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3 ETH-Z ürich, Department of Management, Technology and Economics, Kreuzplaz 5,
8032 Zürich, Switzerland

Received 23 November 2011 / Received in “nal form 09 March 2012
Published online 01 May 2012

Abstract. We analytically demonstrate and numerically simulate two
utmost cases of dragon-kings• impact on the (unnormalized) velocity
autocorrelation function (VACF) of a complex time series generated by
stochastic random walker. The “rst type of dragon-kings corresponds
to a sustained drift whose duration time is much longer than that of
any other event. The second type of dragon-kings takes the form of
an abrupt shock whose amplitude velocity is much larger than those
corresponding to any other event. The stochastic process in which
the dragon-kings occur corresponds to an enhanced di�usion gener-
ated within the hierarchical Weierstrass-Mandelbrot Continuous-time
Random Walk (WM-CTRW) formalism. Our analytical formulae en-
able a detailed study of the impact of the two super-extreme events on
the VACF calculated for a given random walk realization on the form of
upward deviations from the background power law decay present in the
absence of dragon-kings. This allows us to provide a unambiguous dis-
tinction between the super-extreme dragon-kings and •normal• extreme
•black swansŽ. The results illustrate diagnostic that could be useful for
the analysis of extreme and super-extreme events in real empirical time
series.

1 Introduction

One of the most remarkable observation emerging within the natural and
socio-economical sciences is that the empirical data which they provide are frequently
punctuated by rare extreme events orblack swans, which can play a dominant role.
This observation is usually quanti“ed by power-laws or heavy-tailed probability dis-
tributions of event sizes (cf. [1…13] and references therein). However, as it was pointed
out in [13], there is empirical evidence that some important events beyond power laws
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do exist. In this context, the concept of super-extreme events, outliers or dragon-kings
was introduced there.

By the super-extreme event, outlier or dragon-king1 we mean an event with size
or characteristics that are abnormally di�erent from those of other events in a ran-
dom sample taken from a given population [15]. The dragon-king is an anomaly, and
it is usually removed in order to obtain reliable statistical estimations. The term
•outlierŽ emphasizes the fact that such events are often considered to be spurious,
leading to discard them as being errors or misleading measurements. In contrast, the
term •dragon-kingŽ emphasizes their relevance in the dynamics and the importance
of keeping them to be able to understand the generating process. The super-extreme
events are statistically complementary to extreme events and can appear sometimes
unexpectedly. However, the alternative idea that dragon-kings are often associated
with the occurrence of a catastrophe, a phase transition, a bifurcation, or what can
be called a tipping point, whose emergent organization produces visible precursors,
was also developed in [13].

The main goal of the present work is to analytically demonstrate and numerically
simulate two utmost cases of dragon-kings• impact on the (unnormalized) velocity au-
tocorrelation function 2 (VACF) of a stochastic process generated by a random walker.
The estimators of the VACF for these cases are derived in a closed analytical form.
These formulae are applied to the enhanced di�usion trajectories generated by the
hierarchical Weierstrass-Mandelbrot Continuous-time Random Walk (WM-CTRW)
studied in [17…19]. This model is a hierarchical version of the canonical Continuous-
time Random Walk (CTRW) model [ 23…25], obtained from the later by introducing
a hierarchical spatio-temporal waiting-time distribution (WTD) (cf. Sect. 3.1 in this
work as well as Eq. (20) in [18]).

The WM-CTRW formalism is quite generic and ”exible as it is able to cover (only
by changing its driving parameters) various types of di�usion, ranging from normal
di�usion (Brownian motion), to enhanced di�usion 3, ballistic motion, and to L´evy
walks. Extreme events are naturally characterized by the spatio-temporal structure
of the time series (herein by stochastic simulation) generated by the WM-CTRW
model. This structure is explained in details in Sect. 2. The extreme events mod-
erate the relaxation of the system to equilibrium (or partial equilibrium), e.g., by
changing this relaxation from an exponential to a power-law form. Our study of the
WM-CTRW formalism is partially motivated by the observations that the hierar-
chical WTD described quite well its empirical counterparts obtained for continuous
quotations of the exchange rates on currency exchange markets as well as for share
prices trading on stock exchanges.

The present paper is organized as follows. In Sect.2, the problem is de“ned along
with the de“nitions of the most relevant quantities used in our study. In Sect. 3, the
WM-CTRW formalism is presented and the enhanced di�usion phase is discussed.
Section 4 presents the derivation of the VACF including a dragon-king event. The
comparison of the predictions of our theoretical formulae for the VACF with the re-
sults of the numerical simulations is given in Sect.5. Finally, Sect. 6 contains our

1 The poetic term •dragon-kingŽ stresses that (i) we deal with an exceptional event which
is a completely di�erent •animalŽ compared to the usual events, (ii) this event is important,
being outside of the power law, like an absolute monarchy standing above the law or as the
wealth of a monarch owning a “nite part of the whole country, beyond the Pareto distribution
of its citizens• wealth [14].

2 In econometrics this quantity is called •autocovarianceŽ.
3 Enhanced di�usion is a kind of superdi�usion which remains slower asymptotically than

ballistic motion.
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summary and concluding remarks. The multi-step representation of the propagator
is given in Appendix A.

2 Main questions

The principal question addresses in this article is how to recognize a dragon-king
among other events within a given time series. We present an explicitly solvable
example that allows one to go beyond the intuitive understanding of what can be
dragon-kings. Taking the example of general continuous random walks with long-range
memory structures, we characterize the following properties that qualify a dragon-
king.

(i) The spatial and temporal sizes that de“ne a •sustained dragon-kingŽ or the
velocity that de“nes an •impetuous or shock dragon-kingŽ must be much larger
than those of all other events.

(ii) The statistical properties of the time series must be substantially changed when
a dragon-king is present, as compared to the •free case• de“ned in the absence
of such super-extreme event.

Furthermore,

(iii) we assume in this article (as the simplest reference case) that the dragon-king
appears unexpectedly, that is, independently of any previous event.

In our simulations as well as analytical calculations, we generate a WM-CTRW time
series in which we insert manually either a •sustained dragon-kingŽ or an •impetuous
or shock dragon-kingŽ whose size dwarfs any existing structure. Such dragon-kings
could be observed •naturallyŽ in WM-CTRW time series only if one would wait long
enough. But the size of the introduced dragon-kings is such that this waiting time is
extraordinary long, much much larger that the generated time series duration. This
gives a “rst impression about the fact that a super-extreme event can be quali“ed as
being abnormal only with respect to its occurrence frequency compared with those
for the rest of the events. In our examples, the dragon-king•s appearance can be
considered as being caused by some exogenous source.

By using the approach outlined above, we try to somehow imitate a real situation
where a dragon-king, e.g., catastrophic volcanic eruption, a huge tsunami wave or the
explosion of a nuclear reactor, appeared during the system evolution as an exogenic
factor having an unknown and a priori negligibly small occurrence probability. How-
ever, the estimated risk associated with this dragon-king (measured by its frequency
of occurrence multiplied by an estimated cost of expected losses) can be extremely
large. The investigations of stochastic processes punctuated by super-extreme events
present a generic theoretical challenge of increasing practical importance.

Our practical goal herein is to answer the question of how much the stationary
velocity autocorrelation function, C(�t), characterizing a given time series (or a ran-
dom walk trajectory), is changed if this time series is suddenly punctuated by a
single-step super-extreme event. In the present work, the metrics we use to quantify
the impact of dragon-kings areC(�t) together with some waiting-time distributions
(WTD).

As mentioned above, we consider two types of super-extreme events:

(i) the long-drawn event of super-extremely long duration time, td (cf. Fig. 1) and
(ii) the shock, or sudden jump, X d, of a random walker displacementX , which has

super-extreme velocity,vd, (cf. Fig. 2).
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Fig. 1. Schematic time series of a single realization of one-dimensional random walk over
a total duration t tot containing the dragon-king (represented by the longest sloping solid
straight line) having constant velocity vd and duration time td . The random walk trajec-
tories before and after the occurrence of the dragon-king have duration times tL and tR ,
respectively. Obviously, t tot = tL + td + tR .

The resulting VACF, in the presence of a dragon-king, is denoted below byCd(�t).
The VACF is de“ned as the following temporal average

VACF(�t) = �v (t � ) v(t � + � t)� Š � v(t � )� � v(t � + � t)�

= �v 1 v2� (�t) Š � v1� � v2�

=
�

C(�t), no dragon-king,
Cd(�t), with a dragon-king,

(1)

where �. . . � denotes the moving time average within a given time-window 0� t � �
t tot Š �t with �t � �t max � t tot , where �t max is the maximal value of �t. Here ttot is
the total duration time or total time span of a given trajectory (cf. Figs. 1 and 2 where
the horizontal time axis corresponds to the variablet � . For further explanations, see

Sects.3 and 4). The velocity of the random walker is v(t � ) def .= [ X (t � ) Š X (t � Š dt)]/dt,
where the time-discretization step isdt � min (�t, t � ). We denote by v1 and v2 the
velocities at the beginning and at the end of the time-window of duration � t.

In order to mimic a real-life situation where we would only have access to a single
time series of the realization of a random process, we conider a single random walk
trajectory and study its properties in windows of “xed duration � t running over
the whole time series (for further discussion, seeAppendix A. ). The averaging is
performed over this ensemble of time windows of duration �t. The issues concerning
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Fig. 2. Schematic time series of a single realization of one-dimensional random walk contain-
ing a dragon-king in the form of a shock (represented by the longest vertical solid straight
line). The random walk trajectories before and after the dragon-king have duration times
tL and tR , respectively while the duration time of the shock is td = dt being so short that it
cannot be visualized in the plot (obviously, t tot = tL + dt + tR ).

ergodicity and its possible breaking have been studied in several articles [20,27…29]
(and references therein) in the context of fractional di�usion. In the context of the
present implementation of the WM-CTRW model, we consider brie”y the property
of ergodicity in Sect. 3.

Both quantities C(�t) and Cd(�t) are studied analytically (in Sects. 3 and 4)
and numerically simulated (in Sect. 5). Our task is to “nd relations between C(�t)
and Cd(�t) and verify them by simulations for the two dragon-king types (i) and (ii)
mentioned above, in the regimes of parameters of the WM-CTRW model that give
non-trivial superdi�usion or persistent enhanced di�usion.

3 Outline of the hierarchical Weierstrass-Mandelbrot
Continuous-time Random Walk

The task of this section is to outline the hierarchical WM-CTRW formalism most sig-
ni“cant elements, which are useful for our analysis and, in particular, for our analysis
in the frame of the mentioned above enhanced di�usion phase. This phase is interest-
ing by itself as it combines seemingly opposed very useful properties of the system.
That is, it combines superdi�usivity and convergence of the time average. Notably,
an explicit form of C(�t) in the absence of a dragon-king was already described in
details in our earlier articles [17…19].



32 The European Physical Journal Special Topics

3.1 De“nition of the WM-CTRW formalism. Single-step quantities

The Weierstrass-Mandelbrot Continuous-time Random Walk is de“ned by the hierar-
chical non-separable spatio-temporal waiting-time distribution (WTD). This WTD 4

is given by the following weighted hierarchical series

� (x, �t) =
��

j =0

w(j )� j (x, �t) , (2)

where x is the walker single-step spatial displacement (increment) passed (with con-
stant velocity) within the time interval �t and the weight w(j ) is given by the geo-
metric probability distribution

w(j ) =
1

N j

�
1 Š

1
N

�
, N > 1, j = 0 , 1,2, . . . , (3)

where j is a hierarchy level index. This weight can be interpreted as the occurrence
probability of exactly j consecutive successes in some Bernoulli series, where 1/N
is the probability of a single success; the conditional single-level WTD,� j (x, �t), is
assumed in the factorized form of two di�erent single-variable spatial and temporal
border probability distributions � j (x) and � j (�t ) (based on the scaling functionsf
and h, respectively)

� j (x, �t) = � j (x) × � j (�t )

=
1

v0vj �t
f

�
|x|

v0vj �t

�
×

1
� 0� j h

�
�t

� 0� j

�
. (4)

In expression (4), we used a simple representation of a random walk (but not random
jumps or ”ights). That is, the assumed spatial and temporal scaling functions have
the form

f
�

|x|
v0vj �t

�
=

1
2

�
�

|x|
v0vj �t

Š 1
�

(5)

and

h
�

�t
� 0� j

�
= exp

�
Š

�t
� 0� j

�
, (6)

respectively5. The mean duration time, � 0� j (� 1), of the random walker single step
and its velocity, v0vj , are both associated with thej th level of the spatio-temporal sto-
chastic hierarchy. This level is the same for temporal and spatial border distributions,
introducing the spatio-temporal coupling in De“nition ( 2). Indeed, this coupling is
responsible for the combination of superdi�usivity and convergence of the time av-
erage mentioned at the beginning of this section. Herein, we marked the calibration
parameters, i.e., the corresponding units, by� 0 and v0.

As it is seen from De“nition (2) of the WTD, our WM-CTRW formalism belongs
to the non-separablecategory of CTRW, where spatial and temporal variables are

4 The complete de“nition of the WM-CTRW model additionally requires a special treat-
ment of the “rst step of the random walker [ 18]. However, this treatement is irrelevant when
the moving average is calculated, as it is in our case. Therefore, we do not consider explicitly
this special treatment in this work.

5 Obviously, detailed forms of the scaling functions f and h are less important for macro-
scopic displacement and asymptotic long time, respectively. Here, we used their simple
explicit forms to make our calculations easier.
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non-separable. The coupling mentined above makes the di�usion phase diagram
[17,18] much richer than that for separable category of the CTRW formalism.

From (2), it is easy to derive useful temporal and spatial single-step moments

� �t � = � �t � =
� �

0
d(�t ) �t � (�t )

= � 0

�
1Š1/N
1Š� /N , for � > 1,
�, for � < 1

(7)

where � def .= ln N/ ln � , the border temporal part of WTD � (�t ) def .=
� �

Š� dx � (x, �t),
and

� x2 � = � x2 � =
� �

Š�
dx x2 � (x)

= ( b0)2

�
2 1Š1/N

1Šb 2 /N , for � > 2,
�, for � < 2

(8)

where b0 = v0� 0, b = v� , � = ln N/ ln b, and border spatial part of the WTD

� (x) def .=
� �

0 d(�t ) � (x, �t). We term parameters � and � the temporal and spatial
border exponents, respectively. They control all phases of di�usion [16…18]. In the
subsequent considerations, we study the enhanced di�usion regime de“ned by� > 1
and � < 2 (further constraints, given by Inequalities (11), are shown in Sect.3.2).
Herein, we do not consider the special marginal cases where� , � = 1 , 2, . . ., take
positive integer values.

In expressions (7) and (8), the notation g(x) represents the average of the function
g(x) over the spatial variable (herein denoted asx). Note that all averages in Sect.3
are performed over statistical ensemble. They are thus purely theoretical quantities.

3.2 Remarks concerning the enhanced di�usion regime

The hierarchical WM-CTRW model is de“ned by the requirement that � �t � is “-
nite [18], which according to (7) is equivalent to the case where� > 1. When this
holds, the temporal WTD is an asymptotic exponential function characterized by the
mean-time � �t � given by the upper expression in (7). Hence, the necessary condition
for ergodicity to hold is obeyed in our case, namely

(a) the possibility that the measurement time of the time series,t tot , is su�ciently
long compared to the characteristic time scale� �t �. Therefore, all averages over
time can be performed in this case and

(b) in our stationarized WM-CTRW model, these time averages are independent
of the imposed initial condition.

If at least one of these conditions was violated, the ergodicity of the system would be
broken. This is also true for the time series containing our dragon-kings.

The question of whether it is possible to exchange with a good approximation an
average over an ensemble of trajectories by the corresponding time averages (for a
su�ciently long time) over a single trajectory is still a challenge. This is a typical
challenge not only for di�erent versions of the CTRW (discussed in several arti-
cles [20,27…29]) but also for any empirical time series. For the present work, it would
be su�cient to prove ergodicity for the VACF. But even this restricted request re-
mains challenging. To make progress, we will be working in the following within the
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conjecture that any su�ciently long realization of the process contains enough statis-
tical information about it so that we can characterize useful di�erences in the VACF
and the WTD functions when dragon-kings are present compared with the situation
when they are absent.

According to the canonical CTRW formalism, the WTD given by Eq. ( 2) is a
basic dynamical quantity that is su�cient to construct the propagator of the WM-
CTRW model (see Appendix A. for details). In the Fourier-Laplace (k, s) domain,
the propagator takes the well-known generic form [24]

�P(k, s) =
� �

0
d(�t)

� �

Š�
dXP (X, �t)

=
1
s

1 Š �� (k = 0 , s)

1 Š �� (k, s)
. (9)

The propagator P(X, �t) is de“ned as the probability density of “nding the walker
at position X and time �t under the condition that initially the walker was at the
origin. In this notation, the initial condition was, for simplicity, not explicitly speci“ed.
Herein, �P means the Fourier-Laplace transform ofP.

Within the WM-CTRW model, the propagator for enhanced di�usion, that is for
the case considered in this work, was derived in the form [16…18]

�P(k, s) �
1
s

1
1 + D k 2/s � (10)

where the condition of existence of this expression,D k 2/s � � 1, was ful“lled in the
derivation. Herein, the so-called fractional di�usion exponent 	 obeys the following
inequalities

1 < 	 = 1 + 2 �
�

1
�

Š
1
2

�
< 2

	
1
2

<
1
�

<
1
2

+
1

2�

(11)

and, for the so-calledfractional di�usion coe�cient, we obtain the expression

D =
1

� �t �

1 Š 1/N
ln N


�
(2 Š 	 )

|sin (
 	 )|
. (12)

This coe�cient is “nite although the single-step mean-square displacement (8) di-
verges. This is not too surprising because, most signi“cantly, the time-dependent
single-step mean-square displacement,x2(�t ) =

� �
Š� dxx2 � (x, �t), and mean time

� �t � are “nite (cf. [16] for details). We can state that di�usion is enhanced by the
broader distribution of single-step displacements.

An approximate scaling form of the propagator (10) in real space and real time is
presented inAppendix B.

Besides, in [17,18], it was proved that the fractional di�usion exponent 	 drives
the asymptotic time dependence of the mean-square displacement of the walker
(cf. Eqs. (21) in [17] and (11) in [18]),

X 2(�t) �
2D

� (	 + 1)
(�t) � , (13)
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where X (�t) is the displacement of the walker found at time �t (cf. Table 2 and
di�usion phase diagram in Fig. 2 in [17] as well as Table1 and di�usion phase diagram
shown in Fig. 1 in [18]).

A signi“cant question of the WM-CTRW formalism is how to relate the displace-
ment X to the single-step displacementx. The answer is typical for the CTRW
formalism. The corresponding displacement of the walker is the summation of incre-
ments X (t � ) =

	 n
j =1 xj , where

	 n
j =1 denotes the sum over successive stepsxj of the

walker forming the segment of the trajectory until the time t� which consists ofn
steps. Moreover, we havet� =

	 n
j =1 �t j . Note that the number of steps is a quantity

that is well de“ned for each single trajectory taken separately, even if “nally we sum
over many trajectories when calculating averages (for instance, seeAppendix A. ).

Note that the times tL and tR are de“ned for each single trajectory or realization
of the MW-CTRW and we have the following summation tJ =

	 n J
j =1 �t j , J = L, R .

Hence, the total time is given by ttot = tL + td + tR (cf. Figs. 1 and 2).
Expressions (2)…(6) enable simulating a random walk trajectory (schematically

shown in Figs. 1 and 2) in continuous time. This is because they de“ne the corre-
sponding stochastic dynamics (considered in Sect.5.1).

The WM-CTRW de“nes a stationary stochastic process valid only for the case
where the mean waiting-time, ��t �, is “nite, i.e., for the case where the temporal
exponent � > 1 (cf. Eq. (7) as well as Eqs. (4) and (5) in [18]). Under these
conditions, the di�usion exponent 	 = 2H , where 1/2 < H < 1, is the well known
Hurst exponent [26]. All our analytical calculations are con“ned to the case where
the mean-square displacement is “nite for a “nite time and superlinearly increases
with time for asymptotically long times. That is, we are con“ned to the superdi�u-
sion phase where 1< 	 < 2 (enhanced di�usion phase). This regime is interesting
because dragon-kings could be argued to be least relevant in this phase. Our goal is to
demonstrate that dragon-kings make a signi“cant impact even in such a superlinear
phase.

For enhanced di�usion, we derived the VACF in the absence of a dragon-king in
the form (cf. Eq. (13) in [18])

C(�t) =
2Dst

� (	 Š 1)
1

�t 2Š� , (14)

where the fractional di�usion coe�cient is the quantity Dst = D/ (2 Š 	 ) associated
with the stationarized random walk [18] (cf. Table 1 in [18]). Then, no initial instant
is favoured.

As the fractional di�usion exponent 	 < 2, the velocity autocorrelation function,
C(�t), given by Expression (14 ) vanishes for extremely long �t by following a power
law decay. In Sect.4, we prove that the presence of a dragon-king in the time series
leads to violation of this property.

4 Reference formulae for C d (�t )

In this section, we consider useful properties of two di�erent types of reference re-
lations between the estimator of Cd(�t) and the estimator of some VACF, C(�t),
concerning a time series in the absence of any dragon-king. That is, in Sect.4.1, we
consider the “rst type of this relation for the case of sustained dragon-king (case (i)
of Sect. 2) while we study in Sect. 4.2 the second type for the case of a shock (case
(ii) of Sect. 2).
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4.1 C d (�t ) for the case of sustained dragon-king

By assuming that random walks before and after the dragon-king appearance within
the time series are statistically identical (although corresponding trajectories could
be quite di�erent), we can write, by neglecting unavoidable ”uctuations, that in
Eq. (C.15) (cf. C.1) the partial velocity autocorrelation functions obey CL (�t) =
CR (�t) = C(�t). These equalities enable transforming Eq. (C.15 ) into a stationary
form

Cd(�t) =
1 Š � d Š 2�t/t tot

1 Š �t/t tot
C(�t) +

1
1 Š �t/t tot



� d

�
1 Š

� d

1 Š �t/t tot

�
Š

�t
t tot

�
v2

d,

(15)

which is our “rst reference formula enabling several applications discussed below.
The main di�erence betweenC(�t) and Cd(�t) is that the former asymptotically

vanishes while the latter does not. This di�erence provides a tool that allows one to
distinguish a power-law relaxation, controlled by rare extremes or black swans, from
a decay controlled by the dragon-king. We consider Formula (15) as a reference one,
also relevant for more complex cases.

If Assumption ( C.18) in C.1 holds, further simpli“cation of Eq. ( 15) can be made:

Cd(�t) � (1 Š � d)
�
C(�t) + � d v2

d


. (16)

This expression depends upon two parameters� d and vd fully characterizing the
dragon-king. These parameters can be easily determined, e.g., from the initial and
asymptotic nonvanishing values of Cd(�t). Predictions obtained from this simple
formula are compared in Sect.5 with the corresponding simulation results.

4.2 C d (�t ) for the case of a shock

In this section, we consider a dragon-king in the form of a shock (cf. case (ii) of
Sect. 2). By analogy with case (i) of a sustained dragon-king, we set in Eq. (C.20)
(cf. C.2) CL (�t) = C LR (�t) = C R (�t) = C (�t) that, in the case of no drift in the
system, simpli“es (C.20) into the form

Cd(�t) =
ttot Š �t Š 2dt

t tot Š �t
C(�t) +

(vL + vR ) X d

ttot Š �t
Š

�
X d

ttot Š �t

� 2

, (17)

where X d = dt vd is the value of the shock. Note thatvL and vR are velocities of the
walker, which are separated by the time interval 2� t. By de“nition of the time step
dt, we havedt � t tot Š �t. Hence, Eq. ( 17) again assumes a simpler form

Cd(�t) = C(�t) +
(vL + vR ) X d

ttot Š �t
Š

�
X d

ttot Š �t

� 2

, (18)

which is our second reference formula (the “rst one is given by Eq. (15)). This formula
is further modi“ed in Sect. 5 to make Cd(�t) better suited for comparison with our
results obtained by simulations.

5 Algorithm and results

5.1 Stochastic dynamics

The stochastic dynamics algorithm simulating successive single-step displacements of
the walker following the WM-CTRW model consists of three stages, as follows.
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(i) The drawing of the hierarchy level index j from distribution ( 3) in each spatio-
temporal step separately.

(ii) The calculation of the duration time �t of the single step (or its elapsed time)
from the stochastic equation

�t = Š� 0� j ln(1 Š R), (19)

which simulates an exponential distribution of inter-event times (6), where
R 
 [0,1[ is a random number drawn from the random number generator (or
from the uniform distribution con“ned to a unit interval). Note that Eq. ( 19) is
equivalent to Eq. (6) (after application of the well known method of inversion
of the cumulative distribution function).

(iii) The determination of the single-step displacement using the equation

x( �t ) =  v 0 vj �t, (20)

where stochastic variable is a dichotomic noise (i.e., = +1 or Š1 with equal

probability 1 /2) and x( �t ) def .= X (t � ) Š X (t � Š �t ), where t� is the current time
(and not a time interval).

In this way, the construction of a single time-continuous trajectory of a random walk
is possible. Obviously, the parameters� 0, �, v 0, and v were “xed at the beginning
of the whole simulation. Further in the text and in all our simulations, we set the
parameters � 0 = 1 and v0 = 1.

In fact, the above-mentioned trajectory is constructed in the frame of a version
of the CTRW that is not made stationary, i.e., for which there is no special treat-
ment of the initial step [17,18,24]. In this version, the hierarchical spatio-temporal
waiting-time distribution ( 2) for the initial step is the same as that for all other
steps. This equality of distributions is possible because in simulations we deal with
moving-averages, which by de“nition, average over the initial state, thus supplying the
required asymptotic stationary VACF. Indeed, we compare this VACF with the cor-
responding VACF obtained theoretically within the WM-CTRW model. One should
keep in mind that the version of the CTRW that is made stationary is such that it
treats di�erently the waiting-time distribution for the initial step within the WM-
CTRW formalism 6 [18].

The above given algorithm was used in Sect.5.2 to simulate the required basic
random-walk trajectory. The trajectory constructed in this way is punctuated •man-
uallyŽ by the sustained dragon-king or by the shock dragon-king. Preparation of the
former dragon-king requires some explanation.

5.1.1 Preparation of the sustained dragon-king

The stochastic dynamics de“ned by Eqs. (19) and (20) is controlled by three random
variables j, R , and  . Only two of these three variables are responsible for the size
of a single step: (a) the hierarchy level indexj , drawn from the distribution ( 3), and
(b) the random number R. For the case of the sustained dragon-king, this dynamics

6 It can be proved that the WM-CTRW formalism, even asymptotically, is more general
than the fractional Brownian motion introduced by Mandelbrot and van Ness [ 26]. This
is because the propagator derived within the WM-CTRW formalism can be non-Gaussian
(cf. Appendix B).
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is simpli“ed by replacing Eq. (19) by the corresponding simpli“ed expression7

�t = td = � 0� j d . (21)

The size of the sustained super-extreme event is controlled solely by a single random
variable j = j d as is the velocity of the sustained dragon-kingvd = v0 vj d , its duration
time td = � 0 � j d , and displacementxd =  b0 bj d , where b0 = v0 � 0 and b = v� . The
stochastic process de“ned by Eqs. (21) and (20) is simpli“ed because it is discretized
in time and space, where

x( �t ) = X d = v 0� 0vj d � j d = b0bj d . (22)

As the index j d of a given dragon-king is “xed, the inter-event time for this process
does not ”uctuate.

We deal with two stochastic processes: (i) the “rst one which prepares the WM-
CTRW trajectory or stochastic spatio-temporal hierarchy of events and (ii) the second
process which generates the sustained dragon-king from the simpli“ed, discrete in
space and time hierarchical random walk. In fact, the latter process is also used in
Sect. 5.1.2 to illustrate the de“nition of the black swan.

Therefore, it is easy to separate in simulations the sustained dragon-king from
the other events belonging to the stochastic spatio-temporal hierarchy of events (cf.
Sect. 5.1.2). Namely, it is su�cient to choose the level index j d much larger than the
maximal level index j = j max of the hierarchy constituting the WM-CTRW model.

5.1.2 Hierarchical random walk and black swans

It is decisive for our considerations that the ratio of successive weights

w(j + 1)
w(j )

=
1
N

, (23)

is already j independent. This means that steps de“ned by the level indexj are N
times more likely than those of the next step of the higher order ofj + 1. Therefore,
one expects (on the average) that the walker will performN j shorter steps before
performing the next step of the higher order. Hence, we can explain how extreme
events or black swans control the hierarchical spatio-temporal structure of events in
the frame of a simpli“ed hierarchical random walk.

Subsequently we consider, as a typical quantity, the mean-square displacement of
the simpli“ed, discrete in space and time hierarchical random walk

X 2(L ) =

�
L�

l =1

xl

� 2

= Lx2, (24)

(where g denotes an ensemble average ofg, as in Sect.3.1), L is the total number of
random walk steps,xl is a single-step displacement andx2 is its mean-square value. In
this derivation, we neglected the o�-diagonal term

	 L
l �=l � xl xl � or crossed correlations

between successive single-step displacements in comparison with the diagonal term

7 Instead of a simpli“ed dynamics, de“ned by Eqs. ( 21) and (22), we could use the full
dynamics de“ned by Eqs. (19) and ( 20) with j = j d and R equal, e.g., to the maximal
random number Rmax drawn during the whole simulation. Fortunately for our simulation,
the simpli“ed dynamics produced adequately the sustained dragon-king.
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Fig. 3. Schematic trajectory of hierarchically ordered steps ( � j , bj ) presented, for simplicity,
for N = 3, j max = 2 and calibration parameters � 0 = 1 , b0 = 1. We assumed j max � 1 in our
calculations. Herein, the extreme event or black swan is de“ned by the pair of components
(� j max =2 , bj max =2 ) directed by j max = 2.

Lx2. This is justi“ed by the de“nition of the process, which invokes independent step
draws.

In Fig. 3, the schematic illustration of the above considerations is shown by using
a part of the trajectory or random walk realization consisting of hierarchically ordered
steps (�0 � j , b0 bj ), for j = 0 , 1,2. Herein, we neglected (i) ”uctuation of the number
of hierarchy levels j s as well as (ii) their random succession. Thus, we plotted the
ordered trajectory within the time-space frame of coordinates. In fact, we made a
transformation from the stochastic hierarchy to its deterministic counterpart. The
explanation of the concept of black swans becomes now more convenient.

We can easily derive the useful relation between the single-step mean-square dis-
placement, �x 2�, which originates from the simulated trajectory and the maximal
level, j max , of the hierarchy contained in it. Indeed, the level j max de“nes the extreme
event or black swan by the pair of components (�t max = � 0 � j max , xmax = b0 bj max ).
This quantity, for a large number of steps L � 1 or j max � 1, is given by

�x 2�
(b0)2 �

N j max

L
(b2)0 +

N j max Š1

L
(b2)1 +

N j max Š2

L
(b2)2

+ . . . +
N 0

L
(b2)j max =

N j max

L
(b2/N )j max +1 Š 1

b2/N Š 1

�
x2

(b0)2 . (25)

We used here a kind of an ergodic hypothesis, which for this particular considerations
seems to be obvious.

By using Eqs. (24) and (25), we proved in Appendix D. that, for � < 2, the sum-
marized quantity X 2 is fully determined by a single step of extreme eventx2

max (cf.
Eq. (D.3)). This result is exactly what is needed for illustration of our considerations.
That is, the quantities (herein the mean-square displacement of the process) charac-
terizing the system are mainly expressed by the corresponding quantities (herein, a
single-step displacement) de“ning the black swans.
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As expected, for Brownian motions (that is, for the case of� > 2 in Eqs. (D.1),
(D.2) and (D.3)), the factor preceding L in the second formula in (D.2) and (D.3)
equals, in fact, the corresponding factor present in formula (8). However, the absence
of the factor 2 is here caused by the absence of ”uctuations of inter-event times.

Note that, in the case of the WM-CTRW, we obtain results analogous to those
presented by Eqs. (D.2) and (D.3). However, their derivation is much more compli-
cated in this case. The threshold property exhibited by these equations is typical of
the behavior of other key quantities, like volatilities or correlation functions.

We are now ready to answer the question concerning the distribution of the single-
step displacements|x| = b0bj of the walker. This answer is based on the change of
variables from j to |x|. Hence, the corresponding (normalized) distribution �w(|x|)
takes the Pareto form

�w(|x|) �
1
b0

�
(|x|/b0)� +1 , (26)

where |x| � b0. In fact, Eq. ( 26) holds only for |x| � b0. As found in [12,25], the
power-law distribution of events leads to the Fréchet distribution of extreme events.
For asymptotic values of the argument, this distribution preserves the power law with
exponent of � + 1. Note that Eq. ( 26) is valid for all values of � . That is, black swans
are always present in the system. However, only for� < 2 their in”uence dominates,
leading to power laws.

To conclude this discussion, we can say that square of the linear size of the walk
(herein, the mean-square displacement) is controlled by extreme events or black swans
if this square scales with the number of steps according to some power-law, i.e., if
the walk is a certain type of fractional random walks. Otherwise, Brownian motions
dominate without in”uence of black swans (although they are present in the system).
In this way, the threshold value 2 of exponent � is a discriminator of black swans•
activity.

We can now identify an event as a sustained dragon-king if thej d index of this
event distinctly exceeds that of j max , i.e., when we have at least thatj d � j max + 2.
Note that the result of simulations for j d � j max + 1 agrees well with the theoretical
prediction (cf. plot in Fig. 4 for the curve marked by j d = j max (= 12) + 1 = 13 and
Table 1).

5.2 Comparison of theoretical predictions with simulations

We restrict our simulations to an important example of enhanced di�usion de“ned by
1/� only slightly smaller than 1/� . Note that inequality 1/� < 1/� , is equivalent to
v < 1, i.e., it corresponds to the case where the velocity of the walker for the higher
hierarchy level is smaller. In this case, each moment of the arbitrary non-negative
order of the (multi-step) displacement is “nite at “nite times [ 18,19]. This choice
of moments arises from empirical evidences that these moments are always “nite.
Other choices, concerning other di�usion phases, would also be worth studying. The
dragon-king is located •manuallyŽ inside the simulated time series in such a way that
inequality � tmax � tL , tR is obeyed.

5.2.1 Simulation results for the sustained dragon-king

We now discuss the case where the multiplicative factor precedingv2
d in Eq. (15)

is positive, which is easy to ful“l. This corresponds to considering inequality � t
t tot

<
� d(1Š � d

1Š� t/t tot
). This inequality is only slightly stronger than � t

t d
< 1, yet it is needed

for the derivation for Cd(�t) if the sustained dragon-king appears.
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Fig. 4. Comparison of the prediction of Eq. ( 15) (solid thin curves) with results
of simulations (dispersed solid thick curves) for four di�erent values of td /� tmax =
1.653,10.496,66.651, and 423.263 which correspond toj d = 13, 15, 17 and 19, respectively.
The dashed curve represents the prediction of Eq. (14), i.e., the prediction for the time
series in the absence of a dragon-king. All curves were calculated for the same values of
� = 2 .52, v = 0 .992, and N = 4. Notably, theoretical predictions for j d = 17 and 19 are
almost indistinguishable (within the resolution of the plot) from results of the corresponding
simulations for the whole range of time lag � t. The presence of the sustained dragon-king
twists upward the curve deviating it from the straight line (in the log Š log plot).

In Table 1, we present data (in a form of four inverted pyramids of numbers), which
de“ne unnormalized statistics, S(j ), of the hierarchy levels j •s (cf. Sect.5.1). These
data were obtained for “xed common parameters� 0 = 1 .0, � = 2 .520, v0 = 1 .0, v =
0.992, andN = 4. They were used to prepare four trajectories within the WM-CTRW
formalism in the presence of sustained dragon-kings. For instance, the row numbered
by level j = 3 gives, at the intersection with the second column, the number which
says how many times (herein, 809231 times) this level appeared in the “rst trajectory.
This trajectory contains the only sustained dragon-king de“ned by indexj d = 13. This
index is shown in Table1 by the bold number 1, at the intersection of row numbered
by level j = 13 with the second column, again. The successive columns from column
three to “ve contain analogous unnormalized statistics but for higher j d values8, i.e.,
j d = 15, 17, and 19, that is, for stronger sustained dragon-kings. The common bottom
of all hierarchies (represented in Table1 by inverted pyramides of numbers) is placed
at the level j = j max = 12, that is above any 13 � j = j d � 19.

All sustained dragon-kings are marked in Table1 by the bold number 1. They are
placed in the second through “fth column at intersections with the corresponding rows
indexed by levels fromj = j d = 13 to j = j d = 19. That is, these levels systematically
move away from the common bottom of hierarchies.

Importantly, the left part of the trajectory (preceding the dragon-king appearance)
is common for all dragon-kings. The right border of this part is “xed de“ning the
beginning of a dragon-king. Because the total duration time,t tot , of all trajectories is
the same, the duration time, tR , of the part of trajectory placed on the right-hand side
of the dragon-king decreases as the duration timetd increases (i.e., when the index

8 Eqs. (21) and (22) precisely de“ne the role of index j d used here.
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Table 1. Four unnormalized statistics S(j ) of hierarchy levels j •s obtained for four sustained
dragon-kings.

Level j S(j ) for j d = 13 S(j ) for j d = 15 S(j ) for j d = 17 S(j ) for j d = 19

0 51763445 51439530 49410801 36182538

1 12948042 12866869 12360063 9049915
2 3234819 3214452 3087567 2260332

3 809231 804047 772246 565401

4 202591 201289 193303 141499

5 50583 50521 48326 35374

6 12773 12704 12211 8895

7 3162 3141 3012 2212

8 811 801 765 565

9 192 191 181 128

10 48 47 43 29

11 6 6 6 4

12 5 5 4 3

13 1 0 0 0

14 0 0 0 0

15 0 1 0 0

16 0 0 0 0

17 0 0 1 0

18 0 0 0 0

19 0 0 0 1

j d increases). Therefore, the statisticsS(j ) of hierarchy levels j •s, shown in Table1,
decreases as the level de“ning the sustained dragon-king,j d, is rised (because then the
corresponding trajectory or time series, placed on the right-hand side of the dragon-
king, is shorter). Therefore, for example, the number 128 placed at the intersection
of the “fth column and the row denoted by the index level j = 9 is distinctly smaller
than the number 192 placed at the same row but at the intersection with the second
column. We hope that Table 1 well illustrates the hierarchical structure of any (long)
trajectory simulated within the WM-CTRW formalism. Moreover, the corresponding
localisations of the sustained dragon-kings in the space of hierarchy levels relative to
the inverted pyramids are also well delineated.

In Fig. 4, we compare the prediction of Formula (15) (thin solid curves) with
the results of simulations (dispersed thick solid curves) for four di�erent values of
td, namely, td/�t max = 1 .653, 10.496, 66.651, and 423.263, which correspond to
j d = 13, 15, 17, and 19, respectively. Note that the current width of the time window,
�t, (called also time lag) ranges from �t = dt up to � t = � tmax = 105 dt with
the time step, dt = 1, while t tot = 1400 �t max is the same for all statistics S(j )
shown in Table 1. In fact, the predictions of both Formulae (15) and (16) cannot
be distinguished within the resolution of the “gure. The sustained dragon-kings• time
lags were calculated for the same value of� = 2 .520 and the single-step displacements
were calculated for the commonb = v � = 2 .50 (whereb0 = v0� 0 = 1 .0).
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Fig. 5. Comparison of the prediction of Formula ( 27) (dotted and dashed-dotted curves as
well as grey solid one) with results of simulations (corresponding regions having di�erent
greyness, additionally marked by a, b and c) for three di�erent values of X d = 5 .26, 2.44, and
0.41 [×10 6]. The black solid curve shows the prediction of Formula ( 14), i.e., the prediction for
the time series simulated in the absence of a shock dragon-king; the corresponding simulated
VACF is given for this time series by the innermost (dark) region. All curves were obtained
for values of � = 2 .52, v = 0 .992, and N = 4, which are the same as for the case of the
sustained dragon-king.

The upward convexity of the curves in Fig. 4 is due to the presence of the
corresponding sustained dragon-king. As expected, the agreement, shown in Fig.4
between the prediction of Formula (15) and data obtained from simulations, becomes
better the further the dragon-king is located from the top of the hierarchy (see the
location of the bold number 1 in Table 1). The best agreement is obtained for the
largest j d = 19. In other words, the dragon-kings de“ned by j d smaller than 19
only slightly positively deviate their corresponding velocity autocorrelation functions,
Cd(�t), from their simulational counterparts.

The quantity C(�t), controlled by black swans and given by expression (14), is
also plotted in Fig. 4 (the dashed curve) as a reference VACF. In other words, this
VACF was calculated for the absence of a dragon-king.

5.2.2 Simulation results for the shock dragon-king

In Fig. 5, we present the results of simulations of the VACF for three di�erent
values of the shock sizeX d = 0 .41,2.44, and 5.26 [×106], which corresponds to
X d/x max = 1 .90, 11.3, and 24.4, respectively, wherexmax is the maximal spatial
value of the random walk•s single step belonging to the simulated hierarchical WM-
CTRW trajectory in the absence of a dragon-king. Remarkably, all these shocks are
fully exogenous as they were taken from outside of the spatio-temporal structure of
time series or random walks. The simulated trajectories have also the total duration
ttot = 1400 �t max and, except for the presence of the dragon-king, all trajectories are
identical.

A striking property of simulated VACF•s is their dispersion behaving like a certain
instability. Therefore, it is more convenient to use a formula that only describes the
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dispersion of the data. In principle, this formula could be obtained by replacing the
sum of velocities vL + vR in Formula ( 18) by its dispersion � =

�
�(v L + vR )2� =�

2
�

� 2
v + C(2�t), where � 2

v = �v 2
L � = �v 2

R �. This replacement is allowed because we
assumed, for simplicity, that a shock does not change the type of the random walk.

Moreover, our approach allows us to study a more realistic case, e.g., that in which
dispersion is lower than� de“ned above. Hence, we propose a more ”exible stationary
formula

Cd(�t) � C(�t) ±
�

2 � f
X d

t tot Š �t
Š

�
X d

ttot Š �t

� 2

, (27)

where � f
def .=

�
f � 2

v + C(2�t) and the phenomenological factor or weight, 0 < f � 1,
is the same for all trajectories. As is apparent, we transformed the non-stationary
expression (18) to a more useful stationary Expression (27) valid also for the case of
the shock dragon-king.

Comparison of the prediction of Eq. (27) with the data obtained by simulations is
shown in Fig. 5. In this “gure, only small deviations are seen for the choice of the factor
f = 0 .30. The data scatter is reasonably small but it increases with the increase of
the ratio X d/t tot . The origin of this scatter comes from ”uctuations of the simulated
trajectory, unfortunately resulting also in a spontaneous arti“cial trend (e.g., as a
deviation from the power law in the absence of the dragon-king). Additionally, this
trend can be supported by the “nite size of the simulated time series.

Note that further simpli“cation of Eq. ( 27) is also possible

Cd(�t) = C (�t) ±
�

2 � f
X d

t tot
Š

�
X d

ttot

� 2

, (28)

if the strong but reasonable inequality � tmax /t tot � 1 is obeyed.

6 Summary and concluding remarks

In the present work, we introduced the de“nitions of two kinds of super-extreme
events, the sustained and shock dragon-kings. They were de“ned speci“cally in
the frame of the hierarchical Weierstrass-Mandelbrot Continuous-time Random
Walk.

Furthermore, we discussed the following issues.

(i) We considered the impact of the two distinct types of dragon-kings on the
(unnormalized) velocity autocorrelation function.

(ii) By simulations and theoretical analysis, we found that the dragon-king in”u-
ence decisively changes the original VACF, as determined within the hierar-
chical Weierstrass-Mandelbrot Continuous-time Random Walk formalism for a
wide range of time intervals. The impact of both types of dragon-kings is well
pronounced but quite di�erent (cf. the corresponding plots shown in Figs. 4
and 5). Remarkably, the results obtained by simulations agree well with the
corresponding predictions of our simple theoretical Formulas (15) and (27) (see
again Figs. 4 and 5).

(iii) Furthermore, several intermediate formulas, e.g. (C.13), (C.15), or (C.20), de-
rived for Cd(�t) in this work, can be applied to more complex cases where, for
instance, (a) the random walk is changed after the dragon-king appearance, (b)
the random walk with drift is considered and (c) dragon-kings cluster in the
system.
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As it is apparent from Fig. 4, the presence of the sustained dragon-king throws the
system away from the state controlled by black swans. The •“ngerprint• of this dragon-
king is signi“cant because it convexly twists upward the curve of the autocorrelation
dependence on the time lag and distinctly deviates it positively from the power law
generated by black swans (cf. Sect.5.1.2 for details). This deviation is one of the
main features distinguishing Cd(�t) from the usual C(�t). This di�erence allows
one to distinguish a power-law relaxation, controlled by black swans, from the decay
controlled by the sustained dragon-king. Moreover, this di�erence can be so distinct
that it can e�ectively be applied as a quantitative tool to detect the sustained dragon-
king in an empirical time series.

Moreover, the shock dragon-king also signi“cantly changesC(�t) (Fig. 5). How-
ever, this change is di�erent than the change caused by the sustained dragon-king.
This change is also well seen by direct comparison of Formulas (15) and (27). Notice-
ably, the scatter of the data shown in Fig. 5 indicates some instability of the system
after the appearance of the shock dragon-king. Indeed, if the empirical VACF reveals
such an instability then we can anticipate that the corresponding empirical time series
contains the shock dragon-king. In other words, such an anomalous VACF indicates
the presence of shocks.

Notably, our considerations proved that sustained and shock dragon-kings can
appear in systems characterized by some power law distributions. These distribu-
tions seem to be ubiquitous statistical features of natural and socio-economic systems
(cf. [1,13,30] and references therein). Indeed, we expect that events de“ned as the
dragon-king events, which can appear there, substantially change the shape of these
distributions. That is, the dragon-king events destroy their stability. For instance,
in [1], a series of characteristic “gures illustrating the occurrence of the power law
tails was shown together with corresponding dragon-king events. Both these power law
tails and dragon-kings are relevant to various phenomena appearing in very di�erent
areas. Besides “nance, particularly promising cases for applications of our approach
seem to be:

(a) turbulence, where super-extreme events were observed to appear in the distri-
bution of the turbulent velocity ”uctuations,

(b) mechanics of rupture, where global failure is considered as a super-extreme
event within the material failure process,

(c) neurobiology, where super-extreme events in the distributions of epileptic
seizures associated with the strong coupling synchronized regime are observed,
and

(d) urbanization where, e.g., the size of Paris can be considered as a dragon-king
among all French cities.

In fact, our approach is potentially relevant to the analysis of arbitrary, prolonged
time series where the dragon-king can play the role of a “ngerprint of possible phase
transition or crash precursor (in the case of “nancial markets for instance).

We thank Armin Bunde for stimulating discussion. This work was partially supported by
the Grant No. 119 awarded to the “rst three coauthors within the First Competition of the
Committee of Economic Research, organized by the National Bank of Poland.

Appendix A. Multi-step representation of the propagator

The waiting-time distribution considered herein is the quantity relevant to construct
the propagator for the WM-CTRW model. The starting point is a multi-step ex-
pansion where the propagatorP(X, �t), presented in expression ( 9), consists of the
















