index not only
serves for indicating the market’s expectation of future volatility, it also represents
a ”fear gauge” reflecting investor’s risk aversion.

As of September 22 2003 the VIX is calculated from prices of options from
the S&P 500 index. For the detailed VIX calculation please see [12].

In the context of this paper the VIX serves as our volatility data.

2The S&P 500 or the Standard & Poor 500 Index reflects prices of 500 large-cap american
stocks. S&P 500

10

http://www.standardandpoors.com/indices/sp-500/en/us/?indexId=spusa-500-usduf--p-us-l--

Chapter 5

Defining Google Insight Models

In this section we define Google Insight forecasting models. They are forecasting
models improved with Google Insight statistics. We also introduce performance
measures for evaluating the models.

5.1 Traditional Forecasting Models
The goal of a model is to approximate the value of an input time serie at a specific
time. When the time is in the future, we call the model a forecasting model. In
the scope of this paper we consider linear forecasting models of the form:

inputt = a0 + a1 ∗ inputt−1 + a2 ∗ inputt−2 + ...+ an ∗ inputt−n (5.1)

0 < n <= t (5.2)

The a′s are constants whose values are to be determined when training the
model. inputx denotes the value of the input time serie at time x.

We define two types of basis elements that are combined to form a model.
The first type of element,the constant, consists of a simple constant (ex. a0). We
call the second type of element the input element. The input element consists of
a constant multiplied by the value of the input time serie at a specific time offset
(ex. a1 ∗ inputt−1). Please note that offsets bigger than t− 1 induce a look-ahead
bias and are therefore not permitted.

In order to build a traditional linear forecasting model one can form any com-
bination of constants and input elements by combining them with the addition
operation as shown in equation 5.1.

11

5.2 Enhancing Forecasting Models
In order to enhance the models with Google Insight keywords we introduce a
new type of basis element called the keyword element. The keyword element
complements the constant and the input element.

A keyword element has the following form:

a0 ∗ keywordt−n (5.3)

0 < n <= t (5.4)

The keyword element consists of a constant multiplied by the value of the
keyword time series at a specific time offset t− n.

We define K as the set containing all keywords. K therefore constitutes the
keyword universe. A model doesn’t necessarily use all keywords in K but can
use subset K ′ ⊂ K to improve its predictions. The item keywordoffset as in
equation 5.3 represents the weighted mean value of all keywords K ′ ⊂ K used in
the model:

keywordt =
1

|K ′|
∗
|K′|∑
k=1

(keywordk,t ∗ weightk) (5.5)

|K′|∑
k=1

weightk = 1 (5.6)

Where keywordk,t denotes the value of the time serie for keyword k at time t
and weightk the weight for keyword k.

Keyword elements can be combined with constants and input elements to cre-
ate Google Insight models of the form:

inputt = a0+a1∗inputt−1+...+an∗inputt−n+an+1∗keywordt−1+...+an+1+i∗keywordt−i
(5.7)

0 < n, i <= t (5.8)

keywordt =
1

| K ′ |
∗
|K′|∑
k=1

(keywordk,t ∗ weightk) (5.9)

|K′|∑
k=1

weightk = 1 (5.10)

12

5.3 Training Forecasting Models
The process of training a model aims at calibrating the model for a specific input
serie. It involves estimating the model’s parameters (its constants) so that the
model fits the input serie as closely as possible. More specifically, we define the
process of training a model as a linear least square problem:

Ax = b (5.11)

Minimize ‖r‖ = ‖Ax− b‖ (5.12)

Where the matrix A contains the structure of the model, the vector x contains
the constants to estimate and the vector b the input serie.

In order to solve the least square we use the QR decomposition.

5.4 Evaluating Forecasting Models
There exists a multitude of measures to evaluate the performance of a model. Here
we introduce one measure that serves the purposes of this paper. The interested
reader can get a broader view on performance evaluation in [23].

In order to measure a model’s performance we use the absolute mean relative
error which is defined as follows:

MRE =
1

T
∗

T∑
t=0

abs((modelt − inputt)/(modelt + inputt)) (5.13)

Where T represents the number of samples, modelt the model’s value at time
t and inputt the actual input value at time t. The measure is a percentage and
therefore falls between zero and one.

We complement the mean relative error by its standard deviation computed as:

std(MRE) =
1

T
∗

T∑
t=0

(abs((modelt − inputt)/(modelt + inputt))−MRE)2

(5.14)
And we define a model’s accuracy as:

Accuracy = 1−MRE (5.15)

13

5.5 Time Serie Correlation
We use the following formula to compute the correlation (lag = 0) and cross
correlation (lag > 0) of two time series.

Let x and y two time series of length n. For a given lag l ≤ n the (cross)
correlation is given by:

corr(l) =

∑n
t=l[(x(t)−mx) ∗ (y(t− l)−my)]√∑n

t=l(x(t)−mx)2 ∗
√∑n

t=l(y(t− l)−my)2
(5.16)

Where mx and my denote the mean of the time series x and y respectively.

14

Chapter 6

Model Creation: The Process

In this chapter we describe the creation of forecasting models that use Google
Insight data. In order to build a Google Insight model we start by creating a
traditional regression model that we refer to as the benchmark model. We then
enhance the benchmark model by adding keyword elements.

For instance, AR(1) could serve as a benchmark model:

inputt = a0 + a1 ∗ inputt−1 (6.1)

The Google Insight enhanced model could then be written as:

inputt = a0 + a1 ∗ inputt−1 + a2 ∗ keywordt−1 (6.2)

keywordt =
1

|K ′|
∗
|K′|∑
k=1

(keywordk,t ∗ weightk) (6.3)

|K′|∑
k=1

weightk = 1 (6.4)

Creating a Google Insight model requires to make four design decisions:

Structure of the benchmark model
What combination of classical model elements (constants, input elements)
should constitute the benchmark model?

Selection of keywords
Which keywords should be included in the model (how to choose K ′). In
other words, how can one identify the keywords that have predictive power
on the input time serie.

15

Keyword weights
How should one weight the importance of each individual keyword with
respect to the other keywords?

keyword offsets
How far back in time should the keyword’s data be considered?

We first investigate which structure to give to the benchmark model. We then
handle the problem of choosing which Google Insight keywords to use in the
model and which weights to give to each individual keyword. Finally, we look
into selecting optimal keyword offsets.

6.1 Model Structure
A model structure defines the elements contained in the model. As seen in chap-
ter 5, our models can contain three types of basis elements:

• Input elements.

• Keyword elements.

• Constants.

How should one combine these elements to create an efficient forecasting
model? In this section we consider how to structure a classical regression model
therefore not using keyword elements.

We assume in this paper that the problem of choosing a model structure will
be solved manually and won’t be automated. We believe that the problem isn’t
well suited for automation as creating an efficient model structure is more of an
art than a science and remains highly dependent on the modeler’s skills.

Defining and optimizing a model’s structure is a general data mining problem.
A good structure captures patterns observed in the input time serie. We don’t
intend to go into data mining in depth in the context of this paper. It would be out
of scope. The interested reader can find information in [23] and [24].

6.2 Incorporating Keywords
The problem of selecting which keywords to incorporate in a Google Insight pre-
diction model gets solved by identifying which keywords have an influence on the
input time serie. It represents a computational challenge as there are potentially

16

50 million Google Insight keywords to choose from. The problem can be defined
as finding a subset of keywords K ′ ⊂ K that gives an optimal forecasting model.

Based on a set structure of a traditional forecasting model (see previous section
6.1) the enhanced model (i.e. the model incorporating Google Insight keywords)
can be expressed in its general form as:

inputt = benchmarkt + a0 ∗ keywordt−1 (6.5)

keywordt =
1

|K ′|
∗
|K′|∑
k=1

(keywordk,t ∗ weightk) (6.6)

|K′|∑
k=1

weightk = 1 (6.7)

We present five methods or algorithms for identifying which keywords to in-
corporate in a model. In order to compare the methods we designed a ranking
system based on three performance measures:

1. Model quality

The measure estimates the accuracy of a model incorporating the keywords
selected by the method. Accuracy is computed over the in-sample period as
described in chapter 5.

2. Monotonicity

A method exhibits monotonicity when the resulting model’s quality im-
proves (or remains the same) when increasing the size of the keyword uni-
verseK. In other words the more keywords a monotonic method can choose
from the better will it be able to identify the relevant keywords.

3. Computational performance

The measure estimates how much computational resource is needed to run
a method.

We now present five methods to identify the relevant keywords to be included
in a model. We make the assumption that the partition of data into the in-sample
and out-of-sample sets is given. We assume that the in-sample set contains n
data points. We also assume that the structure of the benchmark model has been
defined and that the enhanced model has the general form.

We are concerned with finding a good subset K ′ ⊂ K to constitute the key-
word element. Beside, we assume that every keyword in K ′ has equal weight.

17

6.2.1 The Naive Method
The naive method consists in considering every subset K ′ ⊂ K in turn. For each
subset, the method creates and trains a model using the keywords in the subset
and evaluates the resulting model in-sample. The subset giving the most accurate
model gets returned as output. The naive method can be classified as a brute-force
method. The pseudo-code for the method is:

Algorithm 1 The Naive Method
for all K ′ subset of K do

Create model M:
for t = 1 to n do

Aggregate keywords:
keywordt =

1
|K′| ∗

∑|K′|
k=1 keywordk,t

Create model:
Mt = Benchmarkt + a0 ∗ keywordt−1

end for
Train(M)
Accuracy = Evaluate(M)
if Accuracy > BestAccuracy then
BestAccuracy = Accuracy
Result = K ′

end if
end for
return Result

By design the naive method will investigate every possible keyword combi-
nation and is therefore guaranteed to find the best keyword combination. The
method allows for optimal model quality. Since the method guarantees finding
the best set of keywords, monotonicity is also guaranteed. The trade-off for this
naive solution comes in terms of computational resources.

The method will need to train and evaluate a model for each subset K ′ ⊂ K
except the subset containing no keywords. There is therefore a total of 2|K| − 1
subsets to consider. Thus we can conclude that the naive method for identifying
relevant keywords has complexity O(2|K|) which makes it unusable for practical
purposes with large amount of keywords.

6.2.2 The Incremental Increase Method
Because of the high resource requirements of the naive method one needs to find
a better method that can run in a scenario with limited resources. The incremental

18

increase method fulfills this role.
The incremental increase method works by first identifying the strong key-

words: keywords that have a strong influence on the input time serie. It sorts the
keyword by their strength and then attempts to combine the strongest keywords
iteratively. If a keyword improves the result it gets added to the result set. The
method can be classified as a greedy method. Optionally one can set a limit L on
the number of keywords to select. The pseudo code for the incremental increase
method can be written as:

Algorithm 2 The Monotonic Incremental Increase Method
for all keyword k in K do

Create model Mk using only k:
for t = 1 to n do
Mk,t = Benchmarkt + a0 ∗ kt−1

end for
Train(Mk)
Accuracyk = Evaluate(Mk)

end for
Rank keywords by accuracy
Result = ∅
for all ranked keyword k in K do

if |Result| < L then
Create model M using keywords Result ∪ k:
for t = 1 to n do
Mt = Benchmarkt + a0 ∗ keywordt−1

end for
Accuracy = Evaluate(M)
if Accuracy > BestAccuracy then
BestAccuracy = Accuracy
Result = Result ∪ k

end if
end if

end for
return Result

Contrary to the naive solution, the incremental increase method only analyzes
a subset of all possible keyword combinations. Therefore the method is not guar-
anteed to identify the optimal subset. However by trying to combine the best
ranked keywords, the method expects the resulting keyword set to form an ac-
ceptably good solution that might be a local minimum. For concrete empirical
performance evaluation of this strategy please see chapter 7 where we present

19

empirical results.
As far as monotonicity goes, once the keywords have been ranked by accuracy,

they only get added to the result if they improve the accuracy of the resulting
model therefore enforcing monotonicity. We refer to this method as the monotonic
incremental increase variant to contrast with the Top N variant (see section 6.2.3).

The huge advantage of this iterative method against the naive one lies in the
number of model it has to compute. Indeed this greedy method first has to train
and evaluate |K| models in order to rank the keywords. It then has to compute an
additional |K| models in order to check whether adding a specific keyword to the
result improves the resulting model’s quality. When using a limit L it might be
that the method compute less than |K| models. We however consider the worst
case. We can therefore conclude that the incremental increase method requires a
total of 2 ∗ |K| models to be trained and evaluate. In addition the method also
requires to sort the keywords which can be performed in linear time with respect
to |K|. Therefore the incremental increase method has linear complexity O(|K|)
which makes it usable in practice.

6.2.3 The Incremental Increase Top N Variant
In order to save computational time at the cost of a slight decrease in the resulting
model’s accuracy once keywords have been ranked by accuracy one can simply
select the top N keywords without checking whether adding a keyword improves
the resulting model. This variant needs to compute |K| models only which is two
times less than the original version of the method.

The pseudo-code for the top N variant is as follows:

Algorithm 3 The Incremental Increase Top N Variant
for all keyword k in K do

Create model Mk using only k:
for t = 1 to n do
Mk,t = Benchmarkt + a0 ∗ kt−1

end for
Train(Mk)
Accuracyk = Evaluate(Mk)

end for
Rank keywords by accuracy
Result = top N ranked keyword
return Result

20

6.2.4 The Incremental Decrease Method
The incremental increase methods presented above work efficiently for identifying
a subset out of millions of possible keywords. However one might also face a
slightly different problem when creating a Google Insight prediction model. It
can be that one already identified some keywords that have a strong influence on
the input time serie (by intuition for instance) and is now faced with the challenge
of identifying a good combination out of the reduced set of strong keywords K ′′.

The method works by first training and evaluating a model M incorporating
all keywords in K ′′ ⊂ K. It then loops over all keywords k ∈ K’ and computes
a model Mk with the keywords K ′′\k. The resulting model’s accuracy allows to
estimate k’s contribution in M . If Mk’s accuracy is less than M ’s accuracy then
keyword k has a positive contribution in the modelM . However, in the case where
Mk’s accuracy is less than M ’s accuracy we can conclude that k has a negative
contribution and therefore discard k. Beside helping distinguish strong keywords
from weaker keywords the contribution measure can help rank the stronger key-
words. The contribution’s magnitude can be used to weight keywords. We will
see more on this later.

Similarly to the incremental increase methods, the incremental decrease method
supports an optional limit L on the number of keywords to include in a model. The
pseudo-code for the method is given in algorithm 4.

Because of keyword’s contributions being computed in relation to the model
including all keywords M , the incremental decrease method isn’t monotonic. In-
deed the bigger the initial keyword set, the noisier M . When the baseline model
becomes too noisy the method won’t distinguish keyword’s contributions effi-
ciently and will therefore give a lot of false negatives (keywords with positive
contribution flagged as having negative contribution) and false positives (key-
words with negative contribution flagged as having positive contribution) resulting
in poor accuracy for the resulting model.

However, when the initial keyword set contains a limited number of influ-
ential keywords the method performs well and successfully manages to identify
keywords playing a key role which results in excellent model quality.

For concrete empirical performance evaluation of this strategy please see chap-
ter 7 where we present empirical data.

The incremental decrease method requires to train and evaluate |K ′′|+1 mod-
els (one model for each keyword and the additional model incorporating all key-
words). In order to analyze the method’s performance we assume the worst case
scenario where |K ′′| = |K|. The method therefore needs to compute |K| + 1
models. In addition, it also needs to rank the keywords which can be performed
in linear time with respect to |K|. The incremental decrease method therefore has
complexity O(|K|).

21

Algorithm 4 The Incremental Decrease Method
Create model M using all keywords in K ′′ ⊂ K:
for t = 1 to n do
Mt = Benchmarkt + a0 ∗ keywordt−1

end for
Train(M)
Accuracy = Evaluate(M)
for all keyword k in K ′′ do

Create model Mk using all keywords in K ′′ except k:
for t = 1 to n do
Mk,t = Benchmarkt + a0 ∗ keywordt−1

end for
Train(Mk)
Accuracyk = Evaluate(Mk)
Contributionk = Accuracy − Accuracyk

end for
Rank keywords by contribution
Result = ∅
for all Ranked keyword k in K ′′ do

if |Result| < L and Contributionk > 0 then
Result = Result ∪ k

end if
end for
return Result

6.2.5 The Correlation Method
We have now presented four methods for identifying keywords to use in a model
out of the universe K. While one method has complexity O(2|K|) and is therefore
unusable for practical purposes the other three have complexity O(|K|). Even
though the complexity is linear with respect to the number of keywords, both
methods still require to train and evaluate many models which is a resource-heavy
operation.

The correlation method is an attempt to identify useful keywords without com-
puting a single model. Instead of training and evaluating models the correlation
method tries to identify the relevant keywords by computing the correlation be-
tween keyword time series and the input time serie. Computing correlation be-
tween series is much less resource-intensive than training and evaluating a model.
The main idea behind the method comes from the intuition that a highly cor-
related keyword should have a strong influence on the input time serie. In or-

22

der to avoid look-ahead bias the correlations are computed on in-sample data.
In addition we also shift the input time serie by one in order to take into ac-
count the keyword element bias t− 1 in the general form of the enhanced model:
inputt = benchmarkt + a0 ∗ keywordt−1

The correlation method works by first computing each keyword’s (absolute)
correlation with the input time serie. The keywords are then ranked by correlation.
The method selects the top L keywords to form the prediction model. The pseudo-
code for the correlation method is:

Algorithm 5 The Correlation Method
for all keyword k in K do
Correlationk = Correlation(k, inputT imeSerie)

end for
Rank keywords by correlation
Result = top L ranked keyword
return Result

The correlation method isn’t monotonic since combining keywords with high
correlations to the input serie might lead to worse models than using the keywords
separately. There is no direct relationship between a keyword’s correlation and
the resulting model’s accuracy using the keyword. This fact also explains why the
correlation method performance as far as model quality goes lacks in contrast to
the other methods as we see in chapter 7.

However the correlation method truly shines when it comes to computational
performance. Not only is the method linear with respect to |K| but it only needs
to compute |K| correlation values instead of training and evaluating models. The
correlation method has complexity O(|K|).

6.3 Weighting Keywords
We have now investigated how to structure a benchmark model and we have pre-
sented the Google Insight model in its general form:

inputt = benchmarkt + a0 ∗ keywordt−1 (6.8)

keywordt =
1

|K ′|
∗
|K′|∑
k=1

(keywordk,t ∗ weightk) (6.9)

|K′|∑
k=1

weightk = 1 (6.10)

23

We have introduced five algorithms for determining which keywords should
be used in the model. We now concentrate on the problem of weighting keywords.
The problem of weighting keywords involves finding the weights weightk so that
the resulting model is optimal in terms of accuracy.

The weights allow to give more relative importance to certain keywords.
We experienced a tendency of over-fitting when trying to find good keyword

weights. Although weighting keywords can improve a model’s performance in-
sample, the over-fitting causes sharp declines in performance out-of-sample. The
most robust and consistent weighting strategy consists of weighting keywords
equally.

However we have found a strategy for weighting keywords efficiently when
using the incremental decrease method for identifying relevant keywords. As part
of this method we compute each keyword’s contribution. The contributions can
be used as weights to consistently improve the resulting model.

The formula for weighting keywords would be:

keywordt =
1

|K ′|
∗
|K′|∑
k=1

(keywordk,t ∗
1

|K ′|
∗ Contributionk) (6.11)

6.4 Choosing Keyword Offsets
Choosing keyword offsets implies modifying the general form of the Google In-
sight prediction model.

The general form is:

inputt = benchmarkt + a0 ∗ keywordt−1 (6.12)

The keyword element keywordt−1 has default offset t − 1. However there
might be better offsets to use, for example:

inputt = benchmarkt + a0 ∗ keywordt−2 (6.13)

inputt = benchmarkt + a0 ∗ keywordt−15 (6.14)

In addition one can also improve the general form by using several keyword
elements (with different offsets) instead of a single one:

inputt = benchmarkt + a0 ∗ keywordt−1 + a1 ∗ keywordt−2 + a2 ∗ keywordt−3
(6.15)

24

The problem of choosing keyword offsets consists of choosing how many key-
word elements to use and with which offsets in order to maximize the resulting
model’s accuracy.

In the scope of this paper we assume that offsets bigger than a few periods
won’t be relevant. We therefore limit the set of possible combinations of keyword
elements and offsets. Please note that it doesn’t make sense to create a model with
two distinct keyword elements that have the same offset. Thus, by limiting the
number of offsets that we consider we also limit the number of different keyword
elements. Please also note that offset zero and positive offsets (t, t + 1, t + 2, ...)
introduce look-ahead bias and are therefore not considered. With a maximum
offset limited to a constant c, there are 2c different keyword element combinations.
We suggest to train and evaluate a model for every combination as the process can
be conducted in constant time. The best combination would then be selected to
form the prediction model.

25

Chapter 7

Model Creation: Experiment Part I

In this chapter we present the first part of an experiment to illustrate the process
of creating Google Insight models. We go through all the design decisions intro-
duced in chapter 6. The first part of the experiment investigates the performance
of the five keyword identification methods.

7.1 Data

7.1.1 Input Data
We use three different time series as input data.

For the first input serie we use USA initial unemployment claims data. The
data tracks the weekly number of initial claims for unemployment benefits in the
USA. The numbers are reported weekly by the US Department of Labor 1. Al-
though initial claims data can be obtained back to 1987 we limit ourselves to the
period 2004-2010 because Google Insight data goes back to 2004. The first input
data therefore contains 349 data points (i.e. weeks) that range from 17th January
2004 to 18th September 2010.

As can be seen in figure 7.1 initial unemployment claims tend to peak at the
beginning of each year. In order to simplify our analysis we remove the seasonal
trend by considering the seasonally-adjusted time serie shown in figure 7.2.

In order to facilitate the computation of prediction models we normalize the
data so that it falls between 0 and 100.

For the second input serie we use the number of arrivals in the Republic of
Seychelles. The data can be obtained from the National Bureau of Statistics of the

1Initial unemployment claims data source: US Department of Labor
Historical Data: UI weekly claims

26

http://www.dol.gov/opa/media/press/eta/ui/current.htm
http://workforcesecurity.doleta.gov/unemploy/claims.asp

Figure 7.1: Initial Unemployment Claims in the USA

Figure 7.2: Seasonally-adjusted Initial Unemployment Claims in the USA

Republic of Seychelles 2. It contains monthly data points. The second input data
therefore contains 79 points (i.e. months) that range from January 2004 to July
2010. We show the time serie in figure 7.3.

The second input serie has a cyclical component. Contrary to the first input
serie we decide to keep the seasonal trend in order to see how the methods perform

2Tourism statistics

27

http://www.nsb.gov.sc/tourism

Figure 7.3: Arrivals in the Republic of Seychelles

on data with seasonal trends.
As with the initial unemployment claims we normalize the arrivals data to fall

between 0 and 100.
For the third time serie we use the VIX. We obtain data from Yahoo! Finance3.

The data consists of 349 weeks ranging from 17th January 2004 to 18th September
2010 as shown in figure 7.4.

We also normalize VIX data so that the values fall between 0 and 100.

7.1.2 Keyword Data
In this experiment we use 778 keywords. The keywords consist of 768 common
English words and 10 specifically selected words relating to finance, economics
and tourism in the Republic of Seychelles. Please see appendix A for the complete
list of keywords. The specifically selected keywords are displayed in table 7.1.

We are interested in seeing whether the specifically selected keywords have a
predominant influence on the input data as could be expected from intuition. And
we also want to test whether the automated methods for selecting keywords are
able to identify the specifically selected keywords out of all keywords.

For each keyword we download the corresponding weekly time serie from
Google Insight. The keyword series are then cut to the length of the input series.
They are also synchronized with the input serie so that data points for all series
occur on the same days.

3VIX

28

http://finance.yahoo.com/q?s=^VIX

Figure 7.4: VIX implied volatility index

Keywords
crisis

recession
stock crash

stock market
buy gold

buy stocks
sell stocks

unemployment
unemployment benefits

seychelles hotels

Table 7.1: Specifically selected keywords

For the Republic of Seychelles the weekly keyword series are turned into
monthly series. To do so, for each month we average the weekly data points
contained in that month.

7.1.3 In-Sample Parition
We define 70% of the input data to be in-sample. In the case of unemployment
claims and VIX we therefore have 244 data points to train our models on and 105
data points to test them out-of-sample. The in-sample data set goes up to October

29

2008. We therefore have the end-of-2005 peak and the beginning of the 2008-
2009 peak in-sample. This choice allows for the out-of-sample data to contain all
three important unemployment and volatility regimes: a period of claim/volatility
rise, one of claim/volatility decline and one of claim/volatility stagnation.

Concerning the arrivals data we have 60 points in-sample and 27 points out-
of-sample. The in-sample data goes up to December 2008.

7.1.4 Benchmark Structure
We decide to use an auto-regressive model for all three input series. We choose the
ARCH(2) model as benchmark as it allows the different methods to pick relevant
keywords efficiently in our experience.

The ARCH(2) model can be written as:

inputt = a0 + a1 ∗ inputt−1 + a2 ∗ inputt−2 (7.1)

In order to run the methods for identifying relevant keywords we enhance the
benchmark model by adding a keyword element:

inputt = a0 + a1 ∗ inputt−1 + a2 ∗ inputt−2 + a3 ∗ keywordt−1 (7.2)

keywordt =
1

|K ′|
∗
|K′|∑
k=1

(keywordk,t ∗ weightk) (7.3)

|K′|∑
k=1

weightk = 1 (7.4)

7.2 Keyword Selection
We run the different keyword selection methods in order to compare their perfor-
mances in terms of the resulting model’s accuracy.

7.2.1 Initial Unemployment Claims
Incremental Increase Methods

We run the incremental increase methods on the 778 keywords. We decide to use
a limit L = 5 on the selected keywords. We run both variants of the method.

The top 5 keywords having the most predictive power according to the meth-
ods are depicted in table 7.2.

30

Top 5 Keywords
unemployment benefits

recession
buy gold

spring
buy stocks

Table 7.2: Best keywords as selected by the incremental increase methods

It is interesting to note that although hidden in ”noisy” keywords (i.e. common
language words), the method successfully identifies 4 out of 5 keywords relating
to finance and economics. In particular the keyword ”unemployment benefits”
comes at the top of the list which confirms our intuition of its predictive power.

The monotonic version selects a keyword only when using the keyword im-
proves the performance of the final model. In this example the combination ”un-
employment benefits” and ”recession” gives the best performance and no addi-
tional keyword improves the final result. The monotonic method therefore selects
”unemployment benefits” and ”recession” as output keywords.

Figure 7.5 shows how the aggregated two keywords relate to initial unemploy-
ment claims.

Figure 7.5: Keywords selected by the monotonic variant

We expect the resulting model’s performance to be excellent with the mono-

31

tonic variant method. Indeed, the performance should be better than for the incre-
mental decrease method and the correlation method at the price of requiring more
resources.

The performance is represented as the resulting model’s accuracy over the
whole in-sample period and its standard deviation. In the scope of the first part of
this example we are not interested in a model’s performance against a benchmark.
We are only concerned with the relative performance of the various methods. We
show the performance for the monotonic incremental increase method in table 7.3

Performance
Accuracy 98.12%

Standard Deviation 1.5%

Table 7.3: Performance of the monotonic incremental increase method

In contrast to the monotonic version, the top N variant method selects the top
5 keywords. Figure 7.6 shows how the aggregated keywords relate to the input
serie.

Figure 7.6: Keywords selected by the top N variant

We expect the top N variant to perform slightly worse than the monotonic ver-
sion as the variant doesn’t check whether adding a keyword improves the resulting
model’s accuracy. Performance for the top N variant is presented in table 7.4.

32

Performance
Accuracy 97.88%

Standard Deviation 1.9%

Table 7.4: Performance of the top N incremental increase method

As expected the variant performs slightly worse than the monotonic version.
The variant also requires less computation time.

Incremental Decrease Method

We run the incremental decrease method with a limit L = 5 on the number of
keywords. In addition to identifying relevant keywords the method also allows
to rank the keywords according to their relevance by assigning keyword weights.
The selected keywords and their weights are shown in table 7.5.

Keyword Weight
recession 0.236

stock crash 0.204
unemployment benefits 0.2

buy gold 0.188
earth 0.174

Table 7.5: Best keywords as selected by the incremental decrease method

As with the incremental increase methods the incremental decrease method
manages to identify four keywords related to finance and economics. However
due to the lack of monotonicity for this method and the additional noise when
aggregating many keywords we expect poorer performance when increasing the
size of the keyword universe. Nonetheless, in this example the method manages
to hold ground with the incremental increase methods in terms of performance as
shown in table 7.6.

Performance
Accuracy 97.9%

Standard Deviation 1.89%

Table 7.6: Performance of the incremental decrease method

33

Correlation Method

As opposed to the methods illustrated above, the correlation algorithm can be run
without computing a single prediction model which allows for big gains in terms
of resource performance. However the performance in terms of accuracy might
not suffice for practical purposes. We run the method with a limit L = 5 on the
number of keywords to identify. The selected keywords are presented in table 7.7.

Top 5 Keywords
fertile
price

delicate
ray

harbour

Table 7.7: Best keywords as selected by the correlation method

Unfortunately the correlation method fails at identifying keywords related to
finance and economics. It seems to have fallen prey to ”noisy” keywords. The
method’s performance shown in table 7.8 is disappointing compared to the other
methods.

Performance
Accuracy 97.68%

Standard Deviation 2.04%

Table 7.8: Performance of the correlation method

The poor performance of the correlation method seems to indicate that high
correlation between a keyword time serie and an input serie doesn’t necessarily
leads to a successful model. It can be explained in part by the fact that the correla-
tion between keywords and input series are non-stationary. A keyword might have
a strong positive correlation with unemployment claims at a specific time period
and a strong negative correlation at another time period.

One could extend the correlation method by computing a rolling correlation
(instead of a correlation over the whole in-sample period) and keep keywords that
show strong and robust correlations over the different rolling windows. We believe
it would increase the method’s performance at the cost of longer computation
times. However we don’t investigate this point in the scope of this paper.

34

7.2.2 Arrivals in the Republic of Seychelles
Incremental Increase Methods

We run the incremental increase methods on the 778 keywords in our universe in
order to identify the ones that have predictive power for the Seychelles arrivals
time serie. We decide to run the method with a limit L = 5 on the number of
keywords. We run both variants of the method.

The top 5 keywords having the most predictive power according to the incre-
mental increase methods are depicted in table 7.9.

Top 5 Keywords
snow

sell stocks
weather

seychelles hotels
winter

Table 7.9: Top 5 keywords according to the incremental increase method

The methods manage to identify the keyword related to tourism in the Re-
public of Seychelles. Also the method ranks three keywords related to the winter
period (”winter”, ”weather” and ”snow”) in the top five keywords. It can proba-
bly be explained by the fact that surges in the arrivals in Seychelles occur during
winter time. Please note however that we are not concerned with explaining why
a particular keyword gives good results. We are mostly interested in identifying
in a non-discriminatory manner which keywords perform well.

The monotonic version of the incremental increase method starts with a model
containing ”snow” as only keyword and adds additional keywords only when they
improve the final result.. No other keyword improves the result and the monotonic
version returns ”snow” as output.

Figure 7.7 shows how the keyword relates to the arrivals serie.
We report in table 7.10 the performance of the monotonic method on Sey-

chelles data.

Performance
Accuracy 91.62%

Standard Deviation 7.96%

Table 7.10: Performance of the monotonic incremental increase method

The top N variant selects all 5 keywords in table 7.9 as output. Figure 7.8
shows how the five aggregated keyword look in relation to the input serie.

35

Figure 7.7: Keyword selected by the monotonic version of the incremental in-
crease method

Figure 7.8: Keyword selected by the top N variant of the incremental increase
method

The performance of the top N variant presented in table 7.11 confirms our
expectation that the method performs slightly worse than the monotonic version.

36

The efficient keyword ranking of the incremental increase methods nonetheless
allows the top N variant to perform well with respect to the other methods.

Performance
Accuracy 91.55%

Standard Deviation 8%

Table 7.11: Performance of the top N incremental increase method

Incremental Decrease Method

We run the incremental decrease method with a limit L = 5 on the number of
keywords. In addition to identifying relevant keywords the method also allows
to rank the keywords according to their relevance by assigning keyword weights.
The selected keywords and their weights for the arrivals in Seychelles are shown
in table 7.12. And the aggregated weighted keywords can be seen in relation with
the input serie in figure 7.9. One can observe how the aggregated keywords tend
to lead the input time serie.

Keyword Weight

snow 0.234
sell stocks 0.218
weather 0.192

seychelles hotels 0.18
unemployment benefits 0.176

Table 7.12: Best keywords as selected by the incremental decrease method

The selected keywords confirm our results obtained with the initial unemploy-
ment claims. Indeed the incremental decrease method is able to find relevant
keywords similar to the ones obtained with the incremental increase methods out
of a relative large pool of 778 candidates. Also due to the weighting mechanism
the method actually achieves better performances than the top N incremental in-
crease on the arrivals serie as shown in table 7.13. Although unexpected this good
performance shows that the incremental decrease method is potentially excellent
on a limited universe of keywords. In our experience, the smaller the universe
the better the performance. We however expect a decrease in performance rela-
tive to the incremental increase methods for a very large universe with millions of
keywords.

37

Figure 7.9: Keyword selected by the incremental decrease method

Performance
Accuracy 91.59%

Standard Deviation 7.98%

Table 7.13: Performance of the incremental decrease method

Correlation Method

We run the correlation method with a limit L = 5 on the number of keywords to
identify. The selected keywords are presented in table 7.14.

Top 5 Keywords
even
dark
fowl
head
frame

Table 7.14: Best keywords as selected by the correlation method

The correlation method fails to identify the ”seychelles hotels” keyword. It
also fails to find the keywords related to the winter season that the other methods
managed to identify. This disappointing results confirm our expectations and our

38

results obtained with the initial unemployment claims. The aggregated top five
keywords according to the correlation method can be seen in figure 7.10. The
keywords fail to correlate with the peaks and valleys of the arrivals serie and seem
to be very noisy which leads us to expect bad performances for the method.

Figure 7.10: Keywords selected by the correlation method

Indeed, the correlation method comes out as the worse performer as with the
unemployment serie. The performance can be seen in table 7.15.

Performance
Accuracy 91.31%

Standard Deviation 8.2%

Table 7.15: Performance of the correlation method

7.2.3 Implied Volatility
We now run the methods for identifying keywords on VIX data.

Incremental Increase Method

We run the incremental increase methods on the 778 keywords in order to identify
the ones that have predictive power on the VIX time serie. We decide to run the

39

methods with a limit L = 5, which means that we want to identify a maximum of
5 keywords. We run both variants.

The top 5 keywords having the most predictive power according to the method
are depicted in table 7.16.

Top 5 Keywords
recession

stock crash
unemployment benefits

buy gold
earth

Table 7.16: Top 5 keywords according to the incremental increase method

The method successfully manages to identify the keywords related to finance.
The monotonic version of the incremental increase method starts with a model

containing ”recession” as only keyword and adds additional keywords only when
they improve the final result. No other keyword improves the result and the mono-
tonic incremental increase returns the keyword ”recession” as output.

Figure 7.11 shows how the keyword relates to the VIX time serie.

Figure 7.11: Keyword selected by the monotonic version of the incremental in-
crease method

We report in table 7.17 the performance of the monotonic method on VIX

40

data.

Performance
Accuracy 93.29%

Standard Deviation 4.56%

Table 7.17: Performance of the monotonic incremental increase method

The top N variant of the method selects all top 5 keywords as output. Fig-
ure 7.12 shows how the five aggregated keywords look in relation to the VIX.

Figure 7.12: Keyword selected by the top N variant of the incremental increase
method

The top N variant performance presented in table 7.18 shows as expected
slightly worse performance than the monotonic version. Nonetheless the top N
variant performs well with respect to the other methods.

Performance
Accuracy 92.57%

Standard Deviation 4.94%

Table 7.18: Performance of the top N incremental increase method

41

Incremental Decrease Method

We run the incremental decrease method with a limit L = 5 on the number of
keywords. In addition to identifying relevant keywords the method also allows
to rank the keywords according to their relevance by assigning keyword weights.
The selected keywords and their weights for the VIX are shown in table 7.19. And
the aggregated weighted keywords can be seen in relation with the input serie in
figure 7.13.

Keyword Weight
sell stocks 0.288

yahoo 0.2
tired 0.18
cry 0.168
bite 0.166

Table 7.19: Best keywords as selected by the incremental decrease method

Figure 7.13: Keyword selected by the incremental decrease method

The selected keywords give a result slightly different than with unemployment
and arrivals in Seychelles. Indeed with the VIX the method seems to perform less
favorably. It still manages to identify ”sell stocks” as relevant keyword but the four
other selected keywords have no intuitive relevance to the VIX. The performance

42

shown in table 7.20 confirms the initial analysis. Contrarily to the other two input
time series for the VIX 778 keywords is too many for the incremental decrease
method to perform well.

Performance
Accuracy 89.9%

Standard Deviation 7.13%

Table 7.20: Performance of the incremental decrease method

Correlation Method

We run the correlation method with a limit L = 5 on the number of keywords.
The identified keywords are presented in table 7.21.

Top 5 Keywords
same

delicate
neck
room
bed

Table 7.21: Best keywords as selected by the correlation method

As with the other input time series, the correlation method performs poorly
and identifies no keyword related to finance. The aggregated top five keywords
according to the correlation method can be seen in figure 7.14. The keywords fail
to correlate with the peaks and valleys of the VIX and seem to be very noisy.

Indeed, the correlation method comes out as the worse performer as with the
two other input series. The performance can be seen in table 7.22.

Performance
Accuracy 89.86%

Standard Deviation 8.73%

Table 7.22: Performance of the correlation method

43

Figure 7.14: Keywords selected by the correlation method

44

Chapter 8

Model Creation: Experiment Part II

In the second part of the example we investigate performances of Google Insight
models against a benchmark model.

8.1 Data

8.1.1 Input Data
We use the VIX as input data. Our data consists of 349 weekly data points ranging
from 17th January 2004 to 18th September 2010.

8.1.2 Keyword Data
We use the same 778 keywords as for the first part of the experiment.

8.1.3 In-Sample Partition
As with the first part of the experiment we train our models with 70% of the data
points in-sample. We then also test our models with 80% and 90% of the points
in-sample in order to test for consistency with regard to the in-sample partitioning.

8.2 Benchmark
We use AR(1) model as benchmark model:

inputt = a0 + a1 ∗ inputt−1 (8.1)

AR(1) gives good results when modeling volatility because of high auto-correlation
in the data. The model is often used for modeling volatility in the literature. Our

45

challenge in this part of the example is to beat the AR(1) benchmark with a Google
Insight model in order to show that by enhancing AR(1) with keywords one can
improve its forecasts. We are not interested in competing with other models fore-
casting volatility. Our goal is to investigate the effect of the keywords.

8.3 Results: Benchmark
We report performances for the AR(1) benchmark model with 70% of the points
in-sample in table 8.1. The performance is represented as the model’s accuracy
out-of-sample as well as its standard deviation. In addition we also show the
distribution of the model’s error in figure 8.1. The distribution allows us to see
how large errors tend to cluster together due to the memory effect of volatility.
We can also see how the error distribution for volatility has much fatter tails than
Gaussian distribution. In particular we can identify multiple sigma 6+ events
which should be much less probable with Gaussian distribution.

Benchmark Performance 70% In-Sample
Accuracy 93.14%

Standard Deviation 6.51%

Table 8.1: Performance of the benchmark model on VIX data with 70% of the
data in-sample

Figure 8.1: Error of the benchmark model on VIX data with 70% of the data
in-sample

In order to test Google Insight model’s ability to beat the AR(1) benchmark
reliably we need to conduct consistency testing for different in-sample partition-

46

ing. We therefore also report the benchmark’s performance with 80% and 90% of
the points in sample in table 8.2.

Benchmark Performance 80% In-Sample
Accuracy 93.7%

Standard Deviation 6.3%

Benchmark Performance 90% In-Sample
Accuracy 92.43%

Standard Deviation 7.58%

Table 8.2: Performance of the benchmark model on VIX data with 80% and 90%
of the data in-sample

8.4 Results: Machine-Created Model with Automatic
Keyword and Offset Selection

In this section we inspect the performances of a Google Insight model generated
by using the incremental increase method for selecting keywords and by comput-
ing the best keyword offsets as explained in chapter 6. In the first part of this
experiment we showed that the monotonic incremental increase method has the
best and most reliable performance. We therefore use that method for computing
our machine-created model. The keywords are weighted equally.

As for the first part of the experiment we run the incremental increase method
on the 778 keyword universe with ARCH(2) as traditional model. For VIX data
the method selects ”recession” as relevant keyword.

We then compute the best keyword offset which is t − 1 for all three series.
We extend the AR(1) model by adding a keyword element with the corresponding
offset:

inputt = a0 + a1 ∗ inputt−1 + a2 ∗ keywordt−1 (8.2)

The results for this model for all three in-sample partitioning options are
shown in table 8.3. Figure 8.2 shows the model’s error when using 70% of the
data in-sample.

The results are disappointing as the Google Insight model barely succeeds at
beating the AR(1) model. Although the keyword-aware model beats the bench-
mark model in-sample by a healthy margin it fails to do so out-of-sample. We

47

Incremental Increase Model Performance 70% In-Sample
Accuracy 93.14%

Standard Deviation 6.5%

Incremental Increase Model Performance 80% In-Sample
Accuracy 93.71%

Standard Deviation 6.29%

Incremental Increase Model Performance 90% In-Sample
Accuracy 92.45%

Standard Deviation 7.58%

Table 8.3: Performance of the machine-created model on VIX data with 70%,
80% and 90% of the data in-sample

Figure 8.2: Error of the machine-created model on VIX data with 70% of the data
in-sample

believe the cause might be over-fitting of the in-sample data. We will see more on
this later.

Although the results obtained by the machine-created model are disappoint-
ing, one should not dismiss the various methods for identifying relevant keywords.
One needs to consider that these forecasting problems remain very challenging
and especially when it comes to stock-market volatility. The methods for select-
ing keywords might give better results on different time series. The automated
identification of keywords can also be useful when one has no a-priori knowledge
or intuition of the keywords that will make a model successful. They can also help
uncover keywords or groups of keywords that have a non-obvious influence on the
input serie. We also believe that a machine-generated model, even if it gives satis-

48

factory results, can still be outperformed by a carefully crafted manually designed
model.

8.5 Result: Model with Manual Keyword and Off-
set Selection

As we have seen in previous sections, the major challenge when trying to forecast
volatility lies in over-fitting the in-sample data. Our machine-created models tend
to over-fit the input data and give poor performance out-of-sample. We now design
a model manually whose main goal is to tackle the problem of over-fitting.

We start by selecting the keywords for our model.
We select the following keywords as they have obvious intuitive relevance to

stock-market volatility:

• crisis

• buy gold

• buy stock

• recession

• stock crash

• stock market

Contrarily to the automatic selection of keywords we intentionally select a
larger set of keywords in order to limit the chances of over-fitting. For the same
reason we decide to weight the keywords equally.

For the selection keyword offsets we decide to limit ourself to a maximum
offset of t − 5. Due to initially strong and then fading over time auto-correlation
in volatility we suspect that going further in time adds little value. We know from
the previous section that offset t − 1 performs favorably in-sample. However we
believe that using only one keyword element is too restrictive and prone to over-
fitting. And since we do not know which keyword elements will give better results
and don’t want to find out by over-fitting training data we decide to use all five
elements to form the following model:

inputt = a0 + a1 ∗ inputt−1 + a2 ∗ keywordt−1 + a3 ∗ keywordt−2
+a4 ∗ keywordt−3 + a5 ∗ keywordt−4 + a6 ∗ keywordt−5

49

keywordt =
1

|K ′|
∗
|K′|∑
k=1

(keywordk,t ∗ weightk) (8.3)

weightk = 1/|K ′| (8.4)

We show the model’s performance for 70%, 80% and 90% of the data in-
sample in table 8.4. We also show the distribution of the model’s error in fig-
ure 8.3. The error spike at the beginning of the test period occurs because of
initialization.

Incremental Increase Model Performance 70% In-Sample
Accuracy 93.64%

Standard Deviation 6.75%
Incremental Increase Model Performance 80% In-Sample

Accuracy 94.32%

Standard Deviation 6.38%
Incremental Increase Model Performance 90% In-Sample

Accuracy 93.17%

Standard Deviation 7.93%

Table 8.4: Performance of the manual model on VIX data with 70%, 80% and
90% of the data in-sample

Figure 8.3: Error of the manual model on VIX data with 70% of the data in-sample

The results show how the model manages to significantly beat its benchmark
over all time periods.

50

8.6 Results: Rolling-Window Model
In this section we attempt to improve results of the machine-created model. As
we have seen in section 8.4 we believe that poor results for the machine-created
model are caused for a large part by over-fitting of the input serie. The influence
of a particular keyword on volatility evolves over time. A keyword selected by the
incremental increase method for a specific in-sample partition will not necessarily
get selected again for another in-sample partition. In order to account for that fact
we decide to re-select keywords to use in the model at every period. Instead of
keeping the set of identified keywords constant over the whole testing period we
recompute the set before forecasting each data point. We call this new model the
rolling-window model.

Rolling-Window Model
Accuracy 94.79%

Standard Deviation 4.13%

Table 8.5: Performance of the rolling-window model

As can be seen in table 8.5 the results for the rolling-window model are better
by a large margin than when keeping a constant set of keywords. The model man-
ages to significantly beat the benchmark model. Recomputing the set of keywords
to use in our model after each forecasted data point seems to give an efficient
solution for machine-created models that can compete against manually designed
ones.

51

Chapter 9

Google Insight vs Twitter

In this chapter we compare Google Insight data with Twitter data. For Google
Insight we use the same keyword data as in the previous chapters. For Twit-
ter we collected tweets in real-time from November 20th 2010 to February 18th
2011. We computed weekly keyword statistics as explained in chapter 3 in order
to match Google Insight weekly data, which gave us a sample size of 12 weeks.

We use the same keyword universe (see appendix A) as in the previous chap-
ters.

As the sample size with Twitter consists of twelve data points for each key-
word, we renounce creating models using Twitter keywords and choose to focus
instead on comparing Google Insight and Twitter data directly. To do so we in-
spect the correlation between keyword statistics obtained with Google Insight and
statistics for the same keyword obtained with Twitter. We aggregate these cor-
relations first for every keyword in our keyword universe and then for the ten
specifically picked keywords shown in table 9.1.

We are interested in seeing whether Twitter data could be used as an alternative
to Google Insight data. Doing so presents several advantages:

• Twitter data can be observed directly and raw contrarily to Google Insight
data that is already processed.

• Twitter data is available in real-time and allows for any granularity while
Google Insight publishes its data with a delay of one week and with weekly
granularity.

• Google Insight puts a limit on the number of keyword statistics one can
download from its website. As for Twitter once the tweets have been recorded
one can process them and extract data for any number of keywords.

52

Keywords
crisis

recession
stock crash

stock market
buy gold

buy stocks
sell stocks

unemployment
unemployment benefits

seychelles hotels

Table 9.1: Specifically selected keywords

9.1 Results for All Keywords
Table 9.2 and figure 9.1 show the correlation statistics. The average correlation
over all keywords is positive and relatively high considering that most keywords
in the universe do not carry much information as they are common English words.
The little information carried by some keywords also explains in our opinion the
strong negative correlations for some keyword pairs. They can be attributed to
noise. Also please keep in mind one needs to be careful when considering corre-
lation for a single keyword pair due to the randomness induced by the low sample
size. Thus it is statistically more relevant to consider the average over all keyword
pairs. While some keyword pairs have strong negative correlation the average
over all pairs clearly shows positive correlation.

In the light of these results we believe that Twitter data can potentially replace
(or complement) Google Insight in a modeling framework.

Value Keyword
Average 28.85%

Median 37.40%

Max 96.91% yellow

Min -88.14% bath

Table 9.2: Correlation Statistics- All Keywords

53

Figure 9.1: Distribution of the correlations

9.2 Results for the specific Keywords Subset
We now consider the correlations for the ten specifically picked keywords shown
in table 9.1.

We except the correlations for these keywords to be stronger because they
carry more information. Indeed as can be seen in table 9.3 the correlations are
significantly stronger when considering the subset rather than the whole universe.
Also no keyword pair has negative correlation. We provide all correlations in
table 9.4.

Data for the keyword ”seychelles hotels” is not available as there were not
enough occurrences of it in the tweets. We therefore excluded the keyword when
computing the average and the median.

Value Keyword
Average 43.79%

Median 50.86%

Max 88.84% unemployment

Min 2.60% stock market

Table 9.3: Correlation Statistics- Keyword subset

54

Keyword Correlation
buy gold 52.50%

buy stocks 22.60%

crisis 59.68%

recession 50.86%

sell stocks 26.59%

seychelles hotels n.a.

stock crash 16.29%

stock market 2.60%

unemployment 88.84%

unemployment benefits 74.57%

Table 9.4: Correlation Statistics- Keyword subset

55

Chapter 10

Conclusion & Future Work

We have provided a framework for working with Google Insight forecasting mod-
els including methods for identifying subsets of relevant keywords for a given
problem. We have then investigated the methods performances and we have
shown how they manage to identify relevant keywords for three different applica-
tions: volatility, unemployment claims and visitors in the Republic of Seychelles.
We then proceeded to show how the framework can be used to improve volatil-
ity forecasts over the AR(1) model. We managed to beat the benchmark out-of-
sample for several time horizons with both manually and automatically created
models.

We have also investigated the relation between Google Insight and Twitter
keyword statistics. Our results show a significantly positive correlation between
the two data sources. They also show that for keywords carrying more information
the correlation is stronger.

Future work could be conducted to expand the framework to non-linear mod-
els. In particular incorporating keyword statistics within a GARCH model for
volatility could lead to excellent results. Also interesting would be to go further
with the comparison of the data sources Google and Twitter and potentially oth-
ers (Yahoo!, Facebook, ...). In particular efficient methods for identifying relevant
keywords could be derived from the correlations between keywords from different
data sources.

56

References

[1] Hyunyoung Choi, Hal Varian, Predicting the Present with Google Trends.
Google Inc., 2009.

[2] Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Bram-
mer, Mark S. Smolinski, Larry Brilliant, Detecting Influenza Epidemics using
Search Engine Query Data. Google Inc., 2009.

[3] Hyunyoung Choi, Hal Varian, Predicting Initial Claims for Unemployment
Benets. Google Inc., 2009.

[4] Nikolaos Askitas, Klaus F. Zimmermann, Google Econometrics and Unem-
ployment Forecasting. Discussion Paper No. 4201, IZA, 2009.

[5] Guy Judge, Chris Hand, Searching for the Picture: Forecasting UK Cinema
Admissions making use of Google Trends Data. Discussion Paper No 162,
2010.

[6] Francesco D’Amuri, Juri Marcucci, ”Google it!” Forecasting the US Unem-
ployment Rate with a Google Job Search Index. 2009.

[7] Francis X. Diebold, Roberto S. Mariano, Comparing Predictive Accuracy.
University of Pennsylvania, 1995.

[8] Sharad Goel, Jake M. Hofman, Sebastien Lahaie, David M. Pennock, Duncan
J. Watts, What Can Search Predict?. Yahoo! Research, 2010.

[9] Johan Bollen, Huina Mao, Xiao-Jun Zeng, Twitter Mood predicts the Stock
Market. Journal of Computational Science, 2011.

[10] Sitaram Asur, Bernardo A. Huberman, Predicting the Future with Social
Media. Hp Labs, 2010.

[11] Katja Ahoniemi, Modeling and Forecasting Implied Volatility - an Econo-
metric Analysis of the VIX Index. Helsinki University, Discussion Paper No.
129, 2006.

57

[12] THE CBOE VOLATILITY INDEX - VIX. CBOE, 2003.

[13] Dimitri N. Politis Model-free vs. Model-based Volatility Prediction. Univer-
sity of California at San Diego, 2004.

[14] Dimitri N. Politis Random Walk in Stock-Market Prices. University of
Chicago, 1965.

[15] Charlotte Christiansen, Maik Schmeling, Andreas Schrimpf, A Comprehen-
sive Look at Financial Volatility Prediction by Economic Variables. University
of Chicago, 2011.

[16] Tim Bollerslev Generalized Autoregressive Conditional Heteroskedasticity.
Journal of Econometrics,31, 307-327, 1986.

[17] Robert F. Engle Autoregressive Conditional Heteroskedasticity with Esti-
mates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-
1007, 1982.

[18] John C. Hull, Options, Futures and Other Derivatives. 7th Edition, Prentice
Hall India, 2008.

[19] Neil A. Chriss, Black-Scholes and Beyond: Option Pricing Models.
McGraw-Hill, 1996.

[20] Paul Wilmott, The Mathematics of Financial Derivatives: A Student Intro-
duction. Cambridge University Press, 1995.

[21] James D. Hamilton, Time Series Analysis. Cambridge University Press,
1994.

[22] Michael J.A. Berry, Gordon S. Linoff, Data Mining Techniques: For Mar-
keting, Sales, and Customer Relationship Management. Wiley Computer Pub-
lishing, 2nd Edition, 2004.

[23] Trevor Hastie, Robert Tibshirani, J.H. Friedman, The Elements of Statistical
Learning. Springer, 2003.

[24] Robert Nisbet, John Elder IV, Gary Miner, Handbook of Statistical Analysis
and Data Mining Applications. Academic Press, 2009.

58

Appendix A

Keyword Universe

• able

• account

• acid

• across

• act

• addition

• adjustment

• advertisement

• agreement

• air

• airplane

• amount

• amusement

• angle

• angry

• animal

• answer

• ant

• apparatus

• apple

• approval

• arch

• argument

• arm

• army

• art

• attack

• attempt

• attention

• attraction

• authority

• automatic

• baby

• bag

• balance

• ball

• band

• base

• basin

• basket

• bath

• beatles

• beautiful

• because

• bed

• bee

• behaviour

• belief

• berry

• between

• bird

• birth

• bite

• bitter

• black

59

• blade

• blood

• blow

• blue

• board

• boat

• body

• boiling

• bone

• book

• boot

• bottle

• box

• boy

• brain

• brake

• branch

• brass

• bread

• breath

• brick

• bridge

• bright

• broken

• brown

• brush

• bucket

• building

• bulb

• burn

• burst

• business

• butter

• button

• buy gold

• buy stocks

• cake

• camera

• canvas

• card

• care

• carriage

• cart

• cartoon characters

• cat

• cause

• certain

• chain

• chalk

• chance

• change

• cheap

• cheese

• chemical

• chest

• chief

• chin

• church

• circle

• clean

• clear

• clock

• cloth

• cloud

• coal

• coat

• cold

• collar

• colour

• comb

• come

• comfort

• committee

• common

• company

• comparison

• competition

• complete

• complex

• condition

• connection

• conscious

60

• control

• cook

• copper

• copy

• cord

• cork

• cotton

• cough

• country

• cover

• cow

• crack

• credit

• crime

• crisis

• cruel

• crush

• cry

• current

• curtain

• curve

• cushion

• damage

• danger

• dark

• daughter

• day

• dead

• death

• debt

• decision

• deep

• degree

• delicate

• dependent

• design

• destruction

• detail

• development

• different

• digestion

• direction

• dirty

• discovery

• discussion

• disease

• disgust

• distance

• distribution

• division

• dog

• door

• doubt

• down

• drain

• drawer

• dress

• drink

• driving

• drop

• dry

• dust

• ear

• earth

• east

• edge

• education

• effect

• egg

• elastic

• electric

• engine

• enough

• equal

• error

• espn

• even

• event

• example

• exchange

• existence

• expansion

61

• experience

• expert

• eye

• fact

• fall

• family

• farm

• father

• fear

• feather

• feeble

• feeling

• female

• fertile

• fiction

• field

• fight

• finger

• fire

• first

• fish

• fixed

• flag

• flame

• flat

• flight

• floor

• flower

• fly

• fold

• food

• foolish

• foot

• force

• fork

• form

• forward

• fowl

• frame

• free

• frequent

• friend

• from

• front

• fruit

• full

• future

• garden

• general

• get

• girl

• give

• glass

• glove

• goat

• gold

• good

• government

• grain

• grass

• great

• green

• grey

• grip

• group

• growth

• guide

• gun

• hair

• hammer

• hand

• happy

• harbour

• hard

• harmony

• hat

• hate

• head

• healthy

• hear

• hearing

• heart

62

• heat

• help

• high

• history

• hole

• hollow

• hook

• hope

• horn

• horse

• hospital

• hour

• house

• how

• how to

• humour

• ice

• idea

• ill

• important

• impulse

• increase

• industry

• ink

• insect

• instrument

• insurance

• interest

• invention

• iron

• island

• jelly

• jewel

• join

• journey

• judge

• jump

• keep

• kettle

• key

• kick

• kind

• kiss

• knee

• knife

• knot

• knowledge

• land

• language

• last

• late

• laugh

• law

• lead

• leaf

• learning

• leather

• left

• leg

• letter

• level

• library

• lift

• light

• like

• limit

• line

• linen

• lip

• liquid

• list

• little

• living

• lock

• long

• look

• loose

• loss

• loud

• love

• machine

• make

63

• male

• man

• manager

• map

• mark

• market

• married

• mass

• match

• material

• may

• meal

• measure

• meat

• medical

• meeting

• memory

• metal

• middle

• military

• milk

• mind

• mine

• minute

• mist

• mixed

• money

• monkey

• month

• moon

• morning

• mother

• motion

• mountain

• mouth

• move

• muscle

• music

• nail

• name

• narrow

• nation

• natural

• near

• necessary

• neck

• need

• needle

• nerve

• net

• new

• news

• night

• noise

• normal

• north

• nose

• note

• number

• nut

• observation

• offer

• office

• oil

• open

• operation

• opinion

• opposite

• orange

• order

• organization

• oven

• over

• owner

• page

• pain

• paint

• paper

• parallel

• parcel

• part

• past

64

• paste

• payment

• peace

• pen

• pencil

• person

• physical

• picture

• pig

• pipe

• place

• plane

• plant

• plate

• play

• playstation

• please

• pleasure

• plough

• pocket

• point

• poison

• polish

• political

• poor

• porter

• position

• possible

• pot

• potato

• powder

• power

• present

• price

• print

• prison

• private

• probable

• process

• produce

• profit

• property

• prose

• protest

• public

• pull

• pump

• punishment

• purpose

• push

• quality

• question

• quick

• quiet

• quite

• rail

• rain

• range

• rate

• ray

• reaction

• reading

• ready

• reason

• receipt

• recession

• record

• red

• regret

• regular

• relation

• religion

• representative

• request

• respect

• responsible

• rest

• reward

• rhythm

• rice

• right

• ring

65

• river

• road

• rod

• roll

• roof

• room

• root

• rough

• round

• rub

• rule

• run

• sad

• safe

• sail

• salt

• same

• sand

• say

• scale

• school

• science

• scissors

• screw

• sea

• sears

• seat

• second

• secret

• secretary

• seed

• selection

• self

• sell stocks

• send

• sense

• separate

• serious

• servant

• seychelles hotels

• shade

• shake

• shame

• sharp

• sheep

• shelf

• ship

• shirt

• shock

• shoe

• short

• shut

• side

• silk

• silver

• simple

• sister

• size

• skin

• skirt

• sky

• sleep

• slip

• slope

• slow

• small

• smell

• smile

• smoke

• smooth

• snake

• sneeze

• snow

• soap

• society

• sock

• soft

• solid

• some

• son

• song

• sort

66

• sound

• soup

• south

• space

• spade

• special

• sponge

• spoon

• spring

• square

• stage

• stamp

• star

• start

• statement

• station

• steam

• steel

• stem

• step

• stick

• sticky

• stiff

• still

• stitch

• stock crash

• stock market

• stocking

• stomach

• stone

• stop

• store

• story

• straight

• strange

• street

• stretch

• strong

• structure

• substance

• sudden

• sugar

• suggestion

• summer

• sun

• support

• surprise

• sweet

• swim

• system

• table

• tail

• take

• talk

• tall

• taste

• tax

• teaching

• tendency

• test

• theory

• thick

• thin

• thought

• thread

• throat

• through

• thumb

• thunder

• ticket

• tight

• till

• time

• tin

• tired

• toe

• together

• tomorrow

• tongue

• tooth

• top

• town

67

• trade

• train

• transport

• tray

• tree

• trick

• trouble

• trousers

• true

• turn

• twist

• under

• unemployment

• unemployment bene-
fits

• unit

• use

• vacation

• value

• verse

• very

• vessel

• view

• violent

• visa

• voice

• waiting

• walk

• wall

• war

• warm

• wash

• waste

• water

• wave

• wax

• way

• weather

• week

• weight

• west

• wet

• wheel

• whip

• whistle

• white

• wide

• will

• wind

• window

• wine

• wing

• winter

• wire

• wise

• woman

• wood

• wool

• word

• work

• wound

• writing

• wrong

• yahoo

• year

• yellow

• yesterday

• young

68

