
ETH Library

Data-Enabled Predictive Control
for Quadcopters

Working Paper

Author(s):
Elokda, Ezzat ; Coulson, Jeremy; Beuchat, Paul N. ; Lygeros, John ; Dörfler, Florian

Publication date:
2019

Permanent link:
https://doi.org/10.3929/ethz-b-000415427

Rights / license:
Creative Commons Attribution 4.0 International

Funding acknowledgement:
787845 - Optimal control at large (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-2415-6494
https://orcid.org/0000-0002-1044-3994
https://orcid.org/0000-0002-6159-1962
https://orcid.org/0000-0002-9649-5305
https://doi.org/10.3929/ethz-b-000415427
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

RESEARCH ARTICLE

Data-Enabled Predictive Control for Quadcopters
Ezzat Elokda | Jeremy Coulson* | Paul N. Beuchat | John Lygeros | Florian Dörfler

Automatic Control Lab (IfA), ETH Zürich,
Zürich, Switzerland
Correspondence
*Physikstrasse 3, 8092 Zürich, Switzerland.
Email: jcoulson@control.ee.ethz.ch
Present Address
Physikstrasse 3, 8092 Zürich, Switzerland

Summary
We study the application of a data-enabled predictive control (DeePC) algorithm
for position control of real-world nano-quadcoptors. The DeePC algorithm is a
finite-horizon, optimal control method that uses input/output measurements from
the system to predict future trajectories without the need for system identification
or state estimation. The algorithm predicts future trajectories of the quadcopter by
linearly combining previously measured trajectories (motion primitives). We illus-
trate the necessity of a regularized variant of the DeePC algorithm to handle the
nonlinear nature of the real-world quadcopter dynamics with noisy measurements.
Simulation-based analysis is used to gain insights into the effects of regularization,
and experimental results validate that these insights carry over to the real-world
quadcopter. Moreover, we demonstrate the reliability of the DeePC algorithm by
collecting a new set of input/output measurements for every real-world experiment
performed. The performance of the DeePC algorithm is compared to Model Predic-
tive Control (MPC) based on a first-principles model of the quadcopter. The results
are demonstrated with a video of successful trajectory tracking of the real-world
quadcopter.
KEYWORDS:
Data-driven control, Predictive control, Quadcopters

1 INTRODUCTION

The analysis and design of control systems is traditionally addressed using a model-based control approach where a model
for the system is first identified from data, and the control policy is then designed based on the identified model. The system
identification step is often the most time-consuming and challenging part of model-based control approaches1,2. System iden-
tification often requires expert knowledge and partial system models3, and unless the control objective is taken into account
during the identification process, the obtained model may not be useful for control4. These observations as well as the advance-
ments in sensing and computation technologies have motivated a tendency toward data-driven control methods yielding many
successes5,6,7,8. Such methods bypass the traditional model-based control approach, and design control inputs directly from data.
These so-called direct data-driven methods for control design benefit from ease of implementation on complex systems where
system identification is too time-consuming and cumbersome. Among these data-driven methods are learning-based and adap-
tive Model Predictive Control (MPC) approaches, where the unknown system dynamics are substituted with a learned model
which maps inputs to output predictions9,10,11,12. However, such methods still require learning an input/output model and often
involve (stochastic) function approximation by means of neural networks or Gaussian processes, which come with their own
tuning challenges and can be inconsistent across applications13.

2 Elokda ET AL

One algorithm that does not require any function learning or system identification is the so-called DeePC algorithm14.
Instead, this algorithm directly uses previouslymeasured input/output data to predict future trajectories. The previouslymeasured
input/output data from the system act as motion primitives that serve as a basis for the subspace of possible system trajectories.
The DeePC algorithm builds on the seminal work on linear time invariant (LTI) systems by Willems et al., specifically what is
known as the fundamental lemma in behavioural systems theory15. This result was used by Markovsky et al. for the first time for
control purposes allowing for the synthesis of data-driven open loop control for LTI systems16. The DeePC algorithm extended
this method to closed-loop control and was implemented in a receding horizon optimal control setup. This algorithm was shown
to be equivalent to MPC for deterministic LTI systems14, and was later extended giving guarantees on recursive feasibility
and closed-loop stability17. Additionally, numerical case studies have illustrated that the algorithm performs robustly on some
stochastic and nonlinear systems and often outperforms system identification followed by conventional MPC18,19. The focus of
this paper is on implementing the DeePC algorithm14 for the first time on a real-world system. In particular, we seek to analyze
how the algorithm can be applied for real-time control of a quadcopter whose dynamics are nonlinear and the measurements are
corrupted by noise.
Several other data-driven control methods have been proposed that make use of input/output data in similar ways as DeePC.

One method uses the fundamental lemma to synthesize stabilizing output feedback controllers solving the linear quadratic reg-
ulation problem using only input/output data20. Other methods use previously measured input/output trajectories as motion
primitives to compute minimum energy inputs21, or produce new control inputs for LTI systems22. All of these methods, includ-
ing the DeePC algorithm, rely on the linearity property. The problem becomes challenging when the system is nonlinear and the
measurements are noisy. In this paper, we investigate how a robustified, regularized variant of the DeePC algorithm can tackle
these challenges, on a real-world implementation of a quadcopter.
Contributions: The DeePC algorithm is implemented for the first time on a real-world system bridging the gap from theory to
application. Through this, we gain key insights into choices of the algorithm’s hyperparameters, providing tuning guidelines.
We demonstrate that the DeePC algorithm is computationally tractable and suitable for real-time control. A video of the DeePC
algorithm performing figure 8 trajectory tracking on the real-world quadcopter is provided here: https://polybox.ethz.ch/index.
php/s/I0KKwIsudwaLj3n.
Outline: The real-world quadcopter system, problem statement, and DeePC algorithm are introduced in Section 2. The main
contributions appear in Section 3, where we present simulation analysis and experimental results, as well as a video of successful
trajectory tracking of the quadcopter. We conclude in Section 4 stating some future directions of research.

2 SETTING

We first present the quadcopter system in Section 2.1, providing details about its input/output channels, and the first-principles
modelling that is used for simulation-based analysis. We then formally state in Section 2.2 the quadcopter control goal as a
general finite-horizon, discrete-time, optimal control problem. Section 2.3 recalls the DeePC algorithm, showing how it can be
used to address both linear time invariant (LTI) and nonlinear stochastic control problems in a data-driven way.

2.1 Quadcopter
For the purpose of simulation, we use a nonlinear, continuous-time quadcopter model. Full details of the model derivation are
provided in other works23,24. Here we highlight the key definitions, equations, and control architecture. The model presented is
also the starting point for themodel-based control methods that are used for comparison in the experimental results in Section 3.4.
We define the model in terms of an inertial frame of reference, denoted (I), and a body frame of reference attached to the

quadcopter, denoted (B), with the origin of frame (B) fixed at the quadcopter’s center-of-gravity. The position of the body frame
with respect to the inertial frame is denoted by p⃗ = (

px, py, pz
). We use Euler angles to describe the orientation of the body

frame relative to the inertial frame, and following the ZYX intrinsic Euler angle convention, we denote the roll, pitch, and yaw
angles by ⃗ = (, �, �) respectively. The angular rates about the body frame axes are denoted by !⃗ = (

!x, !y, !z
). Thus, the

model has 12 states,
(

p⃗, ̇⃗p, ⃗ , !⃗
)

, and the inputs to the model are the thrust force from each propeller, denoted fi, i = 1,… , 4.
The parameters required for the quadcopter model are the mass m, the mass moment of inertia J , the body frame coordinates for
the center-of-thrust of each propeller (dxi , dyi), and the constant of proportionality d�i that approximates a linear relation between
the torque due to propeller drag and the thrust force fi. Figure 1 visualizes this definition of the quadcopter. The nonlinear,

https://polybox.ethz.ch/index.php/s/I0KKwIsudwaLj3n
https://polybox.ethz.ch/index.php/s/I0KKwIsudwaLj3n

Elokda ET AL 3

continuous-time equations of motion are readily derived as,

̈⃗p = 1
m

4
∑

i=1
fi

⎛

⎜

⎜

⎝

cos(�) sin(�) sin() + sin(�) cos()
sin(�) sin(�) cos() − cos(�) sin()

cos(�) cos()

⎞

⎟

⎟

⎠

−
⎛

⎜

⎜

⎝

0
0
ag

⎞

⎟

⎟

⎠

, (1a)

̇⃗! = J−1
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

∑4
i=1 fidyi

∑4
i=1 −fidxi

∑4
i=1 fid�i

⎞

⎟

⎟

⎟

⎠

− !⃗ × J!⃗
⎞

⎟

⎟

⎟

⎠

, (1b)

where ag is the acceleration due to gravity. An important feature of these equations is that the equilibrium inputs are the same
at all positions p⃗.

x(I)
y(I)

z(I)mag

x(B)

y(B)
z(B)

f1
f2

f3
f4

d�1f1

;

;
;

p⃗

x(B)

y(B)

(dx1 , dy1) !x

!y

!z

FIGURE 1 Perspective view (left) and top view (right) of the quadcopter model used for simulation; the annotations are defined
in Section 2.1. The (red,green,blue) arrows represent the inertial and body frames of reference, the dashed black circles indicate
the direction of rotation of the propellers, and the purple arrows show the forces and torques acting on the quadcopter model.

Most off-the-shelf quadcopters are equipped with an on-board controller that allows the user to specify references instead of
directly specifying the thrust force for each propeller, we refer to this as the inner controller. Often the manufacturer does not
provide details of the inner controller and does not allow the user to bypass it. We consider a quadcopter with an inner controller
that uses the data from the onboard inertial measurement unit (IMU) to track user provided references for the angular rate about
the x(B) and y(B) axes of the body frame and maintains a constant yaw angle. We leave the inner controller as implemented by
the manufacturer, and consider the following three inputs to the system:

• the body rate references about the x(B) and y(B) axes, denoted by !ref ,x and !ref ,y respectively, and
• the total thrust force from the propellers combined, denoted by ftot .

The outer controller adjusts these three inputs to ensure that the quadcopter tracks a position reference provided by the user,
based on feedback of position and orientation measurements, p⃗, , and �, provided by an external motion capture system25,26.
Our aim is to design a data-driven outer controller for this 3 input, 5 output off-the-shelf quadcopter system (see Figure 2 for a
schematic of the architecture).

4 Elokda ET AL

Σ
outer

controller Σ

inner
controller

reference
position

+
body rates reference
!ref ,x, !ref ,y

+
propeller
thrusts

total thrust, ftot

position and orientation measurements, p⃗, , �

−

data from inertial measurement unit (IMU)
−

OFF-THE-SHELF QUADCOPTER SYSTEM

FIGURE 2 Block diagram of the cascaded control architecture used for the simulations and experiments. In an off-the-shelf
quadcopter system, the inner controller is typically already implemented. Here we focus on the synthesis of the outer controller.

2.2 Problem statement
Let us consider a discretized version of the quadcopter dynamics (1), which we denote by

x(t + 1) = f (x(t), u(t)),
y(t) = ℎ(x(t), u(t)),

(2)
where x(t) ∈ ℝn, u(t) ∈ ℝm, and y(t) ∈ ℝp are respectively the state, control input, and output at time t ∈ ℤ≥0. Note that
even though the continuous-time dynamics (1) are known, an analytic expression does not exist for the nonlinear discretized
dynamics described by mappings f ∶ ℝn × ℝm → ℝn and ℎ∶ ℝn × ℝm → ℝp in (2). We purposefully abstract notation above
to highlight the fact that the problem statement is not unique to a quadcopter, but can be applied to any system with nonlinear
dynamics. For the quadcopter, we have that, u(t) = (ftot , !ref ,x, !ref ,y) ∈ ℝ3, and y(t) = (px, py, pz, , �) ∈ ℝ5.
We consider the problem of constrained finite-horizon optimal control. Given the current time t ∈ ℤ≥0, a time horizon

Tf ∈ ℤ≥0, input and output constraint sets ⊆ ℝm, ⊆ ℝp, the goal is to design a sequence of admissable control inputs
{u(t+ i)}Tf−1i=0 ⊂ such that when applied to system (2), the resulting outputs {y(t+ i)}Tf−1t=0 ⊂ ℝp lie in the constraint set and
minimize the stage costs given by cost function c ∶ ℝp×ℝm → ℝ≥0. More formally, we wish to solve the following optimization
problem:

minimize
u,y

Tf−1
∑

i=0
c(y(t + i), u(t + i))

subject to x(t + i + 1) = f (x(t + i), u(t + i)), ∀i ∈ {0,… , Tf − 1}
y(t + i) = ℎ(x(t + i), u(t + i)), ∀i ∈ {0,… , Tf − 1}
u(t + i) ∈ , y(t + i) ∈ , ∀i ∈ {0,… , Tf − 1}
x(t) = x̂(t),

(3)

where x̂(t) is an estimate of the state at time t, typically computed by "filtering" the sequence of past inputs and outputs.
Problem (3) is solved in a receding horizon fashion and is widely known as output MPC. The cost function c can be designed
by the user to attain various control objectives (e.g., regulation, or trajectory tracking) .
Without knowledge of system (2), solving problem (3) is no longer possible as we are unable to predict forward trajectories

of the system, and estimate the current state x(t). To resolve these issues, we approach the problem in a data-driven manner.
In particular, we use the data-enabled predictive control (DeePC) algorithm18, which replaces the constraints requiring system
knowledge by raw input/output data to solve an optimization problem similar to (3), and, under assumptions to be recalled next,
directly equivalent to (3).

Elokda ET AL 5

2.3 Data-Enabled Predictive Control (DeePC)
DeePC for deterministic LTI systems
The DeePC algorithm has been shown to be an equivalent data-driven method for solving (3) when the unknown system (2) is
a deterministic LTI minimal realization, i.e., when the dynamics in (2) are of the form

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) +Du(t),

(4)
where A,B, C,D are matrices of appropriate dimensions. Note that (4) being a minimal realization implies controllability and
observability properties of the system. Several modifications have also been proposed for robustifying the algorithm against
stochastic disturbances18. We first introduce the necessary preliminaries, then recall the DeePC algorithm as applied to LTI
systems of the form (4), followed by the robustifying regularizations that allows the algorithm’s adaptation for the nonlinear
quadcoptor system (2) with noisy measurements.
Let the Hankel operator which maps a sequence of signals u = {u(i)}Ti=1 ⊂ ℝm to a Hankel matrix with L ∈ ℤ>0 block rows

be denoted by

ℋL(u) ∶=

⎛

⎜

⎜

⎜

⎜

⎝

u(1) u(2) … u(T − L + 1)
u(2) u(3) … u(T − L + 2)
⋮ ⋮ ⋱ ⋮

u(L) u(L + 1) … u(T)

⎞

⎟

⎟

⎟

⎟

⎠

.

Definition 1. (Persistency of Excitation): Let L ∈ ℤ>0. The sequence of signals u = {u(i)}Ti=1 ⊂ ℝm is called persistently
exciting of order L if the Hankel matrixℋL(u) has full row rank.
Note that the property of being persistently exciting of order L requires the length of the sequence of signals be large enough;

in particular, the length must be such that T ≥ (m + 1)L − 1. Intuitively, a persistently exciting sequence of signals must be
sufficiently long and sufficiently rich to excite all aspects of the dynamics (4). The DeePC algorithm relies on the following
fundamental result.
Theorem 1. (Theorem 115): Let Td, L ∈ ℤ>0. Let (ud, yd) = {(ud(i), yd(i))}

Td
i=1 be a trajectory of (4) of length Td such that

{ud(i)}
Td
i=1 is persistently exciting of order L + n. Then (u, y) = {(u(i), y(i))}Li=1 is a trajectory of (4) if and only if there exists

g ∈ ℝTd−L+1 such that
(

ℋL(ud)
ℋL(yd)

)

g =
(

u
y

)

.

The result above states that the subspace spanned by the columns of the Hankel matrix
(

ℋL(ud)
ℋL(yd)

)

corresponds exactly to
the subspace of possible trajectories of (4). Hence, the Hankel matrix may serve as a non-parametric model for (4), one that is
simply constructed from raw time-series data and does not require any learning.
In what follows, we will see how the above theorem allows us to perform implicit state estimation as well as predict forward

trajectories of the unknown system allowing us to solve an optimization problem equivalent to (3) when the system is of the
form (4).

Data collection: Let Td, Tini ∈ ℤ>0 be the length of data collection and the time horizon used for initial condition estimation,
respectively. Suppose (ud, yd) = {(ud(i), yd(i))}

Td
i=1 is a sequence of input/output measurements collected from (4) during an

offline procedure. Suppose further that the input {ud(i)}Tdi=1 is persistently exciting of order Tini + Tf + n. We partition the
input/output measurements into Hankel matrices

(

Up
Uf

)

∶= ℋTini+Tf(ud),
(

Yp
Yf

)

∶= ℋTini+Tf(yd), (5)
where Up consists of the first Tini block rows of ℋTini+Tf(ud) and Uf consists of the last Tf block rows of ℋTini+Tf(ud) (similarly
for Yp and Yf). The data in Up and Yp will be used in conjunction with past data to perform implicit initial condition estimation,
and the data in Uf and Yf will be used to predict future trajectories.

Data-driven control and estimation: Let (uini, yini) = {(uini(t − i), yini(t − i))}1i=Tini be the Tini most recent past input/output

6 Elokda ET AL

measurements from the system. By Theorem 1, (u, y) = {u(t+ i), y(t+ i)}Tf−1i=0 is a possible future trajectory of (4) if and only if
there exists g ∈ ℝTd−Tini−Tf+1 satisfying

⎛

⎜

⎜

⎜

⎜

⎝

Up
Yp
Uf
Yf

⎞

⎟

⎟

⎟

⎟

⎠

g =

⎛

⎜

⎜

⎜

⎜

⎝

uini
yini
u
y

⎞

⎟

⎟

⎟

⎟

⎠

. (6)

Every column of the Hankel matrix is a trajectory of the system (motion primitive), and any new trajectory (right-hand side
of (6)) can be synthesized by a linear combination of these motion primitives. Hence, given an input sequence u to be applied to
the system, one can solve the first three block equations of (6) for g, and the corresponding output sequence is given by y = Yfg.
The top two block equations in (6) are used to implicitly fix the initial condition from which the future trajectory departs. To
uniquely fix the initial condition from which the future trajectory departs, one must set Tini ≥ l, where l is the lag of the system
(i.e., the number of past measurements required to uniquely identify the current state of the system through back-propogation
of the dynamics (4)). This in turn implies that the predicted trajectory given by y = Yfg is unique16. Note that the lag l of the
system is a priori unknown, but is upper bounded by n. Hence, knowing an upper bound on the state dimension n of the system
is sufficient to obtain unique predictions.
The Hankel matrix in (6) simultaneously performs state estimation and prediction, and can thus be used as a predictive model

for system (4). Substituting (6) for the unknown dynamics (4) in the optimization problem (3) gives rise to the following data-
driven optimization problem allowing for the computation of optimal control inputs without knowledge of a system model:

minimize
u,y,g

Tf−1
∑

i=0
c(y(t + i), u(t + i))

subject to
⎛

⎜

⎜

⎜

⎜

⎝

Up
Yp
Uf
Yf

⎞

⎟

⎟

⎟

⎟

⎠

g =

⎛

⎜

⎜

⎜

⎜

⎝

uini
yini
u
y

⎞

⎟

⎟

⎟

⎟

⎠

u ∈ Tf , y ∈ Tf ,

(7)

where Tf is the Tf-fold cartesian product of (similarly for Tf). The optimization problem (7) was shown to be equivalent
to the MPC problem given in (3) when the unknown system is of the form (4)18.
Regularized DeePC for nonlinear noisy systems
The goal of this paper is to implement the above DeePC optimization problem to control a real-world quadcopter described above
in Section 2.1. As the quadcopter dynamics do not satisfy the deterministic LTI assumption necessary to show the equivalence
of the MPC optimization problem (3) and the DeePC optimization problem (7), regularizations are needed. Indeed, when the
input/output data used for the Hankel matrix in (7) is obtained from a nonlinear system or is corrupted by process or measurement
noise (as is the case with any real-world application) the subspace spanned by the columns of the Hankel matrix no longer
coincides with the subspace of possible trajectories of the system. In fact, in any real-world problem setting the Hankel matrix
used for predictions in (7) will generally be full rank. Hence, the Hankel matrix constraint will imply that any trajectory is
possible leading to poor closed-loop performance of the DeePC algorithm. Furthermore, the online measurements yini used to
set the initial condition from which the predicted trajectory departs are corrupted by measurement noise, and thus may cause
poor predictions. Including a 2-norm penalty on the difference between the estimated initial condition Ypg and the measured
initial condition yini coincides roughly with a least-square estimate of the true initial condition.
Regularization has been proposed as one method to deal with these difficulties and extend the DeePC algorithm to nonlinear

noisy systems14. We present a variation of these regularizations in the following regularized DeePC optimization problem

minimize
u,y,g

Tf−1
∑

i=0
c(y(t + i), u(t + i)) + �s‖Ypg − yini‖22 + r(g)

subject to
⎛

⎜

⎜

⎝

Up
Uf
Yf

⎞

⎟

⎟

⎠

g =
⎛

⎜

⎜

⎝

uini
u
y

⎞

⎟

⎟

⎠

u ∈ Tf , y ∈ Tf ,

(8)

Elokda ET AL 7

where �s ≥ 0, and r∶ ℝTd−Tini−Tf+1 → ℝ≥0 is a function used to regularize g. Algorithm 1 below summarizes the DeePC
procedure where (8) is implemented in a receding horizon fashion.

Algorithm 1 Regularized DeePC
Input: Td, Tini, Tf, cost function c, �s, constraint sets and , regularization function r, data sequence {(ud(i), yd(i))}Tdi=1, the
Tini most recent past input/output measurements (uini, yini).

1. Set g⋆ equal to the solution of (8).
2. Compute the optimal input sequence u⋆ = Ufg⋆.
3. Apply input (u(t),… , u(t + s)) = (u⋆0 ,… , u⋆s) for some s ≤ Tf − 1.
4. Set t to t + s and update uini and yini to the Tini most recent past input/output measurements.
5. Return to 1.

It has been shown that when r(g) = �g‖g‖q , where �g ≥ 0 and q ∈ ℤ>0∪{+∞}, problem (8) coincides with a distributionally
robust problem formulation. Using such a q-norm regularization for the decision variable g induces robustness to all systems
(nonlinear or stochastic) that could have produced the data in the Hankel matrices (5) within an s-norm induced Wasserstein
ball around the data samples used, where 1

q
+ 1

s
= 118.

The computational complexity of (8) can be characterized by the number of decision variables and constraints. There are
(

(m + p)Tf
)

+
(

Td − Tini − Tf + 1
) decision variables, mTini + (m + p)Tf equality constraints, and 2(m + p)Tf input/output con-

straints, when Tf and Tf are box constraint sets. As is expected of a finite-horizon optimal control method, the computational
complexity grows with the time horizon Tf. Furthermore, Tini and Td also affect the computational complexity. The former is
related to the observability of the unknown system (2), the latter to the system’s dimensionality.

3 RESULTS

In this section, we present the results and insights gained by applying DeePC Algorithm 1 described in Section 2.3 for trajectory
tracking of the quadcopter system described in Section 2.1. The challenges posed by this application are:

1. The nonlinear and stochastic nature of the quadcopter system requires that the regularization function in (8) and the other
hyperparameters offered by the DeePC Algorithm 1 be chosen appropriately for the application at hand. This is addressed
by the simulation-based analysis in Section 3.2.

2. It is not clear that simulation-based parameter selection can be directly transferred to real-world experiments, mainly due
to unmodelled dynamics, delays in actuation, communication or sensing, and noise. This is addressed by the experimental
results in Section 3.3.

The real-world results were collected from laboratory experiments conducted using a motion capture system to provide mea-
surements of the position and orientation of the quadcopter at a frequency of 25Hz. Thus, the sampling time in the discrete-time
dynamics (2) is 40ms. The laboratory setup was developed as part of a previous work27. To provide the reader with an idea for
the scale of the setup, the Crazyflie 2.028 quadcopter weighs 28 grams and a 12 cubic meter flying space was available. Further
details on the setup are given in Section 3.3 where the experimental results are presented. The simulation environment uses the
model presented in Section 2.1 and the model parameters identified in a previous work29. These model parameters do not match
the specific Crazyflie 2.0 used for the experiments, partially due to additional hardware required for detection by the motion
capture system.

8 Elokda ET AL

3.1 Data collection
As described in Section 2.3, the input signal used in the Hankel matrices appearing in (7) must be persistently exciting of suffi-
cient order. This data can be collected by injecting a random input sequence, or by performing a manual flight experiment where
a human performs the function of the outer controller. For repeatability of results, we chose the former. Two possible choices of
random input signals to be applied during the data collection phase are a pseudorandom binary sequence (PRBS) designed for
multiple inputs30, or a white noise signal. Both types of perturbations were tested in simulations and showed a negligible differ-
ence in the performance of the DeePC algorithm. The results in this paper are presented using a PRBS input signal during the
data collection phase because it generally provides better performance for classical system identification techniques (see, e.g.,31
Chapter 13). The input signals applied for data collection consist of the PRBS excitation signal added to an existing controller
that maintains the quadcopter around the hover state. The data collected was used to populate the Hankel matrices in (5).

3.2 Simulation-based analysis and insights
The aim of our controller is to track a steady state reference (ur, yr) ∈ ℝm ×ℝp. We therefore consider as the cost function c the
quadratic tracking error between the prediction and the given steady state reference, i.e.,

c(y, u) = (y − yr)TQ(y − yr) + (u − ur)R(u − ur), (9)
where Q ⪰ 0, R ≻ 0. The values chosen are given in Appendix A. The time horizon was chosen as Tf = 25 which corresponds
to 1 second in real time. Furthermore, we choose the regularization function in (8) as the following:

r(g) = �g ‖g − gr‖q , with gr =

⎛

⎜

⎜

⎜

⎜

⎝

Up
Yp
Uf
Yf

⎞

⎟

⎟

⎟

⎟

⎠

†
⎛

⎜

⎜

⎜

⎜

⎝

1Tini ⊗ ur
1Tini ⊗ yr
1Tf ⊗ ur
1Tf ⊗ yr

⎞

⎟

⎟

⎟

⎟

⎠

. (10)

where �g ≥ 0, q ∈ ℤ>0 ∪{+∞}, the vector 1Tini ⊗ur denotes the stacked column vector consisting of Tini copies of ur (similarly
for 1Tini⊗yr), and † denotes the pseudoinverse. The vector gr in the above can be thought of as a “steady-state trajectory mapper”
which linearly combines columns of the Hankel matrix to match the given steady-state reference trajectory. Among the possibly
infinite number of vectors g that match the steady state, this is the one with the smallest 2-norm. In the case when there is no g
that matches the steady state, gr matches it as closely as possible in the 2-norm sense. However, this case is unlikely in practice
since the Hankel matrix is generally full rank as discussed above. Penalizing the difference between g and gr ensures that the
stage cost in (8) is zero when the quadcopter is at the steady-state reference (ur, yr).
Under these design choices, the regularized DeePC optimization problem (8) offers several hyperparameters given by:
• Td, the total number of data points used to construct the Hankel matrices in (5),
• Tini, the time horizon used for initial condition estimation,
• �s, the weight on the softened initial condition constraint,
• �g , the weight on the regularization of g,
• q, the norm used to regularize g in (10), and
• p, the number of outputs used to construct the Hankel matrices in (5).

Although pmay seem fixed by the output measurements available, in the case of quadcopter control, it is reasonable to consider
whether to use all measurements for position control, i.e., set p = 5, or use only the position measurements, i.e., set p = 3. Note
that if one were to approach the control problem through system identification followed by MPC, a number of hyperparameters
would also need to be selected. To investigate the effect of the hyperparameters for DeePC, we perform a grid search over the
ranges

Tini ∈ {2,… , 10}, �s ∈ [105, 1010], �g ∈ [100, 108], q = {1, 2}, p = {3, 5}, (11)
and a range of Td values that satisfy the minimum data length prescribed by the persistency of excitation requirement from
Definition 1. Note that the prediction horizon Tf, and the cost matrices Q and R are not parameters unique to the regularized

Elokda ET AL 9

DeePC optimization problem (8), but are also parameters for MPC. For the sake of clarity we do not consider them as hyperpa-
rameters in the simulation-based analysis. Moreover, fixing Tf = 25, andQ andR as in Appendix A, was sufficient for achieving
good closed-loop performance, and allows for a focus on the hyperparameters unique to the DeePC. For each combination of
hyperparameters the following procedure is carried out in simulation. The same procedure is used for the real-world experiments
presented in Section 3.3.
Procedure 1. (Procedure for collecting results in simulation and real-world experiments): For simulation, the system used
was a model of the off-the-shelf quadcopter system with dynamics (1) and architecture as in Figure 2, where measurements were
affected by zero-mean Gaussian noise with covariance matrix Σy as in Appendix A. For the real-world experiments, the system
used was the Crazyflie 2.0.

1. The quadcoptor is brought to hover at y = (0, 0, 1) with a stabilizing controller. The system is excited by adding a PRBS
signal to the output of the stabilizing controller, as per Section 3.1, for the input/output data collection step of the DeePC
algorithm.

2. The regularized DeePC optimization problem (8) is setup with the input/output data collected in step 1.
3. The DeePC controller is turned on and the quadcoptor is commanded to track a diagonal step up from y(0) =
(−0.5,−0.5, 0.5) to yr = (0.5, 0.5, 1.5).

4. The resulting closed-loop tracking error is measured as ∑Te−1
t=0 ‖y(t) − yr‖22, where t = 0 is the time index at the start of

the step trajectory and Te = 250 is the chosen experiment length, which corresponds to 10 seconds in real time.
Sensitivity to Td and Tini
As discussed in Section 2.3, for LTI systems the DeePC algorithm requires a minimum number of data points to satisfy the
persistency of excitation property. Since we apply the DeePC algorithm to a nonlinear system subject to measurement noise, it
becomes unclear as to how many data points are needed in order to construct the Hankel matrices in (5). Figure 3 shows the
sensitivity analysis of Td and Tini on the tracking error. Figure 3 (left) shows the influence of Td on the tracking error, where for
each value of Td considered we show the smallest tracking error achieved over all combinations of the other hyperparameters in
the grid given by (11) with Tini = 6. Similarly, Figure 3 (right) shows the influence of Tini on the tracking error, where for each
value of Tini considered we show the smallest tracking error achieved over all combinations of the other hyperparameters in the
grid given by (11) with Td = 331.

200 250 300 350

50

100

150

Td

tra
cki

ng
err

or

p = 3
p = 5

2 4 6 8 10

50

100

150

Tini

p = 3
p = 5

FIGURE 3 Influence of Td (left) and Tini (right) on the tracking error. For each point plotted, the tracking error is the minimum
achieved over all other hyperparameter combinations considered, with Tini = 6 for the left-hand plot, and Td = 331 for the
right-hand plot. Evaluating the expression in (12), the Hankel matrix becomes square at Td = 223 for p = 3 and at Td = 287 for
p = 5.

10 Elokda ET AL

The key insight from the grid search result in Figure 3 (left) is the distinct improvement in the tracking error of the regularized
DeePC algorithm when the number of data points is chosen such that the Hankel matrix appearing in the DeePC optimization
problem (8) has at least as many columns as rows. Since the Hankel matrix is generally full rank when the data is obtained from
a nonlinear noisy system (and thus its columns span ℝ(m+p)(Tini+Tf)), having a square Hankel matrix ensures that the subspace
spanned by its columns contains the actual subspace of possible trajectories of the system. When the Hankel matrix is slim (i.e.,
has less columns than rows), this property may not hold; the subspace spanned by the columns of a slim Hankel matrix may not
contain the subspace of possible trajectories of the system. This insight is summarized as the following inequality which states
that Td should be chosen to be larger than both the minimum amount needed for persistency of excitation in the LTI case and
the minimum amount such that the Hankel matrix in (8) is square

Td ≥ max
{

(m + 1)(Tini + Tf + n) − 1, (m + p + 1)(Tini + Tf) − 1
}

. (12)
Here n = 8 is the number of states corresponding to a minimal realization of (1) linearized about hover. Note that the minimum
number of data points such that the Hankel matrix in (8) is square is directly affected by the number of outputs p. Hence, a larger
p requires more data points to satisfy the lower bound in (12) and thus results in more decision variables in problem (8).
A similar trend is observed in Figure 3 (right) for Tini where good tracking performance is achieved for values larger than

Tini = 2 for p = 5, and Tini = 3 for p = 3. This suggests that more past measurements are needed to estimate the initial
condition of the unknown system when p = 3. We observed, however, that setting Tini = 6 gives steadier flight of the quadcopter.
Under noisy measurements, increasing Tini leads to better initial condition estimates. For the remaining results (simulation and
experimental), Procedure 1 was conducted with the number of data points Td = 331 and with Tini = 6. This resulted in good
tracking error performance for both p = 3 and p = 5, while keeping the size of the DeePC optimization problem (8) small
enough to be computationally tractable in real-time.
Sensitivity to �s, �g , q, and p
Figure 4 shows the results from the grid search as a heat map over (�s, �g)with fixed values of q = 2 and p = 3 for the purpose of
visualization, and fixed value of Td = 331 and Tini = 6 for the reasons described above. The figure provides the insight that there
is a threshold for �s (approximately �s ≥ 107) beyond which small tracking error can be achieved. The intuitive explanation
for this insight is that a large enough penalization on the softened initial condition constraint ensures that the future predicted
trajectory departs from an initial condition close to the actual initial condition.

100 101 102 103 104 105 106 107

106

107

108

109

�g

� s

40

60

80

100

120

FIGURE 4 Influence of �g and �s on the tracking error. All other parameters are fixed to the values described in the text. The
coloured shading is restricted to the interval (36, 120) to sufficiently display the shape of the region shown. The cost increases
steeply in regions where the cost is greater than 120, thus the plot is clipped for values greater than 120 for the sake of clarity.

Elokda ET AL 11

100 101 102 103 104 105 106 107 108

40

60

80

�g

tra
cki

ng
err

or

q = 2, p = 3
q = 2, p = 5
q = 1, p = 3
q = 1, p = 5

FIGURE 5 Influence of �g , q, and p on the tracking error with the fixed value of �s = 7.5 × 108. Hence for the combination
q = 2, p = 3 (solid thick line) this is the respective slice of Figure 4. The main observation is that the choice q = 2, i.e., a
2-norm regularization on decision variable g, provides a wider range of �g for which acceptable tracking error is achieved.

Figure 4 also exposes a range for �g in which small tracking error is achieved. To investigate this further we consider the grid
search results for all combinations of q ∈ {1, 2} and p ∈ {3, 5}. Figure 5 shows the results from the grid search over �g for a
fixed value of �s = 7.5 × 108 and for all four combinations of q and p, e.g., the line for q = 2, p = 3, is the slice of Figure 4
at the fixed value of �s. In all cases a small tracking error is achieved for a range of �g , although the combination q = 1, p = 3
performs relatively poorly. This range of �g with acceptable tracking error is wider for q = 2 than for q = 1, which suggests that
for the setup under consideration, 2-norm regularization is less sensitive to hyperparameter selection than 1-norm regularization.
This observation is supported by observing the heat maps for all four combinations q ∈ {1, 2} and p ∈ {3, 5} as provided in
Appendix B. Based on these insights, for the remainder of the results we fix the values �s = 7.5 × 108 and q = 2 and now
investigate in more detail the influence of �g and the choice of output measurements p ∈ {3, 5}.
To provide some intuition for how �g influences the optimal solution of the regularized DeePC optimization problem (8) we

now take a closer look at the closed loop trajectories resulting from �g ∈ {0, 500}. Figure 6 (a,b) shows the pz coordinate of the

−1 0 1 2 3 4 5

0.5

1

1.5

2 (a) �g = 0

p z
[m

ete
rs]

−1 0 1 2 3 4 5

0.5

1

1.5

2 (b) �g = 500

Time [seconds]

p z
[m

ete
rs]

−1 0 1 2 3 4 5

0.5

1

1.5

2 (c) �g = 0

−1 0 1 2 3 4 5

0.5

1

1.5

2 (d) �g = 500

Time [seconds]
FIGURE 6 Actual trajectories (solid) versus predicted trajectories from optimization problem (8) (dashed). (a,b) are simulated
results and (c,d) are experimental results. The top plots (a,c) are for �g = 0, and the bottom plots (b,d) are for �g = 500.

12 Elokda ET AL

simulated closed loop trajectory over time (solid line), the reference yr (dotted line), and the trajectory predicted by problem (8)
at representative time instants (dashed line).
In the case of no regularization (Figure 6 (a), �g = 0), the predictions do not correspond to the physics of the model and

the actual position diverges, i.e., the quadcopter crashes. Since the data used in the Hankel matrix in (8) is obtained from a
nonlinear system and is corrupted by measurement noise, then the subspace spanned by the columns of the Hankel matrix is
all of ℝ(m+p)(Tini+Tf). Hence, without regularization on the decision variable g, the Hankel matrix predicts that every trajectory is
possible. The value �g = 500 is selected from the grid search result where the DeePC algorithm achieved the smallest tracking
error (see Figure 5). We see in Figure 6 (b) that desirable reference tracking is achieved and that more physical predictions are
computed by the regularized optimization problem (8).
An important distinction between the �g hyperparameter and the Td, Tini hyperparameters discussed above, is that the �g

regularization cannot be arbitrarily increased, shown also in Figure 5. The reason is that at a certain level the regularization
term r(g) in (8) dominates the tracking error term, leading to poor tracking performance and eventually instability of the system.
However, the range of �g resulting in small tracking error is large (e.g., �g ∈ [100, 10000] for q = 2, p = 3 in Figure 5) indicating
robustness to the choice of �g .

3.3 Real-world DeePC implementation
We now investigate how the insights gained through the simulation analysis of Section 3.2 transfer to laboratory experiments
on a real-world quadcopter, with the details of the experimental setup provided at the start of Section 3. The experiments
are performed as per Procedure 1 (see Section 3.2) and through the results we investigate: (a) whether the insights from the
simulation-based analysis are validated in experiments; (b) whether the hyperparameter values identified from the simulation-
based analysis can be directly transferred to the laboratory environment; and (c) the reliability of the tracking performance
achieved.
Figure 7 provides a schematic of the laboratory setup used to collect the experimental results. The motion capture system

consists of multiple cameras placed around the flying space and connected to a dedicated computer. The software running on the
motion capture computer provides accurate measurements26 of the position and orientation of the Crazyflie 2.028 quadcopter,
i.e., measurements of (p⃗, , �). These measurements are available to an offboard laptop where the outer controller from Figure 2
is implemented. The control decisions of the outer controller, i.e., (ftot , !ref ,x, !ref ,y), are sent via the Crazyradio link to the
Crazyflie 2.0 where the firmware provided with the quadcopter runs an onboard controller to track these.
Figure 6 (c,d) shows the px coordinate of the closed loop trajectory, reference, and DeePC predictions when implemented on

the quadcopter using the same hyperparameter values as Figure 6 (a,b) respectively. The main feature of Figure 6 is that the
simulation and experimental results show qualitatively similar closed-loop trajectories (solid lines) and predictions computed
by the DeePC optimization problem (8) (dashed lines). This provides experimental validation of the insight that regularization
is required to predict physically reasonable trajectories when applying the DeePC to a real system. Moreover, a direct transfer
of the hyperparameters selected via simulation to the experiments was possible, and we observed that tracking performance
was not significantly improved by adjusting the regularization parameter �g . Appendix C provides a similar comparison for

Motion capture camera

Offbaord laptop
Motion capture

computer

Crazyflie 2.0

Crazyradio
link

FIGURE 7 Schematic showing the laboratory setup used to collect the experimental results described in Sections 3.3 and 3.4.

Elokda ET AL 13

hyperparameter values above and below �g = 500, indicating that the real-world implementation also achieves the best tracking
performance at approximately �g = 500.
To investigate the reliability of the performance observed in Figure 6 (d), and also to investigate the influence of hyperparame-

ter p, Procedure 1 was repeated in 28 experiments for each of p = 3 and p = 5. To capture different operating conditions, 14 trials
were performed with a fully charged battery and 14 with a partially depleted battery. Figures 8 and 9 and Table 1 summarize
the results. Figure 8 shows the position time series data (solid grey) of all 28 trajectories for p = 3 (a,b,c) and for p = 5 (d,e,f),
with the average at each time point (dashed) shown to assist with visualization. Figure 9 shows that same data as a top view.
Quantitatively, Table 1 shows that p = 3 achieves a lower tracking error compared to p = 5, in terms of mean, median, and

standard deviation. This is likely due to the orientation measurements having higher noise than the position measurements. This
can be addressed by performing a weighted penalization of Ypg − yini using the covariance matrix of the measurement noise.
Qualitatively, Figures 8 and 9 suggest that there is less variation in the closed loop trajectories with p = 3 than with p = 5.
From the online computation persective, Table 1 shows that optimization problem (8) is solved sufficiently fast for both p = 3
and p = 5 considering that output measurements are provided for real-time implementation at 25Hz.
A video of the quadcoptor successfully tracking step trajectories and a figure 8 using the DeePC algorithm can be found here:

https://polybox.ethz.ch/index.php/s/I0KKwIsudwaLj3n.

TABLE 1 Real-world experimental results comparison for p ∈ {3, 5}. Solve time values reported use solver OSQP32 on a 64bit
Ubunto 16.04 LTS, Intel i7-8550U, 1.8GHz, 4 Cores, 16GB memory machine.

Tracking Error1 Solve time [ms]
p mean median std. dev. mean median std. dev.
3 75 69 21 4.14 3.92 1.49
5 93 86 23 6.66 5.70 4.78
1 Computed as described in the Procedure 1.

3.4 Real-world comparison with model-based control
The results in Section 3.3 show that DeePCAlgorithm 1 achieves good performance for the step reference tracking task specified
in Procedure 1 without ever constructing an explicit model of the quadcopter system being controlled. We now present a model-
based point of comparison that is developed for linear systems.We take a first-principles approach that considers the linearization
of the quadcopter dynamics (1) about the hover equilibrium point, and we assume that the inner controller tracks the body rates
reference signal without dynamics or delays. We use a sampling time of 0.04 seconds, i.e., 25Hz, to convert the continuous-
time linear model to discrete-time. The resulting linear system model can be readily derived33. Hence we consider a model
based-controller with eight states and three inputs,

(

p⃗, ̇⃗p, , �
)

and (ftot , !ref ,x, !ref ,y
) respectively.

The model-based control method we implement is output MPC, as described in Section 2.2. Optimization problem (3) is
solved in a receding horizon fashion with the dynamics function f replaced by the linear-time invariant system model described
above, the cost function c given by (9), and all parameters {Tf , Q,R, , , ur} set to the same values as used for the DeePC as
given in Appendix A. The state estimate, x̂(t), is constructed by directly taking the measurements for (p⃗, , �), and ̇⃗p is estimated
as the discrete time derivative of subsequent p⃗ measurements. Figure 10 compares a trajectory of this first-principles MPC
approach with that of the DeePC. Figure 10 (a) shows the time series of the vertical position pz, and Figure 10 (b) shows the
trajectory in the (px, py)-plane
Figure 10 (a) shows that DeePC and MPC achieve qualitatively similar tracking performance for the vertical position pz. Both

have a similar rise time and settling time, with the most distinct feature being that the DeePC controller overshoots the reference
but then settles to a smaller steady state offset. For MPC, this offset is present because there is a model mismatch between the
steady state input, ur, and that needed to maintain the real-world quadcopter at steady state. As the DeePC controller is provided
with the same ur, this indicates that the structure of the DeePC controller is able, to some extent, to correct for a mismatch of the

https://polybox.ethz.ch/index.php/s/I0KKwIsudwaLj3n

14 Elokda ET AL

0 2 4 6 8

−0.5

0

0.5

1 (a)
p x

[m
ete

rs]

0 2 4 6 8

−0.5

0

0.5

1 (b)

p y
[m

ete
rs]

0 2 4 6 8

0.5

1

1.5

2 (c)

Time [seconds]

p z
[m

ete
rs]

0 2 4 6 8

−0.5

0

0.5

1 (d)

0 2 4 6 8

−0.5

0

0.5

1 (e)

0 2 4 6 8

0.5

1

1.5

2 (f)

Time [seconds]
FIGURE 8 Real-world quadcopter trajectories (solid grey) for 28 experiments, each with the same change in reference signal
(dotted black). Plots (a,b,c) are for p = 3 and plots (d,e,f) are for p = 5. The dashed lines show the average of the 28 experiments
at each time point.

−0.5 0 0.5 1

−0.5

0

0.5

1 (a) p = 3

px [meters]

p y
[m

ete
rs]

−0.5 0 0.5 1

−0.5

0

0.5

1 (b) p = 5

px [meters]

p y
[m

ete
rs]

FIGURE 9 The same data as shown in Figure 8 shown as a top view on the (px, pz)-plane. Plot (a) is for p = 3 and plot (b) is
for p = 5. The dashed lines show the average at each time point of the 28 real-world trajectories (solid grey).

Elokda ET AL 15

steady state input ur provided. Figure 10 (b) shows a clear disparity between the tracking performance in the horizontal (px, py)-
plane. Where the MPC follows an almost straight line trajectory from the starting point to the target, the DeePC controller by
contrast has quite different tracking behaviour for the px and py directions, a trend also observed in Figure 9 and in our simulation-
based tests. This leaves open an interesting direction for further investigation to understand why the DeePC controller produces
a faster rise time for the px direction compared to the py direction.
Overall, for the quadcopter application we see that DeePC performs similarly to MPC where a first-principles model is

available. This indicates the potential for DeePC to tackle applications where a first-principles model is either not available or
identifying all the necessary model parameters is not conceivable.

0 2 4 6 8 10

0.5

1

1.5

2 (a)

Time [seconds]

p z
[m

ete
rs]

Vertical position time series

DeePC MPC

−0.5 0 0.5 1

−0.5

0

0.5

1 (b)

px [meters]

p y
[m

ete
rs]

Top view

DeePC MPC

FIGURE 10 Experimental comparison of DeePC and MPC.

4 CONCLUSION

We demonstrated that the regularized DeePC algorithm is suitable for real-time control of a real-world quadcoptor, thereby
bridging the gap between theory and practice. In the process, we performed a sensitivity analysis on the hyperparameters of the
DeePC algorithm in simulation, gaining key insights on their effect. These simulation takeaways generalized well to the real-
world quadcoptor system, where minimal hyperparameter refining was performed. Through the real-world implementation, it
was demonstrated that the DeePC algorithm is computationally tractable and adequately solvable in real-time, with solve times
far beneath the real-time requirement. Future work includes applying the DeePC on other real-worlds systems from which no
first-principles model can be derived.

Financial disclosure
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme grant agreement OCAL, No. 787845

Conflict of interest
The authors declare no potential conflict of interest.

16 Elokda ET AL

APPENDIX

A PARAMETERS FOR IMPLEMENTATION OF THE DeePC ALGORITHM

The following lists the hyperparameters offered by the DeePC algorithm, and the design choices required to specify the
quadcopter tracking goal. The value specified in this list is used for all results unless otherwise indicated in the text.

• Td = 331, the total number of data points used to construct the Hankel matrices in (5),
• Tini = 6, the number of initial inputs and outputs,
• �s = 7.5 × 108, the weight on the softened initial condition constraint,
• �g = 500, the weight on the regularization of g,
• q = 2, the type of norm used to regularize g,
• p = 3, the number of outputs used to construct the Hankel matrices in (5),
• Tf = 25, the time horizon, (corresponds to 1s in continuous time),

• Q =
⎛

⎜

⎜

⎝

40 0 0
0 40 0
0 0 40

⎞

⎟

⎟

⎠

, the quadratic tracking error cost matrix,

• R =
⎛

⎜

⎜

⎝

160 0 0
0 4 0
0 0 4

⎞

⎟

⎟

⎠

, the quadratic control effort cost matrix,

• , the control inputs constraints set, given by: ftot ∈ [0.1597, 0.4791], !ref ,x, !ref ,y ∈
[

− �
2
, �
2

]

,

• , the outputs constraints set, given by: px, py ∈ [−4, 4], pz ∈ [0.1, 4], , � ∈
[

− �
6
, �
6

]

when p = 5. Note that the
constraints on the quadcoptor orientation, , �, are omitted when p = 3,

• ur = (0.2747, 0, 0), the steady state hovering control inputs,

• Σy =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 × 10−8 5 × 10−9 0 0 0
5 × 10−9 1 × 10−8 0 0 0

0 0 1 × 10−8 0 0
0 0 0 1.22 × 10−5 0
0 0 0 0 1.22 × 10−5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, the covariance matrix of measurement noise in simulation

when p = 5. Note that when p = 3 the covariance matrix is the top left 3 × 3 block of Σy.

B FURTHER RESULTS FOR THE GRID SEARCH ANALYSIS

For completeness, we include here the results for the grid search analysis, described in Section 3.2, for all hyperparameters
considered. Figure B1 bottom left is the same as shown in Section 3.2, and the other plots in Figure B1 are for the remaining
combinations of q = {1, 2} and p = {3, 5}.

Elokda ET AL 17

100 101 102 103 104 105 106 107

106

107

108

109

100 101 102 103 104 105 106 107

106

107

108

109

100 101 102 103 104 105 106 107

106

107

108

109

100 101 102 103 104 105 106 107

106

107

108

109

q = 1
p = 3

� s

q = 1
p = 5

40

60

80

100

120

q = 2
p = 3

�g

� s

q = 2
p = 5

�s

40

60

80

100

120

FIGURE B1 Influence of �g and �s on the tracking error for the four combinations of 1-norm or 2-norm regularization (q ∈
{1, 2} respectively) on the decision variable g, and p = {3, 5} output parameters measured, as labelled on the axes. All other
parameters are fixed to the values described in the Section 3.2. The coloured shading is restricted to the interval (36, 120) to
sufficiently display the shape of each plot. All plots increase steeply for values greater than 120, and the plots are clipped for
values greater than 120.

18 Elokda ET AL

C COMPARING SENSITIVITY TO �G IN SIMULATION AND EXPERIMENT

Figure C2 shows results similar to Figure 6 for comparing the closed loop trajectories (solid lines) and the predictions computed
by the DeePC optimization problem (8) (dashed lines). This shows the same trend that the performance observed in simulation-
based analysis, Figure C2 (a,b,c), is qualitatively similar to that observed in the real-world experiments, Figure C2 (d,e,f).
Qualitatively, the best �g chosen in simulation also performs best in reality and results in a similar closed loop trajectory. The

small value of �g results in a faster but more oscillatory response, and the large value of �g results in a sluggish response. This
figure demonstrates that, despite unmodelled dynamics in simulation, the real-world system behaves similarly to the simulation
model when applying DeePC Algorithm 1. Consequently, simulation-based hyperparameter selection was adapted on the real
system with minimal adjustments required.

−1 0 1 2 3 4 5

−0.5

0

0.5

1 (a) �g = 75

p x
[m

ete
rs]

−1 0 1 2 3 4 5

−0.5

0

0.5

1 (b) �g = 500

p x
[m

ete
rs]

−1 0 1 2 3 4 5

−0.5

0

0.5

1 (c) �g = 105

Time [seconds]

p x
[m

ete
rs]

−1 0 1 2 3 4 5

−0.5

0

0.5

1 (d) �g = 75

−1 0 1 2 3 4 5

−0.5

0

0.5

1 (e) �g = 500

−1 0 1 2 3 4 5

−0.5

0

0.5

1 (f) �g = 105

Time [seconds]
FIGURE C2 Actual trajectories (solid) versus predicted trajectories (dashed). The plots (a,b,c) are simulated results and (d,e,f)
are experimental results. To highlight the transferability from simulation to real-world experiments, for each value of �g (indi-
cated on the plot) all other hyperparameters have the same values. The hyperparameters are selected as those achieving the
minimum tracking error in the simulation-based analysis for the particular value of �g .

Elokda ET AL 19

References

1. Ogunnaike BA. A contemporary industrial perspective on process control theory and practice. Annual Reviews in Control
1996; 20: 1–8.

2. Hjalmarsson H. From experiment design to closed-loop control. Automatica 2005; 41(3): 393–438.
3. Ostafew CJ, Schoellig AP, Barfoot TD. Robust constrained learning-based NMPC enabling reliable mobile robot path

tracking. The International Journal of Robotics Research 2016; 35(13): 1547–1563.
4. Gevers M. Towards a joint design of identification and control?. In: Essays on Control: Perspectives in the Theory and its

Applications. 14 of Progress in Systems and Control Theory. Boston, MA: Birkhäuser Boston. 1993 (pp. 111-151).
5. Deisenroth MP, Fox D, Rasmussen CE. Gaussian processes for data-efficient learning in robotics and control. IEEE

transactions on pattern analysis and machine intelligence 2013; 37(2): 408–423.
6. Wahlström N, Schön TB, Deisenroth MP. From pixels to torques: Policy learning with deep dynamical models. arXiv

preprint arXiv:1502.02251 2015.
7. Berkenkamp F, Schoellig AP, Krause A. Safe controller optimization for quadrotors with Gaussian processes. In: IEEE

International Conference on Robotics and Automation (ICRA); 2016: 491–496.
8. Hwangbo J, Sa I, Siegwart R, Hutter M. Control of a quadrotor with reinforcement learning. IEEE Robotics and Automation

Letters 2017; 2(4): 2096–2103.
9. Rosolia U, Borrelli F. Learning model predictive control for iterative tasks. A data-driven control framework. IEEE

Transactions on Automatic Control 2017; 63(7): 1883–1896.
10. Koller T, Berkenkamp F, Turchetta M, Krause A. Learning-based Model Predictive Control for Safe Exploration. In: IEEE

Conference on Decision and Control (CDC); 2018: 6059–6066.
11. Fisac JF, Akametalu AK, Zeilinger MN, Kaynama S, Gillula J, Tomlin CJ. A general safety framework for learning-based

control in uncertain robotic systems. IEEE Transactions on Automatic Control 2018.
12. Aswani A, Gonzalez H, Sastry SS, Tomlin C. Provably safe and robust learning-based model predictive control. Automatica

2013; 49(5): 1216–1226.
13. Islam R, Henderson P, Gomrokchi M, Precup D. Reproducibility of benchmarked deep reinforcement learning tasks for

continuous control. arXiv preprint arXiv:1708.04133 2017.
14. Coulson J, Lygeros J, Dorfler F. Data-Enabled Predictive Control: In the Shallows of the DeePC. In: 18th European Control

Conference (ECC); 2019: 307–312.
15. Willems JC, Rapisarda P, Markovsky I, De Moor BL. A note on persistency of excitation. Systems & Control Letters 2005;

54(4): 325–329.
16. Markovsky I, Rapisarda P. Data-driven simulation and control. International Journal of Control 2008; 81(12): 1946–1959.
17. Berberich J, Köhler J, Müller MA, Allgöwer F. Data-Driven Model Predictive Control with Stability and Robustness

Guarantees. arXiv preprint arXiv:1906.04679 2019.
18. Coulson J, Lygeros J, Dörfler F. Regularized and distributionally robust data-enabled predictive control. In: IEEE

Conference on Decision and Control (CDC); 2019, to appear.
19. Huang L, Coulson J, Lygeros J, Döfler F. Data-Enabled Predictive Control for Grid-Connected Power Converters. In: IEEE

Conference on Decision and Control (CDC); 2019, to appear.
20. De Persis C, Tesi P. On persistency of excitation and formulas for data-driven control. arXiv preprint arXiv:1903.06842

2019.

20 Elokda ET AL

21. Baggio G, Katewa V, Pasqualetti F. Data-Driven Minimum-Energy Controls for Linear Systems. IEEE Control Systems
Letters 2019; 3(3): 589–594.

22. Salvador JR, Ramirez D, Alamo T, La Pena dDM, Garcia-Marin G. Data Driven Control: An Offset Free Approach. In:
18th European Control Conference (ECC); 2019: 23–28.

23. Mahony R, Kumar V, Corke P. Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor. Robotics
Automation Magazine, IEEE 2012; 19: 20–32. doi: 10.1109/MRA.2012.2206474

24. Lupashin S, Hehn M, Mueller MW, Schoellig AP, Sherback M, D’Andrea R. A platform for aerial robotics research and
demonstration: The flying machine arena. Mechatronics 2014; 24(1): 41–54.

25. Vicon . Vicon Motion Systems Ltd.. 2019.
26. Merriaux P, Dupuis Y, Boutteau R, Vasseur P, Savatier X. A study of Vicon system positioning performance. Sensors 2017;

17(7).
27. Beuchat PN, Stürz YR, Lygeros J. A teaching system for hands-on quadcopter control. IFAC-PapersOnLine 2019; 52(9):

36–41. Symposium on Advances in Control Education (ACE)doi: 10.1016/j.ifacol.2019.08.120
28. Bitcraze . Bitcraze AB. 2019.
29. Förster J. System identification of the Crazyflie 2.0 nano quadrocopter. BSc. thesis. ETH Zürich. 2015.
30. HäggblomKE. Evaluation of Experiment Designs forMIMO Identification by Cross-Validation. IFAC-PapersOnLine 2016;

49(7): 308 - 313. 11th IFACSymposium onDynamics andControl of Process SystemsIncluding BiosystemsDYCOPS-CAB
2016doi: https://doi.org/10.1016/j.ifacol.2016.07.310

31. Ljung L. System identification : theory for the user. Prentice Hall information and system sciences seriesUpper Saddle
River, N.J: Prentice Hall. 2nd ed ed. 1999.

32. Stellato B, Banjac G, Goulart P, Bemporad A, Boyd S. OSQP: An Operator Splitting Solver for Quadratic Programs. ArXiv
e-prints 2017.

33. Beuchat PN. N-rotor vehicles: modelling, control, and estimation. ETH Zürich Research Collection . 2019

http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/ 10.1016/j.ifacol.2019.08.120
http://dx.doi.org/ https://doi.org/10.1016/j.ifacol.2016.07.310

Elokda ET AL 21

AUTHOR BIOGRAPHIES

Ezzat Elokda received the B.A Sc. in Mechatronics Engineering from the University of Waterloo, Canada in
June 2014. From 2014-2018, he held control engineering positions at process automation and lifting equip-
ment companies. Since September 2018, he has been pursuing his M.Sc. in Robotics, Systems & Control at
ETH Zürich. His current research interests include optimization-based control and game theory for control.

Jeremy Coulson is a PhD student with the Automatic Control Laboratory at ETH Zürich. He received his
Master of Applied Science in Mathematics & Engineering from Queen’s University, Canada in August 2017.
He received his B.Sc.Eng degree in Mechanical Engineering & Applied Mathematics from Queen’s Univer-
sity in 2015. His research interests include data-driven control methods, stochastic optimization, and control
of partial differential equations.

Paul Beuchat received the B.Eng. degree in mechanical engineering and B.Sc. in physics from the University
of Melbourne, Australia, in 2008, and the M.Sc. degree in robotics, systems and control from ETH Zürich,
Switzerland, in 2014, where he is currently working towards the Ph.D degree at the Automatic Control Lab-
oratory. From 2009-2012 he was as a subsurface engineer for ExxonMobil. His research interests are control
and optimization of large scale systems, with a focus towards developing approximate dynamic programming
techniques for applications in the areas of building control, and coordinated flight.

John Lygeros completed a B.Eng. degree in electrical engineering in 1990 and an M.Sc. degree in Systems
Control in 1991, both at Imperial College of Science Technology and Medicine, London, U.K.. In 1996 he
obtained a Ph.D. degree from the Electrical Engineering and Computer Sciences Department, University
of California, Berkeley. During the period 1996–2000 he held a series of post-doctoral researcher appoint-
ments at the Laboratory for Computer Science,M.I.T., and the Electrical Engineering and Computer Sciences
Department at U.C. Berkeley. Between 2000 and 2003 he was a University Lecturer at the Department of
Engineering, University of Cambridge, U.K., and a Fellow of Churchill College. Between 2003 and 2006 he

was an Assistant Professor at the Department of Electrical and Computer Engineering, University of Patras, Greece. In July 2006
he joined the Automatic Control Laboratory at ETH Zurich, where he is currently serving as the Head of the Automatic Con-
trol Laboratory and the Head of the Department of Information Technology and Electrical Engineering. His research interests
include modelling, analysis, and control of hierarchical, hybrid, and stochastic systems, with applications to biochemical net-
works, automated highway systems, air traffic management, power grids and camera networks. John Lygeros is a Fellow of the
IEEE, and a member of the IET and the Technical Chamber of Greece; since 2013 he serves as the Treasurer of the International
Federation of Automatic Control.

Florian Dörfler is an Associate Professor at the Automatic Control Laboratory at ETH Zürich. He received
his Ph.D. degree in Mechanical Engineering from the University of California at Santa Barbara in 2013, and
a Diplom degree in Engineering Cybernetics from the University of Stuttgart in 2008. From 2013 to 2014 he
was an Assistant Professor at the University of California Los Angeles. His students were winners or finalists
for Best Student Paper awards at the 2013/2019 European Control Conference, the 2016 American Control
Conference, and the 2017 PES PowerTech Conference. His articles received the 2010 ACC Student Best
Paper Award, the 2011 O. Hugo Schuck Best Paper Award, the 2012-2014 Automatica Best Paper Award,

and the 2016 IEEE Circuits and Systems Guillemin-Cauer Best Paper Award. He is a recipient of the 2009 Regents Special
International Fellowship, the 2011 Peter J. Frenkel Foundation Fellowship, and the 2015 UCSB ME Best PhD award.

