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Nutrient sensing and coordination of metabolic pathways are crucial functions for all living
cells, but details of the coordination under different environmental conditions remain elusive.
We therefore undertook a systems biology approach to investigate the interactions between the
Snf1 and the target of rapamycin complex 1 (TORC1) in Saccharomyces cerevisiae. We show that
Snf1 regulates a much broader range of biological processes compared with TORC1 under both
glucose- and ammonium-limited conditions. We also find that Snf1 has a role in upregulating the
NADPþ -dependent glutamate dehydrogenase (encoded by GDH3) under derepressing condition,
and therefore may also have a role in ammonium assimilation and amino-acid biosynthesis, which
can be considered as a convergence of Snf1 and TORC1 pathways. In addition to the accepted role of
Snf1 in regulating fatty acid (FA) metabolism, we show that TORC1 also regulates FA metabolism,
likely through modulating the peroxisome and b-oxidation. Finally, we conclude that direct inter-
actions between Snf1 and TORC1 pathways are unlikely under nutrient-limited conditions and
propose that TORC1 is repressed in a manner that is independent of Snf1.
Molecular Systems Biology 7: 545; published online 8 November 2011; doi:10.1038/msb.2011.80
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Introduction

Cells commonly face environmental changes such as varying
availability of nutrients. Therefore, it is of crucial impor-
tance for them to adjust the metabolism accordingly. In this
context, the nutrient sensing and related regulatory pathways
are particularly important. Since there is a high degree of
conservation in the functionality of these regulatory pathways
in all eukaryotes, the budding yeast Saccharomyces cerevisiae
serves as an excellent model and has been used for many
studies on nutrient sensing and regulation in eukaryotic cells
(Petranovic and Nielsen, 2008). S. cerevisiae senses extra-
cellular nutrients and controls its metabolism through a
complex regulatory network (Zaman et al, 2008). Key compo-
nents in this regulatory network include the Snf1 kinase
complex and the target of rapamycin complex 1 (TORC1). Snf1
complex belongs to a remarkably conserved serine/threonine
kinase family called AMP-activated kinase (AMPK) that exists
in all eukaryotes (Polge and Thomas, 2007). The Snf1 kinase
was first identified as the key enzyme in releasing the glucose
repression on glucose depletion (Celenza and Carlson, 1984),
and later found to be involved in the regulation of transcription
through post-translational modifications of histone H3 and
Gcn5 (Lo et al, 2001; Liu et al, 2010) and interaction with
RNA polymerase II holoenzyme (Kuchin et al, 2000). Upon
activation by phosphorylation, Snf1 induces genes involved
in gluconeogenesis, glyoxylate cycle and b-oxidation of fatty

acids (FAs) by regulating a set of different transcription factors
(TFs) (Soontorngun et al, 2007; Ratnakumar and Young, 2010)
and represses lipid biosynthesis by inhibiting Acetyl-CoA
carboxylase (Acc1) (Woods et al, 1994), the committed step of
FA synthesis pathway. Besides the aforementioned processes,
Snf1 is also involved in the general stress response, pseudo-
hyphal growth, ageing and ion homeostasis (Alepuz et al,
1997; Kuchin et al, 2002; Lin et al, 2003; Portillo et al, 2005;
Hong and Carlson, 2007; Ye et al, 2008)
TORC1 was first identified in the screening of yeast mutants

against the antifungal reagent rapamycin. Similarly to Snf1,
TORC1 is also highly conserved in eukaryotes (Schmelzle and
Hall, 2000). TORC1 in S. cerevisiae (and some other unicellular
eukaryotes such as Schizosaccharomyces pombe) consists of
either Tor1 or Tor2, two homologous proteins, as well as
other components, while in metazoans like flies, worms and
mammals only one Tor protein can form the TORC1 (Inoki
et al, 2005). However, unlike Tor1, Tor2 can also form the
TOR complex 2 (TORC2), which is insensitive to rapamycin
and has distinct structures and functions compared with
TORC1 (Loewith et al, 2002; Jacinto et al, 2004; Wullschleger
et al, 2005). TORC1 senses the availability and quality of
the nutrients and regulates cell growth by antagonizing
a spectrum of TFs in the cytoplasm. For example, TORC1
induces ribosome biogenesis through the TFs Sfp1 and
Fhl1, in coordination with the protein kinase A (PKA)
pathway, thus promotes protein translation and cell growth
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(Marion et al, 2004; Martin et al, 2004). TORC1 also negatively
regulates those genes whose expression is induced by
limitation of nitrogen sources through the transcription
activators Gln3 and Gat1 (Beck and Hall, 1999), prevents
amino-acid biosynthesis by modulating Gcn4 translation
(Valenzuela et al, 2001) and represses stress responses through
the TFs Msn2 and Msn4 (Monteiro and Netto, 2004; Petkova
et al, 2010). It has been shown that TORC1 is also involved in
many other processes such as autophagy, ageing and cell cycle
(Kamada et al, 2000; Colomina et al, 2003; Medvedik et al,
2007).
Recent systematic approaches indicate some coordination

between Snf1 and TORC1 signaling pathways under nutrient-
excess conditions (Zaman et al, 2008; Smets et al, 2010).
However, it is not clear if there is any interaction between them
under nutrient limitation. Although AMPK was shown to
directly inhibit mTORC1 (AMPK and mTORC1 are the
orthologs of Snf1 and TORC1 in mammals, respectively),
a similar interaction was not identified in yeast (Hardie, 2007).
Instead, it was suggested that Snf1may be involved in nitrogen
metabolism through the regulation of the transcription
activators Gln3 and Gcn4 (Bertram et al, 2002; Shirra et al,
2008), which are targets of TORC1 and positively regulates
genes that are subject to nitrogen catabolic repression. It has
also been shown that Snf1 is directly involved in nitrogen
signaling and regulated by nitrogen availability (Orlova et al,
2006).
Thus far, our knowledge of nutrient sensing and related

regulatory pathways is limited to studies conducted under
nutrient-excess conditions (e.g., shake flask batch cultivation
with excessive amount of carbon and nitrogen sources). The
coordination of the signaling pathways under nutrient limita-
tion remains largely obscure. To address this limitation, we
took advantage of the chemostat cultivations, which permit
correlating observations with the limiting nutrient (Daran-
Lapujade et al, 2009). We focused on the cellular response to
carbon (glucose) or nitrogen (ammonium) limitation in
S. cerevisiae strains that lacked SNF1, TOR1 or both. We also
assessed the role of Snf1 and TORC1 as kinases under these
conditions using the state of the art phosphoproteomics
technology, and their impact on gene expression with
transcriptomics. We used the levels of selected metabolites,
such as free amino acids and total FAs, as read-outs of the net
contribution of these kinases, as amino-acid and FA metabo-
lisms are known to be regulated by Snf1 and TORC1,
respectively. By integrating these comprehensive data sets,
we obtained substantial new insights into how Snf1 and
TORC1 coordinate nutrient sensing and metabolic regulation.

Results and discussion

Cell physiology under nutrient-rich and -limited
conditions

To evaluate the effects of deleting Snf1 and TORC1 on cell
growth, we characterized the basic physiology of mutant
strains snf1D, tor1D and snf1Dtor1D together with the
reference strain CEN. PK113-7D (Supplementary Table S1) by
growing them first in batch and then switched to chemostat,
both using defined minimummediumwith glucose as the sole

carbon source. Chemostat cultures were used for several
reasons. First, it is possible to correlate the observations with
the limiting nutrient. Second, since the mutants have different
maximum specific growth rates, chemostats offer a platform
for comparing different strains at the same growth rate,
thereby eliminating any growth-related effects (Fazio et al,
2008). Finally, since the mutant strain snf1D is unable to grow
on non-fermentable carbon sources (such as ethanol and
glycerol), glucose-limited chemostat is the only option to
ensure Snf1 activity under comparable growth conditions.
There are several good nitrogen sources for yeast, such as
glutamine and ammonium (Zaman et al, 2008); however,
glutamine can also be used as a carbon source and is therefore
unsuitable for nutrient-limited cultures.
All mutant strains grew slower (by 12–22%) using glucose

as the sole carbon source and ammonium as the sole nitrogen
source, compared with the reference strain, indicating the
contribution of Snf1 and TORC1 during exponential growth
and deletion of either protein reduces cell growth on defined
minimum medium (Table I). However, the observation of an
equivalent reduction (about 20% lower) in the maximum
specific growth rate for the snf1Dtor1D strain seems to
contradict the hypothetic genetic interaction between Snf1
and TORC1 on these conditions, as one would expect a more
severe phenotypic change in the double mutant strain if a
genetic interaction was present (Boone et al, 2007). Deletion
of Snf1 (snf1D and snf1Dtor1D) resulted in a substantial
reduction (B25%) in the biomass yield compared with
the reference strain in glucose-limited chemostat cultures
(Table I). On the contrary, we observed a small increase in
biomass yield for tor1D under these conditions. The double
mutant produced acetate and glycerol, even under completely
respiratory conditions. Interestingly, we did not see any
substantial difference in the biomass yield on N-limited
condition.
The effects of deleting Tor1 were relatively moderate, given

that the TORC1 is the main regulator in cell growth and
proliferation (Schmelzle and Hall, 2000). This could be due to
the compensatory role of Tor2, which can also form TORC1. To
evaluate this hypothesis, we examined the sensitivity of the
reference and tor1D strains in the presence of rapamycin.
While the reference strain could tolerate up to 2 nM of

Table I Cell physiology of all strains in batch and chemostat cultivations

Medium Strain mmax YSX YSAc

h�1 g g�1 CmolCmol�1

C-limited Reference 0.37±0.01 0.515±0.007 o0.002
snf1D 0.29±0.00 0.384±0.003 0.007±0.004
tor1D 0.33±0.01 0.534±0.003 o0.002
snf1Dtor1D 0.30±0.00 0.382±0.002 0.028±0.003

N-limited Reference 0.097±0.002 0.006±0.000
snf1D 0.102±0.000 0.008±0.000
tor1D 0.095±0.000 0.008±0.001
snf1Dtor1D 0.107±0.001 0.009±0.000

All values are average±s.e.m. from at least three biological replicates. mmax,
maximum specific growth rate on glucose in batch cultures; YSX, biomass yield
on glucose in chemostat cultures; YSAc, acetate yield on glucose in chemostat
cultures. mmax for each strain was determined based on the CO2 emission during
the batch phase of the culture.
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rapamycin in the growth media, there was no observable
growth of the tor1D strain at any concentration of rapamycin
(Supplementary Figure S1). The increased sensitivity to
rapamycin caused by loss of Tor1, which was consistent with
previous findings (Chan et al, 2000; Reinke et al, 2004; Xie
et al, 2005), suggested that the deletion of TOR1 gene caused a
substantial reduction in TORC1 signaling or complex activity
and Tor2 could hence not fully compensate for the loss of Tor1
function. Since rapamycin inhibits the TORC1 by physically
binding to the complex, these results clearly show that Tor1 is
responsible for a majority of the TORC1 activity and the tor1D
strain, therefore, represents a knockdown, but not necessarily
a complete loss of function, of TORC1.

Global transcriptome changes due to loss of SNF1
but not TOR1

We used the Affymetrix DNA microarray platform to measure
the expression level of all genes and evaluate the global effect
caused by deletion of the SNF1 and TOR1 genes under nutrient-
limited conditions. The transcriptome data were decomposed
using principal component analysis (PCA). The first principal
component (PC1), which accounted for about 40% of the total
variation in the data (Supplementary Figure S2A), primarily
distinguished the impact of nutrient limitation (Figure 1A),
which was expected as the cells were respiring at C-limited
condition while they were respiro-fermenting at N-limited
condition. The second principal component (PC2) accounted
for the impact of SNF1 deletion. It is also evident that
the variance between snf1D and reference (represented by
the distance between reference and snf1D in Figure 1A) is
much larger at C-limited condition compared with N-limited

condition, confirming that Snf1 has a bigger role on glucose-
limited condition. Surprisingly, our data did not reveal any
transcriptional role for the TOR1 gene, indicated by the
overlapping of tor1D and the reference strain at all nutrient
limitations (Figure 1). Furthermore, TOR1 deletion did not
seem to have a large impact even in the snf1D background, as
evident from the close proximity of the snf1Dtor1Dwith snf1D
under all the conditions studied. This result suggests that Tor1
is dispensable under either of nutrient-limited conditions. It is
not clear whether the dispensability arises due to its partial
redundancy with Tor2 or due to the suppression of the Tor1
function under these conditions. To further examine the extent
of the changes in each mutant strain, we performed pair-wise
comparisons. On the C-limited condition, the expression of 519
and 603 genes was changed significantly (adjusted po0.001)
in snf1D and snf1Dtor1D, respectively, relative to the reference
strain. Gene ontology (GO) terms analysis revealed that
transcription of genes involved in nitrogen metabolism,
ethanol metabolism and pheromone-dependent signal trans-
duction appears to be specifically controlled by Tor1, other
processes such as stress response and biosynthesis of
ergosterol and glutamate were governed by Snf1 (Figure 1B).
The measurement of global gene expression provided clear

insight into the metabolic differences between the strains.
Increased acetate production (Table I) was in line with the
lower expression of ACS1 (encoding acetyl-CoA synthetase) in
the snf1D and snf1Dtor1D strains (Supplementary Figure S3).
The expression of the other acetyl-CoA synthetase (encoded by
ACS2) that is not subject to glucose repression increased
slightly in the snf1D strain, which is consistent with previous
findings (van den Berg et al, 1996). Two other genes in acetate
metabolism, ADY2 (encodes an acetate transporter) and ALD4
(encodes a mitochondrial aldehyde dehydrogenase), showed
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Figure 1 Deletion of SNF1 but not TOR1 caused global change in transcriptome. (A) Principal component analysis (PCA). Dark blue circles: reference on C-limited;
dark green squares: snf1D on C-limited; dark red triangles: tor1D on C-limited; dark purple diamonds: snf1Dtor1D on C-limited; light blue circles: reference on N-limited;
light green squares: snf1D on N-limited; light red triangles: tor1D on N-limited; light purple diamonds: snf1Dtor1D on N-limited. (B) The biological processes that were
affected by deletion of SNF1 (snf1D and snf1Dtor1D) on C-limited condition.
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similar expression patterns (Supplementary Figure S3). The
change in gene expression for both ACS1 and ADY2 was more
prominent in the snf1Dtor1D strain compared with the snf1D
strain. However, the expression of these genes being
unchanged in the tor1D strain indicates that the role of TORC1
in acetate metabolism relies on Snf1 activity, or in other words
it seems like TORC1 has a role in the metabolism of alternative
carbon sources through an active Snf1 kinase.
To identify transcriptional regulation of metabolism in

response to deletion of SNF1 and/or TOR1, we overlaid the
transcriptome onto a genome-scale metabolic model of
S. cerevisiae. This method (Patil and Nielsen, 2005; Oliveira
et al, 2008) allows identifying the so-called reporter features
(metabolites, TFs, etc) around which significant transcrip-
tional activity occurred and also subnetworks of coordinated
transcriptional changes. On C-limited condition, deleting SNF1
(snf1D and snf1Dtor1D) resulted in an extensive transcrip-
tional reprogramming around redox cofactors (NAD(P)þ/
NAD(P)H), Coenzyme A, several amino acids and a-ketoglu-
tarate (Z-score 41.5) (Supplementary Table S2). These
differences were identified primarily though global TFs such
as Msn2/4, Cat8, Ino2/4, Oaf1/Pip2, and Hap1 that regulate
stress response, aerobic respiration, as well as glucose and
sterol metabolism (Supplementary Table S2). Although delet-
ing TOR1 alone did not have any significant transcriptional
response, deleting TOR1 in the snf1D background resulted in
an altered expression for a small subset of genes (involved in
several processes including stress response, tRNA methyla-
tion, protein targeting to vacuole, ammonium transport,
intracellular protein transport), indicating that these processes
might be co-regulated by Snf1 and TORC1. Overall transcrip-
tome data from glucose limitation contradict the hypothesis
that Snf1 inhibits TORC1.

TOR1 deletion had no distinct phosphorylation
response

Since both Snf1 and TORC1 are kinase complexes and regulate
several processes mainly through phosphorylation of their
respective target proteins (Zaman et al, 2008; Smets et al,
2010), we measured the level of phosphorylation of various
proteins for all strains under C- and N-limited conditions. As
with the transcriptome data, the phosphoproteome data were
also analyzed using PCA. The analysis revealed that the TOR1
deletion did not lead to a distinct phosphoproteome profile
comparedwith the reference strain, irrespective of the nutrient
limitation. Under all conditions studied, the phosphoproteome
profile of tor1D always clustered with that of the reference and
the phosphoproteome profile of snf1Dtor1D always clustered
with that of snf1D (Figure 2). The reference and tor1D strains
on C-limited were separated farthest from the other strains/
conditions (Figure 2), indicating that the deletion of Snf1 has
a dominant response irrespective of the limiting nutrient. Out
of the 1714 phosphopeptides that were detected and identified,
399 and 206 peptides had significantly changed phosphoryla-
tion level in at least one mutant compared with the reference
strain, on C- and N-limited conditions, respectively.
We observed a clear Snf1-dependent pattern of phosphor-

ylation (lower phosphorylation level in snf1D and snf1Dtor1D

but not tor1D) for transcription repressor Cyc8 and its co-
component Tup1 (Supplementary Figure S4). Since the Cyc8–
Tup1 complex generally represses the transcription of many
genes through different modes (Smith and Johnson, 2000), it
may be responsible for upregulation of a subset of genes in the
snf1D and snf1Dtor1D strains. This further supports that the
transcriptome profile for snf1D and snf1Dtor1D was signifi-
cantly changed directly due to the role of Snf1 in the regulation
of transcription. This is supported by findings that several
other proteins involved in regulation of transcription by
histone modification (Bdf1, Eaf1, Leo1, Rph1 and Sin3) were
also found to be differentially phosphorylated only in the
snf1D and snf1Dtor1D strains. Significantly changed expres-
sion of ACS1 in snf1D and snf1Dtor1Dmight also contribute to
changes in histone acetylation and global changes in
transcription observed in these mutants (Takahashi et al,
2006). These results are in complete consistence with the
important role of Snf1 in the regulation of gene transcription
(Usaite et al, 2009).
Mammalian TORC1 (mTORC1) is repressed by AMPK

(Dennis et al, 2001; Bolster et al, 2002; Inoki et al, 2003),
and several lines of evidence suggest direct or indirect
interaction between Snf1 and TORC1 (Bertram et al, 2002;
Orlova et al, 2006) in yeast. However, in our analysis, we did
not find any change in the phosphorylation level of TORC1 due
to loss of Snf1 kinase or vice versa (Supplementary Figure S5).
Only Tco89 (a non-essential component of TORC1) was
identified as differentially phosphorylated in a Tor1-dependent
manner. Despite the state-of-art methods used in identifying
phosphoproteins, it is likely that some phosphopeptides have
not been identified due to low abundance, inefficient purifica-
tion, poor ionization, etc. Considering this limitation, the
absence of all components of the Snf1 and TORC1 pathways in
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Figure 2 Principal component analysis of phosphoproteome data for all
strains on C- and N-limited conditions. Dark blue circles: reference on C-limited;
dark green squares: snf1D on C-limited; dark red triangles: tor1D on C-limited;
dark purple diamonds: snf1Dtor1D on C-limited; light blue circles: reference
on N-limited; light green squares: snf1D on N-limited; light red triangles: tor1D on
N-limited; light purple diamonds: snf1Dtor1D on N-limited.
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our phosphoproteome analyses compels us to conclude that
Snf1 and TORC1 do not regulate the phosphorylation of each
other under the conditions studied. It has been shown that
phosphorylation of residual T210 on Snf1 is regulated by the
nitrogen source or rapamycin through TORC1 (Orlova et al,
2006), which raised the possibility that TORC1 negatively
regulates Snf1. However, both transcriptome and phospho-
proteome data revealed a negligible role for Tor1 irrespective
of Snf1 deletion, suggesting that TORC1 was mainly repressed
at C-limited condition and this repression may be independent
of Snf1. Based on these inferences, we propose that the Snf1
and TORC1 pathways only crosstalk via intermediate(s) under
nutrient limitation. Such an intermediate would operate at the
upstream of Snf1 and TORC1 and switches between the Snf1
and TORC1 activity (i.e., either Snf1 or TORC1, but not both,
could be active under nutrient-limited conditions). One such
intermediate could be the PKA/RAS pathway, which together
with Snf1 can be perceived as a switch that senses the glucose
concentration and regulates the cell metabolism accordingly
(Zaman et al, 2009). The identification of significantly
decreased phosphorylation of Bcy1, the regulatory subunit of
PKA pathway, in the snf1D and snf1Dtor1D strains suggests a
possible link between the Snf1 and PKA pathways (Supple-
mentary Figure S5). PKA interacts with TORC1 in the
regulation of protein translation and cell cycle (Martin et al,
2004; Wanke et al, 2005), and it may therefore bridge the Snf1
and TORC1 pathways. Since PKA and TORC1 are active in
nutrient excess, while Snf1 is only fully active under glucose
limitation or stress conditions, the media and growth condi-
tions are essential for studying the regulatory pathways
involved in nutrient sensing, because a shake flask cultivation
using a richmedium (typically the YPDmedium supplemented
with 2% of glucose) is a completely different scenario from the
chemostat culture fed with C- or N-limited medium.

Convergence of Snf1 and TORC1 onto amino-acid
biosynthesis

Neither the transcriptome nor the phosphoproteome data
supported a direct link between Snf1 and TORC1 or the
pathways they regulate. However, integration of these data

using a metabolic model revealed extensive regulation around
biosynthesis of amino acid and lipid (Supplementary Table
S2). To investigate the regulation of amino-acid biosynthesis
by Snf1 and TORC1, we quantified the intracellular level of 17
proteinogenic amino acids in all strains grown under both
nutrient-limited conditions (Supplementary Table S3). Serine
and arginine cannot be measured using the method applied
and the cysteine level was below detection threshold. The free
amino-acid pool under C-limited condition was 2- to 4.5-fold
higher compared with that for N-limited condition for all the
strains. During glucose limitation, the tor1D strain had about
17% higher level of free amino-acid pool, while the snf1D
strain had a level about 29% lower compared with the
reference strain (Figure 3A). During ammonium limitation, the
strain snf1D had a similar level as the reference, while the
tor1D and snf1Dtor1D strains had 170 and 93% higher total
amino-acid level compared with the reference, respectively
(Figure 3A). A substantial part of these differences was due
to changes in glutamate and glutamine, which accounted for
60–75% of the total amino acid (Figure 3B and C).
To identify transcriptional regulation of amino-acid meta-

bolism, we correlated the amino-acid levels with the expres-
sion of genes involved in their biosynthesis. Surprisingly,
many genes responsible for the amino-acid biosynthesis were
negatively correlated with the amino-acid levels (Figure 3;
Supplementary Figure S6), indicating that the changes in the
amino-acid abundance were not due to differential expression
of corresponding amino-acid biosynthetic genes. We speculate
that it may be due to that TORC1 senses a low level of
glutamine (Figure 3B; Crespo et al, 2002) and consequently,
the inhibition on Gcn4 is relieved (Valenzuela et al, 2001).
Next, we studied the drain from the central carbonmetabolism
into the amino-acid biosynthesis. Since the expression of genes
in TCA cycle is highly regulated by the nature and availability
of carbon sources in an Snf1-dependent manner (Young et al,
2003), one may speculate if the lower level of Glx and other
amino acids was due to the generally downregulated TCAcycle
in the snf1D strain on C-limited and hence shortage of
a-ketoglutarate, the direct precursor for amino acids of
the glutamate family. However, a clear retrograde signaling
response in the snf1D and snf1Dtor1D strains, reflected by both
an induction of CIT2 (about 4-fold) and genes responsible for
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the early steps in the TCA cycle (CIT1, ACO1/ACO2, IDH1/
IDH2) (Liu and Butow, 2006), confirmed that the amino-acid
biosynthesis was not limited by the supply of a-ketoglutarate.
Instead, a plausible explanation for the lower level of amino-
acid pool in the snf1D and snf1Dtor1D strains would be that
the expression of GDH3, which encodes one of the isoforms
of glutamate dehydrogenase when cells are grown under
derepressive conditions (DeLuna et al, 2001), was transcrip-
tionally downregulated by 44-fold in the snf1D and
snf1Dtor1D strains. The amino-acid biosynthesis was,
therefore, likely limited by the inefficient conversion of
a-ketoglutarate to glutamate, which is the main nitrogen
source for cell growth. This phenomenon is similar to the one
that was previously reported, where simply overexpression of
GDH2 in the mutant strain gdh1D grown on batch culture
(where the Gdh1 is the major isoform of glutamate dehydro-
genase) changed the overall amino-acid pool significantly
(Villas-Boas et al, 2005). On the other hand, the increased level
for amino acids in tor1D could be attributed to an impaired
balance between protein synthesis and degradation as a
consequence of TOR1 deletion (Inoki et al, 2005).
We also found that amino-acid biosynthesis is regulated at

the post-translational level. For example, homocitrate
synthase (encoded by LYS20 and LYS21), which catalyzes the
condensation of acetyl-CoA and a-ketoglutarate to form
homocitrate, was found to be significantly more phosphory-
lated in the snf1D strain and to a lesser extent in the snf1Dtor1D
strain. However, the phosphorylation of only LYS20 decreased
in the tor1D strain (by B2-fold; Supplementary Figure S7).
Since the intracellular lysine level significantly increased in all
mutant strains (being highest in tor1D) at C-limited condition
(Figure 3C), we could conclude that the homocitrate synthase
isoenzymes (Lys20 and Lys21) are not only regulated through
feedback inhibition by lysine, but could also be regulated
through phosphorylation of these enzymes in an Snf1/TORC1-
dependent manner. Collectively, we propose that Snf1 and
TORC1 regulate the amino-acid biosynthesis via two indepen-
dent mechanisms.

TORC1 may have a role in the regulation of FAs

To unravel the role of Snf1 and TORC1 in the regulation of FA
metabolism, we measured the relative abundance of FAs,
including the free and ester form (e.g., in triacylglycerol), in
the reference and mutant strains on both C- and N-limited
conditions. Since Snf1 regulates FA biosynthesis by inhibiting
acetyl-CoA carboxylase (Acc1) under derepressive conditions
(Woods et al, 1994), the significant increase of total FA in the
snf1D and snf1Dtor1D strains on C-limited condition was
expectable (Figure 4). However, there was a significant
variation in the FA species between different strains and the
two growth conditions. The most abundant species was C18:1,
where the largest differences between strains were observed
(Figure 4E). The snf1D and snf1Dtor1D strains had higher
levels of C18 (i.e., both C18:0 and C18:1) and longer FAs, on
both C- and N-limited conditions, comparedwith the reference
strain (Figure 4D–F), except for C14 where the result was
contrary (Figure 4A). The snf1Dtor1D strain had higher
amounts of C18 compared with the snf1D strain irrespective
of the growth condition. The tor1D strain had higher C14 and

C16 on N-limited condition, but the levels were lower on
C-limited condition, compared with the reference strain.
However, this was only observed for C18 and longer FAs in

these two strains (Figure 4D and E), while the abundance of
C14 was reduced in the mutant strains in which SNF1 was
deleted. There may be two mechanisms that can explain the
different patterns between the FAs with different length. One
possibility could be that while the inhibition of acetyl-CoA
carboxylase by Snf1 was relieved, and the FA synthetase
(encoded by FAS1 and FAS2) is constitutively functional and
steadily converting short chain FAs to synthesize up to C16.
Consistently, the elongase I (encoded by ELO1) that convert
C12–16 to C18 was also found to be transcriptionally
upregulated in snf1D and snf1Dtor1D; therefore, C16 was not
accumulated in the strain snf1D and snf1Dtor1D (Figure 4B
and C). It could also be that a lower peroxisome biogenesis
due to the loss of Snf1 leads to a lower level of b-oxidation of
the long chain FAs (Ratnakumar and Young, 2010), therefore
not only the biosynthesis, but also the degradation of FAs is
regulated by Snf1. We also observed that the deletion of TOR1
had some effect on the abundance of FAs, although to a lesser
extent compared with those for SNF1 deletion (Figure 4D and
E). The deletion of TOR1 in the snf1D background strength-
ened the changes caused by the deletion of SNF1 for C18:0,
but rather dampened the changes for C18:1 (the most
abundant FA species). The FA data support the hypothesis
that Tor1 has a role in the regulation of FAs. However, TORC1 is
unlikely involved in the regulation of acetyl-CoA carboxylase,
and we suspect that the TORC1 may have a role in the regula-
tion of peroxisome and b-oxidation of FAs. It is also interesting
to notice that although deletion of TOR1 had not caused an
evident change to the transcription and phosphorylation,
many amino acids and FA species had changed significantly
(Figures 3 and 4). This observation further supports the ideas
that the intermediate metabolites are much more sensitive to
mutations, while metabolic fluxes are rather robust (Cornish-
Bowden and Cardenas, 2001; Raamsdonk et al, 2001).

Regulation of translation and cell growth

Since TORC1 promotes biosynthesis of ribosome and protein
(Wullschleger et al, 2006), while Snf1 represses the energeti-
cally expensive processes such as biosynthesis of lipid and
proteins (Hardie, 2007), we looked at the Snf1 and TORC1
regulation of protein translation, both at the transcriptome
and at the phosphoproteome levels. Surprisingly, the deletion
of SNF1 led to a significantly (despite o2-fold) increased
expression of many genes involved in translation initiation
or elongation, while the deletion of TOR1 alone did not cause
any changes (Figure 5A). This held true even for the
translation initiation or elongation factors (with only a few
exceptions) that were found to be differentially phosphory-
lated in the mutant strains compared with the reference strain
(Figure 5C). The observation that protein synthesis being
primarily regulated by Snf1 instead of TORC1 seems to
contradict the common knowledge that TORC1 is the main
regulator for ribosomal translation (Inoki et al, 2005).
However, taken the growth conditions (i.e., glucose limitation)
into account it is actually consistent with the role of Snf1 as
a global regulator of energy homeostasis and a repressor of
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anabolic processes (Hardie, 2007). The relative small changes
in the snf1Dtor1D strain compared with the snf1D strain may
advocate an inhibition of TORC1 under C-limited condition, as
the TORC1 activitymay require a high level of both ammonium
and glucose (Figure 6). Interestingly, many genes involved in
the mitochondrial ribosome and protein translation also had a
similar pattern of expression where it was increased in the
snf1D and snf1Dtor1D strains, and deletion of TOR1 had either
no effect or similar effect with a lower magnitude (Figure 5B).
Collectively, we conclude that the Snf1 has a major role in cell
the mitochondrial proteome under C-limited condition.

Conclusion

Through integration of different omics data sets with meta-
bolite profiles and strain physiology, we address the question

of how Snf1 and TORC1, the two key regulators in the nutrient
sensing pathways, coordinate metabolism with nutrient avail-
ability. The regulatory network is summarized in Figure 6.
First, we showed that deletion of SNF1 caused bigger
phenotypic changes compared with deletion of TOR1 grown
on both nutrient-excess and -limited conditions and we
demonstrate that it is likely due to that Snf1 kinase regulates
a much broader range of biological processes such as global
transcription, translation of protein, biogenesis of peroxisome
and mitochondrion. The expression of NADPþ -dependent
glutamate dehydrogenase (Gdh3), which is upregulated under
derepressing conditions (e.g., glucose limited), is regulated by
Snf1, and the deletion of SNF1 likely results in an inefficient
condensation of a-ketoglutarate and ammonium to form
glutamate. Consequently, the synthesis of glutamine as well
as the other amino acids is limited, resulting in a moderate
induction of amino-acid biosynthetic genes through the
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Figure 4 Abundance of fatty acids for all strains and two growth conditions. The abundance is based on the sum of FAs in the free as well as ester form. The error
bars represent the s.e.m. from at least three replicates. (A) C14:0—myristic acid; (B) C16:0—palmitic acid; (C) C16:1—palmitoleic acid; (D) C18:0—stearic acid;
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TORC1/Gcn4 regulatory circuit (Figure 6). However, to
elucidate themolecular mechanism bywhich Snf1 upregulates
GDH3 gene requires extensive targeted studies such as the
protein–protein/protein–DNA interaction assays. We also
showed that besides Snf1, TORC1 may also have a role in
the regulation of FAs, probably through modulating the
peroxisome biogenesis and b-oxidation of FA, but via an
unidentified mechanism than that of Snf1 pathway. Finally,
we conclude that Snf1 and TORC1 do not seem to interact
with each other directly under nutrient-limited conditions,
although they have functional overlaps. We propose that
TORC1 might be repressed by another regulator (or a signal
molecule), which is activated (or raised) under nutrient-
limited conditions, and this repression may not depend on
the Snf1 activity. Furthermore, this unknown upstream
regulator (or signal molecule) might also toggle switch

between Snf1 and TORC1 activity to coordinate the cell
growth and stress response under nutrient-rich and -limited
conditions.

Materials and methods

Strains

The S. cerevisiae strains used in this study are the commonly used
reference strain CEN.PK 113-7D (van Dijken et al, 2000) and its
derivative strains (Supplementary Table S1). The tor1D strains
(CEN.PK JZH-F1 and CEN.PK JZH-F2) were constructed by transform-
ing the reference strains CEN.PK 113-7D and CEN.PK 113-1A (Mata)
with a PCR amplified KanMX (from the strain BY4741) including
B400 bp upstream and downstream of the TOR1 locus. The strain
CEN.PK JZH-G1 snf1Dtor1D was constructed by crossing the strain
CEN.PK 506-1C and CEN.PK JZH-F2, followed by dissection and
screening as described previously (Zhang et al, 2010). The gene
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deletions were verified by PCR using primers outside the SNF1 and
TOR1 loci and one primer inside the gene KanMX.

Chemostat cultivations

Chemostat cultures were grown at 301C in 1.2 l bioreactors (DASGIP)
with working volume of 0.5 l. The pH was controlled at 5.00±0.05
with 2M KOH and the dissolved oxygen was kept above 30%. The
dilution rate was adjusted to 0.10 h�1. For the C-limited cultures, one
liter medium contained 10 g of glucose, 15 g of (NH4)2SO4, 3 g of
KH2PO4, 1.5 g of MgSO4 � 7H2O, 1ml of vitamin solution (Usaite
et al, 2008), 1ml of trace metal solution (Usaite et al, 2008), and 50ml
of Antiform 204 (Sigma-Aldrich, USA). For N-limited cultivation,
the medium was the same as the one used in C-limited cultures
except that the concentrations for (NH4)2SO4 and glucose were 1.0
and 60.0 g l�1, respectively. The CO2 emission (and residual O2) was
monitored from the exhaust gas using the gas analyzer (DASGIP,
Germany) and was used to determine the maximum specific growth
rate during the batch growth phase. Samples for cell dry weight,
extracellular and intracellular metabolites, transcriptome and prote-
ome were taken from the cultures after steady state was achieved for
about 50h.

Transcriptome

The samples for transcriptome were taken as described previously
(Zhang et al, 2010). The cells were mechanically disrupted using
FastPrep homogenizer (MP Biomedicals) and total RNA was isolated
using the RNeasy Mini Kit (QIAGEN). The quality of total RNA was
assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies)
with RNA 6000 Nano LabChip kit (Agilent Technologies). The labeled
RNA was synthesized using the GeneChips 30 IVT Express Kit
(Affymetrix), which was then hybridized onto the GeneChips Yeast
Genome 2.0 Arrays (Affymetrix). Staining and washing of the
hybridized arrays were carried out on the GeneChips Fluidics Station
450 (Affymetrix) and scanned using the GeneChips Scanner 3000 7G
(Affymetrix). Affymetrix microarray data are available at GEOwith the
accession numbers GSE24421.

The transcriptome data were analyzed using Bioconductor in
R. MAANOVA (MicroArray ANalysis Of VAriance) was performed
to determine the genes whose expression level have signifi-
cantly changed due to their genetic differences. PCA was applied
to reduce the number of dimensions of the data set and simplify
the data structure. Selected significant genes were clustered using
a consensus clustering methods (Grotkjaer et al, 2006), and the
GO terms for the genes in each cluster were analyzed using the
Saccharomyces Genome Database (SGD) (http://www.yeastgenome.
org/) to find the significant biological processes in each cluster
(Po0.01). The Reporter Metabolite and Reporter Effector algo-
rithms were applied to the transcriptome data to identify the
‘hot-spots’ in the metabolic or regulatory network, around which
the significant changes have occurred (Patil and Nielsen, 2005;
Oliveira et al, 2008).

Phosphoproteome

The samples collected from the chemostat cultures were rapidly
quenched by adding trichloroacetic acid to a final concentration of
6.25%, incubated on ice for 10min and spinned down by centrifuging
(5000 r.p.m. at 41C for 5min). For each of the three replicates, 3mg
proteins were digested by trypsin (1:125w/w) and cleaned by reverse
phase chromatography. Phosphopeptides were enriched by titanium
dioxide resin (1.25mg GL Science resin for each sample) as previously
described (Bodenmiller and Aebersold, 2010). The isolated phospho-
peptides were analyzed by an LTQ-FT Ultra mass spectrometer
(Thermo Scientific, Germany), interfaced with a nano-electrospray
ion source. Chromatographic separation of peptides was performed
on a Proxeon Easy-nLC II system (Odense, Denmark) using a
10.5 cm� 75 mm column packed with 3mm Magic C18 material.
Peptides were separated at a flow rate of 300nlmin�1 with a gradient
increasing from 5 to 40% acetone. The five most intense ions detected

in each MS1 scan were selected for fragmentation. The mass
spectrometer data were searched against an SGD decoy database for
yeast proteins using Sequest (Lundgren et al, 2009). OpenMS version
1.7 (Sturm et al, 2008) was used both to detect MS1 features and to
align them between the different experimental conditions. By using a
decoy database (Kall et al, 2008), a Peptide Prophet’s probability
threshold (0.9) was computed in order to achieve a false discovery rate
o1%, and was used to filter OpenMS results. Phosphopeptides
features with identical sequence and phosphorylation state but
different charge were merged together. Only features which were
detected at least twice in the three replicates were considered for
statistical analysis by BAMarray version 3.0 (Ishwaran et al, 2006),
which was used to compute the statistical significance of the regulated
features. Two replicas for tor1D grown on N-limited condition were
removed from statistical analysis due to their low data quality. The
data can be downloaded from Tranche using the following link:
https://proteomecommons.org/dataset.jsp?id¼5JoVUbWQTC1tQWzv
MlovAN8GJNgGqoWwZsdmcLwhgAjp4xJvlrJipf8V%2BbiCh2VjatUQ
aDbyCd%2F51j7%2B%2B5vI1EjfI9MAAAAAAAACUQ%3D%3D.

Free amino acids

The extraction of free amino acids was performed as described with
modifications (Smits et al, 1998). First, 20mg of freeze-dried cell
pellets was suspended in 2.5ml of cold methanol and 1ml of
chloroform, followed by addition of 4ml of chloroform (�201C) and
2ml of Pipes-EDTA (3mM each, pH 7.0). After shaking horizontally at
300 r.p.m. and�201C for 45min, the mixture was centrifuged at 3000 g
and �101C for 20min, and the upper (aqueous) phase was collected.
The free amino acids were concentrated and derivatized using the
EZ:faastt kit (Phenomenex) and quantified using GC-MS (Thermo
Scientific) as described in the kit manual. Themeasurements are listed
in Supplementary Table S3.

Fatty acids

The total FA was extracted and esterificated as described previously
with modifications (Abdulkadir and Tsuchiya, 2008). First, about
15mg of freeze-dried biomass was mixed with 5mg of heptadecanoic
acid (internal standard) in 625ml of hexane and 250ml of 14% BF3 in
methanol. The head space of the tube was flushed with nitrogen gas to
avoid oxidation and capped tightly before heated in a water bath
(Grant OLS200, Cambridge, UK) at 1001C for 90min with shaking at
70 r.p.m. After cooling to room temperature, 125 ml of hexane was
added followed by addition of 250ml distilled water. The tubewas then
shaken vigorously for 1min and centrifuged for 3min at 2500 r.p.m.
(650 g). Finally, 750ml of the upper phase, that is, hexane containing
the FA methyl ester (FAME), was transferred into a gas chromato-
graphy-mass spectrometry (GC-MS) vial using a Pasteur pipette. The
FAMEs were separated and quantified using Trace GC DSQII single
quadrupole GC-MS (Thermo Scientific). Separation was performed
with an Omegawax 250 (Supelco, Bellefonte, PA) column
(30m� 0.25mm internal diameter, 0.25mm film thickness). Helium
was used as a carrier gas and the program was as follows. After the
injection at 501C, the oven temperature was raised to 1801C
(201Cmin�1), held for 1min, raised to 2101C (31Cmin�1), held for
5min, raised to 2151C (11Cmin�1), held for 3min, raised to 2211C
(11Cmin�1), held for 5min, raised to 2301C (31Cmin�1), held for
5min, raised to 2501C (31Cmin�1), held for 2min, and finally raised
to 2701C (41Cmin�1), held for 2min. Mass transfer line and ion source
were held at 250 and 2001C, respectively. FAME peaks were identified
by searching their spectrum pattern against the NIST library. The
FAME mixture (C14–22) standard (Sigma-Aldrich) and heptadecanoic
acid (Sigma-Aldrich) serial diluted in hexanewere injected in the same
analysis to generate standard curves for the quantification. The
measurements are listed in Supplementary Table S4.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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