
DISS. ETH. NO. 26531

Experimental Investigation of Frustrated

Magnetism in Two Dimensions

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by

Simon Luca Bettler

MSc ETH Physics, ETH Zürich
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Abstract

This thesis is focused on magnetic systems where magnetic interactions are ef-

fectively restricted to two spatial dimensions. In addition, the studied materials

are magnetically frustrated, meaning that the no classical, magnetically ordered

ground state can simultaneously minimize the energy on all magnetic bonds.

Such materials are good candidates to realize new quantum phases, either by

slightly perturbing the relative strength of exchanges by chemical exchange or

external pressure, or applying external magnetic fields.

As a prototype for pressure-induced ordering, where the critical pressures

are known, magnetic and lattice excitations in the quantum antiferromagnet

(C4H12N2)Cu2Cl6 (PHCC) are studied across two pressure-induced phase tran-

sition at Pc = 4.3 kbar and P1 = 13.4 kbar using Raman spectroscopy. It is

confirmed that neither transition is a result of a structural transformation. The

magnetic scattering shows a pronounced pressure dependence and undergoes

substantial changes at both transitions. The results are in clear contradiction

with previous neutron studies, which detected only minor changes of the magnon

spectrum at P1. A number of phonons show anomalous frequency shifts at low

temperatures. This effect is pressure dependent and for two of the observed

phonons reverses sign at around P1. The anomalous behavior is attributed to

magnetoelastic coupling in (C4H12N2)Cu2Cl6.

Again using Raman spectroscopy, magnetic and vibrational excitations in the

Shastry-Sutherland material SrCu2(BO3)2 are studied using Raman spectroscopy

at hydrostatic pressures up to 34 kbar and temperatures down to 2.6 K. The

frequency of a particular optical phonon, the so-called pantograph mode, shows

a very strong anomalous temperature dependence below about 40 K. We link the

magnitude of the effect to the magnetic exchange energy on the dimer bonds in

the Sutherland-Shastry spin lattice in this material. The corresponding dimer

spin correlations are quantitatively estimated and found to be strongly pressure

dependent. At around P2 ∼ 22 kbar they switch from antiferromagnetic to being

predominantly ferromagnetic.

Single crystal neutron diffraction, inelastic neutron scattering, magnetization

and magnetic torque experiments are used to study the phase diagram, mag-

netic structure and spin waves in Pb2VO(PO4)2, a prototypical layered S = 1/2
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ferromagnet with frustrating next nearest neighbor antiferromagnetic interac-

tions. The observed excitation spectrum is found to be inconsistent with a simple

square lattice model previously proposed for this material. At least four distinct

exchange coupling constants are required to reproduce the measured spin wave

dispersion. The degree of magnetic frustration is correspondingly revised and

found to be substantially smaller than in all previous estimates. A previously

unreported phase is revealed just below the saturation field for an external field

applied perpendicular to the ab-plane.
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Zusammenfassung

Diese Dissertation befasst sich mit magnetischen Systemen, in welchen sich die

Wechselwirkungen primär auf zwei Raumdimensionen begeschränken. Zusätzlich

sind die magnetischen Wechselwirkungen in den untersuchten Materialien frus-

triert. Das bedeutet, dass kein klassischer, magnetisch geordneter Grundzustand

gleichzeitig die Bindungsenergie aller magnetischen Bindungen minimieren kann.

Solche Materialien sind vielversprechende Kandidaten, um neue Quantenphasen

zu realisieren. Diese können durch eine Veränderung der relativen Stärke der

Wechselwirkungen, oder anlegen eines externen Feldes geschehen. Die relative

Stärke von Wechselwirkungen wird meist durch chemische Substitution oder ex-

ternen Druck verändert. Als Prototypen für druckinduzierte Ordnung in einem

Quantenparamagneten untersuchen wir das Material (C4H12N2)Cu2Cl6. Mittels

Ramanspektroskopie werden die Signaturen zweier druckinduzierter Phasenübergänge

bei Pc = 4.3 kbar und P1 = 13.4 kbar im Spektrum magnetischer und Git-

teranregungen analysiert. Es bestätigt sich, dass keiner der beiden Übergänge

struktureller Natur ist. Die magnetischen Anregungen sind stark druckabhängig

und verändern sich bei beiden Übergängen substantiell. Dies ist im klaren

Widerspruch zu früheren Untersuchungen mittels Neutronenstreuung, welche nur

eine geringfügige Veränderung des Magnonenspektrums bei P1 fanden. Mehrere

Phononen zeigen ungewöhnliche Veränderungen der Phononenfrequenz bei tiefen

Temperaturen. Dieser Effekt ist druckabhängig und für zwei der ungewöhnlichen

Phononen wird ein Vorzeichenwechsel des Effekts bei P1 beobachtet. Dieses

ungewöhnliche Verhalten wird magnetoelastischer Kopplung in (C4H12N2)Cu2Cl6
zugeschrieben.

Mit derselben Strategie werden die magnetischen und Gitteranregungen im

Shastry-Sutherland-Material SrCu2(BO3)2 bei hydrostatischen Drücken bis zu

34 kbar und Tieftemperaturen bis 2.6 K erforscht. Die Frequenz eines bes-

timmten optischen Phonons, der sogenannten Pantograph-mode, zeigt eine sehr

starke, ungewöhnliche Temperaturabhängigkeit unterhalb von 40 K. Wir zeigen,

dass die Stärke des Effekts proportional zur magnetischen Austauschenergie

auf der Dimer-Bindung ist. Die entsprechenden Spin-Korrelationen auf der

Dimer-Bindung werden quantitativ abgeschätzt und zeigen eine starke Druck-
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abhängigkeit. Bei cirka P2 ∼ 22 kbar wechseln die Dimer-Korrelationen das

Vorzeichen und sind oberhalb dieses Drucks vornehmlich ferromagnetisch.

Neben diesen Studien druckinduzierter Phasenübergänge in Quantenmagneten

werden mittels Neutronendiffraktion und -spektroskopie an Einkristallen, Mes-

sungen des magnetischen Drehmoments im Hochfeld und der Magnetisierung das

Phasendiagramm, die magnetische Struktur und die Spinwellen in Pb2VO(PO4)2
untersucht. Dieses Material ist ein prototypischer, geschichteter S = 1/2 Ferro-

magnet mit frustrierenden antiferromagnetischen Wechselwirkungen mit seinen

übernächsten Nachbarn. Das beobachtete Spinwellen-Spektrum ist nicht mit

einem simplen frustrierten Quadratgitter vereinbar, welches bisher zur Beschrei-

bung dieses Materials herangezogen wurde. Mindestens vier unterschiedliche

Austauschwechselwirkungen sind notwendig, um die gemessenen Spinwellen angemessen

zu beschreiben. Der Grad magnetischer Frustration wird dementsprechend re-

vidiert und ist signifikant kleiner als in vorherigen Abschätzungen. Eine bisher

unbekannte Phase wird knapp unterhalb des Saturierungsfelds beobachtet, wenn

das externe Feld senkrecht zu den 2D-Schichten in der ab-Ebene angelegt wird.

vi



Contents

List of Publications xi

1 Introduction 1

2 Models and model materials 5

2.1 Pressure-induced order in weakly coupled spin-1/2 dimers . . . . . 5

2.1.1 (C4H12N2)Cu2Cl6 . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Pressure-driven phase transitions in the Shastry-Sutherland model 10

2.2.1 Exact dimer ground state of the Shastry-Sutherland model

and its limits . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 SrCu2(BO3)2 . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Frustrated square lattice — spin-nematic order? . . . . . . . . . . 18

2.3.1 Pb2VO(PO4)2 . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Experimental techniques 25

3.1 Sample characterization and alignment . . . . . . . . . . . . . . . 25

3.2 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Why is Raman scattering useful for magnetism? . . . . . . 26

3.2.2 Light Scattering Fundamentals . . . . . . . . . . . . . . . 27

3.2.3 Macroscopic interpretation of Raman scattering . . . . . . 27

3.2.4 Raman Spectrometer . . . . . . . . . . . . . . . . . . . . . 31

3.2.5 Raman scattering sample environment . . . . . . . . . . . 33

3.3 Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Why neutron scattering? . . . . . . . . . . . . . . . . . . . 36

3.3.2 Basic principle of neutron scattering . . . . . . . . . . . . 36

vii



CONTENTS

3.3.3 The neutron scattering cross section . . . . . . . . . . . . . 37

3.3.4 Nuclear scattering . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.5 Magnetic scattering . . . . . . . . . . . . . . . . . . . . . . 40

3.3.6 Neutron Instruments . . . . . . . . . . . . . . . . . . . . . 41

3.3.7 Neutron Diffraction . . . . . . . . . . . . . . . . . . . . . . 41

3.3.8 Inelastic neutron scattering . . . . . . . . . . . . . . . . . 43

3.4 Vibrating Sample Magnetometry . . . . . . . . . . . . . . . . . . 44

3.5 Magnetic torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 (C4H12N2)Cu2Cl6: Pressure-induced order in a quantum param-

agnet 49

4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Ambient pressure . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Results under applied pressure . . . . . . . . . . . . . . . . 54

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Sign-switching of dimer correlations in SrCu2(BO3)2 under pres-

sure 63

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Magnetic structure, spin waves and high-field phase diagram in

the frustrated ferro-antiferromagnet Pb2VO(PO4)2 71

6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.1 Magnetic structure . . . . . . . . . . . . . . . . . . . . . . 72

6.1.2 Spin waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.3 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.4 Magnetic torque . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Conclusion 87

A First principles identification of phonons in SrCu2(BO3)2 89

Bibliography 93

viii



Acknowledgments

This project could not have been realized without the help and support of a

large number of people and institutions who were involved. Firstly, I would like

to express my profound gratitude to my advisor Prof. Andrey Zheludev for the

continuous support of my Ph.D study, for his patience, motivation, insightful

anecdotes and the guidance to keep me on track. I would also like to express
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Chapter 1

Introduction

Quantum magnets are models of choice to realize the complex physics of quan-

tum phase transitions [1] and novel quantum phases [2]. In such materials, phase

transitions can often be induced by an external magnetic field, as for example

in the so-called Bose-Einstein condensation (BEC) of magnons [3–5]. Another

way to potentially drive these systems towards criticality is by applying external

pressure and thereby changing the strength of magnetic interactions. If a mate-

rial cannot choose a ground states which minimizes the energy on all magnetic

bonds — such compounds are called frustrated — this approach is particularly

promising. In classical spin systems, geometric frustration is usually resolved

by the “least frustrated” magnetically ordered state. The actual ground state

spin configuration depends on the type and strength of frustration. As a func-

tion of this parameter, one expects transitions between different ordered phases.

These “classical” transition points are a promising area to look for novel quantum

phases and excitations [2]. The aim of this PhD project is to find experimen-

tal evidence for the existence of novel phases in quantum magnets and probe

their magnetic and lattice excitations. The following materials realize — to a

close approximation — three transitions of great interest to condensed matter

research:

1. (C4H12N2)Cu2Cl6: Magnetic soft mode transition in a quantum

paramagnet. In quantum paramagnets, i.e., spin systems with a quantum

disordered spin-singlet ground state and a gap in the magnetic excitation spec-
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trum a small perturbation of the exchange pathways may in rare cases lead to

a complete softening of the spin gap. The result is a unique magnetic soft-

mode quantum phase transition to a long range-ordered state that breaks the

SO(3) symmetry of the underlying Heisenberg Hamiltonian.[1] This transition

is clearly distict from the field-induced BEC which breaks only O(2) symmetry.

Only a handful of real materials undergo pressure-induced magnetic quantum

phase transitions of the described type. To date, only three examples are known:

TlCuCl3 [6, 7], KCuCl3 [8] and (C4H12N2)Cu2Cl6 (PHCC)[9–11]. In the latter,

pressure-induced ordering was first detected by µ-SR at Pc = 4.3 kbar[9]. In-

elastic neutron scattering studies confirmed the transition to be of a soft-mode

nature[10, 11]. A second transition was detected in PHCC by µ-SR at a higher

pressure of P1 ∼ 13.4 kbar[9]. It clearly corresponds to a rather drastic change in

the magnetic structure, and is possibly a Lifshitz (commensurate to incommen-

surate) transition. Surprisingly though, inelastic neutron scattering experiments

[11] did not detect any drastic changes in the excitation spectrum of PHCC upon

crossing P1. Also unknown is to what extent the crystal lattice and phonons are

involved, if at all, in either of the two transitions. All these issues we address in

the first part of this thesis by means of high pressure Raman spectroscopy.

2. SrCu2(BO3)2: Transition from an exact dimer state to Néel or-

der and possible intermediate phases in the fully frustrated Shastry-

Sutherland lattice. The Shastry-Sutherland model is arguably one of the

most important constructs in the field of quantum magnetism. It demonstrates

that a gapped quantum paramagnet can occur in a well-connected Heisenberg

spin Hamiltonian beyond the unique topology of a single dimension. Its key fea-

ture is geometric frustration of antiferromagnetic (AF) interactions between AF

S = 1/2 dimers arranged on a particular 2-dimensional lattice such that adjacent

dimers are orthogonal to one-another [12]. For sufficiently strong frustration the

exact ground state is a product of AF singlets on each dimer bond J ′. For weak

frustration one recovers the semi-classical Néel-ordered phase. What happens in-

between has been hotly debated [13–31]. The most intriguing intermediate phase

proposed is the so-called plaquette state [16, 18, 22]. Dimer singlets are destroyed

to be replaced by singlets composed of four spins connected via the inter-dimer

bonds J . Translational symmetry is broken and some or all of the dimer spin cor-
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Introduction

relations become predominantly ferromagnetic (FM). The only known and much

studied experimental realization of the model is SrCu2(BO3)2, where S = 1/2

Cu2+ ions form dimers via Cu-O-Cu superexchange pathways, which are con-

nected through (BO3) units. With a frustration ratio J/J ′ ∼ 0.6 it is reliably in

the dimer phase, with a spin gap ∆ = 3 meV in the excitation spectrum[32, 33].

In this material J/J ′ can be continuously tuned by hydrostatic pressure [34].

The frustration ratio increases steadily with pressure, eventually leading to a

Néel ordered state above 30 kbar [35]. Moreover, already at Pc ∼ 18 kbar the

original dimer phase gives way to a new quantum paramagnet, presumed to be

the plaquette state [34–38]. Thus, theoretical predictions for exotic phases of

the Shastry-Sutherland model are put to the experimental test. In the present

work we infer the strength of dimer spin correlations in SrCu2(BO3)2 from their

effect on a particular optical phonon, called the pantograph mode. This mode

is strongly affected by magnetic correlations on the dimer bond. The phonon

frequency is measured with very high precision using Raman spectroscopy. We

show that around Pc correlations on the dimer bond switch from AF to domi-

nantly FM, and thereby independently confirm the destruction of the AF-dimer

ground state.

3. Pb2VO(PO4)2: A frustrated square lattice material? An outstand-

ing example for novel ground states emerging as a consequence of frustration is

the frustrated Heisenberg ferromagnet on a square lattice frustrated by antifer-

romagnetic (AF) next-nearest neighbor coupling. The classical model is either a

collinear ferromagnet or a “columnar” AF (CAF) structure. The S = 1/2 quan-

tum model near the transition between these classical states, for −0.7 < J2/J1 <

−0.4, is predicted to be a so-called spin nematic.[39–41] This exotic quantum

phase shows no conventional dipolar magnetic order but features spontaneously

anisotropic quantum spin fluctuations. In strong enough applied fields a nematic

phase is supported for all J2/J1 < −0.4.[42, 43]

To this day, the only known potential experimental realizations of the ferro-

antiferro square lattice model are among layered vanadophosphates.[44] Our un-

derstanding of these compounds is far from complete though, since most experi-

ments to date were done on powder samples. Pb2VO(PO4)2 is perhaps the most

thoroughly studied member of the series. The consensus was that this compound
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is a good “baseline” ferro-antiferro square lattice system, substantially frustrated

but still in the classical CAF phase. In the present work we report the results

of neutron diffraction, inelastic neutron scattering, magnetization and magnetic

torque measurements on single crystal samples of this compound. We determine

how strongly the excitations deviate from those of a perfect square lattice and

how two-dimensional the material really is. Furthermore, we accurately measure

the direction and magnitude of the ordered moment at low temperatures and

identify a previously unreported phase just below the saturation field.
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Chapter 2

Models and model materials

Quantum magnets offer a large variety of linking patterns, dimensionalities and —

most importantly — well-defined short-range interactions. This makes them

useful prototypes in the study of quantum phase transitions and frustrated

magnetism[45]. In the following, a short recapitulation of basic properties of

the models and phase transitions considered in this thesis is given. The cor-

responding model systems studies in this work are introduced and their most

important characteristics are outlined.

2.1 Pressure-induced order in weakly coupled

spin-1/2 dimers

Perhaps the simplest quantum paramagnet consists of a lattice of spins with

strong dimer bonds J ′ which are weakly coupled by inter-dimer bonds J as

shown in fig.2.1. In the limit of isolated dimers (J = 0), the Hamiltonian is

simply

Ĥ = J ′S1S2. (2.1)
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2.1 Pressure-induced order in weakly coupled spin-1/2 dimers

J'>0 J1 2 3 4

5 6

Figure 2.1: Lattice of weakly coupled dimers with intradimer(bold) and inter-

dimer(dashed) bonds connecting localized spins(×). Arrows indicate the dimer

orientation.

The possible configurations of a single pair of spins are:

|S1,2〉 =
| ↑↓〉 − | ↓↑〉√

2

|T+
1,2

〉
= | ↑↑〉

|T 0
1,2

〉
=
| ↑↓〉+ | ↓↑〉√

2

|T−1,2
〉

= | ↓↓〉

(2.2)

We can rewrite the Hamiltonian as[46]

〈Ĥ〉 = 〈J ′ ~S1
~S2〉 =

J ′

2

〈
(S1 + S2)

2 − S2
1 − S2

2

〉
=
J ′

2
(Stot)

2 − J ′

2
(~S1(S1 + 1) + ~S2(S2 + 1)) =

J ′

2
S2
tot −

3J ′

4

=
J ′

2
Stot(Stot + 1)− 3J ′

4

=

{
J ′

4
if Stot = 1

−3J ′

4
if Stot = 0

(2.3)
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Models and model materials

There is therefore a non-degenerate ground state, which is a product of singlets,

separated from the first excited states by a gap with ∆E = J ′.

|GS〉 = ⊗
(ij)
|Sij〉

|1stES〉 = |T+
ij 〉 ⊗

(i′j′)
|Si′j′〉

(2.4)

While the ground state is well-defined, we can put a triplet on any of the dimers

to produce an excited state. Therefore, the excited state degeneracy is equal to

the number of dimers in the system.

We now want to find out how triplets hop, once we turn on J . To first order

in perturbation theory, the probability for the triplet hopping from dimer (1,2)

to the dimer (3,4) is

(〈T+
1,2| ⊗ 〈S3,4|)(JS2 · S3)(|S1,2〉 ⊗ |T+

3,4〉) (2.5)

The initial and final states are

〈T+
1,2| ⊗ 〈S3,4| = 〈↑↑ | ⊗

(
〈↑↓ | − 〈↓↑ |√

2

)
=
〈↑↑↑↓ | − 〈↑↑↓↑ |√

2

|S1,2〉 ⊗ |T+
3,4〉 =

| ↑↓↑↑〉 − | ↓↑↑↑〉√
2

(2.6)

This time it is more useful to write S2 · S3 = Sz2S
z
3 − 1/2(S+

2 S
−
3 + S−2 S

+
3 ):

(〈T+
1,2| ⊗ 〈S3,4|)(J ′S2 · S3)(|S1,2〉 ⊗ |T+

3,4〉)

=
J ′

2
(〈↑↑↑↓ | − 〈↑↑↓↑ |) (Sz2S

z
3 + 1/2(S+

2 S
−
3 + S−2 S

+
3 )) (| ↑↓↑↑〉 − | ↓↑↑↑〉)

=
J ′

2
(〈↑↑↑↓ | − 〈↑↑↓↑ |)

(
1

4
(−| ↑↓↑↑〉+ | ↑↓↑↑〉) +

1

2
(| ↑↑↓↑〉 − 0 + 0− 0)

)
= −J

′

4
(2.7)

If — instead — J connected the sites 2 and 4, the sign of the hopping amplitude

would be positive. If we look at the bonds J1,5 or J2,6 we see that we would

get −| ↑↑↓↑〉 and | ↑↑↑↓〉 respectively and we get a hopping amplitude J/4 for

each of these bonds. Therefore, the total amplitude for a triplet to hop from
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2.1 Pressure-induced order in weakly coupled spin-1/2 dimers

dimer (1,2) to dimer (5,6) is J/2. If we Fourier transform to get the dispersion

in reciprocal space, we get the dispersion

~ω(k) =
−J
2

cos(kx) + J cos(ky). (2.8)

The minimum of the dispersion is located at (kx, ky) = (0, π) and ~ω(0, π) =

−3J
2

. So the gap of the weakly coupled dimers is in the simplest approximation

∆E = J ′ − 3
2
J . By varying the ratio J/J ′, it is possible to close the gap and

drive the system into a Néel ordered state. The critical value has been deter-

mined to a very high precision by by Quantum Monte Carlo simulations and is

(J/J ′)c = 0.52337(3)[47]. If the bandwith and gap are comparable a simple dimer

expansion is not appropriate anymore and the excitations have to be treated in

the framework of bond operator theory[]. Typically, the dispersion relation is of

the form[49]:

~ω =
√
A+Bεk,

εk =
∑
i

ciJi cos(di,xki,x + di,yki,y + di,zki,z).
(2.9)

The ratio of inta- and inter-dimer couplings is not something that can be tuned at

the turn of a knob in experiments. The only options to drive such a transition in

a real material are to either apply external pressure or chemical substitution. The

latter has the disadvantage of oftentimes introducing disorder into the system.

This is why in this work hydrostatic pressure was used as a means to modify the

ratio of exchange constants.

2.1.1 (C4H12N2)Cu2Cl6

(C4H12N2)Cu2Cl6 is an extensively studied and well understood quantum para-

magnet with a gap ∆ = 1 meV[50]. The crystal structure is triclinic, space

group P1̄, with lattice parameters a = 7.984(4), b = 7.054(4), c = 6.104(3) Å,

α = 111.23(8)◦, β = 99.95(9)◦, and γ = 81.26(7)◦. [51] The magnon dispersion

relation is known from neutron experiments,[50] with the magnon band extend-

ing between ∆ and 2.7 meV. The topology of magnetic interactions between the

S = 1/2 Cu2+ ions is believed to be rather complicated. The magnetic interac-

tions are primarily in the (ac)-plane. The copper-chloride layers are separated

8



Models and model materials

by organic spacers(Fig. 2.2b and c) with the interlayer dispersion being of the

order .0.1 meV[52]. Therefore, an empirical Ansatz of the bond operator theory

form was previously used to fit the dispersion in the (ac)-plane, both at ambient

and under applied hydrostatic pressure[11, 50]:

(~ω(Q))2 =B0 +Bh cos(2πh) +Bl cos(2πl)

+Bhl(cos(2π(h+ l)) + cos(2π(h− l))) +B2h cos(4πh) +B2l cos(4πl).

(2.10)

The individual bond energies are then extracted by making use of sum rules

for the equal-time structure factor[11, 50]. To some degree the system can be

viewed as composed of antiferromagnetic dimers defined by the nearest neigh-

bor exchange J1(Fig.2.2a). However, bond energies associated with a frustrated

second-nearest-neighbor coupling J2 and the sixth-nearest-neighbor antiferro-

magnetic bond J6 are only slightly, if at all, smaller. There is evidence that it is

the bond J1 that is most affected by the application of hydrostatic pressure.[11]

With increasing pressure the intra-dimer bond energy J1〈S0S1〉 becomes progres-

sively weaker, more than halving at 9 kbar[11].

Close to the zone boundary of the magnetic Brillouin zone, the — otherwise

sharp — magnon decays into a broad two-particle continuum[53]. We will probe

the pressure-dependence of this continuum with Raman spectroscopy. In addi-

tion, we will investigate the effect of magnetic correlations on lattice excitations

as a function of temperature and pressure. This provides additional informa-

tion on the magnetic ground state and phase transitions. This second route will

be even more important for the study of magnetic correlations in the Shastry-

Sutherland model system SrCu2(BO3)2 (sec.2.2.2).

Structural motifs The crystal structure contains isolated organic cations and

infinite chains of [Cu2Cl6]
2− dimers parallel to the crystallographic c-axis(Fig.2.2).

The organic cations and chains interact through hydrogen bonds, which pro-

vide the stability of the lattice[51]. The strongest magnetic interactions between

the Cu2+ ions are along the so-called dimer bond. Copper ions are connected

trough Cu-Cl(2)-Cu pathways with bond angles 95.8◦[54]. This bond energy is

E1-1.3(3) meV[50]. The second-strongest bond runs along the crystallographic

9



2.2 Pressure-driven phase transitions in the Shastry-Sutherland model

a-direction trough Cu-Cl(1)-Cl(2)-Cu linkings. The corresponding bond energy

is E6=-0.92(5) meV. Bond 2 is frustrated with a bond energy E2=0.7(3) meV.

Crystal Growth The crystals were grown in solution through the thermal

gradient method. When large crystals were grown for inelastic neutron scatter-

ing, small, deuterated crystals were produced as a byproduct. The procedure

adopted for growing large single crystals of (C4H12N2)Cu2Cl6 for inelastic neu-

tron scattering is described in [55]. A single crystal of (C4H12N2)Cu2Cl6 inside

the pressure cell together with ruby balls, which are used as an in-situ pressure

gauge, is shown in Fig.2.3.

Sample description The used samples were deuterated crystals of (C4H12N2)Cu2Cl6
with sizes ranging from 0.2 mm for high-pressure measurements to 3 mm for am-

bient pressure measurements. For high-pressure measurements the lower limit for

the sample size is set by the fact that for measurements of magnetic excitations,

the sample has to be oriented along a specific crystal axis within the pressure

cell. The upper limit for the sample size is given by diameter of the gasket bore.

2.2 Pressure-driven phase transitions in the Shastry-

Sutherland model

2.2.1 Exact dimer ground state of the Shastry-Sutherland

model and its limits

In section 2.1 we considered a system of collinear dimer singlets arranged on a

square lattice. What if now the dimers were arranged such that each singlet is

orthogonal to its neighbours as shown in figure 2.4 with dimer bonds J ′, which

are connected by J-bonds. Such an arrangement of dimers is called the Shastry-

Sutherland model(SSM) and has an exact dimer ground state for J/J ′ . 0.5[56].

To gain insight as to why this arrangement is of particular interest amongst

frustrated two-dimensional spin systems, let’s show that the state with dimer

singlets on all the J ′-bonds is the exact ground state for an extended range of

J ′/J . There are two points to be shown[46]:

10
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J1
J2

J6
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b c

Cl
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a)
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b)
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b

a

c)

Figure 2.2: Crystal structure of C4H12N2)Cu2Cl6 a) viewed along the crystal-

lographic b-axis with the most important bonds indicated, b) viewed along the

crystallographic a-axis, c) viewed along the crystallographic c-axis.
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2.2 Pressure-driven phase transitions in the Shastry-Sutherland model

Figure 2.3: A typical cell loading with a sample of (C4H12N2)Cu2Cl6 and rubies

scattered around the sample. Gasket bore diameter ∼0.6 mm.

1. Show the dimer state is an eigenstate of the Hamiltonian,

2. Show it has the lowest possible energy.

Let’s start by proving it is an eigenstate. Consider the situation depicted in Fig.

2.5a). It captures the essence of the interaction of one dimer with its neighbours.

The Hamiltonian for the interaction of site 2 with sites 3 and 4 is[46]:

HJ = J(S2S3 + S1S4) = JS2(S3 + S4), (2.11)

where S2 + S3 can be either 0 or 1. First, we want to show that a product of

singlet states is an eigenstate of this Hamiltonian. Acting with this Hamiltonian

on the product state of sites 2-4, we get

HJ(|σ2〉⊗|S3,4〉) = J
∑
α

Sα2 (Sα3 +Sα4 )(|σ2〉⊗|S3,4〉) = J
∑
α

Sα2 |σ2〉⊗(Sα3 +Sα4 )|S3,4〉.

(2.12)

12



Models and model materials

J'

J

Figure 2.4: Shastry-Sutherland lattice of orthogonal dimers with exchange con-

stant J ′ and inter-dimer coupling J .
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J'
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J
2
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J'

J

J
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J'

J

J
2

3

4

2J

J

a) b) c)

Figure 2.5: a) A pair of dimers in the Shastry-Sutherland lattice with corre-

sponding inter-dimer couplings. b) The relevant couplings for the inter-dimer

exchange c) Breaking up the dimer bonds into triangles with equal couplings

along the edges. Adapted from Ref.[46].

Further,

(Sz3 + Sz4)
| ↑↓〉 − | ↓↑〉√

2
= 0,

(S+
3 + S+

4 )
| ↑↓〉 − | ↓↑〉√

2
=

0− | ↑↑〉+ | ↑↑〉 − 0√
2

= 0,

(S−3 + S−4 )
| ↑↓〉 − | ↓↑〉√

2
=
| ↓↓〉 − 0 + 0 + | ↓↓〉√

2
= 0,

⇒ Sx|S3,4〉 = −Sx|S3,4〉 = 0, Sy|S3,4〉 = −Sy|S3,4〉 = 0.

(2.13)

Consequently,

J
∑
α

Sα2 |σ2〉 ⊗ (Sα3 + Sα4 )|S3,4〉 = 0. (2.14)

Now we have to show that this state minimizes the energy. If we look at the

triangle made up by sites 2-4(Fig.2.5b), we can rewrite the Hamiltonian

H = JS2S3 +JS2S4 +J ′S3S4 = JS2S3 +JS2S4 +2JS3S4 +(J ′−2J)S3S4 (2.15)

For J ′ > 2J , the last term is always negative for antiparallel S3, S4. For now let

J ′ = 2J . Then we can rewrite the Hamiltonian in terms of triangles(Fig.2.5c)[46]):

H =
∑
4

J(SiSi+1 + SiSi+2 + Si+1Si+2) =
∑
4

J

2

(
(Si + Si+1 + Si+2)

2 − 3 · 3

4

)
.

(2.16)
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For S = 1/2, this is minimized if (Si+Si+1+Si+2) = 1/2 and we get Emin = −3J
2

.

The extra (J ′ − 2J)Si+1Si+2 term ensures that the singlet is located on the

J ′-bond. The product of singlets therefore is indeed the exact ground state

of the SSM for J ′ > 2J . More advanced numerical work has shown that the

ground state is exact up to J/J ′ = 0.68[16]. For J/J ′ > 0.86 the model is

expected to host long range magnetic order [16]. What happens in-between has

been hotly debated [13–31]. The most intriguing intermediate phase proposed

is the so-called plaquette state [16, 18, 22]. Dimer singlets are destroyed to

be replaced by singlets composed of four spins connected via the inter-dimer

bonds J . Translational symmetry is broken and some or all of the dimer spin

correlations become predominantly ferromagnetic (FM).

2.2.2 SrCu2(BO3)2

The only known and much studied experimental realization of the Shastry-

Sutherland model is SrCu2(BO3)2, where S = 1/2 Cu2+ ions form J ′-dimers

via Cu-O-Cu superexchange pathways(Fig. 2.6a), which are connected through

(BO3) units (Fig. 2.6b) [33]. With a frustration ratio J/J ′ ∼ 0.6 [32] it is reliably

in the dimer phase, with a spin gap ∆ = 3 meV [33] in the excitation spectrum.

We are incredibly lucky that in this material J/J ′ can be continuously tuned by

hydrostatic pressure [34]. The frustration ratio increases steadily with pressure,

eventually leading to a Néel ordered state above 30 kbar [35]. Moreover, already

at Pc ∼ 18 kbar the original dimer phase gives way to a new quantum param-

agnet, presumed to be the plaquette state [34–38]. Thus, theoretical predictions

for exotic phases of the SSM are put to the experimental test.

Using phonons to probe magnetic correlations In the present work we

infer the strength of dimer spin correlations in SrCu2(BO3)2 from their effect

on certain optical phonons, which can be measured using Raman spectroscopy

in a diamond-anvil pressure cell. The changes of the crystal lattice, which are

induced by magnetic correlations are summed up under the label of magnetoe-

lastic coupling. The leading magnetoelastic terms contributing to the ground
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2.2 Pressure-driven phase transitions in the Shastry-Sutherland model

state energy of a Heisenberg system are[57]:

EH =E0
H +

∑
i,i′

∂Jii′

∂um
Si · Si′um +

∑
i,i′

∂Jii′

∂ηj
Si · Si′ηj+ (2.17)

+
∑
i,i′

∂2Jii′

∂um∂un
Si · Si′umun +

∑
i,i′

∂2Jii′

∂ηj∂ηk
Si · Si′ηjηk +

∑
i,i′

∂2Jii′

∂um∂ηj
Si · Si′umηj + . . . ,

(2.18)

where um denotes ionic displacements from the reference structure and ηj(j =

1, . . . , 6) are the homogeneous strains in Voigt notation[58]. As can bee seen

from equation 2.18, magnetic correlations can couple to both ionic displacements

and lattice deformations. In SrCu2(BO3)2, the onset of magnetic correlations is

accompanied by structural distortions[59]. We will make use of magnetoelastic

coupling to investigate magnetic correlations in SrCu2(BO3)2 under pressure.

The main idea is as follow. As has been established in other dimer systems, the

development of pair spin correlations at low temperatures leads to a magnetic

contribution to the rigidity of the corresponding bond [60–62]. This, in turn,

gives rise to anomalous shifts of certain phonon frequencies at unusually low

temperature. In complex structures it may be difficult to associate these shifts

with any particular magnetic bonds [62]. For the highly symmetric structure of

SrCu2(BO3)2 though, the assignment of measured phonons to particular atomic

motions is greatly simplified(cf. appendix A). At ~ω ∼198 cm−1 (=24.5 meV)

there is a specific optical excitation, the so-called pantograph mode, visualized

in (Fig. 2.6b) [63].

It directly modulates the the intra-dimer coupling constant J ′, which is espe-

cially sensitive due to an almost 90◦ Cu-O-Cu bond angle[63]. At same time, its

effect on J is expected to be negligible in comparison[59, 63]. The frequency of

this phonon is related to the second derivative of the energy of the corresponding

ionic displacement with respect to the displacement amplitude u: ω2 ∝ ∂2E/∂u2.

Each dimer’s magnetic contribution is J ′S1S2. The frequency of the pantograph

mode is much larger than the magnetic energy scale. This ensures an adiabatic

coupling scenario where the spin correlations are unaffected by the phonon which

is “too fast”. Since the vibration mode spans the entire sample, the magnetic
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Figure 2.6: a) Lattice of orthogonal coupled dimers in SrCu2(BO3)2 with intra-

dimer interaction J’ and inter-dimer interaction J. Copper atomic motions of the

pantograph mode are indicated as arrows. b) Relative atomic displacements of

the pantograph mode in a single layer of SrCu2(BO3)2.

energy needs to be summed (averaged) over all dimers. With this in mind:

δω = ω − ω0 ∝ ω2 − ω2
0 ∝

∂2J ′

∂u2
〈S1S2〉, (2.19)

where ω0 is the mode frequency in the absence of any magnetic correlations and

it is assumed that |ω − ω0| � ω0. The anomalous magnetic frequency shift of

the pantograph mode is thus proportional to the dimer spin correlator. This also

follows from the calculation of the corresponding spin-phonon coupling constant

[64] that assumes a particular power-law u-dependence of J [65].

Crystal Growth Single-phase powders of SrCu2(BO3)2 were synthesized by

using the solid-state reaction method. Stoichiometric amounts of commercially

available precursors CuO, Sr(NO3)2 and B2O3 from Sigma-Aldrich were ground
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2.3 Frustrated square lattice — spin-nematic order?

in an agate mortar. The mixture was heated up to 1000◦C at a gas flow rate

of 10 cc/min of 99.99% O2 in a cubic Muffle furnace for 96 hrs with several

intermediate grindings. The prepared powders were compacted into rods 5.0

mm in diameter and 100 mm long in a hydraulic isostatic press at 70 MPa for

20 minutes. The rods were sintered at 1150◦C for 72 hrs in a Muffle furnace.

Single crystals were grown by the flux optical floating-zone method. Crystals

were grown at 0.5 MPa 99.99% oxygen pressure. LiBO2 was used as a flux.

Structural motifs SrCu2(BO3)2 crystallizes in the space group I42m (No.121).

The lattice parameters are a = 8.995(l) Å and c = 6.649(l) Å , and there are four

formula units per unit cell[59, 66]. Layers of orthogonal Cu2+ dimers —connected

through (BO3)
−3-units in the ab-plane —are separated along the c-direction by

Sr2+ counter-ions. The dimer bonds are formed through Cu-O-Cu bonds with

bridging angle 85.7◦ [59].

2.3 Frustrated square lattice — spin-nematic

order?

Another possibility to frustrate the square lattice Heisenberg model is to intro-

duce next-nearest-neighbor couplings. A case in point is the Heisenberg ferro-

magnet on a square lattice frustrated by antiferromagnetic (AF) next-nearest

neighbor coupling. The classical model is either a collinear ferromagnet(FM) or

a “columnar” AF (CAF) structure.

Consider the classical ground state energies of the two situations depicted in

Fig.2.7. Equating these energies, we find that there is a transition between the

two ground states at a critical value J2
J1

= −0.5. These classical phase tran-

sitions are good starting points to look for new quantum phases. Indeed, for

the S = 1/2 quantum model, a so-called spin-nematic phase with no dipolar

magnetic order but spontaneously anisotropic spin fluctuations is predicted near

the classical phase boundary[39–41]. Close to the saturation field, a nematic

phase is supported for all J2/J1 < −0.4, as long as the material is very two-

dimensional[42, 43]. The transition from the CAF phase to spin-nematic order
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J1

J2

a) b)

Figure 2.7: Sketch of the classical ground states and their respective energies for

the frustrated square lattice with ferromagnetic nearest neighbor and antifer-

romagnetic next-nearest neighbor couplings for ferromagnetic(a) and columnar

antiferromagnetic(b) order.

is expected to be first order, while the transition from a partially polarized para-

magnetic phase to the spin-nematic phase is thought to be second order[67].

2.3.1 Pb2VO(PO4)2

There are very few known potential experimental realizations of the ferro-antiferromagnet

square lattice model. Most promising compounds belong to the family of layered

vanadophosphates[44]. The most thoroughly studied compound is Pb2VO(PO4)2,

which has a magnetically ordered CAF structure[68, 69]. The exchange constants

J1 = −0.52 meV and J2 = 0.84 meV were first estimated from magnetic sus-

ceptibility data[70]. These values are reasonably consistent with the frustration

ratio deduced from quasielastic diffuse magnetic neutron scattering assuming a

perfect square lattice model[69]: J2/J1 ∼ −2.4. Pb2VO(PO4)2 was also probed

by Q-band electron spin resonance (ESR) [71], NMR [72] and magnetometry

as well as specific heat [73] experiments on small single crystal samples. These

experiments provided evidence for substantial ferro-antiferro frustration in this

compound, while still putting it clearly in the classical CAF phse.
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a
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V4+

P 5+

O2−

Figure 2.8: A single vanadophosphate layer in the crystal structure of

Pb2VO(PO4)2 showing the crystallographic unit cell and the four distinct V4+

ions that it contains.

Structural motifs Pb2VO(PO4)2 crystallizes in space group P121/a1 (No.14)

with lattice parameters a=8.747(4), b=9.016(5), c=9.863(9) Å, β=100.96(4)◦[74].

Each unit cell contains four formula units. The crystal structure features layers

of VO5 pyramids connected through PO4 tetrahedra in the (ab)-plane (Fig. 2.8).

The V-layers are separated by phosphate tetrahedra and lead ions (Fig. 2.9). As

can be seen in Fig.2.9 the layers are slightly buckled. Within each layer, sym-

metry allows for three distinct nearest neighbor and two next-nearest neighbor

interactions. The exchange paths for nearest neighbor ferromagnetic interactions

as well as next-nearest neighbor antiferromagnetic exchanges both run through

two bridging oxygen atoms. The individual V-O-O bridging angles along the

ferromagnetic and antiferromagnetic exchange paths are in the ranges of 100 to

120 degrees and 160 to 180 degrees respectively[74].

Crystal Growth Single crystals of Pb2VO(PO4)2 were grown by the Bridgman

technique. Powders of Pb2(VO)(PO4)2 were synthesized in a Ar flowed Muffle

furnace using stoichiometric amounts of high-purity commercially available pre-
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a b

c

a b

c

Figure 2.9: Crystal structure of Pb2VO(PO4)2 viewed (a) along the crystal-

lographic a-axis, (b) along the crystallographic b-axis. Vanadium atoms are

orange, lead atoms dark grey, phosphorous atoms are light grey and oxygen

atoms red.

cursors of PbO(99.999%), NH4H2PO4(99.999%), V2O3(99.99%) and V2O5(99.99%)(Sigma-

Aldrich). The family of vanadylphosphate compounds, including Pb2VO(PO4)2
melt incongruently. Therefore, they can only be grown by the flux method. The

molten compound in the crucible needs holding for more than 24 h, to ensure

homogenous melting. Centimeter-sized single crystals of Pb2(VO)(PO4)2 were

grown in a tapered quartz tube, using the self-flux Bridgman method at 1000◦C

using a modified vertical tube muffle furnace. The growth speed was controlled

between 2mm/hr and 4mm/hr. During the growing period, care was taken to

prevent ingress of oxygen though the enclosure of the quartz tube. A small piece

of metallic tantalum was used as an oxygen scavenger. The single crystal used for

neutron diffraction had a mosaic spread of 0.6 ◦ and weighed 23 mg (Fig.2.10),

the crystal used in the inelastic neutron scattering experiments weighed 1.5 g

and had a mosaic of 0.6◦ (Fig.2.11). The single crystal used for magnetization

measurements was rod-shaped with dimensions 3×1×0.5 mm3. The sample ori-

entation and a high resolution polarized-light micrograph of the sample surface
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Figure 2.10: Left: Single crystal of Pb2VO(PO4)2 used for neutron diffraction

experiments. Right: Rocking scan of (2 0 0) from Pb2VO(PO4)2 crystal used

for neutron diffraction measured on CEA-CRG D23.

are shown in figure 2.12. No indication of crystal domains or sample twinning

was found.
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Figure 2.11: Left: Large single crystal of Pb2VO(PO4)2 used for inelastic neu-

tron scattering experiments. Right: Rocking scan of (0 2 0) nuclear reflection

from Pb2VO(PO4)2 crystal used for neutron spectroscopy, measured on IN3.
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-c
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b

Figure 2.12: Top: Single crystal of Pb2VO(PO4)2 used for magnetization ex-

periments. Bottom: High resolution micrograph of the sample surface of the

Pb2VO(PO4)2 crystal used for magnetization measurements.
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Chapter 3

Experimental techniques

In this chapter, the most important experimental techniques used in this work

are introduced. The basic measurement principles and the effectively measured

quantities of the performed experiments are presented.

3.1 Sample characterization and alignment

Samples for Raman scattering were oriented in a Bruker D8 x-ray diffractometer

with a Molybdenum anode(λ = 0.71073 Å). To avoid sample pollution due to

adhesives, MiTeGen MicroGripper™ sample mounts of various sizes were used.

For (C4H12N2)Cu2Cl6, cleaving of the crystals lead to the formation of copper

chloride on the cleaved surface. Thus as-grown sample surfaces were necessary

for the acquisition of high quality data.

For SrCu2(BO3)2, the single crystal rod produced through the floating-zone tech-

nique was crushed into small pieces. High quality samples were selected in a

polarized microscope and then oriented on the x-ray diffractometer. All mea-

surements under pressure were performed on the single crystal shown in figure

3.1.

Single crystals of Pb2VO(PO4)2 were oriented on the x-ray diffractometer and

further characterized by magnetization measurements. The crystals were aligned

on the sample holders for neutron scattering experiments on the neutron instru-

ments given in table 3.1.
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b

a

Figure 3.1: The single crystal of SrCu2(BO3)2 used for all the Raman spec-

troscopy measurements under pressure.

Experiment Alignment station

Neutron diffraction on CEA-CRG D23 OrientExpress[75]

Inelastic neutron scattering on MACS PHADES

Inelastic neutron scattering on IN12 IN3

Table 3.1: Neutron scattering instruments and corresponding alignment stations

used in this work.

3.2 Raman Spectroscopy

3.2.1 Why is Raman scattering useful for magnetism?

In recent years, there has been a growing interest in pressure-induced phase

transitions occuring in quantum magnets[6, 7, 9, 11, 76, 77]. While — within

some limits — high-pressure experiments are possible to perform with neutron

scattering, they remain very challenging to this day. In particular, spectroscopic

studies are typically limited to pressures below ∼20 kbar[78].

In contrast, Raman scattering is ideally suited for high-pressure experiments.

Diamond anvil cells allow to reach pressures far beyond the capabilities of the

most advanced high-pressure sample environment available for inelastic neutron

scattering. In addition, high-quality IIa diamonds, which have practically zero

background at small energy transfers, have recently become affordable. This

allows to study the pressure-dependence of magnetic excitations in quantum
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magnets at energies as low as 1 meV. In addition to the challenges to reach high

pressures for neutron scattering experiments, the precise quantification of said

pressure still constitutes a major challenge.[79] Thanks to the long tradition of

high pressure research with Raman spectroscopy, a selection of pressure markers

have been accurately calibrated[80, 81]. The most common pressure gauge is

fluorescence from the ruby R1 line, which is what is used in these studies as well.

The main shortcoming of Raman scattering is that — because visible light carries

only very small momentum — only excitations at Q ≈ 0 can be probed. Fur-

thermore, temperatures below 3 K are very difficult to achieve because of sample

heating by the laser an necessary optical access windows. A major disadvantage

of neutron scattering is the need for very large samples. In contrast, Raman

scattering can be performed on very small samples. Typical sample dimensions

for high pressure experiments are of order 0.2-0.5 mm.

3.2.2 Light Scattering Fundamentals

When a sample is irradiated with light, there are many processes which can

occur. Most incoming photons are scattered elastically, which is called Rayleigh

scattering. There is however the possibility that the photons create internal

excitations and scatter inelastically. It is these processes that are studied in

Raman spectroscopy. The energy difference between incoming and outgoing light

is analyzed to learn about the nature of internal excitations of the studied sample.

A Raman scattering setup therefore consists of a narrow-frequency source of

light,in our case a laser source is used, beam optics to direct the light onto the

sample and collect the scattered light, a spectrometer and a photon detector to

analyze the inelastically scattered light.

3.2.3 Macroscopic interpretation of Raman scattering

Electromagnetic waves have both electric and magnetic components. Surpris-

ingly, Raman scattering from magnetic excitations does not occur primarily be-

cause of a direct coupling of light to magnetic moments. Instead, it is a result of

of a coupling to the electric moments of the scattering medium. One may think

of a medium as being made up by a collection of microscopic electric dipoles

which can produce a finite macroscopic polarization. If no internal excitation is

27
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created by the incoming light, they will always oscillate with the frequency of

the incident electromagnetic wave and re-emit photons with the same frequency.

A normal mode of the scattering medium can however modify its susceptibil-

ity. The polarizability of the system may depend on whether the elementary

oscillators are in the ground state or have been excited into a collective higher-

energy state. Let ν be a characteristic variable of the excitation like the normal

mode vector. The polarization P of the medium can be expanded in terms of

the external electric field Ein [82]:

P ξ(r) = χξµ(ωin)Eµ
in +

∂χξµ

∂ν
(ωin,−ω)ν(ω)Eµ

in + . . . , (3.1)

where ω is the frequency of the internal excitation and χ is the first order sus-

ceptibility, which produces elastic scattering. Electromagnetic waves can also

create an excitation in the scattering medium. In such a case, in equation 3.1,
∂χ
∂ν

(ωin,−ω) is replaced by ∂χ
∂ν

(ωin, ω). The scattering off a pre-existing excita-

tion is called anti-Stokes scattering, while the creation of an excitation is called

Stokes scattering. A schematic representation of the possible light scattering

processes is given in figure 3.2. The question is now, which information about

the elementary excitations of the crystal is obtained by Raman scattering.

For an isotropic insulator without magnetic ions, the radiation of light by

Stokes and anti-Stokes polarizations can be derived from Maxwell’s equations[83]:

(∇2 + k2sc)Esc(r, ωsc) = − ω
2
sc

ε0c2
P(r, ωsc), (3.2)

where ksc = nscωsc

c
and c is the velocity of light in vacuum. The solution for the

scattered field is[83]

Esc(r, ωsc) =
ω2
sc

4πε0c2

∫
V

d3r′
exp(iksc|r− r′|)
|r− r′|

P(r′, ωsc). (3.3)

The final scattering cross section in the far-field limit is[83]

d2σ

dΩdωsc
=

ωinω
3
scnscV

(4πε0c2)2nin|Ein|2

∫
d3(r1 − r2) exp(iksc · (r1 − r2)) (3.4)

× 〈(esc ·P∗(r1, ωsc))(esc ·P(r2, ωsc))〉. (3.5)

There are two things to notice here:
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Figure 3.2: a)The three possible light scattering processes for a single remitted

photon. b) Sketch of a Raman scattering spectrum. The inelastic peaks are

typically several orders of magnitude smaller than the elastic peak. The relative

intensity of Stokes and Anti-Stokes scattering depends on the population factor

of the excited state.
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1. Raman scattering yields information on the pair correlation function in-

volving the fluctuating polarization.

2. The cross section has an approximate ω4 dependence on the laser frequency.

So any excitation which leads to a fluctuating polarization produces a Raman

signal. Raman scattering can be used to investigate optical phonons[84, 85],

magnetic excitations[86] and electronic degrees of freedom[87]. In the follow-

ing paragraph a short recapitulation of the Raman scattering mechanism for

magnetic excitations is given, since this thesis’ focus is primarily on magnetic

insulators.

Magnetic Raman scattering An effective Hamiltonian for the interaction of

light with the magnetic system can be written as[83]

Hint =
∑
r

∑
α,β

Eα
inχ

αβ(r)Eβ
sc (3.6)

For magnetic materials with localized spins the susceptibility can be expanded

in terms of spin operators[83, 88]:

χαβ(r) = χαβ0 (r)+
∑
µ

Kαβµ(r)Sµr +
∑
µ,ν

Gαβµν(r)Sµr S
ν
r +
∑
δ

∑
µ,ν

Hαβµν(r, δ)S
µ
r S

ν
r+δ+. . .

(3.7)

The K− and G−terms in equation 3.7 give rise to one-magnon scattering. In

the simplest case of a ferromagnet in a cubic environment, the K-term takes the

form K
∑

i(Ein × Esc) · Si. The details of the term differ for less symmetric en-

vironments and other magnetic structures. However, the dominant one-magnon

contribution is often still found in cross-polarization[86]. The G-term is typ-

ically not relevant in a backscattering geometry since it involves terms of the

form (Ez
inE

+
sc +E+

inE
z
sc)(S

+
r S

z
r + SzrS

+
r ) and (Ez

inE
−
sc +Ez

inE
−
out +E−inE

z
sc)(S

−
r S

z
r +

SzrS
−
r )[83]. The H−term, which involves spin operators on different sites, could

in principle also give rise to one-magnon scattering with terms S±r S
z
r+δ and

SzrS
±
r+δ[83, 88], however they would still not be important in a backscattering

geometry. An important consequence of the H−term is that it gives rise to two-

magnon scattering in which a pair of magnons is created and annihilated[83].
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The interaction Hamiltonian for the H−term typically can be rewritten as[83]:

H =
∑
r,δ

∑
α,β,µ,ν

Eα
inE

β
scHαβµν(r, δ)S

µ
r S

ν
r+δ (3.8)

Again, for a simple cubic ferromagnet it takes the form[83, 89]

H =
∑
r,δ

((H1 −
1

3
H3)Ein · Esc +H3(Ein · δ̂)(Eout · δ̂)Sr · Sr+δ, (3.9)

where H1 and H3 are magneto-optic coefficients and δ̂ is the unit vector in the

direction of δ, which is the vector connecting the magnetic sites. The strongest

contribution to two-magnon scattering can therefore be expected for incident and

scattered light polarization along the bond directions.

3.2.4 Raman Spectrometer

A TriVista triple grating spectrometer with excitation laser central wavelengths

532 nm and 660 nm was used. The advantage of a triple grating spectrometer

along with a reasonably narrow laser line(<1 MHz) is that a high stray light

rejection is combined with a very good spectral resolution. The good stray light

rejection allows for the measurement very close to the Rayleigh line, while the

high spectral resolution permits the tracking of very small shifts of excitation

energies. The experimental arrangement is shown in figure 3.3. The linearly

polarized light is passed in turn through a beam expander BE, a polarization

rotator λ/2 and an attenuator A before being directed into the sample through

a focusing microscope M . The scattered light is collected by the microscope ob-

jective lens and focused onto the entrance slit S1 of the spectrometer via a Bragg

Notch filter(BNF), a polarization analyzer(PA) and a quarter-wave plate(λ/4).

The light is dispersed by grating G1 before passing slit S2, which limits the spec-

tral range of the scattered light. Grating G2 cancels the dispersive action of G1

and recombines the remaining light while focusing it onto the third grating. The

first two gratings together with the second slit therefore act as a bandpass filter.

The light is finally dispersed again by G3 and directed onto the liquid nitrogen

cooled two-dimensional charge coupled device(CCD) detector.

Since the spectrometer is operated in backscattering geometry to allow the use

of focusing optics, the z(xx)z, z(xy)z, z(yx)z and z(yy)z polarization geometries
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Figure 3.3: Left: Schematic of the light dispersion in triple subtractive mode

to allow measurements very close to the Rayleigh line. Right: Schematic of

the spectrometer in triple subtractive mode with the pressure cell in the sample

chamber.
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are accessible. Due to the excellent stray light rejection of the spectrometer,

measurements with energy transfers as small as 1 meV were possible.

3.2.5 Raman scattering sample environment

Cryostat The pressure cell and sample were cooled with a liquid helium continuous-

flow cryostat which rendered possible measurements in the temperature range

from 2.6 K to room temperature. For ambient pressure measurements a simple

planar cold finger was employed, with the sample in thermal contact with the

cold finger through Apiezon N vacuum grease. This allowed for larger samples

to be used, facilitating the orientation of the sample. For measurements with

the pressure cell, a copper cold finger with a cavity to hold the pressure cell was

used. To ensure good thermal contact Apiezon N vacuum grease was applied to

the interface between the pressure cell and the cold finger. The pump used to

ensure the circulation of liquid helium had a pumping speed of 35 m3/h.

Pressure Cell The pressure cell setup used was an Opposing-Plates Diamond

Anvil Cell with a diamond culet diameter in the range 1-1.5 mm with the basic

design adapted from ref. [90]. The cell plates were manufactured from the

nickel-copper alloy Monel-400. Copper-Beryllium gaskets with a hole diameter of

0.6 mm and a thickness of 0.7 mm were employed. The backing plates were also

manufactured from Copper-Beryllium was used. The Copper-Beryllium alloy

used for both gaskets and backing plates contained 2 % Beryllium.

Pressure Transmitting Media As a pressure medium, Daphne Oil 7373 and

liquefied argon were used. For experiments on (C4H12N2)Cu2Cl6, Daphne Oil

proved sufficient as it remains liquid at room temperature up to a pressure of

22 kbar[91]. This in principle allows for the measurement in the pressure range

up to approximately 20 kbar without the need of heating the pressure cell when

applying pressure. Secondly, conditions are expected to remain largely hydro-

static in the experimentally accessible pressure range[92] and thirdly, Daphne

oil 7373 has the advantage of being easy to handle at room temperature. For

the investigation of SrCu2(BO3)2 the liquefaction of argon was necessary due

to the higher critical pressures. Furthermore, SrCu2(BO3)2 is subject to strong
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magnetoelastic coupling. As a consequence, the experimental conditions have

to be designed such that any external strains are minimized. Liquid argon has

the advantage of being relatively simple to liquefy while providing very good

hydrostaticity up to several tens of kbar pressure[92, 93]. Due to the very weak

signal of SrCu2(BO3)2, the structured background produced by the argon pres-

sure transmitting medium was of comparable intensity to the signal from the

sample. Therefore the signal of the medium was independently measured to

subtract from the sample spectra.

To ensure that the low-temperature effects observed in the experiments are

not a consequence of pressure changes in the cell, we have closely monitored the

temperature-dependence of the pressure inside the cell. As can be seen from

Fig.3.4 a), the pressure changes below 40 K are marginal. Most of the pressure

change due to thermal expansion and solidification of argon occurs between room

temperature and 40 K as seen in Fig.3.4 b). For Daphne oil 7373, the pressure

changes between room temperature and cryogenic temperatures are known to be

significantly smaller[91].

Pressure reference The rubies used as a pressure gauge are doped such as to

maximize the ruby R1 intensity at ambient temperature. At room temperature

the ruby R1 fluorescence line was found at around 694.2 nm. At base temperature

the line was located at 693.26 nm.

Pressure measurement The red-shift of the ruby R1 line was used as a pres-

sure scale. At room temperature the pressure was obtained according to the

calibration curve given by Ref.[80]:

P [GPa] =
A

B

((
λ

λ0

)B
− 1

)
, (3.10)

with constants A=1904 and B=7.715 At 4.5 K and below, the pressure was

calculated through the relation[81]:

P[GPa] = A0 ln

(
λ

λ0

)
, (3.11)
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Figure 3.4: a) Measured pressure changes between 40K and base temperature.

b) Measured pressure changes between room temperature and 40K.

with constant A0 = 1762 GPa[81]. The peak positions and widths were extracted

by fitting the Ruby R1 and R2 lines with Lorentzian peaks. The temperature-

dependence of the ruby reference frequency was corrected for using the calibration

given by Ref.[94].
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Temperature measurement and control The temperature was measured

by exploiting the temperature-dependence of the resistivity of the rhodium-iron

alloy. This alloy has the advantage of the slope dR
dT

increasing very steeply be-

low ∼ 15 K, making it extremely sensitive in the low-temperature-regime[95].

The thermometer was installed at the side of the cold finger. The temperature

stability of the cryostat was better than 0.1 K at temperatures below ∼10 K

and approximately 0.5 K above. The temperature in the cryostat was controlled

through a needle valve at the helium transfer line and a heating coil. At elevated

temperatures, the relative temperature stability was always .1 %.

3.3 Neutron Scattering

3.3.1 Why neutron scattering?

Neutrons are unique as a probe of matter because of three fundamental qualities

which sets them apart from x-ray or electron scattering[96, 97]:

1. As neutrons have a rather large mass(m=1.675·10−27 kg), the energy of slow

neutrons is comparable to the typical energies of elementary excitations in

condensed matter systems. The energy transfers accessible through neutron

scattering techniques are thus ideal to study dynamic properties. At the

same time, the de-Broglie wavelength λ = h
mv

for typical neutron energies

is similar to interatomic distances(few Å), making it a perfect fit to study

structural properties of matter.

2. Because neutrons are electrically neutral, they interact only weakly with

matter. Therefore, neutrons — in general — have a large penetration depth

and allow to study the bulk properties of samples.

3. Neutrons carry a magnetic moment. This allows to determine materials’

static and dynamic magnetic properties.

3.3.2 Basic principle of neutron scattering

The aim of a neutron scattering experiment is determining the probability for a

neutron incident on the sample with wavevector k to be scattered to wavevector
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k′. The relevant quantity of the scattering event is the momentum transfer

~Q = ~(k − k′). (3.12)

We call Q the scattering vector. The energy transferred in the scattering event

is

~ω =
~2

2m
(k2 − k′2). (3.13)

Together, these two equations ensure conservation of energy and momentum.

3.3.3 The neutron scattering cross section

The differential neutron scattering cross section corresponds to the ratio of neu-

trons scattered into the volume dΩdω divided by the flux of the incident neutrons.

Here, dΩ denotes the solid angles and dω, the range of energy transfers that make

up the scattering volume. The starting point to find an expression for the cross

section is Fermi’s golden rule[97]:

d2σ

dΩdω
=
( m

2π~2
)2 kf

ki

∑
λf ,σf

∑
λi,σi

pλipσi |〈kf , σf , λf | Û |ki, σi, λi〉|2 ·δ(~ω+Eλi−Eλf ),

(3.14)

where |λi〉 denotes the scatterer’s initial state with energy Eλi , thermal popula-

tion factor pλi and |λf〉 designates the scatterer’s final state. The spin states of

the incoming and scattered neutrons are labelled with σi and σf and pσ is the

polarization probability. The interaction of the neutron with the scatterer is en-

coded in the operator Û and depends on the specific scattering process. Finally,

the delta function ensures energy conservation.

3.3.4 Nuclear scattering

Neutrons interact with nuclei through nuclear interactions which are very short-

range. If the range of nuclear forces is negligible compared to the wavelength

of neutrons, the interaction operator for the neutron-nucleus interaction can be

approximated by the Fermi pseudopotential[96–98]:

Û(r) =
2π~2

m

∑
j

bjδ(r − R̂j), (3.15)
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where bj is the scattering length of atom j. It is — in general — a complex

number, with the real part corresponding to energy-independent scattering and

the imaginary part corresponding to energy-dependent absorption[96, 97]. The

values of b have been determined to great precision and are tabulated[99–101].

With the Fermi pseudopotential approximation, equation 3.14 takes the form:

d2σ

dΩdω
=
kf
ki

1

2π

∑
j,j′

∫ ∞
−∞
〈e−iqRj′ (0)e−iqRj(t)〉e−iωtdt, (3.16)

where 〈e−iqRj′ (0)e−iqRj(t)〉 =
∑

λ pλ〈λ|e
−iqRj′ (0)e−iqRj(t)|λ〉. This can be rewritten

in terms of correlation functions as [97]:

d2σ

dΩdω
= N

kf
ki

∫ ∞
−∞

dte−iωt
∫

dreiQr ·
(
〈b〉2G(r, t) +

[
〈b2〉 − 〈b〉2

]
Gs(r, t)

)
,

(3.17)

where

G(r, t) =
1

N

∑
j,j′

∫
〈δ
(
r′ − R̂j′(0)

)
δ
(
r′ + r− R̂j(t)

)
〉dr′ (3.18)

Gs(r, t) =
1

N

∑
j

∫
〈δ
(
r′ − R̂j(0)

)
δ
(
r′ + r− R̂j(t)

)
〉dr′. (3.19)

Here, G(r, t) describes the probability of having a well-defined spatial and tem-

poral correlation between the atom j′ at position r and time t = 0 and the atom

j at position r′ + r and time t. Gs(r, t) is the self-correlation part, where j′ = j.

The two terms in equation 3.18 can be considered separately. They are called

coherent and incoherent scattering cross sections[97]:(
d2σ

dΩdω

)
coh

= N
kf
ki
〈b〉2Scoh(Q, ω), (3.20)(

d2σ

dΩdω

)
inc

= N
kf
ki

[
〈b2〉 − 〈b〉2

]
Sinc(Q, ω). (3.21)

Any real system has different scattering lengths associated with different nuclei.

The coherent scattering cross section is the scattering cross section an other-

wise identical system where all atoms have the same scattering length 〈b〉 would

have[96]. The incoherent part contains the terms needed to obtain the scattering
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from the actual system which has various deviations of the scattering length from

the mean value[96]. The simplest case is when the scattering system consists en-

tirely of nuclei with nuclear spin I = 0. In such a case, the scattering is totally

coherent and all the scattering lengths b are equal[96].

Elastic nuclear scattering In the case of elastic scattering ~ω = 0, so ki = kf .

In this situation equations 3.20 and 3.21 simplify to[96, 97](
dσ

dΩ

)
coh

= 〈b〉2
∑
j 6=j′

eiQ·(Rj′−Rj), (3.22)(
dσ

dΩ

)
inc

= (〈b2〉 − 〈b〉2)
∑
j=j′

eiQ·(Rj′−Rj) = N(〈b2〉 − 〈b〉2). (3.23)

The incoherent scattering therefore just produces a constant background. The

coherent elastic neutron cross-section turns out to be[96, 97]

dσ

dΩ
= N0

(2π)3

V
e−2W (Q)

∑
τ

|Sτ |2δ(Q− τ), (3.24)

where V is the unit cell volume, τ denotes a reciprocal lattice vector and Sτ =∑
d bde

iτ ·d, with d the relative position of atoms in the unit cell, is the structure

factor. e−2W (Q) is the so-called Debye-Waller factor. It contains information

about the atomic displacements. For a cubic crystal of identical atoms 2W =
1
3
q2〈u2〉[96], where 〈u2〉 is the mean square displacement of the atoms. So the

information gathered from a elastic neutron scattering experiment is[97]:

• Size and symmetry of the unit cell from Bragg reflections’ position and

systematic absences.

• Location of atoms within the unit cell from observed Bragg peak intensities.

• Mean atomic displacements 〈u2〉 from the Debye-Waller factor.

In this work, the first two are of primary interest. All measurements are per-

formed at low temperatures and therefore the Debye-Waller factor correction is

expected to be small.
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3.3.5 Magnetic scattering

The primary difficulty in finding an expression for the magnetic neutron scatter-

ing cross-section is the calculation of the matrix elements in equation 3.14 for

the interaction Û = µ̂ ·H, where µ̂ is the magnetic moment operator of the neu-

tron and H is the local magnetic field generated by unpaired electrons[96, 97].

In the case of unpolarized neutrons, magnetic ions with fully localized magnetic

moments and spin-only scattering, the master formula for magnetic scattering is

obtained [96, 97]

d2σ

dΩdω
= (γr0)

2kf
ki
F 2(Q)e−2W (Q)

∑
α,β

(
δαβ −

QαQβ

Q2

)
Sαβ(Q, ω), (3.25)

where

Sαβ(Q, ω) =
1

2π~
∑
j,j′

∫ ∞
−∞

eiQ·(Rj−Rj′ )〈Ŝαj (0)Ŝβj′(t)〉e
iωtdt (3.26)

and F 2(Q) is called the magnetic form factor. It is the Fourier transform of

the normalized spin density of the magnetic ion[96]. The magnetic form factors

for most ions have — in the dipole approximation — been tabulated in Ref.

[101]. Therefore, in a neutron scattering experiment the scattered intensity is

proportional to the Fourier transform of the spin pair correlation function in

space and time[96, 97].

Magnetic structure determination Integrating over ω and replacing l =

Rj −Rj′ in equation 3.25, one obtains[96, 97]

dσ

dΩ
= (γr0)

2e−2W (Q)F 2(Q)
∑
α,β

(
δαβ −

QαQβ

Q2

)∑
l

eiQ·l〈Ŝα0 〉〈Ŝ
β
l 〉. (3.27)

The language to adequately describe magnetic structures is in terms of propa-

gation vectors. The basic idea is to describe the ordered state as a distribution

of magnetic moments, which has some periodicity and therefore can be Fourier-

expanded[102]. The momentum transfer Q of a magnetic Bragg peak reflection

can be decomposed into Q = H + k, where H defines the Brillouin zone of the

nuclear unit cell and k is the propagation vector of the magnetic superlattice. A

magnetic structure is not limited to a single propagation vector and for complex
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structures, multiple k may be necessary. Such a structure is called multi-k[102].

A further complication arises if there are more than one magnetic ion per unit

cell. The propagation vector tells us about the translational symmetries of mag-

netic moments between unit cells but not how they are arranged inside the cell.

This information is encoded in the relative intensities of the magnetic Bragg

peaks[102]. In the case of multiple magnetic sites per unit cell, very often a

magnetic structure with k = 0 is observed. Depending on the space group of

the crystal, this can correspond to a ferromagnetic, antiferromagnetic or even

a non-collinear structure[102]. In such a situation, it is important to collect

the intensities of many magnetic Bragg reflections to differentiate between these

different configurations.

3.3.6 Neutron Instruments

Neutron scattering instruments can be classified into diffractometers to study

elastic scattering and spectrometers for inelastic scattering. For inelastic scatter-

ing, the need to control the energy transfer leads to the requirement to quantita-

tively control the momentum of both incident and scattered neutrons. For diffrac-

tion it is sufficient to have control over the momentum transfer. A schematic

representation of a triple axis spectrometer is shown in fig. 3.5a). The neutron

energy of incident and scattered neutrons is selected by scattering the neutrons

off pyrolytic graphite crystals. Data is typically gathered point-by-point by sam-

pling reciprocal space through synchronized motions of the monochromator scat-

tering angles, the sample rotation angle A3 and the scattering angle A4 whilst

only detecting the scattered neutron with the energy fixed by the analyzer.

A single crystal diffractometer’s basic design is similar, except that the scat-

tered neutron energy is not analyzed and the detector is placed directly after the

sample. Bragg peak intensities were measured by rotating A3 while keeping all

other angles fixed (rocking scan).

3.3.7 Neutron Diffraction

The magnetic structure of Pb2VO(PO4)2 was determined on the CEA-CRG D23

diffractometer at ILL using neutrons with the wavelength λ = 2.35 Å. The incom-

ing neutron wavelength was selected using a pyrolytic graphite monochromator.
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Figure 3.5: a) Schematic top view of a neutron 3-axis spectrometer. For a

neutron diffractometer, the general layout is similar, except that the detector

is placed directly after the sample without an energy-discriminating analyzer

system(grey shaded). b) Schematic side view of a neutron diffractometer with

a lifting counter detector, which can be moved on a circle around the sample

position.
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A pyrolytic graphite filter was used to suppress higher harmonics. Sample envi-

ronment was a standard orange cryostat. Scattered neutrons were detected by a
3He-gas detector tube. CEA-CRG D23 features a lifting counter detector which

allows to reach Bragg peaks up to 29◦ away from the horizontal plane whilst using

heavy sample environment such as orange cryostats or cryomagnets (Fig. 3.5b).

This is particularly useful to determine magnetic structures in quantum magnets,

where often very low temperatures are required. In systems with propagation

vector k = 0, it is imperative to collect a large number of magnetic Bragg peak

intensities. In such situations, the ability to access out-of-plane Bragg peaks

is essential to achieve a good refinement of the magnetic structure. In fact,

magnetic ordering in Pb2VO(PO4)2 corresponds to a (0, 0, 0) propagation vector

(recall that there are 4 magnetic atoms per unit cell). As a result, many magnetic

Bragg reflections coincide with nuclear peaks. Magnetic reflections for which this

was not the case were measured in usual rocking scans at 1.5 K counting about

45 s/point. For the remaining magnetic reflections we first measured the rocking

curve of the underlying nuclear peak at T = 5 K > TN ∼ 3.5 K. Each scan

was then analyzed using a Gaussian fit. Subsequently, the combined nuclear and

magnetic contributions were measured at T = 1.5 K in short rocking scans near

the top of the peak, counting about 60 s/point. To extract the magnetic contri-

bution, these scans were fit using peak profiles of the same width as determined

for the underlying nuclear peak above TN .

The magnetic structure at T = 1.5 K was determined from an analysis of

11 measured magnetic reflections. These were normalized using the scale fac-

tor obtained from the least-square fitting of 22 nuclear Bragg peaks measured

intensities (R-factor 4.2 %).

3.3.8 Inelastic neutron scattering

To enable the measurement of excitations, it is necessary to have quantitative

control over the energy transfer between the incoming and scattered neutrons.

A simple way to achieve this is to add an analyzer crystal between the sample

and the detector(Fig. 3.5). This fixes the wavelength of neutrons which are

scattered onto the detector and therefore the energy transfer. Because in such

an instrument there are three axes of rotation(monochromator - sample - ana-
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lyzer) such an instrument is called a 3-axis spectrometer. Spin wave excitations

in Pb2VO(PO4)2 were measured using the Multi-Angle Crystal Spectrometer

(MACS) at NIST [103] and the IN12 3-axis instrument at ILL[104]. In both

cases, the final neutron energy was fixed at Ef=3.7 meV. Higher-order beam

contamination was suppressed by a cooled BeO filter on MACS and a cooled Be

filter on IN12 after the sample. No collimators were used in either of the setups.

Both experiments were performed at the base temperature of a dilution refrig-

erator below 0.1 K. The scattering planes were (h, k, 0) and (0, k, l) on MACS

and IN12, respectively. The tabulated(MACS) and measured(IN12) energy res-

olution at the elastic position was correspondingly 0.17 meV and 0.12 meV full

width at half maximum. On MACS the data were collected in constant-energy

slices at 0.5, 1, 1.5, 1.75, 2 and 2.25 meV energy transfer. Each slice was taken by

scanning the scattering angle in the typical range −108◦ to 83◦ with 3◦ steps and

the sample rotation angle in range 120◦ with 1◦ steps, while typically counting

60 s at each setting. IN12 data were taken in a series of constant-q scans cen-

tered along the (0, k, 0), (0, k, 2), (0, 2.5, l) and (0, 3, l) reciprocal-space rods with

typical steps of 0.025 meV in energy transfer and counting about 120 s/point.

3.4 Vibrating Sample Magnetometry

A simple and reliable method to determine the magnetization of a material is

so-called vibrating sample magnetometry[105, 106]. A small sample is placed at

the center of a gradiometer pickup coil configuration. If this small sample with

magnetization M is moved up and down inside the gradiometer, the change in

flux through the pickup coils will induce a voltage:

Vpickup = −dΦ

dt
= −dΦ

dz

dz

dt
= −ANµ0

dMz

dz

dz

dt
, (3.28)

where Φ is the flux through the coil, z is the vertical position of the sample, A is

the cross-sectional area of the pickup coil with N windings and Mz is the vertical

component of the sample magnetization. In this work, the commercial Quantum

Design large bore Vibrating Sample Magnetometer option for the Physical Prop-

erty Measurement System was used. The sample was attached with Apiezon

N grease to a brass sample rod which is vertically oscillated inside the sample
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chamber. The oscillation amplitude was 2 mm and the frequency ν = 40 Hz

[107]. The measured voltages are related to the sample magnetization of the

sample by calibrating the setup with a Pd standard[107].

3.5 Magnetic torque

The first step in identifying a possible spin-nematic phase close to the saturation

field is to determine the phase diagram close to the saturation field. Since in

Pb2VO(PO4)2 the saturation field is close to 21 T[108], such experiments have

to be performed at a high-field facility. Indirect information on the size and

direction of the magnetic moment at high fields is obtained by measuring the

torque exerted by a homogeneous external magnetic field H on the sample with

magnetization M. The torque is then τ = M× µ0H. The magnetic torque was

measured by means of the capacitive-cantilever technique (e.g. Ref.[109, 110]).

The sample is mounted on a thin BeCu-cantilever which flexes away from its

equilibrium position due to the experienced torque. The flexing of the cantilever

changes the capacitance of the capacitor made up by the base plate and the

cantilever, which can be measured with very high precision.

The equation of motion of a simple setup (Fig.3.6) is

J
d2α

dt2
= −kα−Ddα

dt
+ τ, (3.29)

where D is the damping coefficient and k is the stiffness of the cantilever. J is

the moment of inertia of the sample-cantilever assembly. The solution can be

written as

α(t) =
τ

k
+ A exp(−D

2J
t) cos(ωt),

ω =

√
k

J
− D2

4I2
,

(3.30)

where A is a constant. In the steady state the second term vanishes and the angle

and the torque are proportional to each other with α = τ/k. The capacitance

of a plate capacitor with inclined plates, as depicted in fig.3.6, is evaluated as
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Figure 3.6: Sketch of a capacitive torque meter. For small flexing angles α,

the capacitance change is proportional to the torque exerted on the sample(see

text).

follows:

tanα =
d1 − d0
x1

(3.31)

dC = ε
dA

δd
(3.32)

dA = y1dx (3.33)

δd = d0 + x tanα (3.34)

C =

∫
dC =

∫ x1

0

ε
y1dx

d0 + x tanα
(3.35)

= εy1 [cotα ln(d0 cosα + x sinα)]x10 (3.36)

= εy1

(
ln(d0 cosα + x1 sinα)

tanα
− ln(d0 cosα)

tanα

)
(3.37)

=
εy1

tanα
ln

(
1 +

x1
d0

tanα

)
=

εy1
tanα

ln

(
1 +

x1
d0

d1 − d0
x1

)
(3.38)

=
εy1

tanα
ln

(
d1
d0

)
=

εy1
tanα

ln

(
1 +

L sinα

d0

)
. (3.39)
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Taylor expanding around α = 0 gives

C = εy1

(
L

d0
− L2α

2d20

)
. (3.40)

The change in capacitance is therefore directly proportional to the torque for

small flexing angles.

Magnetic torque measurements were performed the Laboratoire National des

Champs Magnéetiques Intenses in Grenoble (LNCMI-G). High magnetic fields

were generated the by the resistive magnet M9 (36 T, 34 mm bore). The mea-

surements were carried out in the cooling mixture of a 3He − 4He dilution re-

frigerator. The measurements were performed with the external magnetic field

aligned along the b− and c∗−directions. Note that the b-direction is the easy

axis of magnetic anisotropy[73] and that c∗ is perpendicular to the a-b-plane

with proposedly strong magnetic interactions. Magnetic torque data were fitted

as suggested in ref. [111].

47





Chapter 4

(C4H12N2)Cu2Cl6:

Pressure-induced order in a

quantum paramagnet

The results presented in this chapter are also published in

S. Bettler, G. Simutis, G. Perren, D. Blosser, S. Gvasaliya and A. Zheludev.

“High pressure Raman study of the quantum magnet (C4H12N2)Cu2Cl6.”, Phys.

Rev. B 96, 174431 (2017) doi: 10.1103/PhysRevB.96.174431

We probe the pressure-dependence of the two-magnon continuum in (C4H12N2)Cu2Cl6
at Q ≈ 0 with Raman spectroscopy. In addition, we investigate the effect of

magnetic correlations on lattice excitations as a function of temperature and

pressure. This provides additional information on the magnetic ground state

and phase transitions.
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Figure 4.1: Measured temperature dependence of the Stokes Raman scattering

spectra in (C4H12N2)Cu2Cl6 in Z̄(XX)Z polarization at ambient pressure. Indi-

vidual spectra are shown with incremental offsets for clarity. The arrows indicate

the peak position of magnetic scattering.
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4.1 Results

4.1.1 Ambient pressure

Magnetic scattering

At elevated temperatures, the measured Raman spectra are dominated by phonons.

Below about 25 K, a broad continuum of excitations develops at low energies as

shown in Fig. 4.1. This continuum is well separated from any phonons, which

allows for a clean observation of its pressure-dependence without the necessity

to subtract any lattice contributions. At T = 2.6 K the continuum is peaked at

24.6 cm−1 and has a full width at half maximum of 6 cm−1 as extracted from

empirical Lorentzian fits. It is almost symmetric with a very slight tail extend-

ing towards higher energies. Its intensity increases with decreasing temperature,

although its position remains largely unchanged. This is a strong indication that

the low-energy feature is due to magnetic scattering [112–114].

Another confirmation comes from analyzing its energy range. Magnetic Raman

scattering in quantum paramagnets is expected to originate primarily from two-

magnon processes[86, 113]. A broad continuum is indicative of a substantial

magnon bandwidth. For gapped quantum antiferromagnets such a continuum

is confined in the energy range between 2∆ and twice the maximum magnon

energy. For (C4H12N2)Cu2Cl6, using the single magnon dispersion known from

neutron studies[50], we can estimate the domain of this 2-magnon continuum

to be between 16 cm−1 and 45 cm−1. This range is indicated by the shading

in Figs. 4.1 and 4.2, and indeed coincides with the domain of the observed

continuum.

The magnetic nature of the continuum is also consistent with the observed

polarization dependence of scattering. As shown in Fig. 4.2, the shape and

position of the continuum is the same in all experimental configurations. How-

ever, its intensity is strongest in the Z̄(XX)Z geometry and much suppressed in

the Z̄(YY)Z geometry. Thus, the signal is strongest for polarization along the

two strongest magnetic bonds, similar to two-magnon scattering in other known

dimer systems[61, 113].
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Figure 4.2: Symbols: Measured polarization dependence of the Stokes Raman

scattering spectra in (C4H12N2)Cu2Cl6 at base temperature at 1.3 kbar. The

shaded area is as in Fig. 4.1. Lines are empirical Lorentzian fits. Individual

spectra are shown with incremental offsets for clarity.
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Figure 4.3: Relative frequency shifts of three representative anomalous phonons

in (C4H12N2)Cu2Cl6 against temperature at ambient pressure, just below the

second transition and above the transition, as deduced from Lorentzian fits to the

measured spectra. The detector bin sizes are shown in the upper right corners

of each plot. Note that since each phonon peak is several detector bins wide,

postulating its Lorentzian shape allows to determine the peak position with an

accuracy greater than the bin size. Lines are guides to the eye.

Anomalous phonons

In the energy range 10-205 cm−1 that was studied in detail in our experiments,

11 strong phonon peaks were observed. Since the crystal is triclinic with space

group P1̄, point group Ci, all Raman active phonons have trivial Ag symmetry.

From the measured spectra, the phonon frequencies were obtained in Lorentzian

fits. As shown in Fig. 4.3, several of them exhibit anomalous temperature de-

pendencies. Rather significant frequency shifts occur at very low temperatures,

below 20 K. In this regime, two of the observed modes actually harden with

increasing temperature.

In a bid to identify the eigenvectors of the anomalous phonons we performed

density functional theory (DFT) ab initio calculations using the Quantum Espresso

software package [115]. The non-local rVV10 functional [116] was used to incor-

porate Van der Waals and hydrogen bonding effects which are certainly important

in this organomatallic compound. For all calculations the projector augmented
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wave method was used. Pseudopotentials for the density functional suggested

in Ref. [117] were generated using input parameters from the PSLibrary project

(pslibrary.0.3.1)[118]. In all calculations the kinetic energy cutoff was 120 Ry

and the charge density cutoff 600 Ry. Brillouin zone integration was performed

using a 3x3x3 k-point grid.

For the 16 lowest-energy Raman-active modes the observed and calculated

frequencies are listed in incremental order in the first two columns of Table 4.1.

Additionally, measured and calculated phonon frequencies of a protonated sample

are shown in the last two columms. The first 15 modes listed correspond to

displacement patterns involving both the [Cu2Cl6]
2− bitetrahedra as well as the

organic ions. By contrast, the last mode listed in Table 4.1 – as well as all higher-

energy modes – correspond to internal molecular modes of the piperazinium ion.

Consequently this last mode shows a much larger shift in frequency upon H/D

exchange.

A conclusive result of our DFT simulations is that the 10- to 205-cm−1 low-

energy lines that were studied in detail all correspond to vibrations of the [Cu2Cl6]
2−

bitetrahedra with admixtures of low-energy vibrations of the piperazinium ions.

This explains why almost all low-frequency vibrations are subject to substan-

tial H/D isotope effect. At the same time it greatly complicates the vibrational

landscape and makes the frequencies very sensitive to the difficult to account for

Van-der-Waals interactions. Therefore, it appears impossible to unambiguously

match the observed anomalous phonon lines to particular calculated ones. Few

studies of [Cu2Cl6]
2− vibrations in other materials have been reported to date.

In a recent work, the authors also met considerable difficulties in assigning the

low-frequency peaks to particular modes, as in our case[119].

4.1.2 Results under applied pressure

Magnetic excitations

As could be expected, magnetic Raman excitations in (C4H12N2)Cu2Cl6 are

strongly affected by hydrostatic pressure. As shown in Fig. 4.4, we observe

a shift of the magnetic continuum to lower energies already at rather modest

pressures. This is fully consistent with the previously observed softening of the

spin gap [10]. Below Pc ∼ 4 kbar, the spectral function retains its symmetric
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Table 4.1: Comparison of calculated and measured phonon energies for

(C4D12N2)Cu2Cl6 and (C4H12N2)Cu2Cl6 for the lowest vibrational modes in

ascending order.

(C4D12N2)Cu2Cl6 (C4H12N2)Cu2Cl6
Expt.(cm−1) DFT(cm−1) Expt.(cm−1) DFT(cm−1)

54.4 49 57.0 52

76.9 74 77.1 75

88.3 76 91.5 78

96.4 85 103.9 88

109.8 93 112.5 99

116.7 105 124.6 113

137.7 117 139.4 120

143.2 126 149.5 130

149.0 137 152.8 140

162.7 148 164.8 151

182.3 160 184.7 160

206.1 181 207.0 184

278.2 258 278.3 258

290(2) 275 290(2) 275

305.3 302 304.7 303

319.9 305 406.1 387
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Figure 4.4: Stokes Raman scattering spectra measured in (C4H12N2)Cu2Cl6 at

T = 2.6 K in Z̄(XX)Z polarization, normalized to the peak intensity of the

phonon with ω0=88.5 cm−1. Individual spectra are shown with incremental

offsets for clarity. The solid lines are guides for the eye obtained in empiri-

cal Lorentzian (0–12 kbar and 18.2 kbar) or Gaussian (13–16 kbar) fits to the

continuum contribution.
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Figure 4.5: Peak position and half-maximum frequencies of continuum magnetic

scattering as extracted from Stokes spectra at T = 2.6 K in Z̄(XX)Z polarization.
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shape with a slight tail towards higher energies. Throughout this pressure range

the continuum width and shape remain constant, while it shifts to lower ener-

gies as a whole (Fig. 4.4). In the intermediate-pressure range between Pc and

P1 ∼ 13 kbar, we additionally observe a progressive change in the shape of the

scattering. Whereas in the low-pressure range the asymmetry of the magnetic

peak was subtle, the high-energy tail becomes considerably more pronounced at

higher pressure. Increasing the pressure above ∼ P1 results in a further signifi-

cant change in the shape of the spectrum. The magnetic scattering peak becomes

rounded and overdamped, with no clear maximum. Increasing the pressure fur-

ther the spectrum continues to be broadened and develops a long high-energy

tail.

Unlike in simple spin systems such as spin ladders[120, 121], in a material with

magnetic interactions as complex as they are in (C4H12N2)Cu2Cl6 a quantitative

analysis of the Raman spectrum does not appear feasible. To date, there exist

no model calculations of even the single-magnon dispersion in (C4H12N2)Cu2Cl6,

let alone the Raman spectrum. As previously mentioned, even describing the

ground state in terms of J1-dimers is only approximate, since interdimer coupling

is almost as strong. Instead, we chose a model-independent way to quantify

the measured spectra. In Figure 4.5 we plot the positions of the maximum

of magnetic scattering, and frequencies where the intensity reaches half of its

maximum value. The color map in the background represents the measured

Raman intensity relative to its maximum value at each pressure.

Phonons

Tracking the measured phonon frequencies against pressure confirms that the two

transitions at Pc and P1 are not associated with any crystallographic transfor-

mations. Indeed, as shown in Fig. 4.6, all phonons observed at base temperature

show a smooth and almost linear pressure dependence (hardening). None of dis-

appearing, splitting, or an appearance of new phonon lines was detected up to

18.2 kbar applied pressure.

Despite the monotonic pressure dependence at a fixed low temperature, most

of the observed phonons show a remarkable pressure-induced evolution of their

temperature dependencies. As shown in Fig. 4.3, the magnitude of the low-

temperature frequency shifts is highly pressure dependent. For the two phonons
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Figure 4.6: Pressure dependence of the phonon frequencies measured in

(C4H12N2)Cu2Cl6 at T = 2.6 K. Lines are guides to the eye.
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that harden with increasing temperature at ambient pressure, even the sign of the

temperature shift reverses under pressure. This reversal occurs between 11.7 and

15 kbar, and thus seemingly coincides with P1.

4.2 Discussion

As argued in section 4.1.1, the magnetic scattering continuum can be ascribed to

scattering from two-magnon processes that span between twice the energy gap

and twice the maximum of magnon dispersion. Within this interpretation, the

observed evolution of the spectrum below Pc implies a progressive softening of

the gap without much change in the magnon bandwidth, in agreement with the

neutron results. The only other comparable high pressure Raman study of a

quantum paramagnet that we are aware of is that on KCuCl3[122]. The much

broader resolution, stronger elastic line and lower signal-to-noise ratio of the

spectra reported in that work make a direct comparison to our data difficult.

What in our optical measurements on (C4H12N2)Cu2Cl6 is clearly in contradic-

tion with the previous neutron experiments of Ref. [11] are the observed steady

increase of the magnon bandwidth above about 10 kbar, as deduced from the

behavior of the upper continuum half-height frequency, and the clear changes

of the shape of the scattering across the transition at P1. In contrast, inelastic

neutron scattering detected only insignificant changes in spin dynamics between

9 kbar and 18 kbar. Even those were only revealed in a quantitative fit to the

measured neutron spectra, particularly to neutron intensities. The most likely

reason for this discrepancy is an incorrect pressure calibration in the neutron

study. As only became apparent through recent experience with the pressure

cell used in the neutron experiment, the actual pressure can drop by as much as

a third, compared to nominal, upon cooling the cell down to base temperature

[78]. This effect was not taken into account in Ref. 11. Its magnitude for that

particular experiment can not be assessed without additional in-situ pressure

measurements using the same sample as in the original study. It appears likely

though, that the nominally 18 kbar neutron data set actually corresponds to a

pressure just below P1. Note that in the present optical study the pressure is

known reliably, as it is measured in situ at the experimental temperature. We
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thus confirm that the transition at P1 is, indeed, accompanied by a substantial

change in spin excitations and a rapid increase of the excitation bandwidth.

We can expect a direct connection between the evolution of the magnetic

ground state and the behavior of anomalous phonons. First, note that the

anomalous phonon behavior occurs below about 20 K. In most conventional

materials, phonon frequencies remain constant at such low temperatures. The

only energy scale in (C4H12N2)Cu2Cl6 that would be consistent with the low

temperature range is that of magnetic exchange interactions. Below 20 K is pre-

cisely where short-range spin correlations set in. For the strongest bonds, the

typical exchange energy in (C4H12N2)Cu2Cl6 is about 1 meV[50], which is larger

but comparable to the observed anomalous frequency shifts (about 0.15 meV for

the ω0 = 181.3 cm−1 mode). With a high degree of certainty the anomalous

behaviour can therefore be attributed to magnetoelastic coupling. The pressure

dependence of anomalous frequency shifts signifies a strong pressure dependence

of the local spin correlations in the system. A phase transition to a qualitatively

different magnetic structure that we expect to occur at P1 will thus have a partic-

ularly strong effect. We can speculate that it may be responsible for the observed

sign reversals of two anomalous frequency shifts. A more concrete discussion of

the microscopic mechanism would require an unambiguous identification of the

the eigenvectors for the anomalous modes, which is presently lacking.
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Chapter 5

Sign-switching of dimer

correlations in SrCu2(BO3)2
under pressure

The results presented in this chapter are also published in

S. Bettler, L. Stoppel, Z. Yan, S. Gvasaliya, and A. Zheludev. “Sign switching

of dimer correlations in SrCu2(BO3)2 under hydrostatic pressure.”, Phys. Rev.

Research 2, 012010(R) (2020) doi: 10.1103/PhysRevResearch.2.012010

How can one be sure that the pressure-induced phase which was found above

∼18 kbar is indeed plaquette-, rather than dimer-based? To date, the only

supporting evidence comes from studies of the wave vector dependence of inelastic

neutron scattering intensities[34]. Performing such measurements in a bulky

cell needed to produce the required pressure for a sufficiently large sample is a

formidable task. The resulting data are unavoidably limited and noisy, leaving

the interpretation depending on strong assumptions and theoretical modeling

[34]. In the present work we use an entirely different approach. We infer the

strength of dimer spin correlations in SrCu2(BO3)2 from their effect a particular

optical phonon, called the pantograph mode. The phonon frequency can be

measured with very high precision using Raman spectroscopy in a diamond-anvil

pressure cell. We show that around Pc correlations on the dimer bond switch

from AF to dominantly FM, and thereby independently confirm the destruction
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of the AF-dimer ground state. Moreover, we obtain a quantitative estimate for

the dimer spin correlations at pressures up to 34 kbar.

5.1 Results

A typical low-energy Raman spectrum collected in SrCu2(BO3)2 at a pressure

of P = 2 kbar and T = 2.6 K is shown in Fig. 5.1a. The observed frequencies

appear fully consistent with previous measurements at ambient pressure [123].

The three visible lowest-energy excitations are magnetic in origin: two triplets

and one singlet. All remaining peaks are phonons. The peak widths are in

all cases below 1 cm−1 and correspond to the expected instrumental resolution.

Since data for the entire spectrum are accumulated concurrently, this confirms

that temporal drift of spectrometer alignment during the long data collection

period is a non-issue.

The pantograph mode is the peak at around 198 cm−1. It was identified by a

density functional theory (DFT) ab-initio calculation with the Quantum Espresso

software package [115], using the SSSP Accuracy (version 1.1) pseudopotential

library [118, 124–129]. The kinetic energy cutoff was 120 Ry and the charge

density cutoff 600 Ry. Brillouin zone integration was performed using a 4×4×4

k-point grid. For better convergence, a Marzari-Vanderbilt cold smearing of

0.01 Ry was applied. A detailed list of the DFT result and a comparison to

literature values is given in appendix A.

In order to validate the experimental methodology we first checked the behavior

of the three magnetic excitations. With increasing pressure all three peaks shift to

lower energies and progressively weaken. Their measured frequencies are plotted

in colored circles in Fig. 5.1c. At higher pressures they become undetectably

weak or shift outside our measurement window (T1). The observed softening of

the triplet modes is fully consistent with previous electron spin resonance(ESR)

[38] and inelastic neutron scattering [34] studies, shown as triangles and squares

in the figure. The softening of the singlet mode is a new result, since neither

ESR nor neutrons are sensitive to singlet-singlet transitions.

Dimer correlations from low-temperature phonon anharmonicites The

central result of this project is the observation of an anomalous temperature de-
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Figure 5.1: a) Raman data at T≈ 2.6 K and 2 kbar in c̄(a′b′)c polarization

measured with λ=532 nm laser. Symmetries of phonons are assigned as in

Ref. [123]. Inset: picture of the single crystal sample inside the pressure cell

along with two ruby spheres used for pressure calibration. b) Blowup of the low-

energy portion of a). Triplets T1 and T2 and singlet S1 are assigned according to

Ref .[123] c) Comparison of excitation energies of singlet and triplet excitations

to published results [34, 38, 123].
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Figure 5.2: Measured temperature dependence of the pantograph mode fre-

quency in SrCu2(BO3)2 at different pressures. Note the logarithmic temperature

scale. The dashed line is the temperature corresponding to the spin gap energy

at ambient pressure.
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Figure 5.3: Measured temperature dependence of the pantograph mode in

SrCu2(BO3)2 at ambient pressure (symbols) and fit assuming anharmonic multi-

phonon coupling (solid line).

pendence of the pantograph mode in SrCu2(BO3)2, as visualized in Fig. 5.2. Note

the logarithmic temperature scale. At all pressures, the pantograph mode un-

dergoes at most a modest hardening upon cooling down to 40 K. This behavior

is due to the usual anharmonicities of lattice vibrations and the temperature

dependence of pressure in the loaded cell at higher temperatures.

In order to establish this, we measured the temperature dependence of the

pantograph mode frequency between 35 K and room temperature at ambient

pressure. The result is visualized in Fig. 5.3 (symbols). These data were an-

alyzed using the a wide-spread empirical model for anharmonic multi-phonon

coupling (Eq. 3.9 in [130]). An excellent fit is obtained using empirical parame-

ters ω0 = 201.2 cm−1, C = 0 and D = −2.7(1) ·10−3 cm−1 (solid line in Fig. 5.3).

Extrapolating this curve to below 40 K yields an estimate of the anharmonic shift
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in the low-temperature range: δω . 0.1 cm−1. This is considerably smaller than

the observed anomalous magnetic frequency shift and can be safely disregarded.

Below this point the mode suddenly becomes strongly T -dependent. At low

applied pressures it softens upon cooling to base temperature by as much as 1.5%.

At the highest pressures the effect is reversed: in the same low-temperature in-

terval the excitation hardens by as much as 0.5%. Also revealing is the pressure

dependence at different temperatures shown in Fig. 5.4 a). For T & 40 K the

pressure dependencies are almost T -independent. They all show a monotonous

hardening with a small but reproducible dip at about 20 kbar. At lower temper-

atures the situation changes drastically, the frequency showing a steep, almost

step-like, increase.

5.2 Discussion

At temperatures below 40 K anharmonic effects extrapolated from measurements

above 35 K are entirely negligible 5.3. The only remaining relevant energy scale

is the magnetic one. We conclude that the anomalous temperature dependence

of the pantograph mode is due to magneto-elastic coupling. The corresponding

relative frequency shift between 40 K and 2.6 K is plotted against pressure in

Fig. 5.4 b) (left axis). As mentioned above, the cell pressure is practically con-

stant in this temperature range. The shift remains flat up to about P1 ∼ 15 kbar

and then steadily increases up to the highest attainable pressures, switching sign

at about P2 ∼ 22 kbar.

As shown by ESR experiments [38], J ′ decreases by only about 12% from 0

to 15 kBar. This allows us to assume that the 2nd derivative in Eq. 2.19 is

also only weakly pressure-dependent to some approximation. The lack of any

pressure dependence for P . P1 in Fig. 5.4 b) confirms this. Here the system is

clearly in the dimer phase [34]. In this regime the exact result is 〈S1S2〉 ≡ −3
4

regardless of J ′/J [14], and the measured constant frequency shift implies a

constant ∂2J ′/∂u2. Assuming the trend continues at higher pressures, to within

a scale factor Fig. 5.4 b) represents the pressure dependence of 〈S1S2〉. The exact

value for the dimer phase provides a calibration for the entire plot (Fig. 5.4b),

right axis). At P2 the relative alignment of nearest neighbor spins switches sign

and becomes predominantly ferromagnetic.
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Sign-switching of dimer correlations in SrCu2(BO3)2 under pressure
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Figure 5.4: a) Measured pressure dependence of the pantograph mode frequency

in SrCu2(BO3)2 at several different temperatures (symbols). The lines are guides

for the eye. b) Pressure dependence of the low-temperature frequency shift of

the pantograph mode. P1 indicates the beginning of the destruction of dimer

correlations and P2 denotes the sign switching of dimer correlations. The solid

line is a guide to the eye.
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5.2 Discussion

That AF dimers are replaced by a completely new spin correlation pattern

already at rather low pressures is significant. The only other indication of that

is the rather tenuous 22 kbar strucure factor data from the neutron study of

Ref. [34]. The transformation that we observe starts already at about 15 kbar.

It can only be driven by a subtle change in the J ′/J ratio, as assumed in most

theoretical studies [13–31]. It takes place long before the exchange constants

themselves can be expected to switch sign [38]. It also seems not to be associated

with any structural transition, of which we do not observe any obvious signs such

as splitting of phonon lines or the appearance of new modes.

According to a recent calorimetric study [35], there is a distinct thermody-

namic phase that emerges below Tc ∼ 2 K just about P1. The authors suggest

that it may be a plaquette state. The sign-switching reported here is consistent

with that interpretation. While in the dimer phase the spin correlations are

AF, in the plaquette state they at least partially switch to FM and may evolve

continuously[28, 31]. Unfortunately, the lowest attainable temperature in our

experiments is slightly above Tc. The observed behavior can be interpreted as a

change in the character of dominant short-range spin correlations, which are just

about to order in a new plaquette configuration upon further cooling. According

to [35], Néel magnetic order sets in above approximately P2. Here even stronger

FM correlations are predicted [28], and indeed observed in our measurements.
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Chapter 6

Magnetic structure, spin waves

and high-field phase diagram in

the frustrated

ferro-antiferromagnet

Pb2VO(PO4)2

The results presented in this chapter have in parts been published in

S. Bettler, F. Landolt, Ö. Aksoy, Z. Yan, S. Gvasaliya, Y. Qiu, E. Ressouche, K.

Beauvois, S. Raymond, A.N. Ponomaryov, S.A. Zvyagin and A. Zheludev. “Mag-

netic structure and spin waves in the frustrated ferro-antiferromagnet Pb2VO(PO4)2.”,

Phys. Rev. B 99, 184437 (2019) doi: 10.1103/PhysRevB.99.184437

By their nature, previous bulk measurements and powder neutron diffraction

experiments were unable to assess just how well Pb2VO(PO4)2 corresponds to

the ferro-antiferro square lattice model in the first place. This is a valid point

of concern, since the material is monoclinic rather than tetragonal. Therefore,

the spins no longer form a perfect square. The spin arrangement is not even

rectangular. There are as many as four atoms per crystallographic unit cell

with several inequivalent bonds between them. In the this chapter, the results

of neutron diffraction, inelastic neutron scattering, magnetization and magnetic
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6.1 Results

torque measurements on single crystal samples of Pb2VO(PO4)2 are reported.

We show that the excitations deviate significantly from those of a perfect square

lattice. Still, the material is found to be exceptionally two-dimensional. Further-

more, we accurately measure the direction and magnitude of the ordered moment

at low temperatures. In an effort to identify a possible spin-nematic phase in

Pb2VO(PO4)2 we performed high-field measurements of the magnetic torque at

very low temperatures, where we can expect the signatures of such a phase to be

the strongest.

6.1 Results

6.1.1 Magnetic structure

The magnetic structure at T = 1.5 K was determined from an analysis of 11 mea-

sured magnetic reflections. These were normalized using the scale factor obtained

from the least-square fitting of 22 nuclear Bragg peaks measured intensities (R-

factor 4.2 %). A refinement, also using the FULLPROF SUITE package[131]

yielded a unique solution, a collinear CAF-type spin arrangement with moments

along the crystallographic b axis (Fig. 6.1). The resulting magnetic structure

factors are plotted against wave vector in Fig. 6.2, solid symbols. The relative

alignment of spins from adjacent V-planes is ferromagnetic. The final R-factor

was 5.7%. The ordered moment was determined to be 0.68(1) µB per site. The

calculated structure factors are plotted in open symbols in Fig. 6.2 for a direct

comparison with experiment.

In Fig. 6.3 we show the temperature dependence of neutron intensity measured

at the position of a purely magnetic (1, 0, 0) Bragg reflection. A simplistic power

law fit in the temperature range 2.48 < T < 9.93 K yields an ordering temper-

ature of TN = 3.50(1) K and a crude estimate of the order parameter exponent

β = 0.20(2).

6.1.2 Spin waves

The first column in Fig. 6.4 shows false color plots of inelastic neutron intensities

measured in Pb2VO(PO4)2 at different energy transfers at the MACS instrument.
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Magnetic structure, spin waves and high-field phase diagram in the frustrated
ferro-antiferromagnet Pb2VO(PO4)2

a

b

Figure 6.1: The five distinct nearest-neighbor and next-nearest-neighbor V-V

bonds in each such layer (lines). Arrows represent the spin orientation in the

ordered state as deduced from our single crystal diffraction data.
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Figure 6.2: Measured (solid symbols) and calculated (open symbols) squared

structure factors of magnetic Bragg reflections in Pb2VO(PO4)2 plotted against

momentum transfer.
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6.1 Results
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Figure 6.3: Measured temperature dependence of the (1, 0, 0) magnetic Bragg

peak intensity (symbols) and an empirical power law fit to the data as described

in the text (solid line).
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Magnetic structure, spin waves and high-field phase diagram in the frustrated
ferro-antiferromagnet Pb2VO(PO4)2

Bond V-V-distance(Å) J(meV)

J1,1 4.42 -0.286(2)
J1,2
J1,3

4.66

4.67
-0.389(2)

J2,1 6.27 1.453(3)

J2,2 6.30 0.538(2)

Table 6.1: Nearest and next nearest neighbor V-V distances in Pb2VO(PO4)2
and exchange parameters obtained from analyzing the inelastic neutron data.

These spectra were modeled using linear spin wave theory, assuming a Heisen-

berg Hamiltonian with five distinct in-plane exchange constants as depicted in

Fig. 6.1. The coupling between V-layers was assumed to be negligible, and all

excitation widths were assumed to be resolution limited. The spin wave energies

and structure factors were calculated using the program SpinW [132]. The neu-

tron polarization factors were based on the collinear magnetic structure described

above. The magnetic form factor for V4+ was taken in the dipolar approxima-

tion as calculated in Ref. 101. The thus computed inelastic magnetic neutron

scattering cross section was numerically folded with the resolution function of

the instrument calculated using the ResLib program [133]. The resolution cal-

culation was done within the Popovici approximation [134]. The data collected

at all energy transfers were fit simultaneously. However, since the process is

rather computation intensive, all fits were restricted to a single Brillouin zone

shown as a red rectangle at each energy in Fig. 6.4. The parameters were the

five exchange constants, an overall intensity prefactor and a separate constant

background at each energy transfer. Treating the exchange constants J1,2 and

J1,3 as independent did not meaningfully improve the quality of the fits. Since

they correspond to V-V bond lengths that are practically equal (but not iden-

tical by symmetry), in our final analysis they were constrained to be equal. An

excellent fit is obtained with parameter values listed in Table 6.1. This set of

Heisenberg exchange constants provides a very good description not only of the

data in the target Brillouin zone, but also of that in the entire experimental range

of momentum transfers. Intensities simulated using our fitting model and the

final parameter set are shown in false color plots in the right column of Fig. 6.4.
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using fitted parameter values in Table 6.1 and a convolution with the calculated
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6.1 Results

The inelastic intensities collected on IN12 are shown in the false color plots

of Fig. 6.5. In their analysis we also employed a combination of SpinW and

ResLib, but chose to fit every energy scan separately. To account for resolution

(focusing) effects, the spin wave dispersion was calculated using parameters val-

ues in Table 6.1. To independently extract the excitation energy in each scan,

we allowed for an additional energy offset relative to this calculated dispersion.

A flat background and an intensity scale factor were the two other parameters.

The thus obtained spin wave energies are shown as open circles in Fig. 6.5. The

solid lines are a dispersion calculation based on parameters in Table 6.1. We

see an almost perfect agreement. The IN12 data re-affirm the determined val-

ues of in-plane exchange constants. In addition, they confirm a total lack of

dispersion perpendicular to the planes. From our analysis we can estimate the

corresponding bandwidth to be smaller than 20 µeV.

6.1.3 Magnetization

The observed magnetization along along the crystallographic b-axis is shown in

figure 6.6 and is consistent with previous observations[73]. The Néel temperature

TN ≈ 3.5 K was confirmed. The combination of a radial offset and non-spherical

sample shape are a plausible explanation for the differences in measured magne-

tization of the order 1-2%.

6.1.4 Magnetic torque

For the external field applied along the anisotropy axis b, the only signatures were

the previously observed[73] spin-flop transition at ∼ 1 T(Fig.6.7) and saturation

into a fully polarized state at Hsat ∼ 20.7 T(Fig.6.8). In contrast, as seen in

Fig.6.9 for the magnetic field applied perpendicular to the magnetic planes along

c∗, an additional feature indicative of a first-order transition was observed at a

field H∗ ∼ 19.4 T . The results obtained on Pb2VO(PO4)2 are summarized in

the phase diagram shown in Fig.6.10. The low-field phase diagram for H||c∗
was obtained trough vibrating sample magnetometry. The phase boundary for

H||b is complemented by data digitized from reference [73], which was obtained

through specific heat measurements.
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Magnetic structure, spin waves and high-field phase diagram in the frustrated
ferro-antiferromagnet Pb2VO(PO4)2
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Figure 6.6: Temperature-dependence of magnetization in Pb2VO(PO4)2 at

0.1 T.
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Figure 6.7: Magnetic torque at the spin-flop transition for the field H||b, mea-

sured at 20 mK.
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Magnetic structure, spin waves and high-field phase diagram in the frustrated
ferro-antiferromagnet Pb2VO(PO4)2
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Figure 6.8: Magnetic torque for the field H||b, measured at 30 mK.
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Figure 6.9: Magnetic torque for the field H||c∗, measured at 20 mK.
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Magnetic structure, spin waves and high-field phase diagram in the frustrated
ferro-antiferromagnet Pb2VO(PO4)2
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Figure 6.10: Field-temperature phase diagram of Pb2VO(PO4)2. Phase bound-

ary for field H||b ( ) digitized from Ref.[73]. Phase boundary for field H||c∗ ( )

obtained from magnetization measurements. Low-temperature phase boundary

for field H||b ( ) and H||c∗ ( )extracted from magnetic torque measurements.

Dashed lines are a guide to the eye for field H||b. Dash-dot lines are a guide to

the eye for field H||c∗.
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6.2 Discussion

6.2 Discussion

While our results confirm the two-dimensional nature and a CAF-type magnetic

structure for Pb2VO(PO4)2, they also unambiguously show that a square lattice

description with only two exchange parameters is insufficient to describe the mag-

netism in this compound. The nearest-neighbor coupling constants are indeed all

ferromagnetic, but alternate substantially along the a axis. The most significant

consequence is the splitting of the spin wave spectrum into two separate branches

as seen in Fig. 6.5. This produces an additional gapped excitation at each zone-

center, as also seen with ESR[135, 136]. Next nearest neighbor interactions are

AF, but differ by almost a factor of three along the two diagonals.

Our data also show that the material is less frustrated than originally thought.

A good measure of frustration is the ratio α−1 = 1+S2
∑
|J |/Ecl, where

∑
|J | is

the sum of absolute values all exchange constants and Ecl is the classical ground

state energy. In all cases α−1 ≤ 0 with α = 0 corresponding to an absence of

frustration. For the ferro-antiferromagnet square lattice CAF, α−1 = J1/J2. In

our exchange model for Pb2VO(PO4)2, Ecl/S
2 = J1,3−J1,1/2−J1,2/2−J2,1−J2,2

and α−1 ≈ −0.32(1). Previous estimates based on an assumed square lattice

model[108] correspond to a stronger frustration α−1 ≈ −0.62. A weak frustration

in Pb2VO(PO4)2 is consistent with a rather large observed ordered moment. The

latter is similar to that found in strongly 2-dimensional but unfrustrated S = 1/2

AFs such as the cuprates [137].

Given that the square lattice description of Pb2VO(PO4)2 is clearly deficient,

the observation of a pre-saturation phase raises the question whether Pb2VO(PO4)2
could feature a spin-nematic phase after all. The identification of the phase as

a spin-nematic is demanding since such an order does not break time-reversal

symmetry[40]. Spin-nematic pre-saturation phases have been proposed to exist in

the frustrated spin chain materials β-TeVO4[138] and LiCuVO4[139] and the dis-

torted square lattices volborthite[140] and BaCdVO(PO4)2[141, 142]. However,

a recent neutron diffraction study on β-TeVO4 showed that the proposed spin-

nematic phase in fact still features dipolar long range order[143]. In LiCuVO4 the

saturation field is far beyond reach of most experimental techniques and a direct

verification of the nature of the high field phases in this compound will remain ex-

tremely challenging. In volborthite the magnetic Hamiltonian, ground state and
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Magnetic structure, spin waves and high-field phase diagram in the frustrated
ferro-antiferromagnet Pb2VO(PO4)2

the nature of the several field-induced phases are still largely unclear[144–146].

The best candidates to observe spin-nematic order thus remain BaCdVO(PO4)2
and Pb2VO(PO4)2. It is however not excluded that another type of dipolar order

is stabilized instead.
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Chapter 7

Conclusion

We have shown that neither of the pressure-induced magnetic transitions in

(C4H12N2)Cu2Cl6 involve crystallographic transformations. The transition at Pc
is associated with a progressive softening of the magnon gap with little change

of bandwidth. Contrary to previous indications, the transition at P1 leads to a

substantial reorganization of the spin excitation spectrum. The corresponding

change of the magnetic ground state has a dramatic impact on the tempera-

ture dependencies of certain phonon modes. This indicates that the low- and

the high-pressure ordered phases in (C4H12N2)Cu2Cl6 are clearly distinct. The

overdamped nature of the two-magnon continuum close to P1 is reminiscent of

multi-spinon continua observed e.g. with resonant inelastic x-ray scattering at

Q = 0 in spin chains[147]. This is surprising given that µSR experiments found

clear signs of commensurate long range order above P1[9].

Our measurements of the pantograph mode in SrCu2(BO3)2 provide an indirect

but precise measurement of a pressure-induced sign switching of nearest-neighbor

dimer spin correlations. We hope that a quantitative comparison with theoretical

studies will become possible in the future. A low-temperature investigation of

the crystal structure under pressure may yield detailed information on magnetic

correlations and the magnetic order which is eventually established. In addi-

tion, high-quality crystallographic information is an important prerequisite for

accurate theoretical predictions.

While Pb2VO(PO4)2 and probably all related layered vanadophosphates are

indeed highly two-dimensional and feature competing ferromagnetic and antifer-
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romagnetic interactions, the actual spin Hamiltonian in these systems is probably

more sensitive to structural details than originally thought. The pre-saturation

phase detected in magnetic torque measurements may be a spin-nematic phase.

However, a further experimental characterization of this phase is necessary to

determine its nature. Most importantly, the corroborated suppression of mag-

netic order at H∗ should be verified by means of nuclear magnetic resonance and

neutron diffraction.
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Appendix A

First principles identification of

phonons in SrCu2(BO3)2

The pantograph mode is identified as the only A1 Raman-active phonon in the

range between 122 and 285 cm−1. The difference between the calculated and

observed frequency for the pantograph mode is reasonable(∼ 8 cm−1). Consid-

ering the overall quality of agreement between calculated and observed phonon

energies, this assignment can be considered safe. Due to the high symmetry

of SrCu2(BO3)2, most modes can be uniquely identified. It is noteworthy that

saving two exceptions (18-19,42), the phonon energies are underestimated.

Symmetry(No) DFT(cm−1) Raman(cm−1) IR(cm−1)

E(1-2) 0 - -

B2(3) 0 - -

A1(4) 23 59.0 -

B2(5) 69 - 101

E(6-7) 77 - 80

E(8-9) 79 - 112

A1(10) 101 121.8 -

B1(11) 104 125.0 -

E(12-13) 113 - 125

E(14-15) 136 - 141

B2(16) 143 151.0 150

A2(17) silent 149 155.9 -
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Symmetry(No) DFT(cm−1) Raman(cm−1) IR(cm−1)

E(18-19) 167 - 157

A1(20) 190 198.1 -

E(21-22) 192 - 223

A2(23) silent 196 - -

B2(24) 203 - 211

E(25-26) 221 - 231

A2(27) silent 236 - -

A1(28) 242 285.1 -

B1(29) 278 282.7 -

E(30-31) 294 - 319

A2(32) silent 296 - -

B2(33) 297 316.8 317

B1(34) 303 322.9 -

B1(35) 383 386 -

E(36-37) 384 - 424

B2(38) 416 - 447

E(39-40) 436 - 443

A2(41) silent 446 - -

A1(42) 475 473 -

A2(43) silent 589 - -

E(44-45) 604 - 661

B2(46) 626 - 682

A1(47) 643 - -

B2(48) 643 - 695

B1(49) 650 706 -

A1(50) 660 - -

E(51-52) 665 - 693

E(53-54) 668 - 721

E(55-56) 915 - 934

B2(57) 937 - 955

A1(58) 939 950 -

B1(59) 1195 - -

A2(60) silent 1225 - -
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First principles identification of phonons in SrCu2(BO3)2

Symmetry(No) DFT(cm−1) Raman(cm−1) IR(cm−1)

E(61-62) 1227 - 1228

E(63-64) 1321 - 1308

B2(65) 1325 - 1347

A1(66) 1348 1360 -

Table A.1: Comparison of calculated and experimentally observed IR-([148])

and Raman-active([123, 148]) phonon energies for SrCu2(BO3)2. Silent phonons

are marked according to the DFT result.
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[34] M. Zayed, C. Rüegg, A. Läuchli, C. Panagopoulos, S. Saxena, M. Ellerby,
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[63] G. Radtke, A. Saúl, H. A. Dabkowska, M. B. Salamon, and M. Jaime,

Magnetic nanopantograph in the SrCu2(BO3)2 Shastry–Sutherland lattice,

Proceedings of the National Academy of Sciences 112, 1971 (2015).

[64] K.-Y. Choi, Y. G. Pashkevich, K. V. Lamonova, H. Kageyama, Y. Ueda,

and P. Lemmens, Strong anharmonicity and spin-phonon coupling in the

quasi-two-dimensional quantum spin system Sr1−xBaxCu2(BO3)2, Phys.

Rev. B 68, 104418 (2003).

[65] S. Miyahara, F. Becca, and F. Mila, Theory of spin-density profile and

lattice distortion in the magnetization plateaus of SrCu2(BO3)2, Phys. Rev.

B 68, 024401 (2003).

[66] R. W. Smith and D. A. Keszler, Synthesis, structure, and properties of

the orthoborate SrCu2(BO3)2, Journal of Solid State Chemistry 93, 430

(1991).

[67] A. Smerald and N. Shannon, Theory of NMR 1/T1 relaxation in a quantum

spin nematic in an applied magnetic field, Phys. Rev. B 93, 184419 (2016).

[68] M. Skoulatos, J. P. Goff, N. Shannon, E. E. Kaul, C. Geibel, A. P. Murani,

M. Enderle, and A. R. Wildes, Spin correlations in the frustrated square lat-

tice Pb2VO(PO4)2, Journal of Magnetism and Magnetic Materials (2007).

99



BIBLIOGRAPHY

[69] M. Skoulatos, J. P. Goff, C. Geibel, E. E. Kaul, R. Nath, N. Shannon,

B. Schmidt, A. P. Murani, P. P. Deen, M. Enderle, et al., Spin correlations

and exchange in square-lattice frustrated ferromagnets, EPL (Europhysics

Letters) 88, 57005 (2009).

[70] E. E. Kaul, H. Rosner, N. Shannon, R. V. Shpanchenko, and C. Geibel,

Evidence for a frustrated square lattice with ferromagnetic nearest-neighbor

interaction in the new compound Pb2VO(PO 4)2, Journal of Magnetism

and Magnetic Materials (2004).

[71] T. Förster, F. A. Garcia, T. Gruner, E. E. Kaul, B. Schmidt, C. Geibel, and

J. Sichelschmidt, Spin fluctuations with two-dimensional XY behavior in a

frustrated S = 1
2

square-lattice ferromagnet, Phys. Rev. B 87, 180401(R)

(2013).

[72] R. Nath, Y. Furukawa, F. Borsa, E. E. Kaul, M. Baenitz, C. Geibel, and

D. C. Johnston, Single-crystal 31P NMR studies of the frustrated square-

lattice compound Pb2(VO)(PO4)2, Phys. Rev. B 80, 214430 (2009).

[73] E. E. Kaul, Ph.D. thesis, Technische Universität Dresden (2005).

[74] V. Shpanchenko, E. E. Kaul, C. Geibel, and E. V. Antipov, Acta Crystal-

log. C 62, 88 (2006).

[75] B. Ouladdiaf, J. Archer, G. McIntyre, A. Hewat, D. Brau, and S. York,

OrientExpress: A new system for Laue neutron diffraction, Physica B:

Condensed Matter 385-386, 1052 (2006).

[76] A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and

H. Tanaka, J. Phys. Soc. Jpn. 73, 1446 (2004).

[77] S. Hayashida, O. Zaharko, N. Kurita, H. Tanaka, M. Hagihala, M. Soda,

S. Itoh, Y. Uwatoko, and T. Masuda, Pressure-induced quantum phase tran-

sition in the quantum antiferromagnet CsFeCl3, Phys. Rev. B 97, 140405

(2018).

[78] A. Podleznyak, private communication (2017).

100



BIBLIOGRAPHY

[79] A. Podlesnyak, M. Loguillo, G. M. Rucker, B. Haberl, R. Boehler,

G. Ehlers, L. L. Daemen, D. Armitage, M. D. Frontzek, and M. Lums-

den, Clamp cell with in situ pressure monitoring for low-temperature neu-

tron scattering measurements, High Pressure Research 38, 482 (2018),

https://doi.org/10.1080/08957959.2018.1519560.

[80] C.-S. Zha, H.-k. Mao, and R. J. Hemley, Elasticity of MgO and a primary

pressure scale to 55 GPa, Proceedings of the National Academy of Sciences

97, 13494 (2000), https://www.pnas.org/content/97/25/13494.full.

pdf.

[81] Y. Feng, R. Jaramillo, J. Wang, Y. Ren, and T. F. Rosenbaum, Invited

Article: High-pressure techniques for condensed matter physics at low tem-

perature, Review of Scientific Instruments 81, 041301 (2010).

[82] W. Hayes and R. Loudon, Scattering of Light by Crystals, Dover science

books (Dover Publications, 2004), ISBN 9780486438665.

[83] M. Cottam and D. Lockwood, Light scattering in magnetic solids, Wiley-

Interscience publication (Wiley, 1986), ISBN 9780471817017.
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