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H I G H L I G H T S

• Assesses photovoltaics and battery project at commercial and industrial customers.

• Studies applications in three industries and three South-East Asian countries.

• Finds that profitable photovoltaic and battery investments exist already today.

• Shows that adding a battery often reduces profitability vis-à-vis photovoltaic only.

• Derives policy advice to foster the deployment of photovoltaic and battery projects.
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A B S T R A C T

Solar photovoltaics and batteries are key technologies to enable a rapid decarbonization of electricity systems.
Commercial & industrial consumers are an important market for these technologies due to their fast growing
electricity demand, particularly in emerging economies. However, it remains unclear if photovoltaics and bat-
tery installations are profitable for commercial & industrial applications in an emerging country context.
Assessing the profitability of investments in photovoltaics and battery projects, however, is much more complex
than for standalone photovoltaics projects, and strongly depends on the regulatory regime. These regimes are
often complex and can be inconsistent. Hitherto decision makers lack models which are suitable for detailed
assessments and which can serve as basis to adjust the regime. Here, we develop a techno-economic optimization
model for commercial & industrial photovoltaics and battery projects, which returns a profit-maximizing storage
dispatch and system design. We investigate three South-East Asian countries (Vietnam, Thailand, and Malaysia)
and three different industries (Textile, Consumer Goods, and Electronics). The results show that profitable in-
vestment opportunities in photovoltaics and battery projects exist already today, even though a battery typically
reduces profitability vis-à-vis standalone photovoltaics projects. We discuss how reducing investment risks,
building local industries, and shifting existing support schemes towards batteries could support battery de-
ployment in South-East Asia and thereby contribute to the decarbonization of electricity systems in the region.

1. Motivation and research question

Rapid decarbonization of global electricity production relies on
additional deployment of renewable energy technologies (RET) [1,2].
Emerging and developing economies are of particular importance, be-
cause electricity demand is increasing rapidly in many of these coun-
tries, and RET deployment could serve to avoid locking-in carbon-in-
tensive electricity generation technologies, such as coal-fired power
stations [3,4]. Commercial and industrial (C&I) consumers are a key
group driving the growth in electric load in these countries. At the same

time, solar photovoltaic (PV) plants are well suited to satisfy the ad-
ditional demand: Their modularity makes them technically viable to
serve C&I loads within geographical proximity, e.g., by installing them
on C&I consumers’ rooftops, “behind-the-meter”. The cost of PV plants
have decreased significantly in recent years, making them the least-cost
option in many instances [1,5,6]. Accordingly, since 2012 many
emerging and developing countries started adding PV capacity to their
grid [7]. Nevertheless, deployment has so far mainly focused on utility-
scale projects, whereas behind-the-meter installations have lagged be-
hind [8]. Reasons are manifold [9], including subsidized grid electricity
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[10], high perceived investment risks[11], as well as inconsistent reg-
ulatory regimes1 [12]. PV’s intermittency poses an additional challenge:
Its integration into the electricity system needs to be actively managed,
especially in emerging and developing economies where grid infra-
structure is typically weaker compared to in high-income countries
[13]. Batteries present a possible solution to this challenge. However, to
date it remains unclear if C&I PV and battery projects are profitable in
emerging economies and how different regulatory regimes influence
the profitability. To address this gap, we develop a novel techno-eco-
nomic optimization model for C&I PV and battery projects, which re-
turns a profit-maximizing storage dispatch and system design and apply
it to compare three emerging economies in South-East-Asia.

Existing literature has examined in detail how regulatory regimes
influence economics and deployment of behind-the-meter (both re-
sidential and C&I) standalone PV (without battery) projects, including
in emerging economies. For example, Ossenbrink (2017) conceptualizes
various operational strategies and system designs depending on PV
project investment cost, electricity tariffs and PV remuneration in
California and Germany [14]. In addition, specific case studies on in-
dividual emerging economies have been presented, such as by Tong-
sopit and colleagues, who assess the profitability of PV self-consump-
tion for residential and C&I customers in Thailand [15]. In addition to
conceptual and empirical findings, open-source techno-economic
models exist for policy makers and private decision makers to assess
profitability of standalone PV projects [16,17], including in emerging
economies [18]. These models are easily adaptable to different geo-
graphies and regulatory regimes, as typically no optimization is ne-
cessary but simple spreadsheet-based cash-flow models do suffice.
However, these models do not consider battery storage. For C&I PV and
battery projects, the complexity of such assessments is much higher and
– to our knowledge – no comprehensive analysis and open-source
model exist for decision makers to assess a project’s viability and the
relevant influencing factors. Tariff designs are usually more intricate for
C&I customers, including time-variant prices, charges for peak power
demands, and other design elements. Furthermore, the battery adds
flexibility to the operating and design strategies of developers. A bat-
tery enables consumers to tap into multiple value streams [19] that
need to be co-optimized to achieve an overall optimal result. Several
studies assess project economics without applying a comprehensive
optimization framework, which limits wider applicability (Residential
and C&I in Germany [20], C&I in Germany [21], Residential, C&I and
Grid in Germany [19]). Pena-Bello and colleagues (2019) provide an
open-source model to optimize PV and battery projects, however focus
on residential consumers in the United States (Texas) and Switzerland
[22]. Von Appen and colleagues (2015) compare residential PV and
battery systems design and their impact on the distribution grid in
Germany and Australia [23]. Khalilpour and Vasallo (2016) provide an
integrated optimization framework to both size and optimally dispatch
residential PV and battery projects [24]. Other studies provide assess-
ments of single case studies, which do neither compare regulatory re-
gimes across countries, nor do they make the developed model acces-
sible to decision makers (e.g., Germany Residential [25], Germany C&I
[26] Australia [27], United Kingdom C&I [28], United Kingdom Re-
sidential [29], United States C&I [30] Hungary C&I [31]. Furthermore,
none of the reviewed C&I PV and battery studies focus on the specific
issues in emerging economies.

Hence, we apply our model to three emerging economies in South-
East Asia, a region with plentiful solar resources, strongly increasing
electricity demand, and a large and growing C&I sector. More

specifically, we analyze Vietnam, Thailand, and Malaysia, which
strongly differ in their regulatory regimes. Furthermore, we include
three archetypical load profiles that represent different industries:
textiles production, consumer goods production, and electronics man-
ufacturing. To analyze the effects of the further decreasing investment
cost of PV and battery systems, we perform the analysis using current
values (invest in 2018, operate from 2019) and values as projected to
2030 drawing on learning curve-based projections. To account for the
financing costs of different firms in different countries, we conduct a
sensitivity analysis of the applied discount rate. Moreover, we discuss
the various levers available to policymakers in the respective countries
to efficiently and effectively foster deployment of battery systems.

The remainder of this study is structured as follows. Section 2 de-
scribes the selected cases in detail. Section 3 introduces our metho-
dology and the data used in the study. In Section 4, we present our
results, and in Section 5, we discuss the results and their implications
for policymakers and the private sector. Section 6 concludes the study
and lays out potential avenues for further research.

2. Case description

In this section, we describe the regulatory regimes in the three se-
lected countries and the load profile archetypes of the three selected
industries. Concerning countries, we selected three emerging econo-
mies in South-East Asia, because the region's electricity demand is ra-
pidly growing (meaning the deployment of RET can contribute greatly
to mitigating global climate change), and because the high solar re-
sources allow for PV installations. We chose three large countries -
Malaysia, Thailand, and Vietnam - which strongly differ in their reg-
ulatory regimes, hence allowing to study the impact of various elec-
tricity-sector and PV-specific regulations. All three countries have a
growing C&I sector.

Concerning the regulatory regimes, we focus on (i) design elements
that influence how electricity flows are remunerated or what their costs
are, and (ii) on which electricity flows are allowed at all. In Vietnam
and Thailand, C&I consumers can utilize time-dependent electricity
prices in the energy-related part of their bill (measured per kWh),
whereas in Malaysia, uniform prices are applied. The price differential
in Vietnam and Thailand allow consumers to charge a potential battery
system at low electricity prices and occasionally discharge into their
load at higher electricity prices. Peak demand charges (i.e., electricity
prices for the capacity-related part of the bill, measured per kW) are
applicable in Thailand and Malaysia, but not in Vietnam. These charges
allow consumers to reduce their typical peak loads in a period either
directly by consuming electricity generated by the PV system or by
charging the battery system during periods of lower demand and dis-
charging it during peak load times. Policies that support PV-generated
electricity in Vietnam and Malaysia provide a Feed-in-Tariff (FiT) and a
Net Metering scheme (NEM), respectively. Only in Vietnam is it pos-
sible to sell electricity on the wholesale market. In both Thailand and
Malaysia, PV projects incur license fees, adding to projects’ operational
expenditures. In addition, it is important to highlight which electricity
flows related to the electricity grid are permitted. In Vietnam and
Malaysia, PV and battery system operators have the highest degree of
flexibility because they are allowed to directly feed-in electricity from
the PV system, and charge and discharge batteries through the grid.
Conversely, in Thailand, only electricity consumption is allowed so that
consumers cannot feed-in electricity from a PV system. An overview of
the countries’ characteristics is provided in Fig. 1:

To understand the influence of load profile archetypes, it is im-
portant to consider total consumption in kWh per year, simultaneity of
PV generation and consumer load, and the shape of the load curve (e.g.,
to what extent the monthly load peak deviates from the monthly
average consumption). In the textile industry and in electronics man-
ufacturing, the load archetypes are characterized by comparatively high
annual electricity consumption at about 8 GWh and 6 GWh,

1 The regulatory regime summarizes all elements that influence the eco-
nomics of behind-the-meter PV and battery projects and that can be influenced
by public policy. Specifically, we consider policies in support of RET and bat-
tery deployment, regulations influencing the electricity tariff, and the design of
the electricity market.
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respectively. In the consumer goods industry, the load archetype has an
annual consumption of only about 72 MWh. An overview of the various
shapes of the load profile archetypes is provided in the Fig. 2.

3. Methodology

This section describes the new PV-STOR model that was developed to
perform techno-economic assessments of PV and storage projects. We
first introduce the overall framework, before explaining its two compo-
nents: the battery dispatch optimization model and the financial model.

3.1. Modeling framework

The analysis of the profitability of PV and storage projects requires
the combination of two independent models: a battery dispatch model
and a financial model.2 Investigating the profitability of battery storage
requires programming the optimization routines in battery dispatch
models. Such models aid the assessment of battery revenues from
combining multiple applications, considering degradation impacts and
the optimal sizing of a battery. To evaluate the net present value (NPV)
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Fig. 1. Overview of countries with their respective regulatory regimes. General country information is based on CIA World Factbook; regulation-related information
is based on desk research (analysing relevant policy documents, schemes and legislation) and has been confirmed via interviews with project developers active in the
three countries. All data for 2019 or the latest available year.
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Fig. 2. Overview of industries and their respective load profile archetypes. Power in kW on the vertical axis every quarter hour per week starting at Monday on the
horizontal axis. These load profile archetypes in quarter-hourly resolution are based on measured load curves from respective businesses that have been provided by a
single C&I PV project developer active in the three countries in an anonymized way.

2 The PV-STOR model is available to the reader upon reasonable request to
the authors
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of the PV and battery projects, the derived optimal battery dispatch is
fed into a financial model. A graphical summary of both models and
their respective interfaces are provided in Fig. 3.

The techno-economic model PV-STOR is fed various sets of input
data (compare Section 3.3.3 and Appendix Tables A1–A3), such as site-
specific, commercial, technical, and cost parameters, as well as in-
formation about electricity tariffs and the specific period that is simu-
lated. The battery dispatch model then co-optimizes the battery sche-
dule across the various revenue sources to maximize the project’s NPV.
This so-called “revenue stacking” approach assesses the battery’s cap-
ability to perform multiple energy and power services simultaneously
[19]. Thus, the model determines the NPV-optimal battery schedule
that simultaneously reduces the consumers energy charge (paid per
kWh consumed, reduced by e.g., utilizing time-of-use tariffs or con-
suming electricity generated from PV directly), reduces the capacity
charge (paid per kW of peak demand, reduced by e.g., shaving peaks in
the consumer load vector), generates revenues from feeding PV elec-
tricity into the grid (e.g., by obtaining Feed-In-Tariffs), generates rev-
enues from feeding electricity from the battery into the grid (e.g., by
selling electricity on the wholesale market), and provides backup power
in the case of a grid outage. The optimized battery dispatch is then fed
back to the financial model, where its implications for the project’s cash
flow are derived by offsetting the resulting electricity bill against the
status quo, in which neither a PV nor a storage system is installed. The
resulting energy and capacity charge savings are considered battery
revenues and added to the revenues that result from the PV feed-in,
direct battery feed-in, and backup service provision (as is common
practice in assessments of behind-the-meter PV and battery projects
[21–23], we will refer to both revenues and avoided costs as “revenue
streams” in the following). Based on these stacked revenue streams,
project’s capital and operational expenditures (CAPEX and OPEX) and
the investor’s discount rate, the NPV is calculated. In addition, the NPV
of the PV system without battery is calculated, which serves as a
benchmark in answering the question of whether adding storage ca-
pacity would benefit the project’s profitability. In addition to the NPV-
optimal operation of a given PV and battery system, the NPV-optimal
system sizes are derived by simulating a grid of different setups (dif-
fering PV system power in kWp, battery power in kW, and battery ca-
pacity in kWh).

3.2. The battery dispatch model

3.2.1. PV and battery representation
3.2.1.1. System design parameters. Regardless of the specific
application, the model is defined by a set of three fundamental
parameters: rated power, energy capacity, and roundtrip efficiency.
Particular battery technologies or even non-battery electricity storage
options can be analyzed by numerical variations of these three
parameters [32].

The definition of rated power and energy capacity might be a given
in specific projects. However, to answer the research question at hand,
these parameters are subject to optimization. This fact is important
because project revenues typically increase with increasing battery
sizes that theoretically allows for the reduction of energy and capacity
costs to the global minimum. However, in most cases, the costs of the
battery required to leverage such reductions would far exceed the po-
tential savings on an electricity bill. Therefore, the optimization of the
battery dispatch to must always be paired with sizing methods to find
the optimum between battery revenues and costs. Here, we apply a grid
search algorithm by which the same project is simulated using pre-
defined system designs, i.e., differing values for battery power, battery
capacity, and PV capacity, to construct a three-dimensional grid. As a
result, the sizes of the PV and battery system are determined by the
parameter combination that yields the highest overall NPV for the in-
tegrated system.

The roundtrip efficiency indicates how much of the electricity used
in charging can be retrieved from the battery during discharging. In
charging, less energy enters the device than is extracted from the grid or
the PV system. Similarly, in discharging, less energy is derived from the
battery than the amount that was stored. Hence, for the purpose of
optimization, we split the roundtrip efficiency into losses from charging
activities and losses from discharging activities. We propose to achieve
this split geometrically, as typically done in other studies defining
battery dispatch as linear programming problem [e.g.,33]. As a further
simplification, we assume an average roundtrip efficiency across op-
erating modes and thereby neglect its dependence on the actual charge
and discharge power applied [34].

3.2.1.2. Implementation of regulatory regime and system design
constraints. The battery dispatch solution space is constrained by both

Germany

Battery dispatch, incl. all 
revenue streams

GermanySite-specific 
parameters,
e.g. load profile, 
specific yield (“sun full-
load hours”)
Commercial 
parameters, 
e.g. cost of capital
Technical parameters,
e.g. efficiency, 
degradation
Cost parameters,
e.g. investment costs 
(incl. learning curves), 
O&M costs
Electricity tariff 
parameters,
e.g. retail price, grid 
fees

INPUT MODULE

Input/Output Data Flow

Internal Data Flow

Energy Charge 
Reduction

Capacity Charge 
Reduction

BATTERY DISPATCH MODEL

Backup Power 
Provision

Battery Feed-In 
Remuneration

PV Feed-In 
Remuneration 

NPV for optimized 
technical specification 
(grid search algorithm)
Two scenarios:
a. PV-only case, b. 
PV+battery case
Comparison of different 
assumptions, e.g. 
renewable energy 
policy designs

OUTPUT MODULE

Site-specific parameters, 
technical parameters, 
electricity tariff parameters

TECHNO-ECONOMIC MODEL: PV-STOR

FINANCIAL MODEL

GermanyCash Flow Analysis

KPI Calculation

MARKET A

Fig. 3. General framework of the PV-STOR model.
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technical feasibility and the regulatory regime. The energy flows that
are technically possible and therefore need to be considered in the
optimization depend on the system’s design. In this study, an “AC-
coupled” system (battery with separate inverter, instead of DC
connection to PV system) in which the PV and battery systems each
include inverters is used (Fig. 4). This topology is considered easier to
retrofit to existing PV plants and more flexible to provide multiple
services with a battery. In turn, this setup typically yields lower system
efficiencies, due to the additional power conversion step [35]. The
regulatory regime can be implemented by allowing or forbidding
certain energy flows depicted in Fig. 4. For example, in Thailand the
PV system is not allowed to feed electricity into the grid.

3.2.1.3. Degradation. Battery degradation needs to be considered in
both system design and operation. For computational efficiency, the
battery dispatch is optimized for a single year instead of running a
simulation over the life of the project. Thus, the battery’s nameplate
properties must be adjusted for degradation. Degradation is assumed to
be linear over its lifetime, which is expected to end before the dominant
aging mechanism changes to lithium plating, resulting in the typical
“aging knee” [36,37].

In order to determine the battery lifetime (and thereby replacement
intervals) as an input to the financial model, we further distinguish
between two aging mechanisms[38]: cycle aging, which occurs because
of the use of the battery to perform a duty cycle as defined by dispatch
optimization; and calendric aging, which in this model is purely time-
dependent, representing the fact that even if a battery is not used, its
capacity fades and eventually needs to be retired from operation. One
cycle (referred to as equivalent full cycle, EFC) is defined as a full
charge and discharge of the battery within the depth-of-discharge
bounds that are to be respected to achieve the stated cycle life. EFCs can
then be recalculated to derive the battery throughput. The throughput
is obtained from the optimized battery dispatch profile and serves as
basis to calculate a battery’s cycle life for a given simulation run.

Although throughput has been shown to be a reliable indicator of
battery aging in stationary applications, the literature shows further
influential factors, such as the battery’s average state-of-charge, c-rate,
and temperature [38–45]. However, these influences are not addressed
in the present study. Detailed, semi-empirical degradation models are
difficult to calibrate, requiring many experiments with the newest cells
to collect sufficient amounts of data [46]. Their implementation into
NPV-maximizing battery dispatch algorithms is non-trivial (please refer
to He and colleagues (2018) [47] and Beuse (2018) [48] for details).

Finally, the PV-STOR model runs on a 15-minute resolution. Thus, any
dispatch strategy aiming to moderate the strain on the system (c-rate)
could not be reflected properly in coarse charging profiles.

3.2.1.4. Battery system specification. Battery capacity, rated power, and
roundtrip efficiency, must be adjusted for degradation (Eqs.
(3.2.1a–3.2.1c)). As previously described, nominal values are used in
the financial model to calculate CAPEX and OPEX, while degradation-
adjusted parameters are passed on to the optimization problem as
follows.

=
+ × ×

×S
S S EoL DoD

S DoD
( )

2batt
batt nom batt nom cap

backup
, ,

(3.2.1a)

=
+ ×

P
P P EoL

P
2batt

batt nom batt nom pow
backup

, ,
(3.2.1b)

=
+ × EoL

2
nom nom

(3.2.1c)

where Sbatt is the battery system’s capacity (in kWh) used as input for
the battery dispatch optimization; Sbatt nom, reflects the installed battery
capacity (in kWh) used to calculate CAPEX and OPEX of the battery
system; EoLcap is the share (in %) of the battery’s installed capacity that
is still useable after degradation at its expected end of life; DoD is the
Depth-of-Discharge (in %) which constrains the useable battery
capacity to avoid extreme degradation and is related to the assumed
cycle-life values of the battery system; and Sbackup represents the amount
of battery capacity (in kWh) that is reserved to provide backup services.
Equivalent to the battery capacity, Pbattreflects the battery’s installed
power (in kW) used as input for the battery dispatch optimization;
Pbatt nom, is the installed battery power (in kW) used to calculate battery
system CAPEX; EoLpow is the share (in %) of the battery power at its
expected end-of-life; Pbackup (in kW) is the amount of battery power
reserved for backup service provision. Finally, represents the battery
system’s roundtrip efficiency (in %) used as input for the battery
dispatch optimization; nom is the roundtrip efficiency of the installed
system; and EoL is the expected roundtrip efficiency at the end-of-life.

3.2.1.5. PV system specification. Similar to the battery system,
degradation of PV modules needs to be accounted for. Accordingly,
the PV system is specified as follows:

= × × ×P A SF P A(1 )PV nom roof mod max mod, , (3.2.1d)

PV Module DC/AC
Inverter

Battery

DC/AC
Inverter

Load

Grid

Fig. 4. System layout of an AC coupled PV and battery system. The arrows indicate the direction of energy flow. Other technical components (e.g., transformer,
meter, circuit breaker, and control units) are not depicted.

M. Beuse, et al. Applied Energy 271 (2020) 115218

5



=
+ × ×

P
P P T DR[ (1 )]

2PV
PV nom PV nom PV, ,

(3.2.1e)

where PPV nom, is the installed PV system size (in kWp) used for CAPEX
and OPEX calculations; Aroof is the area (in m2) of the C&I consumers
roof that is useable for the installation of PV panels; SF is the average
share (in %) of the useable rooftop area that shaded; Pmod max, is the
power output (in kWp) of a single installed PV panel; Amod reflects the
size of such a panel (in m2); PPV represents the PV systems power (in
kWp) used as input for the battery dispatch optimization; TPV is the
expected lifetime of the installed panels (in years); and DR is the annual
performance degradation (in %).

3.2.2. Storage operation
The optimal battery schedule, which is a prerequisite to calculate

the revenue streams of PV and battery projects, is calculated based on
an optimization problem that minimizes the electricity bill of the con-
sumer subject to battery capacity constraints and energy balance re-
quirements [32]. This problem is explained in detail below. The re-
quired parameters as well as information about their sources fare
provided in Section 3.3.3 and Tables A1–A3; time series (such as load
profiles and solar irradiation profiles) are provided in a digital ap-
pendix. The defined routines and respective supporting methods are
formulated using Pyomo 5.6.1, a Python-based software package [49].
For the computation, the problem is numerically solved through the
commercial optimization solver CPLEX V12.8 using the Solver Studio
add-in to Microsoft Excel [50,51]. This solver has been universally
adopted in different fields of research, and it is able to solve a variety of
mathematical programming problems using primal or dual variants of
the simplex method [52]. The optimization routine yields a linear
programming problem (LP), which is defined as follows. Microsoft
Excel is used for the financial model to make the model more accessible
to practitioners.

3.2.2.1. Objective function. As described in Section 3.1, the
optimization is aimed at co-optimizing the battery dispatch across
various revenue sources. Monthly costs are defined as the sum of energy
and capacity charges net of revenues from feed-in to the grid by either
the PV system or the battery. Electricity prices are exogenously given
and depend on the consumer’s load profile, grid connection voltage
level and country. The electricity flows between the system’s various
components designate the decision variables and specify how storage is
dispatched.

Thus, the objective function for the minimization of costs Ctotal (in
US$) on the monthly electricity bill is given by:

= + × + ×

× × + × × ×

=

=

minC

E E C P C

E C E C

[( ) ] ( )

[( ) ( )]

total

t

m

grid batt t grid load t E t grid max P t

t

m

PV grid t tran PV t batt grid t tran batt batt t

1
_ , _ , , , ,

1
_ , , _ , . ,

(3.2.2a)

where at each quarter hour =t witht m, 1, , , total energy charges are
given as the product of received electricity (in kWh) by the battery
Egrid batt t_ , or by the load Egrid load t_ , and the energy charges (US$ per kWh)
CE t, ; revenues from feeding back to the grid are defined as the product
of injected electricity (in kWh) (EPV grid t_ , or Ebatt grid t_ , ) and feed-in prices
(US$ per kWh) (CPV t, or Cbatt t, ) adjusted for system losses; that is, con-
sidering transformer efficiency ( tran in %) and battery efficiency ( batt.
in %) losses. In all the studied cases, capacity charges are invoiced on a
monthly basis as the product of a customer’s maximum demand in that
month (Pgrid max, in kW) multiplied by the demand charge CP (US$ per
kW). For this reason, the program was run separately for 12 successive
months to generate the optimal battery schedule for one year.

3.2.2.2. Energy balance constraints. The system topology, as previously
described, is passed to the optimization in the form of energy balance
constraints. These constraints are defined as follows:

= + × + ×

×

t S
S E E

E E

, batt t

batt t PV batt t batt grid batt t tran

batt batt load t batt grid t

,

, 1 _ , . _ ,

. _ , _ , (3.2.2b)

= =with S S S1
2batt batt m

batt
,0 , (3.2.2c)

= + × + ×t E E E E, load t PV load t batt load t batt grid load t tran, _ , _ , . _ ,

(3.2.2d)

= + + +t E E E E E, PV t PV grid t PV batt t PV load t PV curtail t, _ , _ , _ , _ , (3.2.2e)

where the battery’s state of charge (SOC) is at all times defined as the
difference in energy inflow (in kWh) from the PV modules (EPV batt t_ , ) or
the grid (Egrid batt t_ , ) and the energy outflow to the load (Ebatt load t_ , ) or the
grid (Ebatt grid t_ , ) added to the battery’s SOC at the previous time stamp.
The SOC at the beginning of each month (Sbatt,0 in kWh) is initialized at
half of the battery’s capacity (Sbatt in kWh). Moreover, to enable
monthly instead of annual optimization, the SOC at the end of each
month (Sbatt m, in kWh) is equal to the battery’s state at the beginning of
the next month.

The load at t is given as the sum of electricity provided to the
consumer from the PV modules (EPV load t_ , in kWh), from the battery
(Ebatt load t_ , in kWh), or from the grid (Egrid load t_ , in kWh). The electricity
generated by the PV modules can either be fed into the grid (EPV grid t_ , in
kWh), to the battery (EPV batt t_ , in kWh), and to the load (EPV load t_ , in
kWh), or – at worst – it must be curtailed (EPV curtail t_ , in kWh). As in the
objective function, all balances are adjusted for losses throughout the
system.

3.2.2.3. Battery capacity constraints. The technical constraints imposed
by the battery’s capacity and power limitations are as follows:

t S S, 0 batt t batt, (3.2.2f)

+ ×t P P P, 0 PV batt t grid batt t tran batt_ , _ , (3.2.2g)

+t P P P, 0 batt grid t batt load t batt_ , _ , (3.2.2h)

where Sbatt, as defined in Eq. (3.2.1a), is the degradation-adjusted
energy capacity of a battery (in kWh). Consequently, its dispatch is
bounded by Eq. (3.2.2f). Furthermore, optimization is constrained by
storage’s degradation-adjusted power Pbatt in units of kW. Naturally,
while charging or discharging, it can neither exceed this value nor drop
below zero (Eqs. (3.2.2g) and (3.2.2h)).

3.2.2.4. Application constraints. Lastly, in order to simulate distinct
policy scenarios, the programming problem must allow for
application-specific adaptions to the topology of the system:

= =t E if PVF, 0, 0PV t,grid (3.2.2i)

= =t E if BF, 0, 0batt grid t_ , (3.2.2j)

= =t E if BC, 0, 0grid batt t_ , (3.2.2k)

+t P P P, grid max grid load t grid batt t, _ , _ , (3.2.2l)

Eqs. (3.2.2i)–(3.2.2k) allow the prohibition if energy flows between
certain components of the system, which means that if PV feed-in to the
grid (PVF = 0), battery feed-in to the grid (BF = 0), or charging the
battery from the grid (BC = 0) are either prohibited or unfeasible in the
studied energy system, and then their respective decision variables are
set to zero. Lastly, (3.2.2l) defines the maximum amount of power a
customer used in any interval t during the billing period m. This con-
straint applies only to cases in which the battery is designed to serve in
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peak shaving applications.

3.3. Financial model

The financial model enables the evaluation of a project’s economic
viability by applying the discounted cash flow method. Hence, the
profitability of an investment is expressed by its net present value
(NPV), which is calculated as the sum of each year’s net cash flow
discounted back to its present value (Eq. (3.3a)) [53]. Hence, the fi-
nancial model relies on the optimized battery dispatch as an input to
calculate revenues. NPV is calculated as follows:

=
+

=
+ + + + +

+

=

=

=

=
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25

0

25
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(3.3a)

where Rt is the net cash flow in year t (in US$) obtained by subtracting
capital and operating expenditures from the revenues (YEC t, , YCC t, , YPV t, ,
Ybatt t, , YBackup t, ) for each period (see Section 3.3.1 for calculation of dif-
ferent revenue streams). This sum includes R0 that contains the in-
vestment costs of both the PV and the battery system in year 0, and RN
at the end of the project’s lifetime of =N 25 years. Future cash flows are
discounted based on the discount rate i, which reflects the risk that
investors associate with the project (the discount rate used in private
investment appraisals reflects the risks associated with a given invest-
ment project, including from risk factors such as macroeconomic risk,
political risk in a country, specific regulatory risk in a sector, and
technology risk [54]). The evolution of cash-flows of the project’s
lifetime is exemplified in Fig. A3 in the appendix.

Based on this calculation, the NPV-maximizing configuration is
obtained by applying a grid search algorithm over the domain x ,
which contains discrete values of nominal PV and battery capacity and
rated battery power ( =x P S P[ , , ]PV nom batt nom batt nom, , , ).
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=
xNPV R
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withmax max

(1 )
,

x t

N
t

t x
0

25

(3.3b)

The grid search approach is a strength of the model, as it allows for
the computation of the results in finite time. However, it also presents a
limitation because it limits the solution space to discrete values in a pre-
defined grid. Thereby, there is a risk of potentially disregarding better
solutions either within or beyond the spanned grid. As a counter-
measure, it is recommended to the user of PV-STOR to start with a
broad grid that contains an optimal solution and then improve the
found result by increasing the grid’s granularity.

A further limitation of the approach in this study – drawing on time-
varying but deterministic solar radiation and electricity price curves is
that potential intrinsic value of batteries in exploiting uncertainty of
electricity prices is neglected. However, for C&I PV plus battery in-
stallations such situations have no practical relevance, with the ex-
ception of batteries delivering backup services for uninterrupted power
supply (which we include explicitly).

Another limitation of the presented approach is its presumption that
several project-related parameters remain constant throughout the
project’s lifetime of 25 years. While the model accounts for escalation
factors in the adopted cost and remuneration data as well as learning
curves for technology replacement costs, it does not incorporate sys-
temic changes. Thus, the reader should note that in analyzing the re-
sults presented in Section 4, the risk of substantial changes to the
electricity demand and changing regulatory regimes should be con-
sidered.

3.3.1. Revenue streams
Despite the approach of value stacking used in this study, the model

allows for the separation of generated revenue streams. These are cal-
culated based on the resulting energy flows between PV modules, the
battery, the consumer load, and the electricity grid, which result from
the optimization and respective cost and remuneration vectors. Thus,
the financial model differentiates revenue streams from savings on the
energy charge (per kWh consumed), capacity charge (per kW peak
demand), direct PV and battery feed-ins into the grid, and opportunity
costs of conventional diesel backup generators.

Generally, savings on energy charges (YEC in US$) are calculated as
the difference between the total cost without and with the PV and
battery systems. Savings are first calculated at all points in time t in a
month m and then summed up over the entire year ( =M 12). While
these savings are set to zero in the year of project construction (Eq.
(3.3.1a)), a constant energy cost projection rate iEC is considered for all
following years except the first year (Eqs. (3.3.1b) and (3.3.1c)).

=Y 0EC,0

= + ×= =
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grid batt t
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grid load t
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grid t grid load t E t
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1 1 _ , _ , , _ , ,batt

3.3.1b)

= × +Y Y i(1 )EC n EC n EC, , 1 (3.3.1c)

Savings on capacity charges (Y inUS$)PC are calculated analogously.
Although demand charges are billed on a monthly basis, the power cost
vector can include varying costs per kW depending on the day and time
that the maximum power demand in a month occurred (Eqs. (3.3.1d)
and (3.3.1f)).

=Y 0CC,0 (3.3.1d)

= ×
=

Y P P C[( ) ]CC
m

M

grid max m
old

grid max m P t,1
1

, , , , ,
(3.3.1e)

= × +Y Y i(1 )CC n PC n PC, , 1 (3.3.1f)

Revenues from the PV feed-in remuneration (YPV in US$) are cal-
culated based on the injected amount of energy and the associated feed-
in tariffs at t . Eqs. (3.3.1g)–(3.3.1i) account for the losses due to in-
efficiencies in the transformer ( tran).

=Y 0PV ,0 (3.3.1g)
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1
1 _ , ,

(3.3.1h)

= × +Y Y i(1 )PV n PV n PV, , 1 (3.3.1i)

Similarly, the revenue generated by direct feed-ins from the battery
to the grid (Ybatt in US$) is calculated using the prices available in the
wholesale electricity markets and as in Eqs. (3.3.1j)–(3.3.1l), including
the losses that occurred through discharging inefficiencies.

=Y 0batt,0 (3.3.1j)

= × × ×
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Y E C[ ]batt
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T
batt grid t tran batt batt t,1

1
1 _ , . ,

(3.3.1k)

= × +Y Y i(1 )batt n batt n batt, , 1 (3.3.1l)

Finally, the savings incurred by avoiding diesel consumption (YBackup
in US$) need to be calculated when parts of the installed battery are
used instead of a diesel generator as a backup power system. Because
such conventional systems are widely used by C&I customers in the
selected countries, the backup systems comprise a significant share of
the costs. For the battery to be able to perform this service, it must at all
times be fully operational to provide the required backup power over
the average duration of interruption. Thus, for the purpose of the
analysis, it is assumed that the required energy capacity and power are
exclusively reserved for this application and cannot be used for other
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applications, such as peak shaving or increases in self-consumption. To
consider all savings in opportunity costs related to the substitution of
diesel power generators, Eq. (3.3.1m) defines the investment costs for
this aggregate. Eq. (3.3.1n) is used to calculate the on-going savings per
year as the costs of diesel fuel plus the expected operation and main-
tenance costs minus the costs of charging the battery from the grid. The
time series is amended with a constant inflation rate, as in previous
equations (Eq. (3.3.1o)).

= ×Y P CBackup Backup Backup,0 (3.3.1m)

= × × +
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= × +Y Y i(1 )Backup n Backup n, , 1 (3.3.1o)

3.3.2. Capital and operating expenditures
The costs of the PV and battery system are grouped into CAPEX and

OPEX (in US$). CAPEX include the total cost of both the PV and the
battery system, which depend on their sizes, i.e., the system design.
Moreover, the components of the two systems are restricted by in-
dividual lifetime constraints. While the PV panels and the two inverters
are assumed to age only with time, battery cells age both over time and
according to their use. Thus, both are monitored to identify, which
criterion is reached first (lifetime = min(cycle life; calendar life)). For
simplification, interactions between calendar and cycle aging are dis-
regarded in this study. To account for these constraints and their effects
on investment costs, the financial model applies replacement costs. In
doing so, each component may be subject to multiple replacements at
the reduced costs derived from learning curve estimates and adjusted
for inflation [55]. At the end of the project’s lifetime, the model ac-
counts for the dismantling costs and the reimbursement of residual
values based on residual terms.

Operating expenditures are comprised of operation, maintenance,
and insurance costs. Like capital expenditures, operating costs are de-
pendent on the size of the installed system. To incorporate the effects of
inflation, a constant energy cost projection rate is applied to all but the
first year of the time series. In some countries, license fees are required
for PV system installations to regulate injections into the grid, which
are included in the operation costs. These fees may be a lump sum that
is paid at the start of construction or a recurring fee that is often a
function of the installed power (in kWp) or the electricity produced (in
kWh).

3.3.3. Input data
The PV-STOR model presented above can be applied to any given

project set-up. It should be noted that the two sub-models can be
viewed as genuinely independent. While the dispatch model is fed with
degradation-adjusted parameters, nominal values are used to calculate
the revenues, CAPEX, and OPEX in the financial model. In the problem
at hand, the cases introduced in Section 2 pre-define the data selection
process. The input parameter values for the simulations are presented in
the Appendix in Tables A1–A3. All inputs have been aligned with project
developers and investors currently active in the respective regions.

3.3.3.1. Customer specification. Table A2 shows a summary of the
customer-specific parameters and selected data sources. As a
condition of precise optimization, all vectors were provided in a

resolution of 15 min. While some data were available in granular
form (e.g., load profiles), the PV vector was interpolated linearly from
an hourly to a quarter-hourly resolution. This is a typical simplification
that should not influence the accuracy of our results in a meaningful
way [56]. The backup capacity requirement was calculated as the
backup power requirement multiplied by the system average
interruption duration index (SAIDI) divided by the system average
interruption frequency index (SAIFI).

3.3.3.2. Electricity costs and remuneration. Table A2 provides a
summary of all electricity and remuneration vectors. Their values
depend on the country-specific policies presented in Section 2.
Because some data are not given in a 15-minute resolution, the cost
and remuneration data points were extended to their sub-hourly
constituents.

4. Results

In this section, we provide an overview of the results. We ran a total
of 1080 optimizations to account for the regulatory regimes of three
countries (Vietnam, Thailand, and Malaysia), three load profile arche-
types of three C&I industries (i.e., textiles, consumer goods, and elec-
tronics), two investment years (2018 and 2030) to account for reduc-
tions in the investment costs of the rapidly improving technologies
used, and different discount rates (9%, 12%, 6%) to reflect investors’
varying return expectations. For each combination of the above, we ran
30 simulations to account for different potential system designs (i.e.,
different sizes of PV, in kWp, and battery system, in kWh and kW).
These differed according to the installed PVs and battery system sizes.
The resulting NPVs are represented in Fig. 5 in the form of heat maps.

Fig. 5 shows that under 2018 investment conditions, profitable in-
vestment opportunities exist in all three South-East Asian countries and
in all three industries. This is true for both PV systems and projects that
combined PV and battery installations. However, in all 270 simulations
for 2018, we find that every PV-only project is more profitable than
projects that include a battery. Furthermore, no profitable set-up was
found for the consumer goods industry in Thailand, the reasons for
which are discussed below.

To further understand the reasons for these results and to clarify the
interdependencies between countries, their respective regulatory re-
gimes, and their load profile archetypes, Fig. 6 show the details of two
specific technological set-ups in the three geographies and industries.

In comparing the regulatory regimes across countries, we can
identify the influence of specific policies and regulations. In Vietnam,
the FiT contributes most revenues, achieved by feeding electricity
generated from the PV system directly into the grid. This finding is
similar in all three simulated load profile archetypes. We expected si-
milar outcomes in Malaysia, which has a net metering scheme.
However, only in the case of the consumer goods industry we observe
the direct PV feed-in to the grid. The reason is that solar irradiation and
load seldom coincide in this archetype. The textile industry and elec-
tronics industry archetypes have high electricity demands compared
with PV generation. In these cases, it is more profitable to directly
consume the produced electricity and avoid efficiency losses. Unlike a
FiT, which can be higher than the retail electricity rate (as it is the case
in Vietnam), net metering returns the exact retail rate. For a conceptual
consideration of various paradigms depending on retail electricity rates,
remuneration for PV, and levelized costs of PV electricity, compare to
the work of Ossenbrink (2017) [14].

The addition of a battery, even though it is not profitable in the
calculations for 2018, shows how the systems operate under various
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regulatory and tariff regimes (see Fig. 4). In the textile and electronics
industries in Vietnam, the addition of a battery does not influence the
PV feed-in. The utilization of the existing time-dependent electricity
rates, however, allows for arbitrage that reduces the energy-related
costs on the electricity bill. In the consumer goods industry, these ar-
bitrage opportunities are even more pronounced. The optimal battery
dispatch even increases the energy-related electricity cost, but then
generates revenue by feeding electricity from the battery into the grid.
This energy flow is possible only because of the wholesale market in
Vietnam, which is not available in the other two countries investigated
in this study. In Thailand and Malaysia, the battery system increases the
self-supply ratio by charging the battery from PV electricity that is
generated on site and discharged into the site’s load. Moreover, the
existing demand charges are utilized, thereby reducing capacity-related
electricity costs. In addition, the battery creates value by providing a
backup power supply in the case of grid outages in all cases.

In the following, we focus on the textile industry and show the re-
sults of two key sensitivities: the applied discount rates and the in-
vestment expenditures for capital equipment.

Fig. 7 shows the sensitivity of the discount rate. While the higher
discount rates generally reduces project profitability, the lower rates
improve it – the typical pattern for projects with a high upfront in-
vestment and later revenues that are discounted. Even at the higher
discount rate of 12%, however, many profitable PV and battery project
set-ups can be identified. At the lower discount rate of 6%, only one of

the simulated system set-ups in Vietnam, which use a large battery
(300 kW, 600kWh) and a small PV system (200 kWp), is not profitable.
All other combinations deliver a positive NPV. A key finding in lower
discount rates is that the relatively high investment cost of battery
systems become less relevant, so adding a battery to the PV plant is less
detrimental to a project’s profitability. In Vietnam, in several instances,
the addition of a small battery system increases profitability. Therefore,
depending on the investors’ perception of risk, combining PV and bat-
tery systems can be the most profitable option.

The findings on sensitivity provide insights for policymakers and
financial institutions such as the World Bank Group that aim to foster
battery technology. If they are able to significantly reduce the invest-
ment risks in PV and battery projects (and by extension justify using a
lower discount rate), the profitability of battery storage could be im-
proved. Two important options are financial and policy de-risking. The
former transfers risks to third parties (e.g., through guarantees),
whereas the latter improves the investment environment through im-
proved policy and regulation [57]. The results of the discount rate
sensitivity in the two remaining load profile archetypes are provided in
the Appendix (Figs. A1 and A2). Although the findings are similar, no
profitable battery investment opportunities are indicated in these sce-
narios.

To investigate the effects of potential future investment cost re-
ductions on PV and battery systems, we use learning curves to estimate
the values in 2030. To facilitate the comparison and isolate the effects

Fig. 5. 2018 net present value (NPV) of PV and battery plant installations across three different geographies (Vietnam, Thailand, and Malaysia) and three different
industry archetypes with differing load profiles (textiles, consumer goods, and electronics). Each heat map consists of 30 NPV data points for which the installed PV
capacity is shown on the horizontal axis, and the respective battery power is shown on the vertical axis. The energy-to-power ratio of the battery system is set to 2,
which means 2 kWh of capacity per 1 kW of rated power capability. The discount rate for the NPV calculation is set to a constant (in time and across simulations)
value of 9%. The NPV figures in parentheses refer to negative values.
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Fig. 6. Key performance indicators for PV as well as PV and battery projects in Vietnam, Thailand, and Malaysia in 2018 in the textile, consumer goods and
electronics industries.
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of these cost reductions, we leave all other factors the same as in the
2018 projects (ceteris paribus approach). The resulting NPV heat maps
are presented in Fig. 8.

We find that among all profitable projects, the addition of a battery
generally improves the project’s profitability in the textile and elec-
tronics industries, whereas it reduces profitability in the consumer
goods industry. In cases where the battery system improves the project’s
profitability, it was possible to determine the optimal battery size using
a grid search. For example, with the applied load profile for the elec-
tronics industry in Vietnam, the overall highest profitability is achieved
by installing a 1000 kWp PV system with a 60 kW/120 kWh battery
system. However, in the textile industry in Thailand, the highest prof-
itability is achieved by installing a 1000 kWp PV system with a large
battery system of 180 kW/360 kWh.

For decision makers, these findings indicate that we can expect in-
creasing battery deployments as the technologies improve.
Policymakers can accelerate the advent of the expected technology cost
reductions. While the costs for PV modules and battery packs are ty-
pically considered to follow a global learning curve [58–60], benefit-
ting from deployment across countries and sectors, the balance-of-
system costs are typically dependent on local conditions [58,61]. For
example, governments in Vietnam, Thailand, and Malaysia can ensure
speedy permitting processes, foster local capability building. In

addition, import duties for PV panels, inverters and battery packs
should be avoided.

In summary, the results indicate that it is not a question of if bat-
teries will be deployed to accelerate the energy transition in South-East
Asia, but rather when batteries will be deployed in the coming years
and how rapid the technology diffusion is going to be. This fact is cri-
tical to understand for investors that have to get ready to assess the
more complex PV and battery projects, but also for policymakers that
have the opportunity to accelerate this development. We will discuss
the available options in the following section.

5. Discussion and policy implications

The objective of this work was to assess the profitability of invest-
ments in C&I PV and battery projects in South-East Asian countries and
to identify levers for policy makers to accelerate the deployment of such
projects. Two key findings from our modeling results are: (1) profitable
investment opportunities are already widely available across countries
and industries, with PV-only projects achieving higher profitability
than projects including a battery; and (2) project-specific results highly
depend on the interactions between countries’ regulatory regimes and
industries’ load profile characteristics. Further important factors are
technology- and project-specific parameters, such as investment costs

Fig. 7. 2018 net present value (NPV) of PV and battery plant installations across three different geographies (Vietnam, Thailand, and Malaysia) and three different
discount rates (6%, 9%, and 12%). Each heat map consists of 30 NPV data points for which the installed PV capacity is shown on the horizontal axis, and the
respective battery power is shown on the vertical axis. The energy-to-power ratio of the battery system is set to 2, which means 2 kWh of capacity per 1 kW of rated
power capability. The load profile archetype used is the textile industry. Please note: the NPV figures in parentheses reflect negative values.
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and discount rates. Because of these complex interactions of input
parameters, it is crucial to employ optimization-based techno-economic
models, such as PV-STOR. While simple spreadsheet-based models
might have been sufficient for assessing PV-only projects, adding a
battery means adding complexity, and thereby necessitates the use of
more sophisticated assessment methods.

From a public policy perspective, it is important to highlight that
investment attractiveness does not depend on the enacted policy in-
strument alone, such as the FiT in Vietnam or the net metering scheme
in Malaysia. Instead, project profitability depends on the complete
regulatory regime and its detailed design parameters, such as the level
of the FiT (in relation to levelized cost of combined PV and battery
systems), and the level and structure of electricity tariffs [14]. The re-
sults of the present study show that batteries enable revenue generation
from the utilization of price differentials in time-of-use tariffs as well as
from reducing peak demand charges. The absolute amount and thereby
the relevance of the revenue generated depends on the tariff design. In
addition, policymakers can significantly influence the degrees of
freedom by which a combined PV and battery system operates by al-
lowing or forbidding various energy flows to and from the electricity
grid.

More specifically, for the case of the investigated South-East Asian

countries, the developed optimization model allows us to discuss spe-
cific policy design options to improve the profitability of projects with
batteries and thereby increase their deployment.

A key barrier to further deployment of PV is its system integration.
Even though Vietnam and Malaysia support further deployment with a
FiT and a Net Metering scheme, respectively, both Malaysia and
Thailand levy license fees for the installation of PV systems. These fees
are intended to raise funds aiding PV integration. As highlighted in the
motivation, installing battery systems is an alternative way to aid PV
system integration. Chaianong and colleagues (2020) use the case of
residential batteries in Thailand to show that batteries can reduce PV
integration cost [62]. Therefore, in a separate step we analyzed the
impact of eliminating fees for projects that combine PV and battery
systems in Malaysia and Thailand. While the NPV increases, the in-
crease does not suffice to make PV and battery projects’ (without fees)
more profitable than PV-only projects (with fees) in any of the analyzed
scenarios (scenarios as in Fig. 5). Nevertheless, eliminating license fees
could potentially speed up the deployment of battery storage systems if
combined with other policy support options.

A second option for policymakers in Vietnam and Malaysia is to re-
route their support schemes for PV electricity to combined PV and
battery projects. Since profitable projects are available for both

Fig. 8. Future (with capital cost reductions projected by 2030) net present value (NPV) of PV and battery plant installations in three different geographies (Vietnam,
Thailand, and Malaysia) and three different industry archetypes with differing load profiles (textiles, consumer goods, and electronics). Each heat map consists of 30
NPV data points for which the installed PV capacity is shown on the horizontal axis, and the respective battery power is shown on the vertical axis. The energy-to-
power ratio of the battery system is set to 2, meaning 2 kWh of capacity per 1 kW of rated power capability. The discount rate in the NPV calculation is set to a
constant (in time and across simulations) value of 9%. Please note: the NPV figures in parentheses reflect negative values.
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countries and all industries, such a policy change could reduce risk of
over subsidizing investors while at the same time delivering flexibility
for the electricity system through batteries. However if such a strategy
were to be pursued, a potential influence on technology diffusion
should be considered. Our modelling shows that while profitable in-
vestment opportunities would still be available, the NPV would be
lower in all cases, which might lead to an unintended slowdown in RE
deployment [63].

Furthermore, another option available in all three investigated
countries is to enable further value creation in electricity markets and
by providing balancing services to the electricity system [19]. So far,
only Vietnam allows PV and battery system operators to participate in
electricity markets. Provision of services to the electricity grid could be
enabled by introducing flexibility markets, bespoke programs, or bi-
lateral contracts based on local flexibility needs. To this end, however,
flexibility needs must be transparent to grid operators first. The heat
maps provided by this study can then serve as an indication for how
high remuneration of these services would need to be in order for in-
vestors to favor combined PV and battery projects over standalone PV
systems. Decision makers can use the PV-STOR model for detailed
analysis of their design decisions by incorporating price vectors for such
services.

A remaining, although arguably more complex, option to influence
further battery deployment is to change the electricity tariff design.
While keeping the overall electricity bill constant in the baseline case
(without PV or battery), the shares of the energy- and capacity-related
portions of the electricity bills could be adapted. Implementing peak
demand charges to recover fixed and capacity-related cost of the elec-
tricity grid, especially in times of load defection due to PV installations,
is already applied in the United States [64,65] and discussed in studies
assessing future tariff design options for low-carbon electricity systems
[66,67]. As we show in Fig. 6, in both Thailand and Malaysia battery
installations are able to generate value by shaving-off demand peaks.
Without PV or battery installation the energy-related portion of the
electricity bill makes up for about 90% of the bill, the capacity-related
portion for the remaining 10% (load profile archetype of the textile
industry in Thailand). To which extent the NPVs change when shifting
this to an exemplary 50%/50% split (but same total electricity cost

without PV and battery installation) is shown in Fig. 9.
In the base case with 90% energy-related cost on the electricity bill,

adding a battery to a PV project reduces the NPV by 30%, making this
investment unlikely. Changing the electricity tariff design such that the
energy- and capacity related cost are evenly distributed leads to PV as
well as PV and battery investments to be more profitable. More im-
portantly, the combined PV and battery projects now show a 45%
higher NPV compared to the PV-only projects, making this measure
particularly powerful for fostering battery deployment. The reason
behind this shift is the battery’s ability to shave demand peaks by in-
telligently charging and discharging. While in the base case, revenues
from peak shaving are only of minor relevance to the project profit-
ability (as can be seen in Fig. 6), with the adapted electricity tariff
design, peak shaving makes up for more than 50% of the project’s
revenues. When choosing this option of influencing PV and battery
project profitability it is key to assess how batteries would be operated
(e.g., using PV-STOR) and how this influences the grid stability. Also
note that the overall electricity tariff collected by the utility is lower in
this case, and other customers might be affected positively or negatively
(which makes electricity tariff design changes a complex endeavor).

It is important to keep in mind that the benefits of battery deploy-
ment enabling integration of renewable energies are not given by de-
fault, as it is possible to operate batteries that create value to consumers
but create costs for the electricity grid. Time-variant electricity tariffs
and peak demand charges are typically used to shift demand away from
undersupplied periods. Tariffs are however typically not constantly
updated to reflect actual supply and demand balances. Any intervention
with the existing regulatory regime should therefore consider not only a
battery’s profitability, but also the expected optimal battery dispatch
(e.g., derived from PV-STOR) and its effect on (local) grid stability. In
cases where batteries are used to increase the on-site consumption of PV
generated electricity, they have shown to reduce the strain on the grid
by shifting electricity from times of oversupply to times of local demand
[34].

6. Conclusion

To conclude, for future electricity systems based on large shares of
wind and solar electricity, flexible options, such as battery systems, are
crucial. For the case of commercial & industrial customers, we in-
vestigate the viability of projects in Vietnam, Thailand, and Malaysia,
considering three different industries (textile, consumer goods, and
electronics). Our model identifies several profitable investment oppor-
tunities in photovoltaics and battery projects, even though adding a
battery typically reduces profitability vis-à-vis standalone photo-
voltaics. Our results could provide guidance for policymakers interested
in “kick-starting” the development of clean energy technologies in
South-East Asia. Firstly, de-risking investment projects (reducing the
discount rate) will improve profitability of battery deployments vis-à-
vis photovoltaics standalone projects. Secondly, expected technology
cost reductions will make battery investment the most profitable choice
for investors. Governments can accelerate this development, for ex-
ample by fostering local learning for system cost components that do
not benefit from global learning curves, such as the installation and
commissioning. Thirdly, eliminating license fees for projects including
batteries and/or re-orienting support policies to projects including
batteries could further accelerate battery deployment. Beyond these
measures, re-designing electricity tariffs can be a powerful lever. To
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Load profile = textile industry (8GWh/a), Discount rate = 9%

90% energy-related, 10% capacity-
related portion of electricity bill

Project NPV [$ ‘000] 

50% energy-related, 50% capacity-
related portion of electricity bill

Fig. 9. Influence of changing electricity tariff design on PV and battery project
economics.
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ensure batteries actually operate in a way to is beneficial to the elec-
tricity grid this needs to be done with great care. In addition, to reap the
full benefits that batteries can deliver, provision of grid services should
be enabled. To this end, grid operators need to understand their flex-
ibility needs with increasing electrification and deployment of decen-
tral energy resources.

In this study, we add to the existing literature by providing a techno-
economic optimization model for commercial & industrial photovoltaics
and battery projects and applying this model to different countries and
industries in South-East-Asia. The investigated cases differ strongly in
their regulatory regimes and thereby deliver deep insights for decision
makers. These insights are valuable also for other regions and regulatory
regimes and can inform policy design for such systems.

However, before decision makers act on the presented results and
discussion, we want to highlight several further considerations. While
our study benefitted from the use of actual load profiles from the region,
the analysis should be carried-out again based on a broader set of mea-
sured load profiles to estimate technology diffusion in the respective
regions. Furthermore, impacts of increased deployment of photovoltaics
and battery projects on the electricity grid as well as cost recovery of
utilities needs to be investigated to understand the full implications.
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Fig. A1. 2018 net present value (NPV) of PV and battery plant installations across three different geographies (Vietnam, Thailand, and Malaysia) and three different
discount rates (6%, 9%, and 12%). Each heat maps consists of 30 NPV data points for which the installed PV capacity is shown on the horizontal axis and the
respective battery power is shown on the vertical axis. The energy-to-power ratio of the battery system is set to 2, which means 2 kWh of capacity per 1 kW of rated
power capability. The load profile archetype is the consumer goods industry. Please note: the NPV figures in parentheses reflect negative values.
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Cash Flows [$] over project lifetime [years] in Vietnam, Consumer Goods, 1000kWp PV, 600kWh, 300kW Battery
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Fig. A3. Cash Flows over lifetime of PV and battery plant installation in Vietnam, using Consumer Goods load profile archetype, 1000 kWp PV, 600 kWh, 300 kW
Battery. The recurring capital expenditures in years 8, 10, 16, 20, and 24 are accounting for the necessary replacements of the PV and battery inverters, and the
battery packs. The positive value for capital expenditures in year 25 is due to their scrap values, reduced by dismantling costs (1% of CAPEX). Electricity prices are
escalating with time, which is why revenue streams for their reduction are increasing as well.

Fig. A2. Current (2018) net present value (NPV) of PV and battery plant installations across three different geographies (Vietnam, Thailand, and Malaysia) and three
different discount rates (6%, 9%, and 12%). Each heat map consists of 30 NPV data points for which the installed PV capacity is shown on the horizontal axis and the
respective battery power is shown on the vertical axis. The energy-to-power ratio of the battery system is set to 2, which means 2 kWh of capacity per 1 kW of rated
power capability. The load profile archetype is the electronics industry. Please note: the NPV figures in parentheses reflect negative values.
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Appendix A

Table A1
PV-STOR model input parameter values by country.

Variable Unit Vietnam Thailand Malaysia Sources

PV system technical specification
Panel Size m2 1.71 1.71 1.71 [68]
Power Output per Panel kWp 0.33 0.33 0.33 [68]
Tracking? Yes/no No No No [69]
Annual Performance Degradation % 0.8 0.8 0.8 [69]
Panel Lifetime years 25 25 25 [69]
Inverter Lifetime years 10 10 10 [69]
Inverter Efficiency % 97.5 97.5 97.5 [69]
Other Losses % 6.5 6.5 6.5 [70]
Transformer Losses % 1.5 1.5 1.5 [70]

PV CAPEX (incl. import duties and VAT)
Panels US$/kWp 270 270 295 [69]
Inverter US$/kWp 55 60 60 [69]
Hardware Balance-of-System US$/kWp 400 390 315 [69]
Soft Cost Balance-of-System US$/kWp 60 60 60 [69]
End-of-life Cost % of CAPEX 0 0 0 [69]

PV OPEX
Operations & Maintenance (O&M) US$/kWp p.a. 7.5 7.5 7.5 [69]
O&M Cost Escalation % p.a. 3 3 3 [69]
Insurance % of CAPEX 0.4 0.4 0.4 [69]
One-off license fees US$ 0 max(1.6*kWp;1600) 24.8 [69]
Annual license fees US$ p.a. 0 0.36*m2_roof 1488.83 [69]
Annual license fees US$/kWp 0.17*0.16*kWp 557.9 [69]
Annual license fees US$/kWh 0.00032*annual_kWh 0 [69]

Battery system technical specification
Depth-of-Discharge % of capacity 90 90 90 [34,71]
Calendar Life years 12 12 12 [58]
Cycle Life # cycles 4996 4996 4996 [58]
Inverter Lifetime years 10 10 10 [71]
Roundtrip Efficiency % 90.5 90.5 90.5 [72]
End-of-Life Capacity % of capacity 80 80 80 [73]
End-of-Life Power % of power 80 80 80 [73]
End-of-Life Efficiency % of efficiency 96 96 96 [73]
Initial State of Charge % of capacity 50 50 50

Battery CAPEX (incl. import duties and VAT)
Battery Pack US$/kWh 315 315 315 [58]
Inverter US$/kW 155 155 155 [71]
Balance-of-System Cost US$/kWh 185 185 185 [72,58]
Balance-of-System Cost US$/kW 95 95 95 [72,71]
End-of-life Cost % of CAPEX 1 1 1 [74]

Battery OPEX
Operations & Maintenance (O&M) US$/kW p.a. 6 6 6 [69]
O&M Cost Escalation % p.a. 3 3 3 [69]
Insurance % of CAPEX 0.75 0.75 0.75 [69]

Costs for Alternative Backup System (Diesel)
System Cost US$/kW 300 300 300 [75]
System Lifetime years 20 20 20 [75]
Fuel Cost US$/kWh 0.26 0.26 0.26 [76,77]
O&M Cost US$/kW 0.02 0.02 0.02 [75]

Time series data for electricity tariffs, load profiles, irradiation profiles and support schemes are provided in a digital appendix.

Table A2
Notation and Sources of Customer-specific Data.

Variable/Parameter Unit Sources

Load profile kWh [69]
PV profile kWh [78]
Average interruption duration h/year [79]
Average interruption frequency times/year [79]
Backup power requirement kW [69]
Backup capacity requirement kWh Subj. to calc.
Discount rate, nominal % [69,80]
Inflation rate % [69,80]
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Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apenergy.2020.115218.
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