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Abstract In the last 15 years substantial advances have

been made to place isotope labels in native and glycosyl-

ated proteins for NMR studies and structure determination.

Key developments include segmental isotope labeling

using Native Chemical Ligation, Expressed Protein Liga-

tion and Protein Trans-Splicing. These advances are

pushing the size limit of NMR spectroscopy further making

larger proteins accessible for this technique. It is just

emerging that segmental isotope labeling can be used to

define inter-domain interactions in NMR structure deter-

mination. Labeling of post-translational modified proteins

like glycoproteins remains difficult but some promising

developments were recently achieved. Key achievements

are segmental and site-specific labeling schemes that

improve resonance assignment and structure determination

of the glycan moiety. We adjusted the focus of this per-

spective article to concentrate on the NMR applications

based on recent developments rather than on labeling

methods themselves to illustrate the considerable potential

for biomolecular NMR.

Keywords Segmental isotope labeling � Glycoproteins �
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Abbreviations

NCL Native Chemical Ligation

EPL Expressed Protein Ligation

PTS Protein Trans-Splicing

aa Amino acid

SPPS Solid Phase Peptide Synthesis

IPL Intein-mediated Protein Ligation

Introduction

NMR spectroscopy is after X-ray crystallography one of

the two widely used methods to determine 3D structures of

biomolecules. In addition it can complement 3D structure

information by dynamic studies and binding interactions.

However, the technique has limitations concerning the

molecular size and the study of posttranslationally modi-

fied proteins.

The classical protein NMR techniques are limited to a

molecular size typically in the range of 15–20 kDa. The size

limit is caused by the slower tumbling time of larger mol-

ecules that give rise to increased transverse relaxation rates

and thus severe line broadening. Both the resolution and

sensitivity in 1H, 13C, 15N dimensions are then decreased in

spectra of larger molecules. In addition the number of atoms

and thus NMR resonances increase with the molecular size.

However, many biological problems involve larger mole-

cules or molecular assemblies and since NMR spectroscopy

can provide information complementary to crystallography

it is highly desirable to extend the size limit.

Two major breakthroughs pushed the size limit ahead by

downscaling the line broadening due to relaxation: incor-

poration of high levels of deuterium into the molecule

eliminates proton-related relaxation pathways (Gardner and
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Kay 1998) and transverse relaxation-optimized spectros-

copy (TROSY) uses a cancellation of relaxation contribu-

tions from dipole–dipole interaction and chemical shift

anisotropy (CSA) (Pervushin et al. 1997). The original

TROSY reduces relaxation effects and thus line broadening

of only 15N–1H correlations. Subsequently a TROSY for
13C–1H correlations of aromatic side chains (Pervushin

et al. 1998) was introduced and recently a methyl-TROSY

(Tugarinov et al. 2003). Combining deuteration with

TROSY triple resonance experiments made the backbone

assignment of proteins of 20–80 kDa possible. However,

the chance that a vast amount of resonances in larger

proteins overlap is high. Segmental isotope labeling is one

approach to reduce the spectral complexity to a manage-

able level. Part I of this review is dedicated to the different

approaches to obtain segmental isotope labeling of proteins

and their NMR application to large or multidomain pro-

teins. Part II of this review gives an overview of the dif-

ferent labeling schemes available for glycoproteins and in

particular how segmental labeling of the proteins and the

sugar moiety can considerably improve the structural def-

inition of the attached sugar.

Part I: segmental isotope labeling of proteins

The development of approaches for the uniform incorpo-

ration of 15N, 13C and 2H isotopes into protein sequences

allowed NMR spectroscopy to achieve the resonance

assignments and to determine structures of proteins of

molecular sizes up to 20 kDa. However, above 20 kDa, in

addition to line broadening, the increased spectral com-

plexity makes the structure determination of such proteins

very difficult. The ability to isotopically label only defined

segments within intact proteins can certainly facilitate the

NMR study of large proteins in the future. Although the

segmental labeling has not yet been widely applied in NMR,

we believe that the increased need to study larger proteins

will render segmental labeling methods increasingly routine

among NMR spectroscopists. We are reviewing here the

current methods available for segmental labeling of proteins

with a focus on the ones resulting in NMR application. For

their detailed technical descriptions as well as applications

outside of NMR we refer the reader to numerous excellent

publications (Ayers et al. 1999; Cotton and Muir 2000;

David et al. 2004; Muralidharan and Muir 2006). Moreover,

we are focusing on how segmental labeling has been used in

protein NMR: to investigate interdomain interactions within

multidomain proteins, to study conformational changes and

ligand binding, to help resonance assignment of large pro-

teins and last but not least to facilitate protein structure

determination.

The different approaches

Native Chemical Ligation and Expressed Protein Ligation:

the classical in vitro approaches

Several techniques have been successfully developed up to

now to obtain segmentally isotopically labeled samples for

NMR investigations (Fig. 1). The introduction of Native

Chemical Ligation (NCL) has had an important role in the

development of these techniques (Dawson and Kent 2000;

Dawson et al. 1994; Hofmann and Muir 2002). NCL is

based on a reaction of two unprotected synthetic peptides,

one containing a C-terminal thioester (a-thioester) and the

other containing an N-terminal cysteine residue (a-cys-

teine), which results in formation of a native peptide bond

under aqueous conditions (Fig. 1a). NCL can be used for

segmental isotope labeling of proteins by ligating together

isotopically labeled and unlabeled synthetic peptides (Ba-

lambika et al. 2007; Kochendoerfer et al. 2004; Rajagopal

and Kent 2007). Both peptides containing the appropriate

reactive termini can be produced by solid-phase peptide

synthesis (SPPS) (Dawson and Kent 2000; Hofmann and

Muir 2002). However, SPPS is limited by the maximal

possible length of synthesized peptides of accurate amino

acid sequence, which is approximately 50 amino acids.

Since most proteins of interest are composed of more than

100 amino acids, NCL of such proteins will require ligation

of more than two synthetic peptides (Hackeng et al. 1999).

Additionally, the synthesis of isotopically labeled peptides

is expensive, making this approach fairly unfavorable for

most NMR applications. Nevertheless, total chemical pro-

tein synthesis gives not only the possibility of segmental

isotope labeling of proteins but enables the incorporation of

any type of modification (phosphorylation, methylation,

glycosylation etc.) or site-specific label into the protein

sequence.

The second important step in the development of tech-

niques for segmental isotope labeling of proteins has been

the exploitation of a naturally occurring process called

protein splicing (Evans and Xu 2002; Paulus 2000). Protein

splicing is a posttranslational process in which internal

segments (inteins) catalyze their own excision from the

precursor proteins with consequent formation of a native

peptide bond between two flanking external regions (ex-

teins). Up to now more than three hundred inteins have

been identified (see www.neb.com/neb/inteins.html) and

many of them were extensively characterized (Derbyshire

et al. 1997; Mathys et al. 1999; Mills et al. 1998; Telenti

et al. 1997; Wu et al. 1998). Their self-splicing properties

were used to develop very convenient tools for protein

engineering. There are two methods based on intein

properties that have been used for segmental isotope
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labeling of proteins: Expressed Protein Ligation (EPL) and

Protein Trans-Splicing (PTS).

Expressed Protein Ligation is based on Native Chemical

Ligation (Fig. 1a) except that both or at least one of the

protein fragments for protein synthesis is produced by

bacterial expression (David et al. 2004; Muir 2003;

Severinov and Muir 1998). This approach has also been

called intein-mediated protein ligation (IPL) (Evans et al.

1998). Since the reaction involves protein fragments con-

taining an a-thioester and an a-cysteine, a cysteine is

required at the ligation site. This criterion is not always

easily fulfilled within natural protein sequences, therefore

often a non native cysteine residue needs to be introduced.

Such a mutation should be as conservative as possible, in

most studies serine or alanine were chosen. For the

recombinant production of protein fragments with reactive

termini EPL uses engineered inteins designed to cleave

only on one of their termini (Fig. 1b). As an example, New

England Biolabs developed the IMPACTTM system, a very

convenient set of bacterial vectors that allow easy recom-

binant production of protein fragments with a-thioesters

and a-cysteines (Xu and Evans 2003; 2001). While the

production of recombinant protein fragments with an a-

thioesther can only be achieved through intein cleavage,

other methods have been used for production of recombi-

nant protein fragments with an a-cysteine. Using proteo-

lytic leader sequences for specific proteases like factor Xa

protease (Camarero et al. 2002; Xu et al. 1999; Zhang et al.

2007), TEV (Tobacco Etch Virus) protease (Tolbert and

Wong 2002), thrombin (Busche et al. 2009) or enterokinase

one can as well generate protein fragments with N-terminal

cysteine residues. Furthermore, endogenous methionyl

aminopeptidase treatment of bacterially expressed con-

structs starting with Met-Cys can also generate protein

fragments with N-terminal cysteine residues (Camarero

et al. 2001; Iwai and Pluckthun 1999). In order to reach
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good yields, EPL requires high concentrations of the intein-

protein precursors. The efficiency of the ligation step for

EPL (as well as for NCL) strongly depends on the con-

centration of the ligating fragments, thus high concentra-

tions in the mM range are often needed. We have recently

reported the significant improvement of the protocol used

for EPL, by increasing the concentration of the ligating

fragments as well as by introducing a refolding step before

intein cleavage in case of insoluble intein-protein precur-

sors (Skrisovska and Allain 2008).

EPL is frequently used for segmental isotope labeling of

proteins (Camarero et al. 2002; Skrisovska and Allain

2008; Vitali et al. 2006; Xu et al. 1999; Zhang et al. 2007).

In most studies, only two protein fragments where ligated.

However, a very convenient way to study large proteins

would potentially be to ligate three or even more protein

fragments in order to isotopically label internal segments of

a protein. Such a three-piece protein ligation was first

realized by Cotton et al. (1999) where a synthetic peptide

containing both a a-cysteine and a-thioesther was inserted

between two recombinant protein fragments containing the

appropriate reactive termini. Subsequently, a very elegant

sequential ligation strategy of a multidomain protein was

reported by Blaschke et al. (2000). In this work the three

recombinant protein fragments containing proper reactive

termini (a-thioesther and a-cysteine termini generated

through intein and Xa cleavage, respectively) were ligated

together by a two-step ligation.

In addition to segmental isotope labeling application,

EPL of a recombinant protein fragment with synthetic

peptide gives the possibility to incorporate amino acid

modifications and labels specifically into native protein

sequences (Ayers et al. 1999; Cotton and Muir 2000; Muir

et al. 1998). This allows studying proteins with posttrans-

lational modifications relevant to their biological activity

and structure. Furthermore, EPL can be used as well as a

tool for production of cyclic proteins (Camarero et al.

2001; Iwai and Pluckthun 1999) and toxic proteins (Evans

et al. 1998).

Protein Trans-Splicing: a convenient in vitro and in vivo

expression approach

Inteins can be fragmented into two parts which do not have

activity on their own. After their association they recon-

stitute into an active intein which performs a splicing

reaction resulting in ligation of their fusion protein frag-

ments (Fig. 1c). Such a process is known as Protein Trans-

Splicing (PTS) (Muralidharan and Muir 2006; Xu and

Evans 2005). Fragmented inteins are called split inteins and

they occur naturally (Wu et al. 1998) or they can be

designed artificially as demonstrated in the first reports of

PTS (Shingledecker et al. 1998; Southworth et al. 1998;

Yamazaki et al. 1998). Both precursors containing the split

inteins fused with protein fragments can be produced

separately by bacterial expression. If one fragment is iso-

topically labeled while the second one is unlabeled, after

their purification and reconstitution, the splicing reaction

will result in a segmentally labeled protein. PTS has a few

sequence requirements in order to obtain efficient splicing

activity. Since the first transesterification step of PTS

requires a thiol or hydroxyl group, the N-terminal residue

of the C-extein must be a cysteine, serine or threonine

residue. Additionally, many split inteins require several

natural extein amino acid residues at the intein–extein

junction, which after the splicing reaction will be included

in the ligated protein.

Artificially split inteins require denaturation and rena-

turation in order to restore their splicing activity, which

may not always be achievable. An elegant solution to this

problem is the usage of naturally occurring split inteins that

have the ability to spontaneously reconstitute into a func-

tional intein. This also offers the possibility of performing

PTS in vivo, which significantly simplifies the procedure

(Zuger and Iwai 2005) (Fig. 1d). Both precursor proteins

are expressed in the same culture using two plasmids

containing different inducible promoters. Segmental iso-

tope labeling is achieved by expressing the first precursor

in labeled medium which is followed by transfer of the cell

culture to a non-labeled medium and induction of expres-

sion of the second precursor. The protein splicing reaction

occurs directly after both precursors are present in the cell,

thus there is no need for any intermediate isolation and

purification steps. The ligated product can be directly

purified from the cell culture. Another benefit of in vivo

PTS compared to other methods such as NCL and EPL is

that it does not require high concentrations of the precursor

proteins and efficient protein ligation can be achieved at

micromolar concentrations. Although this protocol seems

to be very simple and straightforward, there are some

disadvantages. This method depends on the solubility and

stability of at least one of the precursor proteins in E. coli,

which may limit the application of the method. In addition,

non-native amino acid residues are introduced into the

sequence of the ligated product depending on the split in-

tein that is used. Due to the change of media, isotope

scrambling might take place during the expression of pre-

cursor proteins. However, in recent work from Muona and

coworkers, the authors managed to suppress the effect of

isotope scrambling by optimizing the expression protocol

(Muona et al. 2008). Similarly to EPL, PTS can be used for

isotope labeling of the central segment of a large or a

multidomain protein (Otomo et al. 1999). This can be

achieved either by combining two split inteins which are

divided at different positions in order to prevent their

54 J Biomol NMR (2010) 46:51–65

123



misassociation (Busche et al. 2009; Otomo et al. 1999) or

by using a combination of a naturally occurring split intein

and of a designed inducible split intein (Shi and Muir

2005).

Enzymatic protein ligation: an unexplored approach

An alternative method for segmental isotope labeling of

proteins is based on enzyme mediated protein ligation.

Enzymes successfully used for protein ligation are for

example subtiligase and sortase A. Subtiligase is an engi-

neered variant of the serine protease subtilisin BPN0, which

catalyzes peptide bond formation in aqueous solutions

between the esterified carboxyl group of one peptide and

the amino group of the other peptide. The use of subtiligase

for protein synthesis was demonstrated by total synthesis of

Ribonuclease A from six synthetic peptides (Jackson et al.

1994). Despite the promising use of subtiligase for protein

synthesis, this method has not yet been used for segmental

isotope labeling of proteins. Sortase A is an enzyme which

in gram-positive bacteria is attaching surface proteins to

the peptidoglycan cross bridge of the cell wall. The enzyme

catalyzes the peptide bond cleavage between threonine and

glycine in the recognition sequence LPETG of the surface

protein and subsequently ligates the carboxyl group of

threonine with an amino group of glycine from the pepti-

doglycan. Sortase A requires the recognition motif

LPXTG, which is included in the amino acid sequence of

the ligated protein. Recently, this approach has success-

fully been used to introduce an unlabeled solubility

enhancement tag to an isotopically labeled protein for the

NMR study (Kobashigawa et al. 2009). We believe that

this approach opens the possibility for more applications of

segmental labeling in the future.

The applications for NMR studies: how can this help?

Segmental isotope labeling has a large potential for

application in NMR spectroscopy (Fig. 2). Different iso-

tope labeling schemes within one protein can be used to

resolve the spectral complexity of large proteins thus

simplifying the assignment and making their structure

determination achievable. Besides providing a solution to

the size problem, segmental isotope labeling has been also
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used to study interdomain interactions, the relative orien-

tation of domains or conformational changes that occur

upon ligand binding. In the next sections we review the

different types of NMR applications of segmental isotopic

labeling in proteins.

Introducing an invisible solubility enhancement tag

In certain cases expression yield and solubility of a protein

can be significantly increased by adding a solubility tag,

like for example the small tag GB1 (B1 domain of Strep-

tococcal protein G) (Zhou et al. 2001). However, if the

presence of this tag is crucial to maintain the solubility of

the protein construct, additional NMR signals from the

solubility domain might complicate NMR assignment and

automated structure calculations. To circumvent this

problem Kobashigawa and coworkers recently expressed

an uniformly labeled Vav C-terminal SH3 domain

(VcSH3) in fusion with an N-terminal GB1 tag. Subse-

quently, a non-labeled C-terminal GB1 tag was added to

the fusion protein using sortase A mediated protein ligation

and the isotopically labeled N-terminal GB1 tag was

removed by proteolytical cleavage. The result of this

strategy was a VcSH3-GB1 fusion protein with only the

VcSH3 domain isotopically labeled (Kobashigawa et al.

2009). Alternatively the in vivo PTS method can be used to

incorporate a solubility enhancing tag to a protein, as it was

demonstrated for the prion-inducing domain of yeast Sup35

by Zuger and Iwai (2005).

Segmental isotope labeling to study interdomain

interactions

Clearly the most frequent application of segmental isotope

labeling is the study of interdomain interactions within

multidomain proteins (Fig. 2a). A convenient way of

determining whether two or more domains interact or not is

to isotopically label one of the domains while leaving the

other domain(s) unlabeled. There are several approaches

which can reveal whether labeled and unlabeled protein

segments are in contact or not. Comparison of 2D 15N–1H

HSQC spectra can already provide significant structural

information about protein segments present in different

environments. Camarero et al. (2002) used EPL for seg-

mental isotope labeling of the rA factor from Thermotoga

maritima to investigate the proposed direct interaction

between the N- and C-terminal regions of the protein and

their effect on DNA binding. Two segmentally labeled

samples were prepared with only the C-terminal region

isotopically labeled (aa 348–399), one containing the full

length sequence (399 aa) and one with a shorter N-terminal

region (aa 137–399). The superimposed 15N–1H HSQC-

TROSY and 13C–1H HSQC spectra of both samples

showed high similarities, indicating a similar fold of the

C-terminal region in both constructs, thus disproving the

expected strong interaction between the N-terminal and

C-terminal regions. The addition of DNA caused signifi-

cant chemical shift changes in the spectra of the construct

with the smaller N-terminal region but not in those of the

full length construct. Based on these data, the authors were

able to draw the conclusion that the presence of the

N-terminal region (called 1.1) does inhibit the binding of

DNA of the C-terminal region (called 4.2), but not via a

direct interaction between the two regions.

Similarly, EPL has been applied for segmental isotopic

labeling of the monomeric apolipoprotein E3 (apoE3) in

order to study the interaction between the N- and C-ter-

minal domains (Zhang et al. 2007). The C-terminal domain

within the full length apoE3 appeared to be more structured

than the isolated construct, suggesting a weak interdomain

interaction. Comparison of the 15N–1H HSQC spectra of

the full length construct containing a 2H-labeled N-termi-

nal domain (aa 1–214) and a 13C, 15N-labeled C-terminal

domain (aa 215–299) with the 13C, 15N labeled isolated

C-terminal domain (aa 215–299) showed several spectral

differences. From a careful analysis, the authors concluded

that there are weak interactions between N- and C-terminal

domains in apoE3 that stabilize the C-terminal domain fold

without affecting the fold of the N-terminal domain.

Walters et al. (2003) used EPL for segmental isotopic

labeling of the 40 kDa hHR23a protein with the purpose of

studying the interaction between the N-terminal UBL

domain and the C-terminal UBA and XPC domains. NMR

relaxation experiments (15N longitudinal and transverse

relaxation measurements as well as heteronuclear dipole–

dipole cross relaxation measurements) supported the pres-

ence of interdomain interactions. In order to detect NOEs

between the UBL domain (aa 1–117) and UBA and XPC

domains (aa 118–363), a 3D 13C filtered edited NOESY

(Zwahlen et al. 1997) was recorded on a construct where

only the C-terminal domains were 13C labeled. Addition-

ally a 15N-edited NOESY experiment was recorded on a

construct with 2H, 15N-labeled C-terminal domains

(Walters et al. 1997). However, no interdomain NOEs

could be detected, in support of the interdomain interac-

tions. To investigate this further, a chemical shift pertur-

bation analysis of individually expressed domains was

performed and confirmed the interaction of the UBL

domain with the UBA domain. Based on these data the

authors concluded that the UBL domain does indeed

interact with the UBA domain within the hHR23a protein

and suggested that its structure is not rigidly locked into

one conformation, which could explain the lack of inter-

domain NOEs.
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Segmental isotope labeling to study conformational

changes

Segmental isotope labeling of proteins is a very practical

tool to study conformational changes of protein segments

induced for example by ligand binding (Fig. 2b). As

demonstrated in the following study, EPL of a recombinant

protein fragment (aa 1–345) with a synthetic nine amino

acids peptide containing isotopically labeled amino acids at

specific sites was used to study the conformational change

that occur at the carboxy terminus of the G protein a
subunit upon G protein activation (Anderson et al. 2005).
1H–13C HSQC spectra of the labeled amino acids of the

semi-synthetic segmentally labeled Ga in the free protein

and in the GDP-bound state were very similar and showed

little dispersion indicating that the C-terminus is highly

mobile. In order to study the conformational changes of the

carboxyl terminus between the GDP-bound and the acti-

vated states, AlF4
-, an analog of GTP, was titrated into Ga

to mimic the active state of the G protein. Each addition of

AlF4
- resulted in loss of intensities in all of the resonances

observed in the 1H–13C HSQC spectrum suggesting that the

carboxyl terminus adopts an ordered conformation upon

addition of AlF4
-.

Segmental isotope labeling for determining structures

of multidomain proteins

The full potential of segmental isotope labeling for struc-

ture determination was demonstrated in a study carried out

in our laboratory. Using the pTWINTM system, we per-

formed EPL in order to segmentally isotopically label the

last two C-terminal RNA Recognition Motifs (RRM)

(RRM3 aa 324–442 and RRM4 aa 443–531) of polypy-

rimidine tract binding protein (PTB) (Vitali et al. 2006). In

a previous study, the structure of the same protein construct

was determined by NMR using uniform labeling and it was

concluded that no interdomain interactions could be

detected between the RRMs (Conte et al. 2000). However,

when we studied these same RRMs in the complex with

RNA, we could observe a large interdomain interface

(Oberstrass et al. 2005). In order to determine if this

interdomain interface was induced by RNA binding, we

decided to re-evaluate the structure of the free RRM34

using EPL. Two segmentally labeled samples were gen-

erated containing either RRM3 or RRM4 15N, 13C-labeled.

The overlay of 15N–1H HSQC spectra of the uniformly and

of the two segmentally labeled RRM34 samples showed no

differences, indicating that the Ser to Cys mutation at the

ligation site did not affect the protein fold. 2D 13C filtered

edited NOESY (Peterson et al. 2004) and 3D 13C edited

filtered NOESY (Lee et al. 1994) experiments revealed a

high number (130) of interdomain NOEs which could be

used as long-range interproton distance constraints in the

structure determination of PTB1 RRM34 (Fig. 2c). Evi-

dently, without segmental labeling only a small fraction of

these interdomain NOEs could have been observed in the

uniformly labeled sample due to spectral overlap. The PTB

RRM34 structure revealed a large interdomain interface

with a fixed relative orientation of both RRMs which is

very similar to the interaction found in the structure of the

complex with RNA. This study still represents to our

knowledge the first and only application of segmental

isotope labeling for structure determination of a protein by

NMR.

Segmental isotope labeling to study large proteins

As outlined in the introduction, the use of NMR spectros-

copy to study proteins of high molecular weights is one of

the major potential benefits of segmental isotope labeling.

One way of doing this is to simplify the complexity of

spectra and their resonance assignments by recording NMR

experiments for proteins in which only subfragments are

isotopically labeled. By labeling each subfragment at a

time, the resonance assignment and the structure calcula-

tion of the whole protein is facilitated (Fig. 2d). Such

strategy was used by Yagi et al. (2004) to obtain the

backbone assignments of the b subunit monomer of F0F1-

ATP synthase (52 kDa). Protein Trans Splicing was used in

this case in order to obtain the backbone resonance

assignments and to investigate the conformational change

of the protein upon nucleotide binding. Four constructs,

each with a different isotopically labeled subfragment of

the protein were produced (aa 1–271, 1–124, 272–473, and

391–473). Despite inserting five additional residues

(GGGTG) required for the splicing, a comparison of the
15N–1H TROSY-HSQC spectra with those of the uniformly

labeled protein confirmed the intact structure of all four

ligated proteins and showed significantly improved signal

resolution due to the reduced resonance overlap. To obtain

the sequential backbone assignment of such a large protein,

3D triple resonance experiments and a 3D 15N edited

NOESY were recorded for all four segmentally labeled

proteins. Furthermore, to investigate the relative orienta-

tion of the N-terminal and C-terminal domains residual

dipolar couplings (RDC) were measured for the constructs

with appropriate 15N, 13C and 2H labeled segments (aa 1–

124 and 391–473). Based on the collected data, the sec-

ondary structure of the b subunit could be predicted

showing that the structure adopts an open form in the

absence of bound nucleotide. Subsequently, the authors

showed that the b subunit undergoes a conformational

change from an open to a closed form upon nucleotide

binding based on observed chemical shift perturbation and

changes of the RDCs. This elegant example clearly
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demonstrates the strength of segmental isotope labeling for

NMR studies of large proteins.

Part II: segmental isotope labeling of glycoproteins

Glycoproteins play crucial roles in a variety of biological

processes such as cell growth and differentiation, devel-

opment, cell–cell interactions, modulation of the immune

system, inflammation and cancer, protein folding, quality

control and turnover or pathogenicity and host invasion of

bacteria (Varki 1993). Despite the fact that more than 50%

of all proteins are predicted to be glycosylated (Apweiler

et al. 1999) only a small fraction of the known protein

structures are glycoproteins with an intact glycan. Out of

those only few 3D structures were solved by NMR spec-

troscopy (Erbel et al. 2000; Fletcher et al. 1994; Hashimoto

et al. 1999; Metzler et al. 1997; Slynko et al. 2009; Wyss

et al. 1995). The study of glycoproteins by NMR spec-

troscopy face a variety of problems: in vivo expression or

extractions from natural sources give usually poor yields

and glycosylation is often inhomogeneous and incomplete.

Even if a homogeneous sample is obtained the 1H chemical

shift overlap between carbohydrate and protein signals is

usually severe making it difficult to be analyzed by NMR.

Often the signals of the free ends of the glycan cannot be

unambiguously assigned due to overlap and multiple signal

sets resulting from inhomogeneities (De Beer et al. 1996;

Wyss et al. 1995). Trimming the inhomogeneous ends

enzymatically can lead to more homogeneous samples

(Metzler et al. 1997) but may alter the glycan conforma-

tion. To overcome 1H frequency degeneracies labeling

strategies with 13C and 15N are crucial to obtain a sufficient

amount of unambiguously assigned chemical shifts and

NOEs for structure determination. The different methods

and labeling schemes that have been or could be applied

are illustrated in Fig. 3 and discussed in the following

sections in detail.

The different isotopic labeling approaches

in glycoproteins

Uniform/metabolic labeling using in vivo eukaryotic

expression systems

In order to do uniform labeling of glycoproteins (Fig. 3a)

only eukaryotic expression systems have been used, e.g.

CHO (Chinese hamster ovary) cells (Lustbader et al. 1996;

Metzler et al. 1997; Wyss et al. 1993), yeast (Blanchard

et al. 2008; Pickford and O’Leary 2004; Wood and

Komives 1999; Wood et al. 2000), plants (Ippel et al.

2004), insect cells (Walton et al. 2006), slime mold

(Cubeddu et al. 2000) and hybridoma cells designed for the

production of antibodies (Yamaguchi et al. 2006).

CHO cells contain a mammalian N-glycosylation sys-

tem and are therefore able to produce ‘‘authentic’’ mam-

malian glycoproteins. However, the cells grow very slowly,

the protein yields are low making 13C/15N labeling very

expensive considering the complexity of media used.

However, after time consuming optimizations of the

expression parameters good yields can be reached

([10 mg/L) (Wyss et al. 1993). If only 15N labeling is

desired an alternative could be the addition of 15NH4Cl to

the unlabeled medium for CHO cells resulting in 50–75%

incorporation into the N-linked oligosaccharides (Gaw-

litzek et al. 1999). The yeast Pichia pastoris is currently the

Fig. 3 Classification of the different possible labeling schemes of

glycoproteins: a uniform labeling, b residue specific labeling, c
segmental labeling in which the glycan is unlabeled and the protein

labeled, d residue specific labeling of the non-reducing terminal

residues of the glycan, e residue specific labeling of non-terminal

residues of the glycan, f segmental labeling in which the glycan is

labeled and the protein unlabeled and g ligated protein consisting of a

synthesized unlabeled glycopeptide and one or two labeled peptide

chains
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second mostly used expression system for NMR studies

behind E. coli (Pickford and O’Leary 2004). P. pastoris has

the advantage that a sole carbon source can be used: 13C

glycerol or 13C glucose (using special strains). In the case

of glycoprotein expression, moderate to good protein yields

could be reached (*5 mg from 10 g 13C glucose and only

slightly higher with the more expensive 13C glycerol)

(Wood and Komives 1999). Since the cells grow slowly,

proteolytic degradation during the long expression times is

a problem although certain mutant strains with reduced

proteolytic activity could be envisaged. One clear limita-

tion of this expression system for general use is that the

N- and O-linked glycosylation pattern in Pichia pastoris are

different from higher eukaryotes. Labeling glycoproteins in

plants and insect cells presents severe limitations. The

former is limited to naturally occurring plant proteins (Ippel

et al. 2004) and low yields, slow growth and expensive

media make a wide use of expression in Sf9 insect cells at

the moment economically unfeasible (Walton et al. 2006).

The slime mold Dictyostelium discoideum has emerged

as promising eukaryotic expression system (Arya et al.

2008) but has not been widely used. The advantages are

rapid cell growth, simple media and good yields, e.g.

*9 mg protein from 10 g 13C glycerol (Cubeddu et al.

2000). The second promising expression system is

hybridoma cells which is limited to the production of

uniformly 15N/13C labeled antibodies using serum free

media (Yabe et al. 1986) containing labeled glucose,

sodium pyruvate, succinic acid and a mixture of amino

acids (Yamaguchi et al. 2006). Yields in the range of 20–

40 mg/L cell culture were reached (Kato et al.). Another

advantage of this system is that one can obtain a residue-

type selective labeling within the glycan (e.g. GlcNAc;

schematically depicted in Fig. 3b) (Yamaguchi et al. 1998)

or an amino-acid type selective labeling (Kato et al. 1993;

1991a; 1991b; Kim et al. 1994) by using labeling of certain

components (e.g. 13C-GlcN or certain amino acids).

Labeling of the entire glycan (Fig. 3f) with [95% incor-

poration can be achieved by growth on 13C glucose (Kato

and Yamaguchi 2008; Yamaguchi et al. 2000). However, a

small fraction of isotope scrambling can occur.

Segmental labeling by in vitro methods

An alternative to in vivo uniform labeling are in vitro

approaches that allow a segmental labeling of the glyco-

protein. Very recently, taking advantage of a new in vitro

strategy to produce bacterial glycoproteins (Kowarik et al.

2006a), developed in the group of Markus Aebi (ETH

Zurich), we could transfer a complete glycan unit to a
13C/15N labeled recombinantly expressed protein using an

oligosaccharyltransferase in vitro (Fig. 3c). The separate

expression of protein and the carbohydrate precursor

enables differential labeling of the two components

resulting in a segmentally labeled N-linked glycoprotein. In

this first application the N-glycan of Campylobacter jejuni

was transferred to a small model protein using the oligo-

saccharyltransferase pglB from C. jejuni (Slynko et al.

2009). The N-glycan was synthesized by an engineered

E. coli strain containing the N-glycosylation locus of

C. jejuni (Wacker et al. 2002) except the oligosaccharyl-

transferase. A clear advantage of this method is to produce

a glycoprotein with a homogeneous glycan. The yield of

the glycosylated protein AcrA was *90% after 15 h of

incubation. An additional advantage is that isotope

scrambling cannot occur resulting in[99% 13C labeling of

the protein segment and 98.9% 12C (natural abundance
13C) occurrence on the glycan. However, the method is

restricted so far to proteins with an accessible bacterial

N-glycosylation sequence D/E-X-N-Z-S/T (X, Z: any amino

acid except Pro) (Chen et al. 2007; Kowarik et al. 2006b)

and a limited variation in the accepted glycan structure.

Instead of uniformly labeling the complete glycan par-

ticular sugar units can be labeled using specific glycosyl-

transferases (Fig. 3d) (Gilhespy-Muskett et al. 1994; Goux

et al. 1982; Macnaughtan et al. 2008; Miyazaki et al. 2000;

Yamaguchi et al. 1998). The method is usually applied

following a selective trimming of inhomogeneous non-

reducing terminal residues of the glycoproteins. If the non-

reducing terminal residues of the glycan are labeled,

unlabeled carbohydrate units can be subsequently added

enzymatically (Fig. 3e) (Gilhespy-Muskett et al. 1994). So

far 13C galactose (Gilhespy-Muskett et al. 1994) and 13C

sialic acid (Macnaughtan et al. 2008) have been attached in

vitro by a galactosyltransferase and a-2,6 sialyltransferase,

respectively. The main disadvantages of those methods are

the long incubation times in the range of days increasing

the risk of proteolytic cleavage. Typical yields are *90%

with a 13C incorporation of *90% (Gilhespy-Muskett et al.

1994).

Perspective on future labeling schemes

Although labeling of the glycan moiety in an otherwise

unlabeled glycoprotein (Fig. 3f) can be achieved using

metabolic labeling (Yamaguchi et al. 2000), it would be

appealing to attach a labeled glycan to an unlabeled protein

using an oligosaccharyltransferase (Fig. 3f) but this

remains to be done. For such an approach isotopically

labeled carbohydrates would be necessary. Isotope labeling

of carbohydrates can be achieved by in vivo expression

methods, or by chemical or chemoenzymatic synthesis

(Kato et al. 2008; Live et al. 2001). Recent advancements

in genetic engineering of E. coli for the production of

oligosaccharides (Dumon et al. 2006; Fierfort and Samain

2008; Hancock et al. 2006) offer a very promising avenue

J Biomol NMR (2010) 46:51–65 59

123



for producing isotopically labeled carbohydrates. So far

this approach has been exclusively directed toward

expression of 15N/13C labeled polysaccharides and their

cleavage products (Azurmendi et al. 2007; Blundell et al.

2004; Gitti et al. 1994; Kern et al. 2008; Yu et al. 1993).

Lewisx and sialyl Lewisx have been successfully chemo-

enzymatically synthesized with 13C labeling on a milligram

scale (Ichikawa et al. 1992; Probert et al. 1997). Strategies

to ligate a protein with a labeled glycan efficiently still

remain to be developed.

Ligation between a chemically or chemoenzymatically

synthesized glycopeptide and another peptide chain has been

used in order to obtain a homogeneous glycoprotein (Brik

et al. 2006; Piontek et al. 2009; Tolbert et al. 2005; Yamamoto

et al. 2008). Two ligations on either side of the glycopeptide

have also been used (Piontek et al. 2009). However, isotope

labeling of the non-modified peptide chains would be possible

(Fig. 3g) but has not yet been realized.

Alternative methods to synthesize glycoproteins (Brik

et al. 2006; Gamblin et al. 2009) like glycoprotein

remodeling, in vivo suppressor tRNA technology or

chemical methods could also open possible avenues to

introduce isotopes into glycoproteins.

Applications of uniform and segmental isotope labeling

of glycoproteins

Using uniform labeling to study glycoprotein structures

Uniform 13C/15N labeling of a glycoprotein has been

mainly used to apply standard methodology of multidi-

mensional heteronuclear NMR spectroscopy for resonance

assignment and structure calculation of the polypeptide

chain of the glycoprotein (Cubeddu et al. 2000; Metzler

et al. 1997; Wyss et al. 1995; Yamaguchi et al. 2006).

Uniform 15N labeling enables the resonance and NOE

assignment of amide groups within the carbohydrate, the

glycosylated asparagines and protein backbone, e.g. using
15N edited TOCSY, 15N edited NOESY, HNHA and

HNHB experiments (Wood et al. 2000; Wyss et al. 1995).
13C labeling helps resonance assignment of the glycan by

separating degenerate 1H resonances in an additional,

better-dispersed 13C dimension, e.g. using an HCCH-

TOCSY (Weller et al. 1996) or an HCCH-COSY (Yam-

aguchi et al. 2000). NOE assignment of the glycan is

facilitated using a 13C-edited NOESY. Overlapped regions

in the 2D NOESY can often be resolved (Weller et al.

1996). Obtaining more unambiguous restraints helps to

better define the structure of the protein and carbohydrate.

Using segmental protein-carbohydrate labeling to study

carbohydrate structures

The segmental labeling scheme in which the protein is

uniformly 13C/15N labeled and the glycan is unlabeled

(Fig. 3c) facilitates not only to assign and distinguish

overlapped 1H signals between the glycan and the protein

but most importantly enables the separation of NOEs

within the glycan, NOEs between the protein and the

glycan and NOEs within the protein using filter and editing

NMR techniques. 2D 13C filtered filtered NOESY spectra

(Peterson et al. 2004) contain solely NOEs within the

glycan while all NOEs within the protein and the protein-

glycan NOEs are suppressed (Fig. 4). Segmental labeling is

Fig. 4 Structural 13C filtered

filtered 2D NOESY of the

glycoprotein AcrA from

C. jejuni (13C/15N-labeled

protein). Only NOEs within the

unlabeled carbohydrate moiety

are observed
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the only method so far that helped to resolve the severe

chemical shift overlap between the glycan and protein

resonances.

The attachment of the oligosaccharide to a globular

protein has the advantage that the NOE transfer within the

carbohydrate becomes very efficient due to the increased

overall tumbling time. The NOE build up and efficiency is

then comparable to those observed in proteins of a similar

size. High magnetic field NMR spectroscopy at 900 MHz

is beneficial to obtain sufficient dispersion in this homo-

nuclear spectrum for unambiguous assignment. Such a

NOESY spectrum, recorded at mixing times in the linear

range, contains all the distance information necessary for

structure calculations of the glycan moiety. In the N-glycan

of C. jejuni attached to the protein AcrA, 125 distance

constraints could be collected within this bacterial hepta-

saccharide (Slynko et al. 2009). On average 11 inter-resi-

due NOEs were observed per glycosidic linkage, a number

that significantly exceeds the amount of NOEs observed for

isolated carbohydrates (Wormald et al. 2002). Structure

calculations revealed a well-defined glycan ensemble

(Fig. 5) demonstrating that the improved NOE transfer

results in a crucially enhanced quality of oligosaccharide

3D structures.

Applications for labeled glycans

Isotope labeling of glycans with 15N and 13C (Fig. 3a, b, d–

f) enables a variety of NMR applications. First, through-

bond experiments can be used for the assignment of the

carbohydrate, e.g. HCCH-TOCSY (Weller et al. 1996),

HCCH-COSY (Yamaguchi et al. 2000), HNCO and HNCA

for acetamido group assignment (Weller et al. 1996) or

experiments designed especially for carbohydrates (Cole-

brooke et al. 2005; Macnaughtan et al. 2008). Second,

chemical shift degeneracies especially in NOESY spectra

can be resolved to obtain more distance restraints as

reported in a protein–carbohydrate complex (Harris et al.

1999). Third, carbohydrate dynamics could be studied

using 15N (Yamaguchi 2008) and 13C relaxation (Miyazaki

et al. 2000; Yamaguchi et al. 1998).

Sugar-type specific labeling (Fig. 3b, d, e) simplifies the

resonance assignment of the glycan by simplifying the

spectra (Gilhespy-Muskett et al. 1994; Yamaguchi et al.

1998). But most importantly, such labeling scheme can

potentially be used to selectively detect NOEs between the

non-labeled and the labeled sugar units using 2D and 3D

filtered-editing NOESY spectra. Finally, in using 2H/13C

labeled glucose precursors for the expression of the gly-

coprotein, certain types of sugar units could be distin-

guished by 1H/2H ratios at specific hydrogen positions.

This way GlcNac, Man and Fuc can be distinguished which

helps the assignment process (Yamaguchi et al. 2000).

Conclusion and perspectives

As shown in this review, structure determination of seg-

mentally labeled biomolecules strongly depends on inter-

segmental NOEs obtained by filtered and edited NOESY

spectra between the two fragments. However, for larger

proteins the filter elements will lead to a significant

reduction in NOE intensities due to relaxation losses. Two

alternative differential labeling schemes originally devel-

oped for protein–protein complexes should probably be

used to overcome these losses. One is based on a highly

deuterated ([98%) and 15N labeled protein together with

an unlabeled molecule (Walters et al. 2001). A 3D 15N

edited NOESY spectrum will reveal then inter-segmental

NOEs between the amides of the deuterated segment and

aliphatic protons from the unlabeled segment. The exper-

iment is very sensitive due to the absence of filter delays

and the deuterated environment of the NH. However, only

inter-segmental NOEs involving amides are observable.

This labeling scheme has been used once for a segmentally

labeled multi-domain protein but the system did not reveal

interdomain NOEs probably due to dynamics (Walters

et al. 2003). A reverse approach uses a 1H/13C-I,L,V-

methyl/2H labeled segment with an unlabeled segment to

enable the observation of methyl to aliphatic inter-seg-

mental NOEs. This approach was demonstrated in a pro-

tein–protein complex (Gross et al. 2003a; Gross et al.

2003b).

Fig. 5 a Scheme of N-glycan of C. jejuni and b structural ensemble

of the same sugar superimposed on the heavy atoms of all

saccharides. The sugar was attached to an isotopically labeled protein

which resulted in the measurement of a high number of NOEs within

the sugar moiety
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We believe that the in vitro glycosylation technique has

large potential for the 3D structure determination of gly-

coproteins. However, further development is needed to

adapt the in vitro glycosylation system to the transfer of a

larger range of glycans and to circumvent limitations in

regard to the glycosylation sequence requirements. The in

vitro glycosylation technique has also potential for the

study of carbohydrate conformations by attaching them to a

model protein taking advantage of the slower tumbling

regime and the differential labeling. A variety of methods

exist to label carbohydrates and it now remains to discover

methods to attach those to an unlabeled protein. The

methodology consisting of ligating synthesized glycopep-

tides with recombinantly expressed labeled proteins is in

principle available but has not been used yet. We expect

that it will be only a matter of time until the first segmental

labeled glycoprotein will be obtained based on this method.

As discussed here, segmental isotope labeling methods

have already proven to be very useful for the study of bio-

molecules using NMR spectroscopy. Although these meth-

ods have not been widely used for NMR structure

determination, it is likely considering the increased interest

for solving structures of large proteins or membrane proteins

by solid and liquid state NMR that there will be an increased

demand for preparing proteins with segmental isotopic

labeling to resolve resonance overlap. For such applications,

the recent methodological development allowing ligation of

three pieces is crucial as this will be the only approach

allowing the central fragment of a protein to be labeled

separately. Moreover, methods developed for segmental

labeling of proteins could also be used for studying protein–

protein complexes, a second major area in biological NMR

spectroscopy. Several NMR studies (Mal et al. 2007; Volk-

man et al. 2002) showed a dramatic increase of the spectral

quality of protein–protein complexes when the two proteins

are expressed together covalently attached by a Glycine–

Serine-rich linker. One could now easily envisage to seg-

mentally label such ‘‘complex fusions’’ to better detect

intermolecular contacts and to help solving such structures.
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