## On Goldbach conjecture

## Working Paper

## Author(s):

Mansour, Mohamed

Publication date:
2020-05-21

## Permanent link:

https://doi.org/10.3929/ethz-b-000416293
Rights / license:
In Copyright - Non-Commercial Use Permitted

# On Goldbach Conjecture 

Mohamed Mansour<br>ETH Zurich<br>old.control.ee.ethz.ch/info/people/mansour

May 21, 2020


#### Abstract

The Goldbach Problem is reduced to three smaller problems according to the concept of left, middle, and right numbers [1]. The left and right numbers are present in the Goldbach pairs. The solutions to the three problems are similar and simpler. A condition for the satisfaction of the Goldbach conjecture as well as a main equation for the number of Goldbach pairs, which is valid for any even number, are derived. A new theorem is presented which is the deterministic equivalent of the theory of large numbers in probability theory. With this theorem one gets formulas for Goldbach pairs, composite pairs and mixed pairs. It is shown that the results satisfy the main equation. It is also shown that the formula of Goldbach pairs which is positive also has a positive derivative which shows that the Goldbach conjecture is always valid and the number of Goldbach pairs is increasing.


## 1 Introduction

In [1] it is shown that the odd numbers from 3 to $\infty$ ( 1 is excluded as a special number) can be partitioned as follows:

1. Left numbers $\quad 7+6 k \quad k=0 \ldots \infty$
2. Middle numbers $3+6 k \quad k=0 \ldots \infty$
3. Right numbers $5+6 k \quad k=0 \ldots \infty$

The same is with even numbers $4+6 k, 6+6 k$ and $8+6 k$. The reason for this partition is that a left even number has right primes as Goldbach pairs. A middle even number has Goldbach pairs consisting of one left and one right prime. A right even number has left primes as Goldbach pairs. Simple Algebras for addition and multiplication are depicted in tables 1 and 2 respectively. Accordingly, the Goldbach problem is reduced to three small, similar and simpler problems.

Table 1: Addition - Simple Algebra

| + | $\mathbf{L}$ | $\mathbf{M}$ | $\mathbf{R}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{L}$ | R | L | M |
| $\mathbf{M}$ | L | M | R |
| $\mathbf{R}$ | M | R | L |

Table 2: Multiplication - Simple Algebra

| $\times$ | $\mathbf{L}$ | $\mathbf{M}$ | $\mathbf{R}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{L}$ | L | M | R |
| $\mathbf{M}$ | M | M | M |
| $\mathbf{R}$ | R | M | L |

### 1.1 Left and right composites [1]

The left composites are given by
$p^{2}+6 p k, \quad p=5,7,11,13, \ldots \quad$ (all odd primes except 3 )
an infinite number of arithmetic series with elements $25,49,55,85,91,115,121, \ldots$.
The corresponding left primes are the rest: $7,13,19,31,37,43,61,67,73,79, \ldots$.
Similarly, the right composites are an infinite number of arithmetic series given by:

$$
\begin{array}{ll}
p^{2}+6 p k+4 p & \text { if } p \text { is left and } \\
p^{2}+6 p k+2 p & \text { if } p \text { is right }
\end{array}
$$

with elements $\quad 35,65,77,95,119,125, \ldots$ and the corresponding right primes $5,11,17,23,29,41,47,53,59,71, \ldots$.

## 2 Main Equation

Let $x$ be even. If $x$ is right then consider the range of elements under $x$ from 7 to $x-7$. The number of elements is given by

$$
P+C=\frac{x-8}{6}
$$

where $P$ is the number of left primes and $C$ the number of left composites in the range.
If $x$ is left then consider the range of elements under $x$ from 5 to $x-5$. The number of elements is given by

$$
P+C=\frac{x-4}{6}
$$

In this case $P$ and $C$ are the number of right primes and the number of right composites in the range respectively. For middle $x, P$ and $C$ are a combination of both left and right primes and composites from 5 to $x-5$. The number of elements in this case is given by

$$
P+C=\frac{x-6}{3}
$$

Now if the series of primes and composites up to $x$ is folded in the middle (at $x / 2$ ) one gets opposite numbers which give Goldbach pairs $G$, composite pairs $D$ and mixed pairs $E$. Thus for Goldbach pairs to exist we have the inequality

$$
\frac{P+C}{2}>C-D
$$

From this we get the number of Goldbach pairs

$$
\begin{equation*}
G=\frac{P-C}{2}+D \tag{1}
\end{equation*}
$$

The main equation (1) is valid for left, middle or right even $x$. Thus it is valid for the three problems.

Example 1. Computation of the number of composite pairs for three example values of $x$ :

| $x=128:$ | $P=13$, | $C=7$ | $G=3$ | $D=0$ |
| :--- | :--- | :--- | :--- | :--- |
| $x=256:$ | $P=27$, | $C=15$ | $G=8$ | $D=2:$ |
|  |  |  |  | $35+221$, |
|  |  |  | $95+161$ |  |
| $x=512:$ | $P=45$, | $C=39$ | $G=10$ | $D=7$ |
|  |  |  | $85+427$, |  |
|  |  |  | $121+391$, |  |
|  |  |  | $169+343$, |  |
|  |  |  |  |  |
|  |  |  | $217+325$, |  |
|  |  |  | $247+265$, |  |
|  |  |  |  |  |
|  |  |  |  |  |

## 3 Reflection Theorem

Theorem 3.1. If the composites or primes are reflected from a neutral point $2^{n}$ with $n \rightarrow \infty$, which does not share any of the prime factors with the composites, then the reflected members will meet the primes and composites in the same ratio as their numbers.

Proof. The proof is straight forward: Because $2^{n}$ is neither biased towards composites (no prime factors other than 2) nor primes and the composites and primes are determined by the same law, then the theorem is valid.

The choice of $2^{n}$ leads to the least number of Goldbach pairs, as it does not share prime factors with composite numbers. This logic proof is enforced by the fact that the results of the application of this theorem can be shown to satisfy the main result of (1). This can be considered as the deterministic analog of
the theory of large numbers in probability theory.
From this theorem we get:

$$
\begin{align*}
G & =\frac{P^{2}}{2(P+C)} \\
D & =\frac{C^{2}}{2(P+C)}  \tag{2}\\
E & =\frac{P C}{(P+C)}
\end{align*}
$$

Then

$$
G+D+E=\frac{P+C}{2}
$$

which is in the middle of the folded prime and composite series to $x . G$ and $D$ in (2) satisfy the main result in (1).
As $x \rightarrow \infty$

$$
\begin{aligned}
P & =\frac{x}{2 \ln x} \\
C & =\frac{x}{6}-\frac{x}{2 \ln x}
\end{aligned}
$$

for even, left or right $x$.
Then

$$
\begin{equation*}
G=\frac{3 x}{4 \ln ^{2} x} \tag{3}
\end{equation*}
$$



Figure 1: Number of Goldbach Pairs (in 1000) and calculated value with (3) for even $n$

For even, middle $x$

$$
\begin{aligned}
P & =\frac{x}{\ln x}, \\
C & =\frac{x}{3}-\frac{x}{\ln x} .
\end{aligned}
$$

For middle $x$ a reflection point of $3 \cdot 2^{n}$ is used instead of $2^{n}$.

## 4 Goldbach Conjecture

For its history and development see [3]. The Goldbach conjecture has been proven numerically till a high value of even $x$. For example the result in [2] is given till $4 \cdot 10^{18}$. However, as for $x \rightarrow \infty$

$$
G=\frac{3 x}{4 \ln ^{2} x}
$$

which is positive.

As $x=2^{n}$, with no factors other than 2 , this gives the least number of Goldbach pairs. That means Goldbach conjecture is valid as $x \rightarrow \infty$. Since the differential

$$
\frac{d G}{d x}=\frac{3(\ln x-2)}{4\left(\ln ^{3} x\right)}
$$



Figure 2: Number of Goldbach Pairs (in 1000) and calculated value with (3) for odd $n$


Figure 3: Relative error: Goldbach Pairs and calculated value with (3) for even $n$


Figure 4: Relative error: Goldbach Pairs and calculated value with (3) for odd $n$
is also positive, this means that $G$ is an increasing function.

Table 3 shows the different values till $2^{25}$ and figures 1 and 2 show the corresponding $G$, which was calculated using Ivan Ianakiev's Algorithm, and the calculated $G_{\text {formula }}$ according to equation (3). For small $x,(3)$ is an approximation. As is depicted in figures 3 and 4, the relative error becomes small for large $n$.
Remark 1. For odd $n$ : If $x-1$ is prime or composite it is not included in $P_{L}$ or $C_{L}$ and if $x-3$ is prime or composite it is not included in $P_{R}$ or $C_{R}$. If $x-1$
or $x-3$ is prime, it is not included in $G$.
Remark 2. For even $n$ : If $x-3$ is prime or composite it is not included in $P_{L}$ or $C_{L}$, or $G$ if it is prime.

## Conclusions

Using the decomposition of the odd primes in left, middle and right numbers one can reduce the Goldbach problem to three similar and simpler problems. The main equation is the solution which is valid for any even $x$. The deterministic analog of the theory of large numbers in probability theory leads to the formula for the number of Goldbach pairs as $x \rightarrow \infty$ which is positive and its derivative is positive. This shows Goldbach conjecture to be valid.

## Acknowledgement

I acknowledge the useful discussions with and computations done by Ismail Abou-Zeid, MSc Mechanical Engineering.

## References

[1] Mohamed Mansour. New characterization of prime numbers. Research Collection, August 2017. URL http://www.emeriten.ethz.ch/ Doku2014/Emer-Mansour-14.pdf.
[2] Tomas Oliveira e Silva, Siegfried Herzog, and Silvio Pardi. Empirical verification of the even goldbach conjecture and computation of prime gaps up to $4 \times 10^{18}$. Mathematics of Computation, 83 , 07 2014. doi: 10.1090/S0025-5718-2013-02787-1.
[3] Wikipedia. Goldbach's conjecture - Wikipedia, the free encyclopedia. https://en.wikipedia.org/ wiki/Goldbach\%27s_conjecture, May 2020. Accessed: 2020-05-12.

Table 3: Computation of Numbers of left/right Primes and composites, Goldbach Pairs according to (3) and it's real counterpart. Where $n$ is the exponent of the limit $Z=2^{n}, P_{L} / P_{R}$ the number of left/right primes respectively, $C_{L} / C_{R}$ the number of left/right composites respectively (see remarks 1 and 2 ), $G_{F o r m u l a}$ the evaluation of (3), $G_{\text {real }}$ the real number of Goldbach Pairs, $\Delta G$ the absolute difference between the formula and real number and $\epsilon_{G}$ the relative error.

| $n$ | $Z=2^{n}$ | $P_{L}$ | $C_{L}$ | $P_{R}$ | $C_{R}$ | $P$ | $C$ | $G_{\text {Formula }}$ | $G_{\text {real }}$ | $\Delta G$ | $\epsilon_{G}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 16 | 1 | 0 | 2 | 0 | 3 | 0 | 1.56 | 1 | -1 | $-100.00 \%$ |
| 5 | 32 | 3 | 1 | 4 | 0 | 7 | 1 | 2 | 1 | -1 | $-100.00 \%$ |
| 6 | 64 | 6 | 3 | 9 | 1 | 15 | 4 | 2.78 | 4 | 1 | $25.00 \%$ |
| 7 | 128 | 13 | 7 | 15 | 5 | 28 | 12 | 4.08 | 3 | -1 | $-33.33 \%$ |
| 8 | 256 | 25 | 16 | 27 | 15 | 52 | 31 | 6.24 | 8 | 2 | $25.00 \%$ |
| 9 | 512 | 45 | 39 | 49 | 35 | 94 | 74 | 9.87 | 10 | 0 | $0.00 \%$ |
| 10 | 1024 | 81 | 88 | 88 | 82 | 169 | 170 | 15.98 | 21 | 5 | $23.81 \%$ |
| 11 | 2048 | 151 | 189 | 156 | 184 | 307 | 373 | 26.42 | 25 | -1 | $-4.00 \%$ |
| 12 | 4096 | 276 | 405 | 285 | 397 | 561 | 802 | 44.4 | 52 | 8 | $15.39 \%$ |
| 13 | 8192 | 504 | 860 | 521 | 843 | 1025 | 1703 | 75.67 | 76 | 0 | $0.00 \%$ |
| 14 | 16384 | 938 | 1791 | 959 | 1771 | 1897 | 3562 | 130.49 | 150 | 20 | $13.33 \%$ |
| 15 | 32768 | 1745 | 3715 | 1765 | 3695 | 3510 | 7410 | 227.34 | 244 | 17 | $6.97 \%$ |
| 16 | 65536 | 3259 | 7662 | 3281 | 7641 | 6540 | 15303 | 399.62 | 435 | 35 | $8.05 \%$ |
| 17 | 131072 | 6103 | 15741 | 6145 | 15699 | 12248 | 31440 | 707.98 | 749 | 41 | $5.47 \%$ |
| 18 | 262144 | 11465 | 32224 | 11533 | 32157 | 22998 | 64381 | 1263.01 | 1314 | 51 | $3.88 \%$ |
| 19 | 524288 | 21676 | 65704 | 21711 | 65669 | 43387 | 131373 | 2267.11 | 2367 | 100 | $4.23 \%$ |
| 20 | 1048576 | 40984 | 133777 | 41038 | 133724 | 82022 | 267501 | 4092.14 | 4238 | 146 | $3.45 \%$ |
| 21 | 2097152 | 77732 | 271792 | 77877 | 271647 | 155609 | 543439 | 7423.38 | 7471 | 48 | $0.64 \%$ |
| 22 | 4194304 | 147866 | 551183 | 148078 | 550972 | 295944 | 1102155 | 13527.73 | 13708 | 180 | $1.31 \%$ |
| 23 | 8388608 | 281932 | 1116168 | 282229 | 115871 | 564161 | 2232039 | 24753.95 | 24928 | 174 | $0.70 \%$ |
| 24 | 16777216 | 538755 | 2257446 | 539113 | 2257089 | 1077868 | 4514535 | 45468.2 | 45745 | 277 | $0.61 \%$ |
| 25 | 33554432 | 1031627 | 4560777 | 1032060 | 4560344 | 2063687 | 9121121 | 83806.98 | 83467 | -340 | $-0.41 \%$ |

