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Abstract	

The	quantification	of	turbulent	flow	by	phase-contrast	Magnetic	Resonance	Imaging	(MRI)	enables	the	

assessment	of	cardiac	hemodynamics	and	holds	promise	for	improvements	in	the	diagnosis	of	valvular	

pathologies.	However,	 long	scan	times	hamper	wide-spread	in-vivo	use	of	the	technique.	Thus,	this	

work	focuses	on	accelerating	imaging	of	valvular	flow.	To	this	end,	more	efficient	acquisition	methods	

are	developed	by	exploiting	data	redundancies	along	multiple	dimensions	enabling	faster	and	more	

robust	flow	quantification.	Moreover,	the	improved	scan	efficiency	is	utilized	to	extend	the	sequence	

for	quantification	of	both	mean	and	turbulent	flows	including	the	Reynolds	stress	tensor.		

In	previous	work	it	has	been	suggested	that	the	relatively	simple	partial	Fourier	technique	can	be	used	

to	accelerate	flow	MRI.	Here,	it	 is	shown	that	spatial	phase	fluctuations,	which	occur	when	imaging	

turbulent	flows,	lead	to	inadequacy	of	the	underlying	model	assumption	which	is	based	on	Hermitian	

symmetry.	Thus,	the	reconstruction	cannot	recover	missing	samples	without	producing	image	artifacts	

highlighting	the	need	for	more	advanced	acceleration	techniques.	

As	 part	 of	 the	 present	 thesis,	 5D	 Flow	 MRI	 is	 introduced	 to	 address	 scan	 inefficiencies	 due	 to	

respiratory	motion	while	 enabling	 predictable	 scan	 times.	 A	 pseudo-radial	 Cartesian	 Golden	 angle	

sampling	trajectory	is	proposed	to	capture	data	from	the	entire	respiratory	cycle	and	to	attribute	them	

to	discrete	respiratory	states.	Reconstruction	of	highly	undersampled	data	is	performed	by	exploiting	

redundancies	between	cardiac	phases	and	respiratory	states.	As	a	result,	a	fixed	scan	time	of	4	minutes	

is	achieved	for	multi-point	assessment	of	mean	and	turbulent	flow.	The	concept	is	demonstrated	in	an	

in-vivo	study	with	9	subjects.		

To	enable	quantification	of	the	Reynolds	stress	tensor,	the	5D	Flow	MRI	sequence	is	extended	with	

additional	velocity	encoding	directions.	Multipoint	encoding	ensures	accurate	turbulence	assessment	

in	the	value	range	of	turbulence	intensities	found	in	healthy	and	pathological	flows.	A	numerical	study	

demonstrates	 high	 precision	 but	 moderate	 overestimation	 of	 values	 at	 achievable	 signal-to-noise	

ratios	and	resolution.	In	an	in-vivo	study	the	ability	to	quantify	turbulent	flow	downstream	of	a	bio-

prosthetic	heart	valves	in	a	scan	time	of	10	minutes	is	shown.		

While	 enabling	 faster	 scans,	 accelerated	 imaging	methods	 typically	 come	with	 the	 drawback	 of	 a	

considerable	increase	in	reconstruction	times.	To	enable	rapid	reconstruction	of	undersampled	data,	

a	 deep	 neural	 network	 architecture	 is	 presented.	 Training	 is	 performed	 with	 retrospectively	

undersampled	flow	data	which	were	acquired	in	healthy	volunteers.	Results	reveal	that	the	network	

accurately	reconstructs	both	normal	and	pathological	flows.	Further,	an	in-vivo	study	with	7	healthy	

subjects	shows	good	agreement	of	flow	parameters	with	reference	measurements.		
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To	summarize,	a	framework	for	high-dimensional	flow	imaging	has	been	implemented	and	validated.	

The	methodology	allows	for	fast,	robust	and	comprehensive	mean	and	turbulent	flow	quantification	

in	 vivo.	 Examination	 of	 turbulent	 kinetic	 energy	 can	 be	 performed	 within	 4	 minutes	 while	

quantification	of	the	entire	Reynolds	stress	tensor	is	possible	within	10	minutes.	To	further	facilitate	

clinical	use,	rapid	image	reconstruction	based	on	neural	networks	is	presented	which	can	be	readily	

extended	to	higher	dimensions	in	the	future.																																																																																																																																																																													

Kurzfassung	

Die	 Quantifizierung	 von	 turbulentem	 Fluss	 mittels	 Phasenkontrastmagnetresonanztomographie	

ermöglicht	 die	 Beurteilung	 der	 Hämodynamik	 des	 Herzens	 und	 verspricht	 Verbesserungen	 in	 der	

Diagnose	von	Herzklappenerkrankungen.	 Lange	Messzeiten	verhindern	 jedoch	eine	weitverbreitete	

Nutzung	 der	 Technik.	 Darum	 ist	 diese	 Arbeit	 auf	 die	 beschleunigte	 Bildgebung	 von	 Fluss	 durch	

Herzklappen	 ausgerichtet.	 Effizientere	 Akquisitionsmethoden	 werden	 vorgestellt,	 die	

Datenredundanzen	 entlang	 mehrerer	 Dimensionen	 ausnutzen	 und	 damit	 eine	 schnellere	 und	

robustere	 Flussquantifizierung	 ermöglichen.	 Die	 resultierende,	 erhöhte	 Effizienz	 der	Messung	wird	

darüber	hinaus	genutzt,	um	die	Sequenz	 für	die	Quantifizierung	von	gemitteltem	und	 turbulentem	

Fluss	inklusive	des	Reynolds'schen	Spannungstensors	zu	erweitern.		

In	älteren	Arbeiten	wurde	vorgeschlagen,	dass	die	relativ	einfache	«partial	Fourier»	Technik	genutzt	

werden	 kann,	 um	 Flussbildgebung	 zu	 beschleunigen.	 Hier	 wird	 gezeigt,	 dass	 räumliche	

Phasenfluktuationen,	wie	sie	bei	der	Messung	von	turbulentem	Fluss	auftreten,	zur	einer	Diskrepanz	

der	zu	Grunde	liegenden	Modellannahme	führen,	welche	auf	hermetischer	Symmetrie	beruhen.	Daher	

führt	 diese	 Rekonstruktionsmethode	 zu	 starken	 Bildartefakten.	 Entsprechend	 besteht	 die	

Notwendigkeit	der	Verwendung	von	fortgeschrittenen	Beschleunigungsmethoden.	

Als	 Teil	 der	 vorliegenden	 Dissertation	 wird	 die	 5-dimensionale	 Flussbildgebung	 vorgestellt.	 Das	

Verfahren	 erlaubt	 es,	 Ineffizienzen,	 die	 durch	 Atembewegung	 entstehen,	 zu	 reduzieren	 und	 damit	

Messzeiten	 vorherzusagen	 bzw.	 vorab	 festzulegen.	 Eine	 pseudo-radiale	 kartesische	 Abtastung	 mit	

goldenem	Winkel	 gestattet	 es,	 Daten	 des	 gesamten	 Atemzyklus	 zu	 nutzen,	 indem	 diese	 diskreten	

Atemzuständen	zugewiesen	werden.	Die	Rekonstruktion	der	stark	unterabgetasteten	Daten	erfolgt,	

indem	Korrelationen	zwischen	verschiedenen	Herzphasen	und	Atemzuständen	ausgenutzt	werden.	Als	

Ergebnis	 resultiert	 eine	 konstante	 Messzeit	 von	 4	 Minuten	 für	 eine	 Multipunktmessung	 von	

gemitteltem	 und	 turbulentem	 Fluss.	 Das	 Konzept	 wird	 in	 einer	 in	 vivo	 Studie	 mit	 9	 Probanden	

demonstriert.	
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Um	die	Quantifizierung	des	Reynolds'schen	Spannungstensors	zu	ermöglichen,	wird	eine	erweiterte	

5D-Fluss-Sequenz	 mit	 zusätzlichen	 Geschwindigkeitskodierungen	 vorgestellt.	 Die	

Multipunktkodierung	 sorgt	 für	 eine	 präzise	 Turbulenzquantifizierung	 in	 dem	 Wertebereich	 von	

Turbulenzintensitäten,	 welcher	 in	 gesundem	 sowie	 pathologischem	 Fluss	 ermittelt	 wurde.	 Eine	

numerische	 Studie	 zeigt	 eine	 hohe	 Präzision	 aber	 eine	 moderate	 Überschätzung	 der	 Werte	 für	

realistische	Signal-zu-Rausch-Verhältnisse	sowie	räumliche	Auflösungen.	 In	einer	 in	vivo	Studie	wird	

die	 Fähigkeit	 zur	 Quantifizierung	 von	 turbulentem	 Fluss	 hinter	 bioprosthetischen	 Herzklappen	 bei	

einer	Messzeit	von	10	Minuten	gezeigt.	

Beschleunigte	Bildgebungsmethoden	bringen	üblicherweise	den	Nachteil	einer	deutlichen	Zunahme	

der	Rekonstruktionszeit	mit	sich.	Um	eine	schnelle	Rekonstruktion	der	unterabgetasteten	Daten	zu	

ermöglichen,	 wird	 eine	 neuronale	 Netzwerkarchitektur	 präsentiert.	 Das	 Training	 erfolgt	 mit	

retrospektive	 unterabgetasteten	 Flussdaten	 gesunder	 Probanden.	 Die	 Ergebnisse	 zeigen,	 dass	 das	

Netzwerk	sowohl	normalen	als	auch	pathologischen	Fluss	präzise	rekonstruieren	kann.	Weiterhin	zeigt	

eine	 in	vivo	Studie	mit	7	gesunden	Probanden	eine	gute	Übereinstimmung	der	Flussparameter	mit	

Referenzwerten.	

Zusammenfassend	 umfasst	 die	 vorliegende	 Arbeit	 wesentliche	 Beiträge	 für	 die	 hochdimensionale	

Flussbildgebung.	Die	Methodik	ermöglicht	eine	schnelle,	robuste	und	umfassende	Flussquantifizierung	

in	 vivo.	 Eine	 Untersuchung	 der	 turbulenten	 kinetischen	 Energie	 kann	 innerhalb	 von	 4	 Minuten	

durchgeführt	werden,	während	die	Quantifizierung	des	gesamten	Reynolds’schen	Spannungstensors	

innerhalb	von	10	Minuten	möglich	ist.	Die	zukünftige	klinische	Nutzung	wird	unterstützt	durch	eine	

schnelle	 Bildrekonstruktion	 basierend	 auf	 neuronalen	 Netzwerken,	 welche	 in	 Zukunft	 leicht	 auf	

weitere	Dimensionen	erweitert	werden	kann.	
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Chapter	1 Introduction	

Four-dimensional	 (4D)	 flow	Magnetic	Resonance	 Imaging	 (MRI)	provides	 spatiotemporally	 resolved	

quantitative	assessment	of	 flow	and	 thus	enables	 the	comprehensive	assessment	of	hemodynamic	

parameters	 in	 the	 heart	 and	 greater	 vessels	 [1].	 Various	 applications	 with	 clinical	 relevance	 have	

emerged	in	recent	years,	 including	the	characterization	of	changes	of	mean	and	peak	velocities	[2],	

flow	 displacement	 [3],	 [4],	 vorticity	 and	 helicity	 [5],	 [6],	 wall	 shear	 rates	 [7]–[9],	 relative	 pressure	

gradients	[10]–[12],	pulse	wave	velocities	[13]–[15],	and	viscous	energy	losses	[16].	

In	 conventional	 4D	 Flow	 MRI,	 turbulent	 velocity	 fluctuations	 are	 typically	 ignored.	 However,	

turbulence	can	be	considerable	in	pathological	flows	[17]	with	turbulent	energy	losses	being	a	major	

contributor	 to	 increased	 workload	 for	 the	 ventricle	 [18].	 Moreover,	 neglecting	 turbulence	 in	 the	

calculation	of	relative	pressure	gradients	can	lead	to	inaccurate	estimates	[19].		

It	has	been	suggested	to	derive	statistical	 surrogates	of	 intra-voxel	 turbulence	 from	the	 intra-voxel	

phase	dispersion	of	velocity	encoded	measurements	[20].	To	this	end,	turbulent	kinetic	energy	(TKE)	

can	be	 gauged,	which	 indicates	how	much	energy	 is	 stored	 in	 turbulent	 velocity	 fluctuations.	 First	

clinical	studies	have	already	demonstrated	the	potential	of	TKE	quantification	with	4D	Flow	MRI	for	

the	assessment	of	stenotic	heart	valves	[21],	[22]	and	in	dilated	cardiomyopathy	[23].		

The	 use	 of	 velocity	 encoding	 schemes,	 similar	 to	 principles	 used	 in	 diffusion	 tensor	 imaging	 [24],	

enables	 the	 quantification	 of	 the	 Reynolds	 stress	 tensor	 (RST)	 [25].	 Accordingly,	 a	 comprehensive	

assessment	of	turbulent	flow	can	be	provided	offering	promising	clinical	use	cases	such	as	improved	

mapping	of	pressure	gradients	[19],	new	clinical	parameters	for	the	assessment	of	stenotic	heart	valves	

[26]	or	identification	of	elevated	shear	stresses	which	indicate	an	increased	risk	of	hemolysis	[27].	

While	first	clinical	studies	have	been	performed	to	assess	TKE	in	patients	[22],	[23],	clinical	adaptation	

is	still	hampered	by	the	long	scan	times.	Moreover,	RST	assessment	has	been	mostly	limited	to	in-vitro	

applications	 [19],	 [27]–[29]	 as	 required	modifications	 to	 the	 sequence	design	 further	 prolong	 scan	

time.	Hitherto,	no	in	vivo	studies	of	the	RST	have	been	reported	in	the	journal	literature.		

In	 order	 to	 foster	 and	 translate	 turbulence	 assessment	 using	 MRI	 to	 a	 wider	 clinical	 community,	

significant	 reductions	 in	 scan	 time	 are	 indispensable.	 A	 number	 of	 approaches	 exist	 to	 exploit	

redundant	 structures	 in	 the	 data	 in	 order	 to	 reconstruct	 images	 from	 a	 reduced	 number	 of	

measurements,	 including	 concepts	 based	 on	 Hermitian	 symmetry	 [30],	 [31],	 sparsity	 [32]	 or	 low-

rankedness	of	data	[33]–[35].	Moreover,	recent	advances	in	respiratory	motion	resolved	imaging	[36]	

hold	promise	to	address	scan	inefficiencies	and	limited	robustness	as	a	result	of	respiratory	motion	in	

vivo.		
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The	aim	of	the	present	thesis	 is	to	lay	the	foundation	for	clinical	adaptation	of	mean	and	turbulent	

flow	 assessment	 using	MRI.	 To	 this	 end,	 different	 reconstruction	methods	 and	 respiratory	motion	

resolved	 imaging	 are	 investigated	 and	 developed.	Moreover,	 an	 efficient	method	 for	 rapid	 in-vivo	

assessment	of	the	Reynolds	stress	tensor	is	proposed.		

	

Outline	

Chapter	 2	 provides	 a	 general	 introduction	 of	 phase-contrast	MRI	 (PC-MRI),	 4D	 Flow	MRI	 and	 the	

generalization	of	PC-MRI	to	turbulent	flow.		

Chapter	 3	 introduces	 concepts	 for	 accelerated	MRI	 including	 different	 approaches	 to	 exploit	 data	

redundancies,	 comprising	 partial	 Fourier	 [37],	 parallel	 imaging	 [38],	 compressed	 sensing	 [32],	 and	

different	approaches	based	on	deep	neural	networks	[39].		

In	Chapter	4	the	concept	of	partial	Fourier	imaging	[30],	[31]	for	the	assessment	of	turbulent	flow	is	

investigated.	The	inadequacy	of	the	underlying	assumption	of	limited	spatial	phase	variations	when	

imaging	turbulent	flow	is	proven.	

Chapter	5	introduces	5D	Flow	MRI	which	extends	4D	Flow	MRI	with	a	respiratory	motion	dimension	in	

order	 to	 exploit	 correlations	 along	 cardiac	 and	 respiratory	 signal	 dimensions	 to	 enable	 rapid	 flow	

assessment	within	fixed	scan	times.	

Chapter	6	introduces	a	concept	for	comprehensive	in	vivo	assessment	of	turbulent	flow	in	the	aorta	

by	 extending	 5D	 Flow	MRI	with	 velocity	 encoding	 along	 6	 non-collinear	 directions.	 Results	 of	 flow	

downstream	of	healthy	and	bio-prosthetic	heart	valves	are	demonstrated.		

Chapter	7	addresses	 the	 long	reconstruction	times	required	by	 iterative	reconstruction	methods.	A	

variational	neural	network	is	proposed	with	which	adaptive	filter	kernels	and	activation	functions	are	

learned	based	on	retrospectively	undersampled	volunteer	data	enabling	rapid	image	reconstruction	

of	undersampled	data.	

0	summarizes	the	findings	of	this	thesis	and	an	outlook	of	future	steps	is	provided.		

1.1 Contribution	of	the	thesis	

Accelerated	imaging	methods	are	indispensable	to	help	translate	turbulent	flow	assessment	using	MRI	

to	a	wider	clinical	community.	 In	this	work,	different	accelerated	imaging	methods	are	 investigated	

and	developed	to	enable	time-efficient	assessment	of	turbulent	flow.	
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Model	assumptions	in	partial	Fourier	(PF)	imaging,	which	is	based	on	Hermitian	symmetry,	are	shown	

to	be	inadequate	for	turbulent	flow	imaging.	While	PF	has	been	used	in	4D	Flow	MRI	in	the	past,	our	

study	shows	that	PF	does	not	yield	a	benefit	over	symmetric	bandwidth	limitation	in	k-space.	

To	address	inefficiencies	due	to	respiratory	gating,	advances	in	respiratory	motion	resolved	imaging	

are	adopted	to	flow	imaging.	Accordingly,	a	method	is	provided	which	exploits	redundancies	between	

respiratory	 motion	 states	 to	 enable	 flow	 assessment	 in	 reduced	 scan	 times	 and	 independent	 of	

respiratory	motion.	Using	a	combination	of	Cartesian	Golden	angle	undersampling,	data-driven	motion	

detection	and	locally	low-rank	image	reconstruction,	assessment	of	mean	and	turbulent	flow	velocities	

is	demonstrated	for	a	scan	time	of	4	minutes.		

Highly	accelerated	flow	imaging	enables	the	incorporation	of	additional	readouts	into	the	sequence.	

As	part	of	 the	present	 thesis,	 encoding	of	 the	Reynolds	 stress	 tensor	 is	 investigated	and	 sequence	

modifications	are	proposed	to	enable	robust	in	vivo	assessment	of	the	Reynolds	stress	tensor	using	5D	

Flow	MRI.	The	study	provides	the	first	demonstration	of	the	in	vivo	assessment	of	the	Reynolds	stress	

tensor	 and	demonstrates	 the	ability	of	 the	method	 to	quantify	 turbulent	 flow	downstream	of	bio-

prosthetic	aortic	valves.	

Finally,	image	reconstruction	based	on	deep	neural	networks	to	enable	short	reconstruction	times	is	

proposed.	The	method	allows	for	the	reconstruction	of	4D	MRI	data	in	less	than	a	minute.	Moreover,	

the	 proposed	 architecture	 is	 demonstrated	 to	 generalize	 well	 permitting	 reconstruction	 of	

pathological	flow	patterns	and	of	prospectively	undersampled	data	based	on	training	with	a	limited	

number	of	retrospectively	undersampled	datasets	of	healthy	subjects.	
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Chapter	2 Phase	contrast	magnetic	resonance	imaging	

2.1 Phase	Contrast	Encoding	of	Laminar	Flow	

Phase	Contrast	MRI	(PC-MRI)	relies	on	the	fact	that	motion	in	the	presence	of	a	magnetic	field	gradient	

produces	a	change	in	phase	of	transverse	magnetization.	By	playing	out	two	acquisitions	with	different	

bipolar	velocity	encoding	gradients,	flow-dependent	phase	changes	can	be	detected	[1].	

The	Larmor	frequency	𝜔"	at	location	𝒓	in	a	gradient	field	𝑮(𝑡)	is	given	as	

	 𝜔" 𝑟, 𝑡 = 𝛾𝐵- + 𝛾𝑮 𝑡 𝑻𝒓 𝑡 .	 (2.1)	

Assuming	an	excitation	pulse	at	𝑡-,	the	phase	of	precessing	magnetization	at	location	𝒓	and	time	𝑡1 	is	

given	by		

	 𝜙 𝒓, 𝑡1 = 𝛾𝐵-𝑑𝑡

45

46

+ 𝛾𝑮 𝑡 7𝒓 𝑡 𝑑𝑡

45

46

.	 (2.2)	

The	phase	 term	which	depends	on	𝐵-	 can	be	neglected,	 as	 the	 signal	 is	 demodulated	with	𝜔-	 on	

detection.	Expanding	the	trajectory	𝒓(𝑡)	of	magnetization	using	a	Taylor	series	with	an	expansion	point	

at	the	center	𝑡8	of	the	bipolar	gradient	waveform,	the	phase	of	magnetization	at	location	𝒓𝒎 = 𝒓(𝑡8)	

can	be	approximated	as	

	

𝜙 𝒓𝒎, 𝑡 = 𝛾𝑮 𝑡 7 𝒓 𝑡 :

𝑛!

=

:>-

𝑡 − 𝑡8 :𝑑𝑡

4@A
7
B

4@C
7
B

= 𝛾𝑮 𝑡 7 𝒓𝒎 + 𝒗𝒎 𝑡 − 𝑡8 + ⋯ 𝑑𝑡

4@A
7
B

4@C
7
B

= 𝛾[𝑴𝟎
𝑻	𝒓𝒎 + 𝑴𝟏

𝑻𝒗𝒎 + ⋯ ]	

(2.3)	

where	𝑇	is	the	total	duration	of	the	bipolar	gradient,	𝑴𝒏 = 𝑮 𝑡 𝑡 − 𝑡8 :𝑑𝑡
4@A

N
O

4@C
N
O

	is	referred	to	as	

𝑛-th	gradient	moment	and	𝒓𝒎, 𝒗𝒎	denote	mean	position	and	mean	velocity.	The	net	phase	shift	due	

to	mean	acceleration	is	zero,	as	an	expansion	point	at	𝑡8	is	selected	[40].	Higher	order	terms	of	the	

Taylor	expansion	beyond	acceleration	are	typically	considered	negligible	[41].		

Summarizing	error	terms	due	to	field	inhomogeneities,	eddy	currents,	etc.	as	Θ,	the	measured	signal	

becomes	
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	 𝑠 𝒓𝒎 = 𝑠- 𝒓𝒎 𝑒S(T𝑴𝟏
𝑻𝒗𝒎 𝒓𝒎 AU)	 (2.4)	

where	 𝑠- 𝒓𝒎 	 depends	 on	 sequence	 and	 tissue	 parameters	 and	 is	 independent	 of	 the	 velocity	

encoding.		

In	 order	 to	 eliminate	 the	 undesired	 phase	 component	 Θ,	 a	 second	 measurement	 needs	 to	 be	

performed.	Typically,	an	inverted	velocity	encoding	gradient	or	a	velocity	compensated	reference	is	

used.	Taking	the	phase	difference	of	these	two	scans	provides	us	with	a	phase	which	is	proportional	

to	the	average	velocity	in	the	excited	voxel	volume	at	𝒓𝒎.	

As	the	complex	exponential	is	periodic,	the	maximum	velocity	which	can	be	encoded	by	a	sequence	is	

determined	by	the	first	gradient	moment	of	the	sequence	and	is	denoted	as		

	 𝑉𝐸𝑁𝐶 =
𝜋

𝛾 𝚫𝑴𝟏
	 (2.5)	

where	Δ𝑀^	 denotes	 the	 difference	 in	 first	 gradient	 moments	 per	 gradient	 axis	 between	 the	 two	

measurements.	

The	encoding	can	also	be	denoted	by	the	encoding	velocity	frequency	

	 𝒌𝒗 = 𝛾𝚫𝑴𝟏.	 (2.6)	

Consequently,	the	signal	equation	using	𝒌𝒗	reads	

	 𝑠 𝒓𝒎 = 𝑠- 𝒓𝒎 𝑒S 𝒌𝒗
𝑻𝒗𝒎 𝒓𝒎 AU .	 (2.7)	

2.1.1 Velocity	Encoding	and	Velocity-to-Noise-Ratio	

The	velocity-to-noise	ratio	(VNR)	is	related	to	the	signal-to-noise	ratio	of	the	image	magnitude	and	is	

inversely	proportional	to	𝑉𝐸𝑁𝐶	[41]	

	 𝑉𝑁𝑅 ∝ 𝑆𝑁𝑅8cd
𝑉

𝑉𝐸𝑁𝐶
.			 (2.8)	

This	suggests	that	an	ideal	𝑉𝐸𝑁𝐶	would	be	as	low	as	possible.	However,	an	accumulated	phase	which	

exceeds	𝜋	leads	to	aliasing,	i.e.	the	signal	phase	is	interpreted	as	a	lower	velocity,	corresponding	to	a	

phase	within	the	 interval	 −𝜋, 𝜋 .	Therefore,	setting	the	right	𝑉𝐸𝑁𝐶	 is	always	a	trade-off	between	

avoiding	aliasing	and	reaching	the	optimal	SNR.	To	a	certain	degree,	phase	unwrapping	algorithms	can	

reduce	phase-aliasing	in	the	aliased	image,	but	in	general	𝑉𝐸𝑁𝐶	is	set	sufficiently	high	to	avoid	phase	

wraps.	Multi-VENC	approaches	[42]	can	also	be	used	to	derive	flow	fields	with	the	value	range	of	a	

high	𝑉𝐸𝑁𝐶	acquisition	and	the	𝑉𝑁𝑅	of	a	low	𝑉𝐸𝑁𝐶	acquisition	at	the	cost	of	an	increase	in	scan	time.		
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2.1.2 Cine	Phase	Contrast	MRI	

The	 combination	 of	 flow-dependent	 phase	 contrast	 imaging	 with	 temporally	 resolved	 images	

throughout	the	cardiac	cycle	is	referred	to	as	cine	PC-MRI	[41].	For	a	given	slice	placed	within	the	vessel	

of	 interest,	the	sequence	provides	temporally	resolved	quantitative	 information	about	the	velocity-

components	within	the	slice.	In	clinical	practice,	cine	PC-MRI	is	typically	used	to	assess	through-plane	

velocities	[43].	However,	correct	positioning	of	the	measurement	plane	is	crucial.	When	the	slice	is	not	

orthogonal	 to	the	flow	of	 interest,	peak	velocities	are	underestimated.	By	encoding	velocities	 in	all	

three	spatial	dimensions,	this	underestimation	can	be	addressed	[44].	

2.1.3 4D	Flow	MRI	

4D	Flow	MRI	refers	to	time-resolved	volumetric	imaging	with	three-directional	velocity	encoding.	The	

three	 different	 velocity	 components	 can	 be	 measured	 by	 performing	 three	 consecutive	 scans,	

encoding	velocities	in	three	non-collinear	directions.		

Velocity	encodings	for	4D	Flow	MRI	are	typically	denoted	in	matrix	form.	The	forward	model	is 		

	 𝝓 = f
ghij

	𝑯𝒗	=	
𝒌𝒗𝟏

𝑻

…
𝒌𝒗𝒏

𝑻
𝒗	 (2.9)	

where	𝑯	describes	the	combination	of	gradient	moments	along	the	Cartesian	directions	encoded	with	

VENC	while	the	vector	𝝓	contains	the	measured	phases.		

In	 the	 4-point	 referenced	 encoding	 method	 [45]	 the	 velocity	 components	 in	 the	 three	 Cartesian	

directions	 are	 encoded	 independently	 using	 three	 velocity-encoded	 scans	 and	 one	 non-encoded	

reference	scan:		

	 𝑯𝟒𝑷,𝒓𝒆𝒇 = 	
0 0 0
1 0 0
0 1 0
0 0 1

	 (2.10)	

The	 Hadamard	 encoding	 scheme	 employs	 simultaneous	 encodings	 in	 all	 directions	 for	 each	

measurement:	

	 𝑯𝑯𝒂𝒅𝒂𝒎𝒂𝒓𝒅 =
1
2

−1 −1 −1
−1 +1 +1
+1 −1 +1
+1 +1 −1

.	 (2.11)	

Hadamard	encoding	provides	better	noise	statistics	than	4-point	referenced	encoding,	as	the	noise-

level	 is	 direction	 independent	 [45].	 However,	 the	 method	 lacks	 a	 non-encoded	 reference	 scan.	

Therefore,	it	cannot	be	used	for	encoding	intravoxel	standard	deviations	of	turbulent	velocities.	A	5-

point	encoding	[46]	has	been	suggested	to	combine	advantages	of	4-point	referenced	and	Hadamard	
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encoding.	Moreover,	redundant	encoding	schemes	[47]	using	a	higher	number	of	velocity	encodings	

which	are	not	orthogonal	and	thus	share	some	information	have	been	proposed.	These	methods	have	

been	shown	to	yield	a	higher	increase	in	VNR	than	multi-VENC	approaches	with	the	same	number	of	

velocity	encodings	[47].	

2.1.4 Segmented	k-Space	Acquisition		

The	amount	of	k-space	data	required	for	4D	Flow	MRI	and	most	standard	cine	PC-MRI	exams	is	too	

large	to	be	acquired	in	a	single	heartbeat	(although	some	advanced	imaging	techniques	allow	for	real-

time	cine	PC-MRI	[48],	[49]).	Therefore,	segmented	k-space	acquisition	is	performed.	In	each	cardiac	

cycle,	a	subset	of	the	required	phase	encodes	is	acquired	for	each	time	frame	and	the	final	image	is	

reconstructed	from	data	collected	over	several	cardiac	cycles	[1].		

2.1.5 Respiratory	Navigation	

Clinically	 feasible	breathhold	durations	of	10-20	seconds	make	4D	Flow	MRI	acquisition	 impossible	

during	breathhold.	While	it	was	suggested	that	respiratory	motion	might	be	ignored	in	order	to	speed	

up	 4D	 Flow	 acquisitions	 [50],	 this	 can	 deteriorate	 spatial	 information	 [51]	 and,	 hence,	 respiratory	

motion	suppression	is	generally	recommended	for	4D	Flow	exams	[52].	To	this	end,	respiratory	motion	

may	be	recorded	using	navigators,	a	respiratory	bellow	[53],	or	self-gating	approaches	[54].	Samples	

which	were	acquired	while	the	respiratory	motion	signal	was	not	in	the	desired	range	of	motion	are	

discarded	 and	 need	 to	 be	 re-acquired.	 Accordingly,	 the	 net	 scan	 time	 becomes	 dependent	 on	 the	

breathing	pattern	of	the	subject.	

In	 recent	 years,	 alternative	 approaches	 have	 been	 suggested	 to	 acquire	 data	 throughout	 the	

respiratory	 cycle	 while	 exploiting	 data	 correlations	 among	 different	 parts	 of	 the	 respiratory	 cycle	

during	reconstruction	[36],	[55],	[56].	

2.2 Turbulent	Flow	

Turbulent	flow	is	characterized	by	random	spatial	and	temporal	velocity	fluctuations.	Turbulent	flow	

was	found	to	occur	in	valvular	pathologies	but	also	in	healthy	subjects	[17].		

The	 random	 nature	 of	 turbulent	 flow	 makes	 it	 impossible	 to	 describe	 motion	 of	 magnetization	

analytically.	A	statistical	description	of	turbulent	flow	is	provided	by	the	Reynolds	decomposition	[57]	

which	represents	net	velocities	as	a	sum	of	mean	and	fluctuating	components:	

	 𝒗 = 	𝒗 + 𝒗v.	 (2.12)	
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𝒗v	denotes	 the	 velocity	 fluctuations	 around	 the	 time-averaged	 baseline	 provided	 by	𝒗	and	 can	 be	

described	by	statistical	means,	i.e.	the	standard	deviation	over	time	and/or	space.	An	example	of	1-

dimensional	turbulent	flow	and	its	representation	in	terms	of	𝑣	and	𝑣v	is	provided	in	Figure	2.1.		

	

Figure	2.1:	Illustration	of	the	Reynolds	decomposition	of	turbulent	flow	in	one	dimension.	Turbulent	flow	is	characterized	by	

random	 spatial	 and	 temporal	 velocity	 fluctuations.	 Assuming	 a	 Gaussian	 velocity	 distribution,	 this	 flow	 can	 be	 fully	

characterized	by	its	mean	𝜇 = 𝑣	and	its	standard	deviation	𝜎 = 𝑣′.	

2.2.1 Generalized	Phase	Contrast	Magnetic	Resonance	Imaging	

In	conventional	4D	Flow	MRI	spatiotemporally	averaged	velocities	are	derived	from	the	signal	phase	

while	 turbulent	 velocity	 fluctuations	 cannot	 be	 detected.	 However,	 the	 occurrence	 of	 different	

velocities	within	a	voxel	leads	to	phase	dispersion	and	a	measurable	attenuation	in	the	MR	signal.	This	

can	be	exploited	to	derive	 intra-voxel	standard	deviations	of	velocities	𝜎	 from	a	PC-MRI	acquisition	

[20].		

In	the	one-dimensional	case	with	𝑘| = 𝒌𝒗 	and	scalar	mean-velocities	and	given	a	Gaussian	intra-

voxel	 velocity	 distribution	 𝑝 𝑣 	 with	 standard	 deviation	 𝜎	 and	 mean	 velocity	 𝑣	 in	 the	 direction	

indicated	by	𝒌𝒗	

	 𝑝 𝑣 =
1

𝜎 2𝜋
𝑒C

^
B~O|

O
	 (2.13)	

the	signal	can	be	determined	as	[20]	

	 𝑠 𝜎, 𝒌𝒗 = 𝑠- 𝑝 𝑣 𝑒CS 𝒌𝒗 |𝑑𝑣 =
=

C=

𝑠-𝑒
C~

O 𝒌𝒗 O

B 𝑒S 𝒌𝒗 |	.	 (2.14)	
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Thus,	 turbulence	 results	 in	 a	 reduction	 of	 the	 signal	magnitude	which	 depends	 on	 the	 intra-voxel	

standard	deviation	𝜎	and	the	encoding	strength	 𝒌𝒗 .	The	effect	on	the	relative	signal	magnitude	for	

different	gradient	moment	strengths	and	different	values	of	𝜎	is	illustrated	in	Figure	2.2.	

	
Figure	2.2:	 Impact	of	intravoxel	velocity	distribution	on	the	relative	signal	magnitude	measured	with	PC-MRI.	a)	illustrates	

velocity	 distributions	 within	 a	 voxel	 with	 different	 turbulence	 intensities,	 i.e.	 different	 intra-voxel	 standard	 deviations	 of	

velocities.	b)	shows	the	resulting	reduction	in	signal	magnitude	which	depends	on	the	encoding	strength	𝑘|.	

With	the	given	signal	model,	the	standard	deviation	𝜎	of	fluctuations	in	the	encoded	direction	can	be	

determined	by	dividing	the	magnitudes	of	a	signal	acquired	without	velocity	encoding	𝑠 𝒌𝒗 = 0 	

and	of	a	velocity-encoded	acquisition	𝑠 𝒌𝒗 > 0 .		

	 𝜎 = 	
2𝑙𝑛 𝑠 𝒌𝒗 = 0

𝑠 𝒌𝒗 > 0
𝒌𝒗 B 	

(2.15)	

The	 relationship	 between	 intravoxel	 standard	 deviations	 and	 the	 relative	 signal	magnitude	 is	 non-

linear.	 Hence,	 turbulent	 velocities	 are	 only	 accurately	 determined	 for	 a	 limited	 dynamic	 range,	

determined	by	the	first	gradient	moment	of	the	velocity	encoding	gradients.	To	assess	turbulence	with	

an	improved	dynamic	range,	a	multi-point	approach	[58]	has	been	suggested	to	probe	the	flow	field	

at	different	values	of	𝑉𝐸𝑁𝐶	and	combine	the	information	of	the	different	measurements.	

2.2.2 Turbulent	Kinetic	Energy	

By	playing	 out	 velocity	 encoding	 gradients	 in	 three	orthogonal	 directions,	 turbulent	 kinetic	 energy	

(TKE)	can	be	determined	[20]	

	 𝑇𝐾𝐸 =
𝜌
2
(𝜎�B + 𝜎�B + 𝜎�B)	 (2.16)	

	

indicating	how	much	energy	is	stored	in	velocity	fluctuations.		



16	

2.2.3 Reynolds	Stress	Tensor		

In	 3D	 velocity	 fields,	 a	 statistical	 description	 of	 fluctuations	 includes	 variances	 and	 covariances	 as	

represented	by	the	Reynolds	stress	tensor	(RST)	[57]	

	 𝑅 = 𝜌
𝑣�v𝑣�v 𝑣�v𝑣�v 𝑣�v𝑣�v

𝑣�v𝑣�v 𝑣�v 𝑣�v 𝑣�v 𝑣�v

𝑣�v𝑣�v 𝑣�v 𝑣�v 𝑣�v𝑣�v
	 (2.17)	

with	standard	deviations	𝑣�v𝑣�v,	covariances	𝑣�v𝑣�v	and	fluid	density	𝜌.	

Accordingly,	the	signal	equation	reads	

	 𝑠 𝒌𝒗 = 𝑠- e
C ^
B�𝒌𝒗

𝑻𝑹	𝒌𝒗	𝑒S𝒌𝒗
𝑻	𝒗.	 (2.18)	

Similar	 to	 encoding	 principles	 in	 diffusion	 tensor	 imaging	 [59],	 the	 components	 of	 the	 RST	 can	 be	

assessed	 by	 playing	 out	 velocity	 encodings	 along	 at	 least	 six	 non-collinear	 directions	 [28].	 This	

approach	will	be	assessed	in	detail	in	Chapter	6.		 	
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Chapter	3 Accelerated	Phase	Contrast	MRI	

The	 high	 dimensionality	 and	 large	 amount	 of	 data	 in	 4D	 Flow	MRI	 leads	 to	 long	 acquisition	 and	

reconstruction	times,	but	also	yields	data	redundancies	which	can	be	exploited	by	advanced	 image	

reconstruction	methods	to	reconstruct	images	from	highly	undersampled	acquisitions.		

Data	in	flow	MRI	correspond	to	a	high-dimensional	tensor	

	 𝒮 ∈ 	ℂi�×i�×i�×i����×i���×i��×i�� 	 (3.1)	

where	𝑁�, 𝑁�, 𝑁�	 denote	 the	 spatial	 dimensions,	𝑁�� 	 represents	 the	 velocity	 encodings,	𝑁��S� 	 the	

number	of	receiver	elements	of	the	coil,	and	𝑁� ¡	and	𝑁¢£	represent	the	cardiac	phases	and	respiratory	

states,	respectively.	Reconstruction	approaches	typically	use	a	vector	or	matrix	representation	of	the	

data.	Often,	redundancies	are	exploited	among	a	subset	of	these	dimensions	only.	In	the	following,	

when	a	dimension	 is	not	mentioned	explicitly,	 the	 reconstruction	 is	performed	separately	 for	each	

element	along	that	particular	dimension.	For	example,	when	an	image	𝒔 ∈ 	ℂi�i�i� is	considered,	the	

same	 operation	 is	 repeated	𝑁� ¡𝑁�|𝑁¢£	 times,	 i.e.	 for	 each	 cardiac	 phase,	 velocity	 encoding	 and	

respiratory	state.		

The	present	chapter	provides	an	overview	of	different	acceleration	methods	based	on	exploiting	data	

redundancies.	A	brief	summary	of	the	different	approaches	is	provided	in	Table	1.	While	the	focus	of	

this	work	is	on	Cartesian	sampling	strategies,	many	of	the	mentioned	methods	can	be	also	combined	

with	non-Cartesian	sequences.		

3.1 Partial	Fourier	

Partial	Fourier	(PF)	[60]	is	one	of	the	earliest	concepts	to	reduce	scan	time	by	exploiting	redundancies	

inherent	 in	 the	 signal	 by	 using	 a	 constrained	 reconstruction.	 Real-valued	 objects	 show	 Hermitian	

symmetry	in	the	Fourier	domain.	While	in	practice	MR	images	are	not	real-valued,	the	method	uses	a	

phase	estimate	to	correct	for	the	image	phase	prior	to	enforcing	Hermitian	symmetry.	Given	a	signal	

𝑠(𝑥)	and	a	phase	estimate	𝜙1£4(𝑥),	this	reads	

	 ℱ 𝑠(𝑥)𝑒CS§5�¨(� (𝑘) = ℱ 𝑠(𝑥)𝑒C©§5�¨(� (−𝑘
∗
	 (3.2)	

where	ℱ	is	the	Fourier	Transform.	

Accordingly,	knowing	the	k-space	signal	 in	locations	𝑘 ∈ [0, 𝑘8c�]	allows	to	calculate	the	values	for	

𝑘 ∈ [−𝑘8c�, 0).	To	obtain	an	estimate	of	 the	 image	phase,	a	center	 fraction	of	k-space	 is	 typically	

sampled	symmetrically,	reducing	the	actual	reduction	factor	to	ca.	1/0.625	to	1/0.75.		
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Table	1:	Overview	of	different	approaches	for	accelerated	imaging.	

	 ASSUMPTION	 SAMPLING	STRATEGY	

PARTIAL	

FOURIER	

Exploits	Hermitian	symmetry	of	real	

valued	objects,	assuming	that	the	

image	phase	can	be	corrected	for	

using	a	low-resolution	estimate.	

	

One	half	of	k-space	is	fully	sampled.	

For	the	other	half,	only	a	small	

number	of	samples	is	acquired	to	

obtain	a	low-resolution	phase	

estimate.	

PARALLEL	

IMAGING	

Coil	array	elements	receive	the	signal	

with	different	spatial	sensitivities.	This	

leads	to	an	overdetermined	forward	

model	which	allows	reconstruction	

from	an	undersampled	acquisition.		

Typically,	regular	undersampling	is	

used	(e.g.	every	other	k-space	line),	

but	the	method	can	be	used	with	

arbitrary	k-space	trajectories	[61].	

Using	autocalibration	methods	a	fully	

sampled	centre	region	in	k-space	is	

acquired	to	determine	the	relationship	

between	different	coil	receiver	

channels.	Alternatively,	a	separate	

calibration	scan	can	be	performed.		

K-T	BLAST/	

K-T	PCA	

Spatial	and	temporal	variations	in	

dynamic	MRI	can	be	separated	up	to	a	

certain	order,	i.e.	the	dynamic	image	

series	does	not	have	full	rank	when	

written	in	a	Casorati	matrix.	

		

The	centre	of	K-space	is	fully	sampled	

whereas	the	periphery	is	sampled	on	a	

sheared	grid	which	leads	to	regular	

aliasing	in	the	spatiotemporal	domain.	

COMPRESSED	

SENSING	

The	signal	is	compressible	in	some	

transform	domain,	i.e.	it	can	be	

represented	with	few	coefficients.	

Prior	knowledge	about	this	

compressibility	allows	to	reconstruct	

signals	from	incomplete	

measurements.	

Sampling	is	designed	to	produce	

sampling	incoherency,	i.e.	

undersampling	artifacts	which	spread	

uniformly	over	the	object.	Methods	

include	variable	density	

pseudorandom	undersampling	[32]	or	

Golden	angle	sampling	[62],	[63].	
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Of	note,	Hermitian	symmetry	can	only	be	exploited	for	undersampling	in	one	dimension.	When	only	

data	 in	 the	 quadrant	 with	 𝑘� > 0	 and	 𝑘� > 0	 are	 available,	 missing	 k-space	 locations	 cannot	 be	

repopulated	 for	 the	 quadrants	 with	 𝑘� < 0	 and	 𝑘� > 0	 and	 𝑘� > 0	 and	 𝑘� < 0,	 as	

ℱ 𝑠 𝑥, 𝑦 (𝑘�, 𝑘�) = ℱ 𝑠 𝑥, 𝑦 (−𝑘�, −𝑘�
∗
.		

PF	is	listed	as	an	option	to	reduce	scan	durations	in	4D	Flow	MRI	[52].	However,	it	has	been	shown	that	

approaches	based	on	approximating	Hermitian	symmetry	perform	worse	than	simply	zero-filling	the	

missing	k-space	locations	in	case	objects	exhibit	accentuated	spatial	phase	fluctuations	[60],	[64].	The	

suitability	of	PF	for	imaging	of	turbulent	flow	is	investigated	in	detail	in	Chapter	4.		

3.2 Parallel	Imaging	

Parallel	imaging	(PI)	exploits	differences	in	spatial	sensitivities	of	coil	elements	in	a	multi-coil	receiver	

array	to	repopulate	missing	k-space	locations	[38].	

In	a	multi	coil	receiver	array,	each	coil	array	element	receives	the	same	MR	signal,	but	with	a	different	

spatial	weighting.	An	image	𝒔 ∈ ℂi�i�i� 	is	thus	encoded	as		

	 𝑺𝒄𝒐𝒊𝒍 = 𝑪 ∘ 	𝒔	 (3.3)	

where	𝑪 = 𝒄𝒄𝒐𝒊𝒍𝟏 … 𝒄𝒄𝒐𝒊𝒍𝒏 𝑻 ∈ ℂi�i�i�×i���� 	and	𝑺𝒄𝒐𝒊𝒍 = 𝒔𝒄𝒐𝒊𝒍𝟏 … 𝒔𝒄𝒐𝒊𝒍𝒏 𝑻 	 ∈ ℂi�i�i�×i���� 	

correspond	to	the	spatial	sensitivities	and	spatial	signals	received	by	the	different	coil	array	elements	

and	∘	denotes	the	element-wise	multiplication.		

This	 makes	 the	 forward	 model	 an	 overdetermined	 linear	 system	 which	 can	 be	 used	 for	 SNR	

enhancement	[65]	or	to	recover	images	from	an	undersampled	acquisition	[38].		

For	regular	Cartesian	undersampling	patterns,	the	original	image	can	be	recovered	using	the	pseudo-

inverse	 [38].	 A	 more	 general	 solution	 for	 arbitrary	 k-space	 sampling	 can	 be	 formulated	 as	 an	

optimization	problem	which	can	be	solved	by	iterative	optimization	methods	[61].	This	also	allows	for	

the	incorporation	of	regularization	terms	𝑅 𝒊 .	

	 𝒔 = 	𝑎𝑟𝑔min
𝒔

‖𝛺ℱ𝒞(𝒔) − 𝒅‖BB + λR 𝒔 	 (3.4)	

𝛺	 denotes	 the	 k-space	 sampling	pattern,	ℱ	 is	 the	 Fourier	 transform,	𝒞	 denotes	 the	 coil	 sensitivity	

mapping	 from	 the	 image	 to	 the	 sensitivity	 weighted	 images	 seen	 by	 the	 coil	 elements	 and	 𝒅 ∈

ℂi�i�i�i���� 	corresponds	to	the	acquired	k-space	data.	λ	 is	a	weighting	factor	between	consistency	

with	the	acquired	data	and	regularization	R 𝒔 ,	which	typically	favors	a	minimum	norm	solution	[66]	

or	sparsity	in	some	transform	domain	[32].	
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Different	approaches	exist	to	establish	the	relative	spatial	sensitivities	of	the	different	coil	elements.	

SENSE	[38]	models	the	physical	process	behind	a	multi-coil	acquisition	and	resolves	aliasing	by	explicit	

knowledge	of	the	spatial	sensitivities	of	the	coil	elements.	A	low-resolution	full	field-of-view	scan	is	

performed	using	 the	 coil	 array	 as	well	 as	 the	 body	 coil.	 The	 relative	 coil	 sensitivity	 of	 the	 i-th	 coil	

element	in	a	given	location	𝑐S(𝒓)	can	then	be	calculated	as	[38]	

	 𝑐S(𝒓) = 𝑠S(𝒓)/𝑠Àj(𝒓)	 (3.5)	

with	𝑠S(𝒓)	and	𝑠Àj(𝒓)	denoting	the	signal	measured	in	the	given	location	by	the	coil	element	and	the	

body	coil	respectively.	If	no	measurement	with	the	body	coil	was	performed,	one	can	also	divide	by	

the	sum	of	squares	of	the	signal	received	in	the	different	coil	channels,	i.e.		

	 𝑐S(𝒓) = 𝑠S(𝒓)/ 𝑠Á 𝒓 B

Á>^,…,i�

.	 (3.6)	

A	drawback	of	the	latter	approach,	however.	is	that	the	image	intensity	will	be	weighted	according	to	

the	 spatial	 sensitivities	 of	 the	 coil	 array,	 i.e.	 intensities	 will	 be	 increased	 in	 locations	 close	 to	 the	

receiver	coil	relative	to	more	remote	locations.	For	example,	in	the	case	of	4D	Flow	MRI	the	chest	wall	

can	be	very	bright	whereas	the	signal	in	the	descending	aorta	will	be	rather	low.	

Another	class	of	parallel	imaging	algorithms	exploits	the	fact	that	coil	sensitivities	are	spatially	smooth	

and	 therefore	 have	 a	 narrow-band	 representation	 in	 k-space.	 Multiplication	 with	 smooth	 coil	

sensitivities	 in	 image-space	can	be	written	as	a	convolution	with	 relatively	 small	 filter	kernels	 in	k-

space.	GRAPPA	[67]	and	SPIRiT	[68]	explicitly	determine	such	filter	kernels	by	fitting	a	fully	sampled	

region	 in	 k-space.	 GRAPPA	 then	 synthesizes	missing	 k-space	 samples	 using	 the	 previously	 learned	

interpolation	 kernels	 whereas	 SPIRiT	 uses	 an	 iterative	 reconstruction	 to	 find	 a	 trade-off	 between	

closeness	to	the	measured	data	and	consistency	with	the	learned	filter	weights.		

ESPIRiT	[69]	builds	on	the	same	idea	as	SPIRiT	but	provides	explicit	coil	maps	which	can	be	used	with	

the	 same	 iterative	 reconstruction	 formalism	 as	 SENSE,	 i.e.	 using	 equation	 (3.3).	 A	 so-called	

autocalibration	matrix	is	established	from	the	fully	sampled	k-space	center.	Explicit	coil	maps	are	then	

determined	from	the	null	space	of	the	autocalibration	matrix,	assuming	that	this	null-space	 is	valid	

globally	 in	 the	 acquired	 k-space	 dataset.	 Of	 note,	 images	 reconstructed	with	 ESPIRiT	 show	 spatial	

intensity	weighting	similar	to	SENSE	maps	which	were	determined	without	the	body	coil.	

While	parallel	 imaging	has	been	widely	used	for	accelerated	 imaging,	noise	amplification	remains	a	

limiting	factor	for	high	acceleration	factors	[70].		
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3.3 k-t	BLAST	and	k-t	PCA	

It	was	shown	empirically,	that	spatial	and	temporal	variations	in	dynamic	MRI	can	be	separated	

up	to	a	certain	order	[71],	[72].	As	the	images	are	correlated	over	time,	a	limited	set	of	basis	functions	

along	 time	can	be	considered	 sufficient	 to	 represent	all	 the	 temporal	 variation	of	 the	 signal.	 Thus,	

elements	of	a	signal	𝑺 ∈ ℂi�×iÂ�Ã 	with	spatial	dimension	𝑥	and	dynamics	𝑑𝑦𝑛	can	be	written	as	a	

function	of	independent	basis	functions	along	space	𝑢� 𝑥 	and	dynamics	𝑣�Â�Ã(𝑑𝑦𝑛)	

	 𝑠 𝑥, 𝑑𝑦𝑛 = 𝑏��,�Â�Ã𝑢��(𝑥)𝑣�Â�Ã(𝑑𝑦𝑛)

"Â�Ã

�Â�Ã

"�

��

	 (3.7)	

where	𝑏��,�Â�Ã 	is	the	weight	of	a	combination	of	two	basis	functions	indicated	by	the	subscript	indices.	

Assuming	so-called	partial	separability	for	a	signal,	𝐿� < 𝑁�	and	𝐿Ç�: < 𝑁Ç�:	holds.	

In	matrix-form,	equation	(3.7)	can	be	formulated	as		

	 𝑺𝒄𝒂𝒔𝒐𝒓𝒂𝒕𝒊 = 𝑼𝑻𝑩𝑽	 (3.8)	

with	the	data	rearranged	in	a	so-called	Casorati	matrix	as	𝑺𝒄𝒂𝒔𝒐𝒓𝒂𝒕𝒊 ∈ 	 ℂi�i�i�×iÂ�Ã,	matrices	𝑼	and	

𝑽	of	rank	𝐿�	and	𝐿Ç�:	respectively	and	the	elements	of	𝑩	corresponding	to	𝑏��,���� 	in	equation	(3.7).		

In	 k-t	 BLAST	 (Broad-use	 Linear	 Acquisition	 Speed-up	 Technique)	 [72]	 temporal	 basis	 functions	 are	

derived	 from	a	 training	 scan	with	 low	spatial	 and	high	 temporal	 resolution.	An	undersampled	high	

resolution	scan	is	acquired	with	sampling	locations	corresponding	to	a	sheared	grid	in	k-t	space.	This	

leads	to	foldover	artifacts	in	the	spatiotemporal	domain	which	can	be	resolved	by	enforcing	a	signal	

representation	which	 is	based	on	 the	previously	 learned	basis	 functions	along	 time.	 k-t	PCA	 [73]	 is	

based	on	the	same	assumption	as	k-t	BLAST	but	uses	principal	component	analysis	(PCA)	to	reduce	the	

number	of	temporal	basis	functions.		

Of	 note,	 an	 assumption	 of	 partial	 separability	 can	 also	 be	 extended	 to	 the	 respiratory	 motion	

dimension	[55].	

3.4 Compressed	Sensing	

It	is	an	empirical	finding	in	signal	processing	that	many	types	of	signals	can	be	well	represented	by	a	

sparse	 vector	 in	 an	 appropriate	 basis	 or	 frame	 [74].	 In	 compressed	 sensing	 (CS),	 this	 sparsity	 is	

exploited	in	order	to	reconstruct	compressible	signals	from	incomplete	measurements.	

A	signal	is	called	sparse	if	it	has	few	non-zero	coefficients.	In	mathematical	terms,	sparsity	is	expressed	

with	the	 0L -norm,	i.e.	the	number	of	non-zero	coefficients.		
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	 𝒔 - ≔ # 𝑖: 𝑠S ≠ 0 	 (3.9)	

Given	prior	knowledge	about	signal	sparsity	in	a	transform	domain,	reconstruction	of	an	image	𝒔	can	

be	 defined	 as	 an	 optimization	 problem	 which	 defines	 a	 trade-off	 between	 consistency	 with	 the	

measured	data	𝒅	and	sparsity	in	the	sparse	transform	domain,	which	is	defined	by	a	mapping	Ψ.		

	 𝒔 = 	𝑎𝑟𝑔min
𝒔

‖𝛺ℱ𝒞(𝒔) − 𝒅‖BB + λ	 Ψ𝐬 -	 (3.10)	

𝛺	denotes	the	undersampling	operator,	𝒞	denotes	the	coil	sensitivity	mapping	and	λ	 is	a	weighting	

factor	between	data	fidelity	and	sparsity.		

The	𝐿--norm	is	non-convex	and	therefore	difficult	to	minimize.	It	was	shown	[75],	that	in	most	cases	

the	problem	formulation	can	be	relaxed	to	the	minimization	of	the	𝐿^-norm	with	 𝒔 ^ = 𝑠S,ÁS,Á .		

The	minimization	of	the	𝐿^-norm	is	a	convex	problem	with	an	analytical	solution	provided	by	the	soft-

shrinkage	operator	[76].	Thus,	the	reconstruction	problem	can	be	reformulated	as	

	 𝒔 = 	𝑎𝑟𝑔min
𝒔

‖𝛺ℱ𝒞(𝒔) − 𝒅‖BB + λ	 Ψ𝐬 ^	 (3.11)	

which	can	be	solved	by	standard	algorithms	such	as	FISTA	[77]	or	ADMM	[78].	

3.4.1 Undersampling	Strategies	

Besides	sparsity,	the	second	prerequisite	to	the	applicability	of	CS	is	incoherent	aliasing	interference.	

Ideally,	undersampling	artifacts	should	spread	uniformly	over	the	 image	and	resemble	white	noise.	

When	applying	an	appropriate	sparsifying	transform,	 the	signal	energy	will	be	concentrated	to	 few	

coefficients	while	the	aliasing	noise	will	be	distributed	globally.	Thus,	aliasing	can	be	discerned	from	

the	 sparse	 signal	 components	 in	 the	 transform	 domain	 and	 removed	 by	 iteratively	 solving	 an	

optimization	problem.		

Undersampling	 artifacts	 in	 radial	 [79],	 [80]	 and	 spiral	 [81]	 acquisitions	 show	 a	 good	 degree	 of	

incoherence.	 In	 contrast,	 regular	 Cartesian	 undersampling	 leads	 to	 very	 localized	 aliasing	 artifacts	

which	cannot	be	discerned	from	actual	signal	components	 in	the	transform	domain.	Thus,	they	are	

hard	or	even	impossible	to	remove	from	the	reconstructed	signal.	For	undersampling	on	a	Cartesian	

grid	it	was	shown	that	sampling	a	purely	random	subset	of	the	data	can	often	lead	to	a	high	degree	of	

incoherence	[82],	[83].		

CS	 sampling	 patterns	 in	 Cartesian	 MRI	 typically	 use	 so-called	 pseudo-random	 variable	 density	

undersampling	patterns	where	the	k-space	center	is	sampled	more	densely	than	the	k-space	periphery.	

This	is	related	to	empirical	findings	that	most	signal	energy	is	concentrated	close	to	the	k-space	origin	

and	that	coarse-scale	image	components	tend	to	be	less	sparse	than	fine-scale	components	[32].		
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To	the	author’s	knowledge,	research	has	not	yet	provided	a	general	concept	for	undersampling	pattern	

design	 in	 MRI.	 Properties	 of	 non-linear	 reconstruction	 are	 dependent	 on	 the	 signal.	 A	 Bayesian	

approach	which	selects	the	sample	that	minimizes	uncertainty	given	the	already	measured	data	and	

statistical	 information	 extracted	 from	 representative	 images	 has	 been	 proposed	 [84].	 Moreover,	

linearization	of	the	non-linear	reconstruction	was	suggested	to	assess	the	impact	of	different	k-space	

sampling	patterns	[85].	However,	for	both	methods,	to	determine	the	optimal	sampling	pattern	one	

would	need	to	know	the	distribution	of	the	class	of	signals	to	be	acquired.	Thus,	the	optimal	sampling	

pattern	according	to	both	methods	is	application	specific.		

Spatiotemporal	Incoherence	and	Golden	Angle	Sampling	

Cardiovascular	MRI	 typically	 exploits	 redundancies	 in	 the	 temporal	 dimension,	 as	 different	 cardiac	

frames	 are	highly	 correlated.	 Therefore,	 sampling	 incoherence	 is	 also	 required	 along	 the	 temporal	

dimension.	While	one	might	simply	pick	different	 random	undersampling	patterns	 for	each	cardiac	

frame,	sampling	patterns	can	also	be	designed	to	maximize	temporal	incoherence	[62],	[86],	[87].		

A	very	high	degree	of	 incoherence	between	temporally	adjacent	samples	can	be	obtained	with	the	

Golden	angle	acquisition	scheme	which	was	originally	suggested	for	radial	acquisition	[62],	but	has	also	

been	adopted	in	Cartesian	imaging	by	mapping	randomized	points	from	the	spokes	of	a	radial	or	spiral	

trajectory	onto	a	Cartesian	grid	[63],	[87].		

3.4.2 Sparse	Transform	Domains	for	Flow	Imaging	

Common	sparse	transform	domains	in	CS	such	as	Wavelets	and	Total	Variation	(TV)	have	also	been	

used	for	flow	MRI	[56],	[63],	[88].	Moreover,	the	temporal	Fourier	transform	is	effective	in	enforcing	

smooth	or	periodic	 temporal	behavior	 in	cardiac	MRI	[89].	However,	 the	high	dimensionality	yields	

many	further	options	to	apply	sparse	transforms.	In	the	following,	a	brief	overview	of	other	approaches	

more	specific	to	flow	imaging	or	cardiac	imaging	will	be	provided.	

Regularization	Based	on	Physical	Knowledge	

In	several	studies	flow-specific	regularization	terms	based	on	physical	knowledge	have	been	proposed.	

Blood	 is	 incompressible	 and	 the	 conservation	 of	mass	 implies	 that	 everything,	 which	 flows	 into	 a	

location,	has	to	flow	out	again.	Mathematically	this	translates	into	a	requirement	of	zero	divergence,	

i.e.		

	
𝛿𝑣�
𝛿𝑥

+
𝛿𝑣�
𝛿𝑦

+
𝛿𝑣�
𝛿𝑧

= 0.	 (3.12)	

Divergence	of	the	flow	field	can	be	penalized	directly	[90],	or	the	flow	field	can	be	represented	in	terms	

of	a	divergence-free	Wavelet	dictionary	[90],	[91].	In	reality,	however,	blood	flow	measurements	with	
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MRI	are	not	entirely	divergence-free	due	to	the	limited	spatial	resolution	of	MR	scans	and	hence	partial	

volume	effects.	In	response,	it	has	been	suggested	to	decompose	the	field	into	divergence-free	and	a	

non-divergence	free	component	which	can	be	processed	separately	[91],	[92].	

Of	note,	regularization	of	velocity	components	in	CS	requires	separate	treatment	of	magnitude	𝒎	and	

phase	𝝓 = f
ghij

𝑯𝒗 + 𝜽	with	encoding	velocity	𝑉𝐸𝑁𝐶,	encoding	matrix	𝑯	and	background	phase	𝜽.	

This	leads	to	a	non-linear	non-convex	optimization	problem	

	 𝒎,𝒗 = 	𝑎𝑟𝑔min
𝒎,𝒗

‖𝛺ℱ𝒞 e©
f

ghij𝑯𝒗A𝜽 − 𝒅‖BB + λ^	 ΨÖ𝐦 ^ + λB 	 ΨØ
𝜋

𝑉𝐸𝑁𝐶
𝑯𝒗

^
	 (3.13)	

with	sparsifying	operators	Ψ8	and	Ψ|	for	magnitude	and	velocities,	and	regularization	weights	λ^	and	

λB,	respectively.	 Iterative	reconstruction	is	therefore	typically	performed	by	optimizing	signal	phase	

and	signal	magnitude	in	alternating	steps	[90],	[93].	Moreover,	an	estimate	of	the	background	phase	

𝜽	 is	 required,	 e.g.	 by	 reconstructing	 the	 non-encoded	 reference	 image	 first	 with	 another	

reconstruction	method.		

Explicit	and	Implicit	Low-Rank	Representations	

The	concept	of	partial	separability	as	introduced	for	k-t	BLAST	and	k-t	PCA	in	section	3.3	can	also	

be	used	 for	CS	reconstructions.	Such	a	model	can	be	enforced	 in	 the	 image	reconstruction	by	

either	confining	the	reconstruction	to	an	explicit	set	of	basis	function,	or	by	implicitly	enforcing	

a	low-rank	representation	of	the	Casorati	matrix.	The	first	approach	is	used	by	methods	such	as	

k-t	SPARSE	[94],	or	MOCCO	[95],	while	the	latter	approach	can	be	achieved	by	regularizing	the	nuclear	

norm	of	the	Casorati	matrix	in	an	iterative	reconstruction	[35].	This	corresponds	to	a	soft	thresholding	

operation	[96],	i.e.	enforcing	sparsity	of	the	singular	value	matrix.	

When	 the	 signal	 comprises	multiple	 dynamics,	 such	 as	 in	 flow	 imaging,	 different	 dynamics	 can	 be	

combined	in	the	Casorati	matrix,	e.g.	as	𝑺𝒄𝒂𝒔𝒐𝒓𝒂𝒕𝒊 ∈ 	 ℂi�i�i�×i���i�� 	[34],	[97].	

Instead	of	enforcing	the	same	low-rank	representation	for	the	entire	image,	improved	reconstruction	

results	have	been	obtained	in	several	studies	when	enforcing	low-rankedness	locally	by	decomposing	

the	images	into	smaller	patches	[33],	[98],	[99].	

Of	note,	all	the	aforementioned	low-rank	models	are	based	on	sums	of	products	of	linear	functions.	

When	signal	dynamics	exhibit	non-linear	behavior,	such	as	the	velocity	encodings	 in	phase	contrast	

MRI,	the	approximation	error	for	a	low-rank	approximation	can	become	very	high.	

Low-Rank	Tensor	Models	

Low-rank	tensor	models	have	been	suggested	as	an	alternative	to	 low-rank	matrix	representations.	

Different	signal	dynamics	are	represented	by	separate	sets	of	basis	functions	[100],	[101].	
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𝑠 𝑥, 𝑑𝑦𝑛^, 𝑑𝑦𝑛B, …
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(3.14)	

This	 representation	 corresponds	 to	 the	 so-called	 Tucker	 decomposition	 [102].	 In	 contrast	 to	

performing	a	 singular	 value	decomposition	on	a	Casorati	matrix,	 the	Tucker	decomposition	 is	non-

unique.	The	method	was	suggested	for	4D	Flow	reconstruction	[103],	but	to	the	author’s	knowledge	

no	comparison	between	low-rank	tensor	and	low-rank	Casorati	matrix	representations	for	MR	image	

reconstruction	has	been	performed	to	date.	

Low-Rank	+	Sparse	Decompositions	

Low-rank	 representations	 can	be	 very	 sensitive	 to	outliers.	 To	 cope	with	 this	 disadvantage,	 robust	

principal	component	analysis	has	been	proposed	[104],	which	represents	the	signal	as	a	sum	of	a	low-

rank	component	and	a	sparse	component.	The	model	was	adapted	for	MRI	reconstructions	in	low-rank	

+	sparse	(L+S)	reconstruction	[35],	[105]	which	models	dynamic	MRI	as	a	superposition	of	a	background	

which	varies	slowly	over	time	and	 is	 thus	highly	correlated	among	different	 frames,	and	a	dynamic	

component,	which	varies	rapidly	over	time.		

The	method	was	also	extended	to	4D	Flow	MRI	[34].	The	reconstruction	corresponds	to	solving	the	

following	minimization	problem.	

	 𝑺𝑳, 𝑺𝑺 =𝑎𝑟𝑔min𝑺𝑳,𝑺𝑺
‖𝛺ℱ𝒞(𝑺𝑳 + 𝑺𝑺) − 𝒅‖BB + 𝜆"‖𝑺𝑳‖∗ + 𝜆Ü‖𝛹𝑺𝑺‖^ , 𝑠. 𝑡. 𝑺 = 𝑺𝑳 + 𝑺𝑺	 (3.15)	

where	the	image	is	reshaped	as	a	Casorati	matrix	𝑺 ∈ 	ℂi�i�i�×i���i�� 	and	𝑺𝑳	and	𝑺𝑺	denote	the	low-

rank	and	sparse	component	respectively.		

Dictionary	Learning	

Dictionary	 learning	 methods	 can	 be	 used	 to	 learn	 sparse	 representations	 [106]–[108]	 and	 have	

successfully	been	used	to	model	cardiac	dynamics	[107],	[109].	Atoms,	i.e.	the	entries	of	the	dictionary	

can	be	learned	either	from	separate	training	data	[109],	or	from	the	undersampled	data	itself	[107].		

Of	note,	 low-rank	approaches	can	also	be	considered	a	dictionary	approach.	However,	 they	do	not	

allow	 for	 redundant	 dictionaries.	 Moreover,	 the	 underlying	 factorization	 by	 linear	 basis	 functions	

might	not	be	optimal	when	representing	non-linear	relationships	in	data.	
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3.5 Deep	Learning	

In	 the	 last	 few	 years,	 deep	 neural	 networks	 have	 gained	 increasing	 popularity	 in	 MR	 image	

reconstruction.	The	key	idea	is	to	make	a	neural	network	learn	abstract	features	from	retrospectively	

undersampled	measurements	 during	 training.	 Thereafter,	 prospectively	 undersampled	 acquisitions	

can	 be	 reconstructed	 by	 inference.	 The	 reconstruction	 step	 can	 be	 performed	 very	 efficiently	 on	

graphical	processing	units	(GPUs)	enabling	very	short	reconstruction	times.	Moreover,	reconstruction	

results	can	be	superior	to	traditional	iterative	approaches	[110]–[112].		

A	deep	neural	network	consists	of	an	input	layer,	followed	by	several	layers	of	so-called	neurons,	which	

take	a	weighted	sum	of	 inputs	from	the	previous	 layer	followed	by	a	non-linear	activation	function	

[113].	Finally,	an	output	 layer	maps	the	output	of	 the	previous	 layer	 to	the	target	variable,	 i.e.	 the	

image.	Fully	connected	deep	neural	networks	 (also	known	as	a	multilayer	perceptron)	connect	 the	

output	of	all	neurons	in	the	previous	layer	to	the	input	of	each	neuron	in	the	following	layer.	Therefore,	

for	typical	image	sizes,	fully	connected	neural	networks	lead	to	a	very	high	number	of	weights.	This	

implies	a	need	for	 large	amounts	of	 training	data	and	memory,	and	an	 increased	risk	of	overfitting	

making	their	application	in	MR	image	reconstruction	challenging.		

In	imaging	applications,	convolutional	neural	networks	[113]	(CNNs)	are	typically	used.	In	CNNs	each	

layer	consists	of	 convolution	kernels	 followed	by	some	non-linear	operations.	Typically,	down-	and	

upsampling	between	the	layers	is	included	to	make	the	different	convolutional	layers	act	on	different	

spatial	scales.	As	the	same	convolution	kernels	are	applied	to	each	region	in	the	image,	the	number	of	

parameters	to	be	trained	is	much	smaller	than	for	a	fully	connected	neural	network.		

End-to-end	Reconstruction	

It	has	been	suggested	that	the	entire	reconstruction	pipeline	from	k-space	to	the	final	image	can	be	

learned	[114].	However,	this	implies	that	the	network	has	to	implement	the	Fourier	transform,	which	

leads	to	a	considerable	increase	in	training	parameters,	while	an	efficient	analytical	solution	for	the	

Fourier	transform	exists.	Most	methods	therefore	start	at	a	later	point	in	the	signal	processing	pipeline.		

Image	Enhancement	Based	Approaches	

Deep	 learning	approaches	have	been	applied	 to	produce	 images	of	diagnostic	quality	 from	aliased	

direct	 reconstruction	 of	 an	 undersampled	 k-space	 acquisition.	 To	 this	 end,	 the	 neural	 network	

architecture	acts	as	a	filter	bank	enhancing	object	features	while	reducing	noise-like	image	structure	

to	provide	an	image	free	from	aliasing	[115]–[117].		

A	justification	for	this	approach	relates	to	the	insight,	that	the	encoding	operator	in	an	iterative	MR	

image	 reconstruction	 can	 be	 written	 as	 a	 convolution	 [115].	 The	 reconstruction	 can	 hence	 be	

represented	in	a	block	diagram	as	a	sequence	of	convolutions	and	point-wise	non-linearity,	and	thus	
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corresponds	 to	 the	operations	performed	 in	a	CNN.	However,	 the	authors	have	 reported	a	 lack	of	

transferability	 between	 datasets	 when	 trying	 to	 reconstruct	 from	 data	 acquired	 at	 different	

undersampling	rates.	Moreover,	a	recent	study	[118]	has	revealed	that	reconstruction	methods	purely	

based	on	filtering	an	aliased	image	do	not	generalize	well	to	different	undersampling	rates	and	can	

actually	perform	worse	when	provided	with	data	acquired	at	a	higher	sampling	rate.			

Incorporation	of	Data	Consistency	

Similar	to	the	data-fidelity	term	in	traditional	iterative	reconstruction	methods,	convolutional	layers	of	

a	neural	network	can	be	combined	with	a	data	consistency	step	which	enforces	closeness	of	the	image	

estimate	to	the	measured	data	[110],	[119]–[121].		

Projection	based	enforcement	of	data	consistency	was	suggested	[119].	Here,	k-space	 locations	for	

which	data	have	been	acquired	are	filled	up	with	a	linear	combination	of	the	measured	data	and	the	

current	estimate.	As	an	alternative,	a	gradient	step	for	data	consistency	can	be	incorporated	in	the	

neural	network	[110],	[122],	as	explained	in	more	detail	in	the	following	section.	

Replicating	Iterative	Methods	by	Loop	Unrolling	

The	individual	iterations	of	an	iterative	reconstruction	can	be	represented	as	layers	of	a	neural	network	

[110],	[123],	often	referred	to	as	loop	unrolling.	Hammernik	et	al.	[110]	proposed	to	use	this	approach	

in	 combination	 with	 fields	 of	 experts	 regularization	 [124],	 which	 is	 a	 generalization	 of	 TV-

regularization.	 The	 regularizer	 consists	 of	 convolution	 kernels	 and	weighting	with	 scalar	 functions,	

which	makes	its	representation	in	a	neural	network	particularly	easy.	

The	iterative	reconstruction	is	defined	as	the	minimization	of	a	cost	function	

	 𝒔 = 	𝑎𝑟𝑔min
𝒔

‖𝛺ℱ𝒞(𝒔) − 𝐝‖BB + 𝜆 ΦS 𝑫𝒊𝒔 , 𝟏
iá

S>^
	 (3.16)	

with	𝑁â	filters	which	are	each	parameterized	by	a	kernel	𝑫 ∈ ℝä×ä×ä	and	a	scalar	potential	function	

Φ ∈ ℝ.		

In	a	single	iteration,	the	next	estimated	solution	is	

	 𝒔�A^ ← 𝒔(�) − 𝛼 � 𝒞7ℱç 𝛺ℱ𝒞(𝒔) − 𝒅 − 𝜆 𝑫𝒊𝑻𝜙S𝑠𝑖𝑔𝑛(𝑫𝒊𝒔 𝒌 )
iá

S>^
	 (3.17)	

with	𝜙S 	being	the	derivative	of	the	potential	function	Φ©	and	𝛼 � 	denoting	the	step	size.	

This	operation	can	be	written	as	a	 layer	of	a	CNN	with	filter	kernels	𝑫	and	activation	functions	Φ©.	

Thus,	 the	entire	 reconstruction	 is	 recast	as	a	neural	network	where	each	 layer	corresponds	 to	one	

iteration	as	specified	above.		
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To	 enable	 reconstruction	with	 a	 lower	 number	 of	 iterations	 (typically	 ca.	 5-10),	 the	 regularization	

strength	and	regularization	terms	are	allowed	to	vary	for	each	iteration.	Thus,	each	individual	 layer	

consists	of	a	data	fidelity	step	and	regularization	with	filter	kernels	weighted	by	non-linear	activation	

functions	

	 𝒔�A^ ← 𝒔(�) − 𝒞7ℱç 𝛺ℱ𝒞𝒔 − 𝒅 − 𝛼 � 𝑫S,�7𝜙S,�𝑫S,�𝒔 �iá
S>^ .	 (3.18)	

Of	note,	whereas	other	CNN	approaches	use	predefined	activation	functions,	e.g.	sigmoid,	tanh,	etc.,	

in	this	application	the	activation	functions	are	learned	during	training.	The	set	of	trainable	parameters	

therefore	consists	of	step	sizes,	convolutional	layers,	and	activation	functions	

	 𝚯 = 𝛼 � , 𝑫S,�, 𝝓S,� S,�.	 (3.19)	

Generative	Adversarial	Neural	Networks		

Generative	 adversarial	 neural	 networks	 (GANs)	 [125]	 consist	 of	 two	 models	 which	 are	 trained	

simultaneously.	The	generative	model	aims	to	capture	the	data	distribution	whereas	the	discriminative	

model	aims	to	distinguish	between	data	produced	by	the	generative	model	and	data	included	in	the	

training	set.		

In	MRI	 reconstruction,	an	adversarial	network	was	 suggested	 to	distinguish	between	 fully	 sampled	

ground	truth	data	and	the	de-aliased	reconstruction	[117].	During	training,	the	discriminator	is	used	

as	a	loss	function	for	training	of	the	reconstruction	network.		

Moreover,	 GANs	 have	 been	 suggested	 as	 a	 prior	 for	 image	 reconstruction.	 In	 an	 iterative	

reconstruction,	the	image	is	confined	to	the	range	space	of	the	generator	network	[126].	

	 𝒛 = 	𝑎𝑟𝑔𝑚𝑖𝑛
𝒛

‖𝜴𝓕𝓒(𝐺(𝒛)) − 𝒅‖𝟐𝟐,			𝑠. 𝑡. 𝒛 ≤ 𝑑	 (3.20)	

where	𝐺	is	the	generative	network,	𝒛	is	the	latent	vector	which	yields	the	image	𝒔 = 𝐺(𝒛),	and	which	

is	constrained	to	a	hypersphere	of	radius	 𝑑.	

Dealing	with	Limited	Ground	Truth	Data	

A	particular	problem	in	MR	imaging	and	flow	imaging	in	particular	is	the	limited	availability	of	training	

data.	Inspired	by	transfer	learning	it	has	been	suggested,	that	the	initial	training	can	be	performed	with	

non-MR	image	data,	and	then	the	network	can	be	refined	by	training	with	the	available	MR	data	[127].	

Moreover,	 smaller	 network	 architectures	 with	 a	 lower	 number	 of	 trainable	 parameters	 can	 be	

beneficial,	as	they	tend	to	overfit	less	on	the	training	data	and	generalize	better.		

A	completely	database-free	approach	was	suggested	with	 the	RAKI	 [112]	method,	which	 replicates	

classical	k-space	interpolation	approaches	[67],	[68].	In	RAKI,	a	CNN	is	trained	based	on	a	fully	sampled	
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autocalibration	region	and	is	then	used	to	repopulate	missing	k-space	samples.	While	this	approach	

does	not	need	a	database	of	ground	truth	data,	the	CNN	needs	to	be	trained	again	for	each	newly	

acquired	image.		
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Chapter	4 On	the	Limitations	of	Partial	Fourier	Acquisition	in	Phase-Contrast	

MRI	of	Turbulent	Kinetic	Energy	

Published	 in:	 J.	 Walheim,	 A.	 Gotschy,	 and	 S.	 Kozerke,	 “On	 the	 limitations	 of	 partial	

Fourier	 acquisition	 in	 phase-contrast	 MRI	 of	 turbulent	 kinetic	 energy,”	 Magn.	 Reson.	

Med.,	vol.	81,	no.	1,	pp.	514–523,	2019.	

4.1 Introduction	

Partial	Fourier	(PF)	[30],	[31],	[60]	acquisition	is	a	standard	option	on	clinical	MRI	systems	to	reduce	

scan	time.		

While	 reconstruction	 of	 velocity	maps	 from	 PF	 phase-contrast	 data	 is	 performed	 using	 zero-filling	

reconstruction	on	various	MR	systems,	different	options	exist	to	reconstruct	magnitude	images	which	

traditionally	 serve	 for	 anatomical	 referencing.	With	 the	 developments	 of	mapping	 the	 variance	 of	

velocity	 fluctuation	 based	 on	 magnitude	 images	 from	 different	 velocity	 encodes,	 accurate	

reconstruction	 of	 magnitude	 information	 has	 become	 important	 for	 the	 assessment	 of	 turbulent	

kinetic	energy	(TKE)	[20],	[128].		

Assuming	Hermitian	symmetry	in	k-space,	missing	samples	can	be	repopulated	using	various	methods	

[31],	[37],	[60],	[129].	To	approximate	the	Hermitian	symmetry	requirement	of	PF	reconstruction,	a	

low-resolution	 phase	 estimate	 based	 on	 the	 central,	 symmetrically	 sampled	 portion	 of	 k-space	 is	

required	to	phase-correct	the	data	prior	to	computing	the	conjugate	signals.	

It	 has	 been	 argued	 that	 the	 low-resolution	 phase	 estimate	 is	 sufficient	 to	 approximate	 Hermitian	

Symmetry	in	the	reconstruction	of	magnitude	images	in	phase-contrast	MRI	(PC-MRI)	provided	that	

moderate	PF	factors	are	used.	Accordingly,	PF	has	been	applied	in	PC-MRI	applications	[130],	[131],[54]	

and	has	been	listed	as	an	option	for	scan	time	reduction	in	a	recent	consensus	statement	on	4D	flow	

MRI	[52].		

With	the	advent	of	k-t	and	compressed	sensing	based	acceleration	techniques	[32],	[72],	combinations	

of	 undersampling	 with	 PF	 acquisition	 have	 been	 promoted	 [129],	 [132]–[134]	 to	 reduce	 the	 net	

undersampling	 factor	 in	 k-t	 and	 compressed	 sensing	 reconstructions.	 Such	 combinations	have	also	

been	applied	to	phase-contrast	flow	measurements	[58],	[93].	

Beyond	reduction	of	the	number	of	phase	encodes	for	scan	time	reduction,	Partial	Echo	(PE)	sampling	

in	frequency	encode	direction	is	frequently	used	to	reduce	intra-voxel	phase	dispersion	in	transient	

and	turbulent	flows.	While	original	work	proposed	concatenating	two	PE	measurements	to	form	a	full	



31	

echo	at	 the	expense	of	doubling	scan	 time	 [135],	 single	PE	acquisition	 is	 frequently	used	 in	phase-

contrast	applications	[26],	[58],	[136],	[137].	

In	 general,	 the	 phase	 estimate	 required	 for	 PF	 or	 PE	 reconstruction	 is	 of	 high	 importance	 for	 the	

performance	of	methods	enforcing	Hermitian	symmetry	and	any	inaccuracy	significantly	deteriorates	

the	results	[60],	[64].	Previous	studies	have	shown	that	in	regions	of	rapid	phase	changes,	methods	

which	enforce	Hermitian	symmetry	perform	poorly	and	zero-filling	reconstruction	shows	less	artifacts	

[64].		

The	objective	of	the	present	work	is	to	study	PF	techniques	applied	to	phase-contrast	MRI	and	to	assess	

their	 limitations	 for	 assessing	 TKE,	 i.e.	 when	 reconstructing	 magnitude	 images	 from	 PC-MRI	 data	

acquired	 with	 PF	 sampling.	 To	 this	 end,	 PF	 data	 of	 simulated	 flow	 in	 a	 stenotic	 U-bend	 are	

reconstructed	using	homodyne	reconstruction[37],	projection	onto	convex	sets	[64]	and	zero-filling.	

Artifact	 levels	 in	magnitude	and	TKE	maps	are	compared	relative	to	symmetrically	sampled	data	of	

identical	bandwidth	as	well	as	to	the	fully	sampled	reference.	

4.2 	Theory	

Partial	Fourier	Reconstruction	

PF	reconstruction	methods	exploit	the	fact,	that	real-valued	objects	show	Hermitian	symmetry	in	the	

Fourier	domain,	i.e.	𝑑(k) = 𝑑(−𝑘) ∗.	Accordingly,	missing	k-space	samples	may	be	repopulated	from	

fractional	 k-space	 data	 by	 enforcing	 Hermitian	 symmetry.	 However,	 in	 most	 practical	 situations,	

objects	are	not	real-valued	and	hence	reconstruction	requires	a	phase	correction	step.	Given	a	phase	

estimate	𝜙1£4,	the	image	phase	can	be	corrected	and	Hermitian	symmetry	of	the	image	𝑠(𝑥)𝑒CS§5�¨(� 	

can	be	enforced:	

	 ℱ 𝑠(𝑥)𝑒CS§5�¨(� (𝑘) = ℱ 𝑠(𝑥)𝑒C©§5�¨(� (−𝑘
∗
	 (4.1)	

where	ℱ	is	the	Fourier	Transform.	

The	phase	estimate	is	typically	obtained	by	symmetrically	sampling	the	low	k-space	frequencies.	For	

this	 reason,	 a	 typical	 PF	 acquisition	 acquires	 between	 55%	and	 75%	of	 k-space	 [138].	 The	 ratio	 of	

acquired	data	to	total	k-space	data	is	typically	referred	to	as	PF	fraction	[138].	

Margosian	and	Homodyne	reconstruction	

In	the	Margosian	method	[139],	the	acquisition	of	a	half-echo	is	modelled	as	a	multiplication	with	a	

Heaviside	 function	 𝜃(𝑘)	 in	 the	 spatial	 frequency	 domain.	 The	 corresponding	 impulse	 response	

function	reads	
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	 𝐻ôõ 𝑘 = 𝜃 𝑘 + 𝑃𝐹 − 0.5 𝑘8c� )
ℱùÙ

ℎûü 𝑥 = 𝑒SBf�∗ ôõC-.ä �ýþÿ0.5 𝛿 𝑥 +
1
𝜋𝑖𝑥

	 (4.2)	

and	the	image	obtained	from	one	half	of	k-space	is	written	as	

	
𝑠¡ 𝑥 = 𝑠 𝑥 ∗ 𝑒S§ 	⊛

1
2
𝛿 𝑥 +

1
𝜋𝑖𝑥

=
1
2
𝑠 𝑥 ∗ 𝑒S§ +

1
2
𝑠 𝑥 ∗ 𝑒S§ ⊛

1
𝑖𝜋𝑥

= 	
1
2
𝑠 𝑥 ∗ 𝑒S§ + 𝑒S§ ∗

1
2
𝑠 𝑥 	⊛

1
𝑖𝜋𝑥

	
(4.3)	

where	𝑠 𝑥 	 is	 the	modulus	of	the	 image	and	𝜙	 the	 image	phase.	Given	a	phase	estimate	𝜙1£4,	 the	

image	can	be	obtained	as	

	 𝑠 𝑥 ≈ 2Re
𝑠 𝑥
2

∗ 𝑒S	 §C	§5�¨ +
𝑖
2
𝑠(𝑥) ∗ 𝑒S	(§C	§5�¨) 	⊛

1
𝜋𝑥

	 (4.4)	

since	the	second	part	of	the	equation	is	purely	imaginary.	However,	to	write	 ^
B
𝑠 𝑥 𝑒S§ ⊛ ^

Sf�
=

	𝑒S§ ∗ ^
B
𝑠 𝑥 	⊛ ^

Sf�
,	𝜙	is	required	to	be	independent	of	x	and	hence	spatially	invariant.	

Assuming	slowly	varying	 image	phase,	 the	term	s(x)𝑒C©§5�¨(� 	 is	 real-valued	to	 first	approximation.	

Thus,	the	image	𝑠 𝑥 	can	be	written	as	a	function	of	the	acquired	k-space	lines	k ∈ 𝑘-; 𝑘8c� 	of	the	

phase-corrected	signal	𝑠 𝑘 = ℱC^ s(x)𝑒C©§5�¨(� 	[138]	

	

𝑠(𝑥) = 𝑠(𝑘)𝑒S��𝑑𝑘

C�6

C�ýþÿ

+ 𝑠(𝑘)𝑒S��𝑑𝑘

�6

C�6

+ 𝑠(𝑘)𝑒S��𝑑𝑘

�ýþÿ

�6

= 𝑠(𝑘)𝑒S��𝑑𝑘

�6

C�6

+ 2Re 𝑠(𝑘)𝑒S��𝑑𝑘

�ýþÿ

�6

	

(4.5)	

where	Hermitian	symmetry	is	exploited	to	obtain	

	 𝑠(𝑘)𝑒S��𝑑𝑘

C�6

C�ýþÿ

= 𝑠(𝑘′)𝑒S��v 𝑑𝑘′

�6

�ýþÿ

∗

	 (4.6)	

This	is	the	basis	of	the	so-called	Homodyne	Reconstruction	(HR)[37].	Since	the	phase-corrected	signal	

𝑠 𝑘 	has	to	be	real-valued,	one	considers	the	real	part	of	Equation	4.5	to	be	the	correct	image	and	

Homodyne	Reconstruction	reads		

	 𝑠&' = Re 𝑠(𝑘)𝑒S��𝑑𝑘

�6

C�6

+ 2 ∗ 𝑠(𝑘)𝑒S��𝑑𝑘

�ýþÿ

�6

.	 (4.7)	



33	

Inconsistencies	at	the	transition	between	synthesized	and	acquired	data	at	𝑘-	lead	to	artifacts	in	the	

reconstructed	image.	To	reduce	these	inconsistencies	a	linear	ramp	or	a	cosine	tapered	window	[138]	

(also	known	as	asymmetric	Hanning	window	[140])	can	be	used.	However	smoothing	the	transition	

was	shown	to	reduce	SNR	[37].		

Iterative	reconstruction	

Alternatively,	inconsistencies	at	𝑘-	can	be	reduced	by	enforcing	Hermitian	symmetry	iteratively.	The	

method	of	projections	onto	convex	sets	(POCS)	[31]	alternates	between	projections	onto	the	set	𝛺^	of	

images	which	agree	with	the	estimated	phase	𝜙1£4(𝑥)	and	projections	onto	the	set	𝛺B	of	data	which	

match	 the	acquired	k-space	data	𝑑 𝑘 .	 Parallel	 POCS	performs	 the	projections	 simultaneously	 and	

provides	better	results,	when	the	intersection	between	both	constraints	is	empty	[141].	

	

	
𝛺^ = {𝑠(𝑥):∠𝐼(𝑥) = 𝜙1£4(𝑥

𝛺B = {𝑠 𝑥 : ℱ 𝑠 𝑥 𝑘 = 𝑑 𝑘 ; 	k ∈ 𝑘-; 𝑘8c�
𝑠:A^ = µ ∗ 𝒫-Ù s. + (1 − µ) ∗ 𝒫-O s. 	, 𝜇 ∈ (0,1)

	 (4.8)	

Zero-Filling	Reconstruction	

Methods	based	on	Hermitian	symmetry	do	not	retain	phase	information	and	are	therefore	not	suited	

for	the	reconstruction	of	phase	images	as	in	PC-MRI.	Moreover,	Hermitian	symmetry	allows	to	recover	

the	 full	 k-space	 only,	 if	 PF	 has	 been	 applied	 along	 a	 single	 k-space	 dimension,	 as	 𝑠(k/, k0, k1) =

𝑠(−𝑘�, −𝑘�, −𝑘�)
∗
.	If	PF	is	applied	to	more	than	one	dimension	or	high	resolution	phase	images	are	

required,	zero-filling	(ZF)	reconstruction	remains	the	only	option	[138].		

To	assess	the	effect	of	ZF,	the	point	spread	function	(PSF)	of	the	sampling	pattern	can	be	inspected.	

The	corresponding	PSF	becomes	a	sinc	function	with	phase	modulation	depending	on	the	PF	fraction:	

	

𝐻 𝑘 = 𝛱B�ýþÿôõ 𝑘 − 1 − 𝑃𝐹 𝑘Ö3/
ℱùÙ

	

𝑃𝑆𝐹(𝑥) = 𝑒SBf(^Côõ)�ýþÿ� ∗ 2𝑃𝐹 ∗ 𝑘Ö3/
sin(2𝜋𝑘Ö3/𝑃𝐹 ∗ 𝑥
2𝜋𝑘Ö3/𝑃𝐹 ∗ 𝑥

	

(4.9)	

Figure	4.1a	compares	the	magnitude	and	phase	of	the	PSF	for	𝑃𝐹 = 0.75	and	a	full	k-space	acquisition.	

It	is	readily	seen	that	the	full-width-at-half	maximum	(FWHM)	of	the	PSF	is	increased	with	PF	and	a	

linear	 phase	 is	 introduced	 according	 to	 the	 Fourier	 shift	 theorem.	 Accordingly,	 PF	 acquisition	 is	

equivalent	to	symmetric	sampling	of	k-space	with	a	reduced	bandwidth	except	for	a	linear	phase	ramp.	

As	 illustrated	 in	Figure	4.1b,	 this	 leads	to	distortions,	which	are	 less	smooth	than	the	Gibbs	ringing	

effect	observed	for	symmetric	sampling	(SYM).	
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Figure	4.1:	Effect	of	Partial	Fourier	(PF)	sampling.	a)	Sampling	a	rectangular	window	in	k-space	corresponds	to	a	convolution	

of	the	image	with	a	sinc-shaped	PSF	function.	By	reducing	the	bandwidth	in	k-space,	PF	sampling	increases	the	full-width-at-

half	maximum	(FWHM)	and	hence	reduces	the	spatial	resolution	which	can	be	resolved	by	the	system	accordingly.	In	addition,	

the	PSF	is	weighted	with	a	linear	phase	shift	according	to	the	Fourier	shift	theorem.	b)	Example	of	PF	sampling	of	a	Heaviside	

function.	Symmetric	sampling	of	k-space	(SYM)	leads	to	Gibbs	ringing	artifacts.	With	PF,	phase	modulation	of	the	PSF	leads	to	

more	complex	truncation	artifacts	

Combination	with	Compressed	Sensing	

In	combination	with	compressed	sensing	(CS),	PF	acquisition	can	be	modelled	as	a	convolution	of	the	

PSF	of	the	CS	sampling	pattern	and	the	PSF	of	the	PF	acquisition	as	follows:	

	 𝐻 𝑘 = 𝐻�£ 𝑘 	𝐻 â 𝑘 	
ℱùÙ

𝑃𝑆𝐹 𝑥 = PSF89 𝑥 PSFûü(𝑥).	 (4.10)	

Accordingly,	the	net	effect	on	the	PSF	of	the	sampling	pattern	can	be	assessed	using	design	criteria	

such	as	the	sidelobe-to-peak	ratio	[32].	

4.3 Methods	

Simulated	Data		

Three-dimensional	4-point	phase-contrast	data	were	simulated	using	Computational	Fluid	Dynamics	

(CFD)	yielding	data	of	mean	and	turbulent	velocities	of	pulsatile	flow	in	a	stenotic	U-bend	phantom	

(large	eddy	simulation	(LES)	in	OpenFOAM	[142],	pipe	diameter	of	25	mm,	stenosis	radius	of	12.5	mm,	

kinematic	viscosity	1.3 ∗ 10Cä 8
O

£
,	max.	flow	rate	235	ml/s	and	Womersley	number	of	appr.	3.5).		

In	order	to	accurately	model	the	measurement	of	a	continuous	object	and	to	model	the	discretization	

error	accurately[143],	the	measurement	of	a	continuous	object	was	approximated	by	upsampling	the	

dataset	 to	 ten	 times	 the	 original	 resolution.	 Thereafter	 the	 data	 was	 transformed	 to	 k-space	 and	

samples	were	drawn	from	the	k-space	center,	 leading	to	an	acquisition	matrix	of	174x120.	Besides	

*
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noise-free	data,	realistic	SNR	was	simulated	by	adding	normal	distributed	complex-valued	noise	to	the	

high-resolution	object	to	arrive	at	SNR	values	between	20	dB	and	60	dB.	

In-vivo	Data	

4D	 flow	 data	was	 acquired	 in	 a	 patient	 with	 dilation	 of	 the	 ascending	 aorta	 and	 combined	 aortic	

stenosis	 and	 regurgitation	 due	 to	 a	 bicuspid	 aortic	 valve	 on	 a	 3T	 Philips	 Ingenia	 system	 (Philips	

Healthcare,	Best,	the	Netherlands)	using	a	navigated	Cartesian	4-point	referenced	[45]	phase-contrast	

gradient-echo	 sequence	 with	 an	 encoding	 velocity	 (venc)	 of	 150	 cm/s,	 a	 spatial	 resolution	 of	

2.5x2.5x2.5	mm3,an	acquisition	matrix	of	124x112x33,	bandwidth	0.88	kHz/pixel	and	echo	time	2.50	

ms.	Data	were	acquired	and	reconstructed	using	SENSE	[38]	with	a	net	acceleration	factor	of	R	=	2.	

Concomitant	 field	correction	was	applied	 to	 the	signal	phase	according	 to	 [144]	and	eddy	currents	

were	corrected	for	with	a	linear	model	fitted	to	stationary	tissue	[145].	Written,	informed	consent	was	

obtained	before	the	experiment	according	to	ethics	approval	and	institutional	guidelines.		

Partial	Fourier	Reconstruction	

PF	acquisition	of	both	CFD	and	in-vivo	data	was	simulated	by	setting	the	lower	25%	of	phase-encodes	

in	ky-direction	 to	 zero,	 corresponding	 to	a	PF	 factor	of	0.75.	Simulated	PF	data	were	subsequently	

reconstructed	using	HR,	POCS	and	ZF.	The	phase	correction	required	for	HR	and	POCS	was	performed	

based	 on	 the	 phase	 estimate	 derived	 from	 the	 symmetrically	 sampled	 central	 k-space	 region.	 The	

corresponding	reconstruction	procedures	are	outlined	in	Figure	4.2.	A	unit	step	transition	was	selected	

for	HR	(see	Supporting	Information	Figure	4.S2	for	details).	For	parallel	POCS,	𝜇	was	set	to	0.5	(see	

Equation	4.8).	PF	reconstructions	of	CFD	data	were	compared	to	a	75%	symmetrically	undersampled	

k-space	 (SYM)	as	well	as	 to	the	 full	acquisition	matrix	 (FULL).	The	 in-vivo	data	were	retrospectively	

decimated	to	yield	a	PF	fraction	of	0.75,	reconstructed	with	HR	and	POCS	and	compared	to	ZF	and	

SYM.	

Compressed	Sensing	Reconstruction	

The	combination	of	PF	and	CS	was	assessed	by	retrospectively	undersampling	the	numerical	dataset	

with	a	Poisson	density	weighed	random	undersampling	pattern	combined	with	PF	=	0.75,	yielding	a	

net	reduction	factor	of	𝑅:14 = 4	and	comparing	it	to	standard	CS	sampling	with	𝑅:14 = 4.	Data	were	

reconstructed	 with	 spatial	 Wavelets	 as	 sparsifying	 transform	 using	 the	 Berkeley	 Advanced	

Reconstruction	Toolbox	(BART)	[146].	RMSE	of	magnitude	images	and	TKE	maps	and	difference	images	

relative	to	the	fully	sampled	ground	truth	(GT)	were	compared.		

Data	Analysis	

TKE	[20]	maps	were	calculated	according	to	
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	 𝑇𝐾𝐸 = <
B

𝜎SBS>{^,B,= 	,	with	𝜎SB =
B

��,�
O ln

£6
£��,�

	 (4.11)	

	where	𝜎SB	corresponds	to	the	intravoxel	standard	deviation	of	fluctuating	velocities	along	dimension	𝑖	

and	 £6
£��,�

	 is	 the	 relative	 signal	magnitude	 of	 reference	measurement	 𝑠-	 and	 the	 velocity	 encoded	

measurement	𝑠��,S 	 encoded	with	𝑘|,S,	 and	𝜌	 is	 the	 fluid	density.	 In	order	 to	 reduce	partial	 volume	

effects,	the	in-vivo	data	were	sinc-interpolated	to	a	resolution	of	180x180	before	calculating	TKE	maps.		

Velocity	magnitude	(speed)	images	were	calculated	as	the	sum-of-squares	of	the	three	velocity	

components.		

Root	mean	square	error	(RMSE)	values	of	velocity	magnitude	and	TKE	data	are	reported	for	the	region-

of-interest	comprising	the	vessel	of	interest.	The	respective	regions-of-interest	for	numerical	and	in-

vivo	data	are	indicated	by	dashed	lines	in	Figure	4.3a	and	Figure	4.4a.		

No	ringing	filter	was	used	in	reconstruction	to	avoid	additional	spatial	low-pass	filtering.	

	

	

Figure	4.2:	 Illustration	of	PF	 reconstruction	methods.	Homodyne	 reconstruction	 (HR)	estimates	 the	 signal	phase	 from	 the	

symmetrically	sampled	low-frequency	components,	rotates	the	image	values	into	the	real	plane	and	then	restores	Hermitian	

symmetry.	POCS	reconstructs	an	image	by	iteratively	projecting	the	data	onto	the	set	of	images	which	agree	with	the	low-

frequency	phase	estimate	and	onto	the	set	of	images	which	agree	with	the	acquired	k-space	data.		
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4.4 Results	

Figure	4.3	compares	simulation	results	of	ZF,	HR	and	POCS	reconstruction	relative	to	noise-free	ground	

truth	(GT),	the	noisy	fully	sampled	dataset	(FULL)	and	the	symmetrically	reduced	dataset	(SYM).	It	is	

seen	 that	 the	 RMSE	 of	 TKE	maps	 (Figure	 4.3a)	 relative	 to	 ground	 truth	 is	 lowest	 for	 SYM	 (1.21%)	

followed	by	 ZF	 (1.98%).	 POCS	 and	HR	 result	 in	 largest	 errors	 (4.01%	and	 4.02%,	 respectively).	 The	

findings	are	consistent	across	the	range	of	common	SNR	values	(Figure	4.3b).		

Spatial	 profiles	 in	 Figure	 4.3c	 demonstrate	 the	 resolution	 loss	 incurred	 by	 PF	 and	 SYM	 acquisition	

relative	to	ground	truth.	Velocity	magnitude	images	show	a	higher	overall	error	for	ZF	than	for	SYM	

and	FULL	(0.28%,	0.22%	and	0.13%,	respectively)	and	difference	images	show	the	highest	deviation	

from	the	ground	truth	data	near	the	stenosis.		

Figure	4.4	compares	results	of	ZF,	HR	and	POCS	reconstruction	relative	to	the	fully	sampled	 in-vivo	

dataset	(FULL)	and	the	symmetrically	reduced	dataset	(SYM)	of	the	in-vivo	measurement.	The	RMSE	

of	TKE	maps	(Figure	4.4a)	relative	to	the	fully	sampled	data	is	lowest	for	SYM	(2.45%)	followed	by	ZF	

(2.93%).	 POCS	 and	HR	 result	 in	 largest	 errors	 (4.93%	 and	 4.34%,	 respectively).	 Velocity	magnitude	

images	are	compared	in	Figure	4.4b.	ZF	shows	a	higher	overall	RMSE	than	SYM	(2.94%	vs.	2.19%).	

In	Figure	4.5	the	PSF	resulting	from	a	random	undersampling	pattern	without	and	with	PF	acquisition	

is	compared	for	identical	net	undersampling	factors.	PF	acquisition	leads	to	increased	sidelobe-to-peak	

ratios	as	shown	in	Figure	4.5a.	In	Figure	4.5b	magnitude	and	TKE	maps	reconstructed	with	CS	and	with	

CS+PF	 for	 Rnet	 =	 4	 are	 compared.	 It	 is	 seen	 that	 the	 error	 for	 PF+CS	 is	 highest	 near	 sharp	 edges.	

Magnitude	and	TKE	maps	are	 reconstructed	more	accurately	 for	CS	 than	 for	CS+PF	with	1.06%	vs.	

0.75%	for	magnitude	images	and	2.28%	vs.	2.69%	for	TKE	maps.		

4.5 Discussion	

The	limitations	of	PF	acquisition	in	PC-MRI	of	TKE	have	been	studied	using	simulated	and	in-vivo	data.	

It	has	been	demonstrated	that	image	reconstruction	enforcing	or	approximating	Hermitian	symmetry	

leads	to	larger	errors	than	the	error	incurred	by	a	reduced	image	resolution	at	a	given	number	of	phase	

encodes.	Moreover,	it	has	been	shown	that	phase	images	reconstructed	with	ZF	cannot	provide	higher	

resolution	 than	symmetric	 sampling	of	 the	 same	number	of	phase-encodes	 sampled	around	 the	k-

space	center.	
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Figure	4.3:	Reconstruction	results	for	different	sampling	strategies	applied	to	CFD	data	of	stenotic	flow.	a)	TKE	maps	for	an	

exemplary	slice.	The	error	in	terms	of	magnitude	and	TKE	is	generally	higher	for	HR	and	POCS	than	for	ZF.	However,	ZF	has	a	

higher	RMSE	than	SYM	for	magnitude,	phase,	and	TKE	images.	b)	Reconstruction	accuracy	of	magnitude	and	TKE	for	different	

noise	levels.	c)	An	exemplary	phase	profile	shows	that	edges	are	depicted	less	accurate	in	phase	images	obtained	with	ZF	than	

with	SYM	and	FULL	sampling,	implying	a	higher	loss	of	high-frequency	components.	d)	Velocity	magnitude	images	obtained	

with	ZF	show	a	higher	error	than	SYM	or	FULL	sampling.	e)	shows	the	region	of	interest	used	for	quantitative	assessments.	

Experiments	 performed	 in	 this	 study	 showed,	 that	 the	 performance	 of	 methods	 which	 enforce	

Hermitian	symmetry,	such	as	HR	and	POCS,	is	inferior	relative	to	ZF	reconstruction	or	SYM	sampling.	

This	is	related	to	the	spatial	complexity	of	the	image	phase	in	typical	PC-MRI	applications	which	cannot	

be	 captured	 by	 the	 phase	 estimate	 from	 low	 spatial	 frequencies	 used	 to	 approximate	 Hermitian	

symmetry.	 The	 finding	 confirms	 previous	 studies	 [60],	 [64]	 in	which	methods	 based	 on	 Hermitian	

symmetry	did	not	provide	better	results	compared	to	ZF	reconstruction.		
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It	can	be	readily	seen	from	Equation	4.9	that	the	effect	of	ZF	corresponds	to	a	sinc	interpolation,	where	

the	neighboring	voxels	are	weighted	with	a	phase	shift.	Consequently,	ZF	reduces	spatial	resolution	

corresponding	to	the	inverse	of	the	bandwidth	sampled	in	k-space.	Effectively,	an	image	with	lower	

resolution	is	obtained,	which	is	modulated	in	phase	due	to	the	shifted	sampling	window	in	k-space.		

	

	

Figure	4.4:	Reconstruction	results	of	in-vivo	data	acquired	in	the	ascending	aorta.	a)	TKE	maps	obtained	from	ZF	and	SYM	

provide	a	lower	RMSE	than	HR	and	POCS.	b)	Velocity	magnitudes	are	depicted	less	accurately	with	ZF	than	SYM.	Difference	

maps	show	the	highest	difference	at	the	center	of	the	jet.	e)	shows	the	region	of	interest	used	for	quantitative	assessments.	
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Figure	4.5:	Wavelet	based	sparse	recovery	for	CS	and	CS+PF.	a)	CS	sampling	pattern	without	and	with	PF	acquisition	of	75%	

and	the	corresponding	point	spread	functions	(PSF).	CS	shows	a	lower	sidelobe-to-peak	ratio	than	CS+PF.	b)	Reconstruction	

results.	PF	results	in	inaccuracies	at	sharp	edges	which	cannot	be	corrected	for	by	sparse	recovery.	CS+PF	shows	a	higher	RMSE	

than	CS	for	the	same	acceleration	factor.		

Experiments	showed	SYM	sampling	to	be	more	accurate	in	terms	of	RMSE	than	ZF	for	TKE	maps	and	

velocity	 images.	SYM	sampling	 leads	 to	 ringing	artifacts	which	 is	a	well-understood	effect	 resulting	

from	 imaging	of	a	continuous	signal	with	a	 limited	bandwidth	 [147].	PF,	 in	contrast,	 leads	 to	more	

complex	 truncation	 artifacts,	 as	 illustrated	 in	 Figure	 4.1b.	 Truncation	 artifacts	 can	 be	mitigated	 by	

applying	a	ringing	filter	[138]	but	as	this	corresponds	to	spatial	low-pass	filtering,	it	also	deteriorates	

spatial	 resolution.	 The	 truncation	 artifacts	 observed	 for	 ZF	 lead	 to	 modulation	 of	 the	 image	 with	

relatively	low	spatial	frequency,	compared	to	ringing	artifacts	observed	for	SYM.	Therefore,	stronger	

filtering	would	need	to	be	applied	to	ZF,	thus	further	reducing	the	spatial	resolution.		
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This	 study	 only	 considered	 PF	 in	 one	 phase	 encode	 dimension.	 However,	 the	 use	 of	 PF	 was	 also	

reported	combined	in	both	phase	encode	dimensions	[54],	[58].	When	applying	PF	along	both	phase	

encode	dimensions,	restoring	Hermitian	symmetry	only	allows	to	fill	missing	profiles	in	one	quadrant	

of	k-space	whereas	the	other	two	quadrants	have	to	be	treated	with	ZF	[138],	implying	a	loss	of	spatial	

resolution.	Assuming	a	successful	reconstruction	with	HR	or	POCS	in	one	dimension	the	reconstructed	

image	would	therefore	show	a	directionally	dependent	resolution.		

Partial-echo	acquisition	is	frequently	applied	to	reduce	echo	time	[26],	[58],	[136],	[137].	Even	though	

PE	has	not	been	studied	in	the	present	work,	the	image	reconstruction	approach	is	equivalent	to	PF	

acquisitions	and	therefore	comparable	impact	on	image	resolution	and	TKE	is	expected.	However,	by	

reducing	echo	time,	PE	can	reduce	the	effect	of	intra-voxel	phase	dispersion	in	complex	and	stenotic	

flows.	Consequently,	the	use	of	PE	will	reduce	errors	due	to	intra-voxel	dephasing	at	the	cost	of	spatial	

resolution	in	case	of	ZF	or	it	will	cause	image	artifacts	when	using	HR	or	POCS.	O’Brien	et	al.	showed	

that	long	echo	times	can	lead	to	inaccuracies	in	flow	quantification	of	jet	flows[148]	and	can	lead	to	

underestimation	 of	 stroke	 volume	 in	 patients	 with	 aortic	 stenosis[149].	 On	 the	 other	 hand,	 the	

accuracy	of	viscous	and	turbulent	loss	quantification	is	compromised	when	the	spatial	resolution	is	too	

low	[128].	A	conclusive	answer	on	whether	to	use	PE	or	not	must	therefore	depend	on	the	application	

and	on	the	parameters	assessed.		

The	use	of	CS	methods	to	reconstruct	high-resolution	images	from	PF	acquisitions	has	been	suggested	

[134].	 As	 shown	 in	 Figure	 4.5,	 PF	 leads	 to	 an	 increased	 sidelobe-to-peak	 ratio	 of	 the	 PSF,	 thus	

compromising	 L1-based	 regularization.	 In	 a	 comparison	 of	 CS	 and	 CS+PF,	 standard	 CS	 sampling	

provided	a	lower	RMSE	than	CS+PF.	The	increased	sidelobe-to-peak	ratio	manifested	itself	at	edges,	

where	CS+PF	showed	a	higher	error.	When	a	phase	estimate	is	available,	incorporating	the	Hermitian	

symmetry	 requirement	 in	 the	 CS	 cost	 function	 can	 improve	 reconstruction	 accuracy	 [129],	 [132].	

Accordingly,	 an	 accurate	 estimate	 of	 the	 signal	 phase	 is	 required.	 However,	 given	 the	 spatial	

complexity	of	the	object	phase	in	PC-MRI	applications,	low-resolution	phase	maps	as	available	from	

the	data	are	expected	to	be	not	sufficient.		

In	recent	years	methods	other	than	HR	and	POCS	to	restore	Hermitian	symmetry	have	been	proposed,	

often	 formulating	 the	 PF	 reconstruction	 as	 a	 variational	 problem	 where	 Hermitian	 symmetry	 is	

implemented	using	a	regularization	term	[129],	[132],	[150].	However,	the	underlying	assumption	that	

the	signal	phase	can	be	well	represented	with	a	low-frequency	estimate	remains	a	limitation.		

A	limitation	of	this	study	is	that	the	key	findings	were	established	using	retrospectively	undersampled	

CFD	data.	At	the	same	time,	however,	the	CFD	data	enabled	quantitative	evaluations	on	noise-free	

input	hence	allowing	to	discriminate	systematic	from	random	errors.	In	addition,	the	effect	of	PF	was	

confirmed	in	an	in-vivo	TKE	exam	of	a	patient	with	dilatation	of	the	ascending	aorta	and	a	bicuspid	
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aortic	 valve,	 either	 known	 to	 significantly	 increase	 TKE	 in	 the	 setting	 of	 aortic	 stenosis[22]	 No	

prospectively	undersampled	PF	scans	were	used,	as	performing	multiple	TKE	scans	in	a	single	cardiac	

exam	would	lead	to	excessively	long	scan	times,	implying	a	high	probability	of	differences	between	the	

scans	due	to	bulk	patient	motion.		

This	study	focused	on	PC-MRI	of	TKE.	However,	methods	which	enforce	Hermitian	symmetry	will	lead	

to	artifacts	for	any	application	where	strong	spatial	phase	variations	occur.	

In	summary,	Hermitian	symmetry	cannot	be	used	as	a	prior	to	recover	missing	samples	in	PC-MRI	of	

complex	flow.	Accordingly,	efforts	to	reduce	scan	time	in	PC-MRI	should	aim	to	exploit	correlations	

present	 in	the	high-dimensional	datasets	using	 iterative	 image	reconstruction	approaches[34],	 [63],	

[88],	[97],	[151]	instead	of	using	PF	acquisitions.		

4.6 Conclusion	

Exploiting	Hermitian	symmetry	in	Partial	Fourier	reconstruction	of	TKE	maps	from	phase-contrast	data	

does	not	yield	a	benefit	over	zero-filling.	In	consequence,	symmetric	sampling	is	preferred	over	Partial	

Fourier	acquisition	for	a	given	number	of	phase-encodes	in	PC-MRI.	

4.7 Acknowledgements	

The	authors	acknowledge	Sebastiano	Caprara	for	providing	the	CFD	data.		

4.8 Supplementary	Information	

	Influence	of	the	Window	Function	in	Homodyne	Reconstruction	

In	HR,	inconsistencies	at	the	transition	between	synthesized	and	acquired	data	at	𝑘-	lead	to	artifacts	

in	the	reconstructed	image.	To	reduce	these	inconsistencies,	the	transition	can	be	smoothened	with	a	

linear	ramp	or	an	cosine	tapered	window	[138]	(also	known	as	asymmetric	Hanning	window	[140]).		

To	find	out	the	best	setting	for	the	transition	region,	reconstruction	accuracy	was	assessed	in	terms	of	

RMSE	for	the	cosine	tapered	window	and	the	linear	ramp	transition	with	varying	width	of	the	transition	

region.	A	unit-step	transition	was	considered	by	allowing	for	a	transition	region	width	of	0px.		

For	 the	noise-free	CFD	dataset	 (Figure	 S4.1a),	 a	 linear	 ramp	performs	 consistently	 better	 than	 the	

cosine	tapered	window.	The	best	result	is	obtained	for	a	unit	step	transition	with	an	RMSE	of	4.0%.	A	

local	minimum	with	an	RMSE	of	4.3%	can	be	observed	for	the	linear	ramp	at	a	transition	region	width	
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of	8px.	In	an	exemplary	slice,	similar	artifacts	can	be	observed	for	a	unit	step	and	the	linear	ramp	with	

8px	width.	Both	filter	profiles	can	be	seen	in	Figure	S4.1c.		

For	the	in-vivo	dataset	(Figure	S4.1b),	the	linear	ramp	transition	and	cosine	taper	transition	provide	

similar	results.	Both	rise	rapidly	with	an	increasing	transition	region	size.	Again	the	unit-step	transition	

provides	the	lowest	RMSE.		

The	 best	 experiment	 results	were	 obtained	 for	 a	 unit-step	 transition.	 Further	 reducing	 the	 spatial	

resolution	of	the	low-frequency	phase	estimate	by	smoothening	the	transition	region	and	attenuating	

the	acquired	data	by	applying	a	smooth	transition	further	reduces	reconstruction	accuracy.	For	noise-

free	data,	using	a	small	transition	region	of	8px	provides	an	RMSE	which	is	only	0.3%	higher	than	for	a	

unit-step	transition.	In	contrast,	for	the	noisy	in-vivo	scan,	smoothening	the	transition	region	rapidly	

deteriorates	the	RMSE.	This	is	in	agreement	with	the	finding	by	Noll	et	al.	[37]	that	smoothening	the	

transition	region	incurs	a	loss	in	SNR.	

Following	this	experiment,	a	unit	step	transition	was	selected	for	all	HR	reconstructions,	as	it	provided	

the	lowest	RMSE.	
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Figure	S4.1:	HR	reconstruction	results	with	different	transition	region	windows	and	exemplary	results	for	a	unit	step	transition	

(width	=	0)	and	a	window	width	of	8px	are	shown	for	the	phantom	dataset	(a)	and	the	in-vivo	dataset(b).	c)	shows	the	filter	

profiles.	
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Chapter	5 Multipoint	 5D	 Flow	 Imaging	 -	 Accelerated	 Cardiac-	 and	

Respiratory-Motion	Resolved	Mapping	of	Mean	and	Turbulent	Velocities	

Published	 in:	 J.	 Walheim,	 H.	 Dill inger,	 and	 S.	 Kozerke,	 “Multipoint	 5D	 Flow	

Cardiovascular	 Magnetic	 Resonance	 -	 Accelerated	 Cardiac-	 and	 Respiratory-Motion	

Resolved	Mapping	of	Mean	and	Turbulent	Velocities,”	J.	Cardiovasc.	Magn.	Reson.,	2019.	

5.1 Background	

A	 key	 challenge	 of	 encoding	 mean	 and	 turbulent	 velocities	 relates	 to	 achieving	 appropriate	

measurement	sensitivity	to	both	quantities.	For	the	expected	ranges	of	mean	and	turbulent	velocities	

in-vivo,	multiple	velocity	encodings	per	spatial	direction	are	preferably	obtained	and	combined	during	

image	 reconstruction	 [58].	 This	 approach,	 however,	 requires	 additional	 data	 and	 hence	 data	

undersampling	is	necessary	to	arrive	at	clinically	acceptable	scan	times.	

Significant	scan	time	reductions	 in	4D	Flow	MRI	have	been	achieved	using	combinations	of	parallel	

imaging	 and	 compressed	 sensing	 [152],	 k-t	 methods	 [153],	 [154],	 radial	 [155]	 or	 spiral	 [156]	

acquisitions.	 Various	 modifications	 to	 the	 way	 data	 are	 sampled	 and	 reconstructed	 have	 been	

described,	 e.g.	 [34],	 [50],	 [88],	 [90],	 [97],	 [157].	 In	 general,	 however,	 scans	 remain	 too	 long	 to	 be	

performed	in	breathholds.	Moreover,	data	acquisition	without	respiratory	motion	compensation	leads	

to	decreased	image	quality	[50].	Accordingly,	navigator-based	respiratory	gating	is	typically	employed	

[51].	 Unfortunately,	 respiratory	 gating	makes	 scan	 times	 unpredictable,	 as	 gating	 efficiencies	 vary	

among	subjects	and	often	even	during	a	single	scan.	Clinically,	this	may	lead	to	conflicts	as	scan	slots	

have	typically	fixed	durations.		

Instead	of	using	respiratory	gating,	respiratory-motion	resolved	imaging	[36],	[55],	[56],	[158]	has	been	

proposed	 to	 address	 respiratory-motion	 related	 image	 artifacts.	 To	 this	 end,	 data	 are	 acquired	

continuously	 throughout	 the	 respiratory	 motion	 cycle	 and	 sorted	 afterwards	 during	 the	 image	
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reconstruction	task	into	discrete	motion	states	based	on	a	respiratory	motion	signal	surrogate	[56],	

[159].	Accordingly,	data	 correlation	not	only	along	 the	cardiac	phase	dimension	but	also	along	 the	

respiratory	motion	dimension	can	be	exploited.		

Data	 correlations	 lead	 to	 low-rank	 properties	 of	 the	 decoding	 problem	 to	 be	 solved	 in	 image	

reconstruction.	 Various	 studies	 have	 demonstrated	 that	 these	 low-rank	 characteristics	 are	 most	

efficiently	exploited	using	local	rather	than	global	low-rankedness	using	patch-based	decomposition	

of	the	multi-dimensional	data	[33],	[98].	

The	objective	of	the	present	work	was	to	implement	and	test	respiratory-motion	resolved	Bayesian	

multipoint	5D	Flow	MRI	for	mapping	both	mean	and	turbulent	velocities	in	the	aorta	with	a	fixed	scan	

time.		

5.2 Methods	

Data	Acquisition	and	Respiratory	Motion	Binning	

The	data	acquisition	and	motion	binning	process	is	 illustrated	in	Figure	1.	Data	are	sampled	using	a	

pseudo-radial	Cartesian	sampling	pattern	which	maps	radial	spokes	onto	a	Cartesian	grid	[56],	[160].	

Using	 the	 Golden	 angle	 principle	 [62],	 [161],	 spatial	 incoherence	 of	 temporally	 adjacent	 frames	 is	

ensured.	To	reduce	eddy	current	effects	and	keep	the	acoustic	noise	level	during	the	measurement	to	

a	minimum,	the	tiny	Golden	angle	concept	was	employed	to	avoid	large	jumps	in	k-space	[161].		

Data-driven	 respiratory	 motion	 detection	 [162]	 was	 performed	 as	 illustrated	 in	 Figure	 2a)	 using	

repetitive	sampling	of	profiles	through	the	k-space	center	𝑑 𝑘�, 𝑡 = 𝑑 𝑘�, 𝑘� = 0, 𝑘� = 0, 𝑡 	as	part	

of	 the	 pseudo-radial	 Cartesian	 sampling	 pattern.	 Upon	 inverse	 Fourier	 transform	 of	 𝑑(𝑘�, 𝑡),	the	

projection	𝑋 𝑥, 𝑡 	of	 the	excited	volume	resolved	along	the	frequency	encode	direction	𝑥	and	over	

time	𝑡	was	obtained,	showing	signal	modulation	depending	on	respiratory	and	cardiac	motion.	Given	

𝑇𝑅 = 3.3	𝑚𝑠	and	with	one	in	21	readouts	through	the	k-space	center,	a	respiratory	sampling	rate	of	

ca.	14	Hz	was	obtained.	The	signal	of	each	coil	channel	was	treated	as	a	separate	signal	X© ∈ ℂi�×i¨; 𝑖 ∈

{1,2, … , 𝑛𝐶𝑜𝑖𝑙𝑠},	with	𝑁�	being	the	number	of	samples	in	readout	dimension	and	𝑁4	the	number	of	
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readouts	 through	the	k-space	center.	Only	 the	magnitude	was	considered,	as	 the	main	variation	 in	

signal	phase	was	found	to	be	related	to	the	different	velocity	encodings	which	were	alternated	per	

heart	beat	(beat-interleaved)	and	which	led	to	phase	variations	which	were	too	large	to	be	eliminated	

by	lowpass	filtering.		

Singular	value	decomposition	was	performed	and	the	2nd	singular	vector	of	abs(𝑋7𝑋)	was	selected,	as	

it	provided	the	predominant	motion	for	each	coil	channel	(Figure	2b).	To	isolate	respiratory	motion,	a	

lowpass	 filter	was	applied	to	 limit	 the	spectrum	to	 frequencies	below	0.6	𝐻𝑧	 (Figure	2c).	Next,	coil	

channel	clustering	[160]	was	performed	to	determine	the	predominant	dynamics	among	all	channels	

which	were	assumed	to	be	the	respiratory	motion	signal	(Figure	2d).	Finally,	the	average	over	all	these	

signals	was	calculated	to	provide	the	final	respiratory	motion	signal	surrogate	(Figure	2e).		

	

Figure	5.1:	5D	Flow	data	acquisition.	a):	Data	are	sampled	using	a	Cartesian	pseudo-radial	tiny	Golden	angle	sampling	pattern	

[33].	b):	Respiratory	motion	state	detection	is	derived	from	profile	𝑑 𝑘�, 𝑘� = 0, 𝑘� = 0 ,	which	is	repeatedly	acquired	and	

processed	 using	 a	 combination	 of	 principal	 component	 analysis,	 lowpass	 filtering,	 and	 coil-clustering	 [37].	 Each	 spoke	 is	

composed	of	21	k-space	profiles,	one	of	them	always	through	the	k-space	center.	With	𝑇¢ = 3.3. 𝑚𝑠,	respiratory	motion	is	

sampled	at	ca.	14	Hz.	c):	Acquired	data	are	sorted	into	four	discrete	respiratory	motion	states	such	that	the	acceleration	factor	

for	each	motion	state	is	similar.	
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Figure	5.2:	Data	driven	respiratory	motion	detection.	a)	Respiratory	motion	is	extracted	from	the	profiles	through	the	k-space	

center	𝑑(𝑘�, 𝑘� = 0, 𝑘� = 0).	 The	 temporal	 evolution	 of	 readouts	 through	 the	 k-space	 center	 shows	 a	 modulation	 with	

respiratory	motion	and	cardiac	motion.	b)	The	2nd	principal	component	provides	the	main	variation	of	the	signal.	c)	A	lowpass	

filter	 limits	 the	 spectral	 components	 to	 the	 expected	 frequency	 range	 of	 respiratory	motion.	 d)	 Coil	 clustering	 is	 used	 to	

combine	the	signals	from	different	channels	and	provides	a	final	estimate	of	respiratory	motion.	

Motion-Resolved	Image	Reconstruction	

Using	 the	 respiratory	motion	 surrogate	 signal,	 the	 acquired	 data	 were	 distributed	 across	 discrete	

motion	bins.	A	 total	of	 four	motion	bins	was	defined	and	 the	width	of	each	motion	bin	was	set	 to	

achieve	a	similar	undersampling	factor	for	each	respiratory	motion	state	and	cardiac	phase	by	setting	

the	bin	boundaries	 to	 the	0.25-,	 0.5-	 and	0.75-quantile	 of	 the	 respiratory	motion	 signal.	 For	 some	

combinations	of	respiratory	motion	state,	heart	phase	and	velocity	encoding,	this	approach	led	to	very	

low	sampling	rates.	Therefore,	a	data	sharing	approach	[163],	[164]	was	used	to	fill	up	frames	with	

acceleration	factors	higher	than	20	with	data	from	neighboring	respiratory	motion	states.		

Accordingly,	the	final	data	vector	reads	𝒅 ∈ ℂi�i�i��i��i��,	with	𝑁�	being	the	number	of	samples	in	

the	 spatial	 frequency	 domain,	𝑁� 	 denoting	 the	 number	 of	 coils,	𝑁¡ 	 heart	 phases,	𝑁�� 	 velocity	
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encodings	and	𝑁¢£	respiratory	motion	states.	A	locally	low	rank	(LLR)	[33],	[98]	approach	was	used	to	

exploit	correlations	among	heart	phases	(hp)	and	respiratory	motion	states	(rs).	Image-domain	data	

for	each	velocity	encoding	𝒔�| ∈ ℂi�i��i�� 	were	reconstructed	separately	as:		

	 𝒔�� = 	𝑎𝑟𝑔min
𝒊��

‖𝛺ℱ𝒞𝒔�� − 𝒅��‖B
B + 𝜆 	ℛG 𝒔�� ∗

iH

G>^
	 (5.1)	

with	the	undersampling	operator	𝛺,	Fourier	transform	ℱ,	coil	sensitivity	mapping	𝒞,	k-space	data	𝒅�|	

and	regularization	weight	𝜆.	As	 illustrated	in	Figure	3a),	the	operator	ℛG	selects	the	𝑏-th	out	of	𝑁G	

blocks	of	size	𝑛�×𝑛�×𝑛I	 in	the	image	from	all	𝑁¡ 	heart	phases	and	𝑁¢£	respiratory	motion	states	

and	 transforms	 them	 into	 a	 Casorati	 matrix	 with	 dimensions	 𝑛�𝑛�𝑛�×𝑁¡ 𝑁¢£.	 By	 penalizing	 the	

nuclear	norm	of	this	local	Casorati	matrix,	low-rankedness	is	enforced	locally.		

For	comparison,	respiratory-motion	resolved	data	were	also	reconstructed	by	penalizing	total	variation	

along	the	respiratory	motion	states	and	heart	phases	(TV)	[36]:		

	 𝒔�� = 	𝑎𝑟𝑔min
𝒊��

‖𝛺ℱ𝒞𝒔�� − 𝒅𝒌𝒗‖B
B + 𝜆¡ 𝑇𝑉¡ (𝒔�� + 𝜆¢£𝑇𝑉¢£(𝒔�� 	 (5.2)	

where	𝜆¡ 	 and	𝜆¢£	 denote	 the	 regularization	weights	along	 cardiac	phases	and	 respiratory	motion	

states,	respectively.	

Multipoint	Velocity	Encoding	and	Decoding	

Assuming	a	Gaussian	distribution	of	intra-voxel	velocities,	the	following	signal	model	of	mean	velocity	

𝒗	and	fluctuating	component	with	standard	deviation	𝝈	[20]	was	used:	

	 𝑠 𝒌𝒗 = 𝑠-𝑒
C𝝈O��O
B 𝑒CS𝒌𝒗𝒗	 (5.3)	

where	𝒌𝒗	 is	 related	 to	 the	 first	 gradient	moment	 of	 a	 bipolar	 velocity	 encoding	 gradient	 by	𝒌𝒗 =

𝛾 𝑡𝑮 𝑡 𝑑𝑡7
- ,	with	𝑇	 being	 the	 time	of	application	of	gradient	waveform	𝑮 𝑡 	 and	determines	 the	

encoding	velocity	as	𝑣1:� =
f
��
.		
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Figure	5.3:	Image	reconstruction	using	locally	low	rank	approach	followed	by	Bayesian	multipoint	unfolding.	a)	A	locally	low	

rank	 approach	 is	 employed	 for	 each	 velocity	 encoding	 separately.	 The	 locally	 low-rank	model	 divides	 the	 image	 into	 3-

dimensional	patches.	Each	patch	is	reordered	into	local	Casorati	matrices	for	which	a	low	rank	is	enforced	by	penalizing	the	

nuclear	 norm.	 Compared	 to	 a	 global	 Casorati	matrix,	 the	 values	 of	 the	 singular	 values	 decrease	more	 rapidly.	 Following	

reconstruction	 of	 the	 individual	 velocity	 encodings,	 for	 each	 Cartesian	 direction,	 the	 different	 velocity	 encodings	 𝑘|	 are	

combined	using	a	Bayesian	multipoint	approach.	A	Bayesian	probability	model	[4]	provides	posterior	probabilities	for	mean	

velocity	 v	 and	 intra-voxel	 standard	 deviation	 σ	 given	 the	measured	 signal	 S.	 v	 and	 σ	 are	 chosen	 such	 that	 the	 posterior	

probability	is	maximized,	providing	maps	of	turbulent	kinetic	energy	(TKE)	and	mean	velocities.	

The	signal	model	implies	a	trade-off	between	a	sufficiently	high	encoding	velocity	𝑣1:�	to	avoid	phase	

wraps	 [52],	and	a	sufficiently	high	encoding	efficiency	of	 the	 fluctuating	velocity	components	[165]	

such	that	𝑣1:�~𝜎.	It	has	been	demonstrated	that	this	trade-off	may	lead	to	insufficient	sensitivity	to	
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fluctuating	velocity	components	and	hence	a	multipoint	encoding	scheme	using	two	instead	of	one	𝑘| 	

encoding	 point	 per	 axis	was	 implemented	 [58].	 Using	 the	 probability	map	𝑃 𝒗,𝝈 𝐷, 𝑆 ,	 pixel-wise	

estimates	of	mean	velocity	𝒗	and	intra-voxel	standard	deviation	𝝈	given	the	model	𝑆	and	the	measured	

image	data	𝐷	were	obtained	[58].	Data	acquired	with	different	𝒌𝒗′s	were	combined	by	choosing	the	

values	for	𝒗	and	𝝈	maximizing	the	posterior	probability	of	the	measured	data:		

	 𝒗,𝝈 = argmax
|,~

𝑃 𝒗,𝝈 𝐷, 𝑆 .	 (5.4)	

An	illustration	of	multipoint	acquisition	and	Bayesian	decoding	is	provided	in	Figure	3b).	

In-vivo	Study	

All	in-vivo	work	was	performed	upon	written	informed	consent	of	the	subjects	and	according	to	local	

ethics	regulations.	Data	of	the	ascending	aorta	of	nine	volunteers	(age	30±11,	6	male,	3	female)	were	

acquired	on	a	3T	Philips	Ingenia	system	(Philips	Healthcare,	Best,	the	Netherlands)	using	the	proposed	

5D	Flow	MRI	and	a	standard,	navigator-gated	4D	Flow	MRI	approach	[52]	with	a	spatial	resolution	of	

2.5x2.5x2.5mm3,	 𝑇h = 3.3	𝑚𝑠,	 𝑇' = 4.9	𝑚𝑠,	 flip	angle = 8	 and	 25	 cardiac	 phases.	 The	 different	

velocity	 encodings	 were	 alternated	 per	 heart	 beat.	 The	 image	 acquisition	 matrix	 was	𝑁¢1cÇ�S4 =

100 ± 9,	𝑁 ¡c£1 = 101 ± 8	and	𝑁£�S�1 = 20 ± 1	(mean	±	std).	Using	the	proposed	method,	velocities	

were	 encoded	 with	 𝑣1:� = 50	𝑐𝑚/𝑠	 and	 150	𝑐𝑚/𝑠	 per	 axis	 and	 an	 additional	 𝑣1:� = 0	𝑐𝑚/𝑠	

measurement.	Scan	time	was	fixed	to	4	minutes.	After	sorting	the	data	into	4	respiratory	motion	states,	

acceleration	factors	were	19. 0 ± 0.21	(mean	±	std).	On	average	the	view-sharing	approach	led	to	61%	

of	the	total	number	of	acquired	samples	being	shared	among	motion	bins	in	the	study	cohort.	

Standard	4D	Flow	MRI	was	recorded	with	a	single	venc	(𝑣1:� = 150	𝑐𝑚/𝑠)	per	axis	(4D	Flow	Ref).	Two-

fold	 acceleration	 using	 parallel	 imaging	 [38]	 and	 standard	 pencil-beam	 navigator	 gating	 on	 the	

diaphragm	(5mm	gating	window)	was	employed	with	the	4D	Flow	reference	protocol.	Accordingly,	the	

effective	 scan	 time	 depended	 on	 the	 breathing	 pattern	 of	 the	 subjects.	 All	 measurements	 were	

performed	with	retrospective	cardiac	gating	and	a	28-channel	receiver	coil.		
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Prior	to	image	reconstruction,	the	28-channel	data	were	compressed	to	8	virtual	channels	[166].	The	

LLR	reconstruction	(Equation	5.1)	was	solved	using	an	implementation	of	the	fast	iterative	shrinkage-

thresholding	 algorithm	 (FISTA)	 [77]	 provided	 with	 the	 Berkeley	 advanced	 reconstruction	 toolbox	

(BART)	[167].	A	patch	size	of	𝑛� = 𝑛� = 𝑛� = 8	was	used	for	the	locally	low-rank	constraint.	The	TV	

reconstruction	(Equation	5.2)	was	performed	with	an	adapted	version	of	the	code	provided	with	[36].	

The	 standard	 4D	 Flow	 reference	 data	 were	 reconstructed	 with	 MRecon	 (GyroTools	 LLC,	 Zurich,	

Switzerland).	Sensitivity	maps	were	estimated	from	a	separate	scan	using	the	ESPIRiT	method	[69].	

The	regularization	hyperparameters	𝜆	in	Equation	5.1	and	𝜆¡ 	and	𝜆¢£	in	Equation	5.2	were	optimized	

for	 best	 agreement	 of	 velocity	 components	 in	 systole	 with	 data	 of	 the	 4D	 Flow	 reference	

measurement:		

	 𝝀 = 	𝑎𝑟𝑔min
𝝀

𝒗¢1��: 𝝀 − 𝒗¢1â
^
.	 (5.5)	

Equation	5.4	was	minimized	using	the	bayesopt	function	in	MATLAB	R2017b	(The	MathWorks,	Natick,	

MA)	[168].	Resulting	hyperparameters	were	𝜆 = 0.01	for	Equation	5.1	and	𝜆¡  = 0.04	and	𝜆¢£ = 0.05	

for	Equation	5.2.	For	both	optimizations,	the	number	of	iterations	was	set	to	80.		

Data	Analysis	

Upon	 image	 reconstruction,	 concomitant	 gradient	 terms	 were	 corrected	 [144]	 and	 third-order	

background	phase	correction	was	applied	[145],	[169].	Segmentation	of	the	aorta	was	performed	using	

ITK-SNAP.	The	same	masks	were	used	for	4D	Flow	reference	data	and	data	in	expiration	obtained	with	

5D	Flow	LLR	and	5D	Flow	TV.	Maximum	intensity	projections	(MIP)	of	velocity	magnitude	and	TKE	maps	

in	systole	were	calculated	as:	

	 𝐼𝑚VWô 𝑥, 𝑦 = argmax
�

𝐼𝑚 𝑥, 𝑦, 𝑧 .	 (5.6)	

In	order	to	avoid	noise	at	the	vessel	boundaries	the	segmentation	masks	were	eroded	by	one	pixel	for	

MIP	projections.	
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The	normalized	root-mean-square	error	(nRMSE)	of	the	velocity	magnitude	in	the	segmented	aorta	

was	calculated	according	to:		

	 𝑛𝑅𝑀𝑆𝐸 =
(𝒗 − 𝒗¢1â)B'XW

𝑅𝑂𝐼 ∗ max	(𝒗¢1âB)
	 (5.7)	

where	 𝑅𝑂𝐼 	corresponds	to	the	number	of	voxels	in	the	segmentation	mask.	

TKE	was	calculated	voxel-wise	as:		

	 𝑇𝐾𝐸 =
𝜌
2
(𝜎�B + 𝜎�B + 𝜎�B)	 (5.8)	

where	𝜎ÁB	denotes	the	variance	of	velocity	deviations	per	direction	𝑗	and	𝜌	is	the	fluid	density	(here	we	

assumed	1060	𝑘𝑔/𝑚=	for	blood).		

Moreover,	multi-planar	reslicing	along	the	aorta	was	conducted	using	VMTK	(www.vmtk.org)	and	peak	

flow	and	peak	through-plane	velocities	(i.e.	the	maximum	velocity	component	in	the	corresponding	

cross-section	 of	 the	 aorta)	 were	 assessed	 for	 each	 plane.	 Peak	 through-plane	 velocities	 were	

determined	upon	application	of	a	3x3x3	median	filter	to	reduce	contributions	from	noise.	

The	 effectiveness	 of	 respiratory-motion	 resolved	 5D	 Flow	 MRI	 was	 assessed	 by	 comparing	 it	 to	

reconstructions	using	only	data	 from	 the	end-expiratory	bin	 (EXP)	 and	 to	 reconstructions	using	no	

respiratory	binning	(NG).	

To	assess	the	performance	of	navigator	gating	 in	the	standard	4D	Flow	MRI	protocol,	 the	positions	

measured	by	the	navigator	on	the	diaphragm	were	interpolated	and	each	readout	was	attributed	its	

corresponding	navigator	position.	Then,	mean	and	standard	deviations	of	the	acceptance	window	per	

heart	 phase	 were	 calculated.	 Due	 to	 the	 coarse	 temporal	 resolution	 of	 the	 navigator	 signal	 (one	

navigator	per	heart	beat),	linear	interpolation	was	chosen	in	order	to	provide	a	lower	bound	on	the	

width	of	the	acceptance	window	for	different	cardiac	phases.		
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Statistical	Analysis	

Bland-Altman	analysis	[170]	of	peak	flow	and	peak	through-plane	velocities	was	performed	to	assess	

the	agreement	of	velocity	fields	obtained	with	5D	Flow	LLR	and	the	4D	Flow	reference.		

	

Figure	5.4:	Analysis	of	navigator-based	respiratory	gating	in	standard	4D	Flow	MRI.	a)	For	an	exemplary	4D	Flow	scan	the	

diaphragm	position	measured	by	the	pencil	beam	navigator	over	time	is	shown	together	with	accepted	data	(red)	and	rejected	

data	(yellow).	When	the	navigator	signal	is	within	the	acceptance	window,	data	of	all	cardiac	phases	of	are	accepted	until	the	

next	navigator	position	 is	obtained.	As	a	result,	the	effective	acceptance	window	of	the	data	varies	as	a	function	of	heart	

phase	and	becomes	wider	towards	diastole	as	shown	in	b).	

5.3 Results	

Scan	durations	for	4D	Flow	MRI	were	17.8±3.7	min	compared	to	4	minutes	for	the	5D	Flow	protocol.	

Figure	4	provides	an	analysis	of	the	acceptance	window	for	respiratory	gating	with	one	pencil	beam	

navigator	per	cardiac	cycle	as	being	used	 in	 the	4D	Flow	reference	measurements.	 If	 the	navigator	

signal	was	within	the	acceptance	window,	data	of	all	cardiac	phases	were	accepted.	This	results	in	a	

wider	 acceptance	window	 for	 later	 cardiac	 phases	 leading	 to	 corresponding	uncertainty	 about	 the	

actual	motion	states	and	increasing	image	artifacts	for	later	cardiac	phases.	

Reconstructions	exploiting	respiratory	motion	states	(5D	Flow	LLR)	are	compared	to	using	only	data	in	

end-expiration	(EXP	LLR)	and	without	gating	(NG	LLR)	 in	Figure	5.	Magnitude	 images	and	TKE	maps	

from	5D	Flow	LLR	reconstructions	show	less	artifacts	compared	to	EXP	LLR	and	NG	LLR	reconstructions.		

Magnitude	and	velocity	magnitude	images	for	the	end-expiratory	motion	state	obtained	with	5D	Flow	

LLR	and	5D	Flow	TV	are	compared	relative	to	the	4D	Flow	reference	in	Figure	6.	It	can	be	seen	that	
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maximum	intensity	projections	of	velocity	magnitudes	are	similar	for	all	methods	while	TKE	maps	and	

magnitude	images	provided	by	5D	Flow	TV	show	more	residual	aliasing	when	compared	to	5D	Flow	

LLR.	The	RMSE	of	the	reconstructed	images	was	lower	for	5D	Flow	LLR	compared	to	5D	Flow	TV	for	

both	magnitude	and	velocity	magnitude	(8.7%	vs.	13.5%	for	and	7.9%	vs	9.8%,	respectively).	Maps	of	

TKE	for	all	9	volunteers	obtained	with	5D	Flow	LLR	and	the	4D	Flow	reference	are	compared	in	Figure	

8.	In	general,	TKE	maps	derived	from	the	4D	Flow	reference	show	a	higher	noise	level	compared	to	5D	

Flow	data.		

	

	

Figure	5.5:	Comparison	of	5D	Flow	LLR	reconstructions	in	expiration	relative	to	reconstructions	using	end-expiratory	data	only	

(EXP	LLR)	and	without	gating	(NG	LLR).	5D	Flow	LLR	shows	reduced	aliasing	artifacts	in	the	magnitude,	velocity	and	TKE	maps.	

For	both	EXP	LLR	and	NG	LLR,	residual	motion	artifacts	are	present	in	the	magnitude	images	and	increased	noise	is	observed	

in	the	TKE	maps.	
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Figure	5.6:	Results	in	systole	comparing	5D	Flow	LLR	with	5D	Flow	TV	and	standard	4D	Flow.	For	5D	Flow	TV	and	the	4D	Flow	

reference	residual	aliasing	is	observed	in	the	magnitude	images.	Moreover,	the	TKE	maps	obtained	with	5D	Flow	TV	and	the	

4D	Flow	reference	show	more	noise	compared	to	5D	Flow	LLR.	Exemplary	slices	in	the	ascending	aorta	(AA)	and	descending	

aorta	(DA)	show	qualitatively	similar	results	for	through-plane	velocities	in	the	ascending	aorta	whereas	in	the	descending	

aorta	artifacts	can	be	observed	in	the	in-plane	velocity	components	for	5D	Flow	TV.	
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Figure	5.7:	Comparison	of	TKE	maps	in	systole	for	the	4D	Flow	reference	versus	5D	Flow	LLR.	In	the	4D	Flow	reference	data	

increased	noise	compared	to	5D	Flow	LLR	is	seen.	Moreover,	TKE	maps	from	4D	Flow	show	high	values	in	the	descending	aorta	

whereas	TKE	values	are	lower	in	the	descending	aorta	for	most	cases	with	5D	Flow	LLR.	

Exemplary	slices	in	the	ascending	and	descending	aorta	show	through-plane	velocity	profiles	to	be	in	

agreement	among	the	4D	Flow	reference	and	5D	Flow	LLR	whereas	5D	Flow	TV	shows	artifacts	in	the	

descending	aorta.		

Exemplary	magnitude	and	velocity	magnitude	images	for	different	respiratory	bins	reconstructed	with	

5D	LLR	are	shown	in	Figure	7	along	with	an	exemplary	respiratory	curve.	Bins	in	expiration	are	narrower	

as	the	duration	of	expiration	was	longer	compared	to	inspiration.	The	displacement	of	the	heart	and	



58	

aorta	is	clearly	seen	in	both	magnitude	and	velocity	maps.	While	image	quality	is	acceptable,	there	is	

degradation	present	from	end	expiration	to	end	inspiration.		

Figure	 9	 compares	 velocity	 fields,	 peak	 velocities	 and	peak	 flow	obtained	 for	 all	 9	 volunteers.	 The	

nRMSE	between	the	velocity	magnitudes	obtained	with	5D	Flow	LLR	and	the	4D	Flow	reference	was	

8.9 ± 2.1	%.	On	average,	5D	Flow	LLR	shows	good	agreement	of	peak	velocities	and	peak	flow	relative	

to	the	4D	Flow	reference	(peak	velocities:	3.1 ± 4.4	%,	peak	flow:	−2.4 ± 6.9	%).		

	

Figure	5.8:	a)	Exemplary	magnitude	and	velocity	magnitude	images	for	different	respiratory	bins	reconstructed	with	5D	LLR.	

Image	quality	reduces	from	end	expiration	to	end	inspiration	and	artifacts	can	be	observed	in	the	descending	aorta	in	the	

magnitude	and	velocity	images	reconstructed	in	end	inspiration.	b):	The	respiratory	curve	shows	that	the	expiratory	bins	have	

a	narrower	range	of	motion	than	inspiratory	bins.	
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Figure	 5.9:	 Quantitative	 analysis	 of	 results.	 Scan	 times,	 peak	 through-plane	 velocities	 and	 peak	 flow	 for	 5D	 Flow	 LLR	

reconstructions	are	compared	to	the	4D	Flow	reference.	Duration	of	the	5D	Flow	LLR	acquisition	is	on	average	ca.	4.5	lower	

than	for	4D	Ref.	Bland-Altman	analysis	shows	a	mean	difference	of	3.1%	and	-2.4%	and	limits	of	agreement	of	±8.6%	and	

±13.6%.	

5.4 Discussion	

In	 this	 work,	 a	 respiratory-motion	 resolved	 Bayesian	 multipoint	 5D	 Flow	MRI	 approach	 has	 been	

implemented	based	on	pseudo-radial	tiny	Golden	angle	Cartesian	sampling	in	conjunction	with	locally	

low-rank	image	reconstruction	to	map	mean	and	turbulent	velocities	in	the	aorta	in	a	fixed	scan	time	

of	4	minutes.		

By	 exploiting	 data	 from	 all	 respiratory	 motion	 states,	 the	 duration	 of	 5D	 Flow	 MRI	 becomes	

independent	of	the	individual	respiratory	motion	patterns	of	the	subjects.	In	comparison	to	standard	

4D	Flow	MRI	protocols	[52],	5D	Flow	MRI	is	about	4.5	times	shorter	on	average.	Whereas	pencil-beam	

based	navigator	gating	 in	 standard	4D	Flow	MRI	 cannot	ensure	motion-free	data	across	 the	entire	

cardiac	cycle,	as	demonstrated	 in	Figure	4,	 repetitive	data-driven	respiratory	motion	detection	and	

continuous	data	acquisition	of	5D	Flow	MRI	provide	motion	estimates	throughout	the	cardiac	cycle.		
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It	has	been	demonstrated	that	the	LLR	model	allows	to	improve	reconstruction	accuracy	relative	to	

using	data	from	end	expiration	only,	as	shown	in	Figure	5.	Of	note,	low-rank	models	have	been	used	

to	 exploit	 correlations	 in	 dynamic	 MRI	 [35],	 [71],	 [73]	 and	 have	 already	 been	 proposed	 for	

reconstructing	 respiratory-motion	 resolved	 data.	 However,	 existing	 approaches	 confine	 the	

reconstruction	to	a	subspace	defined	by	basis	functions	along	the	respiratory	motion	dimension	either	

by	combining	cardiac	and	respiratory	motion	in	a	Casorati	matrix	[55]	or	by	means	of	low-rank	tensor	

factorization	 [100],	 [101].	 These	 approaches	 either	 require	 the	 acquisition	 of	 a	 separate	 scan	 to	

estimate	a	subspace	or	a	subspace	has	to	be	estimated	from	undersampled	k-space	data,	e.g.	via	low-

rank	tensor	factorization	[100].	The	first	option	increases	scan	time	and	can	lead	to	problems	when	

there	is	a	mismatch	between	both	scans	(e.g.	bulk	motion)	while	the	second	option	adds	complexity	

to	the	reconstruction	as	another	hyperparameter	needs	to	be	optimized	for	subspace	estimation	prior	

to	reconstruction	of	the	actual	image.	In	comparison,	the	LLR	model	proposed	in	the	present	work	can	

be	 applied	 straight-forwardly	 by	 penalizing	 the	 nuclear	 norm	 of	 the	 data	 rearranged	 in	 a	 Casorati	

matrix.	

When	comparing	the	5D	Flow	LLR	reconstruction	with	the	5D	Flow	TV	approach,	both	methods	showed	

good	agreement	of	velocity	data	relative	to	the	4D	Flow	reference.	However,	TKE	maps	and	magnitude	

images	exhibit	less	noise	when	using	the	5D	Flow	LLR	approach.	The	inferior	performance	of	the	TV	

approach	 is	 associated	with	 the	piecewise	 constant	 solutions	 favored	by	TV	which	 in	 turn	 leads	 to	

smoothing	of	peak	values.	 To	 reduce	underestimation	of	peak	velocities,	hyperparameters	may	be	

determined	for	best	agreement	with	reference	velocities.	However,	this	led	to	non-optimal	results	for	

magnitude	images	which	therefore	still	showed	a	high	degree	of	aliasing	noise.		

In-vivo,	good	agreement	of	peak	velocities	and	peak	flow	values	of	5D	Flow	LLR	with	data	derived	from	

standard	4D	Flow	MRI	was	found.	A	small	bias	towards	higher	velocities	was	observed	for	5D	Flow	LLR	

compared	to	the	4D	Flow	reference.	This	can	be	related	to	previous	findings	that	respiratory	motion	

leads	 to	 blurring	 of	 the	 image	 [51],	 [171]	 which	 corresponds	 to	 spatial	 low-pass	 filtering	 and	 is	

therefore	likely	to	reduce	peak	velocities.		
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A	multipoint	encoding	scheme	[58]	was	incorporated	into	the	5D	Flow	approach.	Thereby	the	velocity	

vector	field	was	encoded	with	different	sensitivities	to	mean	and	fluctuating	velocities	to	provide	an	

accurate	assessment	of	mean	and	turbulent	velocities	over	a	large	dynamic	range.	The	7-point	5D	flow	

LLR	 implementation	yielded	TKE	maps	as	they	can	be	expected	for	healthy,	young	volunteers,	with	

moderate	values	of	up	to	300	J/m2	and	turbulence	mainly	occurring	in	the	region	of	the	flow	jet	in	the	

proximal	aorta.	In	comparison,	TKE	maps	derived	from	the	4D	Flow	reference	with	4-point	encoding	

appeared	 noisy,	 due	 to	 only	 using	 a	 single	 encoding	 velocity	 of	 150	 cm/s.	Moreover,	 the	 4D	 Flow	

reference	showed	TKE	values	in	the	descending	aorta	which	were	as	high	as	in	the	ascending	aorta.	

This	is	considered	unrealistic	as	transient/turbulent	flow	typically	occurs	in	the	region	downstream	of	

the	aortic	valve	and	not	in	the	descending	aorta	in	healthy,	young	volunteers.		

The	acquisition	time	for	7-point	encoded	5D	Flow	was	fixed	to	4	minutes.	For	10-point	encoding,	as	it	

has	been	used	when	assessing	stenotic	valves	[22],	this	would	correspond	to	an	acquisition	time	of	ca.	

6	minutes	for	5D	Flow,	compared	to	17.2	±	4.7	min	for	accelerated	10-point	4D	Flow	acquisitions	[22].	

Image	quality	of	data	in	inspiration	as	shown	in	Figure	7	was	lower	compared	to	data	reconstructed	in	

the	 end-expiratory	motion	 state	with	 5D	 Flow	 LLR.	 This	 can	be	 explained	with	 inspiration	 taking	 a	

smaller	 fraction	of	 the	duration	of	 the	 respiratory	cycle	 than	expiration.	Moreover,	 the	 respiratory	

motion	curve	does	not	reach	the	maximum	value	in	inspiration	for	every	respiratory	cycle,	whereas	it	

reaches	an	end-expiratory	plateau	in	most	cases.	As	respiratory	motion	states	were	defined	to	obtain	

similar	acceleration	 factors	 in	each	motion	state,	 this	 led	 to	a	wider	 range	of	motion	 in	 inspiratory	

states	than	in	expiratory	states.		

The	 present	work	 assessed	mean	 and	 fluctuating	 velocity	 vector	 fields	 in	 healthy	 volunteers	 only.	

When	applying	the	proposed	5D	Flow	method	in	patients	with	aortic	stenosis,	an	extension	to	10-point	

encoding	[22]	needs	to	be	implemented	for	sufficient	dynamic	range.	Adding	3	more	points	would	lead	

to	an	increase	in	scan	time	by	ca.	42%	and	can	thus	still	easily	be	integrated	into	clinical	workflows.		

While	the	present	study	was	focused	on	turbulence	encoding,	the	proposed	technique	can	be	readily	

applied	for	the	acquisition	of	standard	4D	flow	MRI	data	in	the	aorta	and	in	the	heart.	For	different	
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applications	the	scan	time	will	change	as	a	function	of	the	size	of	the	acquisition	matrix,	but	respiratory	

motion	is	still	expected	to	be	accurately	modelled	as	a	low-rank	problem.	Therefore,	fixing	scan	time	

independently	 of	 respiratory	 motion	 should	 still	 be	 feasible.	 Moreover,	 the	 suggested	 multipoint	

encoding	 approach	 provides	 improved	 accuracy	 for	 lower	 velocities,	 similar	 to	 other	 multi-VENC	

approaches	[172],	[173].	In	addition,	the	protocol	can	be	used	to	measure	flow	in	different	respiratory	

motion	states	to	assess	respiration	dependent	flow-patterns,	e.g.	the	Fontan	circulation	[174],	[175].	

To	obtain	better	results	in	inspiration,	one	might	define	bins	with	equal	range	of	motion,	thus	leading	

to	varying	acceleration	factors	for	different	bins.	In	order	to	still	obtain	sufficient	sampling	rates	in	each	

motion	state,	one	would	therefore	need	to	increase	scan	time	beyond	the	current	4	min	limit.		

A	limitation	of	the	present	study	is	the	lack	of	a	ground	truth	data.	The	4D	Flow	reference	data	were	

acquired	in	a	separate	scan	and	consistency	of	flow	conditions	cannot	be	expected	over	the	entire	scan	

session.	 In	 addition,	 the	 4D	 Flow	 reference	 data	 showed	 considerable	 respiratory-motion	 related	

artifacts	 in	 later	 cardiac	phases	 since	 the	pencil-beam	navigator	was	played	out	 right	after	R-wave	

detection	 and	 only	 once	 per	 cardiac	 cycle	 (acceptance	 rates	 varied	 between	 42%	 and	 72%).	

Accordingly,	the	quantitative	comparisons	with	the	4D	Flow	data	were	limited	to	systole	in	order	to	

avoid	respiratory-motion	corrupted	cardiac	phases	as	much	as	possible.	

Finally,	a	drawback	of	both	5D	Flow	LLR	and	5D	Flow	TV	are	considerably	longer	reconstruction	times	

when	compared	to	standard	4D	Flow	MRI	(ca.	35	minutes	for	5D	LLR	and	ca.	60	min	for	5D	TV	vs.	ca.	3	

min	for	conventional	4D	Flow	MRI	on	a	workstation	with	two	14	Core	Intel	Xeon	E5-2680	CPUs	and	

256	GB	RAM).	 In	 the	 future,	 this	 relative	disadvantage	may	be	addressed	by	employing	variational	

neural	network	based	reconstructions	and	their	deployment	on	dedicated	hardware	[110],	[176].	

5.5 Conclusion	

Respiratory	 motion	 resolved	 multipoint	 5D	 Flow	 MRI	 allows	 for	 breathing-pattern	 independent	

mapping	 of	 mean	 and	 turbulent	 velocities	 in	 4	 minutes.	 The	 reduction	 in	 scan	 time	 allows	 for	
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integration	 of	 the	 sequence	 into	 standard	 clinical	 workflows.	 Further	 in-vivo	 studies	 are	 now	

warranted	to	assess	the	performance	of	the	method	in	relevant	patient	populations.	
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Chapter	6 Comprehensive	Turbulence	Assessment	with	5D	flow	Tensor	MRI	
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to	Efficiently	Map	Reynolds	Stresses	of	Aortic	Blood	Flow	In-Vivo,”	Sci	Rep,	under	review	

	

6.1 Introduction	

Beyond	quantifying	TKE,	all	components	of	the	Reynolds	stress	tensor	(RST)	may	be	obtained	using	

appropriate	changes	of	the	MRI	pulse	sequence	design	[25],	a	concept	that	has	been	validated	using	

simulation	 and	 simplified	 in-vitro	 experiments	 recently	 [19],	 [26].	 Such	 an	 approach	 may	 offer	

improved	mapping	of	pressure	gradients	across	heart	valves	and	stenotic	vessel	sections	[19],	 [26],	

[29].		

A	key	practical	challenge	to	quantifying	the	RST	in-vivo	relates	to	the	extended	scan	times	required	in	

order	to	encode	velocity	fluctuations	along	the	minimum	number	of	six	non-collinear	axes.	In	addition,	

the	dynamic	range	of	velocity	fluctuations	encountered	in-vivo	demands	at	least	two	measurements	

along	each	non-collinear	axis	[58],	leading	to	scan	times	well	beyond	clinically	acceptable	limits.		

The	objective	of	the	present	work	was	to	develop	an	approach	to	efficiently	map	the	RST	and	hence	

turbulent	shear	stresses	in-vivo	within	clinically	acceptable	scan	times.	Our	approach	is	based	upon	

recent	advances	in	compressed	sensing	and	sparse	recovery	of	respiratory-motion	resolved	4D	Flow	

MRI	 data,	which	we	have	presented	previously	 [177].	Here	we	propose	 a	 framework	 to	 efficiently	

quantify	velocities	and	the	RST	using	a	highly	undersampled	acquisition	scheme	with	locally	low-rank	

image	 reconstruction	 [33],	 [98]	 and	multipoint	 encoding	 per	 axis	 including	 Bayesian	 estimation	 of	

average	 velocity	 per	 voxel	 as	 well	 as	 intravoxel	 velocity	 standard	 deviations	 [58].	 We	 term	 this	

approach	5D	Flow	Tensor	MRI.		

Using	a	total	of	19	velocity	encodings,	5D	Flow	Tensor	MRI	requires	10	min	of	scan	time	and	hence	

enables	data	acquisition	in	a	clinical	setting.	To	demonstrate	accuracy	and	precision	of	5D	Flow	Tensor	

MRI,	results	of	computer	simulations	based	on	previously	collected	in-vivo	data	and	in-vitro	particle	

tracking	velocimetry	of	valvular	 flow	are	shown.	 In-vivo	proof	of	concept	of	5D	Flow	Tensor	MRI	 is	

demonstrated	on	patients	with	a	bio-prosthetic	heart	valve	revealing	elevated	turbulent	shear	stresses	

and	turbulent	kinetic	energy	compared	to	healthy	controls.	
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Figure	6.1:	Illustration	of	in-vivo	5D	Flow	Tensor	MRI:	a)	K-space	data	are	continuously	acquired	on	a	Cartesian	golden	angle	

trajectory	 during	 free	 breathing	 of	 the	 subject.	 b)	 Velocities	 are	 encoded	along	 six	 non-collinear	 directions	with	 different	

velocity	encodings	VENC	for	improved	accuracy	of	ISVD	quantification	over	the	desired	range.	c)	Each	readout	is	assigned	to	

a	discrete	respiratory	motion	state	and	cardiac	phase,	leading	to	undersampling	patterns	as	required	by	compressed	sensing	

reconstructions.	d)	Images	for	each	velocity	encoding	are	reconstructed	separately	by	exploiting	correlations	over	cardiac	and	

respiratory	dimensions	using	a	locally	low-rank	reconstruction.	e)	For	each	direction,	the	measurements	with	different	VENCs	

are	combined	using	a	Bayesian	approach	which	selects	the	most	likely	values	𝒗	and	𝝈	given	the	signal	model	𝑺�|	and	the	

measured	data	𝒅�|.	
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6.2 Results	

MRI	Data	Acquisition	and	Reconstruction	

Figure	6.1	illustrates	the	5D	Flow	Tensor	MRI	concept	including	data	acquisition,	multipoint	encoding,	

data	reconstruction	and	Bayesian	processing.	Data	are	sparsely	sampled	using	a	Cartesian	golden	angle	

trajectory	and	retrospectively	sorted	into	discrete	respiratory	motion	states	and	cardiac	phases	[177].	

Each	velocity	encoding	is	reconstructed	separately	using	a	locally	low-rank	reconstruction	approach.	

Velocities	are	encoded	in	six	non-collinear	directions	using	three	velocity	encodings	per	axis	to	cover	

the	range	of	turbulence	intensity	and	mean	velocities	for	patients	and	healthy	controls.		

Distributions	of	and	Sensitivity	to	Intravoxel	Standard	Deviations		

To	make	an	appropriate	choice	of	the	number	and	strength	of	velocity	encodings	per	spatial	axis,	the	

distribution	 of	 velocity	 intravoxel	 standard	 deviations	 (IVSD)	 [20]	 was	 compared	 based	 on	

retrospective	4D	Flow	MRI	data	of	patients	with	moderate	and	severe	aortic	valve	stenosis	(N=28)	and	

healthy	controls	(N=9)	collected	as	part	of	a	previous	study	[22].	As	shown	in	Figure	6.2a,	ISVD	reaches	

up	to	0.8	m/s	in	patients,	while	peak	ISVD	values	of	0.3	m/s	are	measured	in	healthy	controls.	Since	

the	 MR	 signal	 magnitude	 is	 non-linearly	 related	 to	 ISVD,	 velocity	 encodings	 per	 axis	 need	 to	 be	

distributed	in	a	non-equidistant	manner.	As	illustrated	in	Figure	6.2c,	a	velocity	encoding	(VENC)	of	0.5	

m/s	shows	high	sensitivity	to	IVSD	in	the	healthy	controls	whereas	a	VENC	of	1.50	m/s	is	optimal	to	

probe	 IVSD	 in	 the	 aortic	 stenosis	 patients.	 Figure	 6.2d	 illustrates	 the	 resulting	 uncertainty	 in	 IVSD	

quantification	with	noisy	data.	Using	Monte-Carlo	simulations,	for	each	value	of	IVSD	𝜎,	105	samples	

with	 additive	white	Gaussian	 noise	were	 generated	 and	mean	 and	 standard	 deviation	 of	 the	 IVSD	

estimates	𝜎1£4	were	determined.	In	case	𝜎	is	too	high	or	too	low,	𝜎1£4	decreases	in	accuracy.	Moreover,	

values	of	𝜎	for	which	the	signal	magnitude	vanishes	cannot	be	discerned	and	lead	to	a	plateau	in	the	

plot.	As	can	be	seen,	an	encoding	velocity	of	0.5	m/s,	which	would	cover	the	range	of	IVSD	in	healthy	

aortae,	cannot	discern	elevated	values	in	patients.	To	ensure	an	accurate	estimate	of	IVSD	over	the	

entire	observed	range,	a	distributed	encoding	scheme	with	0.5	m/s,	1.5	m/s	and	4.5	m/s	is	proposed.	

The	first	two	values	cover	the	range	of	turbulence,	whereas	the	latter	value	prevents	aliasing	in	the	

mean	velocity	field.		
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Figure	6.2:	Exemplary	distributions	of	IVSD	in	healthy	and	pathological	aortae	and	illustration	of	IVSD	encoding	accuracy.	a)	

For	healthy	volunteers,	IVSD	is	distributed	mainly	between	0	m/s	and	0.3	m/s.	For	patients,	a	wider	distribution	can	be	

observed	with	values	of	IVSD	up	to	0.8	m/s.	b)	Examples	of	the	region	of	interest	for	healthy	controls	and	patients	with	

aortic	stenosis.	c)	IVSD	leads	to	a	reduction	in	signal	magnitude	which	depends	on	the	encoding	velocity	VENC.	The	signal	

shows	a	high	sensitivity	to	changes	in	IVSD	within	a	limited	range.	For	low	values,	the	magnitude	changes	little,	whereas	for	

high	values	the	signal	vanishes	completely.	d)	Uncertainty	of	IVSD	considering	noisy	data	with	an	SNR	of	30	dB.	If	ISVD	is	too	

high	or	too	low,	the	IVSD	estimates	decrease	in	accuracy.	Moreover,	IVSDs	for	which	the	signal	magnitude	vanishes	cannot	

be	discerned	and	lead	to	a	plateau	in	the	plot.	

Spatial	Resolution	and	Signal-to-Noise	Requirements	

The	effect	 of	 different	 signal-to-noise	 ratios	 (SNR)	 and	 the	 impact	 of	 image	 resolution	on	 TKE	 and	

maximum	principal	turbulent	shear	stress	(MPTSS)	quantification	was	assessed	using	data	previously	

acquired	with	particle	tracking	velocimetry	(PTV)	[165]	as	summarized	in	Figure	6.3.	For	low	SNR,	an	

increase	in	mean	values	is	observed	for	MPTSS.	For	TKE,	the	average	mean	values	remain	stable	for	

low	values	of	SNR	 (1.7%	 increase	at	20	dB)	while	an	 increase	 in	standard	deviation	 is	observed	 for	

decreasing	SNR	(e.g.	6.8%	increase	at	20	dB).	At	an	SNR	of	30	dB,	as	estimated	for	the	in-vivo	scans,	

MPTSS	is	overestimated	by	3.6%	on	average	whereas	TKE	values	show	no	relevant	increase	in	mean	
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value	 (0.2%).	 Figure	 6.3b	 shows	 the	 impact	 of	 different	 image	 resolutions	 for	 an	 SNR	 of	 30	 dB.	

Exemplary	 images	show	an	increase	of	MPTSS	and	TKE	at	the	jet	core	for	 increased	voxel	sizes.	For	

large	 voxel	 sizes,	 the	 distribution	 of	 MPTSS	 values	 is	 skewed	 towards	 higher	 values	 with	 a	

corresponding	increase	in	mean	values	and	standard	deviation.	At	a	resolution	of	2.5	mm,	as	used	for	

the	in	vivo	exams,	MPTSS	are	overestimated	by	15.9%	on	average.	TKE	distributions	are	also	skewed	

towards	higher	values	for	large	voxel	sizes	with	an	overestimation	of	3.1%	at	2.5	mm.		

Accuracy	and	precision	of	TKE	and	MPTSS	quantification	were	simulated	in	a	Monte-Carlo	simulation	

with	 40	 repetitions.	Mean	and	 standard	deviation	over	 the	 repetitions	 are	provided	 in	 Table	 1	 for	

varying	 SNR	 at	 the	 highest	 resolution	 and	 Table	 2	 for	 different	 resolutions	 at	 an	 SNR	 of	 30	 dB	

respectively.	Table	1	shows	an	increase	in	the	random	error	for	decreasing	SNR.	However,	the	random	

error	on	mean	and	standard	deviation	of	the	value	distribution	remains	below	1%	for	all	metrics.	Table	

2	 shows	 the	 effect	 of	 increasing	 voxel	 sizes	 for	 a	 fixed	 SNR	 of	 30	 dB.	 For	 increasing	 voxel	 sizes,	 a	

systematic	overestimation	can	be	observed	for	all	metrics.	Moreover,	mean	and	standard	deviation	of	

MPTSS	and	TKE	distributions	show	a	higher	random	error	for	increased	voxel	sizes.		

At	2.5	mm	resolution	and	an	SNR	of	30	dB,	TKE	values	show	a	mean	of	511.8	±	1.4	J/m=	and	a	standard	

deviation	of	198.9	±	4.6	J/m=	whereas	MPTSS	has	a	mean	of	174.9	±	1.6	Pa	and	a	standard	deviation	

of	110.7	±	10.0	Pa.		

In-Vivo	Measurements	

Flow	in	the	aorta	of	two	patients	with	a	bio-prosthetic	aortic	valve	(65	yrs,	female	with	a	SJM	Trifecta	

Aortic	Valve	TFGT-21A,	21	mm,	and	80	years,	 female	with	an	Edwards	SAPIEN	3,	23	mm)	and	 two	

healthy	 controls	 (26	 yrs,	 female	 and	 58	 yrs,	 female)	 was	 acquired	 using	 the	 5D	 Flow	 Tensor	MRI	

approach	on	a	clinical	1.5T	MRI	system	(Philips	Healthcare,	Best,	The	Netherlands)	and	a	5-channel	

receive	array.		

Figure	6.4a	shows	exemplary	results	in	a	single	slice	for	a	patient	and	a	healthy	control	(patient	65	yrs,	

female,	and	volunteer	26	yrs,	female).	The	highest	values	of	TKE	and	MPTSS	can	be	seen	downstream	

of	the	bio-prosthetic	valve	in	the	patient.	Figure	6.4b	shows	value	distributions	of	velocity	magnitudes,	

TKE,	 and	MPTSS	 in	 the	 ascending	 aorta	 during	 systole.	 Increased	 values	 of	 TKE	 and	MPTSS	 in	 the	

patients	relative	to	the	controls	were	found.	 (For	TKE,	patients:	199.7±115.4	J/m3	and	148.1±157.9	

J/m3	vs.	volunteers:	47.8±32.1	J/m3	and	76.0±32.8	J/m3,	and	for	MPTSS,	patients:	161.3±158.3	Pa	and	

102.1±146.0	Pa	vs.	volunteers:	44.1±41.3	Pa	and	77.2±48.9	Pa).	Mean	velocities	in	the	patients	were	

0.53±0.34	m/s	 and	 0.38±0.19	m/s	 compared	 to	 0.66±0.11	m/s	 and	 0.53±0.18	m/s	 for	 the	 healthy	

controls.		
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Figure	 6.3:	 Impact	 of	 SNR	 and	 image	 resolution	 on	 quantification	 of	 TKE	 and	 MPTSS.	 a)	 Decreasing	 SNR	 leads	 to	 an	

overestimation	of	TKE	and	MPTSS.	At	an	SNR	of	30	dB,	as	estimated	for	in-vivo	experiments,	this	overestimation	is	relatively	

low.	b)	Increasing	voxel	sizes	lead	to	a	skewed	distribution	of	TKE	and	MPTSS.	At	a	resolution	of	2.5	mm,	as	used	for	in-vivo	

experiments,	TKE	is	overestimated	by	3.1%	and	MPTSS	is	overestimated	by	15.9%	on	average.	
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Table	1:	Accuracy	and	precision	for	a	resolution	of	0.625	mm	and	varying	SNR	obtained	in	a	Monte	Carlo	type	experiment	with	

40	repetitions.	For	lower	SNRs	a	bias	towards	higher	values	is	observed	and	accuracy	deteriorates.		

SNR		

(Res	=	0.625	mm) 
TKE	mean		

(mean	±	std)		

TKE	std	

(mean	±	std)	

MPTSS	mean	

(mean	±	std)	

MPTSS	std	

(mean	±	std)	

40	dB 496.2	±	0.0 193.6	±	0.0 151.2	±	0.0 68.4	±	0.0 
35	dB 496.4	±	0.1 193.8	±	0.1 152.4	±	0.1 69.2	±	0.1 
30	dB 496.9	±	0.1 194.6	±	0.1 156.0	±	0.1 71.6	±	0.1 
25	dB 498.6	±	0.2 197.3	±	0.2 167.0	±	0.2 79.1	±	0.2 
20	dB 504.1	±	0.4 206.1	±	0.3 199.8	±	0.4 101.5	±	0.5 
	

Table	 2:	 Accuracy	 and	 precision	 for	 a	 SNR	 of	 30	 dB	 and	 varying	 resolution	 (voxel	 size)	 obtained	 in	 a	Monte	 Carlo	 type	

experiment	with	40	repetitions.	 Increasing	voxel	sizes	 lead	to	an	overestimation	of	MPTSS	and	TKE.	No	clear	trend	can	be	

observed	for	accuracy.		

Resolution	

(SNR	=	30	dB) 
TKE	mean		

(mean	±	std)	 
TKE	std	

(mean	±	std) 
MPTSS	mean	

(mean	±	std) 
MPTSS	std	

(mean	±	std) 
0.625	mm 496.9	±	0.4 194.7	±	0.1 156.0	±	0.7 71.7	±	0.2 
1.25	mm 499.4	±	0.9 193.5	±	2.6 161.2	±	1.2 88.8	±	6.6 
1.875	mm 502.3	±	1.3 194.1	±	4.4 165.4	±	1.5 100.5	±	9.7 
2.5	mm 511.8	±	1.4 198.9	±	4.6 174.9	±	1.6 110.7	±	10.0 
3.75	mm 558.7	±	2.6 236.1	±	10.3 214.5	±	2.6 153.2	±	16.4 
5	mm 684.6	±	2.2 338.0	±	3.6 328.9	±	1.4 245.4	±	3.7 
	

6.3 Discussion	

This	study	has	demonstrated	in-vivo	turbulent	flow	assessment	using	5D	Flow	Tensor	MRI	in	clinically	

feasible	scan	times	for	the	first	time.	A	multi-point	encoding	scheme	was	employed	to	probe	the	mean	

and	fluctuating	velocity	components	using	non-collinear	encoding	directions,	similar	to	concepts	used	

in	diffusion	tensor	imaging	[24].	The	approach	permits,	besides	the	assessment	of	time-resolved	mean	

velocity	vector	fields,	the	quantification	of	Reynolds	stresses	and	hence	turbulent	kinetic	energy	and	

turbulent	shear	stresses	in-vivo.		
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Figure	6.4:	In-vivo	assessment	of	turbulent	flow	through	healthy	and	a	bio-prosthetic	heart	valves.	a)	shows	exemplary	slices	

of	a	healthy	and	a	bio-prosthetic	heart	valve.	The	flow	field	shows	uniform	distribution	of	velocity	magnitudes	throughout	

the	proximal	aorta	for	the	healthy	valve	whereas	a	jet	with	high	velocities	can	be	observed	for	the	bio-prosthetic	valve.	

MPTSS	and	TKE	are	elevated	downstream	of	the	bio-prosthetic	valve.	Visual	assessment	shows	highest	MPTSS	and	TKE	near	

the	vessel	wall	for	the	healthy	valve	and	elevated	values	throughout	the	proximal	aorta	for	the	bio-prosthetic	valve.	b)	

shows	value	distributions	for	the	different	metrics,	with	healthy	1	and	bio-prosthetic	1	corresponding	to	the	examples	from	

a).	MPTSS	and	TKE	are	elevated	for	the	bio-prosthetic	heart	valves.	Velocities	are	on	average	lower	for	the	bio-prosthetic	

heart	valve	but	are	distributed	over	a	larger	value	range	
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Distributions	of	 IVSD	 in	 the	aortae	of	healthy	 subjects	 and	patients	with	 aortic	 valve	disease	were	

analyzed	 to	 choose	 velocity	 encodings	 (Figure	6.2a,b).	As	 illustrated	 in	 Figure	6.2c,d,	 the	 choice	of	

velocity	 encoding	 has	 considerable	 impact	 on	 the	 accuracy	 of	 IVSD	 quantification.	 This	makes	 the	

choice	of	an	appropriate	encoding	velocity	crucial,	when	using	a	single	encoding	velocity	per	axis	as	in	

conventional	4D	Flow	MRI.	To	probe	IVSD	with	an	increased	dynamic	range,	encoding	of	the	RST	was	

combined	with	a	multipoint	scheme[58].	In	the	present	study,	encoding	velocities	of	0.5	m/s,	1.5	m/s	

and	4.5	m/s	were	selected.	As	indicated	in	Figure	6.2a,	encoding	velocities	of	0.5	m/s	and	1.5	m/s	cover	

the	expected	range	of	IVSD.	The	additional	velocity	encoding	at	4.5	m/s	was	used	to	avoid	phase	wraps	

in	 the	 reconstructed	mean	velocity	 fields.	Of	note,	 the	particular	choice	of	encoding	velocities	was	

made	with	respects	to	the	range	of	observed	IVSD,	to	prevent	aliasing	artifacts	in	the	mean	velocity	

fields,	and	to	make	echo	times	not	too	long.	However,	the	encoding	scheme	yields	further	potential	

for	optimization.	In	particular,	the	use	of	advanced	phase	unwrapping	methods	[178]	might	allow	to	

leave	out	the	highest	VENC.	

Simulation	of	the	MRI	acquisition	and	encoding	process	revealed	an	overestimation	of	TKE	and	MPTSS	

for	large	voxel	sizes.	The	overestimation	amounted	to	about	3.1%	for	TKE	and	to	approximately	15.9%	

for	MPTSS	at	the	given	acquisition	resolution	of	2.5	mm	and	at	an	estimated	SNR	of	30	dB.	The	impact	

of	image	resolution	can	be	related	to	the	assumption	of	Gaussian	intra-voxel	velocity	distributions	in	

the	derivation	of	turbulence,	which	is	not	fulfilled	for	coarse	image	resolutions	as	shown	in	previous	

studies	[128].		

The	impact	of	SNR	on	quantification	of	TKE	and	MPTSS	was	found	to	be	relatively	low	compared	to	the	

impact	 of	 resolution.	 Starting	 at	 low	 SNR	 values	 below	 25	 dB,	 an	 overestimation	 of	 MPTSS	 was	

observed	whereas	TKE	estimates	were	robust	even	at	lower	SNR	values.	SNR	was	estimated	at	ca.	30	

dB	in	this	study.	In	this	range,	noise	played	only	a	minor	role	in	the	assessment	of	TKE	and	MPTSS.		

As	shown	in	the	Monte-Carlo	simulation,	the	error	in	real-world	experimental	conditions	is	mostly	due	

to	a	 loss	 in	accuracy	 for	 reduced	 image	resolutions,	whereas	 the	random	fluctuations	 for	 repeated	

experiments	is	comparatively	low.	However,	increasing	image	resolution	would	lead	to	a	decrease	in	

SNR	and	noise	would	start	to	compromise	the	assessment	of	turbulent	quantities.	Therefore,	rather	

than	increasing	acquisition	resolution,	efforts	to	mitigate	the	effect	of	 large	voxel	sizes	by	e.g.	data	

assimilation	approaches	[179]	are	considered	potential	future	options.	

The	feasibility	of	5D	Flow	Tensor	MRI	to	quantify	distributions	of	MPTSS	and	TKE	in	patients	with	a	bio-

prosthetic	valve	relative	to	healthy	controls	has	successfully	been	demonstrated.	Distributions	of	TKE	

and	MPTSS	revealed	distinct	differences,	while	differences	in	mean	velocity	magnitudes	were	partly	

overlapping	(Figure	6.4b).	 In	the	healthy	controls,	the	highest	values	of	TKE	and	MPTSS	were	found	

near	 the	 vessel	 walls,	 which	 can	 be	 attributed	 to	 partial	 volume	 effects	 (there	 were	 also	 some	
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differences	 between	 the	 two	 volunteers	 which	 can	 be	 related	 to	 the	 difference	 in	 age	 [180]).	 In	

contrast,	flow	downstream	of	the	prosthetic	valves	showed	highest	values	of	MPTSS	and	TKE	in	the	

proximal	aorta,	reaching	values	of	up	to	500	Pa	and	600	J/m3,	respectively.	MPTSS	values	were	found	

to	be	below	the	threshold	of	elevated	risk	of	red	blood	cell	damage	which	was	estimated	between	ca.	

600	Pa	[181]	and	800	Pa	[182].	While	mechanical	heart	valves	have	been	associated	with	blood	cell	

damage	[183],	modern	bio-prosthetic	valves	typically	do	not	lead	to	complications	[184].	An	increase	

in	shear	stresses	without	reaching	a	critical	level	was	therefore	expected.	It	should,	however,	be	noted	

the	 implantation	 of	 bio-prosthetic	 valves	 is	 primarily	 indicated	 in	 the	 elderly	 population,	 while	

mechanical	heart	valves	are	preferred	 in	younger	patients.	Accordingly,	 future	work	using	5D	Flow	

Tensor	MRI	 should	 include	 patients	with	mechanical	 heart	 valves	 to	 assess	 and	 compare	 TKE	 and	

MPTSS	levels.		

Of	note,	the	fixed	scan	time	of	10	minutes	which	was	set	for	the	in-vivo	study	was	sufficient	for	all	

subjects	examined	 in	this	study.	However,	 in	cases	where	patient	geometry	requires	a	much	 larger	

field	of	view,	an	increase	in	scan	time	might	be	required.		

A	limitation	of	the	present	study	is	that	no	ground	truth	data	was	available	to	assess	the	accuracy	of	

the	in-vivo	scans.	Accordingly,	computer	simulations	were	used	to	provide	estimates	of	accuracy	and	

precision.	However,	the	simulations	were	based	on	PTV	measurements	with	a	resolution	of	0.625	mm.	

Thus,	the	reference	data	were	already	subject	to	some	discretization	error	and	availability	of	higher	

resolution	 ground	 truth	 data	 might	 show	 an	 even	 higher	 overestimation	 of	 turbulence.	 Another	

practical	drawback	relates	to	the	long	data	reconstruction	times	(ca.	1.5h	to	2h	on	a	workstation	with	

two	14	Core	Intel	Xeon	E5-2680	CPUs	and	256	GB	RAM)	which	implies	that	data	evaluation	can	only	be	

performed	after	the	scan	session.	Currently	ongoing	work	is	addressing	this	 inconvenience	by	using	

variational	neural	 networks	 [110]	which	have	already	been	 shown	 to	perform	compressed	 sensing	

reconstruction	of	standard	4D	Flow	MRI	data	in	less	than	a	minute	[185].		

In	conclusion,	5D	Flow	Tensor	MRI	provides	comprehensive	quantification	of	turbulent	flow	in	clinically	

feasible	 scan	 times.	 Its	 ability	 to	 assess	 elevated	 TKE	 and	 MPTSS	 in-vivo	 has	 successfully	 been	

demonstrated.	Efficient	 in-vivo	 turbulence	quantification	will	 contribute	also	 to	methods	aiming	at	

quantifying	irreversible	pressure	loss	downstream	of	heart	valves	and	stenotic	sections.	

6.4 Methods	

Measurement	of	Reynolds	Stress	Tensor		

In	 general,	 flow	 velocity	 vectors	 can	 be	 decomposed	 into	 a	 time-averaged	 mean	 vector	 𝒗	 and	

fluctuating	components	𝒗v	[186]:		
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	 𝒗 = 	𝒗 + 𝒗v.	 (6.1)	

In	the	one-dimensional	case,	assuming	a	Gaussian	intra-voxel	velocity	distribution	(IVSD)	of	variance	

𝜎B,	the	MR	signal	𝑆 𝑘| 	reads	[20]:	

	 𝑠 𝑘| = 𝑠-𝑒
ù]O��

O

O 𝑒CS��|.	 (6.2)	

where	 𝑘| = 𝛾 𝑡𝐺 𝑡 𝑑𝑡 = f
ghij

7
- 	denotes	 the	 first	 gradient	 moment	 of	 bipolar	 velocity	 encoding	

gradient	𝐺	applied	during	time	𝑇.		

The	 relationship	 described	 in	 Equation	 6.2	 is	 non-linear	 and	 requires	 adjustment	 of	 the	 encoding	

strength	according	to	the	expected	range	of	IVSD.	By	setting	^
O£ 𝒌𝒗
^𝝈O

= 0,	the	optimal	encoding	strength	

for	a	given	IVSD	𝜎	can	be	determined	as	𝑘| = 1/𝜎	or	𝑉𝐸𝑁𝐶 = 𝜋 ∗ 𝜎.		

	

The	 three-dimensional	 statistical	 description	 of	 velocity	 fluctuations	 𝒗v	 includes	 variances	 and	

covariances	as	described	by	the	RST	(RST):	

	 𝑹 = 𝜌
𝑣�v𝑣�v 𝑣�v𝑣�v 𝑣�v𝑣�v

𝑣�v 𝑣�v 𝑣�v 𝑣�v 𝑣�v 𝑣�v

𝑣�v𝑣�v 𝑣�v𝑣�v 𝑣�v𝑣�v
	 (6.3)	

with	variances	𝑣�v𝑣�v,	covariances	𝑣�v𝑣�v	and	fluid	density	𝜌.	The	magnitude	of	the	complex-valued	MR	

signal	can	be	written	as	[25]:	

	 𝑠 𝒌𝒗 = 𝑠- e
C ^
B�𝒌𝒗

𝑻𝑹	𝒌𝒗		 (6.4)	

with	𝒌𝒗 = 𝑘|�, 𝑘|�, 𝑘|�
7
.	

Analogous	to	diffusion	tensor	imaging	[24],	the	RST	can	be	determined	by	encoding	along	six	non-

collinear	directions	and	solving	a	system	of	linear	equations.	For	six	measurements	along	six	different	

velocity	encodings	and	𝜎�|,SB =
B

𝒌𝒗,𝒊
O 𝑙𝑛

Ü(𝒌𝒗>𝟎)
Ü(𝒌𝒗,𝒊)

	,	the	following	set	of	equations	is	obtained:	
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Accordingly,	the	elements	of	the	RST	can	be	calculated	voxel-wise	using	the	pseudoinverse:		
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−1
	𝑯	

𝜎𝑘𝑣,1
2

⋮
𝜎𝑘𝑣,6

2
.	 (6.6)	

In	this	study,	matrix	𝑯	was	designed	according	to:		

	 𝑯 =

1 0 0
0 1 0
0 0 1

1/ 2 1/ 2 0
1/ 2 0 1/ 2
0 1/ 2 1/ 2

.	 (6.7)	

To	mitigate	the	effect	of	non-linear	encoding	of	the	ISVD,	a	multipoint	approach	[58]	was	used	to	probe	

the	velocity	field	at	different	encoding	strengths.	Figure	6.1b	illustrates	the	velocity	encoding	which	

encodes	 velocities	 in	 three	 orthogonal	 directions	 and	 their	 combinations	 along	 the	 diagonals	with	

different	encoding	strengths.	For	each	direction	the	different	encoding	velocities	were	combined	with	

Bayesian	multipoint	unfolding	[58]	as	illustrated	in	Figure	6.1e.	

Measurement	of	Mean	Velocities	

Redundant	encoding	schemes	provide	additional	information	for	estimation	of	mean	velocities	[47].	

Denoting	 the	 velocities	 encoded	 in	𝑛	 different	 directions	 by	𝑽 = 𝒗^, … , 𝒗: 𝑻	 with	 corresponding	

velocity	 encodings	 𝒌𝒗,𝟏, … , 𝒌𝒗,𝒏 ,	 the	 velocities	 in	 the	 Cartesian	 coordinate	 system	 𝑽𝒄𝒂𝒓𝒕 =

𝑑𝑖𝑎𝑔(𝑣�, 𝑣�, 𝑣�)	can	be	written	as:	
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	 𝑽 =
𝒌𝒗𝟏/ 𝒌𝒗𝟏

…
𝒌𝒗𝒏/ 𝒌𝒗𝒏

𝑽𝒄𝒂𝒓𝒕 = 𝑨	𝑽𝒄𝒂𝒓𝒕	 (6.8)	

A	solution	to	this	overdetermined	system	of	linear	equations	is	provided	by	the	pseudo-inverse:	

	
𝑣� 0 0
0 𝑣� 0
0 0 𝑣�

= 𝑽𝒄𝒂𝒓𝒕 = (𝑨7𝑨)C^	𝑨7𝑽.	 (6.9)	

Value	Range	of	Intravoxel	Standard	Deviations	

Datasets	previously	obtained	in	9	healthy	volunteers	and	28	patients	with	aortic	valve	stenosis	[22]	

were	retrospectively	analyzed	to	determine	the	range	of	IVSD	occurring	in	the	ascending	aorta	(Figure	

6.2b	shows	exemplary	slices	with	the	corresponding	region	of	interest).	The	data	were	acquired	and	

reconstructed	with	multipoint	acquisition	and	Bayesian	reconstruction	[58].	Values	of	VENC	were	4.50,	

1.50,	and	0.50	m/s	for	patients	and	2.00,	0.67,	and	0.40	m/s	for	the	healthy	control	group.		

The	 ascending	 aorta	was	 segmented	manually.	 To	 assess	 the	 distribution	 of	 the	 ISVD	 for	 the	 two	

groups,	the	relative	probability	𝑝(𝜎)	of	different	values	of	IVSD	in	the	segmented	region	was	calculated	

for	 each	 subject	 and	 the	mean	 and	 standard	 deviation	 of	𝑝(𝜎)	were	 determined	over	 the	 patient	

cohort	and	the	healthy	control	group	respectively.		

Spatial	Resolution	and	Signal-to-Noise	Requirements	

MRI	acquisitions	with	varying	SNR	and	image	resolution	were	simulated	based	on	flow	through	a	64%	

stenosis	measured	with	particle	tracking	velocimetry	(PTV).	Details	on	acquisition	and	processing	of	

the	PTV	data	can	be	found	in	[128],	[187].	The	dynamic	and	kinematic	viscosity	were	5.82	×	10-3	Pa	and	

4.85	 ×	 10-6	 m2/s,	 respectively,	 and	 the	 fluid	 density	 1200	 kg/m3.	 The	 velocity-to-noise	 ratio	 was	

determined	 to	be	 larger	 than	103.	The	PTV	data	were	mapped	onto	a	voxel	 size	of	0.625×0.625×

0.625	mm=.		

Based	on	the	PTV	data,	the	MRI	signal	was	calculated	according	to	Equation	6.4.	Encoding	velocities	

were	0.5,	1.5,	and	4.5	m/s.	To	limit	the	effect	of	artifacts	in	the	numerical	study	a	median	filter	of	size	

3	was	applied	to	the	components	of	the	RST.	

To	assess	acquisition	with	different	voxel	sizes,	the	signal	was	transformed	to	k-space	and	sampled	

using	a	window	function	with	a	bandwidth	inversely	proportional	to	the	desired	downsampling	rate.	

Complex-valued	white	Gaussian	noise	of	different	strength	was	added	to	the	data.	For	quantitative	

evaluations	the	ascending	aorta	was	manually	segmented	using	ITK-SNAP	[188].		

Complex-valued	white	Gaussian	noise	of	different	strength	was	added	to	the	data	to	obtain	the	desired	

SNR	
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	 SNR = 20	log
Signal

SD(Noise)
	 (6.10)	

which	was	calculated	over	all	velocity	encodings.		

In-Vivo	Measurements	

In-vivo	 assessment	of	 the	RST	was	performed	 in	 a	 patient	with	 a	bio-prosthetic	 aortic	 valve	 and	 a	

healthy	 control	 on	 1.5T	 MR	 system	 (Philips	 Healthcare,	 Best,	 The	 Netherlands).	 The	 study	 was	

approved	 by	 the	 Ethics	 Committee	 of	 the	 Canton	 of	 Zurich,	 Switzerland,	 and	 all	 subjects	 provided	

written	informed	consent.	

Data	 were	 acquired	 using	 a	 cardiac-	 and	 respiratory-motion	 resolved	 Cartesian	 tiny	 golden	 angle	

acquisition	 scheme	 [63],	 [161]	 including	 the	 necessary	 velocity	 encodings	 for	 RST	 measurements.	

Acquisition	and	 reconstruction	of	 the	data	 is	 illustrated	 in	Figure	6.1.	During	 image	 reconstruction,	

data	 were	 sorted	 into	 four	 discrete	 respiratory	 motion	 bins.	 View	 sharing	 [163],	 [164]	 among	

respiratory	motion	states	was	used	to	ensure	a	minimum	acceleration	factor	of	35	for	each	frame.	Scan	

parameters	were:	voxel	size	of	2.5	mm	x	2.5	mm	x	2.5	mm,	25	cardiac	phases,	multipoint	flow	tensor	

encoding	with	VENCs	of	0.5	m/s,	1.5	m/s,	and	4.5	m/s,	TE/TR	=	3.9	ms/	6.0	ms	and	scan	duration	of	10	

minutes	compared	to	71	minutes	for	a	fully	sampled	scan	(which	could	increase	by	a	factor	of	ca.	2	

when	using	respiratory	navigator	gating).		

Prior	to	reconstruction,	noise	pre-whitening	was	performed	based	on	noise	statistics	from	a	separate	

scan	 acquired	 without	 radio-frequency	 excitation.	 Data	 for	 each	 velocity	 encoding	 strength	 and	

direction	were	reconstructed	separately	with	BART	[167],	enforcing	a	locally	low-rank	model	[33],	[98]	

along	cardiac	phases	and	respiratory	motion	states	[177].	The	signal	estimate	𝐒𝒌𝒗	is	thus	obtained	by	

iterative	minimization	of	the	cost	term	

	 𝒔𝒌𝒗 = 	𝑎𝑟𝑔min
𝒔𝒌𝒗

‖𝛺ℱ𝒞(𝒔𝒌𝒗) − 𝒅�|‖BB + 𝜆 ℛG 𝒔𝒌𝒗 ∗
G

	 (6.11)	

with	the	undersampling	operator	𝛺,	Fourier	transform	ℱ,	coil	sensitivity	mapping	𝒞	and	k-space	data	

𝒅�|.	The	operator	ℛG	selects	the	𝑏-th	out	of	𝑁G	blocks	of	size	of	size	𝑛�×𝑛�×𝑛� = 	22×22×22	in	the	

image	from	all	𝑁¡ 	heart	phases	and	𝑁¢£	respiratory	motion	states	and	transforms	them	into	a	Casorati	

matrix	 with	 dimensions	 𝑛�𝑛�𝑛�×𝑁¡ 𝑁¢£.	 The	 reconstruction	 favors	 solutions	 for	 which	 this	 local	

Casorati	matrix	is	low-ranked	by	penalizing	its	nuclear	norm.	The	regularization	weight	𝜆	was	set	to	

𝜆 = 0.005.	Both,	block	size	and	regularization	weight	were	tuned	for	best	agreement	of	magnitude	

images	of	the	healthy	control	with	a	fully	sampled	reference	measurement.	
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Following	image	reconstruction,	only	data	in	the	expiratory	motion	state	were	considered	for	further	

processing.	SNR	in	the	measured	data	was	determined	using	the	pseudo-replica	method[189]	with	40	

repetitions	averaged	over	the	ascending	aorta	and	over	the	velocity	encodings.	Of	note,	approximate	

linearity	is	assumed	with	locally	low-rank	reconstructions.	Accordingly,	using	Gaussian	distribution	of	

noise,	the	pseudo-replica	method	was	considered	the	best	approximation	for	SNR	assessment.	

Data	Analysis	

Turbulent	Kinetic	Energy	(TKE)	in	[J/m3]	was	calculated	from	the	main	diagonal	of	the	RST	as:		

	 𝑇𝐾𝐸 =
𝜌
2

𝑣𝑥′ 𝑣𝑥′ + 𝑣𝑦′ 𝑣𝑦′ + 𝑣𝑧′ 𝑣𝑧′ .	 (6.12)	

Principal	stress	analysis	was	performed	and	the	maximum	principal	turbulent	shear	stress	(MPTSS)	was	

calculated	from	the	eigenvalues	𝛿^ > 𝛿B > 𝛿=	of	the	RST	as:		

	 𝜏8c� = 0.5 𝛿^ − 𝛿= 	 (6.13)	

assuming	a	density	of	blood	of	𝜌 = 1060	𝑘𝑔/𝑚=.	

	

For	quantitative	evaluations	of	in-vivo	data	the	ascending	aorta	was	manually	segmented	using	ITK-

SNAP[188]	and	for	the	simulated	data,	the	flow	jet	in	was	masked.		

Statistical	analysis	

Value-distributions	of	TKE,	MPTSS,	and	velocity	magnitude	were	investigated	using	a	Gaussian	kernel	

density	 estimate[190],	 [191].	 Moreover,	 mean	 and	 standard	 deviations	 of	 the	 distributions	 were	

assessed.		

Accuracy	and	precision	of	TKE	and	MPTSS	quantification	were	assessed	in	a	Monte-Carlo	simulation	

with	 40	 repetitions	 and	 mean	 and	 standard	 deviation	 over	 the	 experiment	 repetitions	 were	

determined.		
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Chapter	7 A	Deep	Variational	Network	for	Rapid	4D	Flow	MRI	Reconstruction	

Submitted	as:	V.	Vishnevskiy,	J.	Walheim,	and	S.	Kozerke,	“Deep	Variational	Network	for	

Rapid	4D	Flow	MRI	Reconstruction,”	Nature	Machine	Intelligence,	2019.	

7.1 Introduction	

Many	efforts	have	been	dedicated	 to	accelerate	flow	acquisition	by	exploiting	 redundancies	 in	 the	

data.	Partial	Fourier	imaging	[30]	has	been	used	for	moderate	acceleration	[130],	but	the	underlying	

assumption	of	a	slowly	varying	phase	has	been	shown	to	be	incorrect	for	4D	flow	MRI	[192].	Parallel	

imaging	(PI)	[38],	which	exploits	the	spatially	varying	sensitivity	of	receiver	elements	in	the	coil	array	

has	 become	 a	 standard	 for	 accelerated	 imaging,	 but	 undersampling	 rates	 are	 limited	 by	 SNR	

amplification	[70].	The	advent	of	compressed	sensing	(CS)	[32]	has	enabled	very	high	acceleration	in	

4D	flow	MRI	by	acquiring	only	a	subset	of	k-space	data	and	exploiting	prior	information	about	data	

regularities	during	reconstruction	[34],	[97],	[177],	[180],	[193],	[194],	with	typical	acceleration	rates	

ranging	from	5	[50]	up	to	27	[194].	In	particular,	the	locally	low	rank	(LLR)	regularized	reconstruction	

[33]	has	been	a	successful	technique,	which	iteratively	balances	the	data	fidelity	cost	and	the	singular	

norm	 of	 a	 patch	matrix	 stacked	 over	 cardiac	 phases	 (see	Methods	 for	 details).	 However,	 iterative	

reconstruction	 methods	 used	 in	 CS	 increase	 reconstruction	 times	 considerably,	 implying	 that	

evaluation	of	4D	flow	MRI	data	will	typically	happen	when	the	subject	has	already	been	moved	out	of	

the	scanner.	

In	recent	years,	deep	neural	networks	have	gained	increasing	popularity	in	MR	image	reconstruction.	

In	the	training	stage,	the	neural	network	learns	abstract	features	from	a	set	of	scans.	After	training,	

newly	 acquired	 data	 are	 reconstructed	with	 very	 little	 computational	 effort	 by	 inference	with	 the	

learned	weights.	This	reduction	in	reconstruction	times	can	facilitate	the	use	of	accelerated	imaging	

methods	 in	 clinical	 practice.	 Moreover,	 reconstruction	 results	 can	 be	 superior	 to	 traditional	 CS	

methods	[110],	[111].	Some	approaches	discard	concepts	of	iterative	image	reconstruction	altogether,	

e.g.	by	learning	end-to-end	mappings	from	k-space	to	image	space	[114].	As	a	downside,	such	networks	

usually	 require	 abundant	 amounts	 of	 high	 quality	 training	 data	 which	 is	 not	 available	 for	 high-

dimensional	flow	MRI.	Model-based	neural	reconstruction	networks	can	also	be	designed	to	replicate	

the	 behaviour	 of	 an	 iterative	 reconstruction	 by	 interlacing	 nonlinear	 convolutional	 filters	 with	 an	

operation	 that	enforces	closeness	of	 the	current	 image	estimate	 to	 the	acquired	data	 [110],	 [111],	

[119],	 [195]	similar	 to	 the	data	fidelity	step	 in	an	 iterative	shrinkage-thresholding	algorithm	[77].	A	

recent	 study	 [118]	 showed	 that	neural	network	architectures	which	 incorporate	 such	an	operation	



81	

generalize	better	to	different	undersampling	rates.	In	contrast,	generic	architectures	which	are	solely	

based	on	convolutional	layers	can	even	deteriorate	when	the	undersampling	rate	is	reduced,	although	

one	would	expect	the	reconstruction	result	to	improve	when	more	information	is	available.	

In	this	work,	an	approach	based	on	the	idea	of	deep	variational	neural	networks	[110]	is	implemented	

for	rapid	4D	flow	reconstruction.	In	this	study	we	refer	to	the	original	variational	network	(VN)	from	

[110]	as	HamVN.	The	network	architecture	replicates	10	steps	of	an	iterative	image	reconstruction,	

while	 allowing	 for	 learnable	 spatio-temporal	 filter	 kernels,	 activation	 functions,	 and	 regularization	

weights	at	each	iteration.	In	short,	the	proposed	FlowVN	improves	HamVN	in	the	following	ways:	(i)	

filtering	is	conducted	on	4D	data	in	an	efficient	way,	(ii)	the	network	is	conditioned	on	the	sampling	

rate,	 (iii)	 exponential	 weighting	 of	 intermediate	 layers	 is	 used	 as	 the	 regularization,	 (iv)	 real	 and	

imaginary	parts	of	the	signal	filtered	by	shared	weights,	(v)	momentum	is	considered	during	gradient	

descent	unrolling,	 (vi)	 the	data	 term	allows	nonlinear	activation.	The	network	 is	 trained	 for	a	wide	

range	 of	 acceleration	 rates	 by	 allowing	 acceleration	 dependent	weighting	 of	 data	 consistency	 and	

filtering	steps.	It	is	demonstrated	that	based	on	training	performed	with	retrospectively	undersampled	

data	of	healthy	subjects,	the	network	can	accurately	reconstruct	pathological	flow	in	a	stenotic	aorta	

in	approximately	20	seconds.	Moreover,	an	imaging	study	with	7	healthy	subjects	demonstrates	good	

agreement	of	reconstructions	from	prospective	undersampling	with	a	reference	measurement	based	

on	PI.	

As	illustrated	in	Figure	7.1a	for	each	velocity	encoding	direction,	the	k-space	data	is	acquired	using	a	

Cartesian	golden	angle	sampling	strategy,	yielding	variable	density	undersampling	patterns	in	k-space.	

The	signal	from	acquisition	coils	is	compressed	into	5	virtual	coils	via	clustering	[196].	The	samples	are	

then	sorted	into	respiratory	bins	and	data	in	the	end-expiratory	bin	is	used	for	reconstruction.	
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Figure	7.1:	Breathing	resolved	4D	flow	data	acquisition.	a)	Data	are	sampled	using	a	Cartesian	pseudo-radial	 tiny	Golden	

angle	 sampling	 pattern.	 b)	 Respiratory	 motion	 is	 binned	 to	 end	 expiration	 using	 a	 combination	 of	 principal	 component	

analysis,	low-pass	filtering,	and	coil-clustering.	c)	Acquired	data	are	sorted	according	to	heart	phase	and	velocity	encoding.	d)	

Datasets	used	during	training	and	evaluation.	

7.2 FlowVN	

A	 deep	 variational	 network	 can	 be	 seen	 as	 a	 differentiable	 sequence	 of	 an	 unrolled	 numerical	

optimization	scheme.	To	enable	learning,	such	a	sequence	is	then	relaxed	by	allowing	tunable	filter	

weights	 and	 activation	 functions.	 As	 described	 in	Methods,	 we	 unroll	𝐾 = 10	 steps	 of	 a	 gradient	

descent	with	momentum	governed	by	a	scalar	𝛼(𝑘):	

	 𝒖(�A^) ← 𝛼(�A^)𝒖(�) + 𝒈(�)	 (7.1)	

	 𝒔(�A^) ← 𝒔(�) − 𝒖(�A^)	 (7.2)	

At	each	𝑘-th	layer	𝒔(�)	represents	the	current	complex-valued	spatiotemporal	image	estimate,	while	

𝒖(�)	contains	a	running	average	of	update	steps.	The	update	step	𝒈(�)	consists	of	data	consistency	and	

regularization	terms	(see	Methods	and	Supplementary	Algorithm	S7.1	for	details),	that	are	weighted	

according	to	the	sampling	rate	via	tunable	activation	functions	𝜑SÇ
(�)	and	𝜑S¢

(�),	respectively.	The	data	

consistency	term	modulates	the	k-space	data	residual	via	an	activation	function	and	maps	it	back	to	
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the	image	space	via	a	conjugate	imaging	operator.	The	regularization	term	at	each	layer	contains	3D	

filters	 grouped	 into	 4	 banks,	 where	 each	 bank	 performs	 convolutions	 in	 3	 dedicated	 dimensions,	

namely	𝑥𝑦𝑧,	𝑥𝑦𝑡,	𝑥𝑧𝑡	and	𝑦𝑧𝑡,	 therefore	 avoiding	 costly	 4D	 convolutions.	 To	 avoid	 overfitting,	we	

assume	shared	filters	and	activation	functions	that	operate	on	real	and	imaginary	components	of	the	

image.	Note	 that	both	data	and	regularization	 terms	do	not	assume	correlations	between	real	and	

imaginary	parts	of	the	signal,	as	highlighted	in	Figure	7.2b.		

The	image	estimate	𝒔 � (𝒅, 𝜽)	of	the	final	layer	can	be	then	seen	as	a	function	of	the	k-space	samples	

𝒅	 and	 network	 parameters	 𝜽.	 To	 tune	 the	 network	 parameters	 𝜽	 we	 minimize	 the	 layer-wise	

exponentially	weighted	𝑙^	image	reconstruction	loss:	

	 			𝑎𝑟𝑔min
𝜽

	𝔼
𝒅,𝒔∗ ~𝒯

𝑒C4(mC�) 𝒔 � 𝒅;𝜽 − 𝒔∗
m

�>^

	 (7.3)	

over	the	retrospectively	undersampled	training	dataset	𝒯,	where	𝒔∗	is	the	ground	truth	image.	Layer	

weighting	is	controlled	by	parameter	𝜏 ≥ 0:	when	𝜏 ≈ 0	the	reconstruction	error	is	penalized	equally	

across	 layers,	 therefore	 gradients	 of	 network	 parameters	 have	 lower	 variance	 during	 stochastic	

optimization,	yielding	 faster	convergence.	On	 the	contrary,	when	𝜏 → +∞,	only	 the	 reconstruction	

error	at	 the	final	 layer	𝒔(m)	 is	minimized,	which	 improves	fitting	accuracy	on	the	training	data.	 It	 is	

worth	mentioning	that	𝜏	controls	the	trade-off	between	training	reconstruction	residual	and	network	

regularity.	 Similarly	 to	 Landweber	 iterations	 [110],	 [197]	 and	 deep	 supervision	 [198],	 such	 implicit	

regularization	penalizes	irregular	representations	at	intermediate	layers	and	favors	networks	that	can	

provide	a	reconstruction	as	soon	as	possible.	We	propose	to	initialize	𝜏	with	zero	and	then	gradually	

increase	it	according	to	the	training	schedule	(see	Methods).	
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Figure	7.2:	FlowVN	architecture	and	training.	a)	Structure	of	FlowVN	and	its	training	strategy	on	reduced	field-of-view.	b)	

Single	unrolled	iteration	block.	c)	FlowVN	at	inference	time	yields	4D	image	reconstruction.	d)	Target	training	image	error	and	

velocity	magnitude	error	in	aorta.	e)	Data	and	gradient	term	weighting	functions	shown	for	each	of	10	layers.	f)	Exemplary	

slices	of	3D	𝑥𝑦𝑧	filters	and	their	corresponding	activation	functions	at	layer	5.	

7.3 Results	

FlowVN	Training		

To	demonstrate	validity	of	our	approach,	we	notice	that	the	extracted	velocity	magnitude	error	in	the	

aorta	decreases	simultaneously	with	the	target	reconstruction	error,	as	shown	in	Figure	7.2d,	therefore	

indicating	that	the	FlowVN	does	not	overfit	to	the	training	objective.	It	can	be	seen	from	Figure	7.2e	

that	the	regularization	term	is	suppressed	for	lower	acceleration	rates	𝑅	(higher	sampling	rate	𝑀).	A	

subset	of	learned	FlowVN	parameters	𝜽	is	shown	in	Figure	7.2f,	illustrating	that	learned	convolutions	

perform	direction-dependent	filtering.	
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Retrospective	Undersampling	

Figure	 7.3	 illustrates	 reconstructed	 image	magnitudes	 (for	 a	 single	 velocity	 encoding	 component),	

estimated	velocity	magnitudes	and	their	errors	on	a	healthy	volunteer	for	acceleration	factor	𝑅 = 14.	

Compared	to	CS-LLR	and	HamVN,	 the	proposed	FlowVN	provides	better	 reconstruction	accuracy	 in	

terms	of	image	magnitude	and	velocities.	Scatter	plot	and	correlation	analysis	further	suggest	that	the	

velocity	magnitude	 image	 estimated	 via	 FlowVN	 is	 in	 better	 agreement	with	 the	 ground	 truth.	 As	

shown	 in	 Supplementary	 Table	 S7.1	 these	 observations	 extend	 to	 other	 acceleration	 factors	𝑅 ∈

{6, … ,22}	as	tested	on	7	healthy	volunteers.	

Figure	7.4	indicates	that	FlowVN	can	accurately	reconstruct	the	jet	at	the	inlet	section	of	the	aorta	for	

a	patient	with	a	pathological	aortic	valve.		

	

Figure	 7.3:	 Reconstruction	 results	 on	 retrospectively	 undersampled	 data.	 Image	 magnitudes	 and	 estimated	 4D	 velocity	

magnitude	maps	 on	 retrospectively	 14×	 undersampled	 data	 from	 a	 healthy	 volunteer.	 Corresponding	 slice	 locations	 are	

illustrated	with	red	dashed	lines,	indicating	cross-section	of	aorta	and	systolic	peak.	Scatter	plot	of	velocity	magnitude	over	

manually	 segmented	 aorta	 (contour	 shown	 in	 magenta)	 is	 given	 together	 with	 correlation	 analysis	 (y	 =	 ax	 +	 b).

	

Table	7.1:	Model	complexities	and	typical	reconstruction	time	for	4D	flow	reconstruction.	Typical	reconstruction	time	for	4-

point	velocity	encoded	data	compressed	to	5	virtual	coils	and	reconstructed	on	a	113×113×25	grid.	CS-LLR	was	executed	on	a	

6-core	Intel	CPU,	FlowVN	was	implemented	in	Tensorflow	and	evaluated	on	NVIDIA	Titan	RTX.	
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Prospective	Undersampling	

As	shown	in	Figure	7.5a,b,	peak	velocities	and	peak	flow	estimated	using	CS-LLR	and	FlowVN	are	in	

good	 agreement	 with	 PI	 reconstruction,	 while	 HamVN	 systematically	 underestimates	 velocity	

magnitudes.	Moreover,	correlation	analysis	in	Figure	7.5d	shows	high	correlation	between	CS-LLR	and	

FlowVN	velocity	estimates.	In	contrast,	HamVN	shows	systematic	velocity	underestimation,	compared	

to	LLR.	

The	exemplary	reconstruction	time	for	typical	4-point	velocity	encoded	images	reported	in	Table	7.1	

shows	that	the	proposed	FlowVN	is	30	times	faster	than	CS-LLR	reconstruction.		

7.4 Discussion	

Practical	learning-based	image	reconstruction	can	be	traced	back	to	dictionary	learning	methods	[106],	

[108],	where	prior	 information	 is	 learned	 from	 image	patches	and	then	used	as	a	sparsity-inducing	

regularizer	 for	 iterative	 reconstruction.	 Such	 an	 approach	 yields	 orders	 of	 magnitude	 longer	

reconstruction	 times,	 compared	 to	modern	 deep	 learning	 approaches	 [110].	 Early	 deep	 networks	

attempted	 to	 learn	 reconstruction	as	a	 regression	 from	k-space	 [114]	or	 zero-filled	 reconstructions	

[199]	 directly	 into	 the	 image	 space.	 Although	 tempting,	 such	 an	 approach	 might	 be	 unjustified,	

because	the	k-space	and	zero-filling	artefacts	have	global	dependence	on	image	intensities.	The	advent	

of	effective	automatic	differentiation	systems	[200],	[201]	revitalized	the	idea	of	unrolling	[202]	and	

relaxing	 numerical	 schemes	 that	 can	 solve	 the	 original	 reconstruction	 problem.	 Following	 this	

approach,	a	number	of	deep	neural	network	architectures	were	proposed	[110],	 [115],	 [119],	 [203]	

that	disentangle	image	acquisition	and	image	prior	models.	Unrolling	gradient	descent	reconstruction	

with	tunable	filters	and	activation	functions	yields	the	HamVN	architecture	proposed	by	Hammernik	

et	 al.	 [110].	 One	 advantage	 of	 a	 VN	 is	 that,	 compared	 to	 other	 deep	 architectures,	 it	 employs	 a	

relatively	limited	number	of	free	parameters	to	tune,	therefore	it	is	less	susceptible	to	overfitting.	

In	 this	 work	 we	 further	 develop	 the	 VN	 architecture	 [110],	 [176],	 [204]	 to	 accommodate	 high	

performance	 undersampled	 4D	 flow	 reconstruction	 with	 limited	 training.	 Namely,	 we	 avoid	

exponential	 model	 complexity	 growth	 by	 avoiding	 4D	 convolutions	 and	 by	 using	 separable	 3D	

convolutions	that	are	shared	for	real	and	imaginary	parts	of	the	image.	Furthermore,	in	contrast	to	the	

original	HamVN	[110],	we	train	our	FlowVN	for	a	wide	range	of	undersampling	rates	by	allowing	the	

regularization	 term	 to	 depend	 on	 it.	 As	 illustrated	 in	 Figure	 7.2e,	 regularization	 scaled	 by	 𝜑SÇ 	

decreases	as	more	samples	are	available,	while	the	data	term	𝜑SÇ 	stays	constant	for	most	of	the	layers.	

Such	conditioning	allows	network	training	on	a	larger	variety	of	artifacts.	This	is	necessary	in	practice,	
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since	for	a	given	fixed	acquisition	time,	the	precise	value	of	the	undersampling	rate	 is	not	known	a	

priori	and	depends	on	breathing	and	cardiac	motion	patterns.	We	hypothesize	that	the	wide	range	of	

acceleration	factors	that	were	used	simultaneously	to	train	the	FlowVN	provided	a	diverse	collection	

of	aliasing	artefacts	and	enabled	robust	learning	on	a	remarkably	limited	training	set	of	11	subjects.	

The	exponential	weighting	of	layer-wise	reconstruction	loss	(Equation	7.3)	further	regularized	FlowVN	

parameters	by	penalizing	the	nonlinear	behavior	presented	in	HamVN	reconstructions.	

The	proposed	FlowVN	is	a	learning-based	approach	for	undersampled	4D	flow	MRI	reconstruction	in	

under	a	minute.	For	fixed	reconstruction	accuracy	FlowVN	enables	higher	acceleration	factors	(30%	

improvement	compared	to	CS-LLR	image	nRMSE	at	𝑅 = 12)	and	does	not	introduce	significant	bias	to	

the	peak	flow	estimates.	The	proposed	reconstruction	is	30	times	faster	than	state-of-the	art	CS-LLR.	

It	 is	worth	noting	that	 the	FlowVN	demonstrates	high	generalization	ability,	being	able	 to	preserve	

patient	pathologies	that	were	not	present	in	the	training	data.	
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Figure	7.4:	Retrospective	reconstruction	of	the	data	from	patient	with	abnormal	flow	pattern.	Reconstruction	results	of	10×	

retrospectively	undersampled	patient	dataset	shown	at	systolic	peak.	Manual	aorta	segmentation	and	field	of	view	are	shown	

with	magenta	and	green	lines	respectively.	
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Figure	7.5:	Quantitative	flow	evaluation	of	reconstruction	methods	on	the	prospectively	undersampled	data	(12.4	≤	R	≤	13.8).	

a,b)	Bland-Altman	analysis	of	peak	velocities	and	peak	flow	assessed	over	manually	segmented	aorta	slices	as	illustrated	in	

c).	d)	Correlation	analysis	of	aortic	velocity	magnitude	estimates	by	learned	VN	architectures	and	LLR	reconstruction.	

7.5 Methods	

Compressed	Sensing	4D	Flow	Reconstruction	

PC	MRI	encodes	flow	velocity	𝐯 𝐫, t ∈ ℝ=	at	a	spatial	location	𝒓	during	cardiac	phase	𝑡(1 ≤ 𝑡 ≤ 𝑁4)	

according	to	the	following	equation:	

	 𝑠S 𝐫, t = 𝑠- r, t 𝑒𝑥𝑝 𝑖𝜋	
𝚽v 𝐫, t S
𝑉𝐸𝑁𝐶

	 (7.4)	

where	𝑉𝐸𝑁𝐶	is	the	velocity	corresponding	to	a	phase	of	±𝜋,	𝑦S, 𝑖 = 0, … ,3	are	the	encoded	velocity	

vector	components,	and	the	four-point	velocity	encoding	matrix	is	given	as	

	 𝝓 =
0 0 0
1 0 0
0 1 0
0 0 1

.	 (7.5)	



90	

Therefore,	the	flow	velocity	𝒗	can	be	calculated	from	the	phase	difference	of	reconstructed	PC	images	

𝒔S.	

Let	𝒔S4 ∈ ℂi� 	be	a	discretized	image	on	a	𝑁�×𝑁�×𝑁� = 𝑁|	grid	corresponding	to	a	cardiac	phase	𝑡	

and	velocity	encoding	𝑖.	Assuming	Cartesian	sampling	on	a	regular	𝑁^×𝑁B×𝑁= = 𝑁£	grid,	the	Fourier	

transform	 ℱ ∈ ℂi�×i�,	 and	 𝑁� 	 coil	 sensitivity	 maps	𝑊� = 𝑑𝑖𝑎𝑔 𝒄� ∈ ℂi�×i� 	 define	 the	 spatial	

encoding	operator	𝑬 ∈ ℂi�i�×i�:	

	 𝑬𝒔 = 𝐹𝑊^𝒔 7, … , 𝐹𝑊i�𝒔
7 7

∈ ℂi�i�.	 (7.6)	

Considering	a	single	velocity-encoded	image	sequence,	let	𝑺 ∈ ℂi�×i¨	and	𝑫 ∈ ℂi�i�×i¨ 	be	stacked	

column-vectors	 of	 signals	𝒔	 and	 zero-filled	 k-space	 samples	𝒅	 respectively,	while	𝛀 ∈ 0,1 i�i�×i¨ 	

defines	 the	 undersampling	masks.	 Iterative	 image	 reconstruction	methods	 seek	 for	 a	maximum	 a	

posteriori	(MAP)	solution	defined	by	the	following	optimization	problem:	

	 𝒔 = 	𝑎𝑟𝑔min
𝒔

1
2
‖M⊙ (𝐄𝐏 − 𝑫‖üB + 𝑅 𝐏 ,	 (7.7)	

where	the	regularization	term	𝑅 𝐏 	enforces	prior	assumptions	about	image	regularities.	Herein	we	

consider	 the	 local	 low-rank	 (LLR)	 regularization	 [33]	 to	 leverage	 image	 correlations	 among	 cardiac	

phases:	

	 𝑅""' 𝐏 = 𝜆""' 𝑻S𝑺 ∗
S}i�¨��

,	 (7.8)	

where	 𝑻S ∈ 0,1  ~×i� 	 is	 the	 corresponding	 𝑝×𝑝×𝑝	 patch	 extraction	 operator,	 yielding	 𝑁 4�¡	

overlapping	patches,	and	 ∙ ∗	 is	the	nuclear	norm.	For	LLR	regularization	the	optimization	problem	

from	Equation	7.7	is	convex	and	can	be	efficiently	solved	using	operator	splitting	techniques	such	as	

the	fast	iterative	shrinkage-thresholding	algorithm	(FISTA)	[77].	

FlowVN	Training	 	

We	employ	a	𝐾 = 10	layer	VN	and	perform	5 ∗ 10�	iterations	of	the	ADAM	algorithm	(learning	rate	

10C=,	𝛽^ = 0.85,	𝛽B = 0.98,	batch	size	of	3)	for	training,	during	which	we	continually	adjust	𝜏 = 𝑖� 4 ∗

10C=	with	𝑖� 4	being	the	iteration	number.	On	every	layer,	each	3D	filter	bank	contains	𝑁â = 8	filters	

of	size	𝑛� = 5	voxels.	Activation	functions	𝜑{. }	are	parametrized	by	𝑁�:4£ = 71	control	knots	with	

spacing	𝜔 = 0.17:	

	 𝜑 ℎ = 1 −
ℎ
𝑤
+

ℎ
𝑤

𝜙 ¡
�
+

ℎ
𝑤
−

ℎ
𝑤

𝜙 ¡
� A^

,	 (7.9)	

with	gradients	provided	by	the	following	formulas:	
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𝛿𝜑
𝛿𝜙S

ℎ = 1S}¡}SA^ ∗ 1 − ℎ + ℎ + 1SC^}¡}S ∗ ℎ − ℎ ,	 (7.10)	

	
𝛿𝜑
𝛿ℎ

ℎ = 𝜙 ¡ A^ − 𝜙¡.	 (7.11)	

The	acquired	zero-filled	k-space	𝒅	with	undersampling	mask	𝛀	was	normalized	by	 𝛀 Ù
𝐝 �

.	

To	enable	the	backpropagation	to	be	carried	out	with	limited	GPU	memory,	we	employ	spatiotemporal	

equivariance	 of	 the	 convolution	 and	 exploit	 the	 fact	 that	 k-space	 is	 fully	 sampled	 in	 the	 readout	

dimension	𝑘�	for	Cartesian	acquisitions.	Therefore,	to	draw	a	training	sample,	we	perform	a	random	

cropping	of	width	𝑤�	 and	𝑤4	 in	dimensions	𝑥	 and	 𝑡	 respectively	 and	 simulate	 Fourier	 encoding	 in	

dimensions	𝑘�, 𝑘�	as	illustrated	in	Figure	7.2a.	The	network	was	implemented	using	the	Tensorflow	

framework	[200].	Fully-sampled	and	partial	Fourier	acquisition	data	from	11	healthy	volunteers	was	

used	during	training.	

In	Vivo	Data	Acquisition	

As	 illustrated	 in	 Figure	7.1,	we	used	11	 subject	 for	network	 training,	 and	7	healthy	 subjects	 and	1	

patient	for	evaluation.	All	in-vivo	work	was	performed	upon	written	informed	consent	of	the	subjects	

and	according	to	local	ethics	regulations.	

Training	datasets	comprised	4D	flow	data	measured	in	the	aorta	of	11	healthy	subjects,	9	of	them	fully	

sampled	and	2	acquired	with	partial	Fourier	[31]	(factor	0.75×0.75).	

For	evaluation,	data	in	the	ascending	aorta	of	7	healthy	subjects	was	acquired	on	a	3T	Philips	Ingenia	

system	(Philips	Healthcare,	Best,	the	Netherlands)	using	a	Cartesian	4-point	referenced	phase-contrast	

gradient-echo	 sequence	 with	 an	 encoding	 velocity	 𝑣𝑒𝑛𝑐 = 150 �8
£
,	 a	 spatial	 resolution	 of	

2.5×2.5×2.5	𝑚𝑚=,	𝑇𝐸 = 3.3	𝑚𝑠,	𝑇𝑅 = 4.9	𝑚𝑠,	25	cardiac	phases	and	flip	angle	=	8◦.	Exams	for	each	

of	the	7	healthy	subjects	comprised	a	standard	navigator-gated	2-fold	accelerated	parallel	imaging	[38]	

exam	for	reference,	and	a	compressed	sensing	acquisition	with	an	acceleration	factor	of	12.4	−	13.8,	

using	Cartesian	pseudo-radial	golden	angle	sampling	pattern	[62]	and	data	driven-respiratory	motion	

detection,	as	in	[177].	Only	data	in	expiration	were	kept	for	reconstruction	as	shown	in	Figure	7.1.	

To	evaluate	reconstruction	accuracy	on	pathological	anatomy,	4D	flow	data	was	acquired	in	a	single	

patient	with	dilation	of	the	ascending	aorta	and	combined	aortic	stenosis	and	regurgitation	due	to	a	

bicuspid	aortic	valve	on	a	3T	Philips	Ingenia	system	(Philips	Healthcare,	Best,	the	Netherlands)	using	a	

navigator-gated	2-fold	accelerated	parallel	imaging	[38]	scan.	

A	receiver	coil	with	28	channels	was	used	for	acquisition	which	were	reduced	to	5	channels	using	coil	

compression	 [196].	 Coil	 sensitivity	 maps	 were	 estimated	 with	 ESPIRiT	 [69].	 Concomitant	 field	
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correction	was	applied	to	the	signal	phase	according	to	Bernstein	et	al.	[144]	and	eddy	currents	were	

corrected	for	with	a	third-order	polynomial	model	fitted	to	stationary	tissue	[145],	[169].	

Evaluation	

We	 compared	 the	 proposed	 FlowVN	 to	 the	 state-of-the-art	 compressed	 sensing	 LLR-regularized	

(Equation	7.8)	reconstruction	[33]	and	the	variational	network	by	Hammernik	et	al.	[110]	which	we	

refer	to	as	HamVN.	LLR	implementation	from	the	Berkeley	advanced	reconstruction	toolbox	(BART)	

[167]	was	used	with	patch	size	𝑝 = 8	and	maximum	number	of	optimization	 iterations	of	120.	The	

optimal	value	of	regularization	parameter	𝜆""' = 2.06 ∗ 10CB	was	chosen	via	grid	search	to	minimize	

the	reconstructed	flow	field	residual	 𝒗 − 𝒗∗ B 	averaged	over	the	manually	segmented	aorta	on	the	

retrospectively	 12-fold	 undersampled	 acquisition.	 To	 overcome	 memory	 limitations,	 we	 adapted	

HamVN	from	[110]	in	the	following	ways:	(i)	3D	filters	were	grouped	into	4	banks	as	in	1,	(ii)	activation	

functions	were	parameterized	by	linear	interpolation	as	in	Equation	9	instead	of	memory	demanding	

radial	basis	 functions.	The	number	of	network	 layers,	filters	and	control	knots	were	the	same	as	 in	

FlowVN.	

Retrospective	Study	

For	simulated	retrospective	undersampling	experiments,	we	used	2×	PI	data	and	simulated	pseudo-

radial	golden	angle	sampling	pattern	[62]	with	acceleration	factors	of	6	to	22.	

For	each	undersampling	rate	we	evaluated	the	normalized	root	mean	square	error	(nRMSE)	of	image	

magnitude,	the	relative	error	(RelErr)	of	velocity	magnitudes	 inside	the	aorta	and	the	angular	error	

(AngErr)	of	the	estimated	velocity	vectors:	

	 𝑛𝑅𝑀𝑆𝐸 𝒂, 𝒂∗ =
𝑎S − 𝑎S∗

B

𝑁 ∗ max
Á

𝑎Á∗
B

i

S

,	 (7.12)	

	 𝑅𝑒𝑙𝐸𝑟𝑟 𝒂, 𝒂∗ =
𝒂 − 𝒂∗ 𝟐

𝒂∗ 𝟐
,	 (7.13)	

	 𝐴𝑛𝑔𝐸𝑟𝑟 𝒖, 𝒗 = 𝑎𝑟𝑐𝑐𝑜𝑠
𝒖, 𝒗

𝒖 𝟐 𝒗 𝟐
.	 (7.14)	

Prospective	Study	

Using	manual	aorta	segmentations	we	compute	flow	over	cross	sections	of	the	aorta	by	integrating	

velocity	components	projected	onto	the	cross	section	normal.	The	peak	flow	is	then	defined	as	the	

maximal	flow	over	cardiac	phases	for	a	given	cross	section.	Moreover,	we	calculate	the	peak	through-
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plane	velocity	defined	as	maximum	velocity	projection	across	cross	sections	of	the	aorta	over	cardiac	

phases.	

To	quantify	agreement	with	the	reference	2×	PI	reconstruction,	we	performed	Bland-Altman	analysis	

[170]	of	peak	flow	and	peak	through-plane	velocities.	
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7.6 Supplementary	Materials	

Algorithm	S7.1:	Proposed	variational	reconstruction	network	model	FlowVN.	

	

Table	S7.1:	Comparison	of	reconstruction	errors	(±	standard	deviation)	of	7	retrospectively	undersampled	acquisitions	of	

healthy	subjects	for	different	acceleration	factors	R.	For	each	row	the	best	performing	method	is	highlighted	in	bold.		
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Chapter	8 Summary	

Phase-contrast	encoding	 in	the	presence	of	turbulent	flows	has	measurable	effects	on	signal	phase	

and	magnitude	which	can	be	used	to	derive	mean	and	fluctuating	velocity	components.	This	allows	for	

non-invasive	in	vivo	assessment	of	transient	and	turbulent	flows.	However,	the	large	amount	of	data	

to	be	acquired,	and	hence	long	scan	times,	hamper	in	vivo	applications	and	clinical	use.	The	aim	of	this	

work	was	to	provide	turbulence	assessment	with	MRI	within	a	fixed	and	short	duration,	and	to	use	

reductions	in	scan	time	to	enable	in	vivo	assessment	of	the	Reynolds	stress	tensor	(RST).	

To	this	end,	we	have	investigated	respiratory	motion	resolved	imaging	to	make	the	acquisition	more	

efficient.	Moreover,	reconstruction	methods	based	on	low-rankedness	and	deep	neural	networks	have	

been	proposed	and	 implemented	to	exploit	 redundancies	 in	 the	data	and	reconstruct	 images	 from	

subsets	of	k-space.	Improvements	in	scan	efficiency	allowed	to	extend	the	sequence	with	additional	

velocity	encodings	 resulting	 in	multipoint	 flow	 tensor	encoding	enabling	 the	 first	 successful	 in	vivo	

assessments	of	the	RST.	

8.1 Discussion	

Scan	acceleration	of	4D	Flow	MRI	based	on	partial	Fourier	(PF)	acquisition	has	been	critically	reviewed.	

It	has	been	shown	that	 the	underlying	assumption,	 that	 spatial	phase	variations	are	 limited	 to	 low	

spatial	 frequencies	 does	 not	 hold	 for	 4D	 Flow	MRI.	 Enforcing	 this	model	 assumption	 in	 the	 image	

reconstruction	leads	to	artifacts.	Moreover,	no	benefit	in	reconstruction	accuracy	is	achieved	relative	

to	performing	the	acquisition	at	a	lower	resolution.	While	experiments	were	limited	to	4D	Flow	MRI	

and	the	analysis	of	mean	velocities	and	TKE,	the	relevance	of	our	findings	extends	to	other	imaging	

applications	where	the	signal	shows	rapid	spatial	phase	variations,	e.g.	in	cardiac	perfusion	MRI	[205].	

A	 5D	 Flow	 MRI	 framework	 for	 resolving	 flow	 over	 cardiac	 and	 respiratory	 motion	 states	 was	

implemented.	 K-space	 acquisition	 was	 performed	 with	 a	 pseudo-radial	 Cartesian	 Golden	 angle	

sampling	trajectory.	Data	driven	motion	detection	was	used	to	attribute	k-space	samples	to	different	

respiratory	motion	states.	In	image	reconstruction,	a	locally	low	rank	model	was	employed	to	exploit	

correlations	 over	 respiratory	 motion	 states	 and	 cardiac	 phases.	 Thus,	 scan	 time	 for	 the	 in	 vivo	

assessment	of	TKE	was	reduced	to	4	minutes	independent	of	the	subject’s	respiratory	motion	pattern.	

Validation	against	conventional	parallel	 imaging-based	acceleration	showed	consistent	results	while	

scan	time	was	reduced	by	a	factor	of	approximately	4.5	on	average.	Beyond	flow	imaging	applications,	

respiratory	motion	resolved	imaging	is	also	promising	to	decouple	respiratory	motion	and	scan	time	
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for	other	applications	provided	that	suitable	respiratory	motion	detection	methods	are	available	 in	

case	the	readout	direction	is	not	aligned	with	axes	of	respiratory	motion,	e.g.	[206],	[207].	

We	have	 proposed	 and	 implemented	 the	 concept	 of	 5D	 Flow	 Tensor	MRI,	 a	method	 to	 efficiently	

quantify	velocities	and	Reynolds	stresses	in	the	aorta.	The	combination	of	the	5D	Flow	MRI	sequence	

with	a	19-point	flow	tensor	encoding	scheme	has	enabled	the	in	vivo	assessment	of	the	entire	Reynolds	

stress	 tensor.	 Numerical	 experiments	 have	 demonstrated	 high	 precision	 of	 the	 method	 but	 an	

overestimation	of	turbulent	flow	components	which	can	be	attributed	to	limitations	in	the	acquisition	

voxel	size.	However,	decreasing	the	acquisition	voxel	size	would	lead	to	a	considerable	increase	in	scan	

time.	Therefore,	this	systematic	error	must	be	taken	 into	account	when	using	the	data	as	 input	for	

simulations	 or	 when	 performing	 quantitative	 assessments.	 A	 first	 in	 vivo	 study	 showed	 distinct	

qualitative	 differences	 in	 turbulent	 shear	 stresses	 and	 TKE	 between	 patients	with	 a	 bio-prosthetic	

heart	 valve	 and	 healthy	 controls.	 Further	 clinical	 experiments	 are,	 however,	 warranted	 to	 further	

assess	 the	 distributions	 of	 turbulent	 flow	 components	 downstream	of	 healthy	 and	 diseased	 aortic	

valves	in	view	of	clinical	translation	of	the	method.	

The	 feasibility	 of	 rapid	 image	 reconstruction	 of	 undersampled	 4D	 Flow	 MRI	 acquisitions	 with	

variational	 neural	 networks	 has	 been	 demonstrated.	 Our	 study	 showed	 that	 training	 on	 11	

retrospectively	 undersampled	 datasets	 of	 healthy	 subjects	was	 sufficient	 to	 accurately	 reconstruct	

pathological	 flow	 in	 the	 aorta	 of	 a	 patient	 and	 to	 provide	 accurate	 results	 in	 a	 prospectively	

undersampled	 imaging	 study.	 The	 finding,	 that	 training	 based	 on	 retrospectively	 undersampled	

healthy	 flow	 data	 is	 sufficient	 for	 reconstruction	 of	 pathological	 flow,	 makes	 variational	 neural	

networks	 promising	 for	many	 other	 applications	 in	MRI	 and	 beyond	where	 little	 training	 data	 are	

available.	The	method	can	also	be	extended	to	the	reconstruction	of	5D	Flow	MRI.	As	our	previous	

results	show	[177],	the	respiratory	motion	dimension	is	highly	correlated.	Thus,	learning	correlations	

also	along	the	respiratory	motion	dimension	promises	accurate	reconstructions	from	acquisitions	with	

even	higher	undersampling	rates.	However,	as	no	ground	truth	data	are	available,	one	would	need	to	

rely	on	simulated	data,	or	consider	the	results	of	CS	reconstructions	as	training	data,	which	might	put	

an	upper	limit	on	the	achievable	reconstruction	accuracy.	

8.2 Outlook	

Besides	 using	 the	 proposed	 framework	 for	 clinical	 studies,	 further	 investigations	 are	warranted	 to	

increase	accuracy	of	the	assessment	and	further	reduce	scan	and	reconstruction	times.		

Direct	Reconstruction	of	Mean	and	Turbulent	Velocity	Components	
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To	 provide	 accurate	 assessment	 of	 the	 RST,	 6-directional	 velocity	 encoding	 was	 combined	 with	 a	

multipoint	 encoding	 scheme.	 Following	 reconstruction,	 Bayesian	multipoint	 unfolding	 was	 applied	

separately	for	each	voxel	and	each	encoding	direction	to	determine	the	most	likely	mean	velocity	and	

intra-voxel	standard	deviation	and	covariances.	With	this	approach,	spatiotemporal	relationships	or	

correlations	 among	 encoding	 directions	 were	 not	 considered	 when	 combining	 the	 multipoint	

measurements.		

Instead	of	having	 separate	 steps	 for	 image	 reconstruction,	multipoint	unfolding,	 and	estimation	of	

mean	velocities	and	the	RST,	 incorporation	of	all	steps	into	a	single	image	reconstruction	algorithm	

would	 be	 desirable	 for	 simplification	 and	 to	 exploit	 data	 redundancies	 throughout	 the	 processing	

pipeline.	 To	 this	 end,	 variational	 neural	 network	 approaches	 may	 be	 considered	 to	 directly	 learn	

spatiotemporal	 correlations	 as	 well	 as	 relationships	 between	 different	 velocity	 encoded	

measurements	to	provide	a	direct	reconstruction	of	the	desired	quantities.		

Inaccuracies	and	Limitations	of	the	Signal	Model	

Further	investigations	into	inaccuracies	of	the	signal	model	as	assumed	in	generalized	PC-MRI	[20]	are	

considered	important.	In	this	work	it	has	been	shown,	that	due	to	limitations	in	acquisition	resolution,	

turbulent	velocity	fluctuations	are	overestimated.	An	additional	source	of	inaccuracy	might	be	a	non-

uniform	sensitivity	to	different	parts	of	the	turbulence	spectrum.	As	the	measurement	corresponds	to	

a	 convolution	 of	 the	 spectra	 of	 the	 velocity	 autocorrelation	 and	 the	 velocity	 encoding	 gradient	

waveforms	[208],	[209],	the	assessment	has	a	varying	sensitivity	over	the	frequency	range	of	turbulent	

velocity	fluctuations.	This	effect	still	has	to	be	investigated	in	detail	for	turbulent	flow	encoding,	but	

might	require	consideration	of	different	kinds	of	velocity	encoding	gradient	waveforms.	

Data	assimilation	 [179]	approaches	might	be	an	option	 to	mitigate	 the	effect	of	 coarse	acquisition	

resolution	on	turbulent	velocity	components.	Moreover,	optimal	experimental	design,	incorporating	

the	full	pipeline	from	acquisition	to	post-processing,	should	be	aimed	for.	

High	Dimensional	Flow	Imaging	

In	this	work,	flow	imaging	has	been	extended	to	incorporate	the	respiratory	motion	dimension	and	to	

include	additional	velocity	encodings	for	turbulence	encoding.	With	the	increasing	capabilities	to	store	

and	 process	 large	 datasets,	 even	more	 signal	 dimensions	 shall	 be	 encoded	 into	 a	 single	 scan	 and	

subsequently	exploited	in	data	reconstruction	and	processing.	For	example,	flow	imaging	has	already	

been	 combined	with	 dynamic	 contrast	 enhancement	 [56]	 and	 low-resolution	 real	 time	 data	 were	

reconstructed	 from	 a	multidimensional	 flow	 acquisition	 [207].	Moreover,	 for	 imaging	 of	 turbulent	

flow,	combination	with	a	multi-echo	gradient-echo	sequence	[210]	appears	a	promising	option,	which	

would	also	yield	𝑇B∗-maps	and	might	make	acquisition	of	a	reference	segment	obsolete.		
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Clinical	Potential	of	Turbulence	Assessment	

The	ability	of	robust	in	vivo	assessment	of	Reynolds	stresses	enables	new	methods	for	the	assessment	

of	 cardiac	 hemodynamics.	 By	 providing	 the	 full	 RST,	 the	method	 can	 be	 used	 to	 identify	 elevated	

turbulent	 shear	 stresses	which	have	been	associated	with	 flow-induced	damage	 to	 red	blood	 cells	

[181],	[211].	Elevated	turbulent	shear	stresses	have	also	been	observed	for	certain	aortic	heart	valve	

prostheses	in	in-vitro	experiments	[183].	Thus,	in	vivo	turbulence	assessment	with	MRI	may	provide	

further	insights	into	the	occurrence	of	shear	stresses	for	different	prosthetic	valves.		

For	the	assessment	of	cardiac	valve	insufficiencies,	new	metrics	such	as	total	turbulence	production	

[26]	or	TKE	[22]	can	be	assessed	more	easily.	The	latter	was	already	demonstrated	to	have	value	in	

patients	with	aortic	stenosis	[22].	However,	a	remaining	problem	when	comparing	these	metrics	in	in	

vivo	studies	is	posed	by	the	lack	of	ground	truth,	as	catheterization	is	not	performed	in	every	patient	

and	assessment	by	Doppler	echocardiography,	the	primary	technique	used	in	clinical	practice,	tends	

to	underestimate	stenosis	severity,	as	pressure	recovery	is	neglected	[212].	

The	availability	of	the	RST	allows	for	direct	calculation	of	relative	pressure	fields	using	the	Reynolds	

averaged	Navier-Stokes	equation	[19].	In	vivo	RST	measurements	can	also	provide	valuable	input	data	

for	numerical	models	of	the	in	vivo	heart	and	patient-specific	simulations	of	the	heart.		

Ideally,	for	a	longitudinal	study,	image	segmentation	should	not	happen	manually	anymore	in	order	to	

reduce	intra-	and	inter-observer	variability	and	to	introduce	objective	quantitative	criteria.	Recently,	

advances	in	fully	automated	segmentation	of	the	aorta	have	been	demonstrated	by	using	the	U-Net	

architecture	 [213],	 a	 special	 type	 of	 convolutional	 neural	 networks	 [214].	 However,	 adaptation	 of	

machine	learning	based	routines	for	the	segmentation	of	4D	Flow	MRI	data	is	still	hampered	by	the	

limited	availability	of	labelled	data	and	the	lack	of	ground	truth	data.	

Public	Availability	of	Code	

With	the	framework	developed	in	this	thesis	work,	rapid	in	vivo	assessment	of	turbulence	can	be	easily	

integrated	into	clinical	exams	of	patients,	allowing	for	in	vivo	studies	with	a	larger	number	of	subjects.	

To	 further	 facilitate	 clinical	 adaptation,	 code	 for	 locally	 low	 rank	 reconstruction	 and	 Bayesian	

multipoint	unfolding	is	provided	as	a	platform	independent	Docker	 image	which	can	be	run	in	data	

handling	 platforms	 such	 as	 Agora	 (GyrotTools	 LLC,	Winterthur,	 Switzerland).	Moreover,	 evaluation	

scripts	 for	 Reynolds	 stresses	 as	well	 as	 variational	 network-based	 reconstruction	 have	 been	made	

publicly	available	on	GitHub	(https://github.com/j-walheim).	

		

	



99	

Chapter	9 References	

[1]	 M.	Markl,	A.	Frydrychowicz,	S.	Kozerke,	M.	Hope,	and	O.	Wieben,	“4D	flow	MRI,”	 Journal	of	

Magnetic	Resonance	Imaging,	vol.	36,	no.	5.	pp.	1015–1036,	2012.	

[2]	 J.	Garcia	et	al.,	“Assessment	of	altered	three-dimensional	blood	characteristics	in	aortic	disease	

by	velocity	distribution	analysis,”	Magn.	Reson.	Med.,	vol.	74,	no.	3,	pp.	817–825,	2015.	

[3]	 J.	Garcia	et	al.,	“Four-dimensional	flow	magnetic	resonance	imaging-based	characterization	of	

aortic	 morphometry	 and	 haemodynamics:	 impact	 of	 age,	 aortic	 diameter,	 and	 valve	

morphology,”	Eur.	Hear.	Journal-Cardiovascular	Imaging,	vol.	17,	no.	8,	pp.	877–884,	2015.	

[4]	 M.	Sigovan,	M.	D.	Hope,	P.	Dyverfeldt,	and	D.	Saloner,	“Comparison	of	four-dimensional	flow	

parameters	 for	 quantification	 of	 flow	 eccentricity	 in	 the	 ascending	 aorta,”	 J.	Magn.	 Reson.	

Imaging,	vol.	34,	no.	5,	pp.	1226–1230,	2011.	

[5]	 J.	von	Spiczak,	G.	Crelier,	D.	Giese,	S.	Kozerke,	D.	Maintz,	and	A.	C.	Bunck,	“Quantitative	analysis	

of	vortical	blood	flow	in	the	thoracic	aorta	using	4D	phase	contrast	MRI,”	PLoS	One,	vol.	10,	no.	

9,	p.	e0139025,	2015.	

[6]	 M.	 D.	 Hope	 et	 al.,	 “Evaluation	 of	 bicuspid	 aortic	 valve	 and	 aortic	 coarctation	with	 4D	 flow	

magnetic	resonance	imaging,”	Circulation,	vol.	117,	no.	21,	pp.	2818–2819,	2008.	

[7]	 W.	V	Potters,	P.	van	Ooij,	H.	Marquering,	E.	vanBavel,	and	A.	J.	Nederveen,	“Volumetric	arterial	

wall	shear	stress	calculation	based	on	cine	phase	contrast	MRI,”	J.	Magn.	Reson.	Imaging,	vol.	

41,	no.	2,	pp.	505–516,	2015.	

[8]	 A.	F.	Stalder,	M.	F.	Russe,	A.	Frydrychowicz,	J.	Bock,	J.	Hennig,	and	M.	Markl,	“Quantitative	2D	

and	 3D	 phase	 contrast	MRI:	 optimized	 analysis	 of	 blood	 flow	 and	 vessel	wall	 parameters,”	

Magn.	Reson.	Med.	An	Off.	J.	Int.	Soc.	Magn.	Reson.	Med.,	vol.	60,	no.	5,	pp.	1218–1231,	2008.	

[9]	 E.	 T.	Bieging	et	al.,	 “In	vivo	 three-dimensional	MR	wall	 shear	 stress	estimation	 in	ascending	

aortic	dilatation,”	J.	Magn.	Reson.	Imaging,	vol.	33,	no.	3,	pp.	589–597,	2011.	

[10]	 T.	Ebbers,	L.	Wigstrom,	A.	F.	Bolger,	B.	Wranne,	and	M.	Karlsson,	“Noninvasive	measurement	

of	time-varying	three-dimensional	relative	pressure	fields	within	the	human	heart,”	J.	Biomech.	

Eng.,	vol.	124,	no.	3,	pp.	288–293,	2002.	

[11]	 G.-Z.	Yang,	P.	J.	Kilner,	N.	B.	Wood,	S.	R.	Underwood,	and	D.	N.	Firmin,	“Computation	of	flow	

pressure	fields	from	magnetic	resonance	velocity	mapping,”	Magn.	Reson.	Med.,	vol.	36,	no.	4,	

pp.	520–526,	1996.	

[12]	 J.	M.	Tyszka,	D.	H.	Laidlaw,	J.	W.	Asa,	and	J.	M.	Silverman,	“Three-dimensional,	time-resolved	



100	

(4D)	relative	pressure	mapping	using	magnetic	resonance	imaging,”	J.	Magn.	Reson.	Imaging,	

vol.	12,	no.	2,	pp.	321–329,	2000.	

[13]	 M.	Markl,	W.	Wallis,	S.	Brendecke,	J.	Simon,	A.	Frydrychowicz,	and	A.	Harloff,	“Estimation	of	

global	aortic	pulse	wave	velocity	by	flow-sensitive	4D	MRI,”	Magn.	Reson.	Med.,	vol.	63,	no.	6,	

pp.	1575–1582,	2010.	

[14]	 P.	 Dyverfeldt,	 T.	 Ebbers,	 and	 T.	 Länne,	 “Pulse	 wave	 velocity	 with	 4D	 flow	MRI:	 systematic	

differences	and	age-related	regional	vascular	stiffness,”	Magn.	Reson.	Imaging,	vol.	32,	no.	10,	

pp.	1266–1271,	2014.	

[15]	 J.	 Westenberg	 et	 al.,	 “Age-related	 and	 regional	 changes	 of	 aortic	 stiffness	 in	 the	 Marfan	

syndrome:	assessment	with	velocity-encoded	MRI,”	J.	Magn.	Reson.	Imaging,	vol.	34,	no.	3,	pp.	

526–531,	2011.	

[16]	 A.	J.	Barker	et	al.,	“Viscous	energy	loss	in	the	presence	of	abnormal	aortic	flow,”	Magn.	Reson.	

Med.,	vol.	72,	no.	3,	pp.	620–628,	2014.	

[17]	 P.	D.	 Stein	and	H.	N.	 Sabbah,	 “Turbulent	blood	 flow	 in	 the	ascending	aorta	of	humans	with	

normal	and	diseased	aortic	valves.,”	Circ.	Res.,	vol.	39,	no.	1,	pp.	58–65,	1976.	

[18]	 C.	 W.	 Akins,	 B.	 Travis,	 and	 A.	 P.	 Yoganathan,	 “Energy	 loss	 for	 evaluating	 heart	 valve	

performance,”	J.	Thorac.	Cardiovasc.	Surg.,	vol.	136,	no.	4,	pp.	820–833,	2008.	

[19]	 H.	Haraldsson	et	al.,	“Assessment	of	Reynolds	stress	components	and	turbulent	pressure	loss	

using	4D	 flow	MRI	with	extended	motion	encoding,”	Magn.	Reson.	Med.,	 vol.	79,	no.	4,	pp.	

1962–1971,	2018.	

[20]	 P.	Dyverfeldt,	A.	Sigfridsson,	J.	P.	E.	Kvitting,	and	T.	Ebbers,	“Quantification	of	intravoxel	velocity	

standard	deviation	and	turbulence	intensity	by	generalizing	phase-contrast	MRI,”	Magn.	Reson.	

Med.,	vol.	56,	no.	4,	pp.	850–858,	2006.	

[21]	 P.	Dyverfeldt,	M.	D.	Hope,	E.	E.	Tseng,	and	D.	Saloner,	“Magnetic	resonance	measurement	of	

turbulent	kinetic	energy	for	the	estimation	of	irreversible	pressure	loss	in	aortic	stenosis,”	JACC	

Cardiovasc.	Imaging,	vol.	6,	no.	1,	pp.	64–71,	2013.	

[22]	 C.	 Binter,	 A.	 Gotschy,	 R.	 Manka,	 and	 S.	 Kozerke,	 “Turbulent	 Kinetic	 Energy	 Assessed	 by	

Multipoint	4D	Flow	MRI	Provides	Additional	Information	Relative	to	Echocardiography	for	the	

Determination	of	Aortic	Stenosis	Severity,”	Circ.	Cardiovasc.	Imaging,	2017.	

[23]	 J.	Zajac,	J.	Eriksson,	P.	Dyverfeldt,	A.	F.	Bolger,	T.	Ebbers,	and	C.-J.	Carlhäll,	“Turbulent	kinetic	

energy	in	normal	and	myopathic	left	ventricles,”	J.	Magn.	Reson.	Imaging,	vol.	41,	no.	4,	pp.	

1021–1029,	2015.	

[24]	 K.	M.	Hasan,	D.	L.	Parker,	and	A.	L.	Alexander,	“Comparison	of	gradient	encoding	schemes	for	



101	

diffusion-tensor	MRI,”	J.	Magn.	Reson.	Imaging,	vol.	13,	no.	5,	pp.	769–780,	2001.	

[25]	 C.	Binter,	V.	Knobloch,	A.	Sigfridsson,	and	S.	Kozerke,	“Direct	quantification	of	turbulent	shear	

stresses	 by	multi-point	 phase-contrast	MRI,”	 in	Proceedings	 of	 the	 20th	 Annual	Meeting	 of	

ISMRM,	2012,	p.	199.	

[26]	 H.	 Ha	 et	 al.,	 “Estimating	 the	 irreversible	 pressure	 drop	 across	 a	 stenosis	 by	 quantifying	

turbulence	production	using	4D	Flow	MRI,”	Nat.	Publ.	Gr.,	vol.	7,	no.	November	2016,	pp.	1–14,	

2017.	

[27]	 H.	Ha,	J.	Lantz,	H.	Haraldsson,	B.	Casas,	and	M.	Ziegler,	“Assessment	of	turbulent	viscous	stress	

using	ICOSA	4D	Flow	MRI	for	prediction	of	hemodynamic	blood	damage,”	ISMRM	Flow	Motion	

Work.	2016,	p.	2000,	2016.	

[28]	 C.	 J.	 Elkins,	M.	 T.	Alley,	 L.	 Saetran,	 and	 J.	 K.	 Eaton,	 “Three-dimensional	magnetic	 resonance	

velocimetry	measurements	of	turbulence	quantities	in	complex	flow,”	Exp.	Fluids,	vol.	46,	no.	

2,	pp.	285–296,	2009.	

[29]	 H.	Ha,	J.	P.	E.	Kvitting,	P.	Dyverfeldt,	and	T.	Ebbers,	“Validation	of	pressure	drop	assessment	

using	4D	flow	MRI-based	turbulence	production	in	various	shapes	of	aortic	stenoses,”	Magn.	

Reson.	Med.,	no.	February,	pp.	893–906,	2018.	

[30]	 D.	A.	Feinberg,	J.	D.	Hale,	J.	C.	Watts,	L.	Kaufman,	and	A.	Mark,	“Halving	MR	imaging	time	by	

conjugation:	demonstration	at	3.5	kG.,”	Radiology,	vol.	161,	no.	2,	pp.	527–531,	1986.	

[31]	 J.	 Cuppen	and	A.	 van	Est,	 “Reducing	MR	 imaging	 time	by	one-sided	 reconstruction,”	Magn.	

Reson.	Imaging,	vol.	5,	no.	6,	pp.	526–527,	1987.	

[32]	 M.	Lustig,	D.	Donoho,	and	J.	M.	Pauly,	“Sparse	MRI:	The	application	of	compressed	sensing	for	

rapid	MR	imaging,”	Magn.	Reson.	Med.,	vol.	58,	no.	6,	pp.	1182–1195,	2007.	

[33]	 T.	Zhang,	J.	M.	Pauly,	and	I.	R.	Levesque,	“Accelerating	parameter	mapping	with	a	locally	low	

rank	constraint,”	Magn.	Reson.	Med.,	vol.	73,	no.	2,	pp.	655–661,	2015.	

[34]	 G.	 Valvano	 et	 al.,	 “Accelerating	 4D	 flow	 MRI	 by	 exploiting	 low-rank	 matrix	 structure	 and	

hadamard	sparsity,”	Magn.	Reson.	Med.,	vol.	78,	no.	4,	pp.	1330–1341,	2017.	

[35]	 R.	 Otazo,	 E.	 Candès,	 and	 D.	 K.	 Sodickson,	 “Low-rank	 plus	 sparse	 matrix	 decomposition	 for	

accelerated	dynamic	MRI	with	 separation	of	background	and	dynamic	 components,”	Magn.	

Reson.	Med.,	vol.	73,	no.	3,	pp.	1125–1136,	2015.	

[36]	 L.	Feng,	L.	Axel,	H.	Chandarana,	K.	T.	Block,	D.	K.	Sodickson,	and	R.	Otazo,	“XD-GRASP:	Golden-

angle	 radial	 MRI	 with	 reconstruction	 of	 extra	 motion-state	 dimensions	 using	 compressed	

sensing,”	Magn.	Reson.	Med.,	vol.	75,	no.	2,	pp.	775–788,	2016.	

[37]	 D.	 C.	 Noll,	 D.	 G.	 Nishimura,	 and	 A.	Macovski,	 “Homodyne	 detection	 in	magnetic	 resonance	



102	

imaging,”	IEEE	Trans.	Med.	Imaging,	vol.	10,	no.	2,	pp.	154–163,	1991.	

[38]	 K.	P.	Pruessmann,	M.	Weiger,	M.	B.	Scheidegger,	and	P.	Boesiger,	“SENSE:	Sensitivity	encoding	

for	fast	MRI,”	Magn.	Reson.	Med.,	vol.	42,	no.	5,	pp.	952–962,	1999.	

[39]	 Y.	LeCun,	Y.	Bengio,	and	G.	Hinton,	“Deep	learning,”	Nature,	vol.	521,	p.	436,	May	2015.	

[40]	 M.	Kouwenhoven,	M.	B.	M.	Hofman,	and	M.	Sprenger,	“Motion	 induced	phase	shifts	 in	MR:	

acceleration	 effects	 in	 quantitative	 flow	 measurements—a	 reconsideration,”	Magn.	 Reson.	

Med.,	vol.	33,	no.	6,	pp.	766–777,	1995.	

[41]	 S.	 A.	 E.	 D.	 R.	 Pelc	 Norbert	 J.	 Herfkens	 Robert	 J.,	 “Phase	 contrast	 cine	magnetic	 resonance	

imaging.,”	Magn.	Reson.	Q.,	1991.	

[42]	 A.	T.	Lee,	G.	Bruce	Pike,	and	N.	 J.	Pelc,	 “Three-Point	Phase-Contrast	Velocity	Measurements	

with	Increased	Velocity-to-Noise	Ratio,”	Magn.	Reson.	Med.,	vol.	33,	no.	1,	pp.	122–126,	1995.	

[43]	 P.	 Chai	 and	 R.	 Mohiaddin,	 “How	 we	 perform	 cardiovascular	 magnetic	 resonance	 flow	

assessment	using	phase-contrast	velocity	mapping,”	J.	Cardiovasc.	Magn.	Reson.,	vol.	7,	no.	4,	

pp.	705–716,	2005.	

[44]	 E.	Bollache,	P.	van	Ooij,	A.	Powell,	J.	Carr,	M.	Markl,	and	A.	J.	Barker,	“Comparison	of	4D	flow	

and	 2D	 velocity-encoded	 phase	 contrast	 MRI	 sequences	 for	 the	 evaluation	 of	 aortic	

hemodynamics,”	Int.	J.	Cardiovasc.	Imaging,	vol.	32,	no.	10,	2016.	

[45]	 N.	 J.	 Pelc,	M.	A.	Bernstein,	A.	 Shimakawa,	 and	G.	H.	Glover,	 “Encoding	 strategies	 for	 three-

direction	phase-contrast	MR	imaging	of	flow.,”	J.	Magn.	Reson.	Imaging,	vol.	1,	no.	4,	pp.	405–

13,	Jan.	1991.	

[46]	 K.	M.	 Johnson	 and	M.	Markl,	 “Improved	 SNR	 in	 phase	 contrast	 velocimetry	with	 five-point	

balanced	flow	encoding,”	Magn.	Reson.	Med.,	vol.	63,	no.	2,	pp.	349–355,	2010.	

[47]	 N.	R.	Zwart	and	 J.	G.	Pipe,	“Multidirectional	high-moment	encoding	 in	phase	contrast	MRI,”	

Magn.	Reson.	Med.,	vol.	69,	no.	6,	pp.	1553–1564,	2013.	

[48]	 A.	 A.	 Joseph	 et	 al.,	 “Real-time	 phase-contrast	 MRI	 of	 cardiovascular	 blood	 flow	 using	

undersampled	radial	fast	low-angle	shot	and	nonlinear	inverse	reconstruction,”	NMR	Biomed.,	

vol.	25,	no.	7,	pp.	917–924,	2012.	

[49]	 M.	 Fasshauer	 et	 al.,	 “Real-time	 phase-contrast	 flow	MRI	 of	 haemodynamic	 changes	 in	 the	

ascending	aorta	and	superior	vena	cava	during	Mueller	manoeuvre,”	Clin.	Radiol.,	vol.	69,	no.	

10,	pp.	1066–1071,	2014.	

[50]	 E.	 Bollache	et	 al.,	 “k-t	 accelerated	 aortic	 4D	 flow	MRI	 in	under	 two	minutes:	 feasibility	 and	

impact	 of	 resolution,	 k-space	 sampling	 patterns,	 and	 respiratory	 navigator	 gating	 on	

hemodynamic	measurements,”	Magn.	Reson.	Med.,	vol.	79,	no.	1,	pp.	195–207,	2018.	



103	

[51]	 P.	Dyverfeldt	and	T.	Ebbers,	“Comparison	of	respiratory	motion	suppression	techniques	for	4D	

flow	MRI,”	Magn.	Reson.	Med.,	vol.	78,	no.	5,	pp.	1877–1882,	2017.	

[52]	 P.	 Dyverfeldt	 et	 al.,	 “4D	 flow	 cardiovascular	 magnetic	 resonance	 consensus	 statement,”	 J.	

Cardiovasc.	Magn.	Reson.,	vol.	17,	no.	1,	p.	1,	2015.	

[53]	 C.	 Santelli	 et	 al.,	 “Respiratory	 bellows	 revisited	 for	 motion	 compensation:	 preliminary	

experience	for	cardiovascular	MR.,”	Magn.	Reson.	Med.,	vol.	65,	no.	4,	pp.	1097–1102,	2011.	

[54]	 S.	 Uribe,	 P.	 Beerbaum,	 T.	 S.	 Sørensen,	 A.	 Rasmusson,	 R.	 Razavi,	 and	 T.	 Schaeffter,	 “Four-

dimensional	 (4D)	 flow	of	 the	whole	heart	 and	great	 vessels	using	 real-time	 respiratory	 self-

gating,”	Magn.	Reson.	Med.,	vol.	62,	no.	4,	pp.	984–992,	2009.	

[55]	 A.	 Sigfridsson,	 L.	 Wigström,	 J.	 P.	 E.	 Kvitting,	 and	 H.	 Knutsson,	 “k-t2	 BLAST:	 Exploiting	

spatiotemporal	structure	 in	simultaneously	cardiac	and	respiratory	 time-resolved	volumetric	

imaging,”	Magn.	Reson.	Med.,	vol.	58,	no.	5,	pp.	922–930,	2007.	

[56]	 J.	Y.	Cheng	et	al.,	“Comprehensive	Multi-Dimensional	MRI	for	the	Simultaneous	Assessment	of	

Cardiopulmonary	Anatomy	and	Physiology,”	Sci.	Rep.,	vol.	7,	no.	1,	pp.	6–9,	2017.	

[57]	 S.	B.	Pope,	“Turbulent	flows.”	IOP	Publishing,	2001.	

[58]	 C.	Binter,	V.	Knobloch,	R.	Manka,	A.	Sigfridsson,	and	S.	Kozerke,	“Bayesian	multipoint	velocity	

encoding	for	concurrent	flow	and	turbulence	mapping,”	Magn.	Reson.	Med.,	vol.	69,	no.	5,	pp.	

1337–1345,	2013.	

[59]	 D.	G.	Taylor	and	M.	C.	Bushell,	“The	spatial	mapping	of	translational	diffusion	coefficients	by	

the	NMR	imaging	technique,”	Phys.	Med.	Biol.,	vol.	30,	no.	4,	p.	345,	1985.	

[60]	 G.	McGibney,	M.	R.	Smith,	S.	T.	Nichols,	and	A.	Crawley,	“Quantitative	evaluation	of	several	

partial	Fourier	reconstruction	algorithms	used	in	MRI,”	Magn.	Reson.	Med.,	vol.	30,	no.	1,	pp.	

51–59,	1993.	

[61]	 Klaas	P.	Pruessmann,	“Advances	 in	Sensitivity	Encoding	With	Arbitrary	k-Space	Trajectories,”	

vol.	651,	pp.	638–651,	2001.	

[62]	 S.	Winkelmann,	T.	Schaeffter,	T.	Koehler,	H.	Eggers,	and	O.	Doessel,	“An	optimal	radial	profile	

order	based	on	the	golden	ratio	for	time-resolved	MRI,”	IEEE	Trans.	Med.	Imaging,	vol.	26,	no.	

1,	pp.	68–76,	2007.	

[63]	 J.	Y.	Cheng	et	al.,	“Comprehensive	motion-compensated	highly	accelerated	4D	flow	MRI	with	

ferumoxytol	enhancement	 for	pediatric	 congenital	heart	disease,”	 J.	Magn.	Reson.	 Imaging,	

vol.	43,	no.	6,	pp.	1355–1368,	2016.	

[64]	 E.	M.	Haacke,	E.	D.	Lindskogj,	and	W.	Lin,	“A	fast,	iterative,	partial-fourier	technique	capable	of	

local	phase	recovery,”	J.	Magn.	Reson.,	vol.	92,	no.	1,	pp.	126–145,	1991.	



104	

[65]	 P.	B.	Roemer,	W.	A.	Edelstein,	C.	E.	Hayes,	S.	P.	Souza,	and	O.	M.	Mueller,	“The	NMR	phased	

array,”	Magn.	Reson.	Med.,	vol.	16,	no.	2,	pp.	192–225,	1990.	

[66]	 A.	 N.	 Tikhonov	 and	 V.	 Y.	 Arsenin,	 “Solution	 of	 incorrectly	 formulated	 problems	 and	 the	

regularization	method,”	Sov.	Math.	Dokl.,	vol.	4,	1963.	

[67]	 M.	A.	Griswold	et	al.,	 “Generalized	Autocalibrating	Partially	Parallel	Acquisitions	 (GRAPPA),”	

Magn.	Reson.	Med.,	vol.	47,	no.	6,	pp.	1202–1210,	2002.	

[68]	 M.	Lustig	and	J.	M.	Pauly,	“SPIRiT:	Iterative	self-consistent	parallel	imaging	reconstruction	from	

arbitrary	k-space,”	Magn.	Reson.	Med.,	vol.	64,	no.	2,	pp.	457–471,	2010.	

[69]	 M.	 Uecker	 et	 al.,	 “ESPIRiT—an	 eigenvalue	 approach	 to	 autocalibrating	 parallel	MRI:	 where	

SENSE	meets	GRAPPA,”	Magn.	Reson.	Med.,	vol.	71,	no.	3,	pp.	990–1001,	2014.	

[70]	 F.	Wiesinger,	P.	Boesiger,	and	K.	P.	Pruessmann,	“Electrodynamics	and	ultimate	SNR	in	parallel	

MR	imaging,”	Magn.	Reson.	Med.	An	Off.	J.	Int.	Soc.	Magn.	Reson.	Med.,	vol.	52,	no.	2,	pp.	376–

390,	2004.	

[71]	 Z.-P.	Liang	and	Z.-P.Liang,	“Spatiotemporal	Imaging	with	Partially	Separable	Functions,”	IEEE	Int.	

Symp.	Biomed.	Imaging,	vol.	2,	pp.	988–991,	2007.	

[72]	 J.	Tsao,	P.	Boesiger,	K.	P.	Pruessmann,	T.	J1,	B.	P,	and	P.	KP.,	“k-t	BLAST	and	k-t	SENSE:	Dynamic	

MRI	with	high	frame	rate	exploiting	spatiotemporal	correlations,”	Magn.	Reson.	Med.,	vol.	50,	

no.	5,	pp.	1031–1042,	2003.	

[73]	 H.	Pedersen,	S.	Kozerke,	S.	Ringgaard,	K.	Nehrke,	W.	Kim,	and	Y.	K.	Won,	“K-t	PCA:	Temporally	

constrained	k-t	BLAST	reconstruction	using	principal	component	analysis,”	Magn.	Reson.	Med.,	

vol.	62,	no.	3,	pp.	706–716,	2009.	

[74]	 H.	 Rauhut,	 “Sparse	 Approximation,”	 in	 Encyclopedia	 of	 applied	 and	 computational	

mathematics,	B.	Engquist,	Ed.	Springer	Berlin	Heidelberg,	2015,	pp.	1344–1349.	

[75]	 D.	L.	Donoho,	“For	most	 large	underdetermined	systems	of	 linear	equations	the	minimal	 l1-

norm	solution	is	also	the	sparsest	solution,”	Comm.	Pure	Appl.	Math,	vol.	59,	no.	6,	pp.	797–

829,	2006.	

[76]	 N.	Parikh	and	S.	Boyd,	“Proximal	Algorithms,”	Found.	Trends	Optim.,	vol.	1,	no.	3,	pp.	127–239,	

2014.	

[77]	 A.	Beck	and	M.	Teboulle,	 “A	 fast	 iterative	 shrinkage-thresholding	algorithm,”	Soc.	 Ind.	Appl.	

Math.	J.	Imaging	Sci.,	vol.	2,	no.	1,	pp.	183–202,	2009.	

[78]	 S.	Boyd	et	al.,	“Distributed	Optimization	and	Statistical	Learning	via	the	Alternating	Direction	

Method	of	Multipliers,”	Found.	Trends	Mach.	Learn.,	vol.	3,	no.	1,	pp.	1–122,	2011.	



105	

[79]	 K.	T.	Block,	M.	Uecker,	and	J.	Frahm,	“Undersampled	radial	MRI	with	multiple	coils.	 Iterative	

image	reconstruction	using	a	total	variation	constraint,”	Magn.	Reson.	Med.	An	Off.	J.	Int.	Soc.	

Magn.	Reson.	Med.,	vol.	57,	no.	6,	pp.	1086–1098,	2007.	

[80]	 J.	C.	Ye,	S.	Tak,	Y.	Han,	and	H.	W.	Park,	“Projection	reconstruction	MR	imaging	using	FOCUSS,”	

Magn.	Reson.	Med.	An	Off.	J.	Int.	Soc.	Magn.	Reson.	Med.,	vol.	57,	no.	4,	pp.	764–775,	2007.	

[81]	 J.	M.	Santos	et	al.,	“Single	breath-hold	whole-heart	MRA	using	variable-density	spirals	at	3T,”	

Magn.	Reson.	Med.	An	Off.	J.	Int.	Soc.	Magn.	Reson.	Med.,	vol.	55,	no.	2,	pp.	371–379,	2006.	

[82]	 D.	L.	Donoho	and	others,	“Compressed	sensing,”	IEEE	Trans.	Inf.	theory,	vol.	52,	no.	4,	pp.	1289–

1306,	2006.	

[83]	 E.	Candes,	J.	Romberg,	and	T.	Tao,	“Robust	uncertainty	principles:	Exact	signal	reconstruction	

from	highly	incomplete	frequency	information,”	arXiv	Prepr.	math/0409186,	2004.	

[84]	 M.	Seeger,	H.	Nickisch,	R.	Pohmann,	and	B.	Schölkopf,	“Optimization	of	k-space	trajectories	for	

compressed	sensing	by	Bayesian	experimental	design,”	Magn.	Reson.	Med.	An	Off.	J.	Int.	Soc.	

Magn.	Reson.	Med.,	vol.	63,	no.	1,	pp.	116–126,	2010.	

[85]	 T.	Wech	et	al.,	 “Resolution	evaluation	of	MR	 images	reconstructed	by	 iterative	 thresholding	

algorithms	for	compressed	sensing,”	Med.	Phys.,	vol.	39,	no.	7Part1,	pp.	4328–4338,	2012.	

[86]	 R.	Ahmad,	H.	Xue,	S.	Giri,	Y.	Ding,	 J.	Craft,	and	O.	P.	Simonetti,	“Variable	density	 incoherent	

spatiotemporal	acquisition	(VISTA)	for	highly	accelerated	cardiac	MRI,”	Magn.	Reson.	Med.,	vol.	

74,	no.	5,	pp.	1266–1278,	2015.	

[87]	 J.	Y.	Cheng,	T.	Zhang,	M.	T.	Alley,	M.	Lustig,	S.	S.	Vasanawala,	and	J.	M.	Pauly,	“Variable	Density	

Radial	View-	Ordering	and	Sampling	for	Time-Optimized	3D	Cartesian	Imaging,”	Proc.	ISMRM	

Work.	Data	Sampl.	Image	Reconstr.,	p.	3,	2013.	

[88]	 A.	Rich,	L.	C.	Potter,	N.	Jin,	J.	Ash,	O.	P.	Simonetti,	and	R.	Ahmad,	“A	Bayesian	model	for	highly	

accelerated	phase-contrast	MRI,”	Magn.	Reson.	Med.,	vol.	76,	no.	2,	pp.	689–701,	2016.	

[89]	 M.	Lustig,	J.	M.	Santos,	D.	L.	Donoho,	and	J.	M.	Pauly,	“kt	SPARSE:	High	frame	rate	dynamic	MRI	

exploiting	 spatio-temporal	 sparsity,”	 in	Proceedings	 of	 the	 13th	 Annual	Meeting	 of	 ISMRM,	

Seattle,	2006,	vol.	2420.	

[90]	 C.	Santelli,	M.	Loecher,	J.	Busch,	O.	Wieben,	T.	Schaeffter,	and	S.	Kozerke,	“Accelerating	4D	flow	

MRI	by	exploiting	vector	field	divergence	regularization,”	Magn.	Reson.	Med.,	vol.	75,	no.	1,	pp.	

115–125,	2016.	

[91]	 F.	 Ong	 et	 al.,	 “Robust	 4D	 flow	 denoising	 using	 divergence-free	 wavelet	 transform,”	Magn.	

Reson.	Med.,	vol.	73,	no.	2,	pp.	828–842,	2015.	

[92]	 P.	 D.	 Tafti,	 R.	 Delgado-Gonzalo,	 A.	 F.	 Stalder,	 and	M.	Unser,	 “Variational	 enhancement	 and	



106	

denoising	of	flow	field	images,”	in	2011	IEEE	International	Symposium	on	Biomedical	Imaging:	

From	Nano	to	Macro,	2011,	pp.	1061–1064.	

[93]	 F.	Ong,	J.	Cheng,	and	M.	Lustig,	“General	phase	regularized	reconstruction	with	phase	cycling,”	

arXiv	Prepr.	arXiv1709.05374,	vol.	224,	no.	3,	pp.	12–14,	2017.	

[94]	 	and	 V.	 S.	 L.	 D.	 Kim,	H.	 A.	 Dyvorne,	 R.	Otazo,	 L.	 Feng,	 D.	 K.	 Sodickson,	 “Accelerated	 Phase-

Contrast	Cine	MRI	Using	k-t	SPARSE-SENSE,”	Magn.	Reson.	Med.,	vol.	67,	no.	4,	pp.	1054–1064,	

2009.	

[95]	 J.	V.	Velikina	and	A.	A.	Samsonov,	“Reconstruction	of	dynamic	image	series	from	undersampled	

MRI	data	using	data-driven	model	consistency	condition	(MOCCO),”	Magn.	Reson.	Med.,	vol.	

74,	no.	5,	pp.	1279–1290,	2015.	

[96]	 J.-F.	 Cai,	 E.	 J.	 Candès,	 and	 Z.	 Shen,	 “A	 singular	 value	 thresholding	 algorithm	 for	 matrix	

completion,”	SIAM	J.	Optim.,	vol.	20,	no.	4,	pp.	1956–1982,	2010.	

[97]	 D.	Kim,	H.	A.	Dyvorne,	R.	Otazo,	L.	Feng,	D.	K.	Sodickson,	and	V.	S.	Lee,	“Accelerated	phase-

contrast	cine	MRI	using	k-t	SPARSE-SENSE,”	Magn.	Reson.	Med.,	vol.	67,	no.	4,	pp.	1054–1064,	

Apr.	2012.	

[98]	 J.	Trzasko,	A.	Manduca,	and	E.	Borisch,	“Local	versus	global	low-rank	promotion	in	dynamic	MRI	

series	reconstruction,”	in	Proceedings	of	the	19th	Annual	Meeting	of	ISMRM,	2011,	p.	4371.	

[99]	 D.	 Giese,	 T.	 Schaeffter,	 and	 S.	 Kozerke,	 “Highly	 undersampled	 phase-contrast	 flow	

measurements	 using	 compartment-based	 k-t	 principal	 component	 analysis,”	Magn.	 Reson.	

Med.,	2013.	

[100]	 J.	He,	Q.	Liu,	A.	Christodoulou,	C.	Ma,	F.	Lam,	and	Z.-P.	Liang,	“Accelerated	High-Dimensional	

MR	 Imaging	With	Sparse	Sampling	Using	Low-Rank	Tensors,”	 IEEE	Trans.	Med.	 Imaging,	 vol.	

0062,	no.	c,	pp.	1–1,	2016.	

[101]	 A.	G.	Christodoulou	et	al.,	“Magnetic	resonance	multitasking	for	motion-resolved	quantitative	

cardiovascular	imaging,”	Nat.	Biomed.	Eng.,	vol.	2,	no.	4,	pp.	215–226,	Apr.	2018.	

[102]	 L.	R.	Tucker,	“Some	mathematical	notes	on	three-mode	factor	analysis,”	Psychometrika,	vol.	31,	

no.	3,	pp.	279–311,	1966.	

[103]	 B.	A.	Runderkamp	et	al.,	“Accelerated	4D	flow	MRI	using	a	Low-Rank	Tensor	reconstruction,”	in	

Proc.	Intl.	Soc.	Mag.	Reson.	Med.	27	(2019),	2019,	p.	1958.	

[104]	 E.	J.	Candès,	X.	Li,	Y.	Ma,	and	J.	Wright,	“Robust	principal	component	analysis?,”	J.	ACM,	vol.	58,	

no.	3,	p.	11,	2011.	

[105]	 B.	Tremoulheac,	N.	Dikaios,	D.	Atkinson,	and	S.	R.	Arridge,	“Dynamic	MR	image	reconstruction-

separation	 from	undersampled	 (k,t)-Space	 via	 low-rank	plus	 sparse	prior,”	 IEEE	 Trans.	Med.	



107	

Imaging,	vol.	33,	no.	8,	pp.	1689–1701,	2014.	

[106]	 J.	Caballero,	A.	N.	Price,	D.	Rueckert,	and	J.	V.	Hajnal,	“Dictionary	learning	and	time	sparsity	for	

dynamic	MR	data	reconstruction,”	IEEE	Trans.	Med.	Imaging,	vol.	33,	no.	4,	pp.	979–994,	2014.	

[107]	 S.	G.	Lingala	and	M.	Jacob,	“Blind	compressive	sensing	dynamic	MRI,”	IEEE	Trans.	Med.	Imaging,	

vol.	32,	no.	6,	pp.	1132–1145,	2013.	

[108]	 S.	Ravishankar	and	Y.	Bresler,	 “MR	 image	 reconstruction	 from	highly	undersampled	k-space	

data	by	dictionary	learning,”	IEEE	Trans.	Med.	Imaging,	vol.	30,	no.	5,	pp.	1028–1041,	2011.	

[109]	 J.	 F.	M.	 Schmidt	 and	 S.	 Kozerke,	 “Dynamic	 Cardiac	MR	 Image	 Reconstruction	Models	Using	

Machine	Learning	on	Large	Training	Data	Sets,”	in	Proceedings	of	the	25th	Annual	Meeting	of	

ISMRM,	Honolulu,	Hawaii,	USA,	2017,	p.	3991.	

[110]	 K.	 Hammernik	et	 al.,	 “Learning	 a	 variational	 network	 for	 reconstruction	 of	 accelerated	MRI	

data,”	Magn.	Reson.	Med.,	vol.	79,	no.	6,	pp.	3055–3071,	2018.	

[111]	 M.	Mardani	et	al.,	“Deep	generative	adversarial	neural	networks	for	compressive	sensing	MRI,”	

IEEE	Trans.	Med.	Imaging,	vol.	38,	no.	1,	pp.	167–179,	2018.	

[112]	 M.	Akçakaya,	S.	Moeller,	S.	Weingärtner,	and	K.	Uğurbil,	“Scan-specific	robust	artificial-neural-

networks	for	k-space	interpolation	(RAKI)	reconstruction:	Database-free	deep	learning	for	fast	

imaging,”	Magn.	Reson.	Med.,	vol.	81,	no.	1,	pp.	439–453,	2019.	

[113]	 I.	Goodfellow,	Y.	Bengio,	and	A.	Courville,	Deep	learning.	MIT	press,	2016.	

[114]	 B.	Zhu,	J.	Z.	Liu,	S.	F.	Cauley,	B.	R.	Rosen,	and	M.	S.	Rosen,	“Image	reconstruction	by	domain-

transform	manifold	learning,”	Nature,	vol.	555,	no.	7697,	p.	487,	2018.	

[115]	 K.	H.	 Jin,	M.	T.	McCann,	E.	Froustey,	and	M.	Unser,	“Deep	convolutional	neural	network	 for	

inverse	problems	in	imaging,”	IEEE	Trans.	Image	Process.,	vol.	26,	no.	9,	pp.	4509–4522,	2017.	

[116]	 A.	Hauptmann,	S.	Arridge,	F.	Lucka,	V.	Muthurangu,	and	J.	A.	Steeden,	“Real-time	cardiovascular	

MR	 with	 spatio-temporal	 artifact	 suppression	 using	 deep	 learning--proof	 of	 concept	 in	

congenital	heart	disease,”	Magn.	Reson.	Med.,	vol.	81,	no.	2,	pp.	1143–1156,	2019.	

[117]	 G.	Yang	et	al.,	“DAGAN:	deep	de-aliasing	generative	adversarial	networks	for	fast	compressed	

sensing	MRI	reconstruction,”	IEEE	Trans.	Med.	Imaging,	vol.	37,	no.	6,	pp.	1310–1321,	2017.	

[118]	 V.	Antun,	F.	Renna,	C.	Poon,	B.	Adcock,	and	A.	C.	Hansen,	“On	instabilities	of	deep	learning	in	

image	reconstruction-Does	AI	come	at	a	cost?,”	arXiv	Prepr.	arXiv1902.05300,	2019.	

[119]	 J.	 Schlemper,	 J.	 Caballero,	 J.	 V.	 Hajnal,	 A.	 N.	 Price,	 and	 D.	 Rueckert,	 “A	 Deep	 Cascade	 of	

Convolutional	 Neural	 Networks	 for	 Dynamic	 MR	 Image	 Reconstruction,”	 IEEE	 Trans.	 Med.	

Imaging,	vol.	37,	no.	2,	pp.	491–503,	2018.	



108	

[120]	 M.	Mardani,	 Q.	 Sun,	 S.	 Vasawanala,	 and	 V.	 Papyan,	 “Neural	 Proximal	 Gradient	 Descent	 for	

Compressive	Imaging,”	no.	Nips,	pp.	1–11,	2018.	

[121]	 J.	Y.	Cheng,	F.	Chen,	C.	Sandino,	M.	Mardani,	J.	M.	Pauly,	and	S.	S.	Vasanawala,	“Compressed	

Sensing:	From	Research	to	Clinical	Practice	with	Data-Driven	Learning,”	pp.	1–18,	2019.	

[122]	 H.	K.	Aggarwal,	M.	P.	Mani,	and	M.	Jacob,	“MoDL:	Model-Based	Deep	Learning	Architecture	for	

Inverse	Problems,”	IEEE	Trans.	Med.	Imaging,	vol.	38,	no.	2,	pp.	394–405,	2019.	

[123]	 K.	Gregor	and	Y.	LeCun,	“Learning	fast	approximations	of	sparse	coding,”	in	Proceedings	of	the	

27th	 International	 Conference	 on	 International	 Conference	 on	Machine	 Learning,	 2010,	 pp.	

399–406.	

[124]	 S.	Roth	and	M.	J.	Black,	“Fields	of	experts,”	Int.	J.	Comput.	Vis.,	vol.	82,	no.	2,	p.	205,	2009.	

[125]	 I.	Goodfellow	et	al.,	“Generative	adversarial	nets,”	in	Advances	in	neural	information	processing	

systems,	2014,	pp.	2672–2680.	

[126]	 D.	 Narnhofer,	 K.	 Hammernik,	 F.	 Knoll,	 and	 T.	 Pock,	 “Inverse	 GANs	 for	 accelerated	 MRI	

reconstruction,”	in	Wavelets	and	Sparsity	XVIII,	2019,	vol.	11138,	p.	111381A.	

[127]	 F.	Knoll,	K.	Hammernik,	E.	Kobler,	T.	Pock,	M.	P.	Recht,	and	D.	K.	Sodickson,	“Assessment	of	the	

generalization	of	learned	image	reconstruction	and	the	potential	for	transfer	learning,”	Magn.	

Reson.	Med.,	May	2018.	

[128]	 C.	Binter,	U.	Gülan,	M.	Holzner,	and	S.	Kozerke,	“On	the	accuracy	of	viscous	and	turbulent	loss	

quantification	in	stenotic	aortic	flow	using	phase-contrast	MRI,”	Magn.	Reson.	Med.,	vol.	76,	

no.	1,	pp.	191–196,	2016.	

[129]	 T.	Küstner	et	al.,	“MR	image	reconstruction	using	a	combination	of	compressed	sensing	and	

partial	 Fourier	 acquisition:	 ESPReSSo,”	 IEEE	Trans.	Med.	 Imaging,	 vol.	 35,	 no.	 11,	 pp.	 2447–

2458,	2016.	

[130]	 G.	 Szarf	 et	 al.,	 “Zero	 filled	 partial	 Fourier	 phase	 contrast	 MR	 imaging:	 In	 vitro	 and	 in	 vivo	

assessment,”	J.	Magn.	Reson.	Imaging,	vol.	23,	no.	1,	pp.	42–49,	2006.	

[131]	 T.	K.	F.	Foo,	“Producing	a	phase	contrast	MR	image	from	a	partial	Fourier	data	acquisition.	US	

Patent	6,393,313	B1.	August	23,	2000,”	US6393313	B1,	2002.	

[132]	 G.	 Li	 et	 al.,	 “An	 L1-norm	 phase	 constraint	 for	 half-Fourier	 compressed	 sensing	 in	 3D	 MR	

imaging,”	Magn.	Reson.	Mater.	Physics,	Biol.	Med.,	vol.	28,	no.	5,	pp.	459–472,	2015.	

[133]	 M.	Doneva,	P.	Börnert,	H.	Eggers,	and	A.	Mertins,	“Partial	Fourier	compressed	sensing,”	Proc.	

Int.	Soc.	Magn.	Reson.	Med.,	vol.	18,	p.	4851,	2010.	

[134]	 S.	Ma,	W.	Yin,	Y.	Zhang,	and	A.	Chakraborty,	“An	efficient	algorithm	for	compressed	MR	imaging	



109	

using	total	variation	and	wavelets,”	in	IEEE	International	Conference	on	Computer	Vision	and	

Pattern	Recognition	(CVPR)	2008,	2008,	pp.	1–8.	

[135]	 M.	B.	Scheidegger,	S.	E.	Maier,	and	P.	Boesiger,	“FID-Acquired-Echos	(FAcE):	A	short	echo	time	

imaging	method	for	flow	artefact	suppression,”	Magn.	Reson.	Imaging,	vol.	9,	no.	4,	pp.	517–

524,	1991.	

[136]	 J.	C.	Gatenby	and	J.	C.	Gore,	“Mapping	of	turbulent	intensity	by	magnetic	resonance	imaging,”	

Journal	of	Magnetic	Resonance,	Series	B,	vol.	104,	no.	2.	pp.	119–126,	1994.	

[137]	 K.	S.	Nayak	et	al.,	“Cardiovascular	magnetic	resonance	phase	contrast	imaging.,”	J.	Cardiovasc.	

Magn.	Reson.,	vol.	17,	no.	1,	p.	71,	Jan.	2015.	

[138]	 M.	A.	Bernstein,	K.	F.	King,	and	X.	J.	Zhou,	Handbook	of	MRI	pulse	sequences.	Elsevier,	2004.	

[139]	 P.	 Margosian	 and	 F.	 Schmitt,	 “Faster	 MR	 imaging:	 imaging	 with	 half	 the	 data,”	Heal.	 Care	

Instrum.,	vol.	1,	no.	6,	pp.	195–197,	1986.	

[140]	 Z.	Liang,	F.	E.	Boda,	R.	T.	Constable,	E.	M.	Haacke,	P.	C.	Lauterbur,	and	M.	R.	Smith,	“Constrained	

reconstruction	methods	in	MR	imaging,”	Rev.	Magn.	Reson.	Med.,	vol.	4,	no.	217,	pp.	67–185,	

1992.	

[141]	 A.	A.	 Samsonov,	 E.	G.	Kholmovski,	D.	 L.	 Parker,	 and	C.	R.	 Johnson,	 “POCSENSE:	POCS-based	

reconstruction	for	sensitivity	encoded	magnetic	resonance	imaging,”	Magn.	Reson.	Med.,	vol.	

52,	no.	6,	pp.	1397–1406,	2004.	

[142]	 H.	 Jasak,	A.	 Jemcov,	 Z.	 Tukovic,	 and	others,	 “OpenFOAM:	A	C++	 library	 for	 complex	physics	

simulations,”	in	International	workshop	on	coupled	methods	in	numerical	dynamics,	2007,	vol.	

1000,	pp.	1–20.	

[143]	 M.	Guerquin-Kern,	L.	Lejeune,	K.	P.	Pruessmann,	and	M.	Unser,	“Realistic	analytical	phantoms	

for	parallel	magnetic	resonance	imaging,”	 IEEE	Trans.	Med.	 Imaging,	vol.	31,	no.	3,	pp.	626–

636,	2012.	

[144]	 M.	 A.	 Bernstein	 et	 al.,	 “Concomitant	 gradient	 terms	 in	 phase	 contrast	 MR:	 Analysis	 and	

correction,”	Magn.	Reson.	Med.,	vol.	39,	no.	2,	pp.	300–308,	1998.	

[145]	 P.	 G.	 Walker,	 G.	 B.	 Cranney,	 M.	 B.	 Scheidegger,	 G.	 Waseleski,	 G.	 M.	 Pohost,	 and	 A.	 P.	

Yoganathan,	 “Semiautomated	 method	 for	 noise	 reduction	 and	 background	 phase	 error	

correction	in	MR	phase	velocity	data,”	J.	Magn.	Reson.	Imaging,	vol.	3,	no.	3,	pp.	521–530,	1993.	

[146]	 F.	Ong	et	al.,	“Berkeley	advanced	reconstruction	toolbox,”	Magn.	Reson.	Med.,	vol.	73,	no.	2,	

pp.	828–842,	2015.	

[147]	 P.	Liang,	Zhi-pei;	Lauterbur,	“Chapter	8	Image	Resolution,	Noise,	and	Artifacts,”	Princ.	Magn.	

Reson.	Imaging	A	Signal	Process.	Perspect.,	pp.	233–290.	



110	

[148]	 K.	R.	O’Brien,	B.	R.	Cowan,	M.	Jain,	R.	A.	H.	Stewart,	A.	J.	Kerr,	and	A.	A.	Young,	“MRI	phase	

contrast	velocity	and	flow	errors	in	turbulent	stenotic	jets,”	J.	Magn.	Reson.	Imaging,	vol.	28,	

no.	1,	pp.	210–218,	2008.	

[149]	 K.	R.	O’Brien,	R.	S.	Gabriel,	A.	Greiser,	B.	R.	Cowan,	A.	A.	Young,	and	A.	J.	Kerr,	“Aortic	valve	

stenotic	 area	 calculation	 from	 phase	 contrast	 cardiovascular	 magnetic	 resonance:	 The	

importance	of	short	echo	time,”	J.	Cardiovasc.	Magn.	Reson.,	vol.	11,	no.	1,	pp.	1–12,	2009.	

[150]	 M.	Bydder	and	M.	D.	Robson,	“Partial	fourier	partially	parallel	imaging,”	Magn.	Reson.	Med.,	

vol.	53,	no.	6,	pp.	1393–1401,	2005.	

[151]	 V.	Knobloch,	P.	Boesiger,	and	S.	Kozerke,	“Sparsity	transform	k-t	principal	component	analysis	

for	accelerating	cine	three-dimensional	flow	measurements,”	Magn.	Reson.	Med.,	vol.	70,	no.	

1,	pp.	53–63,	2013.	

[152]	 U.	Tariq,	A.	Hsiao,	M.	Alley,	T.	Zhang,	M.	Lustig,	and	S.	S.	Vasanawala,	“Venous	and	arterial	flow	

quantification	are	equally	accurate	and	precise	with	parallel	 imaging	compressed	sensing	4D	

phase	contrast	MRI,”	J.	Magn.	Reson.	Imaging,	vol.	37,	no.	6,	pp.	1419–1426,	2013.	

[153]	 D.	 Giese,	 J.	 Wong,	 G.	 F.	 Greil,	 M.	 Buehrer,	 T.	 Schaeffter,	 and	 S.	 Kozerke,	 “Towards	 highly	

accelerated	Cartesian	time-resolved	3D	flow	cardiovascular	magnetic	resonance	in	the	clinical	

setting,”	J.	Cardiovasc.	Magn.	Reson.,	vol.	16,	no.	1,	p.	42,	2014.	

[154]	 S.	Schnell	et	al.,	“k-t	GRAPPA	accelerated	four-dimensional	flow	MRI	in	the	aorta:	effect	on	scan	

time,	image	quality,	and	quantification	of	flow	and	wall	shear	stress,”	Magn.	Reson.	Med.,	vol.	

72,	no.	2,	pp.	522–533,	2014.	

[155]	 T.	Gu	et	al.,	“PC	VIPR:	a	high-speed	3D	phase-contrast	method	for	flow	quantification	and	high-

resolution	angiography,”	Am.	J.	Neuroradiol.,	vol.	26,	no.	4,	pp.	743–749,	Apr.	2005.	

[156]	 A.	Sigfridsson,	S.	Petersson,	C.-J.	Carlhäll,	and	T.	Ebbers,	“Four-dimensional	flow	MRI	using	spiral	

acquisition,”	Magn.	Reson.	Med.,	vol.	68,	no.	4,	pp.	1065–1073,	2012.	

[157]	 Y.	Kwak	et	al.,	“Accelerated	aortic	flow	assessment	with	compressed	sensing	with	and	without	

use	of	the	sparsity	of	the	complex	difference	image,”	Magn.	Reson.	Med.,	vol.	70,	no.	3,	pp.	

851–858,	2013.	

[158]	 L.	Feng	et	al.,	“5D	whole-heart	sparse	MRI,”	Magn.	Reson.	Med.,	vol.	79,	no.	2,	pp.	826–838,	

Feb.	2018.	

[159]	 R.	Bastkowski,	K.	Weiss,	D.	Maintz,	and	D.	Giese,	“Self-Gated	Golden-Angle	Spiral	4D	Flow	MRI,”	

in	Proceedings	of	the	26th	Annual	Meeting	of	ISMRM.	Presented	at	the	ISMRM.,	2018,	vol.	80,	

no.	3,	p.	3443.	

[160]	 T.	Zhang,	J.	Y.	Cheng,	Y.	Chen,	D.	G.	Nishimura,	J.	M.	Pauly,	and	S.	S.	Vasanawala,	“Robust	self-



111	

navigated	body	MRI	using	dense	coil	arrays,”	Magn.	Reson.	Med.,	vol.	76,	no.	1,	pp.	197–205,	

2016.	

[161]	 S.	Wundrak,	J.	Paul,	J.	Ulrici,	E.	Hell,	and	V.	Rasche,	“A	small	surrogate	for	the	golden	angle	in	

time-resolved	radial	MRI	based	on	generalized	fibonacci	sequences,”	IEEE	Trans.	Med.	Imaging,	

vol.	34,	no.	6,	pp.	1262–1269,	2015.	

[162]	 A.	 C.	 Larson	 et	 al.,	 “Preliminary	 investigation	 of	 respiratory	 self-gating	 for	 free-breathing	

segmented	cine	MRI,”	Magn.	Reson.	Med.,	vol.	53,	no.	1,	pp.	159–168,	2005.	

[163]	 V.	Rasche,	R.	W.	De	Boer,	D.	Holz,	and	R.	Proksa,	“Continuous	radial	data	acquisition	for	dynamic	

MRI,”	Magn.	Reson.	Med.,	vol.	34,	no.	5,	pp.	754–761,	1995.	

[164]	 S.	Zhang,	K.	T.	Block,	and	J.	Frahm,	“Magnetic	resonance	imaging	in	real	time:	Advances	using	

radial	FLASH,”	J.	Magn.	Reson.	Imaging,	vol.	31,	no.	1,	pp.	101–109,	2010.	

[165]	 V.	Knobloch	et	al.,	“Mapping	mean	and	fluctuating	velocities	by	Bayesian	multipoint	MR	velocity	

encoding-validation	against	3D	particle	tracking	velocimetry,”	Magn.	Reson.	Med.,	vol.	71,	no.	

4,	pp.	1405–1415,	2014.	

[166]	 M.	Buehrer,	K.	P.	Pruessmann,	P.	Boesiger,	and	S.	Kozerke,	“Array	compression	for	MRI	with	

large	coil	arrays,”	Magn.	Reson.	Med.,	vol.	57,	no.	6,	pp.	1131–1139,	2007.	

[167]	 J.	 I.	 Tamir,	 F.	Ong,	 J.	Y.	Cheng,	M.	Uecker,	and	M.	Lustig,	 “Generalized	Magnetic	Resonance	

Image	Reconstruction	using	The	Berkeley	Advanced	Reconstruction	Toolbox,”	in	Proceedings	of	

the	 ISMRM	 2016	 Data	 Sampling	 and	 Image	 Reconstruction	 Workshop,	 2016,	 vol.	 2486,	 p.	

9660006.	

[168]	 J.	Snoek,	H.	Larochelle,	and	R.	P.	Adams,	“Practical	Bayesian	Optimization	of	Machine	Learning	

Algorithms,”	Adv.	Neural	Inf.	Process.	Syst.,	pp.	2951–2959,	2012.	

[169]	 J.	Busch,	D.	Giese,	and	S.	Kozerke,	“Image-based	background	phase	error	correction	in	4D	flow	

MRI	revisited,”	J.	Magn.	Reson.	Imaging,	pp.	1–10,	2017.	

[170]	 D.	G.	Altman	and	J.	M.	Bland,	“Measurement	in	medicine:	the	analysis	of	method	comparison	

studies,”	Stat.,	pp.	307–317,	1983.	

[171]	 Y.	Wang,	S.	J.	Riederer,	and	R.	L.	Ehman,	“Respiratory	Motion	of	the	Heart:	Kinematics	and	the	

Implications	for	the	Spatial	Resolution	in	Coronary	Imaging,”	Magn.	Reson.	Med.,	vol.	33,	no.	5,	

pp.	713–719,	1995.	

[172]	 A.	T.	Lee,	G.	Bruce	Pike,	and	N.	J.	Pelc,	“Three-point	phase-contrast	velocity	measurements	with	

increased	velocity-to-noise	ratio,”	Magn.	Reson.	Med.,	vol.	33,	no.	1,	pp.	122–126,	1995.	

[173]	 A.	Herment	et	al.,	“Improved	estimation	of	velocity	and	flow	rate	using	regularized	three-point	

phase-contrast	velocimetry,”	Magn.	Reson.	Med.	An	Off.	J.	Int.	Soc.	Magn.	Reson.	Med.,	vol.	44,	



112	

no.	1,	pp.	122–128,	2000.	

[174]	 M.	Gewillig,	“The	Fontan	circulation,”	Heart,	vol.	91,	no.	6,	pp.	839–846,	2005.	

[175]	 K.	Jarvis	et	al.,	“Caval	to	pulmonary	3D	flow	distribution	in	patients	with	Fontan	circulation	and	

impact	of	potential	4D	flow	MRI	error	sources,”	Magn.	Reson.	Med.,	no.	February	2017,	pp.	

1205–1218,	2018.	

[176]	 V.	Vishnevskiy,	S.	J.	Sanabria,	and	O.	Goksel,	“Image	Reconstruction	via	Variational	Network	for	

Real-Time	Hand-Held	Sound-Speed	Imaging,”	in	International	Workshop	on	Machine	Learning	

for	Medical	Image	Reconstruction,	2018,	pp.	120–128.	

[177]	 J.	 Walheim,	 H.	 Dillinger,	 and	 S.	 Kozerke,	 “Multipoint	 5D	 Flow	 Cardiovascular	 Magnetic	

Resonance	 -	 Accelerated	 Cardiac-	 and	 Respiratory-Motion	 Resolved	Mapping	 of	 Mean	 and	

Turbulent	Velocities,”	J.	Cardiovasc.	Magn.	Reson.,	2019.	

[178]	 S.	Zhao,	L.	C.	Potter,	N.	Jin,	Y.	Liu,	S.	Orlando	P,	and	R.	Ahmad,	“PC-MRI	with	Phase	Recovery	

from	Multiple	Wrapped	Measurements	(PRoM),”	in	Annual	Meeting	ISMRM-ESMRMB,	June	16-

21	2018,	2018.	

[179]	 S.	W.	Funke,	M.	Nordaas,	Ø.	Evju,	M.	S.	Alnæs,	and	K.	A.	Mardal,	“Variational	data	assimilation	

for	 transient	 blood	 flow	 simulations:	 Cerebral	 aneurysms	 as	 an	 illustrative	 example,”	 Int.	 j.	

numer.	method.	biomed.	eng.,	no.	April	2017,	pp.	1–27,	2018.	

[180]	 J.	 Garcia	 et	 al.,	 “Distribution	 of	 blood	 flow	 velocity	 in	 the	 normal	 aorta:	 Effect	 of	 age	 and	

gender,”	J.	Magn.	Reson.	Imaging,	vol.	47,	no.	2,	pp.	487–498,	2018.	

[181]	 M.	Grigioni,	C.	Daniele,	G.	D’Avenio,	and	V.	Barbaro,	“A	discussion	on	the	threshold	limit	for	

hemolysis	related	to	Reynolds	shear	stress,”	J.	Biomech.,	vol.	32,	no.	10,	pp.	1107–1112,	1999.	

[182]	 P.	 C.	 Lu,	 H.	 C.	 Lai,	 and	 J.	 S.	 Liu,	 “A	 reevaluation	 and	 discussion	 on	 the	 threshold	 limit	 for	

hemolysis	in	a	turbulent	shear	flow,”	J.	Biomech.,	vol.	34,	no.	10,	pp.	1361–1364,	2001.	

[183]	 A.	P.	Yoganathan,	Y.-R.	R.	Woo,	and	H.-W.	W.	Sung,	“Turbulent	shear	stress	measurements	in	

the	vicinity	of	aortic	heart	valve	prostheses,”	J.	Biomech.,	vol.	19,	no.	6,	pp.	433–442,	1986.	

[184]	 A.	P.	Yoganathan,	K.	B.	Chandran,	and	F.	Sotiropoulos,	“Flow	in	prosthetic	heart	valves:	State-

of-the-art	and	future	directions,”	Ann.	Biomed.	Eng.,	vol.	33,	no.	12	SPEC.	ISS.,	pp.	1689–1694,	

2005.	

[185]	 J.	Walheim,	V.	Vishnevskiy,	and	S.	Kozerke,	“FlowNet:	High-Speed	Compressed	Sensing	4D	Flow	

MRI	Image	Reconstruction	using	Loop	Unrolling,”	in	Proceedings	of	the	27th	Annual	Meeting	of	

ISMRM.,	2019,	p.	4653.	

[186]	 Y.	Fung,	Biodynamics:	circulation.	New	York-Berlin-Heidelberg-Tokyo:	Springer,	1984.	



113	

[187]	 U.	Gülan,	B.	Lüthi,	M.	Holzner,	A.	Liberzon,	A.	Tsinober,	and	W.	Kinzelbach,	“Experimental	study	

of	aortic	flow	in	the	ascending	aorta	via	particle	tracking	velocimetry,”	Exp.	Fluids,	vol.	53,	no.	

5,	pp.	1469–1485,	2012.	

[188]	 P.	 A.	 Yushkevich,	 Y.	 Gao,	 and	 G.	 Gerig,	 “ITK-SNAP:	 An	 interactive	 tool	 for	 semi-automatic	

segmentation	 of	 multi-modality	 biomedical	 images,”	 in	 2016	 38th	 Annual	 International	

Conference	of	the	IEEE	Engineering	in	Medicine	and	Biology	Society	(EMBC),	2016,	pp.	3342–

3345.	

[189]	 P.	 Robson,	 A.	 Grant,	 A.	 Madhuranthakam,	 R.	 Lattanzi,	 D.	 Sodickson,	 and	 C.	 Mckenzie,	

“Comprehensive	Quantification	of	SNR	Ratio	and	g-Factor	for	Image-Based	and	k-space	Based	

Parallel	Imaging	Reconstructions,”	vol.	60,	no.	4,	pp.	895–907,	2010.	

[190]	 M.	Rosenblatt,	“Remarks	on	some	nonparametric	estimates	of	a	density	function,”	Ann.	Math.	

Stat.,	pp.	832–837,	1956.	

[191]	 E.	Parzen,	“On	estimation	of	a	probability	density	function	and	mode,”	Ann.	Math.	Stat.,	vol.	

33,	no.	3,	pp.	1065–1076,	1962.	

[192]	 J.	Walheim,	A.	Gotschy,	 and	 S.	 Kozerke,	 “On	 the	 limitations	 of	 partial	 Fourier	 acquisition	 in	

phase-contrast	MRI	of	turbulent	kinetic	energy,”	Magn.	Reson.	Med.,	vol.	81,	no.	1,	pp.	514–

523,	2019.	

[193]	 L.	 E.	 Ma	 et	 al.,	 “Aortic	 4D	 flow	 MRI	 in	 2	 minutes	 using	 compressed	 sensing,	 respiratory	

controlled	adaptive	k-space	reordering,	and	inline	reconstruction,”	Magn.	Reson.	Med.,	vol.	81,	

no.	6,	pp.	3675–3690,	2019.	

[194]	 A.	Rich,	L.	C.	Potter,	N.	Jin,	Y.	Liu,	O.	P.	Simonetti,	and	R.	Ahmad,	“A	Bayesian	approach	for	4D	

flow	imaging	of	aortic	valve	in	a	single	breath-hold,”	Magn.	Reson.	Med.,	vol.	81,	no.	2,	pp.	811–

824,	2019.	

[195]	 A.	K.	Maier	et	al.,	“Learning	with	known	operators	reduces	maximum	error	bounds,”	Nat.	Mach.	

Intell.,	vol.	1,	no.	8,	pp.	373–380,	2019.	

[196]	 T.	Zhang,	J.	M.	Pauly,	S.	S.	Vasanawala,	and	M.	Lustig,	“Coil	compression	for	accelerated	imaging	

with	Cartesian	sampling,”	Magn.	Reson.	Med.,	vol.	69,	no.	2,	pp.	571–582,	2013.	

[197]	 L.	Landweber,	“An	iteration	formula	for	Fredholm	integral	equations	of	the	first	kind,”	Am.	J.	

Math.,	vol.	73,	no.	3,	pp.	615–624,	1951.	

[198]	 Y.	 Liu	 and	 M.	 S.	 Lew,	 “Learning	 relaxed	 deep	 supervision	 for	 better	 edge	 detection,”	 in	

Proceedings	of	the	IEEE	Conference	on	Computer	Vision	and	Pattern	Recognition,	2016,	pp.	231–

240.	

[199]	 D.	Lee,	J.	Yoo,	and	J.	C.	Ye,	“Deep	artifact	learning	for	compressed	sensing	and	parallel	MRI,”	



114	

arXiv	Prepr.	arXiv1703.01120,	2017.	

[200]	 M.	Abadi	et	al.,	“Tensorflow:	A	system	for	large-scale	machine	learning,”	in	12th	Symposium	on	

Operating	Systems	Design	and	Implementation),	2016,	pp.	265–283.	

[201]	 Y.	 LeCun,	 D.	 Touresky,	 G.	 Hinton,	 and	 T.	 Sejnowski,	 “A	 theoretical	 framework	 for	 back-

propagation,”	in	Proceedings	of	the	1988	connectionist	models	summer	school,	1988,	vol.	1,	pp.	

21–28.	

[202]	 J.	 Domke,	 “Generic	methods	 for	 optimization-based	modeling,”	 in	Artificial	 Intelligence	 and	

Statistics,	2012,	pp.	318–326.	

[203]	 Y.	Yang,	J.	Sun,	H.	Li,	and	Z.	Xu,	“Deep	ADMM-Net	for	Compressive	Sensing	MRI.,”	Nips,	no.	Nips,	

pp.	10–18,	2016.	

[204]	 V.	Vishnevskiy,	R.	Rau,	and	O.	Goksel,	“Deep	Variational	Networks	with	Exponential	Weighting	

for	Learning	Computed	Tomography,”	arXiv	Prepr.	arXiv1906.05528,	2019.	

[205]	 T.	 Hoh,	 J.	 Walheim,	 M.	 Gastl,	 A.	 Gotschy,	 and	 S.	 Kozerke,	 “Partial	 Fourier	 Acquisitions	 in	

Myocardial	 First	 Pass	 Perfusion	 Revisited,”	 in	 Proceedings	 of	 the	 26th	 Annual	 Meeting	 of	

ISMRM.,	2018,	p.	3517.	

[206]	 S.	Gross,	C.	Barmet,	B.	E.	Dietrich,	D.	O.	Brunner,	T.	Schmid,	and	K.	P.	Pruessmann,	“Dynamic	

nuclear	magnetic	resonance	field	sensing	with	part-per-trillion	resolution,”	Nat.	Commun.,	vol.	

7,	p.	13702,	2016.	

[207]	 D.	 S.	 Goolaub	 et	 al.,	 “Multidimensional	 fetal	 flow	 imaging	 with	 cardiovascular	 magnetic	

resonance:	a	feasibility	study,”	J.	Cardiovasc.	Magn.	Reson.,	vol.	20,	no.	1,	p.	77,	2018.	

[208]	 J.	Stepišnik,	“Measuring	and	imaging	of	flow	by	NMR,”	Prog.	Nucl.	Magn.	Reson.	Spectrosc.,	vol.	

17,	no.	C,	pp.	187–209,	1985.	

[209]	 P.	T.	Callaghan	and	J.	Stepišnik,	“Frequency-domain	analysis	of	spin	motion	using	modulated-

gradient	NMR.”	Academic	Press,	1995.	

[210]	 J.-F.	 Nielsen	 and	 K.	 S.	 Nayak,	 “SSFP	 and	 GRE	 phase	 contrast	 imaging	 using	 a	 three-echo	

readout,”	Magn.	Reson.	Med.	An	Off.	J.	Int.	Soc.	Magn.	Reson.	Med.,	vol.	58,	no.	6,	pp.	1288–

1293,	2007.	

[211]	 A.	M.	Sallam	and	N.	H.	C.	Hwang,	“Human	red	blood	cell	hemolysis	in	a	turbulent	shear	flow:	

contribution	of	Reynolds	shear	stresses,”	Biorheology,	vol.	21,	no.	6,	pp.	783–797,	1984.	

[212]	 B.	 E.	 Stähli	 et	 al.,	 “Impact	 of	 three-dimensional	 imaging	 and	 pressure	 recovery	 on	

echocardiographic	evaluation	of	severe	aortic	stenosis:	a	pilot	study,”	Echocardiography,	vol.	

31,	no.	8,	pp.	1006–1016,	2014.	



115	

[213]	 M.	Froeling,	E.	Farag,	R.	N.	Planken,	T.	Leiner,	and	P.	van	Ooij,	“Machine	learning	for	automatic	

three-dimensional	segmentation	of	the	aorta	in	4D	flow	MRI,”	in	Proceedings	of	the	27th	Annual	

Meeting	of	ISMRM.,	2019,	p.	0088.	

[214]	 O.	Ronneberger,	P.	Fischer,	and	T.	Brox,	“U-net:	Convolutional	networks	for	biomedical	image	

segmentation,”	 in	 International	 Conference	 on	 Medical	 image	 computing	 and	 computer-

assisted	intervention,	2015,	pp.	234–241.	

	

	 	



116	

Chapter	10 Acknowledgements	

I	would	like	to	thank	everyone	who	contributed	to	this	thesis,	paved	the	way	in	front	of	me,	and	kept	

me	company	and	supported	me	throughout	the	last	years.	

First	 of	 all,	 I	 would	 like	 to	 express	my	 gratitude	 to	 Prof.	 Dr.	 Sebastian	 Kozerke	who	 gave	me	 the	

opportunity	 to	conduct	a	PhD	project	under	his	supervision.	His	office	door	was	always	open	and	 I	

highly	 valued	 his	 prompt	 and	 constructive	 feedback	 which	 allowed	 me	 to	 rapidly	 progress	 in	 my	

research,	his	openness	to	new	ideas,	and	the	trust	he	gave	me	in	letting	me	work	very	independently.	

In	addition,	I	would	like	to	thank	Prof.	Dr.	Michael	Markl	for	being	co-referee	and	for	taking	the	time	

to	review	my	thesis.	

Many	thanks	go	to	Dr.	Christian	Binter	who	introduced	me	to	the	research	topic	and	ensured	that	I	had	

a	good	start	at	IBT.	I	am	particularly	grateful	for	the	detailed	documentation	and	the	massive	amount	

of	data	and	code	he	provided	me	with	and	on	which	I	could	build	upon	in	my	own	research.		

Furthermore,	I	would	like	to	thank	Hannes	Dillinger	for	the	great	collaboration,	discussions,	and	fun	

we	had	in	the	flow	team	and	beyond.		

I	would	like	to	thank	Alexander	Gotschy	for	organizing	the	patient	scans	and	providing	input	from	the	

clinical	side.		

My	gratitude	goes	to	the	Gyrotools	team	and	in	particular	Gérard	Crelier	and	Martin	Bührer	for	their	

advice	and	their	software.		

My	gratitude	also	goes	to	Isabell	Spiess	who	took	care	of	everything	organizational	in	the	background.	

I	would	like	to	thank	Roger	Luechinger	for	ensuring	the	operation	of	our	scanners	and	helping	me	with	

advice	whenever	I	had	issues	with	the	change	of	software	releases,	the	scanner	environment	crashing,	

etc.		

Many	 thanks	 go	 to	my	 officemates	 Robbert	 van	Gorkum,	 Christian	Günthner,	 Tobias	Hoh,	 Hannes	

Dillinger,	Mareike	Gastl,	Johanna	Stimm,	and	Jonathan	Weine	for	the	great	working	atmosphere	and	

the	many	discussions	over	coffee	and	beer.	This	extends	to	all	other	former	and	current	members	of	

the	Cardio	group,	Mohammed	Albannay,	Ezgi	Berberoglu,	Patrick	Bosshard,	Stefano	Buoso,	Julia	Busch,	

Christian	Binter,	Constantin	von	Deuster,	Andreas	Dounas,	Christian	Federau,	Max	Fütterer,	Alexander	

Gotschy,	 Dian	 Liu,	 Claudio	 Santelli,	 Beat	 Schuler,	 Thomas	 Joyce,	 Grzegorz	 Kwiatkowski,	 Sophie	

Peereboom,	Orso	Pusterla,	Georg	Spinner,	Jonas	Steinhauser,	Christian	Stoeck,	Julia	Trächtler,	Valery	

Vishnevskiy,	Jochen	von	Spiczak,	Patrick	Wespi,	Conny	Waschkies,	Lukas	Wissmann,	Gevin	von	Witte,	

Javier	Montoya	Zegarra,	as	well	as	everyone	from	the	hardware	group.	Thanks	for	making	IBT	such	a	



117	

pleasant	working	environment	with	such	a	great	social	life.	I	will	keep	in	memory	many	great	moments	

in	the	coffee	corner,	when	going	for	after	work	drinks,	at	ski	weekends,	etc.	

Last	but	not	least,	I	would	like	to	express	my	deep	gratitude	to	my	family	and	friends	who	were	of	great	

support	during	the	last	years	and	before	and	supported	me	throughout	all	the	ups	and	downs.	Thank	

you!		 	



118	

	

Chapter	11 List	of	Publications	

Peer-Reviewed	Publications	

2019	

V.	 Vishnevskiy,	 J.	 Walheim,	 and	 S.	 Kozerke,	 “Deep	 Variational	 Network	 for	 Rapid	 4D	 Flow	 MRI	

Reconstruction,”	In	Submission,	2019.	

J.	Walheim,	H.	Dillinger,	A.	Gotschy,	and	S.	Kozerke,	“5D	Flow	Tensor	MRI	to	Efficiently	Map	Reynolds	

Stresses	of	Aortic	Blood	Flow	In-Vivo,”	Sci	Rep,	in	revision,	2019.	

J.	Walheim,	H.	Dillinger,	and	S.	Kozerke,	 “Multipoint	5D	Flow	Cardiovascular	Magnetic	Resonance	 -	

Accelerated	Cardiac-	and	Respiratory-Motion	Resolved	Mapping	of	Mean	and	Turbulent	Velocities,”	J.	

Cardiovasc.	Magn.	Reson.,	2019.	

J.	Walheim,	A.	Gotschy,	 and	S.	 Kozerke,	 “On	 the	 limitations	of	partial	 Fourier	 acquisition	 in	phase-

contrast	MRI	of	turbulent	kinetic	energy,”	Magn.	Reson.	Med.,	vol.	81,	no.	1,	pp.	514–523,	2019.	

Conference	Proceedings	

2019	

J.	Walheim,	V.	Vishnevskiy,	and	S.	Kozerke,	“FlowNet:	High-Speed	Compressed	Sensing	4D	Flow	MRI	

Image	Reconstruction	using	Loop	Unrolling,”	in	Proceedings	of	the	27th	Annual	Meeting	of	ISMRM.	,	

2019,	p.	4653.	

J.	Walheim,	H.	Dillinger,	and	S.	Kozerke,	“5D	Flow	Tensor	MRI	for	Mapping	Reynolds	Stresses	in	the	

Aorta,”	in	Proceedings	of	the	27th	Annual	Meeting	of	ISMRM.	,	2019,	p.	0089.	

J.	 Walheim,	 H.	 Dillinger,	 and	 S.	 Kozerke,	 “Multi-Point	 5D	 Flow	 MRI	 -	 Accelerated	 Cardiac-	 and	

Respiratory-Motion	Resolved	Mapping	of	Mean	and	Turbulent	Velocities	in	4	Minutes,”	in	Proceedings	

of	the	27th	Annual	Meeting	of	ISMRM.	,	2019,	p.	1179.	

V.	 Vishnevskiy,	 J.	 Walheim,	 and	 S.	 Kozerke,	 “Probabilistic	 Optimization	 of	 Cartesian	 k-Space	

Undersampling	 Patterns	 for	 Learning-Based	 Reconstruction,”	 in	 Proceedings	 of	 the	 27th	 Annual	

Meeting	of	ISMRM.	,	2019,	p.	4777.	

J.	 Walheim,	 H.	 Dillinger,	 R.	 Droste,	 and	 S.	 Kozerke,	 “5D	 Flow	 MRI	 –	 Respiratory-motion	 resolved	

quantification	of	flow	and	turbulent	kinetic	energy	with	compressed	sensing	and	Bayesian	multipoint	

velocity	unfolding,”	in	SCMR	22nd	annual	scientific	sessions,	2019.	



119	

2018	

Jonas	Walheim	and	Sebastian	Kozerke,	“5D	Flow	MRI	–	Respiratory	Motion	Resolved	Accelerated	4D	

Flow	Imaging	Using	Low-Rank	+	Sparse	Reconstruction,”	in	Proceedings	of	the	26th	Annual	Meeting	of	

ISMRM.	,	2018,	p.	0032.	

J.	Walheim,	C.	 Santelli,	 and	 S.	 Kozerke,	 “k-t2	 ESPIRiT	 –	 Image	 reconstruction	of	 respiratory	motion	

resolved	undersampled	4D	Flow	MRI	data	 in	a	higher-dimensional	subspace,”	 in	Proceedings	of	the	

26th	Annual	Meeting	of	ISMRM.	,	2018,	p.	4914.	

V.	 Vishnevskiy,	 J.	 Walheim,	 H.	 Dillinger,	 and	 S.	 Kozerke,	 “Easy-to-Implement	 and	 Rapid	 Image	

Reconstruction	of	Accelerated	Cine	and	4D	Flow	MRI	Using	TensorFlow,”	in	Proceedings	of	the	26th	

Annual	Meeting	of	ISMRM.	,	2018,	p.	3522.	

T.	Hoh,	J.	Walheim,	M.	Gastl,	A.	Gotschy,	and	S.	Kozerke,	“Partial	Fourier	Acquisitions	in	Myocardial	

First	Pass	Perfusion	Revisited,”	in	Proceedings	of	the	26th	Annual	Meeting	of	ISMRM.	,	2018,	p.	3517.	

2017	

J.	Walheim	and	 S.	 Kozerke,	 “On	Partial	 Fourier	Acquisition	 in	 4D	Flow	MRI	of	Mean	Velocities	 and	

Turbulent	Kinetic	Energy,”	in	Proceedings	of	the	25th	Annual	Meeting	of	ISMRM.	,	2017,	p.	3226.	

	


