
ETH Library

Beyond the Frame Rule: Static
Inlining in Separation Logic

Master Thesis

Author(s):
Dardinier, Thibault

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000417746

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000417746
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Beyond the Frame Rule:
Static Inlining in Separation Logic

Master’s Thesis

Thibault Dardinier

April 2020

Advisors: Gaurav Parthasarathy, Professor Peter Müller

Programming Methodology Group
Department of Computer Science, ETH Zürich

Abstract

Various formal verification techniques can be used to automatically verify
the absence of errors in programs. This provides an advantage over testing
approaches, namely the guarantee that a program is correct for any possible
execution. However, such approaches often require a user to provide addi-
tional specifications to guide the verification, in the form of loop invariants
and method preconditions and postconditions, which places a burden on
the user. When no specifications are provided, verifiers usually report po-
tential errors which are not actual errors, hence lowering confidence in error
reporting.

Users might want to learn quickly (without providing too many specifica-
tions) and with high confidence whether a program is incorrect. This would
speed up the development and verification process by only having to provide
specifications when one is fairly certain that the program is correct. Static
inlining, that is inlining of method calls and unrolling of loop iterations, is
an interesting approach to tackle this issue. Using approaches based on static
inlining, verifiers could inform a user of the existence of fundamental errors,
errors for which no annotation can make the program verify. The existence
of fundamental errors indicates an error in the program itself, informing the
user this program cannot be verified, without the user needing to waste time
and energy in the search of the right annotation.

One would expect that errors reported in an inlined program always corre-
spond to fundamental errors in the original program, since annotations only
serve as approximations of method calls and loops. Surprisingly, this is not
always the case. Indeed, Viper, a verification infrastructure for permission-
based reasoning, partly based on separation logic and implicit dynamic
frames with fractional permissions, has special features (such as permission
introspection) which give rise to examples where this is not the case. These
examples have all in common that they do not satisfy the frame rule.

In this thesis, we find (and prove correct) a soundness condition which

i

characterizes the set of Viper programs for which static inlining is sound,
that is errors in the inlined program correspond to fundamental errors in
the original program. We define a parametric language which generalizes
Viper, where program states are elements of a separation algebra, define the
soundness condition in terms of this language, and prove the soundness
property of inlining under this soundness condition, using the proof assis-
tant Isabelle/HOL. We then show how one can instantiate this parametric
language to transfer the results to Viper. We also explore a completeness
property of static inlining, and consider extensions to different loop semantics
and different ways of inlining.

ii

Acknowledgments

Most of all, I would like to thank Gaurav Parthasarathy for his dedication
and his enthusiasm towards this project. Thanks for the many formal (and
informal) meetings we had, the passionate discussions, and the constant
feedback to keep me on the right track while letting me explore random
directions.

I would also like to thank Professor Peter Müller for the opportunity to work
on such an interesting topic, and for convincing me that this project was
really interesting and challenging at a time when I could not picture what
this project was really about.

Finally, I would like to thank my family, flatmates, friends and girlfriend (in
alphabetical order) who, on top of being important in my life, helped me find
a coherent story to this thesis with their confused faces while I was trying to
explain what I was working on.

iii

Contents

Abstract i

Acknowledgments iii

Contents v

1 Introduction 1
1.1 Early detection of fundamental errors in Viper 1

1.1.1 Formal verification and the burden of annotating . . . 1
1.1.2 Towards a useful feature: Static inlining to the rescue . 3
1.1.3 Permission introspection in Viper: A fly in the ointment 5

1.2 Problem statement: The meaning of inlining 6
1.3 Overview of the thesis . 8

2 Background 11
2.1 Separation logic and fractional permissions 11
2.2 Viper . 13

2.2.1 Permissions and assertions 13
2.2.2 Viper state model . 13
2.2.3 Building blocks of loops and method calls verification 14
2.2.4 Black-box semantics of loops in Viper 15
2.2.5 Semantics of method calls in Viper 16
2.2.6 Features which break the frame rule 17

3 Unsoundness of Inlining in Viper 21
3.1 Soundness property and soundness condition 21
3.2 Examples of Viper programs where inlining is unsound . . . 22

3.2.1 SafeMono: Stronger states verify more 22
3.2.2 MonoOut: Stonger state in, stronger states out 24
3.2.3 Framing: Statements which respect the frame rule . . 25

3.3 Framing and mono . 26

v

Contents

3.3.1 Inclusions and examples 26
3.3.2 Compositionality . 27

4 Abstracting Viper States with a Separation Algebra 31
4.1 A preliminary separation algebra 32
4.2 Motivation: Modeling the behavior of inhale and exhale on

annotations . 33
4.3 Definition of the separation algebra 34
4.4 Related work . 36

5 A Parametric Language for Resource-Based Inlining 39
5.1 The language . 40

5.1.1 Parameters of the model 40
5.1.2 Statements . 42
5.1.3 Semantics . 43

5.2 Store of a state . 44
5.2.1 Store function . 44
5.2.2 Var and havoc . 45

5.3 Assertions . 46
5.3.1 From syntactic to semantic assertions 47
5.3.2 Annotations are supported and intuitionistic 47
5.3.3 Well-defined assertions: A mismatch between syntactic

and semantic assertions 49
5.3.4 Minimal satisfying set of an assertion 51

5.4 While loops . 53
5.5 Renaming interface . 54
5.6 Method calls . 58
5.7 Rest of the semantics . 59

5.7.1 Control structures . 59
5.7.2 Custom interface . 59

5.8 Well-definedness and verification of a program 60

6 Soundness of Static Inlining 63
6.1 Mono and framing . 63
6.2 Formalization of soundness . 64

6.2.1 Inlining . 64
6.2.2 Soundness condition . 67

6.3 Soundness theorem . 70
6.4 Induction case: method calls 72
6.5 Induction case: loops . 76

7 Completeness of Static Inlining 83
7.1 Syntactic transformation: bounded program 84
7.2 Examples of incompleteness in Viper 86

vi

Contents

7.2.1 Loops and recursive methods without index 86
7.2.2 Permission gap . 88

7.3 Sketch of completeness . 90
7.3.1 Strongest postcondition assumption 91
7.3.2 Constructing the annotation 91

8 Instantiating the Parametric Language with Viper 95
8.1 A simplified version of Viper 95

8.1.1 Disallowing references to previous states 96
8.1.2 Inhale-exhale assertions 96
8.1.3 Types of variables . 96
8.1.4 Other features . 97

8.2 Separation algebra, variables and store 97
8.3 Assertions . 99

8.3.1 From syntactic to semantic assertions 99
8.3.2 Annotations are supported and intuitionistic 100

8.4 Rename interface . 101
8.4.1 Renaming an element 101
8.4.2 Inverting a renaming quadruple 104
8.4.3 Towards the rename interface 104

8.5 Custom statements . 105
8.6 Completeness: Strongest postcondition in Viper 106
8.7 Towards two useful features in Viper 109

8.7.1 Static inlining for early error detection 109
8.7.2 Speed up re-verification through caching 110

9 Extensions to Different Loop Semantics and Inlinings 111
9.1 Exploration of loop semantics 111

9.1.1 Semantics of loops in Viper: Silicon and Carbon 112
9.1.2 Three coherent ways to treat loops 113

9.2 Different inlinings: A classification of inlinings in Viper . . . 116
9.2.1 A chronology of annotating 116
9.2.2 Barrier . 117
9.2.3 Scoping of a barrier . 118

10 Conclusion and Future Work 121
10.1 Conclusion . 121
10.2 Future work . 122

10.2.1 Improve the current framework and soundness proof . 123
10.2.2 Completeness of inlining 123
10.2.3 Towards useful features in Viper 124

List of Figures 127

vii

Contents

Listings 129

Bibliography 131

A Appendix: Isabelle Formalization 135
A.1 Theories presented in this appendix 135
A.2 Separation algebra . 137

A.2.1 Preliminary separation algebra 137
A.2.2 Separation algebra . 138

A.3 Semantics . 145
A.3.1 Abstract language . 145
A.3.2 Semantics . 154

A.4 Soundness . 173
A.4.1 Method case . 178
A.4.2 Loop case . 183
A.4.3 Soundness proof . 183

A.5 Renaming . 184

viii

Chapter 1

Introduction

1.1 Early detection of fundamental errors in Viper

1.1.1 Formal verification and the burden of annotating

Various formal verification techniques can be used to automatically verify
the absence of errors in programs. This provides an advantage over testing
approaches, namely the guarantee that a program is correct for any possible
execution. In practice, the program is tested against a specification written
by the programmer. A common way of expressing a specificiation is via a
contract, containing:

1. A precondition, namely a specification describing under which condi-
tions the program should be executed.

2. A postcondition, namely a specification describing a condition which
has to hold after the execution of the program, when executed under
the conditions described by the precondition.

As an example, imagine a program whose aim is to find a path between two
cities, named A and B. A precondition for this program could be “A and B
are the names of two existing cities”, and a postcondition could be “if a path
between A and B exists, then the output is a valid path between A and B,
otherwise the output is an empty path”. If this annotated program verifies,
this means that every time it is called with two cities for which there exists a
solution, then a solution is found and returned by this program.

Ideally, formal verification should be fully automated. That is, starting with
a program annotated with a precondition and a postcondition, it should au-
tomatically check whether the contract is satisfied by the program. However,
this problem is generally undecidable. One source of undecidability is the
existence of statically unbounded loops.

1

1. Introduction

One solution to overcome this theoretical limitation is to expect the program-
mer to annotate loops with loop invariants. A loop invariant is also a contract:
If the loop invariant holds before the execution of an iteration of the loop,
it has to hold afterwards. Loops in the program can then be approximated
solely in terms of this contract. If the invariant holds before the loop, then it
holds after the loop. Given a loop invariant, checking whether it is actually
an invariant for a loop is decidable.1 Moreover, checking whether the modi-
fied program (where loops are approximated by their contracts) satisfies its
contract is also decidable.2 The verification of a program with annotated
loops therefore becomes a decidable problem, but not yet a practical one.

In practice, verifying such a program has a high computational complexity,
and can become an intractable problem. Another useful improvement to
reduce this complexity is to use modular verification. The idea is to divide
the program in smaller methods, each of them doing a small part of the
overall job. The programmer has to then annotate these methods with
contracts, consisting of a precondition and a postcondition. Method calls
are approximated by their contracts, which makes verification tractable.
Finally, verification succeeds when each method satisfies its contract under
the assumption that all other methods satisfy their contract. In this case, the
whole program is verified.3

The required additional specifications described above, loop invariants and
method preconditions and postconditions, place a burden on programmers
who want to formally verify their programs. Indeed, on top of the initial
effort of writing a program and an initial contract for this program, program-
mers also need to annotate the program with these additional specifications.
However, if the annotations are not strong enough to prove the desired prop-
erty, then the verifiers will report potential errors which are not actual errors,
but spurious errors. As a result, the programmer needs to often spend a lot
of time adjusting the annotations until they are strong enough for the verifier
to prove the program correct, assuming the program is correct.

If the program is incorrect (and hence the verifier always reports that there is
a potential error), then the programmer cannot easily distinguish whether
the verifier reports an error because the annotation is not strong enough
or whether the program is incorrect. Hence the progammer may waste a
lot of time first trying to strengthen the annotations until he or she figures
out that the program is actually incorrect and then adjusts the program. It
would therefore be useful for programmers to learn quickly and with high

1More precisely, checking if an assertion is actually an invariant for a loop is decidable if
the underlying theory is decidable.

2It is decidable if the underlying theory is decidable.
3This verification only guarantees partial correctness, namely the property that the

program is correct when it terminates.

2

1.1. Early detection of fundamental errors in Viper

confidence whether a program is incorrect, before diving into the process of
providing these specifications. This would speed up the development and
verification process by only having to provide specifications when one is
fairly certain that the program is correct.

1.1.2 Towards a useful feature: Static inlining to the rescue

Stratified inlining [12] is an approach which has the potential to improve this
situation by iteratively performing static inlining of methods and loops, that
is inlining of method calls and unrolling of loop iterations up to a bounded
depth, in order to detect errors. This approach has been successfully applied
to the intermediate verification language Boogie [2] in the tool Corral [13].

However, this approach based on static inlining cannot in general be straight-
forwardly applied to other intermediate verification languages. The interme-
diate verification language Viper [15] is an example where the use of static
inlining to detect incorrect programs is unclear, mainly because of Viper’s
powerful support for fractional permissions to heap locations. Let us first
illustrate the idea of static inlining with Viper, in a case where there no are
no issues.

A fractional permission, namely a rational number between 0 and 1, is
associated to a heap location (a pair of a reference x and a field f) in a
program state. At least some (that is non-zero) permission is required for
a program to read a heap location, and full permission (1) is required to
write a heap location. Viper has also a special kind of assertion, accessibility
predicates, in the form of acc(x.f, p). This assertion represents a fractional
permission of p to the heap location x. f . acc(x.f) is a special form of it,
where p is 1, that is full permission to x. f . Take the Viper program shown on
Listing 1.1 as an example.

The situation is the following: The programmer has finished writing a
program, with an initial contract, basically saying “If the method example
is called with full permission to x.f, then no error happens”. Without any
loop invariant, one of Viper’s verifier would report an error message on
line 12 (underlined with a dotted red line), saying that there is not enough
permission held by the program state to read and modify the value of x.f.
This issue can be solved by annotating the loop with the loop invariant
commented on line 9, acc(x.f), since there is enough permission to x.f held
by the program state before the loop. Since it suffices to annotate the program
to resolve this error, this is a not an actual error of the program, but a spurious
error since the original annotation was too weak. In other words, this does
not represent a “fundamental error”. Let us define more precisely what we
call a “fundamental error”.

3

1. Introduction

Listing 1.1: An example where an early error detection feature would be useful (original).

1 field f: Rational
2

3 method example(x: Ref, n: Int)
4 requires acc(x.f)
5 ensures true
6 {
7

8 var y: Ref
9 assume x != y

10 var i: Int := 0
11 while (i < n)
12 // invariant acc(x.f)
13 // invariant i >= 0
14 {
15 x.f := x.f + 1 / (i + 1)
16 x.f := x.f + 1 / (i - 1)
17 i := i + 1
18 }
19

20 }

Definition 1.1 (Informal) A program contains a fundamental error if it is not
possible to provide an annotation such that the program verifies.

Annotating the loop with the invariant on line 9 makes the permission error
on line 12 disappear. Another error is then reported on line 12, with the error
message “divisor i + 1 might be zero”. Indeed, since the division by 0 is not
defined, dividing (potentially) by zero yields an error. As before, this does
not correspond to a fundamental error: i = 0 during the first iteration, thus
i + 1 = 1 6= 0. Furthermore, i is incremented at each iteration, thus i + 1 will
never be zero. Adding the invariant i >= 0 commented on line 10 solves this
issue.

The next error is reported on line 13 (underlined in red), another potential
division by zero. However, this corresponds to a fundamental error. Indeed,
i− 1 will be zero during the second iteration. This is therefore an example
of an error we want to report. As shown on Listings 1.2, unrolling the loop
enables the verifier to easily detect this fundamental error. Moreover, the
verifier can report a more precise error message, by reporting which iteration
contains the error. The usefulness of this feature is a main motivation for this
thesis. However, as shown below, understanding when the inlined program
can be used to find fundamental errors is non-trivial in Viper, as opposed to
Boogie.

4

1.1. Early detection of fundamental errors in Viper

Listing 1.2: An example where an early error detection feature would be useful (inlined).

1 field f: Rational
2

3 method example(x: Ref, n: Int)
4 requires acc(x.f)
5 ensures true
6 {
7 var i: Int := 0
8 if (i < n)
9 {

10 x.f := x.f + 1 / (i + 1)
11 x.f := x.f + 1 / (i - 1)
12 i := i + 1
13 if (i < n)
14 {
15 x.f := x.f + 1 / (i + 1)
16 x.f := x.f + 1 / (i - 1)
17 i := i + 1
18 if (i < n)
19 {
20 ...
21 }
22 }
23 }
24 }

1.1.3 Permission introspection in Viper: A fly in the ointment

The previous subsections explain why a feature to detect fundamental errors
early, based on static inlining, would be useful in the practical context of
formal verification. Therefore, one important part of this thesis is to explore
the following soundness property of static inlining:

Definition 1.2 (Informal) Static inlining is sound if errors in the inlined program
correspond to fundamental errors in the original program.

This thesis focuses partly on Viper for two reasons. The first reason is that
Viper is an intermediate language with many front-ends built on top of it,
as illustrated in Figure 1.1. Therefore, working directly at the Viper level
enables to leverage this work for many different languages. The relationship
between static inlining at the front-end level and at the Viper level is however
not clear, and may need further exploration.

The second and more important reason is the existence of Viper programs
for which static inlining is unsound (see Chapter 3 for examples). All Viper
programs for which static inlining is unsound have a common point: They
contain statements which break the frame rule (see Chapter 2). Moreover,

5

1. Introduction

Figure 1.1: An illustration Viper architecture (figure taken from [15]).

static inlining is always sound for Viper programs where all statements
respect the frame rule. This is probably a reason why this topic has not been
explored before, since verification languages usually respect the frame rule.

The frame rule does not always hold in Viper, because of its advanced support
for permissions, which encode ownership of parts of the heap. Amongst
others, Viper has a built-in feature called perm, which evaluates to the per-
mission amount held to a field location by the program state. For example,
perm(x.f) returns the amount of permission currently held to x.f. Permission
introspection is a powerful feature which allows, for example, to encode a
leak check for monitors (see [15], Section 2.2), or to branch on the permission
amount held in the state. It is a powerful debugging tool. It is also a reason
why it is possible to write a Viper program for which static inlining is not
sound. We show in Chapter 3 three examples illustrating how permission
introspection makes static inlining unsound in Viper programs.

1.2 Problem statement: The meaning of inlining

The core of this thesis is the exploration of the soundness property of static
inlining, in a general model which abstracts Viper. We illustrate some parts
of the problem this thesis focuses on in Figure 1.2. We start with a program

6

1.2. Problem statement: The meaning of inlining

Program Pr
Initial statement s

(s, annotate(Pr, A))

boundn(s, Pr)

boundn(s, annotate(Pr, A))

inlinen
Pr(s)

Inlining

AnnotationAnnotation

???

Com
pleteness

3
=⇒
∃A. 3

??
?

Soundnes
s

∃A
. 3
=⇒
∀n

. 3

Figure 1.2: Illustration of the problem.

Pr, that is a set of methods, and an initial statement s. This initial statement s
is the entry point of the program, similar to the body of a main method, and
can call methods from the program. Our aim, formalized by the soundness
property, is to use static inlining to answer the following question:

Is there any fundamental error in the program Pr, with the entry point s?

This question is represented on the left side of Figure 1.2. In particular,
we represent on the diagram the program inlined up to the depth bound
n as inlinen

Pr(s). The definition of a fundamental error relates to annotated
versions of the program, we therefore denote annotate(Pr, A) the program
Pr annotated with an annotation A. This annotation A represents all the
annotations of the program, that is one precondition and one postcondition
for each method, and one invariant for each loop.

Since there exist examples where soundness does not hold, the problem is
actually about determining under which condition an error reported in the
inlined program is a fundamental error. This condition is represented as “???”
on the Figure, and the soundness property is represented by its contraposition:
If there exists an annotation A such that the program verifies (in this case
there are no fundamental errors), then the inlined program (up to any finite
depth) should verify.

Moreover, we also want to know how efficient static inlining is in detecting
fundamental errors. We call this property completeness. It is obvious that
inlining up to a depth of n can only give us information on similarly bounded

7

1. Introduction

executions of the original program. Therefore, we first define a bounded
program boundn(s, Pr) which is a program behaving similarly to the original
one, in which we simply stop the execution when we reach a depth greater
than the bound. Completeness means that if no error is reported in the inlined
program (the inlined program verifies), then there is no fundamental error in
boundn(s, Pr) (the program can be annotated in a way which makes it verify).

On top of these two properties, soundness and completeness, we also present
two extensions. The first is to explore different possibilities for defining the
semantics of while loops in Viper, which then influence the soundness and
completeness of static inlining. The second is to explore other useful ways of
inlining (we only presented one way of inlining in this introduction, probably
the simplest one).

Related work. A similar problem is tackled in [3], but with fundamental
differences. In this work, the authors define a simple while language (with no
method calls) and an operational semantics for this language. They mostly
consider two verification workflows. A deductive verification workflow,
which approximates loops with invariants, and a bounded model checking
workflow, where loops are unrolled up to a fixed bound. They prove a
soundness property and a completeness property for both workflows, with
respect to the operational semantics. In this thesis, we do not consider any
operational semantics, but study the direct link between the verification of
the inlined program and the verification of the original annotated program.
Moreover, the parametric language defined in this thesis is based on Viper, a
concrete verification infrastructure with powerful features. One key difference
is that we consider in this thesis features which make inlining unsound, and
explore the conditions under which inlining is sound.

1.3 Overview of the thesis

This thesis is structured as follows. Chapter 2 presents some background on
separation logic and Viper, needed to understand the rest. In Chapter 3, we
define a desired soundness property for static inlining, and show examples
of Viper programs for which this property does not hold. Based on these
examples, we define two properties of statements, mono and framing, which
are necessary to describe the conditions under which inlining is sound.

Since these properties and the soundness of inlining are more general than
Viper, we define a general framework based on an abstraction of Viper, and
prove soundness of static inlining in this framework. This is the core of this
thesis. Chapter 4 defines a separation algebra [5] which abstracts the Viper
state model. Building on this separation algebra, Chapter 5 defines a paramet-
ric language which abstracts the Viper language. Chapter 6 formalizes static

8

1.3. Overview of the thesis

inlining, and proves soundness of static inlining in the general framework,
under a formal condition based on the mono and framing properties. The
definition of this framework with the proof of soundness of static inlining
has been formalized in Isabelle/HOL [16] (see Appendix A).

Soundness is not the only interesting property about static inlining. Indeed,
we are also interested in a completeness property of static inlining. Chapter 7
defines a completeness property for static inlining, and presents examples
where this completeness property does not hold in Viper. We then sketch
how to prove this completeness property in our general framework, under
some assumptions.

Chapter 8 discusses how to instantiate the general framework for Viper,
to leverage its theoretical results. We sketch a way to prove for Viper the
assumption needed for the completeness property for inlining in the general
framework. Moreover, we explain how to use this instantiation to create two
useful features for Viper: An early error detection feature based on static
inlining, and a feature to speed-up reverification4 based on caching and the
properties mono and framing.

Chapter 9 proposes and explores two extensions for this work. The first idea
is to extend this work to different loop semantics, and the second idea is to
explore different ways of inlining to gain more information.

Finally, Appendix A shows the Isabelle/HOL formalization of the general
framework (separation algebra and parametric language) in which we prove
soundness of static inlining, and an instantiation of some renaming functions
necessary to express the semantics of method calls and for inlining method
calls.

4That is, verification after small modifications of a first verified version.

9

Chapter 2

Background

2.1 Separation logic and fractional permissions

Separation logic [17, 21] is an extension of Hoare logic [10] for reasoning
about programs which manipulate shared mutable data structures. It is
based on the notion of partial heaps, and enables local reasoning thanks to
the frame rule.

Partial heaps and states. A partial heap represents a part of the heap. A
partial heap is formally a partial function, which maps heap locations (pairs
of a reference and a field) to values. Two partial heaps are compatible if
they are defined on disjoint domains, and their union is the partial heap
which combines their mappings. A state consists of a partial heap and a
store, which maps the names of local variables to their values. Two states
are compatible if they agree on all values of local variables and their partial
heaps can be combined.

Separating conjunction. Separation logic introduces the separation con-
junction connective, written ∗. For two assertions A and B, a state ϕ satisfies
the assertion A ∗ B if and only if there exist two states ϕ1 and ϕ2 such that ϕ
is the combination of ϕ1 and ϕ2, ϕ1 satisfies A, and ϕ2 satisfies B.

Points-to assertions. An important type of assertion introduced by separa-
tion logic is the points-to assertion. As an example, x. f 7→ v (read x. f points
to v) where v is some value is satisfied by a state if and only if its partial heap
maps the heap location x. f to the value v.1 In particular, combined with the
separating conjunction, the assertion x. f 7→ v1 ∗ y. f 7→ v2 is satisfied by a
state if and only if its heap is defined at least for two heaps locations: x. f
and y. f , mapping x. f to v1 and y. f to v2. In particular, this assertion implies

1We describe here the intuitionistic version of separation logic, and not the classical one.

11

2. Background

that x. f and y. f are disjoint parts of the heap. Therefore, x. f 7→ v represents
ownership of the heap location x. f . In the logic, a state needs to own a heap
location to read it or write it.

Hoare triples in separation logic. Separation logic slightly modifies the
meaning of a Hoare triple. A Hoare triple is written {P} C {Q}, where
C is a program, and P and Q are assertions (P is a precondition and Q a
postcondition). In separation logic, {P} C {Q} means that if C executes from
a state satisfying the precondition P, then nothing will go wrong and the
final state will satisfy the postcondition Q. In particular, the precondition P
expresses which heap locations can be accessed and modified by the program
C.

Local reasoning: The frame rule. On top of the standard rules from Hoare
logic, separation logic introduces a new important rule, the frame rule, which
enables local reasoning. The frame rule is defined as follows:

{P} C {Q}
{P ∗ R} C {Q ∗ R} mod(C) ∩ fv(R) = ∅

mod(C) is the set of local variables modified by C, and f v(R) is the set of
free variables in the assertion R. This rule means in essence that if a program
executes correctly in a small state satisfying P, then it will also execute
correctly in a bigger state satisfying P ∗ R, and its execution will not affect
the additional part of the state R. R should not interfere with C, that is R
should not say anything about variables which are modified by C.

Fractional permissions. Fractional permissions [4] are a generalization of
the points-to assertion. A points-to assertion is annotated with a fractional
permission q ∈ Q ∩ (0, 1], noted x. f

q7→ v, and partial heaps map heap
locations to pairs of a permission and a value. Having some fractional
permission to a location enables a state to read the value of this location.
However, a state can write a heap location if and only if it has a permission
of 1 to this location (full permission). Partial heaps with permissions can be
combined by adding the permissions they hold, if they agree on the values
of heap locations they both define, and if the sum of permissions is at most
1. Moreover, assertions can now be combined as follows, for permission
amounts q1 and q2:

x. f
q17→ v1 ∗ x. f

q27→ v2 ⇐⇒
{

x. f
q1+q27→ v1 if v1 = v2 ∧ q1 + q2 ≤ 1

⊥ otherwise

Fractional permissions are especially useful in concurrent separation logic [19],
where they allow concurrent reading of the same heap location.

12

2.2. Viper

2.2 Viper

Viper [15] is a powerful verification infrastructure with an intermediate
verification language, based on implicit dynamic frames [14, 24, 20] (which
are based on separation logic) and fractional permissions. The semantics of
the Viper language are not formally defined yet. However, they have been
partially formalized and characterized [6]. Moreover, most of Viper features
have a clear role, and they are explained in an online tutorial [1].

We describe in this section some parts of Viper semantics needed for this
thesis. These explanations are partly based on [6], and partly based on the
online tutorial.

2.2.1 Permissions and assertions

Permissions. Viper, based on implicit dynamic frames, separates the per-
mission and the value of a heap location. Holding at least some fractional
permission p to a heap location x.f, where x is a reference and f a field, is
encoded by the assertion acc(x.f, p), whereas the value of x. f being v is
encoded by the assertion x.f == v. Viper assertions do not use the usual
conjunction ∧, they only use the separating conjunction, written && in Viper.
As an example, the assertions acc(x.f, 1/2) && x.f == 5 is satisfied by a
state which holds at least half permission to x. f , and whose partial heap
defines at least x. f , and maps the heap location x. f to the value 5.

Assertions. An assertion of the shape acc(x.f, p) is called an accessibility
predicate. Assertions which do not contain any accessibility predicates are
called pure assertions. Viper assertions can be constructed by combining
assertions with the separating conjunction &&, the disjunction ||, and the
implication ==> among others. In particular, disjunctions are only allowed
when both assertions are pure. As an example, acc(x.f, 1/2) || x.f == 5

is not a valid assertion in Viper. The left side of an implication also has to be
a pure assertion.

Self-framing assertions. Assertions used as annotations, that is as loop
invariants and method preconditions and postconditions, have to be self-
framing. Simply put, an assertion is self-framing if and only if includes
permissions to at least the locations it reads. A better and more formal
definition is given in [20]. As an example, acc(x.f, 1/2) && x.f == 5 is
self-framing, whereas x.f == 5 is not.

2.2.2 Viper state model

A Viper state is defined in [6] as a triple of a store, a global heap, and
a permission mask. A permission mask is simply a mapping from heap

13

2. Background

locations to permission amounts. This permission mask actually consists of
three permission masks, for permissions to field locations, permissions to
predicates [8], and permissions to magic wands [23].

For our purpose, we only present here a simplified version of a Viper state.
We do not consider predicates and magic wands. Moreover, we do not
consider global heaps but only local heaps.

For our purpose, a Viper state can be seen as a triple (s, π, h) where:

1. s is the store: A finite partial mapping from local variables to values.

2. π is a permission mask: A mapping from field locations (a pair of a
reference and a field) to permissions (elements of Q∩ [0, 1]).

3. h is a local heap: A finite mapping from field locations to values. In
particular, the domain of definition of this heap is the finite set of field
locations with a permission strictly greater than zero.

Trace semantics and state semantics. Viper semantics is actually a trace
semantics. In particular, Viper defines the statement label l (where l is
simply a name) which records the heap at this point of the execution. The
expression old[l](e) (where l is a label and e an expression) evaluates the
expression e in the heap recorded at the point of the execution the label l
refers to. In most of this thesis, we simplify the matter by only considering
a state semantics, that is disallowing the use of label and old features.
Chapter 8 discusses how to go from a state semantics to a trace semantics.

2.2.3 Building blocks of loops and method calls verification

We introduce three kinds of statements in this subsection: havoc, inhale and
exhale. They are necessary to describe the semantics of loops and method
calls in Viper.

Havoc. To havoc a variable simply means to assign an arbitrary value to
this variable. As an example, take a state which satisfies x == 5, that is its
store maps x to 5. If we havoc x in this state, then we “forget” the value of x.
x has therefore a new value, on which we do not have any information.2

Inhale. The Viper language has an inhale statement. To inhale an assertion
means to assume the pure assertions (the value constraints) in it, and to
add the permissions denoted in the assertion (with accessibility predicates)
to the state. As an example, inhale acc(x.f, 1/2) && x.f == 5 adds half
permission to x. f in the permission mask of the state, and assumes that the

2Even if loops and method calls are encoded using havoc in Viper, havoc is not a Viper
statement.

14

2.2. Viper

value of x. f in the local heap is 5 (that is, if x. f 6= 5 in the program state,
then the execution stops, and the rest of the program verifies).

Exhale. exhale is in a way the opposite of inhale. To exhale an asser-
tion means to assert (verify that it is true, otherwise throw an error) the
pure assertions in it, and to subtract the permissions denoted in the as-
sertions from the permission mask of the program state. As an example,
exhale acc(x.f, 1/2) && x.f == 5 verifies if x. f == 5 holds and if the per-
mission mask has at least half permission to x. f . If this exhale verifies, then
half permission to x. f is removed from the state.

2.2.4 Black-box semantics of loops in Viper

The general shape of a while loop in Viper is as follows, where b (the guard),
I (the loop invariant) are assertions, and s (the loop body) is a statement.

Listing 2.1: General shape of a while loop in Viper

1 while (b)
2 invariant I
3 {
4 s
5 }

To be well-defined, the loop invariant I should be self-framing, meaning that
I must include permissions to at least the locations it reads. Moreover, I is
not allowed to contain any permission introspection (see Section 2.2.6). In
particular, I cannot use perm and forperm.

The verification of this while loop is then equivalent to verifying what we
call here the external behavior of the loop and the internal behavior of the loop.
The internal behavior of the loop refers to the verification that the loop invariant
is actually an invariant for the loop. The external behavior of the loop refers to
the program, where the loop is approximated using the loop invariant.

The verification of the external behavior of the loop proceeds as follows (with
respect to the scope surrounding the loop):

1. Exhale the loop invariant: exhale I.

2. Havoc (ie. assign arbitrary values to) all variables that get assigned by
the loop body s.

3. Inhale the loop invariant: inhale I.

4. Assume the guard is false: assume !b.

The verification of the rest of the program then proceeds from this state.
However, we need to make sure that the loop respects its contract, namely

15

2. Background

that executing the loop body s from a state satisfying b and I then satisfies I,
and this for any loop iteration, this is why we havoc the variables assigned by
the loop body. The verification of the internal behavior of the loop proceeds as
follows:

1. Begin with a state with no permission, only variables defined before
the loop and their values are known.

2. Havoc (assign arbitrary values to) all variables that get assigned by the
loop body s.

3. Inhale the loop invariant: inhale I.

4. Assume the guard: assume b.

5. Execute the loop body: s.

6. Make sure that the invariant is satisfied, namely exhale it: exhale I.

The while loop verifies if and only if both the internal behavior of the loop and
the external behavior of the loop verify.

2.2.5 Semantics of method calls in Viper

Methods and method calls in Viper are verified in a modular way. Methods
are verified on their own, and method calls are verified assuming that all
methods verify.

Listing 2.2: General shape of a method in Viper

1 method m(arg: T1, ...)
2 returns (ret: T2, ...)
3 requires P
4 ensures Q
5 {
6 s
7 }

A method can take several arguments, specified with their types (T1 is for
example the type of the argument arg), and can return any fixed number of
variables, with their types (here ret of type T2). P is the precondition of the
method, whereas Q is its postcondition. Finally, s is the method body. To be
well-defined, a method declaration must at least respect the following rules:

1. The method body s is not allowed to modify the value of the arguments
(only to read them).

2. The precondition and postcondition, similarly to loop invariants, have
to be self-framing, and are not allowed to use permission introspection
(see Section 2.2.6 below).

16

2.2. Viper

3. The only variables which can be referred to in the precondition P are
the arguments.

4. The only variables which can be referred to in the postcondition Q are
the arguments and the return variables.

5. The arguments and the return variables have to be mutually distinct.

A method is verified as follows, beginning with an empty state:

1. The arguments and the return variables are added to the store of the
empty state, with some values.

2. Assume that the state satisfies the precondition: inhale P.

3. Execute the method body: s.

4. Ensure that the final state satisfies the postcondition: exhale Q.

A method call is verified modularly, assuming that the method it refers to
verifies. A method call in Viper is written as follows:

Listing 2.3: General shape of a method call in Viper

1 y, ... := m(x, ...)

It is well-defined if the arguments and return variables match the ones
declared (number and types). Informally (we use dots to represent other
variables), this method call is equivalent to:

1. (Informal) Make sure the renamed method precondition is satisfied:
exhale P[x.../arg...]3

2. Havoc the return variables y,

3. (Informal) Assume the renamed method postcondition is satisfied:
inhale Q[x.../arg...][y.../ret...]

2.2.6 Features which break the frame rule

The permission evaluation feature. As explained in the introduction, Viper
has a feature of permission evaluation, perm. perm(x. f) evaluates to the
permission amount held to x. f by the program state. As an example, the
statement assert perm(x.f) <= 1/2 verifies if and only if the program state
holds at most half permission to x. f . This statement breaks the frame rule in
the following sense:

1. The program
inhale acc(x.f, 1/2)

assert perm(x.f) <= 1/2

3P[x/arg] substitutes arg by x in P.

17

2. Background

exhale acc(x.f, 1/2)

verifies with an initial empty state (which holds no permission to any
field).

2. However, the program
inhale acc(x.f, 1/2) && acc(x.f, 1/2)

assert perm(x.f) <= 1/2

exhale acc(x.f, 1/2) && acc(x.f, 1/2)

does not verify with an initial empty state.

The first program corresponds to the Hoare triple

{acc(x.f, 1/2)}
assert perm(x.f) <= 1/2

{acc(x.f, 1/2)}

whereas the second program corresponds to the Hoare triple

{acc(x.f, 1/2) && acc(x.f, 1/2)}
assert perm(x.f) <= 1/2

{acc(x.f, 1/2) && acc(x.f, 1/2)}

The frame rule is broken with this statement, otherwise the second program
should verify with R := acc(x. f , 1/2).

For-perm quantifiers. A forperm statement, such as

forperm x: Ref [x.f] :: false

asserts that, for all references x such that some (> 0) permission is held to
x. f , false should hold. This statement verifies if and only if there exists no
reference x such that the program state holds some permission to x. f . In this
case, adding some permission to some field location x. f makes the statement
not verify anymore. The frame rule is thus broken with this statement.

Assuming an impure assertion. To assume an assertion means doing noth-
ing if the program state satisfies this assertion. However, if this assertion is
not satisfied, the execution stops and the rest of the program verifies. In Viper,
it is possible to assume impure assertions, such as assume acc(x.f, 1/2).
This statement breaks the frame rule. Indeed, the following Viper statement

inhale true

assume acc(x.f, 1/2)

exhale false

18

2.2. Viper

verifies with an initial empty state, since the assertion is not satisfied (the
state has no permission to x. f).

However,

inhale true && acc(x.f, 1/2)

assume acc(x.f, 1/2)

exhale false && acc(x.f, 1/2)

does not verify, since the assumed assertion is satisfied, but false does not.

19

Chapter 3

Unsoundness of Inlining in Viper

As explained in Chapter 1, static inlining (inlining thereafter) is not always
sound for Viper programs. In this section, we explore concrete examples
where inlining is unsound to derive a soundness condition. The soundness
condition characterizes those Viper programs for which inlining is sound.
We first express the soundness property and the requirement for the sound-
ness condition formally. We then show three examples of unsoundness in
Viper, which give rise to three properties of statements (safeMono, monoOut
and framing), needed to characterize the soundness condition. Finally, we
explore these three properties in Viper, and express a soundness condition for
a simplified case.

3.1 Soundness property and soundness condition

The main purpose of inlining is to detect fundamental errors, as explained in
Chapter 1. The idea is that if the inlined statement (for any bound) does not
verify, then there must exist a fundamental error in the original program.

Definition 3.1 Soundness of inlining
If there exists an annotation A such that the initial statement s, which can call
methods from the annotated program annotate(Pr, A), verifies with an initial empty
state, then the statement inlined with respect to the program Pr up to the depth
bound n inlinen(s, Pr) verifies with an initial empty state.
We denote this property soundnessn

Pr(s).

We show in this chapter that this property does not hold in general for
Viper programs. We therefore want to find a soundness condition, ideally
the weakest possible, such that soundness holds. We denote this soundness
condition SCn

Pr(s) for a program Pr, an initial statement s, and a bound n.
This soundness condition has to satisfy the following requirement:

21

3. Unsoundness of Inlining in Viper

Listing 3.1: Annotated original program.

1 field f: Int
2

3 method initial(x: Ref)
4 {
5 inhale acc(x.f)
6 callee(x)
7 assert perm(x.f) <= 1/2
8 }
9

10 method callee(x: Ref)
11 requires acc(x.f)
12 ensures true
13 {
14 assert true
15 }

Listing 3.2: Inlined program (bound of 1).

1 field f: Int
2

3 method initial_inlined(x: Ref)
4 {
5 inhale acc(x.f)
6 assert true
7 assert perm(x.f) <= 1/2
8 }

Figure 3.1: Example of unsoundness of inlining in Viper: Statement not safeMono.

Definition 3.2 Requirement for the soundness condition

SCn
Pr(s) =⇒ soundnessn

Pr(s)

This expresses that, if the soundness condition holds for a statement, a
program, and a bound, then inlining this statement with respect to this
program up to this bound is sound. Namely, if it is possible to find an
annotation such that the annotated program and the statement s (with respect
to the annotated program) both verify, then inlining this statement up to
a depth of n verifies. The contraposition of the soundness property is
particularly useful: Under the soundness condition, if the inlined statement
does not verify (for the bound n), then it is not possible to find an annotation
to make the program verify. This means we detected a fundamental error,
without needing any annotation from the user.

The next parts of this section focus on examples in Viper where inlining is
unsound, in order to determine a suitable soundness condition.

3.2 Examples of Viper programs where inlining is un-
sound

3.2.1 SafeMono: Stronger states verify more

The first example of unsoundness of inlining in Viper, shown in Figure 3.1,
is based on permission leaks and permission introspection. The annotated
program (Listing 3.1) verifies whereas the inlined program (Listing 3.2) does

22

3.2. Examples of Viper programs where inlining is unsound

not verify. The annotated program verifies because of the permission leak
happening when calling the callee method. Before the call, full permission is
held by the program state to x.f, then half of this permission is leaked to the
method, which does not return anything. After the call, only half permission
is held to x.f, which makes line 7 verify.

The inlined program (Listing 3.2) does not verify because of line 7. Line 5
gives full permission to x.f, line 6 is the inlined method body (which does
nothing), thus full permission is still held on line 7.

Because of possible permission leaks, the state after a method call in an in-
lined program is often stronger than the corresponding state in the annotated
program. Let us define this notion of stronger and weaker states.

Definition 3.3 Stronger and weaker Viper states
A Viper state (s′, π′, h′) is stronger than another Viper state (s, π, h) if and only if

1. For all x defined in s, then x is also defined in s′, and s′(x) = s(x).

2. For all references r and fields f , π′(r, f) ≥ π(r, f).

3. For all references r and fields f such that π(r, f) > 0, h′(r, f) = h(r, f).

If the state ϕ′ is stronger than ϕ, then ϕ is weaker than ϕ′.

A set of states A′ is stronger than a set of states A if and only if, for all states
ϕ′ ∈ A′, there exists a state ϕ ∈ A such that ϕ′ is stronger than ϕ.1

This stronger relation for states means two things:

1. The stronger state has at least the information contained in the weaker
state, namely the store values and the heap values.

2. The stronger state holds at least as much permission to heap locations
as the weaker state.

We can now clarify why inlining the program in Figure 3.1 is unsound. The
issue comes from the statement assert perm(x.f) <= 1/2. Indeed, there
exist situations in which a weaker state makes this statement verify, whereas
a stronger state makes it fail. Such a statement does not have the safeMono
property:

Definition 3.4 A statement s is safeMono if and only if, for any two states ϕ and
ϕ′ such that ϕ′ is stronger than ϕ and s verifies with the state ϕ, then s also verifies
with the state ϕ′.

This property has already been described in [25] and [5], where it is called
Safety Monotonicity. However, this property is not enough to express the
soundness condition, as shown by the next example.

1This order relation on sets of states is not antisymmetric. As an example, take ϕ a state
with full permission to x. f , and ϕ′ a state with half permission to x. f . Then {ϕ, ϕ′} is both
stronger and weaker than {ϕ′}.

23

3. Unsoundness of Inlining in Viper

Listing 3.3: Annotated original program.

1 field f: Int
2

3 method initial(x: Ref)
4 {
5 inhale acc(x.f)
6 callee(x)
7 if (perm(x.f) >= 1/1) {
8 exhale acc(x.f)
9 }

10 callee(x)
11 }
12

13 method callee(x: Ref)
14 requires acc(x.f, 1/2)
15 ensures true
16 {
17 assert acc(x.f, 1/2)
18 }

Listing 3.4: Inlined program (bound of 1).

1 field f: Int
2

3 method initial(x: Ref)
4 {
5 inhale acc(x.f)
6 assert acc(x.f, 1/2)
7 if (perm(x.f) >= 1/1) {
8 exhale acc(x.f)
9 }

10 assert acc(x.f, 1/2)
11 }

Figure 3.2: Example of unsoundness of inlining in Viper: Statement not monoOut.

3.2.2 MonoOut: Stonger state in, stronger states out

The example shown in Figure 3.2, like the previous one, is based on per-
mission leaks and permission introspection, but this time with two method
calls instead of one. As before, the annotated program (Listing 3.3) verifies
whereas the inlined one (Listing 3.4) does not. The first call to callee in the
annotated program is made with full permission to x.f. The method call
verifies since there is at least half permission to x.f, and leaks half permission.
After this first method call, only half permission is held, therefore the state
doesn’t enter the if branch, and goes directly to the second method call. Once
again, this method call verifies since there is at least half permission held.

On the other hand, full permission to x.f is still held in the inlined program
after the inlined method call, on line 6. The if branch is therefore entered,
where full permission is exhaled. The statement on line 10 therefore doesn’t
verify, since no permission is held anymore.

Notice that the statement if (perm(x.f) >= 1/1) {exhale acc(x.f)} (lines
7 to 9) is safeMono: Indeed, this statement always verifies. Hence, as this
example shows, the safeMono property is not enough to guarantee sound-
ness of inlining. The issue is that a stronger state before the statement (full
permission to x. f for example, compared to half permission) can result in a
weaker state after the statement (no permission compared to half permission).
Such a statement does not have the monoOut property.

24

3.2. Examples of Viper programs where inlining is unsound

Listing 3.5: Annotated original program.

1 field f: Int
2

3 method initial(x: Ref)
4 {
5 inhale acc(x.f)
6 callee(x)
7 x.f := 5
8 }
9

10 method callee(x: Ref)
11 requires true
12 ensures true
13 {
14 exhale acc(x.f, perm(x.f))
15 }

Listing 3.6: Inlined program (bound of 1).

1 field f: Int
2

3 method initial(x: Ref)
4 {
5 inhale acc(x.f)
6 exhale acc(x.f, perm(x.f))
7 x.f := 5
8 }

Figure 3.3: Example of unsoundness of inlining in Viper: Statement not framing.

Definition 3.5 A statement s is monoOut if and only if, for any two states ϕ and
ϕ′ such that ϕ′ is stronger than ϕ and s verifies with both states, then executing s
from the state ϕ′ results in a stronger set of states than executing it from the state ϕ.

Combining both properties results in mono.

Definition 3.6 A statement s is mono if and only if it is safeMono and monoOut.

However, even if all statements and substatements of all methods of the pro-
gram and of the initial statement are mono, we still do not have soundness.

3.2.3 Framing: Statements which respect the frame rule

The two previous examples showed us some conditions needed on substate-
ments of the initial statement, but do not say anything about the body of a
method which is called. In the example shown in Figure 3.3, the body of
callee is mono. Indeed, it always verifies, and results in a state identical as
the one before the statement, except that there is no permission to x. f .

The annotated program (Listing 3.5) verifies because it does not transfer
any permission to callee, thus it still has full permission on line 7, and full
permission is needed to write the value of x. f . On the other hand, the body
of callee on line 6 of the inlined program (Listing 3.6) removes all permission
to x. f , hence making line 7 fail. The underlying reason is that the idea of
modular verification of methods derives from the frame rule (see Section 2.1),
which not all statements satisfy in Viper, due to permission introspection.

25

3. Unsoundness of Inlining in Viper

Definition 3.7 (Informal) A statement is framing if and only if it is mono and it
respects the frame rule.

Intuitively, a statement s is framing if it satisfies the following: “If we
add information and permissions to a state which already verifies with the
statement s, then we still have these additional information and permissions
after the statement has finished executing”. This view is of course a bit
informal, since we need to make sure there is no interference between the
information provided and the statement. For example, if we add information
about the value of a variable x and s modifies x, then we lose this information
after the statement. Another way to say it is that a framing statement only
acts on a small part of a state, and does not “consume” the rest of it. However,
we allow a framing statement to add more than what we added initially. As
an example, a statement which doubles the permission held to x.f (such as
inhale acc(x.f, perm(x.f)) is framing. This property has also been called
Framing Property [25, 5]. A formal definition is given in Chapter 6.

These three examples give us a first impression of a general soundness
condition, a sufficient condition for soundness of inlining to hold. Let us
first define what it means to be inlinable.

Definition 3.8 A statement is inlinable if and only if it is a loop, a method call, or
if it contains an inlinable substatement.

We have now a first idea of what the soundness condition should look like:

1. Non-inlinable substatements have to be mono.

2. Bodies of methods and loops have to be framing.

This first idea is really informal and only aims at giving an intuition, since
for example we do not refer here to the bound n. The complete soundness
condition is formally expressed in Chapter 6. The purpose of the next and
last part of this section is to illustrate and explore these properties a bit more,
before diving into the formalization.

3.3 Framing and mono

3.3.1 Inclusions and examples

By definition, mono is the intersection of safeMono and monoOut, and
framing is included in mono, as represented in Figure 3.4. Examples to show
that these inclusions are strict are given in Table 3.1.

Statement 1 is the sequential composition of statement 2 and statement 3.
Statement 2 is not safeMono, since it can fail when adding more permission.
It is otherwise monoOut since it does not modify the state if it verifies.
Statement 3 is not monoOut, but it is safeMono since it always verifies.

26

3.3. Framing and mono

safeMono monoOut

mono

framing

Figure 3.4: Representation of sets of statements satisfying safeMono, monoOut and framing.

Table 3.1: Examples of safeMono, monoOut and framing statements.
Statement safeMono monoOut framing
1 assert perm(x.f) <= 1/2

exhale perm(x.f) >= 1/1 ==> acc(x.f)

2 assert perm(x.f) <= 1/2 3

3 exhale perm(x.f) >= 1/1 ==> acc(x.f) 3

4 exhale acc(x.f, perm(x.f)) 3 3

5 exhale acc(x.f) 3 3 3

Because of these properties, statement 1 is neither safeMono nor monoOut.
Statement 4 is mono but not framing, as explained before. Finally, statement
5 is framing since it respects the frame rule.

3.3.2 Compositionality

safeMono is not stable by sequential composition. As an example, take s1 :=
exhale perm(x.f) >= 1/1 ==> acc(x.f), and s2 := assert acc(x.f, 1/2).
Both s1 and s2 are safeMono, but s1 ; s2 is not: A state with half permission
to x. f verifies, but a stronger state with full permission to x. f fails.

mono (and monoOut) are stable by sequential composition. Indeed, take
s := s1 ; s2 with s1 and s2 mono. Take two states ϕ and ϕ′ such that ϕ′ is
stronger than ϕ and ϕ verifies with s (thus ϕ verifies with s1). Since s1 is
mono, we have that it verifies with ϕ′ too, and that executing it with the
initial state ϕ′ results in stronger states than executing it with the initial state
ϕ. By using that s2 is mono, we can show that s is mono.

This reasoning can be extended for framing, and for non-deterministic if
(if (*)):

27

3. Unsoundness of Inlining in Viper

Lemma 3.9 Assume that s1 and s2 are mono (resp. framing). Then

1. s1 ; s2 is mono (resp. framing).

2. if (*) {s1} else {s2} is mono (resp. framing).

This result is particularly useful in practice. As shown in Chapter 6, it is
necessary to determine whether some statements are framing and mono to
guarantee soundness. This result means that showing that substatements of
a statement are mono or framing is sufficient to prove that this statement is
mono or framing.

However, the converse also does not hold. As an example, consider

s1 := var p: Perm := perm(x.f); exhale acc(x.f, p - 1/2)

s2 := inhale perm(x.f) <= 1/2 ==> acc(x.f, p - 1/2)

s := s1 ; s2

s1 and s2 are not framing, but s1 ; s2 is. Indeed, s1 records the old permission
held to x. f in p, and then removes enough permission to x. f to reach half
permission (it fails if there is less than half permission). Therefore, any state
after s1 has half permission to x. f . s2 makes the permission to x. f increase
by p− 1

2 if the permission held to x. f is lower than half, therefore s2 is not
framing (actually not even mono, take for example two states with p = 1

2 ,
one with 1

2 permission to x. f and one with 3
4). Finally, s1 ; s2 is framing since

when it verifies, the state after this statement is the same as the one before.

The converse does not hold also with non-deterministic if. As an example,
consider

s1 := exhale perm(x.f) == 1/2 ==> acc(x.f, perm(x.f))

s2 := exhale perm(x.f) != 1/2 ==> acc(x.f, perm(x.f))

s := if (*) {s1} else {s2}

Both statements always verify, thus they are safeMono. However, none of
them is monoOut, thus they are neither mono nor framing. The statement
s always verifies and creates two states from an initial one: The same one,
and a similar one where no more permission to x.f is held. This statement is
therefore monoOut, thus mono.

These compositionality properties mean that we have a sufficient condition to
determine whether a statement is mono and framing by looking only at its
substatements, but this is not enough to show that a statement is not mono
or framing. To show that, one has to find explicit counter-examples.

To summarize, we explored examples of Viper programs where static inlin-
ing is unsound, in order to sketch a soundness condition. Our aim is to

28

3.3. Framing and mono

find and express the weakest condition under which soundness of inlining
holds. Through three examples, we exhibited three properties of statements,
safeMono, monoOut (combined in mono), and framing, which are required
to have soundness. These properties can be lifted to more general settings.
The next sections define (1) a general separation algebra to abstract Viper’s
state model, and (2) a language abstracting resource-based languages such as
Viper. Using these two ingredients, we then formalize and prove soundness
under the soundness condition for a more general setting

29

Chapter 4

Abstracting Viper States with a
Separation Algebra

The previous chapter focused on exploring examples of Viper programs
where inlining is unsound, in order to find a general soundness condition.
This chapter and Chapter 5 define a general model for a verification language,
based on Viper. The idea is to lift the results obtained in Chapter 3. This
chapter abstracts the Viper state model, using the concept of separation
algebra [5]. Chapter 5 then defines a general parametric language and a
semantics for this language, using the algebra from this chapter to represent
states. Finally, Chapter 6 formally defines the mono and framing properties
in this framework. Using these properties, we formally express a soundness
condition, and prove that it implies soundness of inlining. The content and
the proofs presented in this chapter, Chapter 5 and Chapter 6 have been
mechanized and proved using the proof assistant Isabelle/HOL [16] (see the
formalization in Appendix A).

A state in Viper contains resources, and more precisely two kinds of re-
sources, pure and impure resources. The store contains pure resources, in the
sense of duplicable resources. As an example, the assertion n == 5 is equiv-
alent to the assertion n == 5 && n == 5. On the other hand, permissions
to heap locations are no duplicable: Permissions are impure resources. As
an example, the assertion acc(x.f, 1/2) is not equivalent to the assertion
acc(x.f, 1/2) && acc(x.f, 1/2). We define in this chapter a separation
algebra, whose aim is to abstract the Viper state model. A separation alge-
bra [5] defines what it means to add two states, and defines an order relation
based on this addition. The algebra we define here makes a clear distinction
between pure resources, namely the store, and impure resources, correspond-
ing to the permission mask and the local heap in Viper. In that respect, it
does not correspond exactly to a separation algebra (as in [5, 7]) but it can be
seen as a combination of a separation algebra with a pure part (the store).

31

4. Abstracting Viper States with a Separation Algebra

The plan of this chapter is as follows: We first define a preliminary separation
algebra, the basis of our separation algebra. We then describe, using this
preliminary separation algebra, the behavior of the Viper statements inhale
and exhale, restricted to self-framing assertions. These statements constitute
the core of our framework, since they are the blocks at the basis of the
semantics of loops and method calls. We then fully define the separation
algebra, and finally highlight differences with related works.

4.1 A preliminary separation algebra

We first define a preliminary separation algebra, to be able to speak about
addition of states as well as stronger and weaker states in an abstract way.

Definition 4.1 A preliminary separation algebra is a partial commutative monoid
(Σ,⊕, u), where Σ is a set of states, ⊕ (addition) is a partial binary operation
Σ× Σ→ Σ, and u (neutral state) is an element of Σ with the following properties,
for all states a, b, c ∈ Σ (we note a#b if and only if a⊕ b is defined):

1. Commutativity (definedness): a#b⇔ b#a

2. Commutativity: a#b⇒ a⊕ b = b⊕ a

3. Associativity (definedness): a#b#c⇔ a#b ∧ (a⊕ b)#c⇔ b#c ∧ a#(b⊕ c)

4. Associativity: a#b#c⇒ a⊕ (b⊕ c) = (a⊕ b)⊕ c

5. Neutral state: a#u and a⊕ u = a

This definition is similar to the one from [5], with one major difference:
We do not require ⊕ to be cancellative (that is, λy.x ⊕ y is not necessarily
injective). The reason is that we also want to include pure resources in the
states, and pure states are duplicable (by definition), which therefore makes
this requirement unsatisfiable.

Definition 4.2 A state ϕ is pure if and only if ϕ⊕ ϕ = ϕ.

One way to understand this definition is that a state is pure if and only if it
is infinitely duplicable. This definition allows us to extract from a state its
core, namely its maximum pure part. To define the core of a state, we first
need to define a partial order on states:

Definition 4.3 Induced order on states: ϕ1 << ϕ2 ⇐⇒ ∃ϕ′.ϕ2 = ϕ1 ⊕ ϕ′

Lemma 4.4 The induced order is a partial order:

1. << is reflexive.

2. << is transitive.

3. ∀ϕ ∈ Σ.u << ϕ.

32

4.2. Motivation: Modeling the behavior of inhale and exhale on annotations

Listing 4.1: Pure assertion.

1 field f: Int
2

3 method m(n: Int, x: Ref)
4 {
5 inhale n >= 0
6 exhale n >= 0
7 assert n >= 0
8 }

Listing 4.2: Accessibility predicate.

1 field f: Int
2

3 method m(n: Int, x: Ref)
4 {
5 inhale acc(x.f)
6 exhale acc(x.f)
7 assert perm(x.f) == 0/1
8 }

Listing 4.3: Combination of a pure assertion and an accessibility
predicate.

1 field f: Int
2

3 method m(n: Int, x: Ref)
4 {
5 inhale n >= 0 && acc(x.f)
6 exhale n >= 0 && acc(x.f)
7 assert n >= 0 && perm(x.f) == 0/1
8 }

Figure 4.1: Inhaling and exhaling the same assertion.

4.2 Motivation: Modeling the behavior of inhale and
exhale on annotations

The preliminary separation algebra is the basis of our separation algebra. We
explain in this section the reason why we distinguish two kinds of resources,
pure and impure. Inlining deals with method calls and loops. Moreover, in
Viper, the verification of loops and method calls is based on two statements,
inhale and exhale, for self-framing (as defined in [20]) assertions. In this
section, we illustrate the behavior of inhale and exhale with pure assertions
and assertions containing accessibility predicates. Annotations in Viper, such
as loop invariants, can be seen as having two roles: One role, based on pure
resources, is simply to make the approximation of the behavior of the loop
more precise. The second role, based on impure resources, is to model the
transfer of ownership of heap locations.

In Figure 4.1 are presented three programs, all of whom verify. These three
programs begin with an almost empty state (only two variables, n and x, are
defined). They then inhale and exhale the same assertion. The purpose of
the assertions in the end is to show what we know about the final states.

The first example (Listing 4.1) inhales and exhales a pure assertion, that is an
assertion speaking about a pure resource (the local variable n). inhale in the

33

4. Abstracting Viper States with a Separation Algebra

case of a pure assertion is equivalent to assume, namely only the states which
satisfy this assertion go through, the execution is stopped for the other ones.
exhale in the case of a pure assertion is equivalent to assert, which verifies
if and only if the assertion is true. Therefore, inhaling and exhaling a pure
assertion is equivalent to assuming this assertion, and the exhale statement
does not modify the state.

In the second example (Listing 4.2), the assertion is an accessibility predicate.
Inhaling this assertion means adding the permission it contains to the current
state, namely going from no permission to x. f to full permission to x. f .
Exhaling this assertion then “cancels” this by removing the permission con-
tained in the assertion, namely going from full permission to no permission.
This is a fundamental difference from the previous example, where pure
information is not forgotten.

The last example (Listing 4.3) shows what happens when pure and accessi-
bility predicate are combined. The pure information (n ≥ 0) stays, whereas
the permission is removed. This difference is at the core of our separation
algebra.

4.3 Definition of the separation algebra

To finally define the separation algebra, we need to define the core of a state,
which represents the pure part of the state, namely the store.

Definition 4.5 Core of a state
The core set of a state is defined as

coreset(ϕ) := {p ∈ Σ.p is pure∧ p << ϕ}

The core of a state ϕ is denoted |ϕ|, and is defined as1

|ϕ| := ∑
p∈coreset(ϕ)

p

Lemma 4.6 Core properties:

1. u ∈ coreset(ϕ)

2. coreset(ϕ) is stable by ⊕: ∀a, b ∈ coreset(ϕ).a#b ∧ a⊕ b ∈ coreset(ϕ)

3. If coreset(ϕ) is finite, then |ϕ| = max(coreset(ϕ))

The situation we are interested in is when coreset(ϕ) is finite for all states,
namely when all states have a finite store. We now define the separation
algebra, using a new function C : Σ→ Σ, which computes the complementary

1The Σ symbol refers to a sum using ⊕.

34

4.3. Definition of the separation algebra

state of the core of a state. The core of a state |ϕ| contains the pure resources
of the state, whereas the complementary C(ϕ) contains the impure resources
of the state (permissions to and values of heap locations):

Definition 4.7 A separation algebra is a quadruple (Σ,⊕, u, C) which satisfies
the following properties:

1. (Σ,⊕, u) is a preliminary separation algebra.

2. Finiteness: ∀ϕ ∈ Σ.coreset(ϕ) is finite.

3. Partially cancellative: ∀ϕ, a, b ∈ Σ.C(ϕ)⊕ a = C(ϕ)⊕ b =⇒ a = b

4. Decomposition: ∀ϕ ∈ Σ.ϕ = |ϕ| ⊕ C(ϕ)

5. Empty core: ∀ϕ ∈ Σ.|C(ϕ)| = u

6. Uniqueness: ∀ϕ, a ∈ Σ.ϕ = |ϕ| ⊕ a ∧ |a| = u =⇒ a = C(ϕ)

7. Positivity: ∀a, b ∈ Σ.a⊕ b = u =⇒ a = u

8. Pure reducibility: ∀p, a, b ∈ Σ.p << a⊕ b ∧ p is pure =⇒ p << |a| ⊕ |b|

We already presented the first axiom. The purpose of the finiteness axiom is
to have the core of a state being the maximum of the coreset, which means
that all stores are finite. Axiom 3 gives us the cancellative property that we
gave up from [5] by allowing pure states to exist. Axioms 4, 5 and 6 ensure
that C(ϕ) is the unique state with no pure part such that, added to the core
of ϕ, gives ϕ. Axiom 7 means that nothing can come out of an empty state.
Axiom 8 means that if a pure state is smaller than a⊕ b, then its resources
are contained in the combination of the pure resources from a (|a|) and the
pure resources of b (|b|).

Remark 4.8 From the finiteness axiom and Lemma 4.6, we already get that

∀ϕ ∈ Σ.∃c ∈ Σ.ϕ = |ϕ| ⊕ c

without the uniqueness and the empty core axioms.

Remark 4.9 It is possible to inject the original separation algebra (from [5]) in this
separation algebra, by getting rid of the store and of pure states, namely by having
that ∀ϕ ∈ Σ.|ϕ| = u ∧ C(ϕ) = ϕ. Everything (except positivity) can then be
directly proven.

Here are some useful properties which can be proven from these axioms:

Lemma 4.10 Suppose (Σ,⊕, u, C) is a separation algebra. Then

1. << is antisymmetric.

2. ∀ϕ1, ϕ2 ∈ Σ.ϕ1 = ϕ2 ⇐⇒ |ϕ1| = |ϕ2| ∧ C(ϕ1) = C(ϕ2)

35

4. Abstracting Viper States with a Separation Algebra

3. ∀ϕ1, ϕ2 ∈ Σ.ϕ1 << ϕ2 ⇐⇒ |ϕ1| << |ϕ2| ∧ C(ϕ1) << C(ϕ2)

4. ∀ϕ ∈ Σ.|ϕ| << ϕ ∧ ||ϕ|| = |ϕ|

5. ∀ϕ ∈ Σ.C(ϕ) << ϕ ∧ C(C(ϕ)) = C(ϕ)

Finally, we define an addition and an order on sets, which formalize the
corresponding definitions from Chapter 3.

Definition 4.11 Addition and order on sets
Let A, B ⊆ Σ. Then

A⊕ B := {a⊕ b|a ∈ A, b ∈ B, a#b}

A >> B⇐⇒ (∀a ∈ A.∃b ∈ B.b << a)

Lemma 4.12 Properties of addition of sets

1. Commutativity: A⊕ B = B⊕ A.

2. Associativity: A⊕ (B⊕ C) = (A⊕ B)⊕ C.

3. Transitivity: A >> B ∧ B >> C =⇒ A >> C.

4. Neutral: A⊕ {u} = A.

5. Transitive closure: A >> B ⇐⇒ {a′|∃a ∈ A.a << a′}. ⊆ {b′|∃b ∈
B.b << b′}.

6. Biggest element: ∅ >> A.

7. Addition is bigger: A = B⊕ C =⇒ A >> B.

Remark 4.13 The reciprocal of property 7 is not true. As an example, take three
states x f , xh, y f where x f (resp. y f) has full permission to x. f (resp. y. f) and xh has
half permission to x. f .

Then A := {xh ⊕ y f , x f } >> B := {xh, x f }. Now imagine there exists C such
that A = B⊕ C. We have y f ∈ C, thus x f ⊕ y f ∈ B⊕ C, but x f ⊕ y f /∈ A.

4.4 Related work

The concept of abstract separation logic and separation algebra was intro-
duced in 2007 [5]. A separation algebra is defined in this work as a “cancella-
tive, partial commutative monoid”. Separateness and substate relations are
induced from this separation algebra. We based our work on these separation
algebra axioms and these induced relations. However, we do not consider
the same cancellative axiom. As we explained in this section, we want to
consider duplicable states (pure states) representing stores in our algebra.

36

4.4. Related work

This then implies, by definition, that our algebra cannot be cancellative. We
still require a cancellative property, but only for states with empty stores.

A “fresh look at separation algebras” was presented in 2009 [7]. In this work,
the authors begin with the same axioms as before. They then weaken the
existence of a neutral element (the unit) axiom with the existence of a unit for
all elements. They go from

∃u.∀x.u⊕ x = x

to
∀x.∃ux.ux ⊕ x = x

These units can be seen in a way as corresponding to pure states and cores
(since |ϕ| ⊕ ϕ = ϕ), even though the existence of a neutral state in our algebra
makes this axiom trivially satisfied.

They also add some more axioms. A positivity axiom

a⊕ b = c ∧ c⊕ c = c =⇒ a⊕ a = a

that we reproduce in a way. This axiom, directly intepreted in our algebra,
means that if adding two states results in a state with only a store (and no
permission), then both states are pure (only stores and no permission). We
have a similar axiom (also called “positivity”, Definition 4.7) saying that one
can only obtain empty states from the empty state. These axioms ensure that
the induced relation is antisymmetric.

They also add a disjointness axiom (stronger than the positivity one), requir-
ing that only pure states can be joined (added) to themselves. We do not
use this axiom since Viper uses fractional permissions, because fractional
permissions do not make the difference between two equivalent amounts of
permission. Indeed, two Viper states with permission to read the same field
can be joined as long as the sum of their permissions is at most one (the full
permission).

Finally, they consider a splittability axiom requiring that it is always possible
to split a non-empty state in two non-empty states, and the following cross-
split axiom:

a⊕ b = z ∧ c⊕ d = z
=⇒ ∃ac, ad, bc, bd.ac⊕ ad = a ∧ bc⊕ bd = b ∧ ac⊕ bc = c ∧ ad⊕ bd = d

We do not use these axioms, but use a similar one (pure reducibility, Defi-
nition 4.7) requiring that if a pure state (a store) is a substate of the sum of
two states, then this pure state is smaller than the sum of the cores of the
summands.

37

4. Abstracting Viper States with a Separation Algebra

Finally, we use the same name and notation for the core as Iris [11]. In this
work, the authors define a resource algebra with a duplicable core noted |_|,
which has properties similar to our own. This core is duplicable (a⊕ |a| = a),
idempotent (||a|| = |a|), and monotone (a << b =⇒ |a| << |b|), similarly to
ours. However, the core operator they consider is only partial, whereas ours
is always defined.

To conclude this chapter, we defined a general separation algebra to capture
the key properties of the Viper state model as well the behaviour of inhale
and exhale statements on self-framing assertions. In particular, we define
a separation algebra which considers impure as well as pure (duplicable)
resources. We first presented a simple preliminary separation algebra on
which we build on. We then showed, through examples, the motivation for
the shape of our separation algebra, based on the behavior of inhale and
exhale statements, statements which are at the basis of loops and method
calls. Finally, we defined this separation algebra with several axioms, showed
some interesting properties, and compared it to related works.

The next chapter builds a language on top of this separation algebra. The
purpose of this language is to be as general as possible while modeling
the semantics of Viper loops and method calls, in order to show general
soundness and completeness properties for inlining.

38

Chapter 5

A Parametric Language for
Resource-Based Inlining

In this chapter, we define a general parametric language for studying resource-
based inlining. The states for the semantics of this parametric language are
elements of a separation algebra, as defined in Chapter 4. The structure of
the model is represented in Figure 5.1. The inputs for this model consist in a
separation algebra, two types, and four interfaces. Using these inputs, we
define a language and its semantics. We make this language as general as
possible, by just requiring the minimum needed for reaching two objectives:

1. Model as closely as possible the semantics of loops and method calls in
Viper.

2. Express a soundness condition as sketched in Chapter 3 and prove sound-
ness of inlining.

This chapter is organised as follows. We fix a separation algebra (Σ,⊕, u, C)
throughout the chapter. Section 5.1 presents the parameters of the model,
the statements of the language, and the general shape of its semantics.
Section 5.2 then describes the type of variables, the store interface, and
defines the semantics of defining and havocing variables. Section 5.3 explores
how to encode syntactic assertions from Viper into semantic assertions,
and defines the role of the assertions interface, the semantics of inhaling,
exhaling and assuming, all needed for encoding loops and method calls.
Section 5.4 describes the semantics of while loops. Section 5.5 describes the
need for and the role of the rename interface, as well as its requirements.
Section 5.6 describes the semantics of method calls, using the previously
defined renaming functions. Section 5.7 completes the definition of the
semantics, by describing the role of the type of custom statements, and the
requirements for the custom interface. Finally, Section 5.8 describes what it
means for a program to be well-defined and to verify. Everything presented

39

5. A Parametric Language for Resource-Based Inlining

Separation Algebra
(Σ,⊕, u, C)

Type V
Variable
names

Type O
Custom statement

Store

σ(ϕ)

Assertions

wellDefinedAssert(P, ϕ)

Rename

rename(t, x)
renameState(t, ϕ)
renameCustom(t, o)
renameInv(t)

Custom

semanticsCustomPr(ϕ, o)
w f CustomPr(o)
modi f Custom(o)
readCustom(o)

Language and semantics

Figure 5.1: Illustrations of the input parameters for the model. P is a semantic assertion, ϕ is an
element of Σ, t is a renaming quadruple, and o is a custom statement of type O.

in this chapter has been mechanized and proved with the proof assistant
Isabelle/HOL [16] (see Appendix A).

5.1 The language

5.1.1 Parameters of the model

Figure 5.1 represents all the input parameters of our framework. Based on
these parameters, our framework defines a language and its semantics. This
model requires first a separation algebra, whose elements are the states for
the semantics. On top of this separation algebra, two types are required:

1. Type V is the type of variable names in our language (string in Viper).

2. Type O is a type of custom statements. This allows the model to be
instantiated with statements that are not defined initially in the state-
ments of our language. As an example, our language does not define
an assert statement, and does not define a statement for assigning
variables. These two statements can therefore be defined through this

40

5.1. The language

type O (see Chapter 8 for more details).

The remaining parameters are four interfaces. These interfaces have to
provide the functions listed on the figure. Moreover, these functions must
satisfy some requirements. These requirements are given throughout the
chapter.

The first interface, the store interface, simply defines a store function σ, such
that

σ(ϕ)

is the set of the names of the variables defined in the state ϕ. Section 5.2
explains this.

The assertions interface defines a function, whose aim is to model the well-
definedness of an assertion in a given state. The function

wellDefinedAssert(P, ϕ)

returns a boolean: true if the semantic assertion P is well-defined in the state
ϕ, false otherwise. It is explained in Section 5.3.

A method call
#»

y := m(
#»

x) requires to rename the formal arguments of the
methods to

#»

x , and the result variables of the method to
#»

y . This is one
role for the rename interface. The other role is to rename method bodies
when inlining, as defined in Chapter 6. This interface should provide four
functions:

1. rename(t, x) (variable names).

2. renameState(t, ϕ) (states).

3. renameCustom(t, o) (custom statements).

4. renameInv(t) (inverts a renaming quadruple).

where t is a renaming quadruple (a configuration with four lists of variable
names which defines how to rename). rename renames a variable name to
another, renameState renames a state to another state (that is it renames the
variables in the store of the state), renameCustom renames a custom statement
of type O to another. Finally, renameInv takes a renaming quadruple and
returns another, which inverts the renaming. The meaning of these functions
and the requirements they should satisfy are explained in Section 5.5.

Finally, the custom statements allowed in our language are characterized by
the following four functions:

1. semanticsCustomPr(ϕ, o) (semantics).

2. w f CustomPr(o) (well-formed statement).

41

5. A Parametric Language for Resource-Based Inlining

3. modi f Custom(o) (variables modified by a statement).

4. readCustom(o) (variables read by a statement).

These functions are also explained in Section 5.7.

The following requirements deal with the rename interface:

1. Requirement 5.37: renaming an element.

2. Requirement 5.38: renaming a state.

3. Requirement 5.40: renaming an assertion.

4. Requirement 5.48: renaming a custom statement.

Finally, the following requirements deal with the other interfaces:

1. Requirement 5.6: store interface.

2. Requirement 5.23: assertions interface.

3. Requirement 5.47: custom interface.

5.1.2 Statements

The statements of the language presented in this chapter are as follows:

Definition 5.1 Statements of the language
S represents statements, A assertions,

#»

V lists of elements of V (variable names) and
O is the type of custom statements.

S := S ; S | if (∗) {S} else {S} | while (A) inv A {S} | #»

V := m(
#»

V)

| inhale A | exhale A | assume A | var
#»

V | havoc
#»

V | custom O | skip

S ; S is a sequential composition, if (∗) {S} else {S} a non-deterministic
conditional branching, while (b) inv I {s} a loop,

#»

V := m(
#»

V) a method
call, assume assumes an assertion, var declares a list of variables while
havoc havocs a list of variables, custom allows one to encode statements not
presented here, and skip does nothing.

Remark 5.2 We already wrote about inhale and exhale in Viper. The inhale and
exhale statements presented here are different and behave differently. We simply re-
quire them to be equivalent when applied to annotations (eg. acc(x.f) && x.f == 5),
but they can behave differently with other assertions.

When injecting Viper into this framework, we therefore distinguish inhale and
exhale which come from loop and method call verification with the ones which do
not (which should be encoded with custom).

42

5.1. The language

Most of these statements are given the usual semantics, and their semantics
are described formally throughout this chapter. We use a non-deterministic
if in this framework, since it is simpler to define and more general than a
deterministic if, which we define as follows:

Definition 5.3 Deterministic Ifs

if (b) {s1} else {s2} := if (∗) {assume b ; s2} else {assume ¬b ; s2}
if (b) {s1} := if (∗) {assume b ; s} else {assume ¬b}

Moreover, the statements for declaring and havocing variables, as well as the
statements for calling methods, are defined with lists of variables instead of
single variables, to allow more expressivity.

5.1.3 Semantics

We define as follows the semantics with respect to a program:

Definition 5.4 Method, program and semantics

• A method is a quadruple (m,
»

args,
»

rets, P, Q, s) where m is a string (name of
the method),

»

args and
»

rets are lists of variable names (representing arguments
and return variables), P (precondition) and Q (postcondition) are semantic
assertions (functions from states Σ to booleans), and s is a statement (the
method body).

• A program Pr is a finite set of methods.

• We denote semanticsPr(ϕ, s) the semantics of the statement s executed with
the initial state ϕ, with respect to the program Pr. It is either an error or a set
of states.1

We consider a fixed semantics function in this section, which we characterize
throughout this chapter. Finally, we define two auxiliary functions based on
the semantics function:

Definition 5.5 Let Pr be a program, A be a set of states and s be a statement. We
define two functions ver and sem such that

verPr(A, s) := (∀ϕ ∈ A.semanticsPr(ϕ, s) 6= Error)
semPr(A, s) := ∪ϕ∈AsemanticsPr(ϕ, s)

and semPr(A, s) is defined if and only if verPr(A, s).

1The set of states models the non-determinism of the semantics, while the error signifies
a failure (and ignores states which may not fail).

43

5. A Parametric Language for Resource-Based Inlining

verPr(A, s) is true if and only if the statement s verifies with all states from
the set A, with respect to the program Pr. In this case, semPr(A, s) is the set
of all states resulting from executing s from all states of A. In this chapter,
we mostly characterize the semantics using these notations. The original
semantics function can be fully reconstructed from these two auxiliary func-
tions.

5.2 Store of a state

In order to define the semantics of var and havoc, we need to introduce the
concept of store of a state. We first explain the requirements on the store
function σ for a state, and then define the semantics of var and havoc.

5.2.1 Store function

In Viper, the store of a state can be seen as a finite mapping from variable
names to values of the right type. In this framework, we do not need as
much precision and information. A state in our framework may still use
a mapping to define a store. However, for the purpose of our framework
(proving properties on static inlining), we only require a projection of this
mapping to the sets of variables it defines. The validity of assertions such as
x == 5 is handled by the separation algebra.

Requirement 5.6 The store function σ from states to sets of variable names must
satisfy the following rules (for all states ϕ, a, b, and all variable names x):

1. σ(u) = ∅

2. x ∈ σ(ϕ) =⇒ (∃c ∈ Σ.σ(c) = {x} ∧ c << ϕ)

3. a#b =⇒ σ(a⊕ b) = σ(a) ∪ σ(b)

4. σ(ϕ) = σ(|ϕ|)

5. a#b ∧ a is pure∧ σ(a) ⊆ σ(b) =⇒ a << b

6. σ(a) ∩ σ(b) = ∅∧ a is pure =⇒ a#b

As an example, if a state ϕ has a store which maps x to 5, y to 7, and z to
42, then σ(ϕ) = {x, y, z}. The first three axioms deal with combining states.
The empty state has an empty store (axiom 1). It is always possible to find
a weaker state than ϕ with a store containing only one variable x (which is
defined in the store of ϕ) (axiom 2). The store of the addition of two states is
the union of their stores (axiom 3). Axioms 4 and 5 formalize that the core
of a state represents exactly its store. The store of a state is the store of its
core (axiom 4). If a and b can be added, this means that they agree on the
values of local variables which both stores define. Therefore, if a is pure (only
a store) and its store is included in the store of b, then a is weaker than b

44

5.2. Store of a state

(axiom 5). Finally, it is always possible to add new variables to a state (axiom
6).

Using the finiteness axiom of the separation algebra, we can prove the follow-
ing lemma:

Lemma 5.7 ∀ϕ ∈ Σ.σ(ϕ) is finite.

5.2.2 Var and havoc

Declaring variables verifies if and only if no variable from this list is already
declared, whereas havocing variables verifies if and only if all variables from
this list are already declared. For readability purposes, and throughout this
thesis, we consider implicit conversions between lists of variable names and
sets of variable names.

Definition 5.8 Verification of var and havoc:

verPr({ϕ}, var
#»

l)⇐⇒ #»

l ∩ σ(ϕ) = ∅
verPr({ϕ}, havoc

#»

l)⇐⇒ #»

l ⊆ σ(ϕ)

Remark 5.9 This definition of verPr({ϕ}, var
#»

l) actually makes var not safeMono.
An alternative definition where var defines variables which are not already defined
and leaves the other variables unchanged would make all var statements safeMono.
This alternative definition can also be used with the custom interface. If it can
be externally justified that no variable names collide, then the two statements are
equivalent in terms of semantics.

The semantics of var and havoc, when they verify, are a bit different. var has
to define (add to the store) the new variables, with all possible values. havoc
has to remove the variables, and then define them again with all possible
values. To define these two semantics, we define two auxiliary functions:
One to define variables with all possible values, and one to remove variables
from a state. We define below the former:

Definition 5.10 h function:

h(
#»

l) = {ϕ|ϕ is pure∧ σ(ϕ) =
#»

l }

h(
#»

l) is the set of all states with no impure resources, only a store, where
the variables which are defined are exactly

#»

l . This function is sufficient to
define the semantics of var when it verifies:

Definition 5.11 Semantics of var:

semPr({ϕ}, var
#»

l) = {ϕ} ⊕ h(
#»

l)

45

5. A Parametric Language for Resource-Based Inlining

This is the definition we want. Indeed, adding this set to the singleton {ϕ}
results in all states which correspond to ϕ plus the definition of the variables
contained in

#»

l , with all possible values.

To define the semantics of havoc, we need a function which “undefines”
(removes) variables from a state. Such a function exists because of the
following lemma:

Lemma 5.12

∀ϕ ∈ Σ.∃!p ∈ Σ.p << ϕ ∧ σ(p) = σ(ϕ)−V ∧ p is pure

This lemma shows that there exists a unique store (pure state) which defines
the variables in σ(ϕ)− #»

l and matches exactly the store of ϕ excluding
#»

l . It
is now easy to define a function which only removes the part of the store
corresponding to

#»

l :

Definition 5.13 h function:
Let p be the unique p such that p << ϕ ∧ σ(p) = σ(ϕ)− #»

l ∧ p is pure. Then

h(ϕ,
#»

l) = p⊕ C(ϕ)

We can finally define the semantics of havoc.

Definition 5.14 havoc semantics:

semPr({ϕ}, havoc
#»

l) = {h(ϕ,
#»

l)} ⊕ h(
#»

l)

This is the semantics described above: We remove
#»

l from the store of ϕ, and
then we add again the variables from

#»

l , but with all possible values.

5.3 Assertions

The purpose of this section is to define the semantics of inhale, exhale and
assume. We first explain how to encode syntactic assertions from Viper into
semantic assertions in our separation algebra. We then define two properties,
supported and intuitionistic, which are satisfied by semantic assertions en-
coded from Viper annotations. Afterwards, we discuss a mismatch between
syntactic and semantic assertions, how this gap could be bridged, and how
we currently define the verification of inhale, exhale and assume in this
framework. This means that we only need to model the behavior of inhale
and exhale on this restricted class of semantic assertions. Eventually, we
define the concept of the minimal satisfying set of an assertion, and use this
concept to express the semantics of inhale and exhale.

46

5.3. Assertions

5.3.1 From syntactic to semantic assertions

Viper assertions written in Viper programs are syntactic assertions. However,
we do not want to define a syntax for assertions in our framework. We
therefore encode syntactic assertions into semantic assertions. Following [21,
25, 5, 18], we define semantic assertions as follows:

Definition 5.15 A semantic assertion on a set of states Σ is a function Σ→ Bool.

Remark 5.16 It is equivalent to see semantic assertions as elements of P(Σ).

Semantic assertions aim at capturing syntactic assertions (as in Viper). For
an infinite number of states, there is an uncountable number of semantic
assertions (Cantor’s theorem), whereas there is only a countable number of
syntactic assertions (defined on a finite alphabet). Therefore, our hope is that
every syntactic assertion can be represented as a semantic assertion, and thus
that working with semantic assertions is more general than working with
syntactic assertions. However, Section 5.3.3 argues that there is a mismatch
(at least for assertions in Viper).

Definition 5.15 is sufficient to define the semantics of assume when the
statement verifies (the verification of assume statements is defined in Sec-
tion 5.3.3).

Definition 5.17 Partial semantics of assume

semPr({ϕ}, assume P) =

{
{ϕ} if P(ϕ)

∅ otherwise

assume statements simply filter states which do not satisfy the assertion.
That is, they stop the execution of these states.

5.3.2 Annotations are supported and intuitionistic

Semantic assertions are too general for our purpose, since we just want to
match the behavior of inhale and exhale on annotations, and annotations
are syntactic assertions with restrictions. Indeed, annotations have to be
self-framing and are not allowed to use permission introspection. We can
relate this restriction with two notions for semantic assertions.

As explained in Chapter 1, not using permission introspection introduces
a certain monotonicity, which can be related to the notion of intuitionistic
assertions [21] :

Definition 5.18 A semantic assertion P is intuitionistic if and only if

(∀ϕ, ϕ′ ∈ Σ.ϕ << ϕ′ =⇒ (P(ϕ)⇒ P(ϕ′)))

47

5. A Parametric Language for Resource-Based Inlining

This means that if a state satisfies an intuitionistic assertion, then all stronger
states satisfy it too.

Moreover, syntactic self-framing assertions from Viper are encoded into
semantic supported assertions (more explanations are given in Chapter 8).
As explained in Section 2.2.1, an assertion is self-framing if it includes
permissions to at least the locations it reads. This property, combined with
other restrictions on assertions in Viper, implies that its representation as a
semantic assertion is supported [18]:

Definition 5.19 An assertion P is supported if and only if

(∀ϕ ∈ Σ.P(ϕ)

=⇒ ∃ϕm ∈ Σ.ϕm << ϕ ∧ P(ϕm) ∧ (∀ϕ′ ∈ Σ.ϕ′ << ϕ ∧ P(ϕ′)⇒ ϕm << ϕ′))

In other words, a semantic assertion P is supported if and only if, for any
state ϕ that satisfies P, it is possible to find a support ϕm weaker than ϕ,
which also satisfies P. Being a support means that all states weaker than ϕ
satisfying P are stronger than the support ϕm.

In Viper, a state needs at least some (> 0) permission to a location to have
information about it. As an example, the assertion x.f == 5 (not self-framing)
is not a supported assertion, since it is impossible to find a support for this
assertion and a state satisfying this assertion. Indeed, any state satisfying
this assertion has to have some permission to x. f , and so does its support if
it would exist. However, any state satisfying x. f == 5 with less permission
(but not zero) than the support would be weaker than the support while
satisfying the assertion. Such a state exists: It is for example sufficient to
divide the permission by two. This contradicts the definition of the support.

Another example of a not supported assertion is acc(x.f) || acc(y.f) (such
an assertion is not allowed in Viper). Take the state ϕ which has full per-
mission to both x. f and y. f . ϕ satisfies the assertion. Take then the state ϕx
(resp. ϕy) with only full permission to x. f (resp. y. f). ϕx and ϕy satisfy the
assertion and are weaker than ϕ. ϕx and ϕy cannot be the support, since ϕx
is not weaker than ϕy, and vice-versa. Moreover, a state weaker than both ϕx
and ϕy (as a support for ϕ should be) would have no permission to x. f and
y. f , therefore not satisfying the assertion.

Semantic assertions encoded from Viper annotations are well-formed:

Definition 5.20 Well-formed assertions
A semantic assertion P is well-formed, written wfAssert(P), if and only if P is
supported and intuitionistic.

Remark 5.21 This definition of well-formed semantic assertions is a bit too restric-
tive. Some Viper annotations, such as disjunctions, do not correspond to supported

48

5.3. Assertions

assertions. To prove the soundness theorem (Chapter 6), a semantic assertion P used
as an annotation needs only to satisfy the following property, which is satisfied by all
well-formed assertions:

∀ϕ ∈ Σ.P(ϕ)⇐⇒ {ϕ} >> Inh(P)

The definition of well-formed assertions will be modified with this property in the
future.

In the next subsections, we model the behavior of inhale and exhale based
on supported and intuitionistic semantic assertions. Chapter 8 explains
why Viper annotations (syntactic assertions) are encoded into supported and
intuitionistic semantic assertions, which justifies this choice.

5.3.3 Well-defined assertions: A mismatch between syntactic and
semantic assertions

assume statements in Viper do not always verify. They verify if and only if
they are well-defined in a state. As an example, assume x >= 7 && y <= 9

verifies only in a state where
#»

x and
#»

y are defined. We want to transpose this
concept of well-definedness from syntactic assertions to semantic assertions,
in order to describe when assume, inhale and exhale verify. This is encoded
via the wellDefinedAssert function from the assertions interface. The difficulty
boils down to the definition of such a property, and by extension to the
encoding of a syntactic assertion into a semantic assertion.

It does not actually work, because of a mismatch between syntactic and
semantic assertions. To illustrate this mismatch, consider two Viper assertions
P and Q, where P := (x. f == x. f), and Q := (a == a). P is well-defined
with respect to a state if and only if this state has at least some permission to
x. f , and Q is well-defined with respect to a state if and only if a is defined in
this state. P and Q are always true when they verify. If we decide to define
P and Q as being always true, then we cannot distinguish them from the
semantic assertion true, which is well-defined in all states. If we decide to
define P and Q to be true when they verify and false otherwise, then P is
indistinguishable from the assertion perm(x. f) > 0 (well-defined in all states)
and Q would be indistinguishable from an assertion such as defined(a). Such
an assertion (defined(a)) does not exist in Viper, but it could exist. In this
case, it would always be well-defined, and would be true in states where a is
defined in the store.

These two examples (P and Q) show the impossibility to distinguish different
syntactic assertions when they are encoded into semantic assertions. This
is an issue we want to tackle in the future, by using extended semantic
assertions, which would be functions from states to some boolean (well-
defined) or some special value signifying that the semantic assertion is not
well-defined.

49

5. A Parametric Language for Resource-Based Inlining

In our current model, to express when a semantic assertion is well-defined,
we first need define the set of variables read by an assertion:

Definition 5.22 Set of variables read by an assertion

readAssert(P) := ∪i∈Inh(P)σ(i)

This function captures the set of variables which have an effect in determining
the value of an assertion. Intuitively, it corresponds to the minimum set of
variables needed to syntactically define the assertion. We now define the
three requirements we impose on the wellDefinedAssert function for semantic
assertions as follows:

Requirement 5.23 Well-defined assertion
wellDefinedAssert is a function which takes an assertion and a state as input, and
returns a boolean. This function must satisfy the following properties, for all
assertions P and all states ϕ and ϕ′:

1. wfAssert(P) =⇒ (wellDefinedAssert(P, ϕ)⇔ readAssert(P) ⊆ σ(ϕ))

2. wellDefinedAssert(P, ϕ)⇐⇒ wellDefinedAssert(¬P, ϕ)

3. P(ϕ) =⇒ wellDefinedAssert(P, ϕ)

The first requirement says that, for well-formed assertions (that is supported
and intuitionistic assertions, in particular annotations), this assertion is well-
defined in a state if and only if the state defines all the variables it reads.
The intuition is that well-formed semantic assertions represent self-framing
syntactic assertions, and self-framing assertions cannot fail, by definition,
because of permission. The issue has therefore to come from variables not
defined. The second requirement simply follows a syntactic logic, in which if
an assertion is well-defined, then its negation is also well-defined. The third
requirement states that if a state satisfies an assertion, then this assertion is
well-defined in this state. This interface and these requirements should be
modified in the future with an extended form of semantic assertions.

We can now express the verification of inhale, exhale, and assume state-
ments:

Definition 5.24 Verification of inhaling, exhaling, and assuming

verPr({ϕ}, inhale P)⇐⇒ wellDefinedAssert(P, ϕ)

verPr({ϕ}, exhale P)⇐⇒ wellDefinedAssert(P, ϕ) ∧ P(ϕ)

verPr({ϕ}, assume P)⇐⇒ wellDefinedAssert(P, ϕ)

That is, these statements verify if and only if they are well-defined in the
current state.

50

5.3. Assertions

5.3.4 Minimal satisfying set of an assertion

We now introduce another concept before defining the semantics of inhale
and exhale. As explained in Section 4.2, inhaling an assertion adds permis-
sion from accessibility predicates and assumes pure information. In the case
of adding permission, this works similarly to adding a state to the initial state.
In the case of assuming an assertion talking about pure resources, the execu-
tion is stopped if this assertion is not satisfied, and this is modeled using the
partial definedness of the addition of our separation algebra. Inhaling, when
verifying, corresponds to adding a set of states:

Definition 5.25 Let P be an assertion. The minimal satisfying set of P is defined
as

Inh(P) := {ϕ ∈ Σ|P(ϕ) ∧ (∀ϕ′ ∈ Σ.ϕ′ << ϕ ∧ ϕ′ 6= ϕ⇒ ¬P(ϕ′))}

Inh(P) is the set of minima of the states satisfying P. Using this set, we
define the semantics (when it verifies) of inhale as follows:

Definition 5.26 Semantics of inhale:

semPr({ϕ}, inhale P) := {ϕ} ⊕ Inh(P)

This works indeed as expected for modeling Viper. The addition of states
adds the permissions. As an example, inhale acc(x.f, 1/2) adds half
permission to the heap location x. f . If this new permission is strictly greater
than 1, this addition is not defined, it therefore results in an empty set, which
models magic states in Viper. The same thing happen with assertions which
deal with values, such as x == 5 or y. f == 7. These assertions act as filters:
It they are satisfied by a state, then the addition is defined. However, if they
are not satisfied, the addition is not defined, and thus also results in an empty
state.

Example 5.27 Let P := acc(x.f, 1/2) && x.f == 5. From the definition, Inh(P)
is the set of all states whose stores only define x (a reference), have half permission to
x. f , and where x. f = 5.

• If ϕ has no permission to x. f , then {ϕ} ⊕ Inh(P) results in a set with only
one state, this state being the sum of ϕ and the unique state of Inh(P) which
defines the same x as ϕ. Therefore, the resulting state has half permission to
x. f , and x. f = 5.

• If ϕ has some permission to x. f , then it also carries a value for x. f .

– If this value is not 5, then the sum of sets becomes the empty set (magic),
since no element of Inh(P) is compatible with ϕ.

51

5. A Parametric Language for Resource-Based Inlining

– If this value is 5, then we have almost the same situation as in the first
point, only in this case the resulting permission is 1

2 more than before.

• Finally, if ϕ has more than half permission to x. f , then ϕ is not compatible
with any element from Inh(P), resulting once again in an empty set (magic).

As shown in Section 4.2, an exhale statement in Viper removes the permis-
sions added by an inhale, but keeps the pure part. We define the semantics
of exhale as follows:

Definition 5.28 Semantics of exhale

semPr({ϕ}, exhale P) := {|i| ⊕ r|i ∈ Inh(P) ∧ r ∈ Σ ∧ ϕ = i⊕ r}

It is not clear from the definition that this matches exhale in Viper. It actually
does not have the same behavior in general, but it does in a special case, when
an assertion is supported and intuitionistic. The situation is similar with
inhale, which matches inhale in Viper in the case of an assertion supported
and intuitionistic (well-formed).

Recall that self-framing assertions in Viper are encoded into semantic asser-
tions which are both supported and intuitionistic, thus well-formed. The
next lemma shows why this property is sufficient to have a correspondence
between Viper and this framework when dealing with annotations.

Lemma 5.29

wfAssert(P) =⇒ (P(ϕ)⇔ ∃!i ∈ Inh(P).i << ϕ)

Proof Assume wfAssert(P), that is P is intuitionistic and supported.

∃!i ∈ Inh(P).i << ϕ =⇒ P(ϕ) follows from the definition of intuitionistic
and the definition of Inh(P).

P(ϕ) =⇒ ∃!i ∈ Inh(P).i << ϕ follows from the definition of supported. �

Using this lemma, we can now formalize the motivation from Section 4.2.
That is, exhale verifies after inhale, and inhaling and exhaling the same
assertion only deals with pure resources.

Lemma 5.30 Assume wfAssert(P) and verPr({ϕ}, inhale P). Then

1. verPr({ϕ}, inhale P ; exhale P)

2. semPr({ϕ}, inhale P ; exhale P) = {ϕ} ⊕ {|i||i ∈ Inh(P)}

Proof We have semPr({ϕ}, inhale P) = {ϕ} ⊕ Inh(P). Let ϕ′ ∈ {ϕ} ⊕
Inh(P), then ∃i ∈ Inh(P).ϕ′ = ϕ⊕ i. Since P is intuitionistic, we have P(ϕ′),
thus we have wellDefinedAssert(P, ϕ′) from Requirement 5.23. Therefore,
verPr({ϕ′}, exhale P), hence verPr({ϕ}, inhale P ; exhale P).

52

5.4. While loops

Moreover, using Lemma 5.29, we have that there is a unique i ∈ Inh(P) such
that i << ϕ′. Hence,

semPr({ϕ′}, exhale P) = {|i′| ⊕ r|i′ ∈ Inh(P) ∧ r ∈ Σ ∧ ϕ′ = i′ ⊕ r}
= {|i| ⊕ ϕ}
= {ϕ} ⊕ {|i|}

It follows that

semPr({ϕ}, inhale P ; exhale P) = {ϕ} ⊕ {|i||i ∈ Inh(P)} �

Finally, the correspondence between the semantics of inhale and exhale
statements in Viper and the semantics of inhale and exhale in our language
does not work in general when assertions are not annotations.

Example 5.31 Let P := acc(x. f , perm(x. f)). P is well-defined in all states. In
Viper, inhale P corresponds to doubling the permission held to x. f , and exhale P

removes all the permission to x. f . In our framework, on the other hand, P is always
true and well-defined, it therefore always verifies and inhale P and exhale P do
nothing.

5.4 While loops

We define the semantics of while loops in this section. As explained in
Section 2.2.4, the semantics of a loop involves havocing the variables modified
by the body of the loop. We therefore first define which variables are modified
by a statement, and then define the semantics of while loops.

Definition 5.32 Variables modified by a statement

modi f (s1 ; s2) = modi f (s1) ∪modi f (s2)

| modi f (if (∗) {s1} else {s2}) = modi f (s1) ∪modi f (s2)

| modi f (
#»

y := m(
#»

x)) = y
| modi f (while (b) inv I {s}) = modi f (s)
| modi f (assume P) = ∅
| modi f (inhale P) = ∅
| modi f (exhale P) = ∅
| modi f (var

#»

l) =
#»

l

| modi f (havoc
#»

l) =
#»

l
| modi f (skip) = ∅
| modi f (custom o) = modifCustom(o)

53

5. A Parametric Language for Resource-Based Inlining

Using this function, we define the semantics of while loops as follows:

Definition 5.33 Semantics of while loops
Let

#»

l := modi f (s) ∩ σ(ϕ). Then

verPr({ϕ}, while (b) inv I {s})
⇐⇒verPr({|ϕ|}, havoc

#»

l ; inhale I ; assume b ; s ; exhale I)

∧verPr({ϕ}, exhale I ; havoc
#»

l ; inhale I ; assume ¬b)

and

semPr({ϕ}, while (b) inv I {s})
:=semPr({ϕ}, exhale I ; havoc

#»

l ; inhale I ; assume ¬b)

The first part of the loop verification verifies if the invariant is an actual
invariant. We begin with a state with no impure resources (the core), and
then forget (havoc) the values of variables which can be modified by the loop.
We then inhale the invariant and assume that we are in an iteration of the
loop (b), execute the loop body s, and then make sure the state still satisfies
the invariant. If this verifies, the possible states after the loop, represented
by semPr(ϕ, while (b) inv I {s}), can be computed by exhaling the loop
invariant, forgetting the values of the variables modified by the loop, and
then inhaling the invariant as well as assuming we are out of the loop (¬b).

Remark 5.34 This definition defines
#»

l as modi f (s) ∩ σ(ϕ), but the Isabelle for-
malization (Appendix A) defines it as modi f (s) only. The Isabelle formalization
should be modified with the definition presented here. Indeed, in the case where
variables are declared inside the loop body, using

#»

l := modi f (s), any verification of
this loop would fail. The variables would have both to be defined before the loop (to
be havoced), and not to be defined inside the loop body (where they are declared).

5.5 Renaming interface

We have now defined the semantics for while loops, and want to define the
semantics of method calls. When a method is called, the variables in the
precondition and the postcondition of the method must be renamed. If the
method is (m,

»

args,
»

rets, P, Q, s), and the method call is
#»

y := m(
#»

x), we need
to rename the variables of the precondition P, which only speaks about

»

args.
We also need to rename the variables of the postcondition Q, which only
speaks about

»

args and
»

rets.
»

args should be renamed to
#»

x , and
»

rets to
#»

y .

On top of this, inlining a method call requires renaming the method body.
As we explain in Chapter 6, we need to make sure variables declared in

54

5.5. Renaming interface

the method body do not interfere with variables already defined elsewhere,
to avoid variable capturing. This is the reason why we require a powerful
renaming interface, which is able to both rename

»

args to
#»

x and
»

rets to
#»

y , but
which can also avoid a list of variables already defined elsewhere.

The renaming functions we present in this section are built on a single
renaming function, which renames one element (a variable name) to another
one. This renaming function, on top of the element to rename, takes as a
parameter a renaming quadruple:

Definition 5.35 A renaming quadruple is a quadruple of lists of variables

(
»

old,
»

new,
»

avoid,
»

domain)

where

•
»

old is a list of variables which should be renamed to variables from
»

new.

•
»

avoid is a list of variables to avoid.

•
»

domain is the list of variables on which this renaming function should be
applied.

The idea of this definition is as follows. When calling a method, we need to
rename its precondition and postcondition. As an example, take the method
(m,

»

args,
»

rets, P, Q, s), and take the method call
#»

y := m(
#»

x). We want to
rename P and Q, which speak about

»

args and
»

rets, to speak about
#»

x and
#»

y . In this case,
»

old would be the concatenation of
»

args and
»

rets, where
»

new
would be the concatenation of

#»

x and
#»

y .
»

avoid and
»

domain are useful for inlining. When we inline a method call, we
want to rename variables declared in the method body with names of vari-
ables which are not defined in the rest of the program, to avoid interferences
with the calling context (i.e., to avoid variable capturing).

»

avoid is the list
of variables defined elsewhere which should be renamed to something else.
Finally, we want to be able to invert the renaming, to easily show properties
about renamed statements. This is why we need a

»

domain list. All variables
in

»

domain are renamed to variables which are not in
»

avoid. However, to
make this renaming invertible, we need to rename some variables to vari-
ables in

»

avoid, to make the renaming surjective. We therefore get the avoid
property only on

»

domain, thus
»

domain should represent the variables which
are renamed.

To get these properties, we first impose some conditions on a renaming
quadruple:

Definition 5.36 A renaming quadruple (
»

old,
»

new,
»

avoid,
»

domain) is well-formed,
denoted by w f Renaming((

»

old,
»

new,
»

avoid,
»

domain)), if and only if

55

5. A Parametric Language for Resource-Based Inlining

1. length(
»

old) = length(
»

new).

2. distinct(
»

old) (elements of
»

old are all distinct).

3. distinct(
»

new) (elements of
»

new are all distinct).

We formally express the required properties as follows:

Requirement 5.37 Rename an element, invert a renaming quadruple
Let t := (

»

old,
»

new,
»

avoid,
»

domain), and assume wfRenaming(t). Then

1. wfRenaming(renameInv(t))

2. rename(renameInv(t), rename(x, t)) = x

3. ∀i < length(
»

old).rename(t,
»

old[i]) =
»

new[i]

4. x ∈ # »

domain− # »

old =⇒ rename(t, x) /∈ # »

avoid

The first one means that the inverse of a renaming quadruple is a well-
formed renaming quadruple. The second one means that the inverse of
a renaming quadruple inverts the renaming. The third one says that the
renaming function actually renames

»

old variables to
»

new variables. Finally,
the last one shows that variables from the

»

domain are renamed in something
which is not in

»

avoid. These are the core functions and properties we need.

We now impose requirements on how to rename states, leveraging the prop-
erties of rename:

Requirement 5.38 Assume wfRenaming(t). Then

1. σ(renameState(t, ϕ)) = {rename(t, x)|x ∈ σ(ϕ)}

2. renameState(t, ϕ1 ⊕ ϕ2) = renameState(t, ϕ1)⊕ renameState(t, ϕ2)

3. (∀x ∈ σ(ϕ).rename(t, x) = x) =⇒ renameState(t, ϕ) = ϕ

4. wfRenaming(t1) ∧wfRenaming(t2)∧
(∀x ∈ σ(ϕ).rename(t, x) = rename(t2, rename(t1, x)))
=⇒ renameState(t, ϕ) = renameState(t2, (renameState(t1, ϕ)))

These requirements follow a simple definition of renaming states, which just
renames the variables defined in the stores. The first requirement is about
the store of a renamed state. The second one shows that renaming a sum of
states is equivalent to adding the renamed states. The third one says that,
if all variables are left unchanged by the renaming function, then the state
is left unchanged. Finally, the last one says that if the composition of two
renaming functions is the same as one on the variables defined by ϕ, then it
is also the same at the state level.

We now define how to rename semantic assertions, based on renaming states:

56

5.5. Renaming interface

Definition 5.39 Rename assertions

renameA(t, P)(ϕ) := P(renameState(renameInv(t), ϕ))

Renaming a semantic assertion is the same as applying it to the state renamed
in the inverse direction. As an example, take the state ϕy which only defines
y and the assertion P := (x == 5). Let t := ([x], [y], [], []). Renaming the
assertion with t gives y == 5, which is the same as applying P to ϕy renamed
with the invert of t: In this case, renameState(renameInv(t), ϕy) only defines
x.

We impose two more requirements for renaming assertions:

Requirement 5.40 Assume wfRenaming(t). Then

1. wellDefinedAssert(P, ϕ)
=⇒ wellDefinedAssert(renameA(t, P), renameState(t, ϕ))

2. wfAssert(P, ϕ) =⇒ wfAssert(renameA(t, P), renameState(t, ϕ))

That is, renaming an assertion keeps the assertion well-defined with respect to
a state (but renamed), and well-formed (namely supported and intuitionistic).

We leverage these renaming functions for elements, states and assertions to
define a function to rename statements. We first define how to rename a list
of variable names:

Definition 5.41 Rename a list of variable names

∀i < length(
#»

l).renameList(t,
#»

l)[i] = rename(t,
#»

l [i])

This simply means renaming every element of the list. We can now define
the renameS function to rename statements:

57

5. A Parametric Language for Resource-Based Inlining

Definition 5.42 Rename a statement

renameS(t, inhale P) = inhale renameA(t, P)
| renameS(t, exhale P) = exhale renameA(t, P)
| renameS(t, s1 ; s2) = renameS(t, s1) ; renameS(t, s2)

| renameS(t, var
#»

l) = var renameList(t,
#»

l)

| renameS(t, havoc
#»

l) = havoc renameList(t,
#»

l)
| renameS(t, if (∗) {s1} else {s2}) = if (∗) {renameS(t, s1)} else {renameS(t, s2)}
| renameS(t, while (b) inv I {s}) =

while (renameA(t, b)) inv renameA(t, I) {renameS(t, s)}
| renameS(t,

#»

y := m(
#»

x)) = renameList(t,
#»

y) := m(renameList(t,
#»

x))
| renameS(t, assume b) = assume renameA(t, b)
| renameS(t, custom o) = custom renameCustom(t, o)
| renameS(t, skip) = skip

This renaming function is useful for defining the inlining function in Chap-
ter 6. Requirements on renameCustom are given in Section 5.7.

5.6 Method calls

Using our function to rename semantic assertions, we can now define the
semantics of method calls:

Definition 5.43 Semantics of method calls
Assume (m,

»

args,
»

rets, P, Q, s) ∈ Pr.
Let t := (

»

args++
»

rets,
#»

x++
#»

y ,∅,∅) (where ++ denotes concatenation), P′ :=
renameA(t, P) and Q′ := renameA(t, Q). Then

verPr({ϕ}, #»

y := m(
#»

x))

⇐⇒verPr({ϕ}, exhale P′ ; havoc
#»

y ; inhale Q′) ∧ #»

x ∪ #»

y ⊆ σ(ϕ)

and

semPr({ϕ}, #»

y := m(
#»

x)) := semPr({ϕ}, exhale P′ ; havoc
#»

y ; inhale Q′)

To verify, the state ϕ needs to at least define the variables from
#»

x and
#»

y . The
verification and behavior of the method call is then equivalent to exhaling
the renamed precondition, havocing the return variables, and inhaling the
renamed postcondition.

58

5.7. Rest of the semantics

5.7 Rest of the semantics

We now proceed to complete the definition of the semantics, by first defining
the semantics of control structures, and then defining the requirements on
custom statements.

5.7.1 Control structures

A state enters both branches of a non-deterministic if, hence the following
semantics:

Definition 5.44 Semantics of non-deterministic if

verPr({ϕ}, if (∗) {s1} else {s2})⇐⇒ verPr({ϕ}, s1) ∧ verPr({ϕ}, s2)

semPr({ϕ}, if (∗) {s1} else {s2}) := semPr({ϕ}, s1) ∪ semPr({ϕ}, s2)

The sequential composition applies s1 to a state, and then s2 to the resulting
states:

Definition 5.45 Semantics of sequential composition

verPr({ϕ}, s1 ; s2)⇐⇒ verPr({ϕ}, s1) ∧ verPr(semPr({ϕ}, s1), s2)

semPr({ϕ}, s1 ; s2) := semPr(semPr({ϕ}, s1), s2)

The behaviour of skip is standard:

Definition 5.46 Semantics of skip

verPr({ϕ}, skip)⇐⇒ >
semPr({ϕ}, skip) := {ϕ}

5.7.2 Custom interface

Finally, we impose some requirements on the behavior of custom statements.

Requirement 5.47 General requirements for custom statements

1. w f CustomPr(o) ∧ ϕ′ ∈ semanticsCustomPr(ϕ, o)
=⇒ σ(ϕ) ⊆ σ(ϕ′) ∧ σ(ϕ′) ⊆ σ(ϕ) ∪modi f Custom(o)

2. modi f Custom(o) ⊆ readCustom(o)

The first general requirement states that a custom statement cannot undefine
variables, and that it modifies the variables it defines. The second one
imposes that modifying a variable counts as reading a variable.

We then impose requirements on the consequences of renaming custom
statements:

59

5. A Parametric Language for Resource-Based Inlining

Requirement 5.48 Rename requirements for custom statements
Assume w f Renaming(t). Then

1. readCustom(renameCustom(t, o)) = {rename(t, x)|x ∈ readCustom(o)}

2. modi f Custom(renameCustom(t, o)) = {rename(t, x)|x ∈ modi f Custom(o)}

3. renameCustom(renameInv(t), renameCustom(t, o)) = o

4. semanticsCustomPr(ϕ, o) 6= Error
=⇒ semanticsCustomPr(renameState(t, ϕ), renameCustom(t, o)) 6= Error

5. ϕ′ ∈ semanticsCustomPr(renameState(t, ϕ), renameCustom(t, o))
=⇒ renameState(renameInv(t), ϕ′) ∈ semanticsCustomPr(ϕ, o)

6. w f CustomPr(o) =⇒ w f CustomPr(renameCustom(t, o))

The first two requirements describe the variables read and modified by a
renamed statement. The third one imposes that we can invert the renaming.
The fourth and fifth ones describe how to relate the semantics of a renamed
statement to the semantics of the original statement. The last requirement says
that renaming a well-formed statement results in a well-formed statement.

5.8 Well-definedness and verification of a program

We have presented the semantics and the requirements on the parameters
of the framework. These semantics are defined with respect to a program,
and are modular. For example, when verifying a method call, we assume
the method verifies on its own. This motivates the following definition
expressing what it means for a complete program to verify:

Definition 5.49 Verification of a program

verProg(Pr)

⇐⇒∀(m,
»

args,
»

rets, P, Q, s) ∈ Pr.verPr(h(
»

args)⊕ h(
»

rets)⊕ Inh(P), s ; exhale Q)

A program verifies if all of its methods verify, assuming that all other methods
verify, since method calls are approximated by their contracts.

Remark 5.50 The verification of a method, as written in the previous definition, is
equivalent to verifying the method after

»

args and
»

rets have been defined, beginning
with a state which satisfies the precondition:

verPr(h(
»

args)⊕ h(
»

ret)⊕ Inh(P), s ; exhale Q)

⇐⇒verPr({u}, var
»

args ; var
»

rets ; inhale P ; s ; exhale Q)

60

5.8. Well-definedness and verification of a program

However, we can only really speak about the verification of a program when
it is well-formed, that is when all of its statements are well-formed. We define
these notions as follows:

Definition 5.51 Well-formed statements

w f StmtPr(s1 ; s2)⇐⇒ w f StmtPr(s1) ∧ w f StmtPr(s2)

| w f StmtPr(if (∗) {s1} else {s2})⇐⇒ w f StmtPr, s1) ∧ w f StmtPr(s2)

| w f StmtPr(while (b) inv I {s})⇐⇒ wfAssert(I) ∧ w f StmtPr(s)

| w f StmtPr(
#»

y := m(
#»

x))⇐⇒ (∃ # »

args,
»

rets, P, Q, s.(m,
»

args,
»

rets, P, Q, s) ∈ Pr

∧ length(
#»

x) = length(
»

args) ∧ length(
#»

y) = length(
»

rets)

∧ elements of
#»

x and
#»

y are distinct)
| w f StmtPr(inhale P)⇐⇒ supported(P)
| w f StmtPr(exhale P)⇐⇒ supported(P)
| w f StmtPr(custom o)⇐⇒ w f CustomPr(o)
| w f StmtPr(skip)⇐⇒ >

A while loop is well-formed if and only if its invariant is well-formed (in-
tuitionistic and supported) and its body is well-formed. No condition is
imposed on the loop guard b. A method call is well-formed if the num-
bers of arguments and return variables provided match the definition of
the method. Moreover, for simplicity, we do not allow method calls such as
[x1, x2] := m([x1, x1, x2, x2]). Indeed, all variables in a method call have to
be distinct (this is not the case in Viper, where only return variables have to
be distinct). Finally, given our definitions of inhale and exhale semantics,
we want to use only supported assertions. The reason is that the minimal
satisfying set of an assertion which is not supported does not have the same
meaning. Inhaling general assertions (such as x. f == 5) can be encoded via
custom statements.

We finally define what it means for a program to be well-formed:

Definition 5.52 Well-defined methods and programs
A method (m,

»

args,
»

rets, P, Q, s) is well-formed, written

wfMethodPr((m,
»

args,
»

rets, P, Q, s))

if and only if all the following properties are satisfied:

1. All elements from
»

args and
»

rets are distinct.

2. The precondition is well-formed: wfAssert(P).

3. The precondition only deals with arguments: readAssert(P) ⊆ # »

args.

61

5. A Parametric Language for Resource-Based Inlining

4. The postcondition is well-formed: wfAssert(Q)

5. The postcondition only deals with arguments and return variables: readAssert(Q) ⊆
»

args ∪ # »

rets.

6. The arguments are not modified:
»

args ∩modi f (s) = ∅.

7. The method body is well-formed: w f StmtPr(s).

A well-formed program is defined as follows:

wfProg(Pr)⇐⇒ (∀method ∈ Pr. wfMethodPr(method))

We have now finished the definition of our framework. Given a separation
algebra (Σ,⊕, u, C), a type V of variable names, a type O to encode cus-
tom statements, and four interfaces (store, assertions, rename and custom)
which satisfy some requirements, we have defined a language with clearly
defined semantics. We can now go back to the core of this thesis, inlining,
express a soundness condition, and finally prove soundness of inlining in
this framework.

62

Chapter 6

Soundness of Static Inlining

The previous two chapters define the framework we work with. This chapter
deals with the soundness of inlining in this framework, as sketched in Chap-
ter 3. We first formally define the mono and framing properties (introduced
in terms of Viper in Chapter 3). We then define inlining up to a bound and we
express the soundness condition (i.e., the condition under which soundness
of inlining holds). The last four sections deal with the proof of the sound-
ness. Section 6.3 describes the soundness theorem, as well as the soundness
invariant we use to prove this theorem (by induction). We only present the
method call case and the loop case of the proof by induction, respectively in
Section 6.4 and Section 6.5, since they are the two most interesting proofs.
Everything we present in this chapter has been mechanized and proved with
the proof assistant Isabelle/HOL [16] (see Appendix A).

6.1 Mono and framing

As sketched in chapter 3, mono is the combination of safeMono and monoOut.
These concepts are easy to define in our separation algebra:

Definition 6.1 safeMono, monoOut and mono

safeMonoPr(s)⇐⇒(∀A, B ⊆ Σ.(B >> A ∧ verPr(A, s))⇒ verPr(B, s))
monoOutPr(s)⇐⇒(∀A, B ⊆ Σ.(B >> A ∧ verPr(A, s) ∧ verPr(B, s))

=⇒ semPr(B, s) >> semPr(A, s))
monoPr(s)⇐⇒safeMonoPr(s) ∧monoOutPr(s)

safeMono simply expresses that the function λA.verPr(A, s) is non-decreasing,1

while monoOut expresses that the function λA.semPr(A, s) is non-decreasing2

1The function preserves validity for stronger states.
2The function returns a stronger (or equally strong) set of output states for a set of stronger

input states.

63

6. Soundness of Static Inlining

(λA.semPr(A, s) is defined on A when verPr(A, s)).

We defined framing as respecting the frame rule. That is, when we have a
state which verifies with a framing statement, if we add another state which
does not interfere with the statement, then we get at least this other state
afterwards. This is expressed formally as follows:

Definition 6.2 framing

f ramingPr(s)⇐⇒ monoPr(s)∧(∀ϕ, r ∈ Σ.verPr({ϕ}, s) ∧modi f (s) ∩ σ(r) = ∅
=⇒semPr({ϕ⊕ r}, s) >> semPr({ϕ}, s)⊕ {r})

A framing statement is mono. The non-interference condition, saying that
r does not define any variable which is modified by s, is expressed as
modi f (s) ∩ σ(r) = ∅. Then, for any two states ϕ and r such that s verifies
with ϕ and r does not interfere with s, executing s from the state ϕ⊕ r results
in a set of states stronger than what we would get by adding r to all3 output
states when s is executed from the state ϕ.

6.2 Formalization of soundness

Now that we have expressed mono and framing, we can formally express
the soundness condition, sketched in Chapter 3. We first define formally
what it means to inline up to a bound.

6.2.1 Inlining

We first define inlining for all cases but method calls, which are a bit more
complicated. The inline function inl is parametrized by a program Pr (to
handle method calls), and a depth bound n. It takes as input the statement
s to inline, but also a list of variable names

#»

l which are already defined
elsewhere in the inlined program, and have thus to be avoided when inlining
method calls, to avoid interferences (see Definition 6.7).

3The sum of a set of states and a singleton {r} does not exactly results in the set where
all states have been added to r. States which cannot be added to r are simply removed.

64

6.2. Formalization of soundness

Definition 6.3 Inline (except one method call case)

inl0
Pr(

#»

l ,
#»

y := m(
#»

x)) := assume ⊥
inl0

Pr(
#»

l , while (b) inv I {s}) := assume ¬b

inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)) := . . . (see below)

inln+1
Pr (

#»

l , while (b) inv I {s}) := if (b) {inln
Pr(

#»

l , s) ; inln
Pr(

#»

l , while (b) inv I {s})}
inln

Pr(
#»

l , s1 ; s2) := inln
Pr(

#»

l , s1) ; inln
Pr(

#»

l , s2)

inln
Pr(

#»

l , if (∗) {s1} else {s2}) := if (∗) {inln
Pr(

#»

l , s1)} else {inln
Pr(

#»

l , s2)}
inln

Pr(
#»

l , s) := s (otherwise)

We begin the inlining with a bound n. Everytime we inline a loop or a
method call (see below), we decrease this bound by 1 and recursively call the
inline function. When we have already inlined up to a depth of n, we do not
go further. For method calls, we simply stop the execution by assuming ⊥.
In the case of loops, we simply assume ¬b, which is equivalent to assuming
b⇒ ⊥. Indeed, if b is true, then we would have had to go on with the loop,
but otherwise we are out of the loop.

To inline a loop (when we have not reached the depth bound yet), we use
the deterministic if construct (which, as explained in Definition 5.3, can be
encoded using the non-deterministic if(∗)). If b is true, then we enter the
loop and we first inline one iteration of the loop (i.e., the loop body). After
this inlined iteration, we are still in the loop, so we inline the loop (but with
the depth decreased by one). If b is false, then we do nothing. Finally, inlining
sequential compositions and conditional branchings is straightforward.

Remark 6.4 The definition of inln
Pr(

#»

l , s1 ; s2) uses the same list of variable names
#»

l for the two recursive calls (inlining of s1 and s2), instead of recording the newly
defined variables in inln

Pr(
#»

l , s1). Variable names can therefore collide and variables
can be captured. This will be modified in the future.

We now need to define the inlining of a method call when the depth bound
has not been reached. This is also related to the list of variables used by the
inlining function. To define this inlining, we first need to define what we
mean by “variables read by a statement”:

65

6. Soundness of Static Inlining

Definition 6.5 Variables read by a statement

read(s1 ; s2) = read(s1) ∪ read(s2)

| read(if (∗) {s1} else {s2}) = read(s1) ∪ read(s2)

| read(
#»

y := m(
#»

x)) =
#»

x ∪ #»

y
| read(while (b) inv I {s}) = read(s) ∪ readAssert(b) ∪ readAssert(I)
| read(assume P) = readAssert(P)
| read(inhale P) = readAssert(P)
| read(exhale P) = readAssert(P)

| read(var
#»

l) =
#»

l

| read(havoc
#»

l) =
#»

l
| read(skip) = ∅
| read(custom o) = readCustom(o)

This definition is similar to the definition of the modi f function (Defini-
tion 5.32), with some differences. Since we care about all variables which are
read, we include all variables read by assertions, as well as variables passed
as arguments when calling a method. Since we imposed as a requirement
that readCustom(o) ⊆ modi f Custom(o), we can show the following lemma:

Lemma 6.6 Every variable that is modified is also read

modi f (s) ⊆ read(s)

Using this read function, we can now express how we inline method calls
(we use ++ to denote the concatenation of two lists):

Definition 6.7 Inlining of method calls
First case: The method is defined, i.e., there exists (m,

»

args,
»

rets, P, Q, s) ∈ Pr.
Let s′ = rename

(
(

»

args++
»

rets,
#»

x++
#»

y ,
#»

l , read(s)), s
)

, and
#»

l′ =
#»

l ∪ read(s′).
Then

inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)) := inln
Pr(

#»

l′ , s′)

Second case: The method is undefined.

inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)) := exhale ⊥

In the case of a method call not well-formed (if the method called is not de-
fined), we simply exhale ⊥, which fails with any state. It does not really mat-
ter, since the soundness we prove (see Section 6.3) assumes well-formedness,
which in particular means that every method call is well-formed, that is the
method which is called is defined. When the method call is well-formed, we

66

6.2. Formalization of soundness

Listing 6.1: Loop condition not mono.

1 var b: Bool := false
2 while (perm(x.f) <= 1/2) {
3 b := true
4 ...
5 }
6 assert b

Listing 6.2: Negated loop condition not mono.

1 var b: Bool := true
2 while (perm(x.f) >= 1/2) {
3 b := false
4 ...
5 }
6 assert b

Figure 6.1: Loops with conditions not well-formed monotonic

take the body of the method, rename it by modifying the arguments and the
return variables using the ones provided in the method calls.

The meaning of the renaming quadruple (
»

args++
»

rets,
#»

x++
#»

y ,
#»

l , read(s)) is
the following:

1.
»

args variables are renamed to
#»

x variables.

2.
»

rets variables are renamed to
#»

y variables.

3.
#»

l variables are avoided: If a variable has a name in
#»

l , then it is
renamed to a variable with a name not in

#»

l .

4. Only variables from read(s) will be renamed by the functions using this
quadruple. Therefore, the property to avoid variables is satisfied for
these variables.

We also need to record the new variables defined by the renamed method
body, to not capture them while inlining deeper. This is the meaning of
#»

l′ =
#»

l ∪ read(s′): We add the variables read by s′ to
#»

l′ . This new list
#»

l′ is
then used in the recursive call to the inline function, for inlining the renamed
method body.

6.2.2 Soundness condition

The sketch of the soundness described in Chapter 3 said the following:

1. Method and loop bodies have to be framing.

2. Non-inlinable statements, that is statements which do not contain
method calls and loops, have to be mono.

We need to formally clarify several things. First, we only looked at examples
of method calls. In the case of loops, we also have a loop condition b. This
condition cannot be any assertion.

67

6. Soundness of Static Inlining

Indeed, we show in Figure 6.1 two examples4 where all statements (with-
out considering loop conditions) are framing, but we do not have sound-
ness. Listing 6.1 is not sound for inlining, since a state with no permis-
sion to x. f verifies, but a state with full permission does not. In this case,
assume perm(x.f) <= 1/2 is not mono. Listing 6.2 shows another example
where inlining is unsound. In this other case, assume !(perm(x.f >= 1/2)) is
not mono. Formally, the loop condition has to satisfy the following property:

Definition 6.8 Well-formed monotonic assertions

wfmPr(b)⇐⇒ monoPr(assume b) ∧monoPr(assume ¬b)

It should be clear from the examples why we require this. What this means
is that, when an assertion is well-defined in a state, then it will have the same
value (true or false) for any stronger state. Another reason is that, when
we inline a loop iteration, we use a deterministic if, which is translated to
a non-deterministic if using assume b and assume ¬b. monoPr(assume b)
(and especially monoOut) ensures that a stronger state will enter the loop if
a weaker state enters the loop, whereas monoPr(assume ¬b) (also especially
monoOut) ensures that a stronger state will avoid the loop if a weaker state
avoids the loop.

Moreover, we informally speak about non-inlinable statements. What we
mean is statements which do not contain any loop nor any method call.
Formally:

Definition 6.9 Inlinable

inlinable(
#»

y := m(
#»

x)) ⇐⇒ >
inlinable(while (b) inv I {s}) ⇐⇒ >
inlinable(s1 ; s2) ⇐⇒ inlinable(s1) ∨ inlinable(s2)

inlinable(if (∗) {s1} else {s2})⇐⇒ inlinable(s1) ∨ inlinable(s2)

inlinable(s) ⇐⇒ ⊥ (otherwise)

One simple consequence of this definition is the following:

Lemma 6.10 ¬inlinable(s) =⇒ inln
Pr(

#»

l , s) = s

A statement not inlinable stays the same when inlined. We now have all the
elements to formally express the soundness condition.

The soundness condition takes a statement s, the list of read variables
#»

l it is
inlined with, the program Pr and also the remaining depth n. Recall that the

4These are not possible Viper programs, since Viper forbids the use of perm in loop
conditions.

68

6.2. Formalization of soundness

list
#»

l records the variable names which are already defined somewhere in
the inlined program, and thus the variable names which should be avoided
when renaming a method body, to avoid capturing variables.

Definition 6.11 Soundness Condition
If ¬inlinable(s) then SCn

Pr(
#»

l , s)⇐⇒ monoPr(s).

Otherwise for inlinable statements:

SC0
Pr(

#»

l , while (b) inv I {s}) ⇐⇒monoPr(assume ¬b) (*)

SCn
Pr(

#»

l , s1 ; s2) ⇐⇒SCn
Pr(

#»

l , s1) ∧ SCn
Pr(

#»

l , s2)

SCn
Pr(

#»

l , if (∗) {s1} else {s2}) ⇐⇒SCn
Pr(

#»

l , s1) ∧ SCn
Pr(

#»

l , s2)

SCn
Pr(

#»

l ,
#»

y := m(
#»

x)) ⇐⇒. . . (see below)

SCn+1
Pr (

#»

l , while (b) inv I {s})⇐⇒(f ramingPr(inln
Pr(

#»

l , s)) ∨ f ramingPr(s)) ∧wfmPr(b)

∧ SCn
Pr(

#»

l , s) ∧ SCn
Pr(

#»

l , while (b) inv I {s})
SC0

Pr(
#»

l , s) ⇐⇒> (otherwise)

Remark 6.12 (*): In the Isabelle formalization (Appendix A), we require

SC0
Pr(while (b) inv I {s})⇐⇒ w f mPr(b) ∧monoPr(s)

because we use in the Isabelle proof the lemma

SCn
Pr(s) =⇒ monoPr(s)

This lemma does not hold without the additional requirement (one reason being that
the body inside the loop can be not safeMono, which makes the loop not safeMono).
However, this lemma is not necessary for the proof. Indeed, we do not use this lemma
in the proofs presented here, and the Isabelle formalization should be modified in this
direction in the future.

We define the missing method call case below (for n = 0, there is no condition
to be satisfied). Let us explain the intuition behind the soundness condition
for loops, given in Definition 6.11. Let us first consider a loop with condition
b. If n = 0, then the soundness condition requires that assume ¬(b) must be
mono (which should be clear from our discussion above). However, when
the remaining depth is not zero but n + 1, we require several properties:

1. w f mPr(b): As explained above, we use both assume b and assume ¬b.

2. SCn
Pr(

#»

l , s): We need this property since we inline the loop body.

3. SCn
Pr(

#»

l , while (b) inv I {s}): We need this property since we also
inline the loop (with a smaller bound).

69

6. Soundness of Static Inlining

4. f ramingPr(inln
Pr(

#»

l , s)) ∨ f ramingPr(s): Interestingly, this means that it
is sufficient that either the original loop body is framing (with any
existing annotation) or the inlined loop body is framing.

We finally define the soundness condition for method calls:

Definition 6.13 Soundness condition for method calls
First, the soundness condition for a method call implies that there exist

»

args,
»

rets, P,
Q and method body s such that

(m,
»

args,
»

rets, P, Q, s) ∈ Pr

In this case, let s′ = rename
(
(

»

args++
»

rets,
#»

x++
#»

y ,
#»

l , read(s)), s
)

, and
#»

l′ =
#»

l ∪ read(s′). Then

SCn+1
Pr (

#»

l ,
#»

y := m(
#»

x))⇐⇒ (f ramingPr(inln
Pr(

#»

l′ , s′))∨ f ramingPr(s))∧SCn
Pr(

#»

l′ , s′)

Since we inline by renaming the method body and recursively calling the
inline function on s′ (the renamed method body) and

#»

l′ (the new list of
variables to avoid), we express the soundness condition using them. As in the
case of loop, we have the disjunction f ramingPr(inln

Pr(
#»

l′ , s′)) ∨ f ramingPr(s).
We also need SCn

Pr(
#»

l′ , s′) since this is what we inline.

One important and useful lemma which can be proved by computational
induction on the structure of the soundness condition is the following:

Lemma 6.14

SCn
Pr(

#»

l , s) =⇒ monoPr(inln
Pr(

#»

l , s))

Remark 6.15 It is interesting to note that we have neither f ramingPr(inln
Pr(

#»

l , s)) =⇒
f ramingPr(s), nor the reciprocal. It is easy to see, for example, that we can have
f ramingPr(inl0

Pr(
#»

l , s)) without having f ramingPr(s). On the other hand, take the
Viper method call s := y := m(x), with the body of m being exhale acc(x.f, perm(x.f)).
We know that the body of m is not framing, therefore we have ¬ f ramingPr(inl1

Pr(
#»

l , s)).
However, any well-formed method call is framing (because of the semantics of method
calls).

6.3 Soundness theorem

We now have all the formalism needed to express the soundness theorem:

Theorem 6.16 Soundness
Assume

1. w f Prog(Pr)

70

6.3. Soundness theorem

2. w f StmtPr(s)

3. SCn
Pr(modi f (s), s)

4. verProg(Pr)

5. verPr(u, s) (u is the empty state of the separation algebra).

Then verPr(u, inln
Pr(modi f (s), s)).

Remark 6.17 Contraposition of the soundness theorem
By contraposition, we obtain that, under the following conditions:

1. w f Prog(Pr)

2. w f StmtPr(s)

3. SCn
Pr(modi f (s), s)

If
∃n.¬verPr(u, inln

Pr(modi f (s), s))

then there does not exist any way of annotating the program such that both
verProg(Pr) and verPr(u, s).

The contraposition corresponds to what was discussed in Chapter 1. Namely,
if the inlined program does not verify, then there exists a fundamental error in
the original program.

We do not prove the soundness theorem directly, but we define and prove a
stronger property we call the soundness invariant. We first define the domain
of a set of states, needed to express the invariant.

Definition 6.18 Domain of a set of states

domain(A) := ∪ϕ∈Aσ(ϕ)

The domain of a set is simply the set of variables defined by all of its states.
We use this definition to express the fact that, when inlining method calls, we
rename the variables of the corresponding method bodies to avoid capturing
variables already defined.

Definition 6.19 Partial Soundness Property

PSPn
Pr(

#»

l , s) := (∀A′, A ⊆ Σ.A′ >> A ∧ domain(A′) ⊆ #»

l ∧ verPr(A, s)

=⇒verPr(A′, inln
Pr(

#»

l , s)) ∧ semPr(A′, inln
Pr(

#»

l , s)) >> semPr(A, s))

This partial soundness property is parametrized by a program Pr, a bound n,
the list of variables

#»

l which records variables already defined somewhere
in the program, and a statement s. domain(A′) ⊆ #»

l asserts that all variables

71

6. Soundness of Static Inlining

defined by all states of A are included in the list of variables
#»

l . This is to
avoid interferences with newly defined variables when inlining the program.
In the end, we instantiate this partial soundness property for A′ = A := {u},
a singleton with the empty state, for which this property is trivially satisfied
for any list

#»

l . The partial soundness property says that, for any two sets of
states A′ and A such that A′ >> A, if A′ does not interfere with

#»

l as we
just described, and if s verifies with the set of states A, then A′ verifies with
the inlined statement. Moreover, executing the inlined statement from the
set of states A′ results in a stronger set of states than executing the original
statement from the set of states A.

This is intuitively what happens under the soundness condition: Loop in-
variants and method preconditions and postconditions allow hiding some
information (such as the values of variables) and leak some permissions. On
the other hand, all the information and the permissions are visible in the
inlined program.

We now define the soundness invariant we prove, using this partial soundness
property:

Definition 6.20 Soundness Invariant (induction hypothesis)

SIn
Pr(

#»

l , s)⇐⇒
(

w f StmtPr(s) ∧modi f (s) ⊆ #»

l ∧ SCn
Pr(

#»

l , s) =⇒ PSPn
Pr(

#»

l , s)
)

That is, we prove that for all well-formed statements such that the variables
it modifies are included in

#»

l , under the soundness condition, we have the
partial soundness property. Formally, we simply prove

Lemma 6.21

SIn
Pr(

#»

l , s)

That is, this soundness invariant is true for any program Pr, any natural
number n, any list of variable names

#»

l and any statement s. We prove this
lemma by computational induction on the structure of the inline function.
The complete proof has been formalized in Isabelle/HOL. However, we only
show in this chapter two interesting cases of the proof, namely loops and
method calls. By instantiating this soundness invariant for

#»

l := modi f (s),
we get Theorem 6.16, the soundness theorem.

6.4 Induction case: method calls

In this section, we prove the following induction case, for method calls:

Lemma 6.22 Method calls induction case
Assume

72

6.4. Induction case: method calls

1. w f Prog(Pr) ∧ verProg(Pr)

2. (m,
»

args,
»

rets, P, Q, s) ∈ Pr

3. s′ = rename((
»

args++
»

rets,
#»

x++
#»

y ,
#»

l , read(s)), s)

4.
#»

l′ =
#»

l ∪ read(s′)

5. SIn
Pr(

#»

l′ , s′)

Then SIn+1
Pr (

#»

l ,
#»

y := m(
#»

x)).

Proof To prove SIn+1
Pr (

#»

l ,
#»

y := m(
#»

x)), we assume w f StmtPr(
#»

y := m(
#»

x)),
modi f (

#»

y := m(
#»

x)) ⊆ #»

l , and SCn+1
Pr (

#»

l ,
#»

y := m(
#»

x)), and we show PSPn+1
Pr (

#»

l ,
#»

y :=
m(

#»

x)).

We get, by definitions, w f StmtPr(s) and
#»

y ⊆ #»

l . Using verProg(Pr) and that
the method call is well-formed, we also get

verPr({u}, var (
»

args++
»

rets) ; inhale P ; s ; exhale Q)

Let t := (
»

args++
»

rets,
#»

x++
#»

y ,
#»

l , read(s)), which is well-formed. Then let
P′ := rename(P, t) and Q′ := rename(Q, t) be the renaming of the precondi-
tion and postcondition with respect to the renaming quadruple t.

From SCn+1
Pr (

#»

l ,
#»

y := m(
#»

x)) we get SCn
Pr(

#»

l′ , s′). Then, from SIn
Pr(

#»

l′ , s′) and
the properties of well-formed renaming we get PSPn

Pr(
#»

l′ , s′) and

verPr({u}, var (
#»

x++
#»

y) ; inhale P′ ; s′ ; exhale Q′)

which gives

verPr(h(
#»

x)⊕ h(
#»

y)⊕ Inh(P′), s′)

and
semPr(h(

#»

x)⊕ h(
#»

y)⊕ Inh(P′), s′) >> Inh(Q′)

Towards proving PSPn+1
Pr (

#»

l ,−→y := m(−→x)), let A′, A ⊆ Σ such that A′ >> A,
domain(A′) ⊆ #»

l and verPr(A,
#»

y := m(
#»

x)). Let then ϕ′ ∈ A′, ϕ ∈ A such
that ϕ << ϕ′. We have

verPr({ϕ}, exhale P′ ; havoc
#»

y ; inhale Q′)

We then can obtain i ∈ Inh(P′), r ∈ Σ such that ϕ = i⊕ r. Let r′ := h(r,
#»

y),
we have then ϕ = i⊕ |ϕ| ⊕ r′.

73

6. Soundness of Static Inlining

Let us now describe the semantics of
#»

y := m(
#»

x):

semPr({ϕ}, #»

y := m(
#»

x)) = semPr({i⊕ |ϕ| ⊕ r′}, #»

y := m(
#»

x))

= semPr({i⊕ |ϕ| ⊕ r′}, exhale P′ ; havoc
#»

y ; inhale Q′)

= semPr({|i| ⊕ |ϕ| ⊕ r′}, havoc
#»

y ; inhale Q′)

= semPr({h(|i| ⊕ |ϕ| ⊕ r′,
#»

y)} ⊕ h(
#»

y), inhale Q′)

= semPr({h(|ϕ|,
#»

y)⊕ r′} ⊕ h(
#»

y), inhale Q′)

= {h(|ϕ|, #»

y)} ⊕ {r′} ⊕ h(
#»

y)⊕ Inh(Q′)

We know inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)) = inln
Pr(

#»

l′ , s′). Our aim is to prove two
things:

1. H1 : verPr({ϕ}, inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)))

2. H2 : semPr({ϕ}, inln+1
Pr (

#»

l ,
#»

y := m(
#»

x))) >> semPr({ϕ}, #»

y := m(
#»

x))

These two results are enough to conclude the proof. Indeed, we get

monoPr(inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)))

from Lemma 6.14. Using this property, combined with ϕ << ϕ′, we get

1. verPr({ϕ′}, inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)))

2. semPr({ϕ′}, inln+1
Pr (

#»

l ,
#»

y := m(
#»

x))) >> semPr({ϕ}, #»

y := m(
#»

x))

which concludes the proof.

We prove therefore these two properties, H1 and H2, by considering the two
cases corresponding to the disjunction of the soundness condition

SCn+1
Pr (

#»

l ,−→y := m(−→x))

Case 1: f ramingPr(s).

In this case, we also have f ramingPr(s′) since the renaming quadruple t is
well-formed and s′ is the renamed version of s.

Let B′ := {ϕ} and B := h(
#»

x)⊕ h(
#»

y)⊕ Inh(P′)⊕ {r′}. We have B′ >> B.
Indeed, ϕ = i ⊕ |ϕ| ⊕ r′, with i ∈ Inh(P′), and

#»

x ∪ #»

y ⊆ σ(ϕ). Moreover,
we have verPr(B, s′), using monoPr(s′) (which holds since s′ is framing) and
verPr(h(

#»

x)⊕ h(
#»

y)⊕ Inh(P′), s′). We also have domain(B′) = σ(ϕ) ⊆ #»

l ⊆
#»

l′ .

By applying PSPn
Pr(

#»

l′ , s′) we get

verPr(B′, inln
Pr(

#»

l′ , s′))

74

6.4. Induction case: method calls

and

semPr(B′, inln
Pr(

#»

l′ , s′)) >> semPr(B, s′)

Then

semPr({ϕ}, inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)))

= semPr(B′, inln
Pr(

#»

l′ , s′))

>> semPr(B′, inln
Pr(

#»

l′ , s′))⊕ {h(|ϕ|, #»

y)} ⊕ h(
#»

y)
(since

#»

y ⊆ σ(ϕ) and modi f (s′) ∩ σ(ϕ) ⊆ #»

y)

>> semPr(B, s′)⊕ {h(|ϕ|, #»

y)} ⊕ h(
#»

y)

= semPr(h(
#»

x)⊕ h(
#»

y)⊕ Inh(P′)⊕ {r′}, s′)⊕ {h(|ϕ|, #»

y)} ⊕ h(
#»

y)

>> semPr(h(
#»

x)⊕ h(
#»

y)⊕ Inh(P′), s′)⊕ {r′} ⊕ {h(|ϕ|, #»

y)} ⊕ h(
#»

y)
(since s′ is framing)

>> Inh(Q′)⊕ {r′} ⊕ {h(|ϕ|, #»

y)} ⊕ h(
#»

y)

= semPr({ϕ}, #»

y := m(
#»

x))

Case 2: f ramingPr(inln
Pr(

#»

l′ , s′)).

Let B′ := {i⊕ |ϕ|} and B := h(
#»

x)⊕ h(
#»

y)⊕ Inh(P′). We have B′ >> B, since
i ∈ Inh(P′). We also have domain(B′) ⊆ σ(ϕ) ⊆ #»

l ⊆
#»

l′ and verPr(B, s′). By
applying PSPn

Pr(
#»

l′ , s′) we get

verPr(B′, inln
Pr(

#»

l′ , s′))

and

semPr(B′, inln
Pr(

#»

l′ , s′)) >> semPr(B, s′) >> Inh(Q′)

We have monoPr(inln
Pr(

#»

l′ , s′)) since it is framing. Therefore, since {ϕ} >> B′,
we have verPr({ϕ}, inln+1

Pr (
#»

l ,
#»

y := m(
#»

x))).

75

6. Soundness of Static Inlining

Moreover

semPr({ϕ}, inln+1
Pr (

#»

l ,
#»

y := m(
#»

x)))

= semPr(B′ ⊕ {r′}, inln
Pr(

#»

l′ , s′))

= semPr(B′ ⊕ {h(|ϕ|, #»

y)} ⊕ {r′}, inln
Pr(

#»

l′ , s′))

>> semPr(B′, inln
Pr(

#»

l′ , s′))⊕ {h(|ϕ|, #»

y)} ⊕ {r′}
(since inln

Pr(
#»

l′ , s′) is framing)

>> semPr(B, s′)⊕ {h(|ϕ|, #»

y)} ⊕ {r′}
>> semPr(B, s′)⊕ {h(|ϕ|, #»

y)} ⊕ {r′} ⊕ h(
#»

y)

>> Inh(Q′)⊕ {h(|ϕ|, #»

y)} ⊕ {r′} ⊕ h(
#»

y)

= semPr({ϕ}, #»

y := m(
#»

x)) �

6.5 Induction case: loops

We prove, in this section, the following induction case, for loops:

Lemma 6.23 Loops induction case
Assume

1. w f Prog(Pr) ∧ verProg(Pr)

2. SIn
Pr(

#»

l , s)

3. SIn
Pr(

#»

l , while (b) inv I {s})

Then SIn+1
Pr (

#»

l , while (b) inv I {s}).

Proof Let w := while (b) inv I {s}.

To prove SIn+1
Pr (

#»

l , w), we assume w f StmtPr(w), modi f (w) ⊆ #»

l , and SCn+1
Pr (

#»

l , w),
and we show PSPn+1

Pr (
#»

l , w).

We then get, by definitions, w f StmtPr(s), modi f (s) ⊆ #»

l , SCn
Pr(

#»

l , w), and
SCn

Pr(
#»

l , s). From 2 and 3 we then obtain PSPn
Pr(

#»

l , s) and PSPn
Pr(

#»

l , w).

Assume w f StmtPr(w), modi f (w) ⊆ #»

l , and SCn+1
Pr (

#»

l , w). We then get, by
definitions, w f StmtPr(s), modi f (s) ⊆ #»

l , SCn
Pr(

#»

l , w), and SCn
Pr(

#»

l , s). From 2
and 3 we then obtain PSPn

Pr(
#»

l , s) and PSPn
Pr(

#»

l , w).

Towards proving PSPn+1
Pr (

#»

l , w), let A′, A ⊆ Σ such that A′ >> A, domain(A′) ⊆
#»

l , and verPr(A, w). Let then ϕ′ ∈ A′, ϕ ∈ A such that ϕ << ϕ′. We then
have σ(ϕ) ⊆ #»

l , σ(ϕ′) ⊆ #»

l , and verPr({ϕ}, w).

Our aim is to prove two things:

76

6.5. Induction case: loops

1. verPr({ϕ′}, inln+1
Pr (

#»

l , w))

2. semPr({ϕ′}, inln+1
Pr (

#»

l , w)) >> semPr({ϕ}, w)

Moreover,

inln+1
Pr (

#»

l , w) = if (b) {inln
Pr(

#»

l , s) ; inln
Pr(

#»

l , w)}
= if (∗) {assume b ; inln

Pr(
#»

l , s) ; inln
Pr(

#»

l , w)} else {assume ¬b}

Since we have w f m(b), we know that monoPr(assume b) and monoPr(assume ¬b).
Using the verification of the loop (i.e., verPr({ϕ}, w)), we get that b and ¬b are
well-defined with ϕ. Therefore, verPr({ϕ′}, assume b), and verPr({ϕ′}, assume ¬b).
We also get that ϕ >> Inh(I), thus there is an i ∈ Inh(I) and an r ∈ Σ such
that ϕ = i⊕ r.

Let V := modi f (s) ∩ σ(ϕ). Let r′ = h(r,
#»

V), then we have ϕ = i ⊕ |ϕ| ⊕ r′.
Let F := Inh(I)⊕ h(

#»

V)⊕ {h(|ϕ|, #»

V)} ⊕ {r′}.

Since V ⊆ σ(ϕ), we have
{ϕ} >> F

Let us define a function filter to filter a set of states with respect to an assertion,
such that

filterP(A) := {a ∈ A|P(a)}

Using this function, let us now describe the semantics of the loop:

semPr({ϕ}, w) = semPr({i⊕ |ϕ| ⊕ r′}, w)

= semPr({i⊕ |ϕ| ⊕ r′}, exhale I ; havoc
#»

V ; inhale I ; assume ¬b)

= semPr({|i| ⊕ |ϕ| ⊕ r′}, havoc
#»

V ; inhale I ; assume ¬b)

= semPr({h(|i| ⊕ |ϕ| ⊕ r′,
#»

V)} ⊕ h(
#»

V), inhale I ; assume ¬b)

= semPr({h(|ϕ|,
#»

V)} ⊕ {r′} ⊕ h(
#»

V), inhale I ; assume ¬b)

= semPr({h(|ϕ|,
#»

V)} ⊕ {r′} ⊕ h(
#»

V)⊕ Inh(I), assume ¬b)
= semPr(F, assume ¬b)
= filter¬b(F)

We now consider two cases, corresponding to the branch ϕ takes:

Case 1: ¬b(ϕ).

Then ¬b(ϕ′) since w f m(b). We have semPr({ϕ′}, assume b) = ∅, which
means that the conditional branch with the loop iteration verifies. Since we
also have verPr({ϕ′}, assume ¬b), we get verPr({ϕ′}, inln+1

Pr (
#»

l , w)).

77

6. Soundness of Static Inlining

Moreover

semPr({ϕ′}, inln+1
Pr (

#»

l , w)) = semPr({ϕ′}, assume ¬b)
= {ϕ′}
>> {ϕ}
>> F
>> filter¬b(F)
= semPr({ϕ}, w)

therefore concluding this case.

Case 2: b(ϕ).

Then b(ϕ′) since w f m(b), thus we have

verPr({ϕ′}, inln+1
Pr (

#»

l , w)) = verPr({ϕ′}, inln
Pr(

#»

l , s) ; inln
Pr(

#»

l , w))

and semPr({ϕ′})(inln+1
Pr (

#»

l , w)) = semPr({ϕ′})(inln
Pr(

#»

l , s) ; inln
Pr(

#»

l , w)).

We show four preliminary results before concluding:

1. semPr(filterb({h(|ϕ|,
#»

V)}⊕ h(
#»

V)⊕ Inh(I)), s) >> {h(|ϕ|, #»

V)}⊕ h(
#»

V)⊕
Inh(I) and verPr(filterb({h(|ϕ|,

#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), s)

We know from the verification of the loop that

verPr({|ϕ|}, havoc
#»

V ; inhale I ; assume b ; s ; exhale I)

We have
{ϕ} >> {h(|ϕ|, #»

V)} ⊕ h(
#»

V)⊕ Inh(I)

and b(ϕ), thus

semPr({|ϕ|}, havoc
#»

V ; inhale I ; assume b)

=filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I))

We then get

verPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), s)

and

semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), s) >> Inh(I)

Since s cannot undefine variables, and since modi f (s) ⊆ #»

V , we get

semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), s)

>>{h(|ϕ|, #»

V)} ⊕ h(
#»

V)⊕ Inh(I)

78

6.5. Induction case: loops

2. semPr({ϕ′}, inln
Pr(

#»

l , s)) >> semPr(filterb({h(|ϕ|,
#»

V)}⊕ h(
#»

V)⊕ Inh(I)), s)⊕
{r′} and verPr({ϕ′}, inln

Pr(
#»

l , s)):

We know that

{i⊕ |ϕ|} >> {h(|ϕ|, #»

V)} ⊕ h(
#»

V)⊕ Inh(I)

>> filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I))

Let us consider the two cases corresponding to the disjunction in the
soundness condition:

Case 2.1: f ramingPr(s)

By applying PSPn
Pr(

#»

l , s) to A′ := {ϕ′} and A := {ϕ}, we get verPr({ϕ′}, inln
Pr(

#»

l , s))
and

semPr({ϕ′}, inln
Pr(

#»

l , s)) >> semPr({ϕ}, s)
= semPr({i⊕ |ϕ| ⊕ r′}, s)
>> semPr({i⊕ |ϕ|}, s)⊕ r′

(since s is framing)

>> semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), s)⊕ {r′}
(since s is mono)

Case 2.2: f ramingPr(inln
Pr(

#»

l , s))
We have verPr(filterb({h(|ϕ|,

#»

V)} ⊕ h(
#»

V) ⊕ Inh(I)), s). By applying
PSPn

Pr(
#»

l , s) to A′ = A := filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), we get

semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), inln
Pr(

#»

l , s))

>>semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), s)

and

verPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), inln
Pr(

#»

l , s))

thus verPr({ϕ′}, inln
Pr(

#»

l , s)) (since monoPr(inln
Pr(

#»

l , s))).

79

6. Soundness of Static Inlining

Eventually,

semPr({ϕ′}, inln
Pr(

#»

l , s))

>>semPr({ϕ}, inln
Pr(

#»

l , s)) (since inln
Pr(

#»

l , s) is mono)

=semPr({i⊕ |ϕ| ⊕ r′}, inln
Pr(

#»

l , s))

>>semPr({i⊕ |ϕ|}, inln
Pr(

#»

l , s))⊕ {r′} (since inln
Pr(

#»

l , s) is framing)

>>semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), inln
Pr(

#»

l , s))⊕ {r′}
(since inln

Pr(
#»

l , s) is mono)

>>semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), s)⊕ {r′}

3. semPr(F, w) >> filter¬b(F) and verPr(F, w):
Let f ∈ F. There is some i f ∈ Inh(I) and hV ∈ h(

#»

V) such that f =

i f ⊕ hV ⊕ h(|ϕ|, #»

V)⊕ r′. We only show the calculation of semPr(f , w),
but verPr(f , w) can easily be derived from it.

semPr(f , w)

=semPr({i f ⊕ hV ⊕ h(|ϕ|, #»

V)⊕ r′}, w)

=semPr({i f ⊕ hV ⊕ h(|ϕ|, #»

V)⊕ r′},
exhale I ; havoc

#»

V ; inhale I ; assume ¬b)

=semPr({|i f | ⊕ hV ⊕ h(|ϕ|, #»

V)⊕ r′}, havoc
#»

V ; inhale I ; assume ¬b)

=semPr({h(|i f | ⊕ hV ⊕ h(|ϕ|, #»

V)⊕ r′,
#»

V)} ⊕ h(
#»

V), inhale I ; assume ¬b)

=semPr({h(|i f |,
#»

V)} ⊕ {h(|ϕ|, #»

V)} ⊕ {r′} ⊕ h(
#»

V), inhale I ; assume ¬b)

=semPr({h(|i f |,
#»

V)} ⊕ {h(|ϕ|, #»

V)} ⊕ {r′} ⊕ h(
#»

V)⊕ Inh(I), assume ¬b)

=semPr({h(|i f |,
#»

V)} ⊕ F, assume ¬b)

>>semPr(F, assume ¬b) (because monoPr(assume ¬b))
=filter¬b(F)

4. semPr(F, inln
Pr(

#»

l , w)) >> semPr(F, w) and verPr(F, inln
Pr(

#»

l , w)):
We apply PSPn

Pr(
#»

l , w) to A′ := F and A := F. We know that verPr(F, w),
so we just need to show domain(F) ⊆ #»

l to satisfy the left hand side of
PSPn

Pr(
#»

l , w).

domain(F) = domain(Inh(I)) ∪ domain(h(
#»

V)) ∪ σ(h(|ϕ|, #»

V)) ∪ σ(r′)

= domain(Inh(I)) ∪ #»

V ∪ (σ(ϕ)− #»

V) ∪ (σ(r)− #»

V)

⊆ domain(Inh(I)) ∪ #»

V ∪ (σ(ϕ))

⊆ σ(ϕ)

⊆ l

80

6.5. Induction case: loops

We then get the right hand side of PSPn
Pr(

#»

l , w), which gives us the
desired results.

Putting everything together:
Using monoPr(inln

Pr(
#»

l , w)), we get verPr({ϕ′}, inln+1
Pr (

#»

l , w)). We can now
conclude:

semPr({ϕ′}, inln+1
Pr (

#»

l , w))

=semPr({ϕ′}, inln
Pr(

#»

l , s) ; inln
Pr(

#»

l , w))

=semPr(semPr({ϕ′}, inln
Pr(

#»

l , s)), inln
Pr(

#»

l , w))

>>semPr(semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)), s)⊕ {r′}, inln
Pr(

#»

l , w))

(using result 2 and monoPr(inln
Pr(

#»

l , w)))

>>semPr(filterb({h(|ϕ|,
#»

V)} ⊕ h(
#»

V)⊕ Inh(I)⊕ {r′}), inln
Pr(

#»

l , w))

(using result 1 and monoPr(inln
Pr(

#»

l , w)))

=semPr(F, inln
Pr(

#»

l , w))

>>semPr(F, w) (using result 4)
>>filter¬b(F) (using result 3)
=semPr({ϕ}, w) �

81

Chapter 7

Completeness of Static Inlining

In Chapter 6 we proved that, under the soundness condition, we have sound-
ness of inlining. That is, if an inlined program (up to any bound n) does not
verify, we know for sure that the original program, with whatever annotation,
does not verify either.1

However, the soundness theorem goes in only one direction: It does not
tell us anything about the situation where the inlined program verifies, and
therefore does not inform us on how close the relationship is between the
behaviour of the inlined program and the original program. As an example,
we could define the following inlining function:

inln
Pr(l, s) := skip

This inlining function is sound. Indeed, it always verifies, thus it is never
wrong when it finds a fundamental bug (since it never finds any).

We therefore want a completeness property for the inlining function we have
defined. The ideal completeness property would state that, under certain
conditions, if the inlined program verifies, then there exists an annotation
for the program (loop invariants, method preconditions and postconditions)
such that this annotated program verifies. Such a property would indeed
show us that our inlining function is a good model for what happens with
the annotated program.

This completeness property does not hold, for one obvious reason: Inlining
always only goes up to a bounded depth, so it cannot provide any information
on executions which go deeper than this bound. Moreover, while loops and
recursive methods are in general statically unbounded. Therefore, for any
bound, we can find an example of incompleteness of static inlining, where
the inlined program up to this bound verifies, whereas no annotation would
make the original program verify.

1Assuming completeness of the verifier.

83

7. Completeness of Static Inlining

In this chapter, we try to understand which conditions are required to get
a completeness result. We then sketch how to prove such a completeness
property. Intuitively, the inlined program behaves as if all loop iterations
and method bodies would perfectly know the whole context. Therefore,
when the inlined program verifies, we try to construct annotations which
describe the whole context, in the hope that this reproduces the behavior of
the inlined program, and thus makes the original annotated program verify.
These annotations are based on the idea of a strongest postcondition, that is
an assertion which describes exactly the program state after the execution of
a statement from an initial empty state.

The structure of the chapter is as follows. We first define the syntactic trans-
formation of “bounding” a program up to a bound, to align the execution of
the original program on the one of the inlined program. The completeness
property we study is with respect to this bounded program: If the inlined
program verifies, does there exist an annotation which makes the bounded
program verify? We show with two examples that this completeness property
does not hold in general in Viper. One example is based on the lack of
indices in loops and in recursive methods, and the other one is based on
restrictions on how permissions can be used in Viper. We finally express
this completeness property in our general framework, and sketch a proof
for it, under conditions which disallow the previous examples, and with an
assumption that there exists a strongest postcondition.

The concepts presented in this chapter have not been fully formalized yet.
We therefore stay at an informal level, in order to convey the intuition behind
it.

7.1 Syntactic transformation: bounded program

As explained, we need to modify the original program, such that the exe-
cution stops if it reaches a depth which cannot be reached in the inlined
program. This way, we can say something about the original program based
on information from the inlined program. We define a syntactic transforma-
tion, boundn(s, Pr), which takes as input an initial statement s and a program
Pr, and outputs another initial statement and another program, as illus-
trated in Figure 7.1. Even though boundn(s, Pr) is a syntactic transformation,
it represents the same program semantically, except that the execution is
sometimes stopped.

Listing 7.1 shows a simple program (with dots representing some statements),
consisting of an initial statement with one loop and calling one method m1.
The method m1 calls another method m2. Listing 7.2 shows the result of the
syntactic transformation bound42 to this program. We intrument the program
in two ways:

84

7.1. Syntactic transformation: bounded program

Listing 7.1: Original program.

1 method initial() {
2 ...
3 m1(...)
4 ...
5 while (b)
6 {
7 ...
8 }
9 ...

10 }
11

12 method m1(...) {
13 ...
14 m2(...)
15 ...
16 }

Listing 7.2: Bounded program.

1 method initial() {
2 var depth: Int := 42
3 ...
4 assume depth > 0
5 m1(..., depth - 1)
6 ...
7 var before_depth: Int := depth
8 while (b && depth > 0)
9 {

10 depth := depth - 1
11 ...
12 }
13 assume !b
14 depth := before_loop_depth
15 ...
16 }
17

18 method m1(..., old_depth: Int) {
19 var depth: Int := old_d
20 assume depth > 0
21 ...
22 m2(..., depth - 1)
23 ...
24 }

Figure 7.1: An example of the syntactic transformation bound42(s, Pr).

1. We keep track of the current depth of the execution, via the variable
depth.

2. We stop the execution if depth is zero or less, similarly to what happens
with the inline function.

The current depth is transmitted as an additional argument to methods,
which then assign it to the variable depth to be allowed to modify it. Every
method call decrements the current depth by one.

We do the same for loops. Before every loop, we record the current depth,
using an auxiliary variable. Moreover, we add the condition depth > 0 to
the loop condition. This ensures that we do not enter the loop if we reached
the bound. We assume !b after the loop, to stop executions which should
have enter the loop one more, but which did not because of the condition
depth > 0. Furthermore, at every iteration of the loop, we decrement the
depth by one. Eventually, we go back to the depth before the loop.

Using this syntactic transformation, we can now express the completeness

85

7. Completeness of Static Inlining

property we want to have and prove:

Definition 7.1 Completeness property
If

inln
Pr(modi f (s), s)

verifies, then there exists an annotation A such that

boundn(s, annotate(Pr, A))

verifies.

This completeness property does not hold in Viper, as we show in the next
chapter. Similarly to what we did in Chapter 3 for the soundness property,
we try to find a completeness condition such that this holds.

Since this chapter is not fully formalized, it is not clear whether this will be
the definitive shape of the completeness. In particular, it could make more
sense to define a semantic notion of a bounded program, instead of a syntactic
one.

7.2 Examples of incompleteness in Viper

We have now expressed the completeness property we want to have. Like
the soundness property, it does not hold in general. We show, in this section,
two cases in Viper in which this completeness does not hold. The first case
occurs when loops or recursive methods do not have an index to use in
the annotations. This case is a general one, and is relevant for our general
framework. The second one occurs because of a permission gap in Viper, and
is therefore restricted to Viper.

7.2.1 Loops and recursive methods without index

We show the first example on Listing 7.3 and Listing 7.4. Listing 7.3 shows
the bounded program (with a bound of 2), whereas Listing 7.4 shows the
inlined program (with the same bound of 2).

We use two abstract methods (methods without any specified body), flip_coin
and thow_dice, to encode havocing (which currently does not exist in Viper).
flip_coin simply returns a boolean with no annotations, thereby havocing a
boolean. throw_dice havocs an integer, and contrains it to be between 1 and 6
included.

This program does something simple. It keeps track of a counter c, initialized
at 0. It then flips a coin b, and if b is true, it throws a dice (result between 1
and 6 included), and adds the result of this dice to the counter. It then goes
back to flipping a coin and does the same, until b is false.

86

7.2. Examples of incompleteness in Viper

Listing 7.3: Bounded program (bound of 2).

1 method flip_coin() returns (b: Bool)
2

3 method throw_dice() returns (i: Int)
4 ensures i >= 1 && i <= 6
5

6 method initial_method() {
7 var depth: Int := 2
8 var b: Bool
9 var d: Int

10 var c: Int := 0
11 b := flip_coin()
12 var before_depth: Int := depth
13 while (b && depth > 0) {
14 depth := depth - 1
15 d := throw_dice()
16 c := c + d
17 b := flip_coin()
18 }
19 assume !b
20 assert c <= 12
21 }

Listing 7.4: Inlined program (bound of 2).

1 method flip_coin() returns (b: Bool)
2

3 method throw_dice() returns (i: Int)
4 ensures i >= 1 && i <= 6
5

6 method initial_method() {
7 var b: Bool
8 var d: Int
9 var c: Int := 0

10 b := flip_coin()
11 if (b) {
12 d := throw_dice()
13 c := c + d
14 b := flip_coin()
15 if (b) {
16 d := throw_dice()
17 c := c + d
18 b := flip_coin()
19 assume !b
20 }
21 }
22 assume !b
23 assert c <= 12
24 }

87

7. Completeness of Static Inlining

The inlined program verifies. Indeed, the assertion assert c <= 12 (line 23)
holds since we do at most two iterations. However, if we do not use depth in
a loop invariant, then there is no way to write a loop invariant which would
make the same assertion true in the bounded program, on line 20. Indeed,
we only know that c = 0 before the first assertion, c is between 1 and 6 after
the first iteration, and between 2 and 12 after the second one. Since we do
not have any index (except depth) for knowing in which iteration we are, it
is not possible to write the intermediate assertion saying that c is between 1
and 6.

This example shows, therefore, that we need indices to be able to speak about
a particular iteration. Indeed, the annotation A we want in our completeness
property cannot refer to the variable depth. The same reasoning also applies
for recursive methods, for which we also need indices.

7.2.2 Permission gap

The lack of indices is not the only cause of incompleteness. Another cause, at
least in Viper, is a gap in describing permissions.

Take the example shown on Listing 7.5 and Listing 7.6. Listing 7.5 shows
the original annotated program. The purpose of lines 4 to 6 is to get some
permission to x. f which is strictly greater than zero, and less than half, but
for which there does not exist any lower bound strictly greater than zero.
More precisely, after line 6, we know that ∃n.n >= 2∧ perm(x. f) == 1

n . In
particular, perm(x. f) > 0 and perm(x. f) <= 1/2.

It is impossible to perfectly describe this permission amount in the precon-
dition of callee, since we cannot refer to n. We then call the function callee,
and want to assert that the permission held to x. f is not zero, and less than
half, which would be true with the same permission amount as before. The
question boils down to what should be the precondition and postcondition
of the method callee.

callee is a simple method, which only asserts something that is almost a tautol-
ogy. Indeed, as long as we have some permission to x.f, this assertion verifies.
Therefore, we just need some permission in the precondition. However, we
do not have a lower bound on the amount of permission we can transmit
to callee. Moreover, we cannot use n in our precondition. Therefore, any
possible precondition to make the method callee verify has to use a wildcard.
wildcard in Viper means some permission amount, strictly between 0 and 1.2

To make line 8 verify, we need at least some permission amount, which is also
less than half, but we do not know how much permission we have in callee.

2As described in [1], this definition corresponds to inhaling a wildcard. Exhaling a
wildcard results in exhaling some permission amount, strictly between 0 and the current
permission held to the relevant location.

88

7.2. Examples of incompleteness in Viper

Listing 7.5: Original annotated program.

1 field f: Int
2

3 method initial_method(x: Ref) {
4 var n: Int
5 assume n >= 2
6 inhale acc(x.f, 1/n)
7 callee(x)
8 assert perm(x.f) > none && perm(x.f) <= 1/2
9 }

10

11 method callee(x: Ref)
12 requires acc(x.f, wildcard)
13 ensures acc(x.f, wildcard)
14 {
15 assert x.f < 0 || x.f >= 0
16 }

Listing 7.6: Inlined program (bound of 1)

1 field f: Int
2

3 method initial_method_inlined(x: Ref) {
4 var n: Int
5 assume n >= 2
6 inhale acc(x.f, 1/n)
7 assert x.f < 0 || x.f >= 0
8 assert perm(x.f) > none && perm(x.f) <= 1/2
9 }

We therefore can only use a wildcard to give back some permission to the
initial method. However, even with this annotation for the callee method, line
8 cannot verify. Indeed, by using wildcard, we forget the precise amount of
permission to x. f . In particular, we lost the information that this permission
amount is less than half. Therefore, there does not exist any annotation for
callee such that this program verifies.

On the other hand, the inlined program shown on Listing 7.6 verifies, the rea-
son being that the amount of permission is not forgotten by the transmission
to a method. This is, therefore, another example of incompleteness in Viper.

There exist several possibilities to bridge this gap:

1. Instrument the program with ghost variables, to record the permission
amounts transmitted. These variables would be transmitted to the
methods via their arguments, and would be assigned using the perm
feature.

89

7. Completeness of Static Inlining

Listing 7.7: Original program.

1 field f: Int
2

3 method test(x: Ref) {
4 inhale acc(x.f, wildcard)
5 var p: Perm
6 var i: Int := 0
7 while (i < 1)
8 invariant ...
9 {

10 p := perm(x.f)
11 i := i + 1
12 }
13 assert p == perm(x.f)
14 }

Listing 7.8: Inlined program (bound of 1).

1 field f: Int
2

3 method inlined(x: Ref) {
4 inhale acc(x.f, wildcard)
5 var p: Perm
6 var i: Int := 0
7 if (i < 1)
8 {
9 p := perm(x.f)

10 i := i + 1
11 assume !(i < 1)
12 }
13 assert p == perm(x.f)
14 }

Figure 7.2: Existential permissions require the soundness condition.

2. Use abstract read permissions [9, 22].

3. Add support for existential permissions in annotations. This would
mean, for example, accept the use of syntactic assertions such as ∃n.n ≥
2∧ acc(x. f , 1/n) as annotations. This would require giving a semantics
to inhaling and exhaling assertions with existential permissions, and
extending the definition of supported assertions, since assertions with
existential permissions would not be supported in general.

Remark 7.2 The third solution, existential permissions, is not sufficient to get the
completeness property, as we show in Figure 7.2. Even with existential permissions,
one cannot write an invariant such that line 13 of the original program (Listing 7.7)
verifies. However, the inlined program shown on Listing 7.8 verifies. A reason is
that the body of the loop is not framing (and not even mono). It seems, however,
that it is sufficient to prove the completeness property under the soundness condition.
This is not a problem, since the purpose of this completeness result is to show that
inlining under the soundness condition is a good approximation of what happens in
the original program.

It is not clear which solution is the best. However, in Chapter 8, we tend
towards the third solution for Viper.

7.3 Sketch of completeness

We have seen two examples of incompleteness in Viper. We now explore
completeness, in this section, for programs where we do not have these
issues. Since we have not proven any completeness result yet, we only

90

7.3. Sketch of completeness

show a possible result of completeness, with a sketch of a proof. This
result is based on an assumption regarding the strongest postcondition:
That is, we assume that we can take a statement and compute its strongest
postcondition. We then use this assumption to describe how we would
construct an annotation for the program, and why the bounded program
verifies using this annotation.

The previous sections were mainly about Viper. In this section, we consider
completeness in our general framework.

7.3.1 Strongest postcondition assumption

The strongest postcondition assumption is formally defined as follows:

Definition 7.3 Strongest postcondition assumption

∃SP. (∀s.verPr({u}, s) =⇒ semPr({u}, s) = Inh(SP(s)))

This assumes the existence of a function SP which takes a statement as
input, and outputs a semantic assertion, which is similar to a strongest
postcondition (hence the name SP) in the following sense: Executing the
statement s from the empty state (under the condition that it verifies) gives
the minimal satisfying set of SP(s), that is Inh(SP(s)). Therefore, executing
s from an empty state is almost equivalent to inhaling SP(s), that is

s ≈ inhale SP(s)

These two statements are in general not equivalent in terms of semantics.
Indeed, take s = var x. s declares the variable x, something which inhaling
an assertion cannot do. Indeed, the semantics of inhale P (for a well-formed
assertion) is defined for an initial state ϕ only if

∀i ∈ Inh(P).σ(i) ⊆ σ(ϕ)

This means, in particular, that inhale cannot define new variables. Hence,
inhale SP(s) is not in general equivalent to s. This is why we express this
assumption using Inh(SP(s)), and not inhale SP(s).

This strongest postcondition assumption does not hold in general in Viper,
because of the permission gap. However, if we bridge this gap, it seems that
such a statement is provable. We discuss how to prove this assumption for
Viper in Section 8.6.

7.3.2 Constructing the annotation

The idea is the following. The strongest postcondition function, SP, returns
an assertion which essentially captures all the information available in the

91

7. Completeness of Static Inlining

inlined program. Therefore, adding annotations constructed with this SP
function should provide the bounded program with the information used by
the inlined program, thus making the verification of the bounded program
equivalent to the verification of the inlined program.

We show through two examples, in Figure 7.3, how to construct an annotation
such that the bounded program verifies, using the strongest postcondition
assumption. We assume the strongest postcondition assumption, and we
assume that all loops and method calls are indexed: That is, there is a way to
uniquely refer to one instance of a method call or a specific loop iteration in
an assertion. The idea is to construct annotations which correspond to the
beginning and end of every method call, and the beginning and end of every
loop iteration, in the inlined program.

The first example, Listing 7.9, deals with constructing annotations for a
method. The inlined version of this program is shown on Listing 7.10, where
sy corresponds to sx renamed with y instead of x, and sz corresponds to
sx renamed with z instead of x. We have a simple method callee, with two
arguments, an integer i and a variable x of type T. We use i as an index,
considering in this case that i = 0 during the first method call, and that i = 1
during the second method call.

We construct a precondition and a postcondition for each method call, two
of each in this case. We use our SP function on the inlined program to do
that. Before the first method call, i = 0, and only s1 has been executed.
We therefore add the precondition i == 0 ==> SP(s1). This precondition
should be satisfied before the method call, since the inlined program verifies
until this point. The renamed method body, sy should then verify, and
the set of states afterwards should be SP(s1; sy), as hinted on the inlined
program. We therefore add the postcondition i == 0 ==> SP(s1; sy)
to the method. We do the same for the second method call, as shown
on the figure (red before the method call, and black afterwards), which
gives us the precondition i == 1 ==> SP(s1; sy; s2) and the postcondition
i == 1 ==> SP(s1; sy; s2; sz).

Writing several preconditions (resp. postconditions) in Viper has the effect of
conjoining them. Our two preconditions (resp. postconditions) are mutually
exclusive (since i is either 0 or 1). Therefore, our reasoning for the first
method call should also work for the second one.

We construct loop invariants similarly, as illustrated on Listing 7.11 (annotated
program) and Listing 7.12 (inlined program). We assume that i is an index for
the loop, incremented at every iteration, and starting at 0. As illustrated in
blue in Figure 7.3, we first write a loop invariant which holds when entering
the loop, i == 0 ==> SP(s0). We then construct loop invariants which have
to hold after each iteration, taking into account one more execution each

92

7.3. Sketch of completeness

Listing 7.9: Example for a method.

1 method initial_method() {
2 s1
3 callee(i, y)
4 s2
5 callee(i, z)
6 s3
7 }
8

9 method callee(i: Int, x: T)
10 requires i == 0 ==> SP(s1)
11 requires i == 1 ==> SP(s1 ; sy ; s2)
12 ensures i == 0 ==> SP(s1 ; sy)
13 ensures i == 1 ==> SP(s1 ; sy ; s2 ; sz)
14 {
15 sx
16 }

i = 0

i = 1
i = 0

i = 1

Listing 7.10: Inlined.

method inlined() {
s1
sy
s2
sz
s3

}

Listing 7.11: Example for a loop.

1 method initial_method(n: Int) {
2 s0
3 while (i < n)
4 invariant i == 0 ==> SP(s0)
5 invariant i == 1 ==> SP(s0 ; s)
6 invariant i == 2 ==> SP(s0 ; s ; s)
7 ...
8 {
9 s

10 }
11 ...
12 }

i = 0

i = 1

i = 2

Listing 7.12: Inlined.

method inlined(n: Int) {
s0
if (i < n) {

s
if (i < n) {

s
...

}
}
...

}

Figure 7.3: Illustration of how to construct annotations using the strongest postcondition
assumption.

93

7. Completeness of Static Inlining

time, such as i == 1 ==> SP(s0; s), i == 2 ==> SP(s0; s; s), . . . We stop
when we reach the inlining bound.

This is the current state of completeness. The formalization of everything
presented here is planned in the future.

There still remains one gap between the examples of incompleteness pre-
sented earlier, and the proof as sketched here. For this proof, we assume
that every method call is indexed, whereas examples of incompleteness we
can find (for the moment) are only about recursive methods which are not
indexed. We therefore need to continue investigate whether it is possible
to write annotations in the case of several method calls without indices, or
exhibit a counter-example.

We have now proved a soundness result in our framework, and sketched
a completeness result assuming the existence of a strongest postcondition
function. The next chapter describes how to define the parameters for
instantiating our general framework to get a model of the Viper language,
and also discusses (with a sketch of a proof) the strongest postcondition
assumption in Viper.

94

Chapter 8

Instantiating the Parametric
Language with Viper

Chapter 4 and 5 define a general model of a language, whose semantics
is built on a separation algebra. In Chapter 6, we expressed and proved
the soundness of inlining under a soundness condition in this language.
Moreover, we have informally expressed a completeness property for inlining
in Chapter 7, and sketched a proof for it. By inputting the right parameters,
this general framework can be instantiated as a model for concrete verification
languages. Furthermore, this parametric language is strongly inspired by the
Viper language. This chapter shows how to instantiate our framework to get
a model for a simplified version of the Viper language.

Section 8.1 defines the simplified version of Viper we consider. Section 8.2 de-
fines the separation algebra and the store interface for this simplified version
of Viper. Section 8.3 discusses assertions. Section 8.4 shows an example of
how to define a rename interface which satisfies all requirements. The core
of this rename interface has been formalized and proved in Isabelle/HOL
(see Appendix A). Section 8.5 discusses custom statements and the custom
interface. Section 8.6 sketches how to prove the strongest postcondition
assumption, to leverage the completeness of inlining result from Chapter 7.
Finally, Section 8.7 briefly discusses how to use the theoretical results from
the parametric language and the instantiation of this model for the Viper
language to create two useful features for Viper: The early error detection
feature described in the introduction, and a feature to speed up re-verification
using caching.

8.1 A simplified version of Viper

There are several reasons for working in this chapter with a simplified version
of Viper. First, Viper does not have clearly defined semantics. Viper is a

95

8. Instantiating the Parametric Language with Viper

powerful intermediate language for verification, with powerful features such
as functions and predicates, and giving a formal semantics for these features
is beyond the scope of this thesis. Second, the core of this thesis is the
parametric language with the theoretical results. This parametric language
with its requirements will be modified in the future, thus this chapter is more
a proof-of-concept than a real instantiation.

In this simplified version, we do not permit referring to previous states, we
do not accept inhale-exhale assertions in annotations, we do not consider
typing for variables, and we ignore powerful features such as functions,
predicates and magic wands.

8.1.1 Disallowing references to previous states

As explained in the background chapter (Section 2.2.2), Viper semantics can
be defined as a trace semantics, to enable referring to past heaps. This is
mostly done through two features. Labels, which record the heap at a certain
point of the execution, and old expressions, with or without a label, referring
to the heaps of past states. In this simplified version, we do not allow the use
of labels and old-expressions.

However, it seems possible to keep track of a trace in a state, by adding a
fourth component. This fourth component would be a finite mapping from
labels to states. Moreover, two states could be added if they agree on the
states which are mapped from the same labels. The sum of two states would
simply be the mapping obtained by combining both. This idea has to be
explored more, to know if this is sufficient, and in general to know what
happens with assertions, and the mono and framing properties.

8.1.2 Inhale-exhale assertions

As explained in [1], inhale-exhale assertions [A, B] are assertions which
behave like A when inhaled, and like B when exhaled. These assertions can
be used in a postcondition to encode a leak check, or to enhance verification
by using properties justified externally [15]. It is quite clear that inhale-exhale
assertions cannot be encoded as semantic assertions with the same meaning.
We therefore disallow the use of inhale-exhale assertions.

8.1.3 Types of variables

Our parametric language does not consider types of variables. Indeed, we
define everything as if we had only type of variable.

Types of variables could be encoded in the store of a state, adding the type to
the mapping. They could otherwise be checked as part of the wfProg function,
which checks whether a program is well-formed. On top of that, we would

96

8.2. Separation algebra, variables and store

have to redefine the meaning of the h function, used in the semantics of var
and havoc. We would also have to add a type of types in our parameters,
and add a type when declaring variables with a var statement. This could be
done in a future work, but is currently disallowed.

8.1.4 Other features

As explained at the beginning of this section, predicates, magic wands
and functions are examples of powerful features which lack clearly-defined
semantics. This is why we currently disallow these features.

However, it seems that (recursive and non-recursive) predicates and magic
wands could be encoded as part of another permission mask, and would not
complicate the instantiation too much. This could be explored in the future.

8.2 Separation algebra, variables and store

We now define our separation algebra, which captures Viper’s state model.

Definition 8.1 Set of Viper states Σ, store σ and impure part C

Let V be the set of all strings (names of variables), Val be the set of possibles values
for variables (at least integers, rationals and booleans), Addr be a set of integers
(addresses in the heap), and Field be the set of fields defined by the program (strings).

We define the following types:

Permissions := Q∩ [0, 1]
Stores := V ⇀ f in Val

PermissionMasks := Addr× Field→ Permission
Heaps := Addr× Field ⇀ f in Val

Σ is the set of all states (s, π, h) ∈ Stores× PermissionMasks× Heaps such that

1. {(o, f)|π(o, f) > 0} is finite.

2. The heap h is only defined on {(o, f)|π(o, f) > 0}.

Let domain be the function giving the domain of a mapping. The store of a state is

σ((s, π, h)) := domain(s)

Let s∅ be the empty store (empty mapping). The impure part of a state is then

C((s, π, h)) := (s∅, π, h)

97

8. Instantiating the Parametric Language with Viper

Definition 8.2 Combination of stores
Let domain be the function giving the domain of a mapping. Two stores s1 and s2
can be combined, written s1#s2, if and only if

∀x ∈ domain(s1) ∩ domain(s2).s1(x) = s2(x)

In this case, the combination of two stores is then defined as

domain(s1 ⊕ s2) = domain(s1) ∪ domain(s2)

∀x ∈ domain(s1 ⊕ s2).(s1 ⊕ s2)(x) =

{
s1(x) if x ∈ domain(s1)

s2(x) otherwise

Definition 8.3 Combination of permission masks
Two permission masks π1 and π2 can be added, written π1#π2, if and only if

∀(o, f) ∈ Addr× Field.π1(o, f) + π2(o, f) ≤ 1

In this case,

∀(o, f) ∈ Addr× Field.(π1 ⊕ π2)(o, f) = π1(o, f) + π2(o, f)

Definition 8.4 Combination of heaps
Let domain be the function giving the domain of a mapping. Two heaps h1 and h2
can be added, written h1#h2, if and only

∀(o, f) ∈ domain(h1) ∩ domain(h2).h1(o, f) = h2(o, f)

In this case, the combination of two heaps is then defined as

domain(h1 ⊕ h2) = domain(h1) ∪ domain(h2)

∀(o, f) ∈ domain(h1 ⊕ h2).(h1 ⊕ h2)(o, f) =

{
h1(o, f) if (o, f) ∈ domain(h1)

h2(o, f) otherwise

Definition 8.5 Addition of states ⊕ and neutral element u
Two states (s1, π1, h1) and (s2, π2, h2) can be added if and only if

(s1, π1, h1)#(s2, π2, h2)⇐⇒ s1#s2 ∧ π1#π2 ∧ h1#h2

In this case, the sum of two states is defined as

(s1, π1, h1)⊕ (s2, π2, h2) = (s1 ⊕ s2, π1 ⊕ π2, h1 ⊕ h2)

Let s∅ represent the empty store, that is an empty mapping. Let h∅ represent the
empty heap, that is also an empty mapping. Let π0 be the zero mask, that is

∀(o, f) ∈ Addr× Fields.π0(o, f) = 0

The neutral state u is then defined as

u := (s∅, π0, h∅)

98

8.3. Assertions

All requirements described in Chapter 4 can be proved from these definitions.
In particular, the core of a state corresponds exactly to the store:

Lemma 8.6 Core of a state

|(s, π, h)| = (s, π0, h∅)

8.3 Assertions

As we already discussed in Section 5.3.3, there is a mismatch between syn-
tactic assertions from Viper and semantic assertions. In this section, we do
not dive deep into syntactic assertions. We first sketch a way for defining
an encoding from syntactic to semantic assertions, and how to define the
wellDefinedAssert function. We then briefly discuss why syntactic annotations
are encoded into supported and intuitionistic semantic assertions.

8.3.1 From syntactic to semantic assertions

As we saw, different syntactic assertions in Viper must be encoded into the
same semantic assertion. Let us denote SynAssert the set of all syntactic
assertions one can write in Viper.

We encode syntactic assertions into semantic ones using the following
makeSemantic function:

Definition 8.7 Encoding a syntactic assertion into a semantic one
The function makeSemantic takes an element from SynAssert and returns the se-
mantic assertion such that

makeSemantic(A)(ϕ) :=

{
> if A is well-defined and true in ϕ

⊥ otherwise

That is, the corresponding semantic assertion is true when the syntactic
assertion is both well-defined and true, and false otherwise. For example,
this means that we encode the syntactic assertion false and 1 / 0 == 1 into
the same semantic assertion, the one which is always false, hence

makeSemantic(1/0 == 1) = makeSemantic(false)

Another example is

makeSemantic(x.f == x.f) = makeSemantic(perm(x.f) > 0)

Indeed, x.f == x.f is always true when it is defined, but it is defined only
when some permission amount strictly greater than zero is held to the heap
location x. f .

99

8. Instantiating the Parametric Language with Viper

We define the wellDefinedAssert function, which encodes whether a semantic
assertion is well-defined in a state, as follows:

Definition 8.8 Well-defined assertion

wellDefinedAssert(P, ϕ)

⇐⇒(∃A ∈ SynAssert. makeSemantic(A) = P ∧A is well-defined in state ϕ)

This definition means that if it is possible to rewrite the syntactic assertion A
into A′ such that both assertions are encoded into the same semantic assertion,
and one of them is well-defined in the state ϕ, then their common encoding
into a semantic assertion is also well-defined in the state ϕ. In a way, it acts
as if any syntactic assertion is rewritten into a minimal syntactic assertion
which is equivalent. As an example, the semantic assertion corresponding
to x.f == x.f is always well-defined, since perm(x.f) > 0 is always well-
defined.

As discussed in Section 5.3.3, there is an inherent mismatch in trying to
encode syntactic assertions into semantic ones. This definition is therefore not
perfect. A consequence of this definition is that if we have well-definedness
in Viper, we have well-definedness in the parametric language. Another one
is that if we define a function which returns the set of variables read by a
syntactic assertion readSynAssert, we have

readAssert(makeSemantic(A)) ⊆ readSynAssert(A)

8.3.2 Annotations are supported and intuitionistic

We only give a high view of why annotations are encoded into well-formed
semantic assertions, since a formal proof would require to first define syn-
tactic assertions, and then to formally define the meaning of self-framing
assertions (following [20]).

First, annotations cannot use the keywords perm and forperm. Moreover,
Viper disallows implications with accessibility predicates on the left side. For
example, the assertion acc(x.f) ==> ... is not valid in Viper. Using these
restrictions, it seems possible to show that Viper annotations are encoded
into intuitionistic semantic assertions.

Furthermore, annotations are self-framing. As explained in the background
chapter (Section 2.2.1), a self-framing assertion is an assertion which carries
at least permissions for the locations it reads. Moreover, in Viper, it is not
possible to write a disjunction with accessibility predicates. For example,
the syntactic assertion acc(x.f) || acc(y.f) is not allowed in Viper. The
corresponding semantic assertion would not be supported.

100

8.4. Rename interface

Let us describe a bit more why a self-framing assertion in Viper is supported,
and why assertions which are not self-framing can be not supported. Con-
sider P := acc(x.f, 1/2) && x.f == 5 and Q := x.f == 5. P is self-framing,
whereas Q is not. P is encoded into a supported assertion. Indeed, any state
satisfying P has at least half permission to x. f , and x. f == 5. Therefore, all
states have the same support, the state ϕ which has only half permission to
x. f , and where x. f == 5. A state satisfies P if and only if it is stronger than
ϕ. On the other hand, Q is encoded into an assertion which is not supported.
Indeed, a state (s, π, h) ∈ Σ satisfies Q if and only if h(x, f) = 5. This implies
π(x, f) > 0. However, one cannot find a support for this state, since this
support must satisfy π(x, f) > 0, and there does not exist any lower bound
for π(x, f) other than zero.

These restrictions on Viper annotations therefore imply that they are encoded
into well-formed (supported and intuitionistic) semantic assertions. This
result should be formally proved in the future. This means that the semantics
of inhale and exhale statements in Viper have to match the ones from the
parametric language only for annotations which are encoded into well-formed
semantic assertions. We describe the behavior of inhale and exhale for other
kinds of assertions in the custom inferface, in Section 8.5.

8.4 Rename interface

We show in this section one way of instantiating the rename interface, which
satisfies all requirements. Viper variables are strings, and strings are count-
able, they are therefore in bijection with natural numbers. To simplify the
formalization, we base our renaming framework on natural numbers. It is
easy to transform this into a renaming interface based on strings, using a
bijection between strings and numbers.

We first define two ways of renaming a natural number into another, depend-
ing on the renaming quadruple. We then show how to invert a renaming
quadruple. We finally describe how to lift the function renaming a natural
number to construct the different functions of the rename interface. The
core part of this section, namely the renaming of natural numbers and the
inversion of a renaming quadruple, have been formalized in Isabelle/HOL
(see Appendix A), with the corresponding results (Requirement 5.37).

8.4.1 Renaming an element

A renaming quadruple is a quadruple of lists of natural numbers

(
»

old,
»

new,
»

avoid,
»

domain)

Elements of
»

old should be replaced by the corresponding elements of
»

new,
and no element from

»

domain should be renamed into an element from
»

avoid.

101

8. Instantiating the Parametric Language with Viper

It is well-formed if and only if
»

old and
»

new have the same length, elements
of

»

old are distinct, and elements of
»

new are distinct.

We distinguish two cases for renaming. The first case is a really special case
we mostly use for inverting a renaming quadruple. The second one is a
general case.

First case: old and new correspond to the same set, avoid is empty

This case is a special case, whose only purpose is to make it simple to invert
a renaming quadruple. We only use this case when there is no number to
avoid in the domain (

»

avoid = []), and when
»

old and
»

new contain exactly the
same set of numbers. Renaming in this case is simple:

Definition 8.9 Renaming a number (first case)

rename1((
»

old,
»

new, [],
»

domain))(x) :=

{
»

new[i] if ∃i < length(
»

old).x =
»

old[i]
x otherwise

If x ∈ # »

old, then we rename it to its corresponding element in
»

new (we do not
have any choice). In the other case, this renaming function is the identity.
rename1 is clearly a bijection, and fulfills the requirements (avoids what there
is to avoid, namely nothing).

Second case: General case

This general case is less simple. We need to avoid renaming numbers from
»

domain into numbers from
»

avoid, and we need to make sure our renaming is
bijective.

This renaming function in the general case is built on the following lemma:

Lemma 8.10 Let
#»

a and
#»

b be two lists of numbers, such that

1. length(
#»

a) = length(
#»

b).

2. Elements of
#»

a are distinct.

3. Elements of
#»

b are distinct.

Then there exists a function f : N 7→N such that

1. f is a bijection.

2. ∀i ∈N.i < length(
#»

a) =⇒ f (
#»

a [i]) =
#»

b [i]

3. ∃M ∈N.∀x ≥ M. f (x) = x

102

8.4. Rename interface

That is, with a well-formed renaming quadruple, we can find a bijective
function f which maps

»

old to
»

new and which behaves like the identity
function above a certain threshold.

We can now define the general case of renaming a number. sum(
#»

l) denotes
the sum of all elements of the list

#»

l .

Definition 8.11 Renaming a number (second case)
Let t := (

»

old,
»

new,
»

avoid,
»

domain) be a well-formed renaming quadruple. Let
#»

a
be a list of distinct natural numbers, containing exactly the numbers from

»

old and
»

domain. Let
#»

b be the list such that

1. length(
#»

a) = length(
#»

b)

2. ∀i, j ∈ N.i < length(
»

old) ∧ j < length(
#»

a) ∧ #»

a [j] =
»

old[i] ⇒ #»

b [j] =
»

new[i]

3. ∀j ∈ N.j < length(
#»

a) ∧ #»

a [j] /∈ # »

old ⇒ #»

b [j] =
#»

a [j] + sum(
»

new) +

sum(
»

avoid) + 1

It follows that elements of
#»

b are also distinct. Let f be a function as described in
Lemma 8.10 for

#»

a and
#»

b . Then

rename2((
»

old,
»

new,
»

avoid,
»

domain), x) := f (x)

rename2 is a bijection, thanks to Lemma 8.10. Moreover, it maps elements of
»

old to elements of
»

new. Finally, it maps elements from
»

domain to elements
which are not in

»

avoid. Indeed, since we use natural numbers and we shift
elements of

»

domain not in
»

old by adding sum(
»

new) + sum(
»

avoid) + 1 to them,
it follows that the shifted element are greater than all elements in

»

new and
than all elements in

»

avoid. They therefore cannot be in
»

new or in
»

avoid.

Another important property of this renaming function rename2 is that it is
equivalent to the identity function after a threshold, which makes it easy to
invert.

Combining both renaming functions into one

Our rename function is defined as follows:

Definition 8.12 Renaming a number

rename((
»

old,
»

new,
»

avoid,
»

domain), x) :=

rename1((

»

old,
»

new, [],
»

domain), x)(
if

»

avoid = [] ∧ set(
»

old) = set(
»

new)
)

rename2((
»

old,
»

new,
»

avoid,
»

domain), x)
(otherwise)

103

8. Instantiating the Parametric Language with Viper

8.4.2 Inverting a renaming quadruple

We have defined a renaming function, which works differently on two differ-
ent cases. However, these two cases have in common that they behave like the
identity function after a certain threshold. We use this property, combined
with the first case of the rename function, to invert a renaming quadruple:

Definition 8.13 Let t := (
»

old,
»

new,
»

avoid,
»

domain) be a well-formed renaming
quadruple. Let M ∈N be such that

∀x ≥ M.rename(t, x) = x

Let
#»

l := [0..M− 1] be the sorted list containing all numbers from 0 to M− 1, thus
length(

#»

l) = M. Let
#»

l′ be the list such that

1. length(
#»

l′) = M

2. ∀x < M.
#»

l′ [x] = rename(t, x)

Let
#»

d be any list of natural numbers (we just need to choose one). Then

renameInv(t) := (
#»

l′ ,
#»

l , [],
#»

d)

Since we have length(
#»

l) = length(
#»

l′), and

set(
#»

l) = set(
#»

l′) = {x|x ∈N∧ x < M}

by definition, our inverted renaming quadruple always falls into the first case
of the renaming function (since avoid is empty):

∀x ∈N.rename(renameInv(t), x) = rename1(renameInv(t), x)

Using this property, we can show that our renameInv function satisfies the
required properties:

Lemma 8.14 Let t be a well-formed renaming. Then renameInv(t) is also well-
formed, and

∀x ∈N.rename(renameInv(t), rename(t, x)) = x

8.4.3 Towards the rename interface

Lifting the previous results to build a rename interface is quite obvious
from this point, we therefore do not go into details. We need two functions,
toString and toNatural, which respectively convert a natural number to a
string and a string to a natural number. These functions are bijections, and in
particular they are inverse of each other. Using these two functions, we can

104

8.5. Custom statements

convert any string renaming quadruple into a number renaming quadruple
and vice versa. It is straightforward to instantiate the rename and renameInv
functions of the interface. Renaming a state is simple. It suffices to use this
function to modify the store s in the following way:

renameState(t, (s, π, h)) := (s′, π, h)

where domain(s′) = {rename(t, x)|x ∈ domain(s)} and

∀x ∈ domain(s).s′(rename(t, x)) := s(x)

The instantiation of renameCustom is also straightforward given a custom
type of statements.

8.5 Custom statements

The purpose of the custom interface is to encode all statements which are not
built in the parametric language. As an example, the parametric language
defines neither assert statements nor variable assignments. Moreover, it
only defines a special case of inhale and exhale. This section illustrates
how to use the custom interface. We first show how to define assert and
variable assignment, and then discuss how to encode inhale and exhale in
the general case.

We assume we have a function (not described here) λe.wdef (e, ϕ) which is
true if and only if e (an expression or a syntactic assertion) is well-defined in
the state ϕ. We also assume we have a function λe.eval(e, ϕ) which evaluates
a boolean expression or a syntactic assertion in a certain state. Since the store
is a mapping, it is easy to encode a variable assignment using these two
functions:

Definition 8.15 Variable assignment

semanticsCustomPr((s, π, h), x := e)

:=

{
{(s[x := eval(e, (s, π, h))], π, h)} if wdef (e, (s, π, h)) ∧ x ∈ domain(s)
Error otherwise

A variable assignment x := e verifies if and only if an expression is well-
defined in the state (s, π, h) and x is already defined by s. If it verifies, then it
simply modifies the mapping of x, by evaluating the expression in the state
(s, π, h).

To define assert, inhale and exhale, we need to embed the type of syntactic
assertions into the type O of custom statements. We can then encode the
semantics of assert as follows:

105

8. Instantiating the Parametric Language with Viper

Definition 8.16 Assert

semanticsCustomPr(ϕ, assert P) :=

{
{ϕ} if wdef (P, ϕ) ∧ eval(P, ϕ)

Error otherwise

assert verifies if and only if the assertion is well-defined and true in the state
ϕ. If it verifies, it does not modify the state.

We do not give a description for the semantics of inhale and exhale, since
they involve some subtleties which are beyond the scope of this thesis. We
refer the reader to [6] for a first approach on how to define these semantics,
as well as [20] for a more theoretical approach. The important message is that
these statements can be encoded using syntactic assertions (embedded in the
type O) and custom statements, and they behave in general differently than
the inhale and exhale statements provided by the parametric language. As
an example, inhale acc(x.f, perm(x.f)) encoded with the inhale statement
from the parametric language and with a semantic assertion would simply
be equivalent to skip, whereas in Viper it would double the permission held
to x. f .

8.6 Completeness: Strongest postcondition in Viper

To leverage the completeness result of Chapter 7, we need to prove the
strongest postcondition assumption for Viper. That is, we need to show how
to construct an assertion which completely characterizes a Viper statement,
and then to prove it. As we saw with the “permission gap” example, this
assumption is false in general. We therefore sketch how to prove this assump-
tion, assuming that we can use existential permissions in Viper.1 We sketch
in this section a proof for the strongest postcondition assumption in Viper.

The idea is to prove the assumption by induction on a statement s, with a
strongest postcondition of the following form:

∃ #»

v .behavior(
#»

v)∧ (8.1)
x = v0 ∧ y = v7 ∧ z = v9 ∧ . . .∧ (8.2)
acc(x. f , v2) ∧ (v2 > 0⇒ x. f = v5) ∧ . . . (8.3)

8.1 fully specifies the behavior of the program (assumptions, conditional
branching, permissions inhaled, values assigned...), in terms of existentially
quantified variables. 8.2 links the existentially quantified variables

#»

v to the
1This can easily be done for permissions to field locations, but extending this idea to

predicates and magic wands seems more complicated.

106

8.6. Completeness: Strongest postcondition in Viper

Listing 8.1: Example of a program for which we construct a strongest postcondition.

1 field f: Int
2

3 method example_strongest_post()
4 {
5 var m: Int
6 var x: Ref
7 var n: Int
8

9 assume n >= 2
10 if (m >= 5) {
11 n := 2 * n
12 }
13 inhale acc(x.f, 1/n)
14 n := 0
15 }

∃m0 : Int, x0 : Re f , p0 : Perm, p1 : Perm, x f0 : Int, (8.4)
n0 : Int, n1 : Int, n2 : Int, (8.5)
e0 : Bool, e1 : Int, e2 : Perm, e3 : Int. (8.6)
p0 = 0∧ n0 ≥ 2∧ (8.7)
(e0 ⇔ m0 ≥ 5) ∧ e1 = 2 ∗ n0∧ (8.8)
(e0 ⇒ n1 = e1) ∧ (¬e0 ⇒ n1 = n0)∧ (8.9)
e2 = 1/n1 ∧ p1 = p0 + e2 ∧ e3 = 0∧ n2 = e3∧ (8.10)
m = m0 ∧ x = x0 ∧ acc(x. f , p1)∧ (8.11)
(p1 > 0⇒ x. f = x f0) ∧ n = n2 (8.12)

Figure 8.1: Constructing a strongest postcondition in Viper.

variables of the program (x, y, z, . . .). Finally, 8.3 links the existentially
quantified variables to permissions held to field locations and the values
of those fields (if the permission held is greater than 0). As discussed in
Remark 7.2, an assertion of this shape, using existential permissions, would
only satisfy the strongest postcondition assumption under the soundness
condition.

To prove the strongest postcondition assumption by induction with this form,
we add information to 8.1, by adding new existential variables and new
conjunctions. We then modify 8.2 and 8.3 accordingly.

We show an example of a strongest postcondition we could construct for
Listing 8.1 in Figure 8.1. We have existential variables for all variables of

107

8. Instantiating the Parametric Language with Viper

the program, with as many versions as the number of times this variable
could potentially be modified. For example, n has an initial value, and can
be modified on lines 11 and 14, hence three versions n0, n1, and n2. We also
have existential variables for evaluating expressions: e0 is the condition of
the if statement, e1 represents 2 ∗ n of line 11, e2 is the 1/n of line 13, and e3
is 0 of line 14.

All lines except 8.11 and 8.12 specify the behavior of the program. 8.7 specifies
that we have initially no permission to x. f , and encodes the assume statement
(line 9), 8.8 and 8.9 encode the conditional branching with its assignment
(lines 10 to 12). Finally, 8.10 encodes the last two lines of the method, the
inhale statement and n := 0.

As we can see from this example, the size of this postcondition can grow
really quickly. This is not an issue since we are only interested in a theoretical
construction which allows us to show completeness. Other difficulties arise
when trying to prove this assumption, which are not shown in this example,
but which can be dealt with, amongst which:

• Aliasing: When assigning a value to x. f , we should encode that this
can also modify the value of y. f , z. f , . . .

• Havocing when no more permission: When the permission held to a
location goes to 0, we need to forget the value of this location.

Viper magic wands and predicates (which we do not consider in the simpli-
fied subset defined in Section 8.1) also present another challenge, since they
can hide information which can be lost when they are transferred through
annotations. Consider Figure 8.2 as an example for predicates. We have a
predicate P(x), which contains full permission to x. f . Listing 8.2 shows the
original annotated program, which does not verify because line 20 fails. We
know that x. f = 5 because of line 10. This information is then hidden in
the predicate P(x), line 12. However, since we put this predicate in the loop
invariant (line 14), we get back a predicate P(x), but we are not sure it is the
same predicate as the one we gave to the loop through the loop invariant.
Therefore, we lost the information that x. f = 5.

On the other hand, the inlined program (bound of 1) shown on Listing 8.3
verifies. Indeed, we are sure that we have the same version of the predicate
P(x) throughout the method, so we know x. f = 5 after having unfolded the
predicate. One way to solve this issue is to uncomment the loop invariant
on line 15. This loop invariant make explicit the hidden information x. f = 5
from P(x). We also would have to do something similar for magic wands.

Moreover, even if recursive predicates can be stactically unbounded, we know
that the number of times any predicate is unfolded in the bounded program
is stactically bounded. Therefore, we only need to encode information into
annotations up to a bounded depth, by using nested unfolding.

108

8.7. Towards two useful features in Viper

Listing 8.2: Original annotated program.

1 field f: Int
2

3 predicate P(x: Ref) {
4 acc(x.f)
5 }
6

7 method example(x: Ref)
8 requires acc(x.f)
9 {

10 x.f := 5
11 var i: Int := 0
12 fold P(x)
13 while (i < 1)
14 invariant P(x)
15 // && unfolding P(x) in x.f == 5
16 {
17 i := i + 1
18 }
19 unfold P(x)
20 assert x.f == 5
21 }

Listing 8.3: Inlined (bound of 1).

field f: Int

predicate P(x: Ref) {
acc(x.f)

}

method example(x: Ref)
requires acc(x.f)

{
x.f := 5
var i: Int := 0
fold P(x)
if (i < 1)
{

i := i + 1
assume !(i < 1)

}
unfold P(x)
assert x.f == 5

}

Figure 8.2: Viper predicates can hide information.

To conclude, it seems possible to prove this strongest postcondition as-
sumption in Viper. However, we need to extend assertions with existential
permissions. Such a proof would be a complicated one and needs more
exploration.2

8.7 Towards two useful features in Viper

8.7.1 Static inlining for early error detection

As explained in the introduction, a major motivation for this project is the
creation of a useful feature for early error detection for Viper. This feature
would not only detect fundamental errors, but could also provide more
information on spurious errors (as we explain in Chapter 9).

We can leverage some theoretical results obtained in this thesis to detect
fundamental errors in Viper. First, we need to ensure that the soundness
condition is satisfied. This mostly requires a way of checking whether a
statement is mono or framing.

2Another difficulty is dealing with Viper functions, which represent abstraction over
expressions.

109

8. Instantiating the Parametric Language with Viper

One interesting result is that these properties are stable by sequential compo-
sition and non-deterministic conditional branching. Moreover, Viper state-
ments which are not mono (and thus not framing) necessarily use perm,
forperm or contain an assume statement with an accessibility predicate. Viper
statements which are not framing necessarily satisfy the latter condition, or
contain an exhale statement with a wildcard.3 Combining these two results
gives a straightforward conservative function to check the soundness condi-
tion. Leveraging the definition of inlining and the soundness result, we can
report fundamental errors.

8.7.2 Speed up re-verification through caching

This work yields an unexpected byproduct, which relates to caching verifica-
tion results. Thanks to the modular verification of method calls, modifying
the body of a method without modifying its annotation does not require one
to re-verify all calls to this method. However, in Viper, it is unclear what we
should do when a precondition or a postcondition is modified.

Thanks to the properties mono and framing, we can explore and express
answers to this. We give some examples here:

• If we strengthen the precondition of a method, and if this method’s
body is mono, then we do not need to check again whether the method
satisfies its contract.

• If we weaken the precondition of a method and the method still satisfies
its contract, then we do not have to check again the program containing
the method call if the statement after the method call is mono: Indeed,
a weaker precondition with the same postcondition gives a stronger set
of states, which still verifies in this case.

• Conjoining (with the separation conjunction) the same assertion to both
the precondition and the postcondition of a method: We do not have to
check the method again if its body is framing.

This problem will be explored deeper in a future work.

3As an example, exhale acc(x.f, wildcard) is mono and not framing, but
inhale acc(x.f, wildcard) is framing (and thus mono). See [1] for more details about
wildcard.

110

Chapter 9

Extensions to Different Loop
Semantics and Inlinings

This chapter presents two possible extensions to the results already presented
(soundness and completeness), based on Viper. The first section explores
three different possibilities for defining the semantics of a loop in Viper.
The second section explores three useful ways of inlining, corresponding to
different stages of annotating a program.

9.1 Exploration of loop semantics

Our soundness and completeness results only apply to one possible semantics
for loops, as expressed in Definition 5.33. We refer to this semantics of loops
as black-box semantics, since the verification of loops in this semantics does
not take into account impure resources from outside the loop, except the ones
explicitly specified in the loop invariant. For example, if full permission is
held to both x. f and y. f before the loop, and the loop invariant only specifies
acc(x.f), then the loop body completely ignores the full permission to y. f ,
and behaves as if this permission never existed.

However, this black-box semantics is only one of several possibilities to define
loop semantics, and our general framework can only deal with this one. In
this section, we explore two other possibilities for defining the semantics of
loops in Viper. Based on this exploration, it should be possible to also define
these different loop semantics in our parametric language, and prove the
soundness of inlining for all of them.

This section only focuses on the exploration of different loop semantics in
Viper. We first highlight a difference between how Silicon and Carbon, two
verifiers for Viper, treat loops. Based on this difference, we present two more
possibilities for loop semantics, on top of the black-box semantics. We only
present these three different loop semantics, but no result of soundness or

111

9. Extensions to Different Loop Semantics and Inlinings

Listing 9.1: Differences of loop treatment between the Viper verifiers Carbon and Silicon.

1 field f: Int
2

3 method example(x: Ref, y: Ref, n: Int)
4 requires acc(x.f, 1/2) && x.f == 5
5 {
6 var i: Int := 0
7 while (i < n)
8 invariant true
9 {

10 inhale acc(x.f, 1/3)
11 assert x.f == 5
12 exhale acc(x.f, 1/3)
13 inhale acc(x.f, 1/3)
14 assert x.f == 5
15 exhale acc(x.f, 1/3)
16 i := i + 1
17 }
18 }

Verifies with Carbon

Fails with Silicon

Fails with Carbon

completeness of inlining have been formalized yet with respect to the two
new possibilities.

9.1.1 Semantics of loops in Viper: Silicon and Carbon

Listing 9.1 presents a Viper program where the two Viper verification back-
ends, Silicon and Carbon, differ in their treatment of the loop. Before entering
the loop, the program holds half permission to x. f , and the value of x. f is 5.

The Silicon back-end actually treats loops as black-box, and thus line 9 does
not verify with Silicon. Indeed, since the loop invariant given here (true)
does not give any information, Silicon does not know anything about the
value of x. f inside the loop.

On the other hand, line 9 verifies with the Carbon back-end. It is justified by
the fact that the program holds half permission to x. f , and this permission
has not been transferred to the loop through the loop invariant. Therefore,
this permission is still held by the program state after the loop, and so
does x. f == 5. The information x. f == 5 is true before and after the
loop. The reason is that the Carbon back-end assumes that this heap value
cannot be modified from inside the loop body, since half permission to this
heap location is kept outside the loop. Following this assumption that this
value cannot be modified from inside the loop body, Carbon considers this
information true inside the loop body.

However, line 12 suprisingly does not verify with Carbon. The practical

112

9.1. Exploration of loop semantics

reason is that the exhale line 12 removes all permission held (inside the loop
body) to x. f , and thus the value of x. f is havoced. It would however be
coherent for line 12 to verify, using the same reasoning as before. This is the
idea developed in the second possible loop semantics.

9.1.2 Three coherent ways to treat loops

We now present three coherent ways to define the semantics of loops in Viper.
The first is the black-box semantics, the one we used in our framework, and
the one used by the Silicon back-end. The second one is the logical extension
of how Carbon treats loops. In Carbon, impure resources not specified in the
loop invariant, which are accessible after the loop, are also accessible from
inside the loop. Finally, the last loop semantics builds on top of the second
one, and argues that giving access to reading permissions from outside the
loop is coherent with respect to the role of a loop invariant.

Black-box semantics

The black-box semantics for loops is the one from Definition 5.33 and de-
scribed in Section 2.2.4 of the background chapter. In this semantics, the loop
body has only access to the values of variables which were defined before
the loop, and the impure resources specified by the loop invariant. It has no
access to the impure resources, namely the permissions to and the values of
heap locations, which are not specified in the loop invariant.

Access to knowledge of the heap

Viper semantics can be seen as based on a global assumption about the
program: At any point of the execution, the sum of all permissions held to
a field location in a program sums to at most 1. A corollary is that, if some
permission to a field location is kept outside a loop, then the knowledge
about this field can be framed around the loop. The method shown on
Listing 9.1, for example, keeps half permission to x. f outside the loop. We
therefore know that, after the loop, x. f still equals 5.

Logically extending this global assumption, we could allow the body of a
loop to have access to impure resources not specified in the loop invariant.
Carbon already does this, but only to a certain degree, as we illustrated on
Listing 9.1. In practice, lines 9 and 12 on Listing 9.1 would both verify with
this semantics for loops.

This also implies that the permissions held to a field location, inside and
outside a loop, should sum to at most 1. Take Listing 9.2 as an example to
illustrate this idea. Line 14 does not verify with Carbon. Half permission to
x. f is kept outside the loop, and half permission is given to the loop. Line 12
verifies, since x. f is known to be 5 outside the loop, with some permission.

113

9. Extensions to Different Loop Semantics and Inlinings

Listing 9.2: Example with too much permission inside and outside a loop.

1 field f: Int
2

3 method example(x: Ref, n: Int)
4 requires acc(x.f) && x.f == 5
5 {
6 var i: Int := 0
7 while (i < n)
8 invariant acc(x.f, 1/2)
9 // invariant i >= 1 ==> x.f == 4

10 {
11 inhale acc(x.f, 1/2)
12 assert x.f == 5
13 x.f := 4
14 assert i >= 1 ==> false
15 i := i + 1
16 }
17 }

However, at every loop iteration, we inhale enough permission to x. f to write
it, and we assign 4 to it. Therefore, from the second iteration on (i ≥ 1), we
should know that x. f is both 4 and 5, which is incoherent and thus would
make line 14 verify. We can make this program verify by uncommenting
the loop invariant on line 9, showing that this behavior is, in a way, already
implied by how Carbon treats loops.

Role of a loop invariant and access to read permissions outside the loop

We can take this idea of making what is framed around the loop accessible
from inside the loop body even further. Since we frame permissions around
the loop, why not also make these permissions accessible from inside the
loop body? As an example of what this would mean, take Listing 9.3. To
make this program verify, we need in particular to make line 11 verify. In
the black-box semantics, we need to uncomment both invariants on line 8
and 9. In the previous semantics (the one inspired by Carbon), we only need
to uncomment the invariant on line 8. If we would allow access to read
permissions outside the loop, then this program would verify without any
invariant.

This raises the question of the role of a loop invariant. As explained in the
introduction (Chapter 1), we have to annotate loops with loop invariants
to make verification decidable. The role of a loop invariant in general is
therefore to approximate the behavior of a loop.

In Viper, a loop invariant is not exactly an approximation of the behavior
of a loop. A loop invariant in Viper also defines a transfer of resources,

114

9.1. Exploration of loop semantics

Listing 9.3: Example of a program which would verify in the third loop semantics.

1 field f: Int
2

3 method example(x: Ref, n: Int)
4 requires acc(x.f) && x.f == 5
5 {
6 var i: Int := 0
7 while (i < n)
8 // invariant acc(x.f, 1/2)
9 // invariant x.f == 5

10 {
11 assert x.f == 5
12 i := i + 1
13 }
14 }

Listing 9.4: Example of a loop whose behavior depends on the loop invariant.

1 while (i < n)
2 invariant ...
3 {
4 p := perm(x.f)
5 i := i + 1
6 }

and especially impure resources. As an example, take the loop shown on
Listing 9.4. The behavior of this loop body depends on the loop invariant.
Indeed, it assigns to p the permission held to x. f inside the loop, and this
permission depends on the loop invariant. If the loop invariant is true, then
p = 0, whereas p = 1/2 if the loop invariant is acc(x.f, 1/2).

One could think that the loop invariant should not influence the behavior
of the loop. In this case, all permissions from outside the loop should be
accessible from within the loop. However, a loop invariant should still be
allowed to use accessibility predicates (acc(...)), for two reasons:

1. If some permission inside the loop is inhaled or exhaled, then the
permission mask is modified. This modification is part of the program,
and it should be possible to approximate it using the loop invariant.

2. Viper assumes that if some permission to a heap location is kept outside
the loop, its value is not modified inside the loop. This form of framing
would be lost if all permissions held outside the loop are accessible
from inside the loop. Thus, permissions held outside the loop should
only allow reading a heap location, but not writing it. Full permission

115

9. Extensions to Different Loop Semantics and Inlinings

inside the loop should still be required to write a heap location.

Therefore, only allowing to read a field location, when some permission to
this field location is detained, inside or outside the loop, does not have this
issue. Moreover, as shown on Listing 9.3, it would reduce the size of loop
invariants. This is another kind of loop semantics to explore.

9.2 Different inlinings: A classification of inlinings in
Viper

In this section, we show that there is not only one useful way to inline
a program, but many. In particular, we first focus on Viper programs to
illustrate how three different scopings for inlining could be useful, at different
stages of annotating the program. These three scopings are related to the
three loop semantics presented in the previous section. We present in this
section a general way of describing and classifying inlinings, based on two
concepts: barriers and scopings.

9.2.1 A chronology of annotating

In this subsection, we give a simple description of annotating a program in
Viper, based on experience, in three stages:

First stage: Writing the program. This is the situation we described in the
introduction. We have a program, without any annotation, and we want to
know if it is possible to find an annotation such that it verifies.

Second stage: Annotating the program with permissions. Once the pro-
gram is written, Viper reports a lot of errors because of insufficient permis-
sions. Since no permission is specified in preconditions, postconditions and
loop invariants, no permission is transferred to loops and methods. This
stage consists of writing all the required permissions to describe all transfers
of permission to loops and methods, to remove the spurious errors reported
by Viper.

Third stage: The interesting properties. Once the program verifies with
respect to permissions, one can begin to write interesting properties, which
describe the behavior of the program. This stage consists mostly in adding
annotations describing values of variables and fields.

Partly based on this chronology, we define in the following subsections three
different scopings for inlining, which correspond to these three stages. Using
these different scopings, we could define an inlining function which takes
annotations into account, and provides more information about an error to

116

9.2. Different inlinings: A classification of inlinings in Viper

Listing 9.5: A method call.

method initial() {
...

m()

...
}

≈

Listing 9.6: An inlined method call.

method initial() {
...

body_m

...
}

Barrier 1: precondition

Barrier 2: postcondition
framing

Figure 9.1: Illustration of the concept of barriers.

the programmer. We first need to define the concept of a barrier. This section
is based on the black-box semantics of loops in Viper.

9.2.2 Barrier

We illustrate the concept of a barrier in Figure 9.1. A barrier acts like a
loop invariant at the beginning of a loop: The loop invariant takes some
permissions, specified by the annotation, transfer these permissions to the
loop body, and let the remaining permissions outside the loop. Similarly, a
barrier is parametrized by an annotation, which characterizes a transfer of
permissions and information. Listing 9.5 shows a method call, and Listing 9.6
the inlined version of this method call, where we represent two barriers
as blue lines. The first barrier is parametrized by the precondition of the
method, while the second barrier is parametrized by the postcondition. These
two barriers are connected, which also defines what is framed. An inlining
simply defines what these barriers filter, what gets through and what is
framed, with respect to the annotation they are parametrized with.

The inlining function from Definition 6.3 simply lets everything go through.
It acts as if using barriers, where the annotations capture everything about
the program state. Since both barriers, in this case, behave in the same way
with different annotations, we refer to their scopings as no scoping (defined
below). However, it is possible to define other scopings for these barriers.

An example of another scoping is to only let the permissions specified by
the annotation go through the barrier. The permissions not specified by the
annotation are either framed (in the case of barrier 1), or leaked (in the case
of barrier 2). The next subsection defines more precisely such scopings.

This concept of barriers can be extended to loops, with a barrier at the
entrance of the loop, a barrier at the exit of the loop, and intermediate
barriers in between every iteration.

117

9. Extensions to Different Loop Semantics and Inlinings

PA

P

Permissions

HP

HA

H

Heap Information

Figure 9.2: Degrees of freedom for scoping of barriers

9.2.3 Scoping of a barrier

The scoping of a barrier defines what gets through and what does not, based
on its annotation. What does not get through is either framed (precondition
barrier for a method, entrance barrier for a loop) or leaked (postcondition for
a method, intermediate and exit barriers for a loop).

A Viper state consists of a store, a permission mask and a heap (see Sec-
tion 2.2.2). Variables, permissions and heap values are the three types of
information we can filter through a barrier. Since variables are accessible
from within the body of a loop, we do not filter out any information about
variables. We are therefore left with permissions and heap information.

We define two levels of permission scoping, and three levels of heap infor-
mation scoping, as shown in Figure 9.2. P represents the whole permission
mask, whereas PA represents the part of the permission mask described by
the annotation A. H represents the whole heap, HP the part of the heap for
which permission is held from A, and HA represents the heap information
exactly defined by A.

Consider, as an example, the assertion A := acc(x.f, 1/2) * x.f >= 3, and
the state ϕ with full permission to both x and y, and where x. f == 5 and
y. f == 7. We have, in this settings:

• P = acc(x. f) ∗ acc(y. f), that is full permission to both x. f and y. f .

• PA = acc(x. f , 1/2), that is half permission to x. f .

• H represents the full heap, where x. f == 5 and x. f == 7.

• HP represents the information x. f = 5, but does not contain any
information about the value of y. f .

• HA represents represents the information x. f ≥ 3.

Using this classification of information, we define three different scopings,
corresponding to the three stages of annotating presented earlier.

118

9.2. Different inlinings: A classification of inlinings in Viper

No scoping: H and P. This is the scoping used in Definition 6.3. Since H is
the full heap, and P the full permission mask, it lets everything go through,
and therefore does not frame anything. As we saw, inlining with no scoping
barriers is useful when no annotations have been written yet.

Weak Scoping: HP and PA. The second stage of annotating corresponds
to a point where annotations define the transfers of permission. In this case,
it is not useful anymore to inline by letting the full permission mask go
through a barrier. This scoping therefore lets PA go through. However, since
the annotation does not contain any heap information yet, we give all of the
heap information: HP. Our hope is that we can prove a strong soundness
result for this scoping, which does not require a soundness condition. Indeed,
this soundness result would not speak about annotating the program, but
about adding information to the already existing annotation, in the form
of store and heap information. It also seems that we can prove a stronger
completeness result, where we do not need the soundness condition, and we
do not need to bridge the permission gap.

Strong Scoping: HA and PA. The last stage of annotating corresponds to
adding interesting properties, in particular heap information. When all the
heap information needed has been specified in the annotation, the only re-
maining thing one can add is information about the store. It seems, similarly
to weak scoping, that we can prove strong soundness and completeness results,
speaking about adding only information about the store to annotations.

These three scopings can also be combined to get hybrid forms of inlining.
When, for example, one has finished writing a precondition for a method,
but no postcondition has been written, we can inline with a strong scoping
(or a weak scoping) barrier for the precondition (i.e., taking the precondition
into account), and a no scoping barrier for the postcondition (i.e., letting all
the permissions and information flow through the barrier).

Moreover, even when no annotation has been written, it is useful to use
different scopings for inlining. This can give us more information on an error.
We could, for example, report errors with messages such as:

• “Line 10 does not verify because of a permission error, it seems however
that there is enough permission in the surrounding scope” (if no scoping
verifies, but weak scoping does not).

• “There seems to be insufficient permission in the surrounding scope
for line 10 to verify, in the third iteration of the loop” (if no scoping
does not verify, with the soundness condition).

• “The assertion on line 10 seems true, but heap information needs to be
added to the precondition” (if weak scoping verifies, but strong scoping

119

9. Extensions to Different Loop Semantics and Inlinings

does not).

These different combinations should be explored in the future, as well as the
soundness and completeness of these different scopings, to build a useful
feature in Viper.

120

Chapter 10

Conclusion and Future Work

10.1 Conclusion

We have explored static inlining in Viper, defined a soundness property with
respect to annotations and fundamental errors, and shown examples of Viper
programs where this soundness property does not hold. We have derived
from these examples a soundness condition, namely a sufficient condition
under which this soundness property holds, based on two properties of
statements, mono and framing, as illustrated in Figure 10.1.

We have defined a general framework to abstract Viper, consisting of a

Program Pr
Initial statement s

(s, annotate(Pr, A))

boundn(s, Pr)

boundn(s, annotate(Pr, A))

inlinen(s, Pr)

Inlining

AnnotationAnnotation
Perm

ission
gap, indices

Com
pleteness

3
=⇒
∃A. 3

m
ono, fra

m
in

g

Soundnes
s

∃A
. 3
=⇒
∀n

. 3

Figure 10.1: Illustration of the soundness and completeness results.

121

10. Conclusion and Future Work

separation algebra and a parametric language. This separation algebra builds
on other works on separation algebra, with a difference: We combine pure
and impure resources in a single algebra.1 This enabled us to define a
parametric language centered around the semantics of inhaling and exhaling
annotations, mimicking both transmission of pure information and transfer
of impure resources.

This parametric language has many degrees of freedom. It can be instan-
tiated as a model of a concrete verification language, given the right input
parameters. We have formally defined inlining up to a bound, the soundness
condition and the soundness property for this framework. We have formally
proved the soundness of static inlining in this framework, and this proof has
been mechanized with the proof assistant Isabelle/HOL (Appendix A).

We have also defined and explored completeness of inlining. We have
shown examples of Viper programs where completeness does not hold, and
identified two main issues, the lack of indices in loops and method calls,
and a permission gap. We have also sketched a proof for completeness of
inlining in our general framework, based on an assumption of a strongest
postcondition.

To show how (and that) our general framework can be instantiated, we
have discussed how to instantiate it for Viper. We have shown an example
of how to instantiate the rename interface (proved in Isabelle/HOL), how
to instantiate the other interfaces to get a model of the Viper language,
and how this instantiation can be leveraged to build two useful features in
Viper: an early error detection feature based on static inlining, and a cache
re-verification feature based on mono and framing.

Finally, we have proposed and discussed two extensions for this work. We
have explored three different yet coherent possible definitions of loop se-
mantics. Our work deals with one kind of loop semantics, and could be
extended to the other two. Moreover, we have shown that different inlinings
are possible, that they correspond to different stages of annotating a program,
and that combining them can yield a lot of useful information in the early
stages of annotating.

10.2 Future work

As we explained throughout this thesis, this work has opened many interest-
ing directions, some of which should be addressed in our future work.

1As noted in the related work section of Chapter 4, Iris also does this.

122

10.2. Future work

10.2.1 Improve the current framework and soundness proof

Loops semantics. As explained in Remark 5.34, the definition of loop se-
mantics in this thesis is slightly different than the one formalized in Is-
abelle/HOL. The semantics of while (b) inv I {s} for a state ϕ should havoc
modi f (s) ∩ σ(ϕ), but the Isabelle formalization havocs only modi f (s), which
makes it impossible to declare variables in a loop body. This should be fairly
easy to fix.

Variable capturing when inlining As explained in Remark 6.4, the current
definition of the inlining function in the case of a sequential composition
allows variable capturing. The second recursive call should be modified to
disable variable capturing.

Soundness condition. As explained in Remark 6.12, Definition 6.11 de-
fines SCPr

0 (l, while (b) inv I {s}) as monoPr(assume ¬b). However, the
Isabelle/HOL formalization defines it as w f mPr(b) ∧monoPr(s), because a
first version of the proof of soundness required s to be mono under the
soundness condition. The proofs presented in Chapter 6 show that this is no
longer needed, and these proofs should replace the ones in our formalization.

Well-formed assertions The current definition of well-formed assertions is
too restrictive and disallows some Viper annotations. This definition should
be modified as explained in Remark 5.21.

Extended semantic assertions. As explained in Section 5.3.3, there is a
mismatch between syntactic and semantic assertions, and our current model
is therefore limited. A solution to tackle this issue is to use extended semantic
assertions, which can return an error on top of true and false, to model when
assertions are not well-defined. This solution should be explored, as well as
its relationship with annotations in Viper. This solution should then be used
to solve this mismatch.

10.2.2 Completeness of inlining

Completeness in our general framework. Chapter 7 only sketches a way
of how to construct annotations for proving completeness. Completeness
in this framework under the strongest postcondition assumption should be
explored deeper. In particular:

1. The notion of bounded program should be formalized, maybe as a
semantic notion instead of a syntactic one.

2. The completeness property should be formally defined, as well as what
it means to annotate a program.

123

10. Conclusion and Future Work

3. The gap between completeness with indices for all methods and the
examples where completeness does not hold when recursive methods
are not indexed should be bridged. That is, we should either find an
example of incompleteness because of a non-recursive method which
is not indexed, or we should prove completeness even in the case of
non-recursive methods which are not indexed.

4. A completeness theorem, similar to the soundness theorem, should be
formalized and proved in Isabelle/HOL, using the same framework.

Completeness in Viper. Section 8.6 sketches a proof for the strongest post-
condition assumption in Viper.

1. The idea of existential permissions in Viper should be formalized, given
a semantics, and the supportedness property for a semantic assertion
in our general framework should be adapted consequently. Otherwise,
another approach should be developed to bridge the permission gap,
for example, approaches using abstract read permissions [9, 22] or
ghost variables.

2. The strongest postcondition assumption should be formalized and
proved, at least for a simplified version of Viper.

10.2.3 Towards useful features in Viper

Instantiation of the general framework with Viper. The injection of Viper
described in Chapter 8 is not complete.

1. The semantics of Viper should be formally defined.

2. The instantiation should be done with a more complex version of Viper,
taking into account for example trace semantics, magic wands, and
predicates.

3. The requirements for the instantiation with Viper should be proved.

Early error detection in Viper. The results proved or sketched in this thesis
should be leveraged in Viper.

1. A function to check whether a Viper statement is in mono or framing
should be developed in a conservative way, using the stability of these
properties with sequential composition and conditional branching. perm,
forperm and assume statements should be explored further to make this
feature more precise.

2. Based on the notion of a barrier and the different scopings described in
Chapter 8, several functions for inlining in Viper should be developed.

124

10.2. Future work

3. These functions should be used for developing a feature to provide
more useful information on errors reported in early stages of annotating
a Viper program.

4. Extensions of this feature should be considered, such as stratified inlin-
ing [13, 12], adapting the inlining to the annotation (such as not inlining
further when an annotation is already written, adapt the scoping based
on the shape of the annotation...).

Caching verification results. As described in Section 8.7.2, this work opens
the way for speeding up reverification2 in Viper, using mono and framing to
know when it is not necessary to verify some parts of the code again. This
problem should be explored in depth.

Inlining in other contexts. This work focuses on static inlining at the Viper
level. However, Viper serves as an intermediate verification language, on
which many front-ends are built. It is unclear whether inlining at the front-
end level is related to inlining at the Viper level. Inlining at the front-end
level should be explored, as well as its relationship to inlining at the Viper
level.

2That is, verification after small modifications of a first verified version.

125

List of Figures

1.1 An illustration Viper architecture (figure taken from [15]). 6
1.2 Illustration of the problem. 7

3.1 Example of unsoundness of inlining in Viper: Statement not
safeMono. 22

3.2 Example of unsoundness of inlining in Viper: Statement not
monoOut. 24

3.3 Example of unsoundness of inlining in Viper: Statement not
framing. 25

3.4 Representation of sets of statements satisfying safeMono, monoOut
and framing. 27

4.1 Inhaling and exhaling the same assertion. 33

5.1 Illustrations of the input parameters for the model. P is a semantic
assertion, ϕ is an element of Σ, t is a renaming quadruple, and o
is a custom statement of type O. 40

6.1 Loops with conditions not well-formed monotonic 67

7.1 An example of the syntactic transformation bound42(s, Pr). 85
7.2 Existential permissions require the soundness condition. 90
7.3 Illustration of how to construct annotations using the strongest

postcondition assumption. 93

8.1 Constructing a strongest postcondition in Viper. 107
8.2 Viper predicates can hide information. 109

9.1 Illustration of the concept of barriers. 117
9.2 Degrees of freedom for scoping of barriers 118

10.1 Illustration of the soundness and completeness results. 121

127

List of Figures

A.1 Theories presented in this appendix 135

128

Listings

1.1 An example where an early error detection feature would be
useful (original). 4

1.2 An example where an early error detection feature would be
useful (inlined). 5

2.1 General shape of a while loop in Viper 15
2.2 General shape of a method in Viper 16
2.3 General shape of a method call in Viper 17
3.1 Annotated original program. 22
3.2 Inlined program (bound of 1). 22
3.3 Annotated original program. 24
3.4 Inlined program (bound of 1). 24
3.5 Annotated original program. 25
3.6 Inlined program (bound of 1). 25
4.1 Pure assertion. 33
4.2 Accessibility predicate. 33
4.3 Combination of a pure assertion and an accessibility predicate. 33
6.1 Loop condition not mono. 67
6.2 Negated loop condition not mono. 67
7.1 Original program. 85
7.2 Bounded program. 85
7.3 Bounded program (bound of 2). 87
7.4 Inlined program (bound of 2). 87
7.5 Original annotated program. 89
7.6 Inlined program (bound of 1) 89
7.7 Original program. 90
7.8 Inlined program (bound of 1). 90
7.9 Example for a method. 93
7.10 Inlined. 93
7.11 Example for a loop. 93
7.12 Inlined. 93

129

Listings

8.1 Example of a program for which we construct a strongest
postcondition. 107

8.2 Original annotated program. 109
8.3 Inlined (bound of 1). 109
9.1 Differences of loop treatment between the Viper verifiers Car-

bon and Silicon. 112
9.2 Example with too much permission inside and outside a loop. 114
9.3 Example of a program which would verify in the third loop

semantics. 115
9.4 Example of a loop whose behavior depends on the loop invariant.115
9.5 A method call. 117
9.6 An inlined method call. 117

130

Bibliography

[1] Viper tutorial. http://viper.ethz.ch/tutorial. Accessed: 31 March
2020.

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever, editors, Formal Methods for Components
and Objects, pages 364–387, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[3] Claudio Belo Lourenco, Maria Joao Frade, and Jorge Sousa Pinto. A
Generalized Program Verification Workflow Based on Loop Elimination
and SA Form. Proceedings - 2019 IEEE/ACM 7th International Workshop
on Formal Methods in Software Engineering, FormaliSE 2019, pages 75–84,
2019.

[4] John Boyland. Checking interference with fractional permissions. In
International Static Analysis Symposium, pages 55–72. Springer, 2003.

[5] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local
action and abstract separation logic. Proceedings - Symposium on Logic in
Computer Science, pages 366–375, 2007.

[6] Cyrill Martin Gössi. A Formal Semantics for Viper. Master thesis, ETH
Zürich, 2016.

[7] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look
at separation algebras and share accounting. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 5904 LNCS:161–177, 2009.

131

http://viper.ethz.ch/tutorial

Bibliography

[8] S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification
condition generation for permission logics with abstract predicates and
abstraction functions. In Giuseppe Castagna, editor, European Conference
on Object-Oriented Programming (ECOOP), volume 7920 of Lecture Notes
in Computer Science, pages 451–476. Springer, 2013.

[9] Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexander J. Sum-
mers. Abstract read permissions: Fractional permissions without the
fractions. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7737
LNCS:315–334, 2013.

[10] Charles Antony Richard Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–580, 1969.

[11] R. A.L.F. Jung, Robbert Krebbers, Jacques Henri Jourdan, Aleš Bizjak,
Lars Birkedal, and D. E.R.E.K. Dreyer. Iris from the ground up: A
modular foundation for higher-order concurrent separation logic. Journal
of Functional Programming, (October), 2018.

[12] Akash Lal and Shaz Qadeer. Reachability modulo theories. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8169 LNCS:23–44, 2013.

[13] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. A solver for reachabil-
ity modulo theories. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
7358 LNCS:427–443, 2012.

[14] K Rustan M Leino and Peter Müller. A basis for verifying multi-
threaded programs. In European Symposium on Programming, pages
378–393. Springer, 2009.

[15] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. Dependable
Software Systems Engineering, pages 104–125, 2017.

[16] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[17] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2142:1–19, 2001.

132

Bibliography

[18] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation
and information hiding. ACM Transactions on Programming Languages
and Systems, 31(3), 2009.

[19] Peter W O’hearn. Resources, concurrency, and local reasoning. Theoreti-
cal computer science, 375(1-3):271–307, 2007.

[20] Matthew J. Parkinson and Alexander J. Summers. The relationship
between separation logic and implicit dynamic frames. Logical Methods
in Computer Science, 8(3):1–54, jul 2012.

[21] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. Proceedings - Symposium on Logic in Computer Science, 1(1):55–
74, 2002.

[22] Benjamin Schmid. Abstract Read Permission Support for an Automatic
Python Verifier. Bachelor thesis, ETH Zürich, 2018.

[23] M. Schwerhoff and A. J. Summers. Lightweight Support for Magic
Wands in an Automatic Verifier. In J. T. Boyland, editor, European
Conference on Object-Oriented Programming (ECOOP), volume 37 of LIPIcs,
pages 614–638. Schloss Dagstuhl, 2015.

[24] Jan Smans, Bart Jacobs, Frank Piessens, and K. U. Leuven. Implicit dy-
namic frames. ACM Transactions on Programming Languages and Systems,
34(1):1–58, 2012.

[25] Hongseok Yang and Peter O’Hearn. A semantic basis for local reasoning.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2303:402–416,
2002.

133

Appendix A

Appendix: Isabelle Formalization

A.1 Theories presented in this appendix

Renaming

Semantics

SepAlgebra

Soundness

[HOL]

[Pure]

Figure A.1: Theories presented in this appendix

135

A. Appendix: Isabelle Formalization

Figure A.1 shows the theories presented in this appendix. The SepAlgebra
theory defines two locales, the preliminary separation algebra and the actual
separation algebra, as defined in Chapter 4. It also defines and proves proper-
ties on semantic assertions. The Semantics theory defines the language and its
semantics defined in Chapter 5, using a locale to express the parameters and
the requirements which should be satisfied. The Soundness theory formalizes
Chapter 6: It defines the static inlining function, the soundness condition,
and formally proves the soundness theorem. Unrelated to the other theories,
the Renaming theory formalizes the rename interface described in Section 8.4.
For space reasons, we do not show the proofs, only the definitions and the
lemmas.

136

A.2. Separation algebra

A.2 Separation algebra
theory SepAlgebra

imports Main
begin

type_synonym ’a assertion = "’a ⇒ bool"

A.2.1 Preliminary separation algebra

locale pre_sep_algebra =
fixes orig_plus :: "’a ⇒ ’a ⇒ ’a option"
fixes u :: "’a"
assumes orig_comm: "orig_plus a b = orig_plus b a"

and asso1: "Some ab = orig_plus a b ∧ Some bc = orig_plus b c =⇒
orig_plus ab c = orig_plus a bc"

and asso2: "Some ab = orig_plus a b ∧ None = orig_plus b c =⇒
None = orig_plus ab c"

and asso3: "None = orig_plus a b ∧ Some bc = orig_plus b c =⇒
None = orig_plus a bc"

and orig_neutral: "orig_plus a u = Some a"
begin

fun plus :: "’a option ⇒ ’a option ⇒ ’a option" (infixl "⊕" 60) where
"Some a ⊕ Some b = orig_plus a b"

| "_ ⊕ _ = None"

definition defined :: "’a ⇒ ’a ⇒ bool" (infixl "##" 60)
where "defined a b ←→ (¬ Option.is_none (Some a ⊕ Some b))"

definition smaller :: "’a ⇒ ’a ⇒ bool" (infixl "<<" 50) where
"smaller a b ←→ (∃ c. Some b = Some a ⊕ Some c)"

lemma commutative:
"a ⊕ b = b ⊕ a"
〈proof 〉

lemma associative:
"(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)"

〈proof 〉

lemma neutral:
"a ⊕ Some u = a" 〈proof 〉

lemma smaller_refl:
"a << a"
〈proof 〉

lemma smaller_trans:
assumes "a << b"

137

A. Appendix: Isabelle Formalization

and "b << c"
shows "a << c"

〈proof 〉

definition pure :: "’a ⇒ bool" where
"pure ϕ ←→ Some ϕ ⊕ Some ϕ = Some ϕ"

definition pure_set :: "’a ⇒ ’a set" where
"pure_set ϕ = {ϕ’. pure ϕ’ ∧ ϕ’ << ϕ}"

definition core :: "’a ⇒ ’a" ("|_|")
where "|ϕ| = the (Finite_Set.fold (⊕) (Some u) (Some ‘ (pure_set ϕ)))"

lemma pure_smaller_ok:
assumes "p << ϕ"

and "pure p"
shows "Some ϕ = Some ϕ ⊕ Some p"

〈proof 〉

lemma pure_add:
assumes "pure a"
assumes "pure b"
assumes "a ## b"
shows "pure (the (Some a ⊕ Some b))"

〈proof 〉

lemma pure_set_stable_add:
assumes "a ∈ pure_set ϕ"

and "b ∈ pure_set ϕ"
and "Some c = Some a ⊕ Some b"

shows "c ∈ pure_set ϕ"
〈proof 〉

lemma pure_u [simp]: "pure u" 〈proof 〉

lemma u_smaller [simp]: "u << ϕ" 〈proof 〉

lemma empty_in_pure:
"u ∈ pure_set ϕ"
〈proof 〉

definition s_core :: "’a ⇒ ’a option" where "s_core x = Some |x|"

end

A.2.2 Separation algebra

locale sep_algebra = pre_sep_algebra +
fixes C :: "’a ⇒ ’a"

138

A.2. Separation algebra

assumes finiteness: "finite {ϕ’. pure ϕ’ ∧ ϕ’ << ϕ}"
and partially_cancellative: "Some (C ϕ) ⊕ Some a = Some (C ϕ) ⊕

Some b =⇒ a = b"
and decompo: "Some ϕ = Some |ϕ| ⊕ Some (C ϕ)"
and c_empty_core: "|C ϕ| = u"
and unique_c: "Some ϕ = Some |ϕ| ⊕ Some ϕ’ ∧ |ϕ’| = u =⇒ ϕ’ =

C ϕ"
and positivity: "Some a ⊕ Some b = Some u =⇒ a = u"
and pure_reducibility: "pure p ∧ p << a ∧ Some a = Some b ⊕ Some

c =⇒
(∃ a’. Some a’ = s_core b ⊕ s_core c ∧ p << a’)"

begin

lemma pure_u:
"|u| = u"
〈proof 〉

definition some_core :: "’a ⇒ ’a option" where
"some_core ϕ = (Finite_Set.fold (⊕) (Some u) (Some ‘ (pure_set ϕ)))"

lemma commut_comp: "
∧
y x. (⊕) y ◦ (⊕) x = (⊕) x ◦ (⊕) y"

〈proof 〉

interpretation add_pure: comp_fun_commute "plus"
〈proof 〉

lemma "fold_graph (⊕) (Some u) (Some ‘ pure_set ϕ) (some_core ϕ)"
〈proof 〉

lemma "|ϕ| = the (some_core ϕ)" 〈proof 〉

lemma pure_set_u: "pure_set u = {u}"
〈proof 〉

lemma some_core_u:
"some_core u = Some u"

〈proof 〉

definition some_prop :: "’a ⇒ ’a option set ⇒ ’a option ⇒ bool" where
"some_prop ϕ S s ←→ (S ⊆ Some ‘ pure_set ϕ −→ (S = {} ∧ s = Some

u) ∨ (s ∈ Some ‘ pure_set ϕ ∧ (∀ s’ ∈ S. the s’ << the s)))"

lemma some_prop_proof:
"some_prop ϕ (Some ‘ pure_set ϕ) (some_core ϕ)"

〈proof 〉

lemma core_is_max_uni:
"|ϕ| ∈ pure_set ϕ ∧ (∀ x ∈ pure_set ϕ. x << |ϕ|)"

〈proof 〉

139

A. Appendix: Isabelle Formalization

lemma core_is_max:
"ϕ’ = |ϕ| ←→ (ϕ’ ∈ pure_set ϕ ∧ (∀ ϕ’’ ∈ pure_set ϕ. ϕ’’ << ϕ’))"

(is "?a ←→ ?b")
〈proof 〉

lemma sum_pure:
assumes "pure a"

and "pure b"
and "Some c = Some a ⊕ Some b"

shows "pure c"
〈proof 〉

lemma add_trans:
assumes "a << aa"

and "b << bb"
and "Some cc = Some aa ⊕ Some bb"
and "Some c = Some a ⊕ Some b"

shows "c << cc"
〈proof 〉

lemma core_add:
assumes "Some a = Some b ⊕ Some c"
shows "s_core a = s_core b ⊕ s_core c"

〈proof 〉

lemma pure_set_finite:
"finite (pure_set ϕ)"
〈proof 〉

definition s_C :: "’a ⇒ ’a option" where "s_C x = Some (C x)"

lemma core_properties:
shows "pure |ϕ|"

and "|ϕ| << ϕ"
and "pure ϕ ←→ ϕ = |ϕ|"

〈proof 〉

lemma not_pure_core:
"¬ pure ϕ ←→ ϕ 6= |ϕ|" (is "?a ←→ ?b")
〈proof 〉

definition add_set :: "’a set ⇒ ’a set ⇒ ’a set" (infixl "⊕⊕" 60) where
"A ⊕⊕ B = {the (Some a ⊕ Some b) | a b. a ∈ A ∧ b ∈ B ∧ a ## b}"

lemma elem_add_set:
"x ∈ A ⊕⊕ B ←→ (∃ a b. a ∈ A ∧ b ∈ B ∧ Some x = Some a ⊕ Some b)"
〈proof 〉

140

A.2. Separation algebra

lemma simple_set_add_comm:
"A ⊕⊕ B = B ⊕⊕ A"

〈proof 〉

lemma core_inv:
"||ϕ|| = |ϕ|"
〈proof 〉

lemma decompo_new_plus:
"Some ϕ = s_core ϕ ⊕ s_C ϕ"
〈proof 〉

lemma properties_c:
shows "a = b ←→ |a| = |b| ∧ C a = C b"

and "C (C ϕ) = C ϕ"
〈proof 〉

lemma definedness [simp]:
assumes "a ## b"
shows "C a ## b"

and "core a ## b"
and "b ## a"

〈proof 〉

lemma reduce_add:
assumes "a ## b"

and "Some a ⊕ Some b = Some a ⊕ Some c"
shows "s_core a ⊕ Some b = s_core a ⊕ Some c"

〈proof 〉

definition intuitionistic :: "’a assertion ⇒ bool" where
"intuitionistic P ←→ (∀ ϕ ϕ’. ϕ << ϕ’ −→ (P ϕ −→ P ϕ’))"

definition supported :: "’a assertion ⇒ bool" where
"supported P ←→ (∀ ϕ. P ϕ −→ (∃ m. m << ϕ ∧ P m ∧ (∀ ϕ’. ϕ’ << ϕ

∧ P ϕ’ −→ (m << ϕ’))))"

definition Inh :: "’a assertion ⇒ ’a set" where
"Inh P = {ϕ. P ϕ ∧ (∀ ϕ’. ϕ’ << ϕ ∧ ϕ’ 6= ϕ −→ ¬ P ϕ’)}"

definition bigger_set :: "’a set ⇒ ’a set ⇒ bool" (infixl ">>" 50) where
"A >> B ←→ (∀ a ∈ A. ∃ b ∈ B. b << a)"

lemma rel_bigger_add_set:
assumes "A = B ⊕⊕ D"
shows "A >> B"

〈proof 〉

lemma equiv_Inh [simp]:

141

A. Appendix: Isabelle Formalization

assumes "P ϕ"
and "

∧
ϕ’. ϕ’ << ϕ ∧ ϕ’ 6= ϕ −→ ¬ P ϕ’"

shows "ϕ ∈ Inh P"
〈proof 〉

lemma defined_trans_plus:
assumes "Some a = Some b ⊕ Some c ⊕ Some d"
shows "c ## d"
〈proof 〉

lemma neutral_parts:
shows "|u| = u"

and "C u = u"
〈proof 〉

lemma c_add:
assumes "Some a = Some b ⊕ Some c"
shows "s_C a = s_C b ⊕ s_C c"

〈proof 〉

lemma pure_c:
"pure ϕ ←→ C ϕ = u"
〈proof 〉

lemma smaller_pure:
assumes "a << b"

and "pure b"
shows "pure a"

〈proof 〉

lemma antisym:
assumes "a << b"

and "b << a"
shows "a = b"

〈proof 〉

lemma supported_inh:
assumes "P ϕ"

and "supported P"
shows "{ϕ} >> Inh P"

〈proof 〉

lemma supported_intui:
assumes "supported P"

and "intuitionistic P"
shows "P ϕ ←→ {ϕ} >> Inh P"

〈proof 〉

lemma plus_and_bigger_set:

142

A.2. Separation algebra

assumes "A >> B"
shows "(A ⊕⊕ D) >> (B ⊕⊕ D)"

〈proof 〉

lemma simple_set_add:
assumes "Some a = Some b ⊕ Some c"
shows "{b} ⊕⊕ {c} = {a}" (is "?s = ?a")

〈proof 〉

lemma set_add_elem:
assumes "x ∈ A ⊕⊕ B"
shows "∃ a b. a ∈ A ∧ b ∈ B ∧ Some x = Some a ⊕ Some b"

〈proof 〉

lemma set_add_elem_reci:
assumes "a ∈ A ∧ b ∈ B ∧ Some x = Some a ⊕ Some b"
shows "x ∈ A ⊕⊕ B"
〈proof 〉

lemma set_add_asso:
"(A ⊕⊕ B) ⊕⊕ D = A ⊕⊕ (B ⊕⊕ D)" (is "?g = ?d")

〈proof 〉

lemma bigger_set_union:
assumes "A’ >> A"

and "B’ >> B"
shows "A’ ∪ B’ >> A ∪ B"

〈proof 〉

lemma smaller_core_comp:
"b << a ←→ |b| << |a| ∧ C b << C a" (is "?a ←→ ?b")

〈proof 〉

lemma c_trans_ineq:
assumes "b << a"

and "Some a = s_C x ⊕ Some aa"
and "Some b = s_C x ⊕ Some bb"

shows "bb << aa"
〈proof 〉

lemma frame_trans:
assumes "b << a"

and "Some a = Some i ⊕ Some ra"
and "Some b = Some i ⊕ Some rb"
and "Some c = s_core i ⊕ Some ra"

shows "rb << c"
〈proof 〉

lemma bigger_set_forall:

143

A. Appendix: Isabelle Formalization

"A >> B ←→ (∀ a∈A. {a} >> B)"
〈proof 〉

lemma subset_smaller:
assumes "A ⊆ B"
shows "A >> B"
〈proof 〉

lemma bigger_set_trans:
assumes "A >> B"

and "B >> D"
shows "A >> D"

〈proof 〉

lemma pure_set_add_smaller:
assumes "A ⊕⊕ B = A"
shows "A >> B"
〈proof 〉

lemma decompose_set:
assumes "x ∈ A ⊕⊕ B ⊕⊕ {c} ⊕⊕ {d}"
shows "∃ a b. a ∈ A ∧ b ∈ B ∧ Some x = Some a ⊕ Some b ⊕ Some c ⊕

Some d"
〈proof 〉

lemma add_pure_singleton:
assumes "A >> B"

and "A >> {p}"
and "pure p"

shows "A >> B ⊕⊕ {p}"
〈proof 〉

lemma add_sets_neutral:
"A ⊕⊕ {u} = A" (is "?a = ?b")

〈proof 〉

end

end

144

A.3. Semantics

A.3 Semantics
theory Semantics

imports SepAlgebra
begin

A.3.1 Abstract language

datatype (’a, ’b, ’c) stmt =
Inhale "’a assertion"
| Assume "’a assertion"
| Exhale "’a assertion"
| Skip
| Seq "(’a, ’b, ’c) stmt" "(’a, ’b, ’c) stmt" (infixl ";" 60)
| If "(’a, ’b, ’c) stmt" "(’a, ’b, ’c) stmt"
| Var "’b list"
| Havoc "’b list"
| MethodCall "’b list" "string" "’b list"
| While "’a assertion" "’a assertion" "(’a, ’b, ’c) stmt"
| Other ’c

type_synonym (’a, ’b, ’c) method = "string × ’b list × ’b list × ’a
assertion × ’a assertion × (’a, ’b, ’c) stmt"

type_synonym (’a, ’b, ’c) program = "(’a, ’b, ’c) method list"

fun get_method :: "(’a, ’b, ’c) program ⇒ string ⇒ (’a, ’b, ’c) method
option" where
"get_method (t # q) s = (if fst t = s then Some t else get_method q

s)"
| "get_method _ s = None"

fun get_args :: "(’a, ’b, ’c) method ⇒ ’b list" where
"get_args (_, args, _, _, _, _) = args"

fun get_ret :: "(’a, ’b, ’c) method ⇒ ’b list" where
"get_ret (_, _, ret, _, _, _) = ret"

fun get_args_ret :: "(’a, ’b, ’c) method ⇒ ’b list" where
"get_args_ret m = get_args m @ get_ret m"

fun get_pre :: "(’a, ’b, ’c) method ⇒ ’a assertion" where
"get_pre (_, _, _, P, _, _) = P"

fun get_post :: "(’a, ’b, ’c) method ⇒ ’a assertion" where
"get_post (_, _, _, _, Q, _) = Q"

fun get_body :: "(’a, ’b, ’c) method ⇒ (’a, ’b, ’c) stmt" where
"get_body (_, _, _, _, _, s) = s"

145

A. Appendix: Isabelle Formalization

datatype ’a ss = S "’a set" | Error

type_synonym ’b rename_t = "’b list × ’b list × ’b list × ’b list"

fun get_S :: "’a ss ⇒ ’a set" where
"get_S (S A) = A"

| "get_S _ = {}"

fun union_set_ss :: "’a ss set ⇒ ’a ss" where
"union_set_ss A = (if Error ∈ A then Error
else S (

⋃
a∈A. get_S a))"

fun len :: "(’a, ’b, ’c) stmt ⇒ nat" where
"len (MethodCall y m x) = 5"

| "len (While b I s) = 5 + len s"
| "len (If s1 s2) = len s1 + len s2"
| "len (s1 ; s2) = len s1 + len s2"
| "len _ = 1"

lemma len_at_least_one:
"len s ≥ 1"

〈proof 〉

definition lnot :: "’a assertion ⇒ ’a assertion" where
"lnot P = (λs. ¬ P s)"

fun wf_renaming :: "’b rename_t ⇒ bool" where
"wf_renaming (old_vars, new_vars, vars_to_avoid, domain) ←→

length old_vars = length new_vars ∧ distinct old_vars ∧ distinct
new_vars"

definition lfalse :: "’a assertion" where
"lfalse = (λs. False)"

locale semantics_algebra = sep_algebra +

fixes σ :: "’a ⇒ ’b set"

fixes semantics_other :: "(’a, ’b, ’c) program ⇒ ’a ⇒ ’c ⇒ ’a ss"

fixes read_pred :: "’a assertion ⇒ ’b list"
fixes read_other :: "’c ⇒ ’b list"

fixes well_defined_assert :: "’a assertion ⇒ ’a ⇒ bool"

fixes modif_other :: "’c ⇒ ’b list"

fixes rename_elem :: "’b ⇒ ’b rename_t ⇒ ’b"
fixes rename_other :: "’c ⇒ ’b rename_t ⇒ ’c"

146

A.3. Semantics

fixes rename_state :: "’a ⇒ ’b rename_t ⇒ ’a"
fixes rename_pred :: "’a assertion ⇒ ’b rename_t ⇒ ’a assertion"
fixes rename_inv :: "’b rename_t ⇒ ’b rename_t"

fixes wf_other :: "(’a, ’b, ’c) program ⇒ ’c ⇒ bool"

assumes

store_pure: "σ ϕ = σ |ϕ|"
and store_add: "Some a = Some c ⊕ Some d =⇒ σ a = σ c ∪ σ d"
and store_empty: "σ u = {}"
and compatible_stores: "a ## b =⇒ pure a =⇒ σ a ⊆ σ b =⇒ a << b"
and unique_store_exists: "var ∈ σ a =⇒ (∃ c. σ c = {var} ∧ c << a)"
and defined_disjoint_store: "σ a ∩ σ b = {} =⇒ pure a =⇒ a ## b"

and read_pred_def: "set (read_pred P) = (
⋃
i∈Inh P. σ i)"

and well_defined_assert_supported: "supported P =⇒ (well_defined_assert
P ϕ ←→ set (read_pred P) ⊆ σ ϕ)"

and can_read_not: "well_defined_assert P a ←→ well_defined_assert
(lnot P) a"

and p_implies_well_def: "P ϕ =⇒ well_defined_assert P ϕ"

and modif_other_sem: "wf_other Pr other ∧ c ∈ get_S (semantics_other
Pr a other) =⇒ σ a ⊆ σ c ∧ σ c ⊆ σ a ∪ set (modif_other other)"

and modif_other_read_other: "set (modif_other other) ⊆ set (read_other
other)"

and rename_inv_def_elem: "wf_renaming t =⇒ rename_elem (rename_elem
elem t) (rename_inv t) = elem"

and rename_inv_def_other: "wf_renaming t =⇒ rename_other (rename_other
other t) (rename_inv t) = other"

and renaming_invert_wf: "wf_renaming t =⇒ wf_renaming (rename_inv
t)"

and rename_removes_vars_elem: "wf_renaming (l1, l2, l3, do) =⇒ var
∈ set do =⇒

rename_elem var (l1, l2, l3, do) ∈ set l1 ∪ set l3 =⇒ rename_elem
var (l1, l2, l3, do) ∈ set l2"

and rename_elem_in_l1_l2: "wf_renaming (l1, l2, l3, do) =⇒ i < length
l1 =⇒ rename_elem (l1 ! i) (l1, l2, l3, do) = l2 ! i"

and rename_store: "wf_renaming t =⇒ σ (rename_state a t) = (λelem.
rename_elem elem t) ‘ (σ a)"

and rename_state_add: "wf_renaming t =⇒ Some a = Some d ⊕ Some c =⇒
Some (rename_state a t) = Some (rename_state d t) ⊕ Some (rename_state
c t)"

and rename_state_identity: "wf_renaming t =⇒ (∀ x∈σ a. rename_elem
x t = x) =⇒ rename_state a t = a"

and rename_state_double: "wf_renaming t =⇒ wf_renaming t1 =⇒ wf_renaming

147

A. Appendix: Isabelle Formalization

t2 =⇒
(∀ x∈σ a. rename_elem x t = rename_elem (rename_elem x t1)

t2) =⇒ rename_state a t = rename_state (rename_state a t1) t2"

and rename_pred_def: "rename_pred P t = (λϕ. P (rename_state ϕ (rename_inv
t)))"

and well_defined_assert_rename: "wf_renaming t =⇒ well_defined_assert
P ϕ =⇒ well_defined_assert (rename_pred P t) (rename_state ϕ t)"

and read_other_rename_other: "read_other (rename_other other t) = map
(λelem. rename elem t) (read_other other)"

and modif_rename_other: "modif_other (rename_other other t) = map (λelem.
rename_elem elem t) (modif_other other)"

and wf_other_renaming: "wf_renaming t =⇒ wf_other Pr other =⇒ wf_other
Pr (rename_other other t)"

and ver_rename_other: "wf_renaming t =⇒ semantics_other Pr ϕ other
6= Error =⇒ semantics_other Pr (rename_state ϕ t) (rename_other other
t) 6= Error"

and semantics_rename_other: "wf_renaming t =⇒ a ∈ get_S (semantics_other
Pr (rename_state ϕ t) (rename_other other t))

=⇒ rename_state a (rename_inv t) ∈ get_S
(semantics_other Pr ϕ other)"

begin

lemma pure_is_exactly_store: "a << c =⇒ b << c =⇒ pure a =⇒ σ a ⊆
σ b =⇒ a << b"
〈proof 〉

lemma rename_state_c_same:
assumes "wf_renaming t"
shows "C (rename_state a t) = C a"

〈proof 〉

lemma finite_store:
"finite (σ x)"

〈proof 〉

lemma rename_state_same:
assumes "wf_renaming t1"

and "wf_renaming t2"
and "

∧
x. x ∈ σ a =⇒ rename_elem x t1 = rename_elem x t2"

shows "rename_state a t1 = rename_state a t2"
〈proof 〉

lemma rename_inv_def_state:
assumes "wf_renaming t"

shows "rename_state (rename_state a t) (rename_inv t) = a" (is "?a
= a")

148

A.3. Semantics

〈proof 〉

lemma rename_store_same_if_l1:
assumes "wf_renaming (l1, l2, l3, do)"

and "σ a ⊆ set l1"
shows "rename_state a (l1, l2, l3, do) = rename_state a (l1, l2,

[], d)"
〈proof 〉

definition read_mono :: "’a assertion ⇒ bool" where
"read_mono P ←→ (∀ ϕ ϕ’. ϕ << ϕ’ −→ well_defined_assert P ϕ −→

well_defined_assert P ϕ’)"

definition wf_assert :: "’a assertion ⇒ bool" where
"wf_assert P ←→ supported P ∧ intuitionistic P ∧ read_mono P"

lemma can_read_false:
"well_defined_assert lfalse a"

〈proof 〉

fun rename_set :: "’a set ⇒ ’b rename_t ⇒ ’a set" where
"rename_set A t = (λϕ. rename_state ϕ t) ‘ A"

lemma rename_pred_same:
assumes "wf_renaming t"
shows "P ϕ ←→ (rename_pred P t) (rename_state ϕ t)"
〈proof 〉

lemma wf_renaming_order:
assumes "wf_renaming t"

and "a << b"
shows "rename_state a t << rename_state b t"
〈proof 〉

lemma rename_doesnt_change_if_not_affected:
assumes "wf_renaming (l1, l2, [], do)"

and "set (read_pred P) ⊆ set l1"
and "wf_assert P"

shows "rename_pred P (l1, l2, [], do) = rename_pred P (l1, l2, l,
d)"
〈proof 〉

lemma wf_renaming_diff:
assumes "wf_renaming t"

and "a 6= b"
shows "rename_state a t 6= rename_state b t"
〈proof 〉

lemma inh_renamed:

149

A. Appendix: Isabelle Formalization

assumes "wf_renaming t"
shows "Inh (rename_pred P t) = rename_set (Inh P) t" (is "?a = ?b")

〈proof 〉

lemma read_pred_rename_pred:
assumes "wf_renaming t"
shows "set (read_pred (rename_pred P t)) = (λelem. rename_elem elem

t) ‘ (set (read_pred P))" (is "?a = ?b")
〈proof 〉

lemma wf_rename_inv_other:
assumes "wf_renaming t"
shows "rename_state (rename_state x (rename_inv t)) t = x"
〈proof 〉

definition rename_list :: "’b list ⇒ ’b rename_t ⇒ ’b list" where
"rename_list l t = map (λelem. rename_elem elem t) l"

lemma rename_pred_comp_simple:
assumes "wf_renaming t"

and "wf_renaming (l1, l2, [], do)"
and "set (read_pred P) ⊆ set l1"
and "wf_assert P"

shows "rename_pred P (l1, rename_list l2 t, [], do) = rename_pred
(rename_pred P (l1, l2, [], do)) t" (is "?ra = ?rb")
〈proof 〉

lemma rename_state_neutral:
assumes "wf_renaming t"
shows "rename_state u t = u" (is "?r = u")

〈proof 〉

lemma rename_removes_vars_other:
assumes "wf_renaming (l1, l2, l3, do)"

and "set (read_other other) ⊆ set do"
shows "set (read_other (rename_other other (l1, l2, l3, do))) ∩ (set

l1 ∪ set l3) ⊆ set l2" (is "?a ⊆ ?b")
〈proof 〉

lemma pure_is_exactly_store_variant:
assumes "a << b"

and "pure b"
and "σ a = σ b"

shows "a = b"
〈proof 〉

definition h :: "’b list ⇒ ’a set" where
"h V = {ϕ. pure ϕ ∧ σ ϕ = set V}"

150

A.3. Semantics

lemma h_store:
assumes "ϕ ∈ h l"
shows "σ ϕ = set l"
〈proof 〉

lemma h_pure:
assumes "hx ∈ h x"
shows "pure hx"
〈proof 〉

lemma all_stores_exist:
"s ⊆ σ a =⇒ ∃ c. c << a ∧ σ c = s"

〈proof 〉

lemma h_bigger:
assumes "set x ⊆ σ ϕ"
shows "{ϕ} >> h x"

〈proof 〉

lemma h_lin_simpler:
assumes "set v = set v1 ∪ set v2"

and "set v1 ∩ set v2 = {}"
shows "h v = h v1 ⊕⊕ h v2" (is "?a = ?b")

〈proof 〉

lemma h_v_add:
"h v = h v ⊕⊕ h v" (is "?a = ?b")

〈proof 〉

lemma exists_list_inter:
"
∧
b. ∃ c. set c = set a ∩ set b"

〈proof 〉

lemma exists_list_minus:
"
∧
b. ∃ c. set c = set a - set b"

〈proof 〉

lemma h_lin:
assumes "set v = set v1 ∪ set v2"
shows "h v = h v1 ⊕⊕ h v2" (is "?a = ?b")

〈proof 〉

fun h_comp_some :: "’a ⇒ ’b list ⇒ ’a" where
"h_comp_some a l = (THE b. b << a ∧ σ b = σ a - set l ∧ pure b)"

lemma h_comp_some_exists:
assumes "b = h_comp_some a l"
shows "b << a ∧ σ b = σ a - set l ∧ pure b"

〈proof 〉

151

A. Appendix: Isabelle Formalization

definition h_comp :: "’a ⇒ ’b list ⇒ ’a" where
"h_comp ϕ V = (the (s_C ϕ ⊕ Some (h_comp_some ϕ V)))"

lemma h_comp_some_sum:
"Some (h_comp ϕ V) = s_C ϕ ⊕ Some (h_comp_some ϕ V)"

〈proof 〉

lemma h_comp_store:
"σ (h_comp ϕ l) = σ ϕ - set l"

〈proof 〉

lemma h_comp_grows:
assumes "c << a"
shows "h_comp c V << h_comp a V"

〈proof 〉

lemma h_comp_lin:
assumes "Some a = Some a1 ⊕ Some a2"
shows "Some (h_comp a V) = Some (h_comp a1 V) ⊕ Some (h_comp a2 V)"

〈proof 〉

lemma h_comp_not_here:
assumes "set V ∩ σ a = {}"
shows "h_comp a V = a"

〈proof 〉

lemma h_comp_sum:
"Some ϕ = Some (h_comp ϕ x) ⊕ s_core ϕ"
〈proof 〉

lemma h_comp_h:
assumes "ϕ ∈ h V"
shows "h_comp ϕ V = u"
〈proof 〉

lemma rename_removes_vars_list:
assumes "wf_renaming (l1, l2, l3, do)"

and "set l ⊆ set do"
shows "set (rename_list l (l1, l2, l3, do)) ∩ (set l1 ∪ set l3) ⊆

set l2" (is "?a ⊆ ?b")
〈proof 〉

lemma list_inclusion:
assumes "wf_renaming t"

and "set a ⊆ set b"
shows "set (rename_list a t) ⊆ set (rename_list b t)" (is "?a ⊆ ?b")

〈proof 〉

152

A.3. Semantics

lemma rename_list_same:
assumes "wf_renaming (l1, l2, l3, do)"
shows "rename_list l1 (l1, l2, l3, do) = l2"

〈proof 〉

lemma rename_modif_for_q:
assumes "wf_renaming (l1, l2, l3, do)"

and "set (read_pred Q) ⊆ set l1"
shows "set (read_pred (rename_pred Q (l1, l2, l3, do))) ⊆ set l2"

(is "?a ⊆ ?b")
〈proof 〉

lemma rename_removes_vars_pred:
assumes "wf_renaming (l1, l2, l3, do)"

and "set (read_pred P) ⊆ set do"
shows "set (read_pred (rename_pred P (l1, l2, l3, do))) ∩ (set l1 ∪

set l3) ⊆ set l2"
〈proof 〉

lemma rename_inv_def_pred:
assumes "wf_renaming t"
shows "rename_pred (rename_pred P t) (rename_inv t) = P"

〈proof 〉

lemma rename_pred_lnot:
"rename_pred (lnot b) t = lnot (rename_pred b t)"
〈proof 〉

lemma rename_list_same_length: "wf_renaming t =⇒ length (rename_list
l t) = length l"
〈proof 〉

lemma rename_list_concat: "wf_renaming t =⇒ rename_list (l1 @ l2) t
= rename_list l1 t @ rename_list l2 t"
〈proof 〉

lemma rename_elem_list:
assumes "i < length l"

and "wf_renaming t"
shows "rename_list l t ! i = rename_elem (l ! i) t"

〈proof 〉

lemma rename_list_distinct:
assumes "wf_renaming t"
and "distinct l"
shows "distinct (rename_list l t)"

〈proof 〉

fun modif :: "(’a, ’b, ’c) stmt ⇒ ’b list" where

153

A. Appendix: Isabelle Formalization

"modif (s1 ; s2) = modif s1 @ modif s2"
| "modif (If s1 s2) = modif s1 @ modif s2"
| "modif (MethodCall y m x) = y"
| "modif (While b I s) = modif s"
| "modif (Assume b) = []"
| "modif (Inhale P) = []"
| "modif (Exhale P) = []"
| "modif (Var l) = l"
| "modif (Havoc l) = l"
| "modif Skip = []"
| "modif (Other s) = modif_other s"

fun sigma_list :: "’a ⇒ ’b list" where
"sigma_list ϕ = (SOME l. set l = σ ϕ)"

lemma sigma_list_def:
"set (sigma_list ϕ) = σ ϕ"
〈proof 〉

A.3.2 Semantics

function semantics :: "(’a, ’b, ’c) program ⇒ ’a ⇒ (’a, ’b, ’c) stmt
⇒ ’a ss" where
"semantics Pr ϕ Skip = S {ϕ}"

| "semantics Pr ϕ (Assume b) = (if well_defined_assert b ϕ then if b
ϕ then S {ϕ} else S {}
else Error)"

| "semantics Pr ϕ (s1 ; s2) = (let r = semantics Pr ϕ s1 in
if r = Error then Error
else let A = get_S r in
union_set_ss ((λϕ’. semantics Pr ϕ’ s2) ‘ A))"

| "semantics Pr ϕ (If s1 s2) = (let r1 = semantics Pr ϕ s1 in
let r2 = semantics Pr ϕ s2 in
if r1 = Error ∨ r2 = Error then Error
else S (get_S r1 ∪ get_S r2))"

| "semantics Pr ϕ (Var x) = (if set x ∩ σ ϕ = {} then S ({ϕ} ⊕⊕ h x)
else Error)"
| "semantics Pr ϕ (Other s) = semantics_other Pr ϕ s"
| "semantics Pr ϕ (Havoc x) = (if set x ⊆ σ ϕ then S ({h_comp ϕ x} ⊕⊕
h x) else Error)"

| "semantics Pr ϕ (Inhale P) = (if well_defined_assert P ϕ then S ({ϕ}
⊕⊕ Inh P) else Error)"
| "semantics Pr ϕ (Exhale P) =
(if P ϕ ∧ well_defined_assert P ϕ then S {ϕ’ | ϕ’ i r. Some ϕ = Some

i ⊕ Some r ∧ i ∈ Inh P ∧ Some ϕ’ = s_core i ⊕ Some r}

154

A.3. Semantics

else Error)"

| "semantics Pr ϕ (MethodCall y m x) = (
if set x ∪ set y ⊆ σ ϕ then
let (_, args, ret, P, Q, _) = the (get_method Pr m) in semantics Pr

ϕ
(Exhale (rename_pred P (args @ ret, x @ y, [], [])); Havoc y ; Inhale

(rename_pred Q (args @ ret, x @ y, [], [])))
else Error)"

| "semantics Pr ϕ (While b I s) =
(let V = modif s in
if semantics Pr (|ϕ|) (Havoc V; Inhale I; Assume b; s ; Exhale I)

= Error then
Error

else
semantics Pr ϕ (Exhale I; Havoc V; Inhale I ; Assume (lnot b)))"

〈proof 〉
termination
〈proof 〉

fun read :: "(’a, ’b, ’c) stmt ⇒ ’b list" where
"read (s1 ; s2) = read s1 @ read s2"

| "read (If s1 s2) = read s1 @ read s2"
| "read (MethodCall y m x) = x @ y"
| "read (While b I s) = read s @ read_pred I @ read_pred b"
| "read (Assume b) = read_pred b"
| "read (Inhale P) = read_pred P"
| "read (Exhale P) = read_pred P"
| "read (Var l) = l"
| "read (Havoc l) = l"
| "read Skip = []"
| "read (Other s) = read_other s"

fun rename :: "(’a, ’b, ’c) stmt ⇒ ’b rename_t ⇒ (’a, ’b, ’c) stmt"
where

"rename (Inhale P) t = Inhale (rename_pred P t)"
| "rename (Exhale P) t = Exhale (rename_pred P t)"
| "rename (s1 ; s2) t = (rename s1 t ; rename s2 t)"
| "rename (Var x) t = Var (rename_list x t)"
| "rename (Havoc x) t = Havoc (rename_list x t)"
| "rename (If s1 s2) t = If (rename s1 t) (rename s2 t)"
| "rename (While b I s) t = While (rename_pred b t) (rename_pred I t)
(rename s t)"
| "rename (MethodCall y m x) t = MethodCall (rename_list y t) m (rename_list
x t)"
| "rename (Assume b) t = Assume (rename_pred b t)"
| "rename (Other other) t = Other (rename_other other t)"
| "rename Skip t = Skip"

155

A. Appendix: Isabelle Formalization

fun bigger_ss :: "’a ss ⇒ ’a ss ⇒ bool" (infixl ">>>" 60) where
"_ >>> Error ←→ True"

| "Error >>> _ ←→ False"
| "S A >>> S B ←→ A >> B"

fun sem :: "(’a, ’b, ’c) program ⇒ ’a set ⇒ (’a, ’b, ’c) stmt ⇒ ’a
set" where
"sem Pr A s = (

⋃
a∈A. get_S (semantics Pr a s))"

definition ver :: "(’a, ’b, ’c) program ⇒ ’a set ⇒ (’a, ’b, ’c) stmt
⇒ bool" where
"ver Pr A st ←→ (∀ a∈A. semantics Pr a st 6= Error)"

definition mono :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) stmt ⇒ bool"
where

"mono Pr s ←→ (∀ a b. b << a −→ semantics Pr a s >>> semantics Pr
b s)"

definition smonoIn :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) stmt ⇒ bool"
where

"smonoIn Pr st ←→ (∀ A B. A >> B −→ (ver Pr B st −→ ver Pr A st))"

definition smonoOut :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) stmt ⇒ bool"
where

"smonoOut Pr st ←→ (∀ A B. ver Pr B st ∧ A >> B −→ (sem Pr A st >>
sem Pr B st))"

definition smono :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) stmt ⇒ bool"
where

"smono Pr st ←→ smonoIn Pr st ∧ smonoOut Pr st"

lemma v_singleton: "ver Pr A s ←→ (∀ a∈A. ver Pr {a} s)"
〈proof 〉

lemma s_singleton: "sem Pr A s = (
⋃
a∈A. sem Pr {a} s)"

〈proof 〉

lemma elem_sem:
"x ∈ sem Pr A s ←→ (∃ a∈A. x ∈ sem Pr {a} s)"
〈proof 〉

lemma smaller_error:
assumes "Error >>> x"
shows "x = Error"
〈proof 〉

lemma bigger_not_error:
assumes "x >>> y"

and "y 6= Error"

156

A.3. Semantics

shows "x 6= Error"
〈proof 〉

lemma smonoIn_singleton:
"smonoIn Pr s ←→ (∀ a b. b << a −→ (ver Pr {b} s −→ ver Pr {a} s))"

(is "?a ←→ ?b")
〈proof 〉

lemma smonoOut_singleton:
"smonoOut Pr s ←→ (∀ a b. ver Pr {b} s ∧ b << a −→ (sem Pr {a} s

>> sem Pr {b} s))" (is "?a ←→ ?b")
〈proof 〉

lemma mono_smono:
"mono Pr s ←→ smono Pr s" (is "?a ←→ ?b")

〈proof 〉

fun wf_stmt :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) stmt ⇒ bool" where
"wf_stmt Pr (s1; s2) ←→ wf_stmt Pr s1 ∧ wf_stmt Pr s2"

| "wf_stmt Pr (If s1 s2) ←→ wf_stmt Pr s1 ∧ wf_stmt Pr s2"
| "wf_stmt Pr (While b I s) ←→ wf_assert I ∧ wf_stmt Pr s"
| "wf_stmt Pr (MethodCall y m x) ←→ (let r = get_method Pr m in
r 6= None ∧ (let (_, args, ret, _, _, _) = the r in length x = length

args
∧ length y = length ret ∧ distinct (x @ y)))"

| "wf_stmt Pr (Inhale P) ←→ supported P"
| "wf_stmt Pr (Exhale P) ←→ supported P"
| "wf_stmt Pr (Other other) ←→ wf_other Pr other"
| "wf_stmt Pr _ ←→ True"

fun wf_method :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) method ⇒ bool"
where

"wf_method Pr (m, args, ret, P, Q, s) ←→
wf_assert P ∧ wf_assert Q ∧ distinct (args @ ret) ∧ set args ∩ set

(modif s) = {} ∧
set (read_pred P) ⊆ set args ∧ wf_stmt Pr s ∧ set (read_pred Q) ⊆

set args ∪ set ret"

fun wf_program_aux :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) program ⇒
bool" where
"wf_program_aux Pr [] ←→ True"

| "wf_program_aux Pr (t # q) ←→ wf_method Pr t ∧ wf_program_aux Pr q"

fun wf_program :: "(’a, ’b, ’c) program ⇒ bool" where
"wf_program Pr ←→ wf_program_aux Pr Pr"

lemma get_method_same_name:
"get_method Pr m 6= None =⇒ fst (the (get_method Pr m)) = m"
〈proof 〉

157

A. Appendix: Isabelle Formalization

lemma simple_method_exists:
assumes "wf_stmt Pr (MethodCall y m x)"

shows "∃ args ret P Q s. get_method Pr m = Some (m, args, ret, P, Q,
s)"
〈proof 〉

lemma sem_loop:
assumes "ver Pr {ϕ} (While b I s)"
shows "sem Pr {ϕ} (While b I s) = sem Pr {ϕ} (Exhale I; Havoc (modif

s); Inhale I; Assume (lnot b))"
〈proof 〉

lemma ver_method_real:
assumes "get_method Pr m = Some (m, args, ret, P, Q, s)"
shows "ver Pr {ϕ} (MethodCall y m x) ←→

ver Pr {ϕ} (Exhale (rename_pred P (args @ ret, x @ y, [], []))
; Havoc y ; Inhale (rename_pred Q (args @ ret, x @ y, [], []))) ∧

(set x ∪ set y) ⊆ σ ϕ"
〈proof 〉

lemma ver_loop: "ver Pr {ϕ} (While b I s) ←→
ver Pr {ϕ} (Exhale I; Havoc (modif s); Inhale I ; Assume (lnot b)) ∧
ver Pr { |ϕ| } (Havoc (modif s); Inhale I; Assume b; s ; Exhale I)"
〈proof 〉

lemma sem_method_real:
assumes "get_method Pr m = Some (m, args, ret, P, Q, s)"

and "ver Pr {ϕ} (MethodCall y m x)"
shows "sem Pr {ϕ} (MethodCall y m x) =

sem Pr {ϕ} (Exhale (rename_pred P (args @ ret, x @ y, [], []));
Havoc y ;

Inhale (rename_pred Q (args @ ret, x @ y, [], [])))"
〈proof 〉

definition well_defined_assert_set :: "’a assertion ⇒ ’a set ⇒ bool" where
"well_defined_assert_set P A ←→ (∀ a∈A. well_defined_assert P a)"

lemma ver_inhale_single:
"well_defined_assert P ϕ ←→ ver Pr {ϕ} (Inhale P)"
〈proof 〉

lemma ver_inhale:
"well_defined_assert_set P A ←→ ver Pr A (Inhale P)"
〈proof 〉

lemma union_sum:
"(
⋃
a∈A. {a} ⊕⊕ B) = A ⊕⊕ B" (is "?a = ?b")

〈proof 〉

158

A.3. Semantics

lemma sem_inhale:
assumes "well_defined_assert_set P A"
shows "sem Pr A (Inhale P) = A ⊕⊕ Inh P"
〈proof 〉

lemma ver_exhale:
"ver Pr {ϕ} (Exhale P) = P ϕ"
〈proof 〉

lemma singleton_sem:
assumes "ver Pr {ϕ} s"
shows "sem Pr {ϕ} s = get_S (semantics Pr ϕ s)"
〈proof 〉

lemma sem_exhale:
assumes "P ϕ"
shows "sem Pr {ϕ} (Exhale P) = {ϕ’ | ϕ’ i r. Some ϕ = Some i ⊕ Some

r ∧ i ∈ Inh P ∧ Some ϕ’ = s_core i ⊕ Some r}"
〈proof 〉

lemma sem_skip:
"(ver Pr A Skip) ∧ (sem Pr A Skip = A)"

〈proof 〉

lemma ver_if:
"ver Pr A (If s1 s2) = (ver Pr A s1 ∧ ver Pr A s2)"
〈proof 〉

lemma sem_if_single:
assumes "ver Pr {ϕ} (If s1 s2)"
shows "sem Pr {ϕ} (If s1 s2) = sem Pr {ϕ} s1 ∪ sem Pr {ϕ} s2"
〈proof 〉

lemma sem_if:
assumes "ver Pr A (If s1 s2)"
shows "sem Pr A (If s1 s2) = sem Pr A s1 ∪ sem Pr A s2"

〈proof 〉

lemma sem_assume_true:
assumes "b ϕ"

and "well_defined_assert b ϕ"
shows "sem Pr {ϕ} (Assume b) = {ϕ}"
〈proof 〉

lemma sem_assume_false:
assumes "¬ b ϕ"
shows "sem Pr {ϕ} (Assume b) = {}"
〈proof 〉

159

A. Appendix: Isabelle Formalization

lemma ver_havoc:
"ver Pr {ϕ} (Havoc l) ←→ set l ⊆ σ ϕ"
〈proof 〉

lemma sem_havoc:
assumes "ver Pr {ϕ} (Havoc l)"
shows "sem Pr {ϕ} (Havoc l) = {h_comp ϕ l} ⊕⊕ h l"
〈proof 〉

lemma ver_var:
"ver Pr {ϕ} (Var x) ←→ set x ∩ σ ϕ = {}"
〈proof 〉

lemma sem_var:
assumes "ver Pr A (Var x)"
shows "sem Pr A (Var x) = A ⊕⊕ h x"
〈proof 〉

lemma ver_seq_single:
"ver Pr {ϕ} (Seq s1 s2) ←→ ver Pr {ϕ} s1 ∧ ver Pr (sem Pr {ϕ} s1)

s2" (is "?a ←→ ?b")
〈proof 〉

lemma ver_seq:
"ver Pr A (Seq s1 s2) ←→ ver Pr A s1 ∧ ver Pr (sem Pr A s1) s2"

〈proof 〉

lemma union_ss:
assumes "union_set_ss ((λϕ’. semantics Pr ϕ’ s) ‘ A) = S r"

and "ver Pr A s"
shows "r = sem Pr A s"

〈proof 〉

lemma sem_seq_single:
assumes "ver Pr {ϕ} (s1 ; s2)"
shows "sem Pr {ϕ} (Seq s1 s2) = sem Pr (sem Pr {ϕ} s1) s2" (is "?a

= ?b")
〈proof 〉

lemma sem_seq:
assumes "ver Pr A (s1 ; s2)"
shows "sem Pr A (Seq s1 s2) = sem Pr (sem Pr A s1) s2"

〈proof 〉

lemma rename_set_empty:
assumes "wf_renaming t"
shows "rename_set {u} t = {u}" (is "?a = ?b")

〈proof 〉

160

A.3. Semantics

lemma store_same_pred_supp_inhale:
assumes "supported P"

and "ver Pr {a} (Inhale P)"
and "b ∈ sem Pr {a} (Inhale P)"

shows "σ b = σ a"
〈proof 〉

lemma exhale_verif:
assumes "ver Pr {ϕ} (Exhale P)"

shows "P ϕ"
〈proof 〉

lemma inh_and_supported:
assumes "supported P"

and "a ∈ Inh P"
and "b ∈ Inh P"
and "a << ϕ"
and "b << ϕ"
and "P ϕ"

shows "a = b"
〈proof 〉

lemma exhale_sem_inh:
assumes "supported P"

and "i ∈ Inh P"
and "Some ϕ = Some i ⊕ Some r"
and "ver Pr {ϕ} (Exhale P)"

shows "sem Pr {ϕ} (Exhale P) = {the (s_core i ⊕ Some r)}"
〈proof 〉

lemma store_same_pred_supp_exhale:
assumes "supported P"

and "ver Pr {a} (Exhale P)"
and "b ∈ sem Pr {a} (Exhale P)"

shows "σ b = σ a"
〈proof 〉

lemma modif_in_read: "set (modif s) ⊆ set (read s)"
〈proof 〉

lemma rename_modif_list:
assumes "wf_renaming t"
shows "modif (rename s t) = rename_list (modif s) t"

〈proof 〉

lemma rename_modif_no_inter_elem: "wf_renaming t ∧ set l ∩ set (modif
s) = {}

=⇒ set (rename_list l t) ∩ set (modif (rename s t)) = {}"

161

A. Appendix: Isabelle Formalization

(is "?a =⇒ ?b")
〈proof 〉

lemma rename_store_inv: "wf_renaming t ∧ set (modif (rename s t)) ∩
σ (rename_state r t) = {} =⇒ set (modif s) ∩ σ r = {}" (is "?a =⇒ ?b")
〈proof 〉

lemma rename_modif_no_inter:
assumes "wf_renaming (args @ ret, x @ y, l, do)"

and "length args = length x"
and "set args ∩ set (modif s) = {}"
and "set (modif s) ⊆ set do"

shows "set x ∩ set (modif (rename s (args @ ret, x @ y, l, do)))
= {}"
〈proof 〉

lemma rename_store_lemma: "wf_renaming t =⇒ set (modif (rename s t))
∩ σ r = {} =⇒ set (modif s) ∩ σ (rename_state r (rename_inv t)) = {}"
〈proof 〉

lemma rename_removes_vars:
"wf_renaming (l1, l2, l3, do) ∧ set (read s) ⊆ set do −→ set (read

(rename s (l1, l2, l3, do))) ∩ (set l1 ∪ set l3) ⊆ set l2"
〈proof 〉

lemma rename_list_inv:
assumes "wf_renaming t"
shows "rename_list (rename_list l t) (rename_inv t) = l"
〈proof 〉

lemma renaming_invert:
"wf_renaming t −→ rename (rename s t) (rename_inv t) = s"

〈proof 〉

lemma member_rename_set_inv:
assumes "wf_renaming t"
shows "rename_state x (rename_inv t) ∈ A ←→ x ∈ rename_set A t"
〈proof 〉

lemma h_rename_set:
assumes "wf_renaming t"
shows "h (rename_list V t) = rename_set (h V) t" (is "?a = ?b")

〈proof 〉

lemma rename_set_add:
assumes "wf_renaming t"
shows "rename_set (A ⊕⊕ B) t = rename_set A t ⊕⊕ rename_set B t"

(is "?A = ?B")
〈proof 〉

162

A.3. Semantics

lemma h_comp_c_same:
"C (h_comp x l) = C x"
〈proof 〉

lemma wf_renaming_rename_list_set:
assumes "wf_renaming t"

and "set A = set B - set D"
shows "set (rename_list A t) = set (rename_list B t) - set (rename_list

D t)" (is "?a = ?b")
〈proof 〉

lemma h_comp_rename:
assumes "wf_renaming t"
shows "h_comp (rename_state ϕ t) (rename_list V t) = rename_state (h_comp

ϕ V) t" (is "?a = ?b")
〈proof 〉

lemma wf_core_rename_same:
assumes "wf_renaming t"
shows "rename_state (|x|) t = | rename_state x t |"

〈proof 〉

definition rename_sem_property :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c)
stmt ⇒ ’b rename_t ⇒ bool" where
"rename_sem_property Pr s t ←→ (∀ ϕ. wf_renaming t ∧ wf_stmt Pr s

∧ wf_program Pr ∧ ver Pr {ϕ} s −→
ver Pr {rename_state ϕ t} (rename s t) ∧ sem Pr {rename_state ϕ t}

(rename s t) = rename_set (sem Pr {ϕ} s) t)"

lemma rename_sem_inhale:
assumes "wf_renaming t"

and "ver Pr {ϕ} (Inhale P)"
shows "ver Pr {rename_state ϕ t} (rename (Inhale P) t)"

and "sem Pr {rename_state ϕ t} (rename (Inhale P) t) = rename_set
(sem Pr {ϕ} (Inhale P)) t"
〈proof 〉

lemma rename_sem_assume:
assumes "wf_renaming t"

and "ver Pr {ϕ} (Assume b)"
shows "ver Pr {rename_state ϕ t} (rename (Assume b) t)"

and "sem Pr {rename_state ϕ t} (rename (Assume b) t) = rename_set
(sem Pr {ϕ} (Assume b)) t"
〈proof 〉

lemma rename_sem_exhale:
assumes "wf_renaming t"

and "ver Pr {ϕ} (Exhale P)"

163

A. Appendix: Isabelle Formalization

shows "ver Pr {rename_state ϕ t} (rename (Exhale P) t)"
and "sem Pr {rename_state ϕ t} (rename (Exhale P) t) = rename_set

(sem Pr {ϕ} (Exhale P)) t"
〈proof 〉

lemma rename_sem_havoc:
assumes "wf_renaming t"

and "ver Pr {ϕ} (Havoc V)"
shows "ver Pr {rename_state ϕ t} (rename (Havoc V) t)"

and "sem Pr {rename_state ϕ t} (rename (Havoc V) t) = rename_set
(sem Pr {ϕ} (Havoc V)) t"
〈proof 〉

lemma rename_sem_var:
assumes "wf_renaming t"

and "ver Pr {ϕ} (Var V)"
shows "ver Pr {rename_state ϕ t} (rename (Var V) t)"

and "sem Pr {rename_state ϕ t} (rename (Var V) t) = rename_set
(sem Pr {ϕ} (Var V)) t"
〈proof 〉

lemma rename_sem_seq:
assumes "wf_renaming t"

and "ver Pr {ϕ} (s1 ; s2)"
and "wf_stmt Pr (s1 ; s2)"
and "wf_program Pr"
and "

∧
ϕ. wf_stmt Pr s1 =⇒ wf_program Pr =⇒ ver Pr {ϕ} s1 =⇒

ver Pr {rename_state ϕ t} (rename s1 t) ∧ sem Pr {rename_state ϕ t} (rename
s1 t) = rename_set (sem Pr {ϕ} s1) t"

and "
∧

ϕ. wf_stmt Pr s2 =⇒ wf_program Pr =⇒ ver Pr {ϕ} s2 =⇒
ver Pr {rename_state ϕ t} (rename s2 t) ∧ sem Pr {rename_state ϕ t} (rename
s2 t) = rename_set (sem Pr {ϕ} s2) t"

shows "ver Pr {rename_state ϕ t} (rename (s1 ; s2) t)"
and "sem Pr {rename_state ϕ t} (rename (s1 ; s2) t) = rename_set

(sem Pr {ϕ} (s1 ; s2)) t"
〈proof 〉

lemma seq_rename_sem_property:
assumes "rename_sem_property Pr s1 t"

and "rename_sem_property Pr s2 t"
and "wf_renaming t"

shows "rename_sem_property Pr (s1 ; s2) t"
〈proof 〉

lemma wf_program_method_aux:
"wf_program_aux Pr P ∧ get_method P name = Some m =⇒ wf_method Pr

m"
〈proof 〉

164

A.3. Semantics

lemma wf_method_exists_equiv:
assumes "get_method Pr m = Some (m, args, ret, P, Q, s)"
shows "wf_stmt Pr (MethodCall y m x) ←→ length x = length args
∧ length y = length ret ∧ distinct (x @ y)"
〈proof 〉

lemma verif_rename_pred:
assumes "wf_renaming t"
shows "(rename_pred P t) a ←→ P (rename_state a (rename_inv t))"
〈proof 〉

lemma smaller_same_one_side:
assumes "wf_renaming t"
and "a << b"
shows "rename_state a t << rename_state b t"

〈proof 〉

lemma smaller_same:
assumes "wf_renaming t"
shows "a << b ←→ rename_state a t << rename_state b t"
〈proof 〉

lemma rename_pred_same_supported:
assumes "supported P"

and "wf_renaming t"
shows "supported (rename_pred P t)"

〈proof 〉

lemma well_defined_assert_monoin:
assumes "wf_assert P"

and "well_defined_assert P a"
and "a << b"

shows "well_defined_assert P b"
〈proof 〉

lemma rename_pred_same_intui:
assumes "wf_assert P"

and "wf_renaming t"
shows "wf_assert (rename_pred P t)"

〈proof 〉

lemma same_wf_rename:
assumes "wf_assert P"

and "wf_renaming t"
shows "wf_assert (rename_pred P t)"
〈proof 〉

lemma wf_stmt_wf_renaming:
assumes "wf_renaming t"

165

A. Appendix: Isabelle Formalization

shows "wf_stmt Pr s −→ wf_stmt Pr (rename s t)"
〈proof 〉

lemma rename_all:
assumes "wf_renaming t"
shows "

∧
ϕ. wf_program Pr =⇒ wf_stmt Pr s =⇒ ver Pr {ϕ} s =⇒ ver

Pr {rename_state ϕ t} (rename s t) ∧ sem Pr {rename_state ϕ t} (rename
s t) = rename_set (sem Pr {ϕ} s) t"
〈proof 〉

lemma rename_ver:
assumes "wf_renaming t"

and "wf_program Pr"
and "wf_stmt Pr s"

shows "ver Pr {ϕ} s ←→ ver Pr {rename_state ϕ t} (rename s t)" (is
"?a ←→ ?b")
〈proof 〉

lemma rename_sem:
assumes "wf_renaming t"

and "wf_program Pr"
and "wf_stmt Pr s"
and "ver Pr {ϕ} s"

shows "sem Pr {rename_state ϕ t} (rename s t) = rename_set (sem Pr
{ϕ} s) t"
〈proof 〉

lemma rename_ver_set:
assumes "ver Pr A s"
and "wf_renaming t"
and "wf_program Pr"
and "wf_stmt Pr s"
shows "ver Pr (rename_set A t) (rename s t)"
〈proof 〉

lemma method_verif_rename:
assumes "ver Pr {u} (Var (args @ ret) ; Inhale P ; s ; Exhale Q)"

and "wf_renaming (args @ ret, x @ y, l, do)"
and "wf_program Pr"
and "wf_stmt Pr (Var (args @ ret) ; Inhale P ; s ; Exhale Q)"

shows "ver Pr {u} (Var (x @ y) ; Inhale (rename_pred P (args @ ret,
x @ y, l, do)) ;

rename s (args @ ret, x @ y, l, do) ; Exhale (rename_pred Q (args
@ ret, x @ y, l, do)))"
〈proof 〉

lemma sem_method:
assumes "ver Pr {ϕ} (MethodCall y m x)"

and "wf_stmt Pr (MethodCall y m x)"

166

A.3. Semantics

shows "∃ args ret P Q s. get_method Pr m = Some (m, args, ret, P, Q,
s) ∧

sem Pr {ϕ} (MethodCall y m x) = sem Pr {ϕ} (Exhale (rename_pred
P (args @ ret, x @ y, [], [])); Havoc y ;

Inhale (rename_pred Q (args @ ret, x @ y, [], [])))"
〈proof 〉

lemma wf_program_method:
assumes "wf_program Pr"

and "get_method Pr name = Some m"
shows "wf_method Pr m"

〈proof 〉

lemma ver_method:
assumes "ver Pr {ϕ} (MethodCall y m x)"

and "wf_stmt Pr (MethodCall y m x)"
and "wf_program Pr"

shows "∃ args ret P Q s.
wf_method Pr (m, args, ret, P, Q, s) ∧
ver Pr {ϕ} (Exhale (rename_pred P (args @ ret, x @ y, [], []))

; Havoc y ; Inhale (rename_pred Q (args @ ret, x @ y, [], []))) ∧
(set x ∪ set y) ⊆ σ ϕ ∧
length args = length x ∧ length ret = length y"

〈proof 〉

lemma modif_property_other:
"wf_program Pr ∧ wf_other Pr other ∧ ver Pr {a} (Other other) ∧ c ∈

sem Pr {a} (Other other) −→ σ a ⊆ σ c ∧ σ c ⊆ σ a ∪ set (modif (Other
other))"
〈proof 〉

definition modif_property :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) stmt
⇒ bool" where
"modif_property Pr s ←→ (∀ a c. wf_program Pr ∧ wf_stmt Pr s ∧ ver

Pr {a} s ∧ c ∈ sem Pr {a} s −→ σ a ⊆ σ c ∧ σ c ⊆ σ a ∪ set (modif
s))"

lemma modif_property_inhale:
"modif_property Pr (Inhale P)"
〈proof 〉

lemma modif_property_exhale:
"modif_property Pr (Exhale P)"
〈proof 〉

lemma modif_property_havoc:
"modif_property Pr (Havoc y)"

〈proof 〉

167

A. Appendix: Isabelle Formalization

lemma store_modif_sem_seq:
assumes "s = s1 ; s2"

and "
∧
a c. wf_program Pr ∧ wf_stmt Pr s1 ∧ ver Pr {a} s1 ∧ c ∈

sem Pr {a} s1 =⇒ σ a ⊆ σ c ∧ σ c ⊆ σ a ∪ set (modif s1)"
and "

∧
a c. wf_program Pr ∧ wf_stmt Pr s2 ∧ ver Pr {a} s2 ∧ c ∈

sem Pr {a} s2 =⇒ σ a ⊆ σ c ∧ σ c ⊆ σ a ∪ set (modif s2)"
and "wf_program Pr ∧ wf_stmt Pr s ∧ ver Pr {a} s ∧ c ∈ sem Pr

{a} s"
shows "σ a ⊆ σ c ∧ σ c ⊆ σ a ∪ set (modif s)"

〈proof 〉

lemma modif_property_seq:
assumes "modif_property Pr s1"

and "modif_property Pr s2"
shows "modif_property Pr (s1 ; s2)"

〈proof 〉

lemma modif_property_assume:
"modif_property Pr (Assume b)"
〈proof 〉

lemma wf_wf_renaming:
assumes "wf_program Pr"

and "wf_stmt Pr (MethodCall y m x)"
and "get_method Pr m = Some (m, args, ret, P, Q, s)"

shows "wf_renaming (args @ ret, x @ y, l, do)"
and "wf_renaming (args @ ret, x @ y, l, do)"

〈proof 〉

lemma store_modif_sem: "wf_program Pr ∧ wf_stmt Pr s ∧ ver Pr {a} s
∧ c ∈ sem Pr {a} s =⇒ σ a ⊆ σ c ∧ σ c ⊆ σ a ∪ set (modif s)"
〈proof 〉

lemma ver_method_set_ret:
assumes "ver Pr {ϕ} (MethodCall y m x)"

and "get_method Pr m = Some (m, args, ret, P, Q, s)"
and "a ∈ sem Pr {u} (Var (args @ ret) ; Inhale P ; s ; Exhale Q)"
and "ver Pr {u} (Var (args @ ret) ; Inhale P ; s ; Exhale Q)"
and "wf_program Pr"

shows "set ret ⊆ σ a"
〈proof 〉

lemma h_comp_only_pure: "C ϕ = C (h_comp ϕ l)"
〈proof 〉

lemma h_comp_smaller: "h_comp ϕ x << ϕ"
〈proof 〉

lemma var_sem_empty:

168

A.3. Semantics

"sem Pr {u} (Var x) = h x"
〈proof 〉

lemma havoc_concat:
"h (a @ b) = h a ⊕⊕ h b"
〈proof 〉

lemma havoc_store_bigger:
assumes "set x ⊆ σ ϕ"
shows "{ϕ} >> {ϕ} ⊕⊕ h x"

〈proof 〉

lemma supported_intui_exhale:
assumes "supported P"

and "intuitionistic P"
shows "ver Pr A (Exhale P) ←→ A >> Inh P"

〈proof 〉

lemma int_squared_exhale:
assumes "supported P"

and "intuitionistic P"
and "P ϕ"
and "Some ϕ’ = Some ϕ ⊕ Some r"

shows "sem Pr {ϕ’} (Exhale P) = (sem Pr {ϕ} (Exhale P)) ⊕⊕ {r}"
〈proof 〉

lemma int_squared_inhale:
assumes "supported P"

and "Some ϕ’ = Some ϕ ⊕ Some r"
and "wf_assert P"
and "ver Pr {ϕ} (Inhale P)"

shows "sem Pr {ϕ’} (Inhale P) = (sem Pr {ϕ} (Inhale P)) ⊕⊕ {r}"
〈proof 〉

lemma int_squared_exhale_for_sets:
assumes "wf_assert P"

and "∀ ϕ∈A. P ϕ"
shows "sem Pr (A ⊕⊕ {r}) (Exhale P) ⊆ (sem Pr A (Exhale P)) ⊕⊕

{r}" (is "?ae ⊆ ?be")
〈proof 〉

lemma wf_assert_monoIn:
assumes "wf_assert P"
shows "smonoIn Pr (Inhale P)"

and "smonoIn Pr (Exhale P)"
〈proof 〉

lemma int_squared_inhale_for_sets:

169

A. Appendix: Isabelle Formalization

assumes "wf_assert P"
and "ver Pr A (Inhale P)"

shows "sem Pr (A ⊕⊕ {r}) (Inhale P) = (sem Pr A (Inhale P)) ⊕⊕
{r}"
〈proof 〉

lemma smono_comp:
assumes "smono Pr s1"

and "smono Pr s2"
shows "smono Pr (Seq s1 s2)"

〈proof 〉

lemma smono_if:
assumes "smono Pr s1"

and "smono Pr s2"
shows "smono Pr (If s1 s2)"

〈proof 〉

fun framing :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) stmt ⇒ bool" where
"framing Pr st = (smono Pr st ∧
(∀ ϕ r. ver Pr {ϕ} st ∧ list.set (modif st) ∩ σ r = {} −→ (sem Pr

({ϕ} ⊕⊕ {r}) st >> (sem Pr {ϕ} st ⊕⊕ {r}))))"

lemma framing_set:
"framing Pr s ←→ smono Pr s ∧ (∀ A r. ((ver Pr A s ∧ list.set (modif

s) ∩ σ r = {}) −→ (sem Pr (A ⊕⊕ {r}) s >> (sem Pr A s ⊕⊕ {r}))))"
〈proof 〉

lemma simple_rename_set_inv:
assumes "wf_renaming t"
shows "rename_set (rename_set A t) (rename_inv t) = A"

〈proof 〉

lemma simple_state_in_set:
assumes "wf_renaming t"
shows "rename_state a t ∈ rename_set A t ←→ a ∈ A" (is "?a ←→ ?b")
〈proof 〉

lemma simple_renaming_from_set:
assumes "x ∈ rename_set A t"
shows "∃ a ∈ A. x = rename_state a t"
〈proof 〉

lemma rename_set_sum:
assumes "wf_renaming t"
shows "rename_set (A ⊕⊕ B) t = rename_set A t ⊕⊕ rename_set B t"

〈proof 〉

lemma rename_set_smaller:

170

A.3. Semantics

assumes "wf_renaming t"
shows "A >> B ←→ rename_set A t >> rename_set B t" (is "?a ←→ ?b")

〈proof 〉

lemma mono_renamed:
assumes "smono Pr s"

and "wf_renaming t"
and "wf_program Pr"
and "wf_stmt Pr s"

shows "smono Pr (rename s t)"
〈proof 〉

lemma rename_singleton:
"rename_set {a} t = {rename_state a t}"
〈proof 〉

lemma rename_sem_set:
assumes "wf_renaming t"

and "wf_program Pr"
and "wf_stmt Pr s"

shows "sem Pr (rename_set A t) s = rename_set (sem Pr A (rename s (rename_inv
t))) t" (is "?a = ?b")
〈proof 〉

lemma framing_renamed:
assumes "framing Pr s"
and "wf_renaming t"
and "wf_program Pr"
and "wf_stmt Pr s"

shows "framing Pr (rename s t)"
〈proof 〉

lemma assume_false_smono:
"smono Pr (Assume lfalse)"

〈proof 〉

lemma inhale_smono:
assumes "wf_assert P"
shows "smono Pr (Inhale P)"

〈proof 〉

lemma exhale_elem:
assumes "ver Pr {a} (Exhale P)"

shows "sa ∈ sem Pr {a} (Exhale P) ←→ (∃ i r. Some a = Some i ⊕ Some
r ∧ i ∈ Inh P ∧ Some sa = s_core i ⊕ Some r)" (is "?a ←→ ?b")
〈proof 〉

lemma exhale_smono:
assumes "wf_assert P"

171

A. Appendix: Isabelle Formalization

shows "smono Pr (Exhale P)"
〈proof 〉

lemma havoc_smono:
"smono Pr (Havoc x)"

〈proof 〉

lemma smono_out_equiv:
assumes "

∧
ϕ. ver Pr {ϕ} s2 =⇒ sem Pr {ϕ} s1 = sem Pr {ϕ} s2"

and "smonoOut Pr s1"
and "

∧
ϕ. ver Pr {ϕ} s2 =⇒ ver Pr {ϕ} s1"

and "smonoIn Pr s2"
shows "smonoOut Pr s2"

〈proof 〉

lemma method_smono_in:
assumes "wf_program Pr"

and "wf_stmt Pr (MethodCall y m x)"
shows "smonoIn Pr (MethodCall y m x)"

〈proof 〉

lemma method_smono:
assumes "wf_program Pr"

and "wf_stmt Pr (MethodCall y m x)"
shows "smono Pr (MethodCall y m x)" (is "smono Pr ?s")

〈proof 〉

fun ver_program_aux :: "(’a, ’b, ’c) program ⇒ (’a, ’b, ’c) program ⇒
bool" where
"ver_program_aux Pr [] ←→ True"

| "ver_program_aux Pr ((_, args, ret, P, Q, s) # q) ←→ ver Pr {u} (Var
(args @ ret) ; Inhale P ; s ; Exhale Q) ∧ ver_program_aux Pr q"

fun ver_program :: "(’a, ’b, ’c) program ⇒ bool" where
"ver_program Pr ←→ ver_program_aux Pr Pr"

end

end

172

A.4. Soundness

A.4 Soundness
theory Soundness

imports Semantics
begin

context semantics_algebra
begin

definition wfm :: "(’a, ’b, ’c) program ⇒ ’a assertion ⇒ bool" where
"wfm Pr b ←→ smono Pr (Assume b) ∧ smono Pr (Assume (lnot b))"

lemma wfm_not_same:
"lnot (lnot b) = b"

〈proof 〉

lemma wfm_not:
"wfm Pr b ←→ wfm Pr (lnot b)"
〈proof 〉

lemma while_smono_in:
assumes "wf_assert I"

and "smono Pr s"
and "wfm Pr b"

shows "smonoIn Pr (While b I s)"
〈proof 〉

lemma while_smono:
assumes "wf_assert I"

and "smono Pr s"
and "wfm Pr b"

shows "smono Pr (While b I s)"
〈proof 〉

lemma exhale_false_single:
"¬ (ver Pr {ϕ} (Exhale lfalse))"
〈proof 〉

fun inlinable :: "(’a, ’b, ’c) stmt ⇒ bool" where
"inlinable (MethodCall _ _ _) = True"

| "inlinable (While _ _ _) = True"
| "inlinable (Seq a b) = (inlinable a ∨ inlinable b)"
| "inlinable (If a b) = (inlinable a ∨ inlinable b)"
| "inlinable _ = False"

fun inline :: "(’a, ’b, ’c) program ⇒ nat => ’b list ⇒ (’a, ’b, ’c)
stmt ⇒ (’a, ’b, ’c) stmt" where
"inline Pr 0 _ (MethodCall _ _ _) = Assume lfalse"

| "inline Pr 0 _ (While b _ _) = Assume (lnot b)"
| "inline Pr (Suc n) l (MethodCall y name x) = (let r = get_method Pr

173

A. Appendix: Isabelle Formalization

name in
if r = None then
(Exhale lfalse)

else
let (_, args, ret, _, _, s) = the r in
let new_s = rename s (args @ ret, x @ y, l, read s) in
let new_l = l @ read new_s in
inline Pr n new_l new_s)"

| "inline Pr (Suc n) l (While b I s) = If (Assume b ; inline Pr n l s
; inline Pr n l (While b I s)) (Assume (lnot b))"
| "inline Pr n l (Seq a b) = Seq (inline Pr n l a) (inline Pr n l b)"
| "inline Pr n l (If a b) = If (inline Pr n l a) (inline Pr n l b)"
| "inline Pr 0 _ s = s"
| "inline Pr _ _ Skip = Skip"
| "inline Pr _ _ s = s"

lemma not_inlinable_id:
"¬ inlinable s =⇒ inline Pr n l s = s"
〈proof 〉

lemma empty_set_goes_empty:
assumes "sem Pr A s1 = {}"

and "ver Pr A s1"
shows "sem Pr A (s1 ; s2) = {}"

〈proof 〉

lemma semantics_union:
"(
⋃
a∈A. sem Pr (f a) s) = sem Pr (

⋃
a∈A. f a) s"

〈proof 〉

lemma rename_set_union:
"(
⋃
a∈A. rename_set (f a) t) = rename_set (

⋃
a∈A. f a) t"

〈proof 〉

fun
SC :: "(’a, ’b, ’c) program ⇒ nat ⇒ ’b list ⇒ (’a, ’b, ’c) stmt ⇒

bool" and
inlinable_SC :: "(’a, ’b, ’c) program ⇒ nat ⇒ ’b list ⇒ (’a, ’b,

’c) stmt ⇒ bool"
where

"SC Pr n l st = (if (¬ inlinable st) then smono Pr st else inlinable_SC
Pr n l st)"
| "inlinable_SC Pr (Suc n) l (MethodCall y m x) = (let (_, args, ret,
_, _, s) = the (get_method Pr m) in

let new_s = rename s (args @ ret, x @ y, l, read s) in let new_l =
l @ read new_s in

(framing Pr (inline Pr n new_l new_s) ∨ framing Pr s) ∧ SC Pr n new_l
new_s)"
| "inlinable_SC Pr (Suc n) l (While b I s) ←→ wfm Pr b ∧ (framing Pr

174

A.4. Soundness

(inline Pr n l s) ∨ framing Pr s) ∧ SC Pr n l s ∧ SC Pr n l (While b
I s)"
| "inlinable_SC Pr n l (Seq a b) = (SC Pr n l a ∧ SC Pr n l b)"
| "inlinable_SC Pr n l (If a b) = (SC Pr n l a ∧ SC Pr n l b)"
| "inlinable_SC Pr 0 l (While b _ s) ←→ wfm Pr b ∧ smono Pr s"
| "inlinable_SC Pr 0 _ _ = True"
| "inlinable_SC Pr _ _ _ = undefined"

lemma sc_implies_smono:
"wf_program Pr ∧ wf_stmt Pr s ∧ SC Pr n l s =⇒ smono Pr s"
"wf_program Pr ∧ wf_stmt Pr s ∧ inlinable s ∧ inlinable_SC Pr n l s

=⇒ smono Pr s"
〈proof 〉

lemma inlinable_same:
"inlinable s ←→ inlinable (rename s t)"
〈proof 〉

lemma not_inlinable_sc:
assumes "¬ inlinable s"

and "SC Pr n l s"
and "wf_renaming t"
and "wf_program Pr"
and "wf_stmt Pr s"

shows "SC Pr n l (rename s t)"
〈proof 〉

lemma wfm_same:
assumes "wfm Pr b"

and "wf_renaming t"
and "wf_program Pr"
and "wf_stmt Pr s"

shows "wfm Pr (rename_pred b t)"
〈proof 〉

lemma sc_method_implies_new:
assumes "new_s = rename s (args @ ret, x @ y, l, read s)"

and "new_l = l @ read new_s"
and "SC Pr (Suc n) l (MethodCall y m x)"
and "get_method Pr m = Some (m, args, ret, P, Q, s)"

shows "(framing Pr (inline Pr n new_l new_s) ∨ framing Pr s) ∧ SC
Pr n new_l new_s"
〈proof 〉

lemma smono_inline:
"SC Pr n l s =⇒ smono Pr (inline Pr n l s)"

〈proof 〉

definition no_inter_single :: "’a ⇒ ’b list ⇒ bool" where

175

A. Appendix: Isabelle Formalization

"no_inter_single x l ←→ σ x ⊆ set l"

definition no_inter :: "’a set ⇒ ’b list ⇒ bool" where
"no_inter A l ←→ (∀ a ∈ A. no_inter_single a l)"

lemma inter_sum_sets:
assumes "no_inter A l"

and "no_inter B l"
shows "no_inter (A ⊕⊕ B) l"

〈proof 〉

definition SP :: "(’a, ’b, ’c) program ⇒ nat ⇒ ’b list ⇒ (’a, ’b, ’c)
stmt ⇒ bool" where
"SP Pr n l s ←→ (∀ A A’. ver_program Pr ∧ wf_program Pr ∧ wf_stmt

Pr s ∧ A’ >> A ∧ SC Pr n l s ∧ ver Pr A s ∧ no_inter A l ∧ no_inter
A’ l ∧ set (modif s) ⊆ set l −→ ver Pr A’ (inline Pr n l s) ∧ sem Pr
A’ (inline Pr n l s) >> sem Pr A s)"

lemma havoc_int_squared_single:
assumes "Some a = Some v ⊕ Some r"

and "set x ∩ σ r = {}"
and "ver Pr {v} (Havoc x)"

shows "sem Pr {a} (Havoc x) = sem Pr {v} (Havoc x) ⊕⊕ {r}" (is "?a
= ?b")
〈proof 〉

lemma havoc_invertible:
assumes "set V ⊆ σ a"

and "Some b = Some (h_comp a V) ⊕ Some hv"
and "hv ∈ h V"

shows "∃ hv’ ∈ h V. Some a = Some (h_comp b V) ⊕ Some hv’"
〈proof 〉

lemma decompo_sigma:
assumes "σ p = a ∪ b"

and "a ∩ b = {}"
and "pure p"

shows "∃ pa pb. Some p = Some pa ⊕ Some pb ∧ σ pa = a ∧ σ pb = b"
〈proof 〉

lemma smaller_defined:
assumes "a << b"

and "b ## r"
shows "a ## r"

〈proof 〉

lemma pure_defined_sum:
assumes "Some x = Some xx ⊕ Some p"

and "pure p"

176

A.4. Soundness

and "xx ## r"
and "p ## r"

shows "x ## r"
〈proof 〉

lemma havoc_int_squared:
assumes "set x ∩ σ r = {}"

and "ver Pr A (Havoc x)"
and "

∧
ϕ. ϕ ∈ A =⇒ set x ⊆ σ ϕ"

shows "sem Pr (A ⊕⊕ {r}) (Havoc x) = sem Pr A (Havoc x) ⊕⊕ {r}"
(is "?a = ?b")
〈proof 〉

lemma simple_sem_exhale:
assumes "wf_assert P"

and "Some ϕ = Some i ⊕ Some r"
and "i ∈ Inh P"
and "Some ϕ’ = s_core i ⊕ Some r"

shows "sem Pr {ϕ} (Exhale P) = {ϕ’}" (is "?a = ?b")
〈proof 〉

lemma h_set_pure:
assumes "A >> B"

and "A >> h x"
shows "A >> B ⊕⊕ h x"

〈proof 〉

lemma bigger_h_single:
assumes "set x ⊆ σ a"
shows "{a} >> {h_comp a x} ⊕⊕ h x"

〈proof 〉

lemma core_i_phi_exhale:
assumes "Some i_phi = Some i ⊕ Some x"

and "Some core_i_phi = s_core i ⊕ Some x"
and "i ∈ Inh P"
and "supported P"
and "P i_phi"

shows "sem Pr {i_phi} (Exhale P) = {core_i_phi}" (is "?a = ?b")
〈proof 〉

lemma get_method_inlined:
assumes "get_method Pr m = Some (m, args, ret, P, Q, s)"

and "new_s = rename s (args @ ret, x @ y, l, read s)"
and "new_l = l @ read new_s"

shows "inline Pr (Suc n) l (MethodCall y m x) = inline Pr n new_l
new_s"

177

A. Appendix: Isabelle Formalization

〈proof 〉

lemma no_inter_inline_general:
"wf_program Pr ∧ wf_stmt Pr s =⇒ set l ∩ set (modif (inline Pr n l

s)) ⊆ set (modif s)"
〈proof 〉

lemma ver_program_method_verif_aux:
"ver_program_aux Pr Pr_bis ∧ Some (m, args, ret, P, Q, s) = get_method

Pr_bis m =⇒ ver Pr {u} (Var (args @ ret) ; Inhale P ; s ; Exhale Q)"
〈proof 〉

lemma ver_program_method_verif:
assumes "ver_program Pr"

and "Some (m, args, ret, P, Q, s) = get_method Pr m"
shows "ver Pr {u} (Var (args @ ret) ; Inhale P ; s ; Exhale Q)"

〈proof 〉

lemma verif_inhale_var_alone:
assumes "ver Pr {u} (Var (args @ ret) ; Inhale P)"
shows "sem Pr {u} (Var (args @ ret) ; Inhale P) = h args ⊕⊕ h ret

⊕⊕ Inh P"
〈proof 〉

lemma verif_inhale_var:
assumes "ver Pr {u} (Var (args @ ret) ; Inhale P ; s)"
shows "sem Pr {u} (Var (args @ ret) ; Inhale P ; s) = sem Pr (h args

⊕⊕ h ret ⊕⊕ Inh P) s"
〈proof 〉

lemma ver_asso:
"ver Pr A (s1 ; (s2 ; s3)) ←→ ver Pr A ((s1 ; s2) ; s3)"
〈proof 〉

lemma sem_asso:
assumes "ver Pr A (s1 ; s2 ; s3)"
shows "sem Pr A (s1 ; (s2 ; s3)) = sem Pr A ((s1 ; s2) ; s3)"
〈proof 〉

A.4.1 Method case

lemma method_inlining_induct:
assumes "SP Pr n new_l new_s"

and "Some (m, args, ret, P, Q, s) = get_method Pr m"
and "new_s = rename s (args @ ret, x @ y, l, read s)"
and "new_l = l @ read new_s"

shows "SP Pr (Suc n) l (MethodCall y m x)"
〈proof 〉

178

A.4. Soundness

lemma bigger_set_singleton:
assumes "

∧
a. a ∈ A =⇒ (∃ b ∈ B. sem Pr {a} s1 >> sem Pr {b} s2)"

shows "sem Pr A s1 >> sem Pr B s2"
〈proof 〉

lemma instantiate_SP:
assumes "ver_program Pr ∧ wf_program Pr ∧ wf_stmt Pr s ∧ {ϕ’} >> {ϕ}

∧ SC Pr n l s ∧ ver Pr {ϕ} s ∧ no_inter {ϕ’} l ∧ no_inter {ϕ} l ∧ set
(modif s) ⊆ set l"

and "SP Pr n l s"
shows "ver Pr {ϕ’} (inline Pr n l s) ∧ sem Pr {ϕ’} (inline Pr n l

s) >> sem Pr {ϕ} s"
〈proof 〉

definition f :: "’a set ⇒ ’a assertion ⇒ ’a set" where
"f A b = Set.filter b A"

lemma f_singleton:
"(
⋃
a∈A. f {a} b) = f A b" 〈proof 〉

lemma sem_assume_filter:
assumes "ver Pr A (Assume b)"
shows "sem Pr A (Assume b) = f A b"

〈proof 〉

lemma f_inclusion:
"f A b ⊆ A" 〈proof 〉

lemma wfm_f:
assumes "wfm Pr b"

and "A >> B"
and "ver Pr B (Assume b)"

shows "f A b >> f B b"
〈proof 〉

lemma if_assume_then_true:
assumes "x ∈ sem Pr A (Assume b)"

and "ver Pr A (Assume b)"
shows "b x"
〈proof 〉

lemma after_while:
assumes "ver Pr A (While b I s)"

and "sa ∈ sem Pr A (While b I s)"
shows "lnot b sa"

〈proof 〉

lemma general_same_f:
assumes "

∧
a. a ∈ A =⇒ b a"

179

A. Appendix: Isabelle Formalization

shows "f A b = A"
〈proof 〉

lemma after_while_same_f:
assumes "ver Pr A (While b I s)"
shows "f (sem Pr A (While b I s)) (lnot b) = sem Pr A (While b I s)"
〈proof 〉

lemma after_inline_while:
"ver Pr A (inline Pr n l (While b I s)) =⇒ sa ∈ sem Pr A (inline Pr

n l (While b I s)) =⇒ (lnot b sa)"
〈proof 〉

lemma after_inline_while_same_f:
assumes "ver Pr A (inline Pr n l (While b I s))"
shows "f (sem Pr A (inline Pr n l (While b I s))) (lnot b) = sem Pr

A (inline Pr n l (While b I s))"
〈proof 〉

lemma wfm_bigger:
assumes "c << a"

and "wfm Pr b"
and "b c"
and "ver Pr {c} (Assume b)"

shows "b a"
〈proof 〉

lemma simple_SP:
assumes "

∧
A A’. ver_program Pr ∧ wf_program Pr ∧ wf_stmt Pr s ∧ A’

>> A ∧ SC Pr n l s ∧ ver Pr A s ∧ no_inter A’ l ∧ no_inter A l ∧ set
(modif s) ⊆ set l =⇒ ver Pr A’ (inline Pr n l s) ∧ sem Pr A’ (inline
Pr n l s) >> sem Pr A s"

shows "SP Pr n l s"
〈proof 〉

lemma assume_false_sem:
"sem Pr A (Assume lfalse) = {}" 〈proof 〉

lemma verif_exhale_exists_decompo:
assumes "ver Pr {ϕ} (Exhale I)"

and "wf_assert I"
shows "∃ i r. i ∈ Inh I ∧ Some ϕ = Some i ⊕ Some r"

〈proof 〉

lemma assume_not_bigger:
assumes "ver Pr {ϕ} (While b I s)"

and "wf_assert I"
shows "{ϕ} >> sem Pr {ϕ} (Exhale I ; Havoc (modif s) ; Inhale I)"

〈proof 〉

180

A.4. Soundness

lemma assume_not_bigger_real:
assumes "ver Pr A (While b I s)"

and "wf_assert I"
shows "A >> sem Pr A (Exhale I ; Havoc (modif s) ; Inhale I)"

〈proof 〉

lemma add_h_comp_core:
assumes "Some x = Some a ⊕ Some b"

and "set V ⊆ σ x"
shows "Some x = Some a ⊕ Some (h_comp b V) ⊕ s_core x"

〈proof 〉

lemma h_comp_set_add_two:
assumes "Some x = Some a ⊕ Some b"
shows "{h_comp x V} = {h_comp a V} ⊕⊕ {h_comp b V}"

〈proof 〉

lemma h_comp_set_add:
assumes "Some x = Some a ⊕ Some b ⊕ Some c ⊕ Some d ⊕ Some e"
shows "{h_comp x V} = {h_comp a V} ⊕⊕ {h_comp b V} ⊕⊕ {h_comp c V}

⊕⊕{h_comp d V} ⊕⊕ {h_comp e V}" (is "?a = ?b")
〈proof 〉

lemma h_comp_sum_set_smaller_pure:
assumes "pure a"

and "a << b"
shows "{h_comp a V} ⊕⊕ {h_comp b V} = {h_comp b V}"

〈proof 〉

lemma h_comp_smaller_elem:
assumes "h_comp |a| V << x"
shows "{h_comp |a| V} ⊕⊕ {h_comp |x| V} = {h_comp |x| V}"
〈proof 〉

lemma core_four:
assumes "Some a = Some b ⊕ Some c ⊕ Some d ⊕ Some e"
shows "s_core a = s_core b ⊕ s_core c ⊕ s_core d ⊕ s_core e"

〈proof 〉

lemma h_comp_set_add_four:
assumes "Some x = Some a ⊕ Some b ⊕ Some c ⊕ Some d"
shows "{h_comp x V} = {h_comp a V} ⊕⊕ {h_comp b V} ⊕⊕ {h_comp c V}

⊕⊕{h_comp d V}" (is "?a = ?b")
〈proof 〉

lemma framing_set_singleton:
assumes "σ r ∩ set (modif s) = {}"

and "ver Pr A s"

181

A. Appendix: Isabelle Formalization

and "framing Pr s"
shows "sem Pr (A ⊕⊕ {r}) s >> sem Pr A s ⊕⊕ {r}"

〈proof 〉

lemma sigma_sem_havoc:
assumes "ver Pr {a} (Havoc V)"

and "x ∈ sem Pr {a} (Havoc V)"
shows "σ x = σ a ∪ set V"

〈proof 〉

lemma bigger_and_ver_assume:
assumes "ver Pr B (Assume b)"

and "wfm Pr b"
and "A >> B"

shows "f A b >> f B b"
and "f A (lnot b) >> f B (lnot b)"

〈proof 〉

lemma wfm_f_and_sum:
assumes "wfm Pr b"

and "ver Pr A (Assume b)"
shows "f (A ⊕⊕ D) b = f A b ⊕⊕ D" (is "?a = ?b")

〈proof 〉

lemma not_empty_exhale:
assumes "ver Pr {ϕ} (Exhale P)"

and "wf_assert P"
shows "sem Pr {ϕ} (Exhale P) 6= {}"
〈proof 〉

lemma not_empty_havoc:
assumes "ver Pr {ϕ} (Havoc V)"
shows "sem Pr {ϕ} (Havoc V) 6= {}"

〈proof 〉

lemma not_empty_comp:
assumes "

∧
a. sem Pr {a} s1 6= {}"

and "
∧
b. sem Pr {b} s2 6= {}"

and "ver Pr {c} (s1; s2)"
shows "sem Pr {c} (s1 ; s2) 6= {}"

〈proof 〉

lemma h_comp_add_single:
assumes "{a} = {b} ⊕⊕ {c}"
shows "{h_comp a x} = {h_comp b x} ⊕⊕ {h_comp c x}"
〈proof 〉

182

A.4. Soundness

A.4.2 Loop case

lemma loop_inlining_induct:
"SP Pr n l (While b I s) ∧ SP Pr n l s =⇒ SP Pr (Suc n) l (While b

I s)"
〈proof 〉

lemma sem_loop_set:
assumes "ver Pr A (While b I s)"
shows "sem Pr A (While b I s) = sem Pr A (Exhale I ; Havoc (modif s)

; Inhale I ; Assume (lnot b))" (is "?a = ?b")
〈proof 〉

lemma wf_none_impossible:
assumes "wf_stmt Pr (MethodCall y m x)"

and "wf_program s"
shows "get_method Pr m 6= None"

〈proof 〉

A.4.3 Soundness proof

lemma soundness_invariant:
"SP Pr n l s"

〈proof 〉

theorem soundness:
assumes "wf_program Pr"

and "wf_stmt Pr s"
and "SC Pr n (modif s) s"
and "ver_program Pr"
and "ver Pr {u} s"

shows "ver Pr {u} (inline Pr n (modif s) s)"
〈proof 〉

end

end

183

A. Appendix: Isabelle Formalization

A.5 Renaming
theory Renaming

imports Main
begin

fun sum :: "nat list ⇒ nat" where
"sum [] = 1"

| "sum (t # q) = t + (sum q)"

lemma member_smaller:
"x ∈ set l =⇒ x ≤ sum l + 1"
〈proof 〉

type_synonym rename_t = "nat list × nat list × nat list × nat list"

fun wf_renaming :: "rename_t ⇒ bool" where
"wf_renaming (l1, l2, l3, l4) ←→ (length l1 = length l2 ∧ distinct

l1 ∧ distinct l2)"

fun get_value :: "nat ⇒ nat list ⇒ nat list ⇒ nat option" where
"get_value x (ta # qa) (tb # qb) = (if x = ta then Some tb else get_value

x qa qb)"
| "get_value x _ _ = None"

lemma not_in_list_none:
"x /∈ set a =⇒ get_value x a b = None"
〈proof 〉

lemma elem_get_value:
"i < length a ∧ distinct a ∧ distinct b ∧ length a = length b =⇒ get_value

(a ! i) a b = Some (b ! i)"
〈proof 〉

definition sum_all :: "nat list ⇒ nat list ⇒ nat list ⇒ nat list ⇒ nat"
where

"sum_all a b c d = sum a + sum b + sum c + sum d"

lemma sum_greater_one:
"sum l ≥ 1"
〈proof 〉

lemma sum_all_commut:
"sum_all a b c d = sum_all b c d a"
〈proof 〉

lemma x_greater_not_in:
assumes "x ≥ sum_all a b c d"
shows "x /∈ set a"

〈proof 〉

184

A.5. Renaming

lemma x_greater_not_in_all:
assumes "x ≥ sum_all a b c d"
shows "x /∈ set a ∪ set b ∪ set c ∪ set d"

〈proof 〉

definition injective :: "(nat ⇒ nat) ⇒ bool" where
"injective f ←→ (∀ a b. f a = f b −→ a = b)"

definition surjective :: "(nat ⇒ nat) ⇒ bool" where
"surjective f ←→ (∀ y. ∃ x. f x = y)"

definition bijective :: "(nat ⇒ nat) ⇒ bool" where
"bijective f ←→ injective f ∧ surjective f"

definition id_above :: "(nat ⇒ nat) ⇒ bool" where
"id_above f ←→ (∃ m. ∀ x ≥ m. f x = x)"

definition same_lists :: "(nat ⇒ nat) ⇒ nat list ⇒ nat list ⇒ bool"
where

"same_lists f a b ←→ (∀ i < length a. f (a ! i) = b ! i)"

lemma easy_append_same_lists:
assumes "same_lists f a b"

and "f x = y"
shows "same_lists f (x # a) (y # b)" (is "same_lists f ?a ?b")

〈proof 〉

lemma induction_create:
"length a = length b ∧ distinct a ∧ distinct b =⇒ (∃ f. bijective

f ∧ id_above f ∧ same_lists f a b)"
〈proof 〉

fun get_f :: "nat list ⇒ nat list ⇒ (nat ⇒ nat)" where
"get_f a b = (SOME f. bijective f ∧ id_above f ∧ same_lists f a b)"

lemma get_f_works_well:
assumes "length a = length b"

and "distinct a"
and "distinct b"
and "f = get_f a b"

shows "bijective f ∧ id_above f ∧ same_lists f a b"
〈proof 〉

fun first_rename :: "rename_t ⇒ nat ⇒ nat" where
"first_rename (a, b, c, d) x = (let r = get_value x a b in
if r = None then x + sum_all a b c d
else the r)"

185

A. Appendix: Isabelle Formalization

lemma first_rename_in_a:
assumes "wf_renaming (a, b, c, d)"

and "i < length a"
shows "first_rename (a, b, c, d) (a ! i) = b ! i"

〈proof 〉

lemma first_rename_in_d:
assumes "wf_renaming (a, b, c, d)"

and "x ∈ set d"
and "x /∈ set a"

shows "first_rename (a, b, c, d) x = x + sum_all a b c d"
〈proof 〉

fun distinctify :: "nat list ⇒ nat list" where
"distinctify [] = []"

| "distinctify (t # q) = (if t ∈ set q then distinctify q else t # distinctify
q)"

lemma same_elems_distinctify:
"set l = set (distinctify l)"
〈proof 〉

lemma distinctify_is_distinct:
"distinct (distinctify l)"
〈proof 〉

lemma f_rename_b:
assumes "wf_renaming (a, b, c, d)"

and "domain = distinctify (a @ d)"
and "images = map (first_rename (a, b, c, d)) domain"
and "f = get_f domain images"

shows "bijective f ∧ id_above f ∧ same_lists f domain images"
〈proof 〉

fun rename_b :: "nat ⇒ rename_t ⇒ nat" where
"rename_b x (a, b, c, d) = (let domain = distinctify (a @ d) in
get_f domain (map (first_rename (a, b, c, d)) domain) x)"

lemma rename_b_in_a:
assumes "wf_renaming (a, b, c, d)"

and "i < length a"
shows "rename_b (a ! i) (a, b, c, d) = b ! i"

〈proof 〉

lemma rename_b_in_d:
assumes "wf_renaming (a, b, c, d)"

and "x ∈ set d - set a"
shows "rename_b x (a, b, c, d) = x + sum_all a b c d"

〈proof 〉

186

A.5. Renaming

fun gen_list :: "nat ⇒ nat list" where
"gen_list 0 = []"
| "gen_list (Suc n) = gen_list n @ [n]"

lemma gen_list_length:
"length (gen_list n) = n"
〈proof 〉

lemma gen_list_def:
"
∧
i. i < n =⇒ gen_list n ! i = i"

〈proof 〉

lemma gen_list_member:
"x ∈ set (gen_list n) ←→ x < n"
〈proof 〉

lemma distinct_gen_list:
"distinct (gen_list n)"
〈proof 〉

fun invert_f :: "(nat ⇒ nat) ⇒ (nat ⇒ nat)" where
"invert_f f = (λx. THE y. f y = x)"

lemma the_y_works:
assumes "bijective f"
shows "f (THE y. f y = x) = x"

〈proof 〉

lemma bijective_then_works:
assumes "bijective f"
shows "invert_f f (f x) = x"
〈proof 〉

lemma bijective_inverse_other_dir:
assumes "bijective f"
shows "f (invert_f f x) = x"
〈proof 〉

lemma bijective_inv:
assumes "bijective f"
shows "bijective (invert_f f)"
〈proof 〉

fun rename_inv_b :: "rename_t ⇒ rename_t" where
"rename_inv_b (a, b, c, d) = (let domain = distinctify (a @ d) in
let f = get_f domain (map (first_rename (a, b, c, d)) domain) in
let m = (SOME m. ∀ x ≥ m. f x = x) in
let ante = gen_list m in

187

A. Appendix: Isabelle Formalization

(ante, map (invert_f f) ante, [], ante))"

lemma wf_renaming_rename_inv_b:
assumes "wf_renaming (a, b, c, d)"
shows "wf_renaming (rename_inv_b (a, b, c, d))"

〈proof 〉

fun rename_a :: "nat ⇒ rename_t ⇒ nat" where
"rename_a x (a, b, c, d) = (let r = get_value x a b in
if r = None then x else the r)"

fun rename_elem :: "nat ⇒ rename_t ⇒ nat" where
"rename_elem x (a, b, c, d) = (if c = [] ∧ set a = set b then rename_a

x (a, b, c, d)
else rename_b x (a, b, c, d))"

lemma gen_list_set:
"set (gen_list m) = {i. i < m}"

〈proof 〉

lemma rename_elem_rename_inv_b:
assumes "wf_renaming t"
shows "rename_elem x (rename_inv_b t) = rename_a x (rename_inv_b t)"

〈proof 〉

lemma id_above_then_m_works:
assumes "id_above f"

and "m = (SOME m. ∀ x ≥ m. f x = x)"
shows "∀ x ≥ m. f x = x"

〈proof 〉

lemma rename_inv_b_is_invert_f:
assumes "wf_renaming (a, b, c, d)"

and "domain = distinctify (a @ d)"
and "images = map (first_rename (a, b, c, d)) domain"
and "f = get_f domain images"

shows "rename_a x (rename_inv_b (a, b, c, d)) = invert_f f x"
〈proof 〉

lemma rename_inv_b_is_inv:
assumes "wf_renaming (a, b, c, d)"
shows "rename_elem (rename_b x (a, b, c, d)) (rename_inv_b (a, b, c,

d)) = x"
〈proof 〉

fun rename_inv_a :: "rename_t ⇒ rename_t" where
"rename_inv_a (a, b, c, d) = (b, a, [], map (λelem. rename_elem elem

(a, b, c, d)) d)"

188

A.5. Renaming

lemma wf_rename_inv_b:
assumes "wf_renaming (a, b, c, d)"
shows "wf_renaming (rename_inv_a (a, b, c, d))"
〈proof 〉

fun rename_inv :: "rename_t ⇒ rename_t" where
"rename_inv (a, b, c, d) = (if c = [] ∧ set a = set b then rename_inv_a

(a, b, c, d)
else rename_inv_b (a, b, c, d))"

lemma wf_rename_inv:
assumes "wf_renaming t"
shows "wf_renaming (rename_inv t)"
〈proof 〉

lemma rename_inv_a_is_inv:
assumes "wf_renaming (a, b, [], d)" (is "wf_renaming ?t")

and "set a = set b"
shows "rename_elem (rename_a x ?t) (rename_inv_a ?t) = x"

〈proof 〉

lemma rename_removes_vars_b:
assumes "wf_renaming (a, b, c, d)"

and "var ∈ set d"
and "rename_b var (a, b, c, d) ∈ set a ∪ set c"

shows "rename_b var (a, b, c, d) ∈ set b"
〈proof 〉

lemma rename_inv_works:
assumes "wf_renaming t"
shows "rename_elem (rename_elem x t) (rename_inv t) = x"
〈proof 〉

lemma rename_removes_vars:
assumes "wf_renaming (a, b, c, d)"

and "var ∈ set d"
and "rename_elem var (a, b, c, d) ∈ set a ∪ set c"

shows "rename_elem var (a, b, c, d) ∈ set b"
〈proof 〉

lemma rename_elem_in_a_b:
assumes "wf_renaming (a, b, c, d)"

and "i < length a"
shows "rename_elem (a ! i) (a, b, c, d) = b ! i"

〈proof 〉

end

189

