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Abstract

In the second chapter we revisit the Ritt theory by the study of topological

fundamental groups. Our main result of this chapter gives a presentation of

(End(E), ◦) which is the monoid of finite endomorphisms of the unit disk.

The third chapter, as a technical part of our thesis, is devoted to elliptic

rational functions. Those functions were originally constructed by Zolotarev

in terms of, essentially, descents of isogeny between elliptic curves. Our re-

construction of them is by means of monodromy representation, and this new

viewpoint is essential for arithmetic or geometric applications. We shall verify

that if the curve P1×f, gP1, where f and g are elements of End(E), admits cer-

tain special arithmetic or geometric properties then f and g admit special rep-

resentations in (End(E), ◦). In addition elliptic rational functions contribute

to most nontrivial cases of these representations.

The purpose of the fourth chapter is to prove that if two finite endomor-

phisms of the unit disk have orbits with infinitely many intersections then they

have a common iteration. This implies as a corollary a dynamical analogue of

Mordell-Lang and André-Oort type for finite endomorphisms of polydisks.

The last chapter is devoted to a generalization of Schneider’s theorem in

transcendence. The main result here is that under suitable conditions the

image of f :C → XC, which is a holomorphic map from an affine algebraic

curve to a projective algebraic variety X defined over a number field, assumes

finitely many times rational points.

Chapter 2 and Section 3.1 are joint with Tuen-Wai Ng and the last Chapter

is joint with Gisbert Wüstholz.



Zusammenfassung

Im zweiten Kapitel geben wir zunächst eine Darstellung der Ritt’schen The-

orie mittels Fundamentalgruppen. Im Hauptresultat des Kapitels wird dann

(End(E), ◦) als Monoid von endlichen Endomorphismen des Einheitskreises

repräsentiert.

Das dritte Kapitel, welches den technischen Teil der Dissertation darstellt,

ist elliptischen rationalen Funktionen gewidmet. In der formalen Korrespon-

denz zwischen elliptischen und trigonometrischen Funktionen fungieren die

letztgenannten als Analoga der Tschebyshew’schen Polynome.

Ziel und Zweck des vierten Kapitels is der Beweis, dass zwei endliche Endo-

morphismen des Einheitskreises, welche Orbite mit unendlichem Durchschnitt

besitzen, ein gemeinsames Interiertes aufweisen. Dies impliziert ein dynamis-

ches Analogon für endliche Endomorphismen des Einheitskreises von Mordell-

Weil and André-Oort.

Das letzte Kapitel ist einer Verallgemeinerung des Schneider’schen Tran-

szendenzsatzes gewidmet. Das Hauptresultat hier ist, dass das Bild eine

holomorphen Funktion f :C → XC von einer affinen algebraischen C in eine

projektive algebraische Varietät X über einem Zahlkörper K unter gewissen

Bedingungen nur endlich viele K-rationale Punkte als Wert annimmt.

Kapitel 2 und Abschnitt 3.1 wurden zusammen mit Tuen-Wai Ng ausgear-

beitet. Das letzte Kapitel geht aus einem gemeinsammen Paper mit Gisbert

Wüstholz hervor.



Introduction

The interaction of number theory and geometry is one of the most beautiful

parts of mathematics. As examples we may take the Mordell-Lang conjecture

which was the central problem of Diophantine geometry and the André-Oort

conjecture which has partly its roots in transcendence. Despite their different

roots in Diophantine geometry or in transcendence, these conjectures enjoy the

same expectation: if a geometric object admits special arithmetic properties

then it carries a special underlying geometric structure.

Considering topology which is the naivest geometry one might quickly come

up with the well-known theorem of Belyi, that a compact Riemann surface

is defined over Q if and only if it is birational to a finite étale covering of

P1\{0, 1,∞}, which has the strong implication that arithmetic objects in di-

mension 1 are simply topological in nature. Moreover, celebrated theorems of

Siegel on integral points and of Faltings on rational points also demonstrate

the dominant role of topological structure on Diophantine equations.

The fundamental group is one of the simplest invariants in topology. Sur-

prisingly it is also one of the most useful concepts in detecting many involved

properties. Taking a special case of Mostow’s rigidity as an example, two com-

pact hyperbolic manifold with the same dimension greater than two and with

isomorphic fundamental groups must be isometric. Subsequent development

of fundamental groups in geometry is greatly influenced by Mostow’s rigidity,

and in parallel a vast program in number theory is sketched by Grothendieck in

his letter to Faltings. As one of the main ideas of Grothendieck’s letter, “dann

ist ein Homomorphismus völlig bestimmt, wenn man die entsprechend Ab-

blildung der entstprechenden äusseren Fundamentalgruppen kennt.” Because

a variety X over K can be regarded as a fibration morphism X →π Spec K
and a K-rational point on X is regarded as a section morphism Spec K→sX,

hopefully fundamental groups applied to these morphisms will in particular

determine much of the geometry and arithmetic of X over K.

If f is a finite endomorphism of an algebraic (or analytic) space X and if

we are interested in its iterations

· · · →f X →f X →f X →f · · ·



then from the viewpoint of birational geometry the dynamical property should

be encoded in

· · · ←f♯K ←f♯K ←f♯K ←f♯ · · ·

which is a tower of finite extensions of the function field K of X. In terms of

fundamental groups hopefully the tower of group homomorphisms

· · · →f∗ π1 →f∗ π1 →f∗ π1 →f∗ · · ·

imposes restrictions on the dynamics of f . This thesis might provide an ex-

ample in supporting such a point of view.

In a fundamental case the André-Oort conjecture expects that: if a subcurve

of Γ\Hn (where Γ is a congruence subgroup) contains infinitely many “special

points” then it is a “special curve”. We shall work on the uniformization

space Hn instead of its quotients and prove the following dynamical analogue

of the conjectues of Mordell-Lang and André-Oort type: if an orbit of a finite

endomorphism of Hn has infinitely many intersections with a complex geodesic

V of Hn then there exists a positive integer n such that fn(V )=V .

Similar to the case of subcurves of a product of modular curves in which

the André-Oort conjecture reduces easily to the case of C2, the above result

reduces easily to the main theorem of the first part of this thesis: if two non-

linear finite endomorphisms of the unit disk have orbits with infinitely many

intersections then they have a common iteration. The reduction is fulfilled

by applying a classification theorem of Remmert-Stein and an argument on

heights which involves the old technique of specialization.

Our main theorem is a hyperbolic analogue of the Ghioca-Tucker-Zieve

theorem which has the same conclusion but with the unit disk replaced by

the complex plane. Although have the same topology, the Poincaré unit disk

differs greatly from the Gaussian complex plane in dynamics, for which we

refer to the classical result of Denjoy-Wolff. Our major observation is that

some arguments of the proof of Ghioca-Tucker-Zieve are simply topological in

nature which makes it possible to adopt their strategy to the context of unit

disk. Briefly the proof of our main theorem goes as follows.

• On the one hand the decomposition of a finite endomorphism of the unit

disk is very rigid.



• On the other hand infinitely many intersections leads to special decom-

positions of given endomorphisms and of their iterations.

Finally the rigidity and the speciality of decompositions as obtained above are

in many cases incompatible which enable us to continue with the proof by a

lengthy analysis of the endomorphism monoid of the unit disk.

Concerning the rigidity part the starting point is that the decomposition

property is determined by the monodromy action of the fundamental group

and therefore is topological in nature. This enables us to transform Ritt’s

original theory from the Gaussian complex plane to the Poincaré unit disk. In

the complex plane case the rigidity is encoded in close cycles around infinity,

and in the unit disk case the rigidity is encoded in cycles around the unit

circle. Full details is carried out in Chapter 2.

Regarding that special decompositions part the starting point is a decompo-

sition principle saying that if the curve P1×f, gP1 defined by rational functions

has special arithmetic properties then hopefully f and g can be expected to

admit special decompositions. For polynomials this principle is supported by

the work of Bilu-Tichy and of Avanzi-Zannier. In our disc case we have to

verify this principle for curves defined by finite Blaschke products. This can

be done because the arithmetic and the decomposition property are both of

topological nature and because the Poincaré unit disk is the same as the Gaus-

sian complex plane as topological space. Our main task is to determine when

does the curve P1×f, gP1 defined by finite Blaschke products f and g has po-

tentially dense rational points. This is achieved by the work in Section 1.6,

Section 2.3, Section 3.3 and in Section 3.6. We summarize here several major

points of the proof, and for simplicity we assume that P1×f, gP1 is irreducible

and is of potentially dense rational points.

• Faltings’ theorem: this reduces the arithmetic assumption to a topolog-

ical one χ(P1×f, gP1)≥0.

• Schwarz reflection principle: this gives a symmetry or a real structure

on P1×f, gP1. Indeed P1×f, gP1 is a double of E×f, gE.

• Additivity of Euler characteristic: this gives χ(E×f, gE)≥0.

• Deformation: E×f, gE is not algebraic. Using an Änderung argument à

la Hurwitz(or Riemann), we may modify it and obtain an algebraic curve

C×f, gC which is defined by polynomials f, g with χ(C×f, gC)≥0.



• Siegel’s theorem: our topological condition on C×f, gC is equivalent to

that the algebraic curve C×f, gC admits potentially dense integral points.

• Bilu-Tichy criterion: used to obtain monodromy properties of f and of

g, and therefore those of f and of g.

• Riemann’s existence theorem: f and g can be recovered from their un-

derlying monodromy representations.

For the last step we have to handle concrete analytic functions, and this

is not of topological nature any more. In the complex plane case Ghioca-

Tucker-Zieve have to deal with Chebyshev polynomials which are related to

trigonometric functions. In the unit disk case we have to play with elliptic ra-

tional functions which arise from elliptic functions. These functions, which are

constructed from descents of cyclic isogenies by Kummer maps or from their

special monodromy representations, are analogues of Chebyshev polynomials

in the formal dictionary between elliptic functions and trigonometric functions

and contribute to most of the nontrivial factors of special decompositions as

discussed above. Technical preparations on these functions are contained in

Chapter 3.

The second part of this thesis is devoted to transcendence. Faltings’ theorem

tells us that an algebraic curve other than rational or elliptic ones has only

finitely may rational points. In transcendence it is expected that under suitable

conditions any rational point on a transcendental curve has special geometric

reasons.

Typically an infinite covering carries many transcendental properties, and

the projection map from the uniformization space to an algebraic variety is of

particular interest in transcendence. As it was remarked by Kollár in his book

“one hopes that there are many interesting connections between the meromor-

phic function theory of a variety and the holomorphic function theory of its

universal cover”. One general principle in transcendence is that: an algebraic

object of an algebraic variety lifts to a transcendental object of its univer-

sal covering space. Therefore a large part of transcendence theory should be

closely related to the theory of uniformization. Indeed Schneider’s theorem,

which is a criterion about functions of the complex plane and applies to pe-

riods of the torus and of elliptic curves, serves as an outstanding example in



illustrating such a point of view. In the theory of uniformization the complex

Euclidean spaces are higher generalizations of the complex plane. For tran-

scendence on the complex Euclidean spaces we have theorems of Bombieri and

of Wüstholz.

Wüstholz’s integral theorem tells us: a period on curves defined over Q is

either 0 or transcendental. His proof is based on the embedding of curves into

their Jacobians which reduces the above result to his 1983 analytic subgroup

theorem. If one is interested in the contribution of the action of the full

topological fundamental groups on periods then it is natural to try to reprove

Wüstholz’s integral theorem by regarding periods as values of special functions

on the uniformization space. As a consequence of the action of fundamental

groups these special functions are hopefully to be of finite order. To sum up

looking for a new proof of integral theorem amounts to establishing a suitable

criterion of Schneider’s type on the unit disk.

The main result here is that under suitable conditions the image of f :C→
XC, which is a holomorphic map from an affine algebraic curve to an projective

algebraic variety X defined over a number field, assumes finitely many times

rational points. This truly generalizes Schneider’s criterion, and the proof is

along that of Schneider’s original work. One of our motivation is to under-

stand an analogy between the first main theorem of Nevanlinna theory and

Schneider’s criterion.
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1

Backgrounds and General Remarks

1.1 Diophantine geometry on curves

The fundamental goal of Diophantine geometry is to describe arithmetical

properties in terms of underlying geometric structures. The central object of

the arithmetical part is the rational point, and the geometry part may refer to

rather different contexts including algebraic geometry, complex geometry and

topology. The theory on curves derived from Diophanti’s book and culminated

in Faltings’ 1983 theorem, although up to date several longstanding problems

such as the effective Mordell conjecture and the Birch and Swinnerton-Dyer

conjecture remain out of reach. The plenty of rational points on rational curves

is closely related to the existence of parametrization, see [39] and [69].

Theorem 1.1.1 (Diophanti, Hilbert-Hurwitz). If X is a rational curve over

K then either X(K) is empty or X is K-birational to A1.

There are less rational points on genus one curves, see [96] and [133].

Theorem 1.1.2 (Mordell, Weil). If E is an elliptic curve over a field K of

finite type over Q then E(K) is a finitely generated abelian group.

The finiteness of rational points on curves of genus greater than one was

proved in [42].

Theorem 1.1.3 (Faltings). If X is a curve of general type over a field K of

1



2 Mingxi Wang

finite type over Q then X(K) is finite.

From the point of view of algebraic geometry arithmetics is reflected by

whether the underling variety is Fano, of intermediate type or of general type.

In the higher dimension the asymptotic behavior of the set of rational points of

Fano varieties is predicted by Manin, and the pseudo mordellicity of varieties

of general type is conjectured by Bombieri and Lang [82].

Conjecture 1.1.4 (Bombieri-Lang Conjecture). If X is a variety of general

type over a field K of finite type over Q then X(K) is not Zariski dense.

This conjecture has only been verified by Faltings when X is a subvariety of

an abelian variety in [43] which already covers the original Mordell conjecture.

With a slightly different flavor one could try to predict the arithmetical

behavior by complex geometric properties. The existence of rational curves

gives lots of rational points, and as a weaker condition the existence of non-

constant holomorphic C curves also suggests the infiniteness of rational points.

In the most interesting case the non-existence of non-constant holomorphic C
curves, known as Brody hyperbolicity according to [28], hopefully implies the

mordellicity of a projective variety. This is contained in another conjecture of

Lang [82]. Thanks to the work of Bloch [17] and of Faltings [43] this has again

been verified for subvarieties of abelian varieties.

The arithmetic of curves is dominated by the topology of the curves, and

this topological viewpoint will prevail in this thesis. To restate Faltings’s

theorem in terms of topology we write χ(X) for the Euler characteristic of

the smooth model of an irreducible curve X. Rational points of an algebraic

variety X are called potentially dense if X(K) is Zariski dense for sufficiently

large fields k of finite type over Q. Our definition is motivated by Bogomolov

and Tschinkel, but for the purpose of application here we are interested in

fields of finite type rather than number fields originally considered in [26].

Theorem 1.1.5 (Faltings). Rational points of an irreducible projective curve

X are potentially dense if and only if χ(X) ≥ 0.

Rational points can be regarded as integral points with respect to the empty

divisor at infinity. Siegel’s 1929 theorem on integral points with respect to pos-

itive divisors is the first major result on diophantine equations that depended
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only on the genus. We can also introduce the notion of potential density with

respect to integral points, and then Siegel’s theorem reads as follows.

Theorem 1.1.6 (Siegel [122]). Integral points of an irreducible affine curve

X are potentially dense if and only if χ(X) ≥ 0.

Let L⊂C and K⊂C be fields of finite type over Q and X ⊂ Pn a projective

algebraic variety over L. We write X(K) for the set X(C)∩Pn(K), and the

notation X(K) causes no confusion even if X is not over K. Theorem 1.1.3

still holds without the assumption that X is defined over K, for which we give

a short argument.

Proof. The curve X is always defined over a field F which is of finite type

over K and Theorem 1.1.3 implies that X(F) is finite. This together with the

trivial fact that X(K) is contained in X(F) gives the finiteness of X(K).

One may also obtain an alternative argument by using the fact that if X

contains infinitely many K-rational points then it is actually defined over K.

1.2 Abelian curves

Besides the Euler characteristic, the fundamental group is another topo-

logical invariant which reflects Diophantine properties. This was proposed by

Grothendieck in [64] and led to the theory of anablian geometry.

As a fundamental example we take a curve X of type (g, ν) with g its

genus and ν the number of points points at infinity with respect to a smooth

model. The property of the curve having a dense set of integral points or

not is independent of the model (see for instance [130, Proposition 12.4]) but

depends on the base ring. We collect theorems of Siegel and of Faltings as

follows

Theorem 1.2.1 (Siegel, Faltings). Integral points of an algebraic curve X of

type (g, ν) are potentially dense if and only if χ(X) = 2− 2g − ν ≥ 0. This is

exactly the case the topological fundamental group of a smooth model of X(C)

is abelian.

On the one hand a rational point is regarded as a section morphism and on
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the other hand a morphism is supposed to be encoded in fundamental groups.

Therefore there is the hope that the study of fundamental groups and their

rigidity will lead to new proofs of finiteness theorems in Diophantine geometry.

There are only four types of curves carrying abelian fundamental groups,

namely ones of

(0, 0), (0, 1), (0, 2) and (1, 0),

which will be called abelian curves.

Let f, g be polynomials and consider the curve C×f, gC. In [58] the authors

introduce Siegel factors which are irreducible components of C×f, gC of type

(0, 1) or (0, 2). In our work we will call curves of type (0, 1) or (0, 2) Siegel

factors and curves of type (0, 0) or (1, 0) Faltings factors. For finite Blaschke

products f and g we will construct polynomials f∗, g∗ for which there is a one-

to-one correspondence between Siegel factors of C×f∗, g∗C and Faltings factors

of P1×f, gP1. In other words there exists the following duality.

(0, 1) + (0, 1)←→ (0, 0)

(0, 2) + (0, 2)←→ (1, 0)

We shall use this simple fact as one major argument in this thesis.

Fundamental groups played an important role in our work, and here they

are used to detect decomposition properties of morphisms. We shall used the

fact that if a finite map carries a closed cycle along which the topological

monodromy action is transitive then its decomposition is very rigid. This

rigidity property, which spring from the the monodromy action of a special

part of topological fundamental group, is basically the starting point of Ritt’s

theory.

1.3 Finite maps

In this section we shall discuss finite maps between Riemann surfaces which,

from the point of view of value distribution theory, should be regarded as

generalizations of polynomials fitting into the fundamental theorem of algebra.
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This set of maps is one of the most elementary category which demonstrates

the following principle: fundamental groups detect morphisms.

In analytic geometry or algebraic geometry a finite map refers to an analytic

or algebraic map which is proper and quasi-finite. In the simplest setting a

holomorphic map between Riemann surfaces is finite if and only if it is non-

constant and proper. This notion was first introduced by Radó who proved in

[102] that: a holomorphic map f : M→ N between Riemann surfaces is finite

if and only if there exists an integer n such that f(z) = c has n solutions for

any point c of N , and we refer to [50, p.27] for a modern treatment. We shall

define the number n given above to be the degree of f and denote it by deg f .

One may deduce readily from [27, p.99] that if h: M→ T and g: T→N are

holomorphic maps between Riemann surfaces then g ◦ h is finite if and only if

both g and h are finite.

If f is a finite map from M to N then it is called linear if and only if

deg f = 1. Let f be a nonlinear finite map and we call f prime if there do not

exist nonlinear finite maps g: T→N and h: M→T for which f=g◦h. Otherwise

it is called composite or factorized. We shall call a factorization of f proper

if all its factors are nonlinear and a maximal proper factorization is called a

prime factorization. The length of f with respect to a prime factorization is

defined to be the number of its factors.

From the point of view of birational geometry the finite map f is fully

encoded in analytic function fields of N and of M. We use C(N) to de-

note the analytic function field of N and then the Riemann surfaces N can

be uniquely recovered from C(N) (see for instance [3]). Furthermore accord-

ing to [119] finite maps f from some other Riemann surface M to N are in

one-to-one correspondence with finite extensions of fields C(N)⊂K given by

f 7→ f ♯: C(N) → C(M). In terms of fundamental groups finite maps can be

characterized as follows.

Theorem 1.3.1 ([119]). Let Σ be a discrete subset of N and q ̸∈ Σ a point

in N. There is a one-to-one correspondence between finite maps f : (M, p) →
(N, q) of degree n with df contained in Σ and subgroups H of π1(N\Σ, q) of

index n given by f 7→ H=π1(M\f−1(Σ), p).

There are no finite maps between C and E. This is a consequence of Li-
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uville’s theorem and the following

Lemma 1.3.2. If f is a finite map from E to N then N is biholomorphic to

E.

Proof. Let N be the universal covering of N. By [27, p.99] we deduce that

the finiteness of f implies the finiteness of the lifting map f : E→ N and of the

projection map π: N→ N which leads to π1(N) = 1. Firstly N cannot be the

Riemann’s sphere because there is no proper map from a non-compact space

to a compact space. Now we claim that N cannot be the complex plane and

therefore it has to be biholomorphic to the unit disk as claimed. Otherwise

we may assume that f is a finite map from E to C and then a bounded

holomorphic function of E descends to a bounded holomorphic function of C
by taking the symmetric product. This will imply that there is a non-constant

bounded holomorphic function on C, which is impossible.

We call two proper factorizations

M
ϕ1→ T1

ϕ2→ T2→· · ·→Tr−1
ϕr→ N

and

M
ψ1→ R1

ψ2→ R2→· · ·→Rs−1
ψs→ N

equivalent if r = s and there exist biholomorphic maps εi such that the diagram

M

id

��

ϕ1 // T1

ε1

��

ϕ2 // T2

ε2

��

ϕ3 // · · · · · · ϕr−1 // Tr−1

εr−1

��

ϕr // N

id

��
M

ψ1 // R1
ψ2 // R2

ψ3 // · · · · · · ψr−1 // Rr−1
ψr // N

commutes.

Corollary 1.3.3. Let Σ be a discrete subset of N, p a point in M, q ̸∈ Σ a

point in N and f a finite map from (M, p) to (N, q) with df contained in Σ.

There is a one-to-one correspondence between proper factorizations of f and

proper chains of groups between π1(M\f−1(Σ), p) and π1(N\Σ, q).

Let f be a finite map of degree n from M to N and q ̸∈ df a point in

N. If we write f−1(q) =
∑n

i=1(pi) then for all α in π1(N\df , q) and for all

1 ≤ i ≤ n there is a uniquely determined point (pi)
α supported in f−1(q) and

a path β from pi to (pi)
α, unique up to homotopy, such that f∗β = α. There
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is a uniquely defined ρ(α) in Sn such that (pi)
α = piρ(α) for all 1 ≤ i ≤ n

and we call the group homomorphism ρ:π1(N\df , q) → Sn the monodromy

and the image of ρ the monodromy group of f . The monodromy group of f is

transitive because M is connected. We shall need the following useful remark

which complements Theorem 1.3.1:

π1(M\f−1(df ), p) = {α∈π1(N\df , q) : pα = p}. (1.1)

Here we write pα instead of (p)α.

If f is the Chebyshev polynomial Tn then

df =


{−1, 1} for n ≥ 3;

{−1} for n = 2;

∅ for n = 1.

In any case we could look at the monodromy representation of π1(C\{−1, 1})
which is a rank 2 free group generated by σ and τ with σ respectively τ repre-

sented by small loops counter-clockwise around −1 respectively 1. Concerning

the monodromy ρ: ⟨σ, τ⟩ → Sn we claim that if n = 2k then

ρ(σ) = (2, 2k) (3, 2k − 1) · · · (k, k + 2)

ρ(τ) = (2, 1) (3, 2k) · · · (k + 1, k + 2)

and if n = 2k + 1 then

ρ(σ) = (2, 2k + 1) (3, 2k) · · · (k + 1, k + 2)

ρ(τ) = (2, 1) (3, 2k + 1) · · · (k + 1, k + 3).

For instance, they can be read as the hypercatographic groups of the corre-

sponding dessins d’enfants of Tn.

1σ = 1, 2σ = 4, 3σ = 3, 1τ = 2, 4τ = 3

Figure 1.1: Chebyshev representation.

Proof of the claim. This fact is well-known, therefore we only verify it in the

case n = 4. It is easily checked that the T4-preimage of the real interval [−1, 1]
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is [−1, 1], of −1 is {cos 3π/4, cos π/4} and of 1 is {cosπ, cosπ/2, cos 0}. We

mark the 4 copies of the T4-preimage of open interval (−1, 1) with 1, 2, 3 and

4 as tagged in Figure 1.1 and then it is clear that 1 goes to 2 under the action

of τ , 2 goes to 1, 3 goes to 4 and 4 goes to 3. This gives ρ(τ) = (1, 2)(3, 4) and

similarly ρ(σ) = (2, 4).

We write Fr for the free group of rank r and call a group homomorphism

ρ: F2 = ⟨σ, τ⟩ → Sn a Chebyshev representation if it agrees with the one

described as above.

From the viewpoint of topology a finite map can be uniquely recovered from

its monodromy by means of “Schere und Kleister” surgery [119, p.41] and this

leads to the following restatement of Theorem 1.3.1.

Theorem 1.3.4 (Riemann’s existence theorem). Let N be a Riemann sur-

face, s a discrete subset in N, q ̸∈ s a point in N and ρ:π1(N\s, q) → Sn a

transitive representation. There exist a unique pointed Riemann surface (M, p)

associated with a finite map f : (M, p)→ (N, q) with the monodromy of f given

by ρ.

The uniqueness of (f,M, p) implies that if finite maps f : (M, p) → (N, q)

and g: (R, r) → (N, q) have the same monodromy then there exists a biholo-

morphic map ε: (M, p)→ (R, r) making the diagram

M
ε //

f   A
AA

AA
AA

A R

g
~~||

||
||

||

N

commutative.

Let f : M → N be a finite map with f(p) = q. Regarded as permutation

groups, the monodromy group of f is isomorphic to the image of the action

of π1(N\df , q) on the coset space π1(M\f−1(df ), p) \ π1(N\df , q), for which

we refer to [119, p.41]. It is also isomorphic to the image of the action of

Gal(K/C(N)) on the coset space Gal(K/C(M))\Gal(K/C(N)), as explained

in [131, Theorem 5.14], where K is any Galois extension of C(N) which con-

tains C(M).

We call a Riemann surface M finite if π1(M) is finitely generated. Thanks

to Ahlfors finiteness theorem [1], this is equivalent to saying that M is home-



Chapter 1 Backgrounds and General Remarks 9

omorphic to a compact Riemann surface with finitely many disks and points

deleted. We shall make use of the following version of Riemann-Hurwitz for-

mula.

Lemma 1.3.5. If N is a finite Riemann surface and if f is a finite map from

M to N with df a finite set then M is also finite and

deg Df = deg f · χ(N)− χ(M). (1.2)

We shall prove Lemma 1.3.5 by Schreier’s Index Formula applied to funda-

mental groups, which might be new and gives an example in explaining that

fundamental groups detect morphisms.

Theorem 1.3.6 (Schreier’s Index Formula). If G is a subgroup of Fr with

index i then G is a free group with rank

i(r − 1) + 1.

Proof of Lemma 1.3.5. Choose a non-empty subset s of N containing df and let

n be its cardinality. We shall calculate π1(M\f−1(s), p) in two different ways.

By elementary topology π1(N\s, q) is a free group of rank n+1−χ(N) and

from Theorem 1.3.1 we know that π1(M\f−1(s), p) is a subgroup of π1(N\s, q)
with index deg f . Schreier’s index formula implies that

π1(M\f−1(s), p) ∼= Fa (1.3)

where a=deg f(n−χ(N))+1. The group homomorphism i∗ from π1(M\f−1(s))

to π1(M) obtained from the inclusion map i is surjective, and so M is also

finite. Elementary topology again gives

π1(M\f−1(s), p) ∼= Fb (1.4)

where b = n deg f −deg Df+1−χ(M). Using the main theorem of finitely

generated abelian groups we see that Fs
∼=Ft implies that s= t. Comparing

(1.3) and (1.4) leads to a = b which gives the desired identity.

Riemann defines his surface as a fibration over the complex plane or over

the Riemann sphere, and Grothendieck regards an algebraic variety defined

over k as a fibration over Speck. In Riemann’s story a finite analytic map can

be recovered from the action of fundamental groups, as seen in for instance



10 Mingxi Wang

Theorem 1.3.1. Grothendieck’s story is contained in his birational anabelian

conjectures, and as an example we refer to [90] and [45] for the following

Theorem 1.3.7. Let K be a finite extension of Qp, X and Y smooth geomet-

rically irreducible projective curves over K, π1(X) and π1(Y ) their algebraic

fundamental groups and

α: π1(X)→ π1(Y )

an open homomorphism of extensions of Gal(K/K). Then α is induced from

a unique dominant morphism of curves X → Y .

1.4 Transcendental maps

The idea of constructing a universal covering surface originated with

Schwarz. His idea was adopted by Klein and Poincaré and then led to the

theory of uniformization. Comparing to finite maps which are tied up with

subgroups of finite index of the fundamental group, the theory of uniformiza-

tion is an issue involving describing the full fundamental group. Finite maps

are somehow algebraic objects, and the uniformization produces instead tran-

scendental maps. Though in literature transcendence was only implicitly at-

tached to universal covering spaces, it should not be surprising that the theory

of transcendence will be closely related to the uniformization theory.

As pointed out by Kollár in [77], one hopes that there are many interest-

ing connections between the meromorphic function theory of a variety and

the holomorphic function theory of its universal cover. Indeed, Hermite and

Lindemann’s breakthrough work on the transcendence of values of the expo-

nential function is basically related to the uniformization of Gm(C). Although

their original proof does not really reflect Kollár’s viewpoint, the subsequent

achievements in transcendence rely heavily on constructing suitable auxiliary

polynomials of automorphic functions on the complex Euclidean spaces. This

technique was extensively developed by Siegel, Gelfond, Schneider and Baker.

As an example we recall Lang’s version of a very general theorem of Schneider

which covers almost all known transcendence results up to his time.
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Theorem 1.4.1 (Schneider’s Criterion). Let K ⊂ C be a number field and

let f1, · · · , fN be meromorphic functions of order ≤ ρ. Assume that the field

K(f) = K(f1, · · · , fN) has transcendence degree ≥ 2 over K and that the

derivative ∇ = d/dt maps the ring K[f ] = K[f1, · · · , fN ] into itself. If S is a

set of points in C such that fi(w) ∈ K for all w ∈ S then |S| ≤ 20ρ[K : Q].

From the point of view of uniformization, the complex Euclidean spaces Cn

are the higher dimensional generalizations of the complex plane. In his beau-

tiful paper [19], Bombieri successfully obtained a criterion of Schneider’s type

to this general context which applies to analytic subgroups of group varieties

[22]. Restricted to the exponential maps of algebraic groups the most general

result is due to Wüstholz’ analytic subgroup theorem which covers most of the

transcendental results up to date. Let G be a commutative algebraic group

defined over Q with Lie algebra g. Further, let b be a subalgebra of g and put

B = expG(b
⊗

Q C). Wüstholz’s theorem [136] now reads as follows

Theorem 1.4.2 (Analytic subgroup theorem). There exists a point z ̸= 0

in b(Q) such that expG(z) ∈ G(Q) if and only if there exists a non-trivial

algebraic subgroup H ⊆ G defined over Q such that H ⊆ B.

This theorem doesn’t cover the full version of Bombieri’s work, and even in

the case of the exponential maps of algebraic groups there remains open prob-

lems such as Schanuel’s conjecture as well as its generalized version formulated

in [137].

In general we expect that if a universal covering maps an algebraic object

to another algebraic object then it admits special reasons. Therefore a large

part of transcendence theory amounts to laying out suitable theories on the

universal covering space. There even exists no such one, as on the complex

plane Schneider’s criterion or on the complex Euclidian spaces Bombieri and

Wüstholz’s theories, on the unit disk. Nevertheless we have several interesting

examples which support the existence of such a theory. Classical results of

Kronecker-Weber and of Schneider tell us that z and j(z) are both algebraic

if and only if z is quadratic. Wüstholz verifies that a period on curves defined

over Q is either 0 or transcendental. Lang’s conjecture in [80], partially proved

by Wolfart-Wüstholz [134], predicts that if π: E→ X is the universal covering

map of an algebraic curve X defined over Q and if π(0) lies in X(Q) then π′(0)
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is transcendental. Those results, inherently attached to the unit disk, are all

proved by Schneider’s criterion or by Wüstholz’s analytic subgroup theorem.

In the theory of uniformization the higher dimensional model manifolds

which generalize the unit disk are bounded symmetric domains. In this context

Schneider’s theorem on the singular moduli was generalized by Shiga-Wolfart

[120] and Tretkoff [34] to Shimura varieties of abelian type. The proof again

relies heavily on the analytic subgroup theorem. More recently Ullmo and

Yafaev have also obtained related interesting results in [128].

We would like to point out that Borel’s density theorem and Ratner’s theory

agree with the spirit of our discussions and might be of transcendental interest.

Now we switch to general transcendental maps rather than the universal

covering. In this case we have to give up fundamental groups, and instead to

adopt the theory of value distribution as the major technique.

The value distribution theory dates back to at least the fundamental theo-

rem of algebra which tells us that a complex polynomial assume every complex

value equally many times. This remains the case for finite maps between Rie-

mann surfaces as shown by Radó [102] and for flat finite morphisms in the

higher dimensional cases.

General holomorphic or meromorphic functions on the complex plane are

much more complicated than polynomials, for instance the exponential map

exp never assumes 0. The situation is not too bad as Picard’s little theorem

concludes that a non-constant holomorphic function assumes the whole com-

plex plane except for at most one point. It might be interesting to notice

that the original proof of such a statement for general functions relies on the

uniformization associated with Γ(2). Picard’s little theorem together with his

big one give a qualitative transcendental analogue of the fundamental theorem

of algebra.

E. Borel realized that growth is essential to an understanding of Picard’s

theorem, and this motivated Nevanlinna to establish his theory which gives

a quantitative version of the fundamental theorem of algebra. Although the

theory has been generalized to many other spaces in the remaining of this

section we will stick to the case of holomorphic or meromorphic functions.

For real α we denote by log+ α the maximum of the numbers logα and 0
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and n(r,∞) the number of poles of f in the closed disk |z| ≤ r. Then the

standard functions in Nevanlinna theory are given by

M(r, f) = max
|z|=r
|f(z)|

N(r, f) = N(r,∞) =

∫ r

0

n(t,∞)− n(0,∞)

t
dt+ n(0,∞) log r

m(r, f) = m(r,∞) =
1

2π

∫ 2π

0

log+ |f(reiφ)|dφ

N(r, a) = N(r,
1

f − a
)

m(r, a) = m(r,
1

f − a
)

T (r, f) = m(r,∞) +N(r,∞).

We will write them simplyM(r),m(r), N(r), T (r) when no confusion can arise,

and we call M(r, f) maximum modulus functions as well as T (r, f) Nevanlinna

characteristic functions. Write Da for the divisor f−1(a) then N(r, a) charac-

terizes the growth of Da. For meromorphic functions we have in Nevanlinna

theory the following principal elements.

‡ Nevanlinna inequality: the growth of Da does not exceed the the growth of

f .

N(r, a) ≤ T (r, f) +O(1).

‡ Crofton Formula: the growth of f equals the average of growthes of Da.

T (r, f) =

∫
a∈P1

N(r, a) da.

‡ Hadamard’s solution to Weierstrass Problem: Given a divisor D of C there

exist a holomorphic function f such that D0 = D and that

N(r, 0) = T (r, f) +O(1).

‡ Defect relation: the set of a with small growth of Da is sparse.∑
a∈P

lim inf
r→∞

m(r, a)

T (r)
≤ 2.

The first three elements there belong to the context of the First Main The-
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orem, and the last one is contained in the Second Main Theorem which is the

deepest part of Nevanlinna theory. The analogy between the Second Main

Theorem and Diophantine approximation, as discovered by Osgood, Lang and

Vojta, is well-known and remains a subject of intense interest. Here we would

like to point out the connection between the First Main theorem and the tran-

scendence theory, for which we sketch the proof of a theorem of Schneider on

the transcendence of values of Weierstrass ℘-function [115]. Crofton’s Formula

implies that elliptic functions are of finite order which guarantees the moder-

ate growth of auxiliary polynomials, Hadamard’s theorem makes it possible to

pass from meromorphic functions to entire functions without the increase of

growth, and Nevanlinna’s inequality underlies the analysis of auxiliary poly-

nomials.

1.5 Endomorphisms of bounded symmetric

domains

There is a duality between Hermitian symmetric manifolds X of noncom-

pact type and those of the compact type X∨, as deduced from the Borel em-

bedding theorem, in such way that biholomorphisms of X extend to to bilolo-

morphisms of X∨. This fact fits into the GAGA principle and remains the

case for finite endomorphisms of polydisks according to the work of Fatou,

Remmert, Stein and Rischel.

The unit disk carries the same topological structure as the complex plane,

but their complex structures are different and this leads to quite different func-

tion theories. Finite endomorphisms of the complex plane are non-constant

polynomials, and finite endomorphisms of the unit disk were characterized by

Fatou. In a first step he showed in [48] that

Theorem 1.5.1 (Fatou). If f is a finite endomorphism of the unit disk then it

extends to a rational function and it satisfies the following functional equation:

f

(
1

z

)
=

(
1

f(z)

)
. (1.5)
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Three years later he gave in [49] a more precise version of the theorem

involving a product formula.

Theorem 1.5.2 (Fatou). If f is a finite endomorphism of the unit disk then

f(z) = ϱ
n∏
i=1

z − ai
1− ai z

with ϱ an element in T, n a positive integer and ai points in E.

These products were first introduced by Blaschke in [16] and they are

of great importance in transcendence as employed by Baker-Wüstholz in [7]

and[8, p.141]. We shall regard a finite Blaschke product as an endomorphism

of the unit disk E, the unit circle T, the Riemann sphere P1 or the mirror image

of the unit disk Ec
, depending on corresponding contexts. By a generalized

Blaschke product we mean a rational function of the above form but without

the assumption that ai are contained in E.

The theory of complex dynamics where mappings are iterated is very differ-

ent in the case of polynomials from the case of finite Blaschke products. The

case of Blaschke products goes back at least as far as Fatou [47], where the

whole third chapter was devoted to the problem of classifying finite Blaschke

products by their dynamics. This subject was later taken up by many other

authors. Herman gave in [67] the first example of a special type of Fatou set,

which are now called Herman ring, by studying generalized Blaschke products.

In the famous dictionary between Kleinian groups and rational maps as pro-

moted by Sullivan, finitely-generated Fuchsian groups goes to finite Blaschke

products. For recent research on illustrating this viewpoint and for research

on the restricted circle dynamics, we refers the reader to a series of papers by

McMullen for instance [92], [93] and [94].

Now we come to the case of polydisks. We start by recalling Rischel’s result

in [107] which generalizes Remmert-Stein’s original work in [104].

Theorem 1.5.3 (Remmert-Stein-Rischel). If Ω1, · · · ,Ωn, D1, · · · , Dn are

bounded domains in C and if f is a proper map from Ω1×· · ·×Ωn to

D1×· · ·×Dn then there exists a permutation σ in Sn and proper maps fj from

Ωjσ to Dj such that

f(z1, · · · , zn) = (f1(z1σ), · · · , fn(znσ)).
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Fatou’s theorem together with Rischel’s version [107] of Remmert-Stein’s

theorem [104] are able to classify finite endomorphisms of polydisks.

Theorem 1.5.4 (Fatou-Remmert-Stein-Rischel). If f is a finite map from

En to En then there exists a permutation σ in Sn and finite Blaschke products

fj such that

f(z1, · · · , zn) = (f1(z1σ), · · · , fn(znσ)).

This theorem implies the famous theorem of Cartan’s famous on automor-

phism groups of polydisks.

For any point p in the unit disk we shall denote by ιp the linear Blaschke

product given by z 7→ (z+p)/(1+pz). By a totally ramified Blaschke product

we mean a rational function of the form ϵ ◦ zn ◦ ε where ϵ and ε are elements

in AutC(E).

1.6 Änderung à la Hurwitz

Für meine Unterauchungen war es wesentlich, die Rie-

mann’sche Fläche als ein rein topologisch erklärtes

Gebilde, also ganz unabhängig von den auf ihr ver-

laufenden Functionen, aufzufassen.

Hurwitz ([72] 1891)

There are many different points of view on the concept of Riemann surface

including the altas principle à la Klein, Weierstrass’ analytic configurations

and the sheaf principle introduced by Weyl, among which we shall adopt

Riemann’s original covering principle. He introduced in [105] and [106] his

surface in the form of a topological multi-sheeted surface spread out a priori

over the complex plane (or the Riemann sphere). This multi-sheeted surface

is then reflected by its ramification data at the underlying complex plane.

In other words, as remarked by Klein in [76, p.545], sie mögen selbst mit

mehreren Blaättern überdeckt sein, die unter sich durch Verzweigungspunkte,

beziehungsweise Verzweigungsschnitte zusammenhängen. Hurwitz studied in

great details the “Änderung” of Riemann surfaces according to the “Bewe-

gung” of ramified points in his fundamental paper [72], and actually the con-
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sideration of Bewegung had already appeared in Riemann’s famous count [106].

Here Hurwitz’s Änderung is used in such a unusual way that we will move the

complex structure of the underlying space rather than the location of ramified

points. The object we are looking at is a finite Blaschke product f which

makes the unit disk a topological multi-sheeted surface X spreads over an

underlying unit disk. In other words, f is regarded as an analytic representa-

tive of the topological object X. We may give the underling unit disk a new

complex structure which makes it to be the complex plane, and then X is a

topological surface spreads over C but not the unit disk any more. This gives

X a new analytic representative which turns out to be a polynomial. By such

an operation we have successfully passed from a finite Blaschke product to a

polynomial, and conversely we may also pass from a polynomial to a finite

Blaschke product in a similar way.

To be in accord with the modern language we shall make use of the following

version of Riemann’s covering principle as given in [2, p.119-120]. Here a

Riemann surface is a pair (R, r) with R a connected Hausdorff space and r

a complex structure, see [2, p.144]. However we shall simply write E and C
when r is canonical.

Theorem 1.6.1 (Riemann’s covering principle). If f : R1 → R2 is a covering

surface and if r2 is a complex structure on R2. Then there exists a unique

complex structure r1 on R1 such that f : (R1, r1)→ (R2, r2) is holomorphic.

Let f : E → E be a finite map and i0: E → C a homeomorphism. The

canonical complex structure on C induces a new complex structure r0 on E
and we obtain a new Riemann surface (E, r0). By Theorem 1.6.1 applied to

f : E → (E, r0) there exists a Riemann surface (E, r1) such that f : (E, r1) →
(E, r0) is holomorphic. Consequently there exists a holomorphic map (i1, i0)∗f

from (E, r1) to C which makes the following diagram

E
i1
��

f // E
i0
��

(E, r1)
(i1,i0)∗f // C

commutative, where i1 is the topological identity map. We shall call i1 a

f -lifting of i0 and (i1, i0)∗f a (i1, i0)-descent of f .
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The uniqueness part of Theorem 1.6.1 shows that if i1, i
′
1 are two f -liftings

of i0 then there exists a holomorphic isomorphism σ between (E, r1) and (E, r′1)
such that σ◦i1 = i′1. The classical uniformization theorem for simply connected

Riemann surfaces together with Lemma 1.3.2 shows that (E, r1) and (E, r′1)
must be biholomorphic to C. To sum up we may state the following

Corollary 1.6.2. Let f be a finite map from E to E, i0 a homeomorphism from

E to C and i1, i
′
1 homeomorphisms from E to the complex plane f -liftings of i0.

There exists σ in AutC(C) such that i′1 = σ ◦ i1 and (i′1, i0)∗f ◦ σ = (i1, i0)∗f.

This can be illustrated by the following diagram

E
i′1

xxqqqqqqqqqqqqq

i1
��

f // E
i0
��

C z 7→σaz+b // C
(i1,i0)∗f // C

Notice that (i1, i0)∗f is a finite map from C to C and therefore are given by

polynomials. The next proposition shows that our construction of liftings is

functorial.

Proposition 1.6.3. Let f1, f2 be finite maps from E to E, i0 a homeomor-

phism from E to C and f = f1◦f2. If i1 is a f1-lifting of i0 and if i2 is a

f2-lifting of i1 then i2 is a f -lifting of i0 and (i2, i0)∗f = (i1, i0)∗f1◦(i2, i1)∗f2

is a composition of polynomials.

E
i2
��

f2 // E
i1
��

f1 // E
i0
��

C
(i2,i1)∗f2 // C

(i1,i0)∗f1 // C

Proof. We conclude from Theorem 1.6.1 that both i0◦f1◦i−1
1 and i1◦f2◦i−1

2 are

holomorphic. Again by Theorem 1.6.1 it suffices to show i0◦f◦i−1
2 is holomor-

phic. This follows from i0◦f◦i−1
2 = (i0◦f1◦i−1

1 )◦(i1◦f2◦i−1
2 ).

Similarly we have

Proposition 1.6.4. Let f1, f2 be finite maps from C to C, k0 a homeo-

morphism from C to E and f = f1◦f2. If k1 is a f1-lifting of k0 and if

k2 is a f2-lifting of k1 then k2 is also a f -lifting of k0 and (k2, k0)∗f =
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(k1, k0)∗f1◦(k2, k1)∗f2 is a composition of two finite Blaschke products.

C
k2
��

f2 // C
k1
��

f1 // C
k0
��

E
(k2,k1)∗f2 // E

(k1,k0)∗f1 // E

Now we derive as a corollary of Proposition 1.6.3 the following

Corollary 1.6.5. Let f, α1, α2, β1, β2 be finite maps from E to E, i0 a homeo-

morphism from E to C and f = α2◦α1 = β2◦β1. If i1 is a α2-lifting of i0, i2 is

a α1-lifting of i1 and j1 is a β2-lifting of i0 then i2 is also a β1-lifting of j1and

we have the following decompositions of polynomials

(i2, i0)∗f = (i1, i0)∗α2◦(i2, i1)∗α1 = (j1, i0)∗β2◦(i2, j1)∗β1.

Proof. The argument similar to that in the proof of Proposition 1.6.3 applies.

Compared with finite Blaschke products polynomials are generally easier to

be handled with since much more algebraic techniques ( such as the place at

infinity ) are available.

1.7 Weierstrassian elliptic functions

The theory of elliptic function finds its root in the study of elliptic integrals.

Let g2 and g3 be complex numbers with g3
2 − 27g2

3 ̸= 0 and consider the

integral of the Weierstrass form u =
∫∞
y
ds/
√

4s3 − g2s− g3. Here u is a

multi-valued function of the lower limit y, but its inverse y is single-valued.

One can even show that y is elliptic, and y = ℘(u) is called Weierstrassian

elliptic function. Notice that y = ℘(u) is independent of the choice of the

branch of the Weierstrass form because ℘ is an even function. We collect the
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following elementary properties of ℘.

℘(z) = ℘(−z), (1.6)

℘′2 = 4℘3 − g2℘− g3, (1.7)

2℘
′′

= 12℘2 − g2, (1.8)

℘(u+ v) = −℘(u)− ℘(v) +
1

4

(
℘′(u)− ℘′(v)

℘(u)− ℘(v)

)2

. (1.9)

The addition formula (1.9) leads to

℘(u+ v) + ℘(u− v) =
(℘(u) + ℘(v)) · (2℘(u) · ℘(v)− g2/2)− g3

(℘(u)− ℘(v))2
,(1.10)

℘(u+ v) · ℘(u− v) =
(℘(u) · ℘(v) + g2/4)2 + g3(℘(u) + ℘(v))

(℘(u)− ℘(v))2
. (1.11)

If Λ is the lattice of periods of ℘ then we have the following Mittag-Leffler

expansion:

℘(z) = ℘(z; Λ) :=
1
z2

+
∑

ω∈Λ, ω ̸=0

(
1

(z − ω)2
− 1

ω2

)
.

Let ω1, ω2 be a basis of Λ, ω3 = ω1 + ω2 and ei = ℘
(
ωi

2

)
. We recall

4℘3 − g2℘− g3 = 4(℘− e1)(℘− e2)(℘− e3), (1.12)

e1 + e2 + e3 = 0. (1.13)

We have defined the Weierstrass function by elliptic integrals, and obtained

expressions for them as infinite sums. This procedure of course can be reversed,

and then we fall into the so called Mittag-Leffler approach. Given a lattice Λ

of C one may attach it with an elliptic function ℘(z; Λ), and the numbers g2

and g3 can be uniquely expressed in terms of the lattice.

Following usual notations given Λω1,ω2 = Zω1 + Zω2 we write ℘(z;ω1, ω2) =

℘(z; Λω1,ω2) and moreover given τ ∈ H we write ℘(z; τ) = ℘(z; 1, τ). Further-

more we shall write Eω1, ω2 and Eτ for the elliptic curves C/Λω1,ω2 and E1, τ

respectively.
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1.8 Jacobian elliptic functions

If we consider the integral of a Jacobi form w =
∫ x

0
dt/
√

(1− t2)(1− k2t2)

with elliptic modulus k in P1\{0,−1, 1,∞} rather than of a Weierstrass form

then the theory of elliptic functions is quite different. Here we choose the

branch such that
√

(1− t2)(1− k2t2) = 1 at t = 0. The integral w is a multi-

valued function of x, but its inverse x is single-valued and elliptic and this

function x = sn(w, k) is called Jacobian sin function.

It is often convenient to develop the theory by means of theta functions.

Given a point τ in H we write q = eπiτ where the branch of q1/4 is the one

for which q1/4 assumes e−π/4 at τ = i and introduce the four theta functions

following the notation of Tannery-Molk:

ϑ1(u, τ) =
∞∑

n=−∞

i2n−1q(n+ 1
2)

2

e(2n+1)ui,

ϑ2(u, τ) =
∞∑

n=−∞

q(n+ 1
2)

2

e(2n+1)ui,

ϑ3(u, τ) =
∞∑

n=−∞

qn
2

e2nui,

ϑ0(u, τ) =
∞∑

n=−∞

(−1)nqn
2

e2nui.

We shall write simply ϑ1(v) instead of ϑ1(v, τ) when no ambiguity arises,

and this convention applies to many other functions. We introduce following
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special functions

ω1(τ) = π ϑ2
3(0, τ),

ω2(τ) = πτ ϑ2
3(0, τ),

k (τ) =
ϑ2

2(0, τ)

ϑ2
3(0, τ)

,

k
1
2 (τ) =

ϑ2 (0, τ)

ϑ3 (0, τ)
,

k′ (τ) =
ϑ2

0(0, τ)

ϑ2
3(0, τ)

,

k′
1
2 (τ) =

ϑ0 (0, τ)

ϑ3 (0, τ)
,

λ (τ) =
ϑ4

2(0, τ)

ϑ4
3(0, τ)

.

If τ is purely imaginary then k
1
2 and ω1 are positive real numbers. We will

write ωi,τ for ωi(τ). As a hypergeometric function on the λ = k2 domain we

have ω1,τ = 2K(λ) where K is Legendre’s complete elliptic integral of the first

kind K(λ) =
∫ 1

0
dt/
√

(1− t2)(1− λt2).

Following Jacobi [74, p.512] his elliptic functions can be defined by

sn u =
1√
k
· ϑ1(u/ω1)

ϑ0(u/ω1)
,

cnu =

√
k′√
k
· ϑ2(u/ω1)

ϑ0(u/ω1)
,

dnu =
√
k′ · ϑ3(u/ω1)

ϑ0(u/ω1)
.

The elliptic function sn takes 2ω1 and ω2 as a pair of primitive periods and

satisfies

sn

(
±ω1

2
, τ

)
= ± 1 (1.14)

as well as

sn(ω1 − u) = snu, (1.15)

dn2u− k2cn2u = k′2. (1.16)

The Jacobian elliptic functions can be expressed as infinite products ([74,
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p.145]):

ϑ0(u) = c
∞∏
n=1

(
1− q2n−1e2πiu

) (
1− q2n−1e−2πiu

)
, (1.17)

ϑ1(u) = 2 c q
1
4 sinπu

∞∏
n=1

(
1− q2ne2πiu

) (
1− q2ne−2πiu

)
where c=

∏
n≥1(1− q2n), and consequently

sn u = 2k−
1
2 q

1
4 sin πu/ω1

∞∏
n=1

(1− q2ne2πiu/ω1)(1− q2ne−2πiu/ω1)

(1− q2n−1e2πiu/ω1)(1− q2n−1e−2πiu/ω1)
.

From the addition formulae

sn(u+ v) =
snu cn v dn v + sn v cnu dnu

1− k2 sn2u sn2v
,

cn(u+ v) =
cnu cn v − dnu dn v sn u sn v

1− k2 sn2u sn2v
,

dn(u+ v) =
dnu dn v − k2cnu cn v snu sn v

1− k2 sn2u sn2v

we deduce that ( see for instance [74, p.475] and [74, p.468] )

cn(u+ v) cn(u− v) =
cn2u− sn2v dn2u

1− k2sn2u sn2v
, (1.18)

cn(u+ v) dn(u− v) =
cnu cn v dnu dn v − k′2snu sn v

1− k2sn2u sn2v
, (1.19)

dn(u+ v) dn(u− v) =
cn2v dn2u+ k′2sn2v

1− k2sn2u sn2v
. (1.20)

In 1882 Glaisher introduced nine other elliptic functions in [60, p.86] among

which cd u := cn u/dnu will be of particular importance in the sequel. By

(1.16) we have

k2cd2u+ k′2/dn2u = 1 (1.21)

and by the addition formula of sn we have

cdu = sn(u+ ω1/2).

Both cn and dn are even functions and as a result the same is true for cd

cdu = cd(−u). (1.22)
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Which also takes 2ω1 and ω2 as a pair of primitive periods. In contrast to the

Weierstrass ℘ function the Jacobian function cd has two remarkable identities

which involve half-periods:

cd(u+ ω1) = − cdu, (1.23)

cd
(
u+

ω2

2

)
=

1

k cdu
. (1.24)

The equality (1.23) suggests that it is more reasonable to regard cd as a coun-

terpart of trigonometric cos function among elliptic functions because they

are both even and take the half-period as a quasi-period, i.e. cos(z + 2π
2

) =

− cos(z). The equality (1.24) is very similar to Schwarz reflection principle,

which provides an intuitive reason for the connection between Jacobi’s prod-

ucts and Blaschke products.

By addition formulas of cn and dn we have

cd(u+ v) =
cdu cd v − snu sn v

1− k2cdu cd v snu sn v
(1.25)

and by (1.21), (1.19) and (1.20) we have

cd(u+v) + cd(u−v) =
cn(u+v) dn(u−v) + cn(u−v) dn(u+v)

dn(u+v) dn(u−v)

=
2cnu cn v dnu dn v

cn2v dn2u+ k′2sn2v

=
2cdu cn v dn v

cn2v + sn2v (1− k2cd2u)

=
2cn v dn v cdu

1− k2sn2v cd2u
. (1.26)

Moreover we deduce from (1.18), (1.20) and (1.21) that

cd(u+ v) cd(u− v) =
cn(u+ v) cn(u− v)
dn(u+ v) dn(u− v)

=
cn2u− sn2v dn2u

cn2v dn2u+ k′2sn2v

=
cd2u− sn2v

cn2v + sn2v (1− k2cd2u)

=
cd2u− sn2v

1− k2 sn2v cd2u
. (1.27)
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If X is an abelian variety then the quotient of X by its inherent involution

will be denoted by KX , the Kummer variety of X. The canonical projection

π:X → KX will be called the Kummer map. Elliptic functions ℘ and cd are

even and of order 2. This implies that for any τ chosen from the upper half

plane ℘τ is an analytic representative of the Kummer map of Eτ , and this

remains the same for cd with Eτ replaced by E2ω1,τ , ω2,τ .

It follows readily from transformation formulae of theta functions as given

in [101] that

k

(
aτ+b

cτ+d

)
=
i2b−2bc ϑ2

1−c,1−d (0, τ)

iab ϑ2
1−c−a,1−b−d(0, τ)

,

(
a b

c d

)
∈ SL2(Z)

where θ11 = i θ1, θ10 = θ2, θ00 = θ3 and θ01 = θ4. In particular if a≡ d≡ 1, b≡ 0

(mod 2) then we have

k

(
aτ+b

cτ+d

)
=


(−1)

b
2 k(τ) if c ≡ 0 (mod 2);

(−1)
b
2/k(τ) if c ≡ 1 (mod 2).

(1.28)

This implies that

λ

(
aτ+b

cτ+d

)
=


λ(τ) if c ≡ 0 (mod 2);

λ(τ)−1 if c ≡ 1 (mod 2).

(1.29)
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2

Fundamental Groups and Ritt’s

Theory

The structure of endomorphism monoid of a space, where the binary operation

is given by composition, might be an interesting problem. Given an elliptic

curve E without complex multiplication its endomorphism(as a Lie group)

monoid End(E) is presented by ⟨p1, p2, p3, . . . |pipj = pjpi⟩, and the structure of

End(E) for elliptic curves with complex multiplication goes to the factorization

theory of orders which is much more complicated.

We write (End(X), ◦) for the monoid of finite endomorphisms of an alge-

braic or an analytic space X, where a finite map refers to a map which is

quasifinite and proper. It is clear that End(X) is generated by units and irre-

ducible elements, where the set of units consists of automorphisms Aut(X) and

an irreducible element refers to an endomorphism f in End(X)\Aut(X) sat-

isfying that there do not exist ψ1, ψ2∈End(X)\Aut(X) for which f =ψ1◦ψ2.

In other words we have

(End(X), ◦) = ⟨Units, Irreducible elements |Relations ⟩ .

Hopefully, all relations admit simple geometric reasons.

In a fundamental paper [109] Ritt described the relations of (End(C), ◦),
and it turns out that all these rations do arise from rather simple reasons.

The main result of this chapter is Theorem 2.1.4 which describes relations of

27
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(End(E), ◦), where E is the unit disk, and we may give here that theorem a

slightly different presentation.

Theorem 2.0.1. The finite endomorphism monoid (End(E), ◦) of the unit

disk is presented by

⟨S |R⟩

where S consists of linear and of prime finite Blaschke product and R consists

of the following relations

(i) ι◦f=g or f ◦ι=g where ι∈Aut(E);

(ii) zrg(z)k◦zk=zk◦zrg(zk);

(iii) fp, qt◦fq, t=fq, pt◦fp, t with p, q primes and t a positive real number

where fn,t are associated to isogenies of elliptic curves.

2.1 Introduction

We call a non-constant complex polynomial f ̸∈AutC(C) prime if there do

not exist complex polynomials ψ1 ̸∈AutC(C) and ψ2 ̸∈AutC(C) for which f =

ψ1◦ψ2. Otherwise f is called composite or factorized. A representation of f in

the form f = ψ1◦· · · ◦ψk is a factorization or decomposition of f and a maximal

factorization of f into prime polynomials only is called a prime factorization

of f . The length of f , with respect to a given prime factorization, is defined

to be the number of prime polynomials present in that prime factorization.

In 1922 J.F. Ritt [109] proved three fundamental results on factorizations of

complex polynomials.

Let f ̸∈ AutC(C) be a non-constant complex polynomial. He first gives a

necessary and sufficient condition for f to be composite and shows that f is

composite if and only if its monodromy group is imprimitive (Ritt I), and that

the length of f is independent of its prime factorizations (Ritt II). The third

result of Ritt tells us how to pass from one prime factorization to another one.

Theorem 2.1.1 (Ritt III). Given two prime factorizations of a non-constant

complex polynomial f ̸∈AutC(C), one can pass from one prime factorization

to the other one by repeatedly uses of the following operations:
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(i) h◦f = (h◦ι−1) ◦ (ι◦f) with ι∈AutC(C), h and f prime;

(ii) Tm◦Tn = Tn◦Tm with Tk the Chebyshev polynomial of degree k;

(iii) zrg(z)k◦zk = zk◦zrg(zk) with r, k positive integers and g a non-constant

complex polynomial.

Ritt’s theory was later studied by Engstrom, Levi, Dorey, Whaples, Fried,

Zannier, Müller, Beardon, Ng, Pakovich, Zieve and many others. All their

work are based on algebraic techniques although Ritt’s original work is simply

topological in nature. We shall adopt Ritt’s topological point of view and

explore the theory by means of topological fundamental groups. This enable

us to put Ritt’s theory in a more general analytic setting and the main goal

of this paper is to develop a version of Ritt’s theory for the unit disk. In the

context of finite maps between Riemann surfaces Ritt’s first two theorems can

be reformulated as follows.

Theorem 2.1.2 (Ritt I′). If f is a nonlinear finite map from M to N then it

is composite if and only if its monodromy group is imprimitive.

For our version of (Ritt II) we need an additional hypothesis, which is satis-

fied for all finite maps with a totally ramified point, in particular for polynomial

maps.

Theorem 2.1.3 (Ritt II′). If α: [0, 1] → N is a closed cycle over which f is

unramified and if the monodromy of α acts transitively then the length of f is

independent of the prime factorizations.

The proofs are only slight technical modifications of the original proofs

to deal with the more general situation. We shall apply these two theorems

when the Riemann surfaces M and N are unit disks E and carefully develop

a complete version of Ritt’s theory on E. Since Chebyshev polynomials play

an important role in Ritt’s theory, it is natural to find their counterparts in

the unit disk case. We solve this central problem by introducing in Section

2.3 a new class of finite Blaschke products, which we call Chebyshev-Blaschke

products fn, t for any positive integer n and positive number t.

Theorem 2.1.4. Let f be a finite endomorphisms of E. Let

E φ1→ T1
φ2→ T2→ · · · →Tr−1

φr→ E



30 Mingxi Wang

and

E ψ1→ R1
ψ2→ R2→ · · · →Rs−1

ψs→ E

be decompositions of f into a product of prime finite maps. We can pass

from the first decomposition to the second by applying repeatedly the following

operations:

(i) h ◦ g = (h◦ι−1) ◦ (ι◦g) where h, g are finite endomorphisms of E and ι is

a biholomorphic map from E to another Riemann surface;

(ii) (ι◦fm,nt) ◦ (fn, t◦ȷ) = (ι◦fn,mt) ◦ (fm, t◦ȷ) with m,n positive integers, t a

positive real number and ι, ȷ in AutC(E);

(iii) (ι◦zrg(z)k) ◦ (zk◦ȷ) = (ι◦zk) ◦ (zrg(zk)◦ȷ) with r, k positive integers, g a

finite endomorphism of E and ι, ȷ in AutC(E).

2.2 Modular lattices

In this section we give a proof of Theorem 2.1.2 and of Theorem 2.1.3.

Even though our proof carries no essentially new ingredients compared with

Ritt’s original work [109], we present it with the aim to clarify that Ritt’s

original ideas extend to the more general category. Moreover, a number of

consequences which results from the proofs are needed to prove our Main

Theorem 5.1.3. Notice that a topological version of Theorem 2.1.2 was already

discussed in [78, p.65].

Proof of Theorem 2.1.2. Choose q ̸∈df in N and p∈M with f(p) = q then we

deduce from Corollary 1.3.3 that f is prime if and only if π1(M\f−1(df ), p) is

a maximal subgroup of π1(N\df , q) and this is equivalent to π1(N\df ) acting

primitively on π1(M\f−1(df ))\π1(N\df ) and now by the equivalence remarked

in Section 2.3 we may deduce the desired conclusion.

We shall recall some basic lattice theory and we shall follow the notations

x < y, x ≺ y, x ∨ y and x ∧ y as described in [18]. A lattice L is said to

satisfy the Jordan-Dedekind chain condition if the length of maximal proper

chains depends only on the endpoints. We say that L is of locally finite if every

interval of L is of finite length. We call L modular if

x ≤ z ⇒ x∨(y∧z)=(x∨y)∧z ∀ y ∈ L.
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The following modular lattices play an important role in Ritt’s theory.

Example 2.2.1. Let Ln = {t∈N : t |n} so that i≤ j if and only if i |j. Then

(Ln;≤) is a lattice and x∨y=lcm(x, y), x∧y=gcd(x, y). This lattice of devisors

of n is modular and any sublattice F of (Ln;≤) is also modular.

If a locally finite lattice L is modular, then it satisfies the Jordan-Dedekind

chain condition. Furthermore there is a dimension function d: L→Z such that

x≺ y if and only if x<y and d(y)= d(x)+1 for all x, y in L. In addition we

have d(x)+d(y)= d(x∨y)+d(x∧y). Ritt [109] proved an important property

for sublattices of (Ln;≤). We shall extend Ritt’s result to general modular

lattices.

Proposition 2.2.2. Let L be a locally finite modular lattice, a, b ∈ L with

a≤ b and C,C′ maximal proper chains of L with the same endpoints a and b.

There exists m≥ 0 and a sequence of maximal proper chains Ci, 0≤ i≤m, with

endpoints a and b such that C0=C, Cm=C′ and Ci and Ci+1 differ in only one

element.

Proof. We first of all write C and C′ as

C : a = x0 ≺ x1 ≺ x2 ≺ x3 ≺ · · · ≺ xn = b,

C′ : a = y0 ≺ y1 ≺ y2 ≺ y3 ≺ · · · ≺ yn = b,

then choose a dimension function d and will prove the claim by induction. If

n = 2 nothing requires a proof. Assume the claim holds for all 2≤ n≤ k−1,

we will prove it for n= k.

If x1=y1 we apply the induction assumption to B : x1≺x2≺x3≺ · · · ≺xk= b

and B′ : y1≺ y2≺ y3≺ · · · ≺ yk= b and this proves the proposition in the case

n<k or n= k, x1= y1.

It remains the case that n= k, y1 ̸=x1. We first show that y1
x1. If not then

y1<x1 and this leads to d(a)<d(y1)<d(x1), a contradiction to d(x1)= d(a)+1.

Since y1≤ xk= b, there exists 1≤ i≤ k − 1 such that y1
 xi, y1≤ xi+1. If i= 1

we put C0= C and define C1 : x0≺ y1≺ x2≺ x3≺ · · · ≺ xk. To go from C1 to C′

we note that here the case where n= k and x1= y1 applies and we are done.

Assume the proposition holds when 1≤i≤l−1 and we shall prove it for i=l.
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Since

d(y1∨xl−1) = d(y1)+d(xl−1)−d(y1∧xl−1)

= d(y1)+d(xl−1)−d(x0)

= d(xl−1)+1

and since y1 ≤ xl+1 implies xl−1 ≤ y1∨ xl−1 ≤ xl+1, we conclude that xl−1 ≺
y1∨xl−1≺xl+1. This shows that we can choose C0 = C and C1 = x0≺x1≺x2≺
· · · ≺ xl−1≺ y1∨xl−1≺ xl+1 ≺ · · · ≺ xk. To go from C1 to C′ we see that the

case i=l−1 applies and we are done.

As an explicit example we give the following

Example 2.2.3. Let F be a sublattice of Ln and C,C′ maximal proper chains

of F with endpoints 1 and n. There exists a positive integer m and a sequence

of maximal proper chains Ci, 0 ≤ i ≤ m, with endpoints 1 and n such that

C0 = C, Cm= C′ and any two consecutive ones Cj and Cj+1 differ only in one

element. This means that we can write Cj as · · ·≺ ai≺ ai+1≺ ai+2≺ · · · and

Cj+1 as · · ·≺ ai≺ a′i+1≺ ai+2≺ · · · respectively. As both two chains are proper

and ai+1 ̸= a′i+1, we have(ai+1

ai
,
a′i+1

ai

)
=1,

(ai+2

ai+1

,
ai+2

a′i+1

)
=1

or equivalently

ai+1

ai
=
ai+2

a′i+1

,
ai+2

ai+1

=
a′i+1

ai
,
( ai+1

ai
,
ai+2

ai+1

)
=1. (2.1)

For the proof of Theorem 2.1.3 we need the following lemma, for which we

refer to [110].

Theorem 2.2.4 (Dedekind’s Modular Law). Let G be a group and let H≤
K,L be its subgroups. Then we have (LH)∩K=(L∩K)H.

Proof of Theorem 2.1.3. We write n= deg f , α(0)= q and choose f−1(q) =

{p= p1, p2, . . . , pn}. According to Corollary 1.3.3 it suffices to prove that the

lattice L consisting of all intermediate groups between G=π1(N\df , q) and

H=π1(M\f−1(df ) , p) is modular. Writing Kα for K∩ ⟨α⟩ we consider the

following map

K∈L 7→g Kα∈ ⟨α⟩ ,
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and it is then clear that Gα=⟨α⟩ . By the transitivity of the monodromy action

of α on f−1(q) we have

Hα = H∩⟨α⟩
(1.1)
= {β∈⟨α⟩: p1=p=p

β=pβ1=p1β}

= {β∈⟨α⟩: 1β=1}

= ⟨αn⟩ .

The fact thatH∩⟨α⟩=⟨αn⟩ immediately leads to αiH ̸=αjH for all 0≤i<j≤n−
1. This together with [G : H] = n leads to G = H ∪ αH ∪ · · · ∪ αn−1H and

in particular G = ⟨α⟩H. Since Ln is isomorphic to the lattice consisting of

intermediate groups between ⟨α⟩ and ⟨αn⟩, we shall treat them equally and

consequently g: L → Ln is a lattice morphism. By Dedekind’s Modular Law

and by G=⟨α⟩H we have

KαH=(⟨α⟩ ∩K)H=⟨α⟩H∩K=G∩K=K. (2.2)

This implies immediately that g is injective. Since K is a group we deduce

from (2.2) that KαH is also a group and this leads to

KαH=HKα. (2.3)

To prove that g is a lattice morphism it suffice to verify that Kα ∩ Mα =

(K ∩M)α and ⟨K,M⟩α = ⟨Kα,Mα⟩ for all K,M in L. The former is trivial

since

Kα∩Mα=K∩⟨α⟩ ∩M∩⟨α⟩

= (K∩M)∩⟨α⟩

= (K∩M)α.

By ⟨K,M⟩=⟨KαH,MαH⟩
(2.3)
= HKαMα and KαMα=MαKα the latter follows

from

⟨K,M⟩α = ⟨K,M⟩ ∩⟨α⟩ = HKαMα∩⟨α⟩

= (H∩⟨α⟩)KαMα

= KαMα

where the second last equality relies on Dedekind’s modular law. We have
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proved that g is an injective lattice morphism and this gives that L≃g(L) and

the latter is a sublattice of Ln. We conclude from Example 2.2.1 that L is

modular.

A much shorter proof exists, but our proof gives more information. In

particular it implies that L is a sublattice of Ln. According to (2.1), we can

pass from one maximal factorization of f to another with each step given by

a solution (ϕi, ϕi+1, ϕ
′
i, ϕ

′
i+1) to the two finite maps equation

ϕi◦ϕi+1=ϕ
′
i◦ϕ′

i+1, deg ϕi=deg ϕ′
i+1, (deg ϕi, deg ϕi+1)=1. (2.4)

This functional equation in polynomials is a major difficulty solved in [109]

and we shall solve this functional equation in finite Blaschke products.

2.3 Chebyshev representations

In this section we shall construct Chebyshev-Blaschke products using the ge-

ometric monodromy action. If a ̸=b are points in E then the group π1(E\{a, b})
can be generated by two elements σ and τ with σ and τ represented by closed

paths around a and b with counterclockwise orientation.

Lemma 2.3.1. Given n∈N there exists a finite map fn, a, b: E→E of degree

n with

(i) dfn, a, b
={a, b} ( if n > 2 ) or {a} ( if n = 2 ) or ∅ ( if n = 1 ),

(ii) the monodromy representation ρ: ⟨σ, τ⟩→Sn is a Chebyshev representa-

tion.

In addition fn, a, b is unique up to composition on the right with an element in

AutC(E).

Proof. Theorem 1.3.4 gives a finite map f from some Riemann surfaces M to E
which satisfies the monodromy condition. By Lemma 1.3.5 a direct calculation

leads to χ(M) = 1 and it follows from elementary topology that M is either

C or E. Liouville’s Theorem rules out the possibility of C and the uniqueness

part of Theorem 1.3.4 completes the proof.

We will call those fn, a, b Chebyshev-Blaschke products. Any annulus A is

conformal to A(r, t) = {z : r<|z|<t} with 0≤r<t≤∞. The modulus of A,
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denoted by µ(A), is defined to be ln(t/r). In order to describe normalized

forms of fn, a, b, we denote by γ(t) for any positive real number t the unique

number in (0, 1) such that µ(E\[−γ(t), γ(t)]) = t. The function γ is closely

related to the elliptic modulus k

γ(t) = k
1
2 (4ti/π) (2.5)

Given t > 0 and n ∈ N we take a = −γ(nt) and b = γ(nt).

Proposition 2.3.2. For all positive number t and for all positive integer n,

there is a finite map f : E→ E of degree n which satisfies

(i) df= {a, b} (if n> 2) or {a} (if n=2) or ∅ (if n=1);

(ii) f−1[−γ(nt), γ(nt)]= [−γ(t), γ(t)] and f(γ(t))= γ(nt);

(iii) the monodromy representation ρ: ⟨σ, τ⟩ → Sn is a Chebyshev representa-

tion.

Before the proof we recall some geometry and topology. The isometry

group Is(E, ds) of E with respect to the Poincaré metric ds is given by the

semidirect product AutCEo ⟨i⟩, where i is complex conjugation. We write

Is+(E, ds) for the set of holomorphic automorphisms and Is−(E, ds) for the

antiholomorphic ones. The fixed point set Fix(ι) of an element ι in Is(E, ds)
is either empty, a point, a geodesic line or E. Let f be a finite map from M

to N, ϵ a homeomorphism from N to N, q ̸∈ df a point in N and p1, p2 points

in M with f(pi) = q. Elementary topology shows that the map ϵ lifts to a

homeomorphism ε: (M, p1)→ (M, p2) making the following diagram

M

f
��

ε // M

f
��

N
ϵ // N

commutative if and only if first of all ϵ restricts to a bijection on df and

secondly (ϵ◦f)∗π1(M\f−1(df ), p1) = f∗π1(M\f−1(df ), p2).

Proof of Proposition 2.3.2. Lemma 2.3.1 gives a finite map f : E → E which

satisfies (1) and (3). Moreover if we can prove that f−1[−γ(nt), γ(nt)] is a

geodesic segment then (2) is immediately fulfilled by composing f with an ele-

ment in AutCE. We only verify this fact for n=2k, since similar considerations

apply to n=2k + 1.
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By condition f is an unramified map from E\f−1[−γ(nt), γ(nt)] to an an-

nulus E\[−γ(nt), γ(nt)]. This implies that E\f−1[−γ(nt), γ(nt)] is an annulus

and therefore f−1[−γ(nt), γ(nt)] is connected.

Choose q ∈ (−γ(nt), γ(nt)) and write f−1(q) = {p1, p2, . . . , p2k} with the

numbering i chosen such that pαi = piρ(α) for all 1≤i≤2k and α∈π1(E\{a, b}, q).
We show now that there is a commutative diagram

(E, p1)

f
��

ι // (E, p1)

f
��

(E, q) i // (E, q)

with an isometry ι in Is(E) such that f−1[−γ(nt), γ(nt)] ⊂ Fix(ι). As a con-

sequence f−1[−γ(nt), γ(nt)] will be a geodesic segment. By the remark be-

fore it suffices to show that i restricts to a bijection on {a, b} and that

(i◦f)∗π1(E\f−1{a, b}, p1) = f∗π1(E\f−1{a, b}, p1).

The involution i restricted on E\{a, b} induces a map i∗: π1(E\{a, b}, q)→
π1(E\{a, b}, q). The base point q of σ and τ is on the interval (−γ(nt), γ(nt))
and therefore the action of i∗ on σ and τ simply changes the orientation, and

this means that

i∗(σ)=σ−1, i∗(τ)= τ−1.

By condition that ρ is a Chebyshev representation we have both ρ(σ) and

ρ(τ) are of order two and therefore ρ(i∗(σ))=ρ(σ) as well as ρ(i∗(τ))=ρ(τ).

This gives ρ◦ i∗=ρ on ⟨σ, τ⟩ = π1(E\{a, b}, q), and equivalently for all α in

π1(E\{a, b}, q) we have

ρ(i∗(α)) = ρ(α). (2.6)

By (1.1) we have i∗f∗π1(E\f−1({a, b}), p1)=i∗{α∈π1(E\{a, b}, q):1ρ(α)=1}. Ob-

serve that β to be in the group on the right is equivalent to i∗
−1(β) to

be in the group {α∈π1(E\{a, b}, q):1ρ(α)=1}. Therefore the right hand side

of the last equality equals {α∈π1(E\{a, b}, q):1ρ(i∗
−1(α))=1}. Using (2.6) we

find that this is the same as {α∈π1(E\{a, b}, q):1ρ(α)=1} which is exactly

f∗π1(E\f−1{a, b}, p1). This shows that the involution i lifts to a homeomor-

phism ι: (E, p1)→ (E, p1) and from the diagram we deduce with elementary
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topology that for all α ∈ π1(E\{a, b}, q) = ⟨σ, τ⟩ we have

ι(pα1 ) = p
i∗(α)
1 .

In particular ι(pτ1)=p
i∗(τ)
1 and therefore ι(p2)=p2. Similar arguments show

that ι(pj)=pj for all 1≤j≤2k and we get f−1(q)⊂Fix(ι). We differentiate the

equation f(ι(z)) = f(z) which follows from the diagram. This implies that

∂ι/∂z = 0 which means that ι is an antiholomorphic homeomorphism of the

unit disk. Consequently ι∈Is−(E, ds) is an isometry and therefore it suffice to

prove that f−1[−γ(nt), γ(nt)]⊂Fix(ι). The paths σ and τ , the preimage pi and

the lift ι vary continuously if q varies continuously in (−γ(nt), γ(nt)). In addi-

tion for given f and i the equation i◦f= f◦ι has only finitely many solutions ι

in Is−(E, ds).Indeed choose a fixed point x ∈ E then any solution ι takes values

at x in a finite set f−1(i(f(x))) and since ι is an antiholomorphic automorphism

it is uniquely determined by the image at two distinct points. This shows that

there are only finitely many possibilities. We conclude that ι is locally constant

and therefore independent of q. This shows that f−1[−γ(nt), γ(nt)] ⊂ Fix(ι)

as claimed.

Proposition 2.3.3. For all positive real number t and positive integer n there

exists a unique finite endomorphism fn, t of the unit disk E with the property

that f−1[−γ(nt), γ(nt)] = [−γ(t), γ(t)] and f(γ(t)) = γ(nt).

Proof. The existence of fn, t comes from Proposition 2.3.2 and therefore it

suffices to prove that any two such maps f1 and f2 coincide. As a first step we

show that df ⊂ {−γ(nt), γ(nt)} for f in {f1, f2}.

The map f restricts to finite maps from the annulus E\f−1[−γ(nt), γ(nt)]
which is E\[ −γ(t), γ(t)] to the annulus E\[ −γ(nt), γ(nt)]. Such a map is

unramified and this means that df ⊂ [−γ(nt), γ(nt)]. Moreover the moduli of

these annuli differ by a factor n and this shows that deg f=n.

Taking q∈(−γ(nt), γ(nt)) and p a point in f−1(q)⊂(−γ(t), γ(t)) we deduce

that the preimage of an open neighborhood of q in (−γ(nt), γ(nt)) is an open

neighborhood of p in (−γ(t), γ(t)). Consequently the preimage of two trajec-

tories in (−γ(nt), γ(nt)) at q consists of two trajectories in (−γ(t), γ(t)) at p

and this implies that f is unramified at p. This gives that f is unramified over

any point q in (−γ(nt), γ(nt)) showing that df⊂{±γ(nt)} as stated.
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To continue with the proof we distinguish between two cases.

Case n = 2k.

Because f is an unramified cover of (−γ(nt), γ(nt)) the preimage of

(−γ(nt), γ(nt)) under f is a disjoint union of n real 1-dimensional connected

curves in [−γ(t), γ(t)]. As such they have to be open intervals of the form (ai, bi)

or (bi, ai+1) for i = 1, . . . , k with a1<b1<a2<b2<· · · < bk<ak+1, f(ai)=γ(nt),

f(bi)=−γ(nt) and {a2, . . . , ak}∪{b1, . . . , bk} the critical points. This leads to a

picture similar to Figure 1.1, and an argument similar to that given in the proof

of the statement there shows that the monodromy representation ρ: ⟨σ, τ⟩→Sn
is a Chebyshev representation. The uniqueness part of Theorem 1.3.4 leads

to the existence of ι in AutCE with f1 = f2◦ι. Taking inverse images and us-

ing that fi
−1[−γ(nt), γ(nt)] = [−γ(t), γ(t)] leads to ι[−γ(t), γ(t)] = [−γ(t), γ(t)]

whence ι(±γ(t)) = ±γ(t) or ι(±γ(t)) = ∓γ(t). In the former case ι= id and

therefore f1=f2◦ id = f2. In latter case ι = −id, therefore f1=f2◦( −id) and

finally to conclude f1=f2 it suffices to prove f2(z)=f2(−z).

Choose q∈( −γ(nt), γ(nt)) and write f2
−1(q)={pi: 1≤i≤2k} with the num-

bering i chosen such that pαi =piρ(α) for all α ∈ ⟨σ, τ⟩. Similar to the proof

of Proposition 2.3.2, the map id: (E, q)→ (E, q) lifts to a map ι: (E, p1)→
(E, pk+1) different from the identity in AutCE such that f2◦ι=id◦f2 and again

ι[−γ(t), γ(t)]=[−γ(t), γ(t)]. This together with the property that ι̸=id implies

that ι(z)=−z and therefore f2(z)=f2(−z) as desired.

Case n = 2k + 1.

The preimage of (−γ(nt), γ(nt)) is a disjoint union of n=2k+ 1 open intervals

of the form (ai, bi) for 1≤i≤k+1 or (bj, aj+1) for 1≤j≤k with f(ai) = γ(nt),

f(bi)=−γ(nt) and Df=(a2)+· · ·+(ak+1)+(b1)+· · ·+(bk). Similar considera-

tions to that as above proceed up to there exists ι in AutCE such that f1=f2◦ι
and ι(±γ(t))=±γ(t). The latter identity implies ι=id and therefore f1=f2 as

desired.

If n ≥ 3 and if fn, a, b is the Chebyshev-Blaschke product constructed in

Lemma 2.3.1 then there exist uniquely an element ϵ in AutC(E) and a positive

real number t such that ϵ(a) =−γ(nt) and ϵ(b) = γ(nt) and now ϵ◦fn, a, b has

the same monodromy as the function fn, t constructed in Proposition 2.3.3.

Therefore there exists ε in AutC(E) such that ϵ◦fn, a, b◦ε=fn, t. The maps fn, t
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obtained in this way is called normalized Chebyshev-Blaschke products. We

sum up with the following corollary

Corollary 2.3.4. If f is a finite map from E to E with degree at least three

and if its monodromy representation is Chebyshev representation then there

exist a positive number t and ϵ, ε in AutC(E) such that

fn, a, b = ϵ ◦ fn, t ◦ ε

and this factorization is unique.

Chebyshev Blaschke products have the following special nesting property.

Theorem 2.3.5. For any positive number t and positive integers m and n we

have

fmn, t = fm,nt ◦ fn, t.

Proof. Direct calculation leads to

(fm,nt◦fn, t)−1[−γ(mnt), γ(mnt)] = f−1
n, t(f

−1
m,nt[−γ(mnt), γ(mnt)])

= f−1
n, t[−γ(nt), γ(nt)]

= [−γ(t), γ(t)]

and from Proposition 2.3.3 we deduce that fmn, t=fm,nt◦fn, t .

The topological nature of fn, t may be illustrated by Riemann’s ‘Schere und

Kleister’ surgery applied to copies of the unit disk. As an example we take

f6, t and get the following picture:

Figure 2.1: The topology of f6,t.
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Figure 2.2 illustrates the factorization f6, t=f3, 2t◦f2, t and Figure 2.3 illus-

trates the factorization f6, t=f2, 3t◦f3, t.

f2,t: 7 → 6, 8 → 5, 9 → 4, 10 → 3, 11 → 2, 12 → 1.

Figure 2.2: The first factorization of f6,t.

f3,t: 5 → 4, 6 → 3, 7 → 2, 8 → 1, 9 → 1, 10 → 2, 11 → 3, 12 → 4

Figure 2.3: The second factorization of f6,t.

2.4 Complete theory on the unit disk

In this section we give a detailed study of the factorization properties of fi-

nite endomorphisms of the unit disk. If f ̸∈AutC(E) is a finite endomorphism of
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the unit disk then the following two Propositions follow directly from Theorem

2.1.2 and Theorem 2.1.3.

Proposition 2.4.1. The finite map f is composite if and only if its mon-

odromy group is imprimitive.

In the introduction we introduced the length of f with respect to a prime

factorization as the number of its factors. As a corollary of Theorem 2.1.3 we

have

Proposition 2.4.2. The length of f is independent of prime factorizations.

Proof. We choose a path α sufficiently close to T and apply Theorem 2.1.3 to

get the assertion.

Lemma 2.4.3. If f and g are finite Blaschke products and if zn◦g=f◦zn then

f takes the form f(z)=zmh(z)n where m=ord0f and h is a finite Blaschke

product.

Proof. It suffices to prove that for any nonzero p in E we have ordpf ≡ 0

mod n. We denote by p1/n any nth root of p and using the functional equation

we obtain

ordpf ≡ ordp1/n(f◦zn) ≡ ordp1/n(zn◦g) ≡ 0 (mod n)

as desired.

Proof of Theorem 2.1.4. By Proposition 2.4.2 the length of f is independent

of a given prime factorization. Moreover if

E φ1→ T1
φ2→ T2→· · ·→Tr−1

φr→ E

is a decomposition of f into a product of finite maps then in particular for

any 1≤i≤r−1 the map φi◦φi−1◦· · · ◦φ1 from E to Ti is finite. This together

with Lemma 1.3.2 implies that Ti is biholomorphically equivalent to the unit

disk. After taking finitely many operations of the first kind as described in

the theorem our problem amounts to describe how one passes from one prime

factorization

E φ1→ E φ2→ E→· · ·→E φr→ E
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to another decomposition

E ψ1→ E ψ2→ E→· · ·→E ψr→ E

with all Riemann surfaces being unit disks. Furthermore by Example 1.5.2

(Fatou) all φi and all ψi are finite Blaschke products.

Let df⊂E be the set of critical values of f , n = deg f and L the

lattice of groups lying between π1(E\df ) and π1(E\f−1(df )). If we write

Gi=π1(E\(φr◦· · · ◦φi)−1(df )) and Ki=π1(E\(ψr◦· · · ◦ψi)−1(df )) then we have

G1=K1=π1(E\f−1(df )) as well as Gr+1=Kr+1=π1(E\df ) and as an application

of Corollary 1.3.3 with Σ=df , q ̸∈Σ and f(p)=q we deduce that our prime

decompositions of f induce maximal chains

G1≤G2≤· · ·≤Gr≤Gr+1

and

K1≤K2≤· · ·≤Kr≤Kr+1

with Gi, Ki in L. We apply Theorem 2.1.3 to M=N=E and f and therefore

we know from the proof of Theorem 2.1.3 that L is a sublattice of Ln which

is in particular modular. By Proposition 2.2.2 we may pass inductively from

the first chain to the second with only one change at each step. This gives a

topological description of our algorithm using fundamental groups. Corollary

1.3.3 allows us to write down the algorithm in terms of explicit analytic maps

as listed in the theorem. As explained at the end of Section 2.2 this boils down

to solve the functional equation

α2◦α1 =h=β2◦β1 (2.7)

where αi and βi are prime Blaschke products with degα1 =deg β2=l, degα2 =

deg β1=k and gcd (k, l)=1. Our strategy is to get first a polynomial solution

to this equation and then, using the monodromy representations given by such

a solution, to transform the polynomial solution into a solution expressed in

terms of Blaschke products.

Proposition 1.6.3 applied to (2.7) for some homeomorphism i0=j0: E →
C which induces other homeomorphisms i1, j1, i2=j2 from E to C leads to
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polynomial decompositions of (i2, i0)∗h as

(i1, i0)∗α2◦(i2, i1)∗α1 and as (j1, i0)∗β2◦(i2, j1)∗β1.

This gives a solution to the two polynomial equation

α2◦α1 =h =β2◦β1

where αi and βi are prime polynomials with degα1 = deg β2 = l, degα2 =

deg β1 =k and gcd (k, l)=1. The polynomial solutions to this equation can be

written out by Ritt’s work [109]. Accordingly there exist linear polynomials ιi

such that one of the identities

(i) ι1◦(i2, i1)∗α1◦ι2 = ι3◦(j1, i0)∗β2◦ι4 = zl ;

(ii) ι1◦(i1, i0)∗α2◦ι2 = ι3◦(i2, j1)∗β1◦ι4 = zk ;

(iii) ι1◦(i2, i1)∗ h ◦ ι2 = Tlk

is satisfied. In case (1) of the list above α1 and β2 are totally ramified maps

from E to E. After finitely many operations of the first kind we may assume

that α1=β2=z
l. Then the functional equation (2.7) reduces to α2◦zl=zl◦β1

and Lemma 2.4.3 gives the solution as desired. Similar considerations apply

to case (2).

If we are in case (3) the monodromy of h is a Chebyshev representation and

therefore h is a Chebyshev-Blaschke product as explained in Lemma 2.3.1.

After another finitely many operations of the first kind we may assume that

h, α1, α2, β1, β2 are all normalized Chebyshev-Blaschke products and we are

done.

One crucial step in the above proof is to solve the following functional

equation

a ◦ b = c ◦ d, deg a = deg d, (deg a, deg b) = 1. (2.8)

Following [139] we call a solution of (2.8) in prime finite Blaschke products a

Ritt move and a solution in arbitrary finite Blaschke products a generalized

Ritt move. Indeed we have obtained the following

Theorem 2.4.4. If (a, b, c, d) is a generalized Ritt move in finite Blaschke

products then either there exist ιi in AutC(E), m and n positive integers and t
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a positive real number such that (a, b, c, d) equals(
ι1◦Tm,nt◦ι−1

2 , ι2◦Tn, t◦ι−1
3 , ι1◦Tn,mt◦ι−1

4 , ι4◦Tm, t◦ι−1
3

)
or there exist ιi in AutC(E), h either the constant map h ≡ 1 or a finite

Blaschke product with h(0) ̸= 0 and n, s positive integers such that either

(a, b, c, d) or (c, d, a, b) equals(
ι1◦zn◦ι−1

2 , ι2◦zsh(zn)◦ι−1
3 , ι1◦zsh(z)n◦ι−1

4 , ι4◦zn◦ι−1
3

)
.

Lastly we would like to point out that

Lemma 2.4.5. Let h be a finite Blaschke product with h(0) ̸= 0 and s, n

positive integers with n at least 2. Then neither zsh(z)n nor zsh(zn) is totally

ramified.

Proof. We assume that f = zsh(z)n: E→ E is totally ramified. Given any p

for which h(p)=0, it is clear from n≥2 that f is ramified at p. This implies

that f is ramified over 0, and therefore is totally ramified over 0. However we

have p ̸=0 and f(p)=f(0)=0, which is a contradiction.

Now consider the case f = zsh(zn) and assume f is totally ramified. One

can check if w ̸=0 is a point in Df then for any nth root ζ of unity ζw is also

contained in Df , which together with n ≥ 2 contradicts the totally ramified

assumption. Therefore f is totally ramified at 0, which contradicts to h(0) ̸=0.

2.5 Polydisks

In this section we sketch how to extend our results to the case of polydisks.

Firstly we recall from Example 1.5.2 and Rischel’s version [107] of Remmert-

Stein’s theorem [104] the following famous classification result.

Theorem 1.5.4 together with the results proved in Section 2.4 shows that

if f is a nonlinear finite map from Ed to Ed then it is composite if and only

if its monodromy group is imprimitive. In addition the length of a nonlinear

finite map f : Ed→Ed is independent of prime factorizations and one sees that

this leads without any difficulty to a higher dimensional generalization of our
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Theorem 2.1.4

Theorem 2.5.1. Given two prime factorizations of a nonlinear finite map

f : Ed → Ed, one can pass from one to the other by repeatedly uses of explicit

operations.
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3

Elliptic Rational Functions

This chapter as a technical part of this thesis is devoted to elliptic rational

functions which are analogues of Chebyshev polynomials in the formal dictio-

nary between elliptic functions and trigonometric functions.

We have constructed in Section 2.3 Chebyshev-Blaschke products Tn,t(t >

0) from the monodromy representation of fundamental groups, and we shall

prove in the next section that Tn,t are closely related to elliptic rational func-

tions. Elliptic rational functions were originally constructed by Zolotarev by

descent of cyclic isogenies. Later we shall slightly extend Zolotarev’s construc-

tion and obtain a more general family Tn,τ (τ ∈ H), all of which we also call

elliptic rational functions. If we write

Tb(n) = Chebyshev-Blaschke product of degree n = {Tn,t|t > 0},

Tz(n) = Zolotarev’s original fractions,

Tgz(n) = Generalized Zolotarev fractions = {Tn,τ |τ ∈ H}

then it turns out that

Tgz(n) = Y0(4n)(Theorem 3.2.3),

Tz(n) = purely imaginary points ↪→ Y0(4n),

Tb(n) = Tz(n)(Corollary 3.1.7).

Notice that Tb(n) is constructed from monodromy, and Tz(n) is constructed

47
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from isogeny. The proof that two constructions agree is not trivial, which is

carried out in the next section. Our starting point of the study of those

functions is the Chebyshev representation ρT :F2 → Sn, and we summarize here

our whole research scope on the dictionary between Chebyshev polynomials

and Chebyshev-Blaschke products.

Chebyshev polynomials Chebyshev-Blaschke products

Topology ρT : C\{2pts} → Sn ρT : E\{2pts} → Sn

Geometry 1pt purely imaginary points ↪→ Y0(4n)

Functions trigonometric elliptic

Groups multiplicative group elliptic curves

Arithmetic ∞ integral points ∞ rational points

Beyond Siegel Faltings

In other words, with the same topological condition we have obtained com-

pletely different stories in geometry, functions theory, algebraic groups and

arithmetic. The basic points behind the whole story are the following simple

facts in the uniformization theory:

(a) C agrees with E in topology;

(b) P1 is a double of E.

Besides our viewpoint of monodromy, there are many other points of view

on those functions. For instance, Zolotarev’s was mostly interested in the

optimization properties of those functions [140]. Bogatyrev also did many

studies on Zolotarev’s fractions, and his focus on the Pell equation in [24]

seems interesting. He has also realized in [25] that those functions derived

from isogeny give relations of (End(P1), ◦), and compared with that what

we have proved in Theorem 2.0.1 (which is essentially the main theorem of

[132] submitted in 2007) is that those functions derived from monodromy give

almost “all” relations of (End(E), ◦). The proof of our assertion that they give

“all” relations was based on the study of monodromy. Similar argument by

monodromy will appear again and again in the second half of this chapter.
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3.1 Jacobi’s products and Blaschke products

The contents of chapter 2 together with those of this section will appear

in Forum Mathematicum. We have constructed in Section 2.3 Chebyshev

Blaschke products fn, t. In this section we shall write Tn, t =fn, t and explain

how they are related to theta functions. If f is a finite Blaschke product then

|f(z)| takes 1 for all z on the unit circle T. This follows readily from∣∣z−a∣∣= ∣∣1−az∣∣, for all a∈E, z ∈T1

which applies to each of factors of f . By similar but more involved arguments

we use Jacobi products to prove

Proposition 3.1.1. If τ is a purely imaginary point of the upper half plane

H and if there exists a integer m such that i Im v
τ

= 2m+1
4

then |ϑ0(v)|= |ϑ1(v)| .

Proof. The elliptic function ϑ1(v)
ϑ0(v)

has primitive periods 2 and τ and therefore

it suffices to prove the claim under the assumption i Im v
τ

= 1
4

or i Im v
τ

= 3
4
. We

shall only verify this in the case i Im v
τ

= 1
4

since similar arguments apply in

the remaining case. By the product formulae (1.17) and by the trivial fact

v=Re v+τ/4 we have

ϑ0(v) = c
∞∏
n=1

(
1−e(2n−1/2)πiτ+2πiRe v

)(
1−e(2n−3/2)πiτ−2πiRe v

)
,

ϑ1(v) = c e
πiτ
4 2 sin πv

∞∏
n=1

(
1−e(2n+1/2)πiτ+2πiRe v

)(
1−e(2n−1/2)πiτ−2πiRe v

)
and we have to show that both terms have the same absolute value. Our

assumption that τ is purely imaginary gives e(2n±1/2)πiτ are real numbers and

then leads to

1−e(2n±1/2)πiτ+2πiRe v = 1−e(2n±1/2)πiτ−2πiRe v.

We use this identity to compare the infinite products above and see that for

the proof of the proposition it suffices to verify that∣∣1−eπiτ/2−2πiRe v
∣∣ =

∣∣2eπiτ/4 sinπv
∣∣.
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This follows from∣∣1−eπiτ/2−2πiRe v
∣∣ =

∣∣1−eπiτ/2+2πiRe v
∣∣

=
∣∣1−e2πiv

∣∣
=
∣∣1−cos 2πv− i sin 2πv

∣∣
=
∣∣2 sin2 πv−2i sin πv cosπv

∣∣
=
∣∣2ei(πv−π/2) sin πv

∣∣
=
∣∣2e−π Im v sinπv

∣∣
=
∣∣2eπiτ/4 sinπv

∣∣
and completes the proof.

Corollary 3.1.2. Let τ be purely imaginary and let m be an integer. We have

(i) |ϑ0(v)|< |ϑ1(v)| if 4m+1
4
< i Im v

τ
<4m+3

4
;

(ii) |ϑ0(v)|> |ϑ1(v)| if 4m−1
4
< i Im v

τ
<4m+1

4
.

Proof. The elliptic function φ = ϑ1/ϑ0 is of order 2 and takes 2, τ as a

pair of primitive periods. We take the parallelogram with vertex 0, 2, 2+ τ, τ

as a fundamental domain. By Proposition 3.1.1 each of the φ-images of{
z : i Im z

τ
= 4m+1

4
,m∈Z

}
and of

{
z : i Im z

τ
= 4m+3

4
,m∈Z

}
covers T. Together

with the fact that degφ= 2 this leads to φ−1(T)=
{
z : i Im z

τ
= 2m+1

4
,m∈Z

}
. If

our second claim is not true then there exists w such that −1
4
< i Imw

τ
< 1

4
and

|ϑ0(w)|≤ |ϑ1(w)|. Moreover by φ(0)= 0 we have |ϑ0(0)|≥ 0= |ϑ1(0)| and by

continuity there exists z such that −1
4
< i Im z

τ
< 1

4
and |φ(z)|= 1. This contra-

dicts our previous conclusion on φ−1(T) and proves our second claim. The first

assertion is obtained in a similar way.

Corollary 3.1.3. If τ is purely imaginary and if m is an integer then we

have

(i) |snw|= k−1/2 if i Imw
ω2

= 2m+1
4

;

(ii) |snw|<k−1/2 if 4m−1
4
< i Imw

ω2
< 4m+1

4
;

(iii) |snw|>k−1/2 if 4m+1
4
< i Imw

ω2
< 4m+3

4
.

This remains the case with sn replaced by cd.

Proposition 3.1.4. If τ is purely imaginary then

sn−1[−1, 1] = {w : i Imw=mω2,m∈Z}
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and this remains the case with sn replaced by cd.

Proof. First of all we recall that as remarked in Section 1.8 the assumption

−iτ > 0 implies that q, k
1
2 and ω1 are all positive real numbers. If w is a real

number then the quotient v=w/ω1 and

snw =
1√
k

2q1/4 sin πv−2q9/4 sin 3πv+2q25/4 sin 5πv−· · ·
1−2q cos 2πv+2q4 cos 4πv−2q9 cos 6πv+ · · ·

are also real. The elliptic function sn takes 2ω1, ω2 as a pair of primitive

periods, and we have seen in Section 1.8 that sn2ω1±ω1

2
= ±1. In a period-

parallelogram spanned by the vectors 2ω1 and ω2, the critical points of sn are{
ω1

2
, 3ω1

2
, ω1+ω2

2
, 3ω1+ω2

2

}
. These facts imply that the sn-image of [0, 2ω1] covers

[−1, 1] twice and we conclude that the preimage of [−1, 1] in our period-

parallelogram by the twofold covering sn is [0, 2ω1] which leads to the desired

statement.

For any τ in H and for any positive integer n there are two natural isogenies.

One is from Eτ to Enτ given by z 7→ nz and the other one is from E2ω1,τ , ω2,τ

to E2ω1,nτ , ω2,nτ given by z 7→nzω1,nτ/ω1,τ .

Lemma 3.1.5. The isogeny [n]:Eτ → Enτ descends through ℘ to a rational

function nτ as obtained by the following commutative diagram.

Eτ

℘τ

��

[n] // Enτ

℘nτ

��
P1

nτ // P1

Proof. The map given by the function ℘ is an analytic representation of the

Kummer map. Obviously z1 ≡ ±z2 (mod Z + Zτ) implies that nz1 ≡ ±nz2

(mod Z+Znτ) and this shows that the map [n] is invariant under the action

given by the involution. Therefore by the theory of descent it induces a rational

map nτ as stated.

Similarly the isogeny [n]:E2ω1,τ , ω2,τ → E2ω1,nτ , ω2,nτ descends through cd to

a rational function Tn, τ as obtained by the following commutative diagram.

E2ω1,τ , ω2,τ

cd
��

[n] // E2ω1,nτ , ω2,nτ

cd
��

P1
Tn, τ // P1
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We call a rational function f elliptic if there exist ϵ, ι in AutCE such that

f = ϵ ◦ nτ ◦ ι for some positive integer n and for some τ in H. The function

Tn, τ is linearly equivalent to nτ/2 and therefore is elliptic. We shall use the

following formula repeatedly in the sequel:

cd

(
nω1,nτ

ω1,τ

z, k(nτ)

)
= Tn, τ (cd(z, k(τ))) (3.1)

The concept of elliptic rational function is rarely found in the mathematical

literature, but it is of central importance for advanced filter design. A nice

treatment of elliptic rational functions in engineering can be found in [88,

Chapert 12]. Here we have considered more generally elliptic rational functions

in a universal family Tn, τ parameterized by τ ranging on the upper half plane

H. This will be more satisfactory in mathematics.

Corollary 3.1.3 and 3.1.4 applied to f(z) = k
1
2 (nτ)Tn, τ (z/k

1
2 (τ)) gives

Proposition 3.1.6. If τ is purely imaginary then f is a finite Blaschke prod-

uct with f(k
1
2 (τ))= k

1
2 (nτ) and f([−k 1

2 (nτ), k
1
2 (nτ)])= [−k 1

2 (τ), k
1
2 (τ)].

This together with Proposition 2.3.3 and (2.5) leads to

Corollary 3.1.7. The Blaschke products fn, t(z) are elliptic with respect to

τ = 4ti/π; in other words we have

fn, t(z) = k
1
2 (4nti/π) Tn, 4ti/π(z/k

1
2 (4ti/π)).

Given τ ∈H we let e0(τ)=∞, e1(τ)=℘τ (1/2), e2(τ)=℘τ (τ/2) and e3(τ)=

℘τ ((1+τ)/2) be the image of the 2-torsion points on the projective line. If

n≥3 then σnτ ={e0(τ), e1(τ), e2(τ), e3(τ)} and we shall need

Lemma 3.1.8. If τ is a point in H and if n is an integer greater than two

then

onτ =℘nτ (Enτ [2]) and nτ
−1(onτ )\ supp Onτ =℘τ (Eτ [2]).

Proof. This follows from a calculation of local ramification degree.

We shall show that any elliptic rational function nτ carries a closed cycle

along which the monodromy action of nτ is transitive.

Lemma 3.1.9. Let f : M→N be a finite map and let α be a closed cycle on

N along which f is unramified. If f−1(α) is connected then the monodromy
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action of f along α is transitive.

Proof. It is almost the definition.

We write Cτ for the Jordan curve on P1 which is given by ℘τ ({z : Im z =

Im τ/4}).

Proposition 3.1.10. Given any τ ∈H and given any positive integer n, there

exists a closed cycle α on P1 along which nτ is unramified and the monodromy

action of nτ is transitive.

Proof. By definition we have n−1
τ (Cnτ ) = Cτ , and our previous lemma applies.

Lastly we would like to point out that from the above commutative diagrams

the following nesting properties are obvious.

Proposition 3.1.11 (Nesting Property). Given positive integers m and n

and given any τ ∈H we have

(mn)τ = mnτ ◦ nτ ,

Tmn, τ = Tm,nτ ◦ Tn, τ .

3.2 Modular curves

This section is devoted to the study of the space of elliptic rational functions.

Theorem 3.2.1. Given τ1, τ2 in H and given a rational integer n≥ 3. There

exist ϵ, ε in AutC(P1) such that ϵ◦nτ1◦ε−1 =nτ2 if and only if Γ0(n)τ2 =Γ0(n)τ1,

where

Γ0(n)=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣c≡ 0 (mod n)

}
is the modular group.

Proof. First of all we show that for any positive integer n, τ in H and 0≤ i≤ 3

there exist ι, ϵ in AutC(P1) such that nτ = ϵ◦nτ◦ι−1 and ι(ei(τ))= e0(τ). We only

verify this claim for i = 1 since similar arguments apply to other situations.

Notice that the map ι:Eτ→Eτ defined by ι(z)= z+1/2 descends to an element

ι in AutC(P1) such that ι◦℘τ =℘τ◦ι and moreover the map ϵ:Enτ→Enτ given
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by ϵ(w)=w+n/2 descends to an element ϵ in AutCP1 such that ϵ◦℘nτ =℘nτ◦ϵ.

Eτ
[n] //

��

Enτ

��
Eτ

ι ??���

[n]
//

��

Enτ
ϵ

??���

��
P1

nτ // P1

P1
nτ //

ι ??���
P1

ϵ ??���

One checks easily that ϵ−1 ◦nτ ◦ ι= nτ and ι(e0) = e1 which proves the desired

claim.

By our construction we have nτ1 ◦℘τ1 = ℘nτ1 ◦ [n] where [n] maps Eτ1 to

Enτ1 and nτ2 ◦℘τ2 = ℘nτ2 ◦ [n] where [n] maps Eτ2 to Enτ2 . If there exist ϵ, ε

in AutC(P1) such that ϵ◦nτ1 ◦ ε−1 = nτ2 then ϵ induces a bijection between

℘nτ1(Enτ1 [2]) and ℘nτ2(Enτ2 [2]) since if n≥ 3 then onτi
= ℘nτi(Enτi [2]). More-

over since ε−1 induces a bijection between n−1
τ2

(onτ2
) and n−1

τ1
(onτ1

) as well as a

bijection between supp Onτ2
and supp Onτ1

we deduce from Lemma 3.1.8 that

ε−1 also induces a bijection between ℘τ2(Eτ2 [2]) and ℘τ1(Eτ1 [2]) and by the

claim made in the previous paragraph we may assume that ε−1(e0(τ2))=e0(τ1).

The monodromy representation of a small loop around any critical value of ℘

is an involution, and consequently the map ε: P1→ P1 lifts to an isomorphism

ε:Eτ1→Eτ2 such that ℘τ2◦ε=ε◦℘τ1 and ε(0)=0. Now ε−1(z)=γz for some γ

in C∗ and ε−1 gives an bijection between Λ1, τ2 and Λ1, τ1 as well as a bijection

between ([n] ◦℘τ2)−1(Enτ2 [2]) = Λ 1
2n
,
τ2
2

and ([n] ◦℘τ1)−1(Enτ1 [2]) = Λ 1
2n
,
τ1
2
. We

now write γτ2 =aτ1+b and γ=cτ1+d with
 

a b

c d

!

∈ SL2(Z) and we must have

γΛ 1
2n
,
τ2
2

= Λ 1
2n
,
τ1
2

which clearly leads to cτ1+d
2n
∈ Λ 1

2n
,
τ1
2

and therefore n|c. This

verifies that
 

a b

c d

!

∈ Γ0(n).

Conversely if τ2 =
 

a b

c d

!

τ1 with
 

a b

c d

!

∈ Γ0(n) we shall verify that nτ2

is linearly equivalent to nτ1 . Let γ = cτ1 + d then the map ε: z 7→ z/γ is an

isomorphism between Eτ1 and Eτ2 and descends to an element ε: P1→P1 such

that ℘τ2◦ε=ε◦℘τ1 . Moreover ϵ: z 7→ z/γ is an isomorphism between Enτ1 and

Enτ2(this follows from n|c) and descends to an element ϵ: P1→ P1 such that
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℘nτ2◦ϵ=ϵ◦℘nτ1 .

Eτ2
[n] //

��

Enτ2

��

Eτ1

ε ??��

[n]
//

��

Enτ1
ϵ

??��

��
P1

nτ2 // P1

P1
nτ1 //

ε ??���
P1

ϵ ??���

One may check easily that ϵ◦nτ1 =nτ2◦ε as desired.

The first part of our proof could be much shorter with the help of the

classical result on the moduli of cyclic isogeny of elliptic curves, and we sketch

this as follows. If there exist ϵ, ε in AutC(P1) such that ϵ◦nτ1◦ε−1 =nτ2 then it

induces, according to Lemma 3.1.8, bijections ϵ:℘nτ1(Enτ1 [2])→℘nτ2(Enτ2 [2])

and ε:℘τ1(Eτ1 [2]) → ℘τ2(Eτ2 [2]). This implies that ϵ respectively ε lift to

holomorphic isomorphisms ε:Enτ1 → Enτ2 respectively ϵ:Eτ1 → Eτ2 . By the

claim made at the beginning of the above proof we may assume that ε(0)=0

and ϵ(0)=0. One checks readily that ϵ◦nτ1 ◦ε−1 = nτ2 , and consequently that

the isogeny [n]:Eτ1→Enτ1 is equivalent to [n]:Eτ2→Enτ2 . This together with

the classical theory gives Γ0(n)τ2 = Γ0(n)τ1. The next corollary is important

for our later discussion.

Corollary 3.2.2. If n is an integer greater than two and if t1, t2 are posi-

tive real numbers then elliptic Blaschke product Tn, t1 and Tn, t2 are linearly

equivalent to each other if and only if t1 = t2.

Proof. This follows immediately form Corollary 3.1.7 and Theorem 3.2.1 since

the map iR+ ↪→Y (n)=Γ0(n)\H is injective.

If f is a rational function which is linearly equivalent to nτ for some τ in

H and some integer greater n than two then we call χ(f) := τ ∈ Γ0(n)\H the

character of f . This is well-defined according to Theorem 3.2.1. For all n≥ 3

and for all τ ∈ H we have χ(Tn, τ )= τ/2. For all n≥ 3 and for all t>0 we have

χ(Tn, t)=4ti/π.

Elliptic rational functions those used in the theory of filter designs are only

Tn, it with t > 0, and here we have considered a slightly more general family
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Tn, τ parameterized by τ ranging on the upper half plane H. We write

µ0,τ = 0,

µ1,τ = ω1,τ ,

µ2,τ =
ω2,τ

2
,

µ3,τ =
2ω1,τ+ω2,τ

2

and we shall prove

Theorem 3.2.3. Given τ1, τ2 in H and given a rational integer n≥ 3. Elliptic

rational functions Tn,τ1 and Tn,τ2 are equal if and only if Γ0(4n) τ1
2

=Γ0(4n) τ2
2
.

Proof. We begin with recalling the following facts under the assumption that

n≥3:

(a) The set of two torsion points E2ω1,τ ,ω2,τ [2] consists of µi,τ for all 0≤ i≤3;

(b) Under the isogeny [n]:E2ω1,τ ,ω2,τ→ E2ω1,nτ ,ω2,nτ we have that if n is odd

then

µi,τ 7→ µi,nτ

and if n is even then

µi,τ 7→ µ[i/2],nτ .

(c) Under the Kummer map cd:E2ω1,τ ,ω2,τ→ P1 we have

µ0,τ 7→ +1,

µ1,τ 7→ −1,

µ2,τ 7→ +k(τ)−1,

µ3,τ 7→ −k(τ)−1.

(d) Concerning critical values and critical points of Tn, τ we deduce from

Lemma 3.1.8 and from facts (a),(c) that

oTn, τ = {±1,±k(nτ)−1},

Tn, τ
−1(oTn, τ )\ supp OTn, τ = {±1,±k(τ)−1}.

(e) Under the map Tn, τ : P1 → P1 we deduce from facts (b), (c) that if n is
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odd then

±1 7→ ±1, ±k(τ)−1 7→ ±k(nτ)−1

and if n is even then

±1 7→ +1, ±k(τ)−1 7→ +k(nτ)−1.

Firstly we prove the “only if” part, i.e. assuming Tn,τ1 = Tn,τ2 we will

prove that Γ0(4n) τ1
2

= Γ0(4n) τ2
2
. We write for simplicity E ′

τ for the elliptic

curve E2ω1,τ ,ω2,τ and consider the identity id ◦ Tn,τ1 = Tn,τ2 ◦ id. It follows

from a similar argument to that used in the proof of Theorem 3.2.1 that one

can lift these two ids by Kummer maps, i.e. there exist group isomorphisms

ε:E ′
τ1
→E ′

τ2
and ϵ:E ′

nτ1
→E ′

nτ2
making the following diagram

E ′
τ2

[n] //

��

E ′
nτ2

��

E ′
τ1

ε ??��

[n]
//

��

E ′
nτ1

ϵ

??��

��
P1

Tn,τ2 // P1

P1
Tn,τ1 //

id ??���
P1

id ??���

commutative, where all the vertical projections are given by the Kummer map

cd. By an argument similar to that used in the proof of Theorem 3.2.1 we

have

ε(ω2,τ1) = a · ω2,τ2+b · 2ω1,τ2

ε(2ω1,.τ1) = c · ω2,τ2+d · 2ω1,τ2

for some
 

a b

c d

!

∈ Γ0(n), and in particular τ1
2

=
 

a b

c d

!

τ2
2
. Using the commuta-

tive relation ϵ◦[n]=[n]◦ε we easily obtain

ϵ(ω2,nτ1) = a · ω2,nτ2+nb · 2ω1,nτ2

ϵ(2ω1,nτ1) =
c

n
· ω2,nτ2+d · 2ω1,nτ2 .

Because id◦cd = cd◦ϵ we deduce from fact (c) that ϵ(µ1,nτ1) = µ1,nτ2 . This

together with ϵ(µ1,nτ1) = cω2,nτ2/2n + dω1,nτ2 implies that 2n|c. The relation
τ1
2

=
 

a b

c d

!

τ2
2

leads to nτ1 =
 

a 2nb

c/2n d

!

nτ2. Using the identity id ◦ cd=cd ◦ ϵ
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and fact (c) we deduce that either

ϵ(µ2,nτ1)=µ2,nτ2 , ϵ(µ3,nτ1)=µ3,nτ2 , k(nτ1)=k(nτ2)

or

ϵ(µ2,nτ1)=µ3,τ2 , ϵ(µ3,nτ1)=µ2,nτ2 , k(nτ1)=−k(nτ2).

Simple calculation leads to ϵ(µ2,nτ1) = a
2
ω2,τ2 + nbω1,τ2 , and therefore if nb is

even (or odd) then we fall into the former (or latter) case. Equivalently we

have

k(nτ1)=(−1)nbk(nτ2). (3.2)

This implies in particular that λ(nτ1) = λ(nτ2). However the transformation

formula (1.29) of λ applies and leads to

λ(nτ1) =


λ(nτ2) if c

2n
≡ 0 (mod 2);

λ(nτ2)
−1 if c

2n
≡ 1 (mod 2),

and therefore either c/(2n) is even or c/(2n) is odd but with λ(nτ1)=λ(nτ2)=

−1. If we are in the latter case then we have k2(nτ1)= k2(nτ2)=−1, and by

(1.28)

k(nτ1)=(−1)nb/k(nτ2)=(−1)nb+1k(nτ2)

which contradicts to (3.2). Therefore we have 4n|c which leads to our assertion

that Γ0(4n) τ1
2

=Γ0(4n) τ1
2
.

Secondly we will prove Tn,τ1 = Tn,τ2 under the assumption that Γ0(4n) τ1
2

=

Γ0(4n) τ1
2
. By this assumption there exists

 

a b

c d

!

in Γ0(4n) such that τ1
2

=
 

a b

c d

!

τ2
2
. Considering the following group isomorphisms

ε: z ∈E ′
τ1
7→ (cω2,τ2+2dω1,τ2)z

2ω1,τ1

∈E ′
τ2
,

ϵ: z ∈E ′
nτ1
7→ (cω2,nτ2/n+2dω1,nτ2)z

2ω1,nτ1

∈E ′
nτ2
.

These maps together with their descends ε, ϵ: P1 → P1 make the following
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diagram

E ′
τ2

[n] //

��

E ′
nτ2

��

E ′
τ1

ε ??��

[n]
//

��

E ′
nτ1

ϵ

??��

��
P1

Tn,τ2 // P1

P1
Tn,τ1 //

ε ??���
P1

ϵ ??���

commutative, where all the vertical projections are given by the Kummer

map cd. It suffices to prove that ε= id and ϵ= id, since this together with

ϵ◦Tn,τ1 = Tn,τ2 ◦ε leads to Tn,τ1 = Tn,τ2 . We deduce from d≡ 1 (mod 2) that

ε(µ1,τ1) = µ1,τ2 and ϵ(µ1,nτ1) = µ1,nτ2 . Then our fact (c) leads to ε(±1) =±1

and ϵ(±1)=±1. Consequently the fact that ϵ, ε are identities will follow from

equalities ε(1/k(τ1))=1/k(τ1) and ϵ(1/k(nτ1))=1/k(nτ1).

Indeed by the direct calculation we have ε(µ2,τ1) =
aω2,τ2+2bω1,τ2

2
. Therefore

if b is even then ε(µ2,τ1) = µ2,τ2 and if b is odd then ε(µ2,τ1) = µ3,τ2 . This

together with fact (c) implies that

ε(1/k(τ1)) = (−1)b/k(τ2). (3.3)

Moreover applying the first part of (1.28) we deduce that

k(τ1) = (−1)bk(τ2) (3.4)

The equality (3.3) together with (3.4) gives that ε(1/k(τ1)) = 1/k(τ1), and

therefore ε is the identity map.

The relation τ1
2

=
 

a b

c d

!

τ2
2

leads to nτ1
2

=
 

a nb

c/n d

!

nτ2
2

and nτ1 =
 

a 2nb

c/(2n) d

!

nτ2. Because 4n|c a similar argument similar to that used in pre-

vious paragraph applies and gives that

ϵ(1/k(nτ1)) = (−1)nb/k(nτ2)

k(nτ1) = (−1)nbk(nτ2)

which leads to ϵ(1/k(nτ1)) = 1/k(nτ1), and finally that ϵ is also the identity.

To sum up the space Aut(P1)\{elliptic rational functions of degree n}/Aut(P1)

is Y0(n), and the space {Tn,τ |τ ∈ H} is Y0(4n).
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3.3 Siegel factors and Faltings factors

Given finite Blaschke products f and g, we will use the fact that the curve

P1×f, gP1 admits a anti-holomorphic involution. Indeed it is a double of E×f, gE
which will follow from the functional equation (1.5). Recalling that T is the

unit circle and letting Ec
be the complement of the closed unit disk in the

projective line, it is clear that

P1×f, gP1 = E×f, gE ∪ T×f, gT ∪ Ec×f, gE
c
.

We write R for P1×f, gP1, R
′
for E×f, gE and R

′′
for Ec×f, gE

c
.

Lemma 3.3.1. Let f, g be two finite Blaschke products and R′, R and R
′′

defined as above. There is a one-one correspondence between irreducible com-

ponents of R′ and irreducible components of R such that a component A
′
of

R′ homeomorphic to an affine curve of type (g, d) corresponds to a component

A of R of type (2g+d−1, 0).

Proof. We write R0 = T×f, gT and we find that R0 consists of finite many

real closed smooth curves in R and R = R
′ ∪R0∪R

′′
. If A

′
is an irreducible

component of R
′
then A

′′
= {(x, y)|(1/x, 1/y)∈A

′} is an irreducible component

of R
′′

by

(x, y) ∈ R
′ ⇔ (1/x, 1/y) ∈ R

′′
(3.5)

as follows from the Schwarz reflection principle. The irreducible component A

of R which contains A
′
is given by A′ ∪ A′′ and the correspondence given by

A
′→A is easily checked to be a bijection as desired. If A

′
is of type (g, d) then

we shall prove A is of type (2g+d−1, 0). The correspondence (3.5) implies that

A
′
is homeomorphic to A

′′
and we have χ(A

′
) =χ(A

′′
) = 2−2g−d. Moreover

the contribution of A\A′∪ A
′′

which consists of finitely many circles to the

Euler characteristic is 0, therefore χ(A)=2(2−2g−d) and finally the genus of

A is 2g+d−1.

We use notations and results from Section 1.6. Let i: E→ C be a homeo-

morphism, choose j1: E→C to be a f -lifting of i and j2: E→C to be a g-lifting

of i. We write R∗ = C×(j1, i)∗f, (j2, i)∗gC and get

Proposition 3.3.2. There is a one-one correspondence between irreducible
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+

+

Glue of Siegel factors of Faltings factor of

P1 ×f, g P1E ×f, g E and Ec ×f, g Ec

Figure 3.1: Curves defined by Blaschke products

components of R of type (0, 0) and irreducible components of R∗ of type (0, 1)

as well as a one-one correspondence between irreducible components of R of

type (1, 0) and irreducible components of R∗ of type (0, 2).

Proof. By Lemma 3.3.1 if R has a component of type (0, 0) then R′ has a

component which is homeomorphic to an affine curve of type (g, d) such that

2g+d− 1 = 0. This gives (g, d) = (0, 1) and therefore R∗ has a component

of type (0, 1) since R∗ topologically equals to R′. Similar arguments apply to

the case R has a component of type (1, 0).

By Proposition 3.3.2 there is a one-one correspondence between Faltings

factors of R and Siegel factors of R∗ as illustrated in Figure 3.1. The crucial

point behind the proof of this fact is that an algebraic curve X is abelian if

and only if χ(X) ≥ 0. The existence of a symmetry above implies that our

curve R is defined over R, and R is the double of R′ according to the theory

of Fuchian groups.

3.4 Davenport-Lewis-Schinzel’s formula

Davenport-Lewis-Schinzel derived in [37, p.305] a very interesting formula

for the factorization of Tn(x)+Tn(y) where Tn denotes the Chebyshev polyno-

mial of degree n and similar formula for Tn(x)−Tn(y) was found for instance
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in [112]. The formulae are very important in the work of Bilu-Tichy [15] and

of Avanzi-Zannier [5]. We collect them as follows,

Proposition 3.4.1 (Davenport-Lewis-Schinzel). If n is even then we have

Tn(x)+Tn(y) = 2n−1

n
2∏

k=1

(
x2−2xy cos

(2k−1)π

n
+y2−sin2 (2k−1)π

n

)
and if n is odd then we have

Tn(x)+Tn(y)

x+y
= 2n−1

n−1
2∏

k=1

(
x2−2xy cos

(2k−1)π

n
+y2−sin2 (2k−1)π

n

)
.

By applying the method of Davenport-Lewis-Schinzel one may easily deduce

another well-known formula: if n is odd then we have

Tn(x)−Tn(y)
x−y

= 2n−1

n−1
2∏

k=1

(
x2−2 cos

2kπ

n
xy+y2−sin2 2kπ

n

)
and if n is even then we have

Tn(x)−Tn(y)
x2−y2

= 2n−1

n−2
2∏

k=1

(
x2−2 cos

2kπ

n
xy+y2−sin2 2kπ

n

)
.

Therefore Chebyshev polynomials are very “exceptional” in the sense that

both C×Tn, TnC and C×Tn,−TnC have a large number of components which

in addition are abelian. The exceptionality of Tn was further clarified in for

instance the work of Bilu-Tichy ([14] and [15]) and the work of Avanzi-Zannier

([5]) together with applications to arithmetic problems.

In this section we shall prove elliptic analogues of the formulae and to

achieve this we employ Davenport-Lewis-Schinzel’s original idea but with the

addition formulae for trigonometric functions used there replaced by addition

formulae for elliptic functions. We start with a description of P1×nτ , nτ P1

and then we shall investigate P1×Tn, τ ,Tn, τ P1 and P1×Tn, τ ,−Tn, τ P1. The non

existence of an analogous result for P1×nτ ,−nτ P1 again explains that in the

formal dictionary between trigonometric functions and elliptic functions cd

should be regarded as a counterpart of cos and Tn, τ should be regarded as a

counterpart of Tn. Given a point ([z0 : z1], [w0 : w1]) in P1×P1 we let u= z0/z1

and v=w0/w1 be the affine coordinates of its projection images. We write for
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short ei = ei(τ) and ∆P1 = {(u, v) : u = v}.

Proposition 3.4.2. If n is odd then we have

P1×nτ , nτ P1 = ∆P1 ∪ A1 ∪ A2 ∪ · · · ∪ A(n−1)/2

and if n is even then we have

P1×nτ , nτ P1 = ∆P1 ∪ A0 ∪ A1 ∪ · · · ∪ A(n−2)/2

where A0 is a rational curve defined by

u=
e1v+e2e3+e

2
1

v−e1

and Ai(i≥1) is a genus one curve defined by

u2 =

(
v+℘τ

(
i
n

)) (
2℘τ

(
i
n

)
v− g2

2

)
−g3(

v−℘τ
(
i
n

))2 u−
(
℘τ
(
i
n

)
v + g2

4

)2
+g3

(
v+℘τ

(
i
n

))(
v−℘τ

(
i
n

))2 .

Proof. We note that

nτ (℘τ (z))=℘nτ (nz).

Setting u=℘τ (z) and v=℘τ (z
′) then we have

nτ (u)−nτ (v)=℘nτ (nz)−℘nτ (nz′).

This gives easily that for any integer i the equality

℘τ (z)−℘τ (z′+i/n)=0 (3.6)

leads to nτ (u) = nτ (v). Using (1.10) and (1.11) the product of ℘τ (z)−
℘τ (z′+i/n) and ℘τ (z)− ℘τ (z′−i/n) equals

℘τ (z)
2− (℘τ (z

′)+℘τ (i/n)) (2℘τ (z
′)℘τ (i/n)−g2/2)−g3

(℘τ (z′)−℘τ (i/n))2 ℘τ (z)

+
(℘τ (z

′)℘τ (i/n)+g2/4)2+g3 (℘τ (z
′)+℘τ (i/n))

(℘τ (z′)−℘τ (i/n))2

and therefore

u2−
(
v+℘τ

(
i
n

)) (
2℘τ

(
i
n

)
v− g2

2

)
−g3(

v−℘τ
(
i
n

))2 u+

(
℘τ
(
i
n

)
v+ g2

4

)2
+g3

(
v+℘τ

(
i
n

))(
v−℘τ

(
i
n

))2 =0

is an algebraic factor of P1×nτ , nτ P1.
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If i/n = 1/2 then the factor (3.6) is already an algebraic one. Indeed by

using (1.9), (1.12) and (1.13) we have

℘τ (z) = ℘τ

(
z′+

1

2

)
= −℘τ (z′)−℘τ

(
1

2

)
+

1

4

℘′
τ (z

′)2(
℘τ (z′)−℘τ

(
1
2

))2
= −℘τ (z′)−℘τ

(
1

2

)
+

(
℘τ (z

′)−℘τ
(

1
2

)) (
℘τ (z

′)−℘τ
(
τ
2

)) (
℘τ (z

′)−℘τ
(

1+τ
2

))(
℘τ (z′)−℘τ

(
1
2

))2
=
℘τ
(

1
2

)
℘τ (z

′)+℘τ
(
τ
2

)
℘τ
(

1+τ
2

)
+℘2

τ

(
1
2

)
℘τ (z′)−℘τ

(
1
2

)
and therefore for any even number n the rational curve u(v−e1)=e1v+e2e3+e

2
1

is a factor of P1×nτ , nτ P1.

Proposition 3.4.3. Given τ ∈H if n is odd then we have

P1×Tn, τ ,Tn, τ P1 =∆P1 ∪ A1 ∪ A2 ∪ · · · ∪ A(n−1)/2

and if n is even then we have

P1×Tn, τ ,Tn, τ P1 =∆P1 ∪ A0 ∪ A1 ∪ · · · ∪ A(n−2)/2

where A0 is a rational curve defined by

u+ v = 0

and Ar(r≥1) is a genus one curve defined by

u2 =
2 cn

(
2rω1

n

)
dn
(

2rω1

n

)
v

1−k2 sn2
(

2rω1

n

)
v2

u−
v2−sn2

(
2rω1

n

)
1−k2 sn2

(
2rω1

n

)
v2
.

Proof. We start from recalling the equality (3.1),

Tn, τ (cd(z, k(τ))) = cd

(
nω1,nτ

ω1,τ

z, k(nτ)

)
.

Setting u=cd(z, k(τ)) and v=cd(z′, k(τ)) we have

Tn, τ (u)−Tn, τ (v) = cd

(
nω1,nτ

ω1,τ

z, k(nτ)

)
−cd

(
nω1,nτ

ω1,τ

z′, k(nτ)

)
.
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This implies easily that for any integer r the equality

cd(z, k(τ))−cd

(
z′+

2ω1,τr

n
, k(τ)

)
=0 (3.7)

leads to Tn, τ (u)=Tn, τ (v). It follows from (1.26) and (1.27) that the product

of cdz−cd
(
z′+ 2rω1

n

)
and cdz−cd

(
z′− 2rω1

n

)
equals

cd2z−cd z
2cn

(
2rω1

n

)
dn
(

2rω1

n

)
cd z′

1− k2 sn2
(

2rω1

n

)
cd2z′

+
cd2z′−sn2

(
2rω1

n

)
1−k2 sn2

(
2rω1

n

)
cd2z′

.

Therefore

u2−
2 cn

(
2rω1

n

)
dn
(

2rω1

n

)
v

1−k2 sn2
(

2rω1

n

)
v2

u+
v2−sn2

(
2rω1

n

)
1−k2 sn2

(
2rω1

n

)
v2

= 0

is an algebraic factor of P1×Tn, τ ,Tn, τ P1.

If r/n = 1/2 then the factor (3.7) is already an algebraic one defined by

u+ v = 0 as follows from (1.23).

Proposition 3.4.4. Given τ ∈ H if n is even then we have

P1×Tn, τ ,−Tn, τ P1 = A1 ∪ A2 ∪ · · · ∪ An/2

and if n is odd then we have

P1×Tn, τ ,−Tn, τ P1 = A0 ∪ A1 ∪ · · · ∪ A(n−1)/2

where A0 is a rational curve defined by

u+ v = 0

and Ar(r≥1) is a genus one curve defined by

u2 =
2 cn

( (2r+1)ω1

n

)
dn
( (2r+1)ω1

n

)
v

1−k2 sn2
( (2r+1)ω1

n

)
v2

u−
v2−sn2

( (2r+1)ω1

n

)
1−k2 sn2

( (2r+1)ω1

n

)
v2
.

Proof. We start from recalling the equality (3.1),

Tn, τ (cd(z, k(τ))) = cd

(
nω1,nτ

ω1,τ

z, k(nτ)

)
.

Setting u=cd(z, k(τ)) and v=cd(z′, k(τ)) we have

Tn, τ (u)+Tn, τ (v)=cd

(
nω1,nτ

ω1,τ

z, k(nτ)

)
+cd

(
nω1,nτ

ω1,τ

z′, k(nτ)

)
.
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This implies easily that the equality

cd(z, k(τ))−cd

(
z′+

(2r+1)ω1,τ

n
, k(τ)

)
= 0 (3.8)

leads to Tn, τ (u)+Tn, τ (v)=0. It follows from (1.26) and (1.27) that the product

of cdz−cd
(
z′+ (2r+1)ω1

n

)
and cdz−cd

(
z′− (2r+1)ω1

n

)
equals

cd2z−cd z
2cn
(

(2r+1)ω1

n

)
dn
(

(2r+1)ω1

n

)
cd z′

1−k2 sn2
(

(2r+1)ω1

n

)
cd2z′

+
cd2z′−sn2

(
(2r+1)ω1

n

)
1−k2 sn2

(
(2r+1)ω1

n

)
cd2z′

.

Therefore

u2−
2 cn

( (2r+1)ω1

n

)
dn
( (2r+1)ω1

n

)
v

1−k2 sn2
(

(2r+1)ω1

n

)
v2

u+
v2−sn2

( (2r+1)ω1

n

)
1−k2 sn2

(
(2r+1)ω1

n

)
v2

=0

is a factor of P1×Tn, τ ,−Tn, τ P1 as desired.

If 2r+1 = n then the factor (3.8) is already an algebraic one defined by

u+v=0 as follows immediately from (1.23).

3.5 The generalized Schur Problem

If f : M → N is a finite map between algebraic curves then f is called

exceptional if and only if M×f, fM has at least three components. Motivated

by Schur’s paper [118] Fried raised the following question in [53].

Question 3.5.1 (Generalized Schur Problem for rational functions). Classify

exceptional rational functions.

For polynomials this question was answered by Fried in [51].

Theorem 3.5.2 (Fried). If f is a polynomial then it is exceptional if and only

if up to linear compositions f(z) = zp for a prime number p greater than 2 or

f =Tp for a prime number p greater than 3.

To verify that power maps and Chebyshev polynomials are exceptional we

notice that if f(z)= zp then

(f(x)−f(y))/(x−y)=

p−1∏
j=1

(x−e
2πj
p
iy)

and if f(z) = Tp(z) then the corresponding factorization formula is of
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Davenport-Lewis-Schinzel’s type as described in Section 3.4. On the basis

of our Section 3.3 we are able to deduce the hyperbolic analogue of Fried’s

theorem. It turns out that a new class of exceptional functions comes from

the elliptic rational functions.

Theorem 3.5.3. If f is a finite Blaschke product then it is exceptional if and

only if up to linear compositions f(z) = zp for a prime number p greater than

2 or f = Tp, t for a positive real number t and a prime number p greater than

3.

Proof. We follow the notation of Section 3.3. Taking g = f we may assume

that j1 = j2 = j. By Lemma 3.3.1 we deduce that if f is exceptional then

f := (j, i)∗f is also exceptional. Now we obtain from Theorem 3.5.2 that up

to linear compositions either f(z)= zp with p a prime number other than 2 or

f =Tp with p a prime number greater than 3.

In the former case the map f : E→ E is also totally ramified and therefore

up to linear compositions f(z)= zp.

In the latter case the monodromy representation of f : E→E is a Chebyshev

representation. By the uniqueness part of Riemann existence theorem and by

Lemma 2.3.1 it must be an elliptic Blaschke product and then we conclude

from Corollary 2.3.4 that up to linear compositions f =Tp, t.

Using the classification of finite simple groups Guralnick-Müller-Saxl have

made a monumental progress on the generalized Schur Problem in [65] but

with neither explicit expressions of exceptional functions nor explicit factor-

izations. Our next Theorem 3.5.3 should be an easy consequence of one of

the main theorems of loc. cit. . However we proved it by different and rel-

atively elementary method, and our previous Proposition 3.4.3 gives explicit

factorizations.

3.6 The generalized Fried Problem

Diophantine equations defined by two polynomials f(x) = g(y) were studied

by many authors. Qualitative finiteness results were investigated by Siegel

[121], Davenport-Lewis-Schinzel [37], Fried [52], Schinzel [111], Avanzi-Zannier
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[4] [5] and many others. Effective analysis on superelliptic curves were started

by Baker [6] which is an important progress in mathematics. Although the

general effectivity is still open, the ultimate qualitative results on integral

points is due to Bilu-Tichy [15]. Instead of Bilu-Tichy’s much stronger version

for an arbitrary field of characteristic zero we only employ the following simpler

version for polynomials defined over C.

Theorem 3.6.1 (Bilu-Tichy). Let f and g be nonlinear polynomials. If

C×f, gC has a Siegel factor then f and g admit the following decompositions

into polynomials

f=e◦f1◦ε, g=e◦g1◦ϵ

where ε, ϵ lie in AutC(C) and there exist positive integers m,n together with

a non vanishing polynomial p such that {f1, g1} falls into one of the following

cases:

(i) {zm, zrp(z)m} with r ≥ 0 and gcd(r,m) = 1;

(ii) {z2, (z2 + 1)p(x)2};
(iii) {Tm, Tn} with gcd (m,n) = 1;

(iv) {Tm,−Tn} with gcd(m,n) > 1;

(v) {(z2−1)3, 3z4−4z3}.

Bilu-Tichy’s theorem completely answers Fried’s Problem in [52]. To study

rational points it is natural to reformulate Fried’s original problem as follows,

Question 3.6.2 (Generalized Fried Problem). Classify the rational function

pairs {f, g} such that P1×f, gP1 has a Faltings factor.

In this section we shall prove

Theorem 3.6.3. Let f and g be finite Blaschke products. If P1×f, gP1 has

a Faltings factor then f and g admit the following decompositions into finite

Blaschke products

f=e◦f1◦ε, g=e◦g1◦ϵ

where ε, ϵ lie in AutC(E) and there exist positive integers m,n together with p

either a finite Blaschke product or p ≡ 1 such that {f1, g1} falls into one of

the following cases:

(i) {zm, zrp(z)m} with r ≥ 0 and gcd(r,m) = 1;
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(ii) {z2, z(z−a)/(1−az)p(z)2} with a ̸= 0 in E;

(iii) {Tm,nt,Tn,mt} with t> 0 and gcd (m,n)=1;

(iv) {Tm,nt,−Tn,mt} with t> 0 and gcd (m,n)> 1;

(v) {((z2−a2)/(1−a2z2))3, z3(z−b)/(1−bz)} where a, b are points in E and

a, b, a, b satisfy an algebraic relation.

The converse remains true.

Proof. In the following we use the notation used in Section 3.3 and write

further that f :=(j1, i)∗f, g :=(j2, i)∗g. By definition we have f= i−1◦f◦j1, g=

i−1◦g◦j2 and this shows that j−1
1 is a f -lifting of i−1. If P1×f, gP1 has a Faltings

factor then by Proposition 3.3.2 the curve C×f, g C has a Siegel factor and

then by Bilu-Tichy’s Criterion we may assume that there exist ε, ϵ in AutC(C)

such that f, g admit one of the following decompositions into polynomials:

(1) f=e◦ zm◦ε, g=e◦zrp(z)m◦ϵ.

Let i1 be a e-lifting of i−1 and i2 a zm-lifting of i1. Proposition 1.6.4 together

with an induction argument implies that j−1
1 is also a ε-lifting of i2, and conse-

quently f=e◦f1◦ε is a composition of finite Blaschke products where e, f1 and

ε are obtained by the following commutative diagram.

C

f

))

j−1
1

��

ε
// C
i2
��

zm
// C
i1
��

e
// C
i−1

��
E

f

55
ε // E

f1 // E e // E

Similarly if i′2 is a zrp(z)m-lifting of i1 then g=e◦g1◦ϵ is also a decomposition

of finite Blaschke products according to the following commutative diagram.

C

g

))

j−1
2

��

ϵ
// C
i′2
��

zrp(z)m
// C
i1
��

e
// C
i−1

��
E

g

55
ϵ // E

g1 // E e // E

Write p = i1(0), r = i2(0) and q = i′2(0). The map f1: E→E is totally ramified

over p with critical point r, and (g1)p≡ r(q) (mod m). Choosing suitable ιi in
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AutC(E) and making the following replacement

e 7→ e◦ι−1
1 ,

ε 7→ ι2◦ε,

ϵ 7→ ι3◦ϵ, (3.9)

f1 7→ ι1◦f1◦ι−1
2 ,

g1 7→ ι1◦g1◦ι−1
3

we may assume that p=r=q=0, and this implies our desired assertion.

(2) f=e◦z2◦ε, g=e◦(z2+1)p(z)2◦ϵ.

By arguments similar to that in the proof of case 1 we may obtain the

following composition of finite Blaschke products f =e◦f1◦ε and g=e◦g1◦ϵ,
and in addition f1: E→E is totally ramified over some p and (g1)p≡ (q)+(r)

(mod 2) for some distinct points q, r in E. Choosing suitable ιi in AutC(E) and

making the replacement as in (3.9) we may assume that p = q = 0, r = a, and

this implies our desired assertion.

(3) f=e◦Tm◦ε, g=e◦Tn◦ϵ with (m,n)=1.

By arguments similar to that in the proof of case 1 we may obtain the fol-

lowing composition of finite Blaschke products f=e◦f1◦ε and g=e◦g1◦ϵ where

f1, g1: E→ E are both unramified outside {p, q} for some distinct points p, q

in E and in addition their monodromy representations are Chebyshev repre-

sentation. We conclude from Corollary 2.3.4 that after making a replacement

as in (3.9) for suitable ιi chosen from AutC(E) we will have f1 = Tm,nt and

g1 =Tn,mt as desired.

(4) f=e◦Tm◦ε, g=e◦−Tn◦ϵ with gcd (m,n)>1.

We may apply arguments similar to that in the proof of Case 3.

(5) f=e◦(z2−1)3◦ε, g=e◦(3z4−4z3)◦ϵ.

We first notice that (z2−1)3 takes −1 and 0 as critical values, ±1 ramified

points over 0 and 0 ramified point over −1 with ramification index e±1 = 3

and e0 =2. Moreover the polynomial 3z4 − 4z3 takes also −1 and 0 as critical

values, 0 ramified points over 0 and 1 ramified point over −1 with e0 = 3 and

e1 = 2. By arguments similar to that in the proof of case 1 we obtain the

following composition of finite Blaschke products f = e◦f1 ◦ε, g = e◦g1 ◦ ϵ,
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where f1: E→ E admits two points q, r ramified over some point p in E with

eq =er =3 and the finite map f2: E→E admits a point s ramified over p with

es = 3. After making a replacement as in (3.9) for well-chosen ιi in AutC(E)

we may assume that p = s = 0, q =−r which gives the desired f1 and g1. The

algebraic relation is given by another critical value of f1 and of g1 coincide.

We make one more remark about this theorem

Remark 3.6.4. In the first case if g1 = zrp(z)m: E → E is totally ramified

and if m≥ 2 then one checks readily that g1 is ramified over 0 and therefore

g1(z)= ρzt for some ρ∈T. Modifying ϵ slightly we may assume we are in the

case that {f1, g1}={zm, zt}.

3.7 Irreducibility

If f is a rational function then we will denote by Ωf the splitting field of

f(z)−t over C(t). Avanzi and Zannier proved in [5] that if f and g are rational

functions with f indecomposable and with C×f, gC reducible then Ωg⊇ Ωf . In

addition they showed that if g is also indecomposable then Ωf = Ωg. In the

polynomial case they obtained that if f and g are indecomposable polynomials

with C×f, gC reducible then deg f =deg g and of = og.

Theorem 3.7.1 (Avanzi-Zannier). Let f be an indecomposable polynomial

and c in C\{0, 1}. If C×f, cfC is reducible then one of the follows assertions

(1) f(z)= a(z−b)n with a∈C∗, b∈C and c any number in C\{0, 1}.

(2) f(z)= aTn(z−b) with n ≡ 1 (mod 2), a∈C∗, b∈C and c=−1.

(3) f(z) = (z−b)rg((z−b)d) with b ∈C, r≥ 1, d≥ 2, (r, d) = 1, g a complex

polynomial and c d-th root of unity.

is satisfied.

We first show an analogue of the remark made at the beginning of the

section for Blaschke products.

Lemma 3.7.2. If f and g are indecomposable finite Blaschke products with

P1×f, gP1 reducible then deg f =deg g and of = og.
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Proof. We follow the notation in Section 3.3. By Lemma 3.3.1 and

by the irreducibility of R = P1×f, gP1 we deduce that the curve R∗ =

C×(j1, i)∗f, (j2, i)∗gC is irreducible. We then conclude from Avanzi-Zannier’s re-

sults that deg (j1, i)∗f = deg (j2, i)∗g and therefore deg f = deg g. By Avanzi-

Zannier’s result mentioned before we have Ωf = Ωg. Moreover a lies in of

(resp. g) if and only if it corresponds to a place of C(z) which ramifies in Ωf

(resp. Ωg) and this immediately gives of = og.

For the proof of the main result of this section we need a lemma,

Lemma 3.7.3. Let f be a finite Blaschke product, c a non-zero complex num-

ber, and i: E→ C a homeomorphism which satisfies i(c z) = c i(z). If j is a

f -lifting of i then j is also a cf -lifting of i and we have

(j, i)∗cf = c(j, i)∗f.

This applies in particular to the case when c lies in T and i(z)= z/(1−|z|).

Proof. A simple calculations gives

(j, i)∗cf(z) = i◦cf ◦j−1(z)

= ci◦f ◦j−1(z)

= c(j, i)∗f(z),

and this is a holomorphic function as desired.

Theorem 3.7.4. Let f be an indecomposable finite Blaschke product and let c

be in C\{0, 1}. If P1×f, cfP1 is reducible then one of the following assertions

(1) f(z)= a((z−b)/(1−bz))p with a∈T, b∈E and c∈C\{0, 1}.

(2) f(z)= aTp, t((z−b)/(1−bz)) with p≥ 3 prime, a∈T, b∈E and c=−1.

(3) f(z)= ((z−b)/(1−bz))rg(((z−b)/(1−bz))d), with r≥ 1, d≥ 2, gcd(r, d)=

1, b∈E, g a finite Blaschke product and c a d-th root of unity.

is satisfied.

Proof. By Lemma 3.7.2 we have of = ocf = cof . If of is supported on {0,∞}
then we fall into the first case. If of is not supported on {0,∞} then it follows

from of = cof that |c|=1. Following the notation of Section 3.3 we now employ

Lemma 3.7.3 by taking f = f, g= cf , i(z)= z/(1−|z|) and j1 = j2 = j, and we

write f := (j, i)∗f . By the reducibility of P1×f, cfP1 and by Lemma 3.3.1 the
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curve C×(j, i)∗f, (j, i)∗cfC is reducible. This together with Lemma 3.7.3 leads to

the reducibility of C×f, cfC and as a corollary we obtain from Theorem 3.7.1

that either f(z) = aTn(z−b) with c = −1 or f(z) = (z−b)rg((z−b)d) with

cd =−1.

In the former case we have of = i−1(of ) = i−1{±a} = {±a/(1 + |a|)} and

the monodromy representation of the finite map f : E → E is a Chebyshev

representation. We conclude from Corollary 2.3.4 that there exist a positive

real number t and an element ι in AutC(E) such that f = (a/|a|)Tn, t◦ι which

falls into the second case as claimed in the theorem.

In the latter case we have (f)0 =(i−1◦f◦j)0≡r(j)b (mod d) and consequently

we fall into the last case of our assertion with b=(j)b.

The reader may read quickly out of Proposition 3.4.4 the explicit factoriza-

tion of P1×Tn, τ ,−Tn, τ P1. By Corollary 3.1.7 one may derive from this quickly

the factorization of P1×Tp, t,−Tp, tP1.

3.8 On curves P1×f, cfP1

This section is devoted to obtain a hyperbolic analogue of Avanzi-Zannier’s

work in [5]. The authors introduced there the following polynomials:

p1(z; l, m) := zl(z + 1)m with gcd (l, m) = 1 and l + m ≥ 4; p2(z) :=

z(z+a)2(z+b)2 with 9a2−2ab+9b2 = 0 and ab ̸= 0; p3(z) := z(z+a)3(z+b)3

with a2−5ab+8b2 =0 and ab ̸=0. We now point out that if f is a polynomial

of the above type then the map f : C→C is non-exceptional and the nontrivial

factor of C×f, fC has at least 3 points at infinity.

Proof. Those polynomials are indecomposable and they cannot be lin-

early equivalent to cyclic or Chebyshev polynomials (see for instance [5, Re-

mark4.4]). Therefore as a corollary of Theorem 3.5.2 those polynomials are not

exceptional. Moreover the cardinality of the infinity of the nontrivial factor of

C×f, fC is deg f−1 which is at least 3 as claimed.

By this remark we now extract a small part of Theorem 1 of [5] as follows,

Theorem 3.8.1 (Avanzi-Zannier). If for a polynomial f the curve C×f, fC
has a nontrivial Siegel factor then there exist an integer m≥ 2, ι ∈AutC(C),
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polynomials g and h, a m-th root of unity ζ other than one such that C×g, ζgC
admits a Siegel factor and

f=h◦ zm◦g or f=h◦Tm◦ι.

Our hyperbolic analogue is as follows

Theorem 3.8.2. If for a finite Blaschke product f the curve P1×f, fP1 has

a nontrivial Faltings factor then there exist an integer m ≥ 2, a positive real

number t, ι in AutC(E), finite Blaschke products g and h, a m-th root of unity

ζ other than one such that P1×g, ζgP1 admits a Faltings factor and

f=h◦zm◦g or f=h◦Tm, t◦ι.

Proof. Following the notation of Section 3.3, since in our case g=f we assume

j1=j2= j and we write f for (j, i)∗f . By Proposition 3.3.2 if P1×f, fP1 has a

Faltings factor then P1×f, fP1 has a Siegel factor. To which we apply Theorem

3.8.1 and obtain immediately the following compositions of polynomials: either

f=h◦zm◦g

and there exists a m-th root of unity ξ ̸=1 which satisfies C×g, ξgC has a Siegel

factor or

f=h◦Tn◦ι

with ι∈AutC(C). By definition j−1 is always a f -lifting of i−1.

In the former case we let i1 be a h-lifting i−1 and i2 a zm-lifting of i1. By

Proposition 1.6.4 the homeomorphism j−1 is also a g-lifting of i2, and conse-

quently f = h◦f1◦g is a composition of finite Blaschke products where h, f1

and g are obtained from the following commutative diagram.

C

f

))

j−1

��

g
// C
i2
��

zm
// C
i1
��

h

// C
i−1

��
E

f

55
g // E

f1 // E h // E

The map f1: E→ E is totally ramified over some point p in E and therefore

after a similar replacement to (3.9) we may assume that p=0 and f1(z)=zm.
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It remains to show that there exists a m-th root of unity ζ other than one such

that P1×g, ζgP1 has a Faltings factor. On the one hand we apply Proposition

3.3.2 to C×zm◦g, zm◦gC and then deduce that Siegel factors of

C ×zm◦g, zm◦g C = C ×g, ζ0mgC ∪ C ×g, ζ1mgC ∪ · · · ∪ C ×g, ζn−1
m gC

are one to one corresponding to Faltings factors of

P1×zm◦g, zm◦gP1 = P1×g, ζ0mgP
1 ∪ P1×g, ζ1mgP

1 ∪ · · · ∪ P1×g, ζm−1
m gP

1.

On the other hand we apply Proposition 3.3.2 to C×g, gC and then deduce

that Siegel factors of C×g, gC are one to one corresponding to Faltings factors

of P1×g, gP1. Comparing these two facts it is clear that C×g, ξgC has a Siegel

factor for some m-th root of unity ξ ̸=1 if and only if P1×g, ζgP1 has a Faltings

factor for some m-th root of unity ζ ̸=1 and we are done.

In the latter case we let i1 be a h-lifting i−1 and i2 a Tn-lifting of i1. By

Proposition 1.6.4 the homeomorphism j−1 is also a ι-lifting of i2, and conse-

quently f = h◦f1◦ι is a composition of finite Blaschke products where h, f1

and ι are obtained from the following commutative diagram.

C

f

))

j−1

��

ι
// C
i2
��

Tn

// C
i1
��

h

// C
i−1

��
E

f

55
ι // E

f1 // E h // E

The monodromy of f1 is Chebyshev representation and therefore we con-

clude from Corollary 2.3.4 that after a similar replacement to (3.9) we are

in the case that f1 = Tn, t for some positive integer n and some positive real

number t as claimed in our assertion.

It remains to classify the case that the curve P1×g, ζgP1 admits a Faltings

factor. Before doing that we recall another small part of Theorem 2 of [5].

Theorem 3.8.3 (Avanzi-Zannier). We assume that the curve C×f, cfC with

f a polynomial of degree at leat 2 and with c a complex number different from

0 and 1 has a Siegel factor. Then there exists a polynomial decomposition

f =f0◦f1 with f0 prime and with one of the assertions

(1) f0(z)= zp and there exists a p-th root ζ of c such that C×f1, ζf1C admits
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a Siegel factor.

(2) f0(z) = αTp(z) with p ≥ 3, c = −1 and C×f1,−f1C admitting a Siegel

factor.

(3) f0(z) = zrg(zd) with g(0) ̸= 0, deg g≥ 1, deg f0 ≥ 4, r≥ 1, d≥ 2, (r, d) = 1

and cd=1. Moreover for any positive integer s with rs ≡ 1 (mod d) the

curve C×f1, csf1 C admits a Siegel factor.

satisfied.

In the last case if we set v= c−r
′
w then

C×f0(u), cf0(v)C=C×f0(u), f0(w)C={(u,w) : u=w} ∪ C1

for some curve C1. We conclude from Theorem 3.5.2 that the curve C1 is

irreducible with deg f0−1≥3 points at infinity. This gives that C×f0(u), cf0(v)C
has a unique Siegel factor {(u, v) : u= cr

′
v} and therefore there is bijection

between Siegel factors of C×f0◦f1, cf0◦f1C and Siegel factors of C×f1, cr′f1C.

The following theorem answers when does P1 ×g, ξg P1 admit a Faltings

factor.

Theorem 3.8.4. We assume that the curve P1×f, cfP1 with f a finite Blaschke

product of degree at least 2 and with c a complex number of modulus 1 has a

Faltings factor. Then there exists a Blaschke product decomposition f=f0◦f1

with f0 prime and with one of the assertions

(1) f0(z)=z
p and there exists a p-th root ζ of c such that P1×f1, ζf1P1 admits

a Faltings factor.

(2) f0(z)=αTp, t(z) with p≥3, α∈T, t>0, c=−1 and P1×f1,−f1P1 admitting

a Faltings factor.

(3) f0 = zrg(zd) with g(0) ̸= 0, deg g ≥ 1, r ≥ 1, d ≥ 2, (r, d) = 1 and cd =

1. Moreover for any positive integer r′ with rr′ ≡ 1 (mod d) the curve

P1×f1, cr′f1P
1 has a Faltings factor.

satisfied.

Proof. Taking i(z) = z/(1−|z|) and using the assumption that |c| = 1, we

deduce from Lemma 3.7.3 that there exists a homeomorphism j: E→C serving

as a f -lifting of i as well as a cf -lifting of i. By Proposition 3.3.2 the curve

C×(j, i)∗f, (j, i)∗cfC has a Siegel factor. Writing f for (j, i)∗f , Lemma 3.7.3 gives
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that

C×f, cfC

admits a Siegel factor. According to Theorem 3.8.3 f admits one of the fol-

lowing decompositions into polynomials:

1, f =zp◦f1 and there exists a p-th root ξ of c such that the curve C×f1, ξf1C
has a Siegel factor.

By definition j−1 is a f -lifting of i−1. Choosing i1 to be a zp-lifting of i−1,

we deduce from Proposition 1.6.4 that j−1 is also a f1-lifting of i1. As a

consequence we obtain a composition of finite Blaschke products f = f0 ◦f1

with f0 and f1 determined by the following commutative diagram.

C
f

))

j−1

��

f1

// C
i1
��

zp
// C
i−1

��
E

f

55
f1 // E

f0 // E

The map f0: E→E is totally ramified over 0, and therefore after the following

replacement

f0 7→ f0◦ι−1, f1 7→ ι◦f1

for some ι in AutC(E) we are in the case that f0(z)= zp. It remains to verify

that there exists a p-th root of unity ζ of c such that the curve P1×f1, ζf1P1

has a Faltings factor. Indeed by applying Proposition 3.3.2 there is a bijection

between Siegel factors of C×f, cfC = ∪ζp=cC×f1, ζf1C and Faltings factors of

P1×f, cfP1 = ∪ζp=cP1×f1, ζf1P1, and this together with the existence of Siegel

factor of C×f1, ξf1C gives the desired claim.

2, f = αTp ◦f1 with p a prime number other than 2 and c=−1. In addition

the curve C×f1,−f1C admits a Siegel factor.

Let i1 be a αTp-lifting of i−1. By arguments similar to that in the discussion

of previous case we obtain a composition of finite Blaschke products f =f0◦f1
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with f0 and f1 determined by the following commutative diagram.

C
f

))

j−1

��

f1

// C
i1
��

αTp

// C
i−1

��
E

f

55
f1 // E

f0 // E

The monodromy of f0: E→E is a Chebyshev representation and of0 = i−1{±α}.
We conclude from Corollary 2.3.4 that after the following replacement

f0 7→ f0◦ι−1, f1 7→ ι◦f1

for some ι in AutC(E) we are in the case that f0 = αTp, t for some α on the

unit circle and some positive number t.

By Proposition 3.4.1 and by Proposition 3.4.4 the curve C×αTp,−αTpC has a

unique component A of (0, 1) type defined by u+v=0 and the curve P1×f0,−f0P1

has a unique component B of (0, 0) type defined by u+v = 0, where u and

v are affine coordinates of C×C or of P1×P1 as described before Proposition

3.4.2. According to Proposition 3.3.2 the map i1 × i1: C×C→E×E⊂ P1×P1

takes A to B, or equivalently

i1(−z)=−i1(z).

Using Lemma 3.7.3 we have (j−1, i1)∗(−f1) =−(j−1, i1)∗f1 =−f1. By Proposi-

tion 3.3 applied to C×f1,−f1C and P1×f1,−f1P1 and by the existence of Siegel

factors of C×f1,−f1C we obtain the existence of Faltings factors of P1×f1,−f1P1.

3, f =zrg(zd)◦f1 with properties as stated in Theorem 3.8.3.

Let i1 be a zrg(zd)-lifting of i−1. By arguments similar to that in the dis-

cussion of previous case we obtain a composition of finite Blaschke products

f =f0◦f1 with f0 and f1 determined by the following commutative diagram.

C
f

))

j−1

��

f1

// C
i1
��

zrg(zd)

// C
i−1

��
E

f

55
f1 // E

f0 // E



Chapter 3 Elliptic Rational Functions 79

Write q for i1(0) and then it follows from the above diagram that

(f0)0≡ r(q) (mod d),

and therefore after the following replacement

f0 7→ f0◦ι−1, f1 7→ ι◦f1

for some ι in AutC(E) we are in the case that f0 = zrg(zd). On the one hand

Proposition 3.3 gives a bijection between Siegel factors of C×f, fC and Faltings

factors of P1×f, fP1. On the other hand by the remark made after Theorem

3.8.3 all Siegel factors of C×f, fC arises from C×f1, cr′f1C, and by a similar

reason all Faltings factors of P1×f, fP1 arises from P1×f1, cr′f1P
1. Consequently

the existence of Siegel factors of C×f1, cr′f1C leads to the existence of Faltings

factors of P1×f1, cr′f1P
1.
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4

Dynamical Mordell-Lang

The purpose of this chapter is to prove Theorem 4.1.5 which says that if

two finite endomorphisms of the unit disk have orbits with infinitely many

intersections then they have a common iterate. This implies as a corollary

Theorem 4.1.2 which is a dynamical analogue of Mordell-Lang and André-

Oort type for finite endomorphisms of polydisks. Based on Theorem 3.6.3, we

reduce the proof of Theorem 4.1.5 to hard analysis of endomorphism monoid

End(E) of the unit disk.

4.1 Introduction

The first breathtaking result relating number theory and geometry might

be Siegel’s theorem on the integral points [122], and this striking phenomenon

reached its culmination in Faltings’ proof of Mordell’s conjecture [42]. Based

on techniques from diophantine approximation Faltings was able to prove later

in [43] and [44] for an abelian variety X the following stronger

Conjecture 4.1.1 (Mordell-Lang Conjecture). Let X be a semiabelian vari-

ety over C, V a subvariety of X, and Γ a finitely generated subgroup of X(C).

The intersection set V (C)∩Γ is the union of finitely many cosets of subgroups

of Γ.

81
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This conjecture, which relates number theory and geometry, was proved earlier

than Faltings by Laurent ([84]) for a torus X and extended later by Vojta

([129]) to all semiabelian varieties.

This intimate relation between number theory and geometry appears again

in the context of Shimura varieties. Here the first major result might be the

theorem of Schneider [115] which together with a result of Kronecker-Weber

implies that an algebraic point τ in H arises from an elliptic curve with complex

multiplication if and only if and its projection j(τ) in Y (1) is also algebraic.

From this the geometric property of τ is characterized in terms of arithmetical

property of j(τ). Based on Wüstholz’s subgroup theorem [136], Schneider’s

result was generalized by Shiga-Wolfart [120] and Tretkoff [34] to Shimura

varieties of abelian type, but the general case remains open. Concerning higher

dimensional subvarieties rather than points, the similar statement is predicted

by the André-Oort conjecture which was promoted among others by Wüstholz

(see for instance [35] and [8, Section 8.4]) in the last decade and remains an

object of intensive study.

In a fundamental case André-Oort’s conjecture expects that if a subcurve

of certain quotient of Hn contains infinitely many special points then it is a

special curve. We shall work on the uniformization space Hn instead of its

quotients and prove the following dynamical analogue of the conjectues of

Mordell-Lang and André-Oort type.

Theorem 4.1.2. Let d be an integer greater than one, F a finite endomor-

phism of the polydisk Ed, L in Ed a complex geodesic line and p a point of

Ed. If OF (p) ∩ L is infinite then there exists a positive integer k such that

F k(L) = L.

Similar to subcurves of a product of modular curves for which the André-

Oort conjecture reduces easily to the case of C2, our above theorem follows

quickly from the following theorem concerning bidiscs together with a classi-

fication theorem of Remmer-Stein and an argument on height.

Theorem 4.1.3. Let X be a simply connected open Riemann surface, f and

g finite endomorphisms of X with degree greater than one and x, y points in

X. If Of (x) ∩ Og(y) is infinite then f and g have a common iterate.

The above theorem is a combination of two theorems. The first one is on
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the complex plane:

Theorem 4.1.4 (Ghioca-Tucker-Zieve [57], [58]). Let x, y be points in the

complex plane C and let f, g be complex polynomials of degree greater than 1.

If Of (x) ∩ Og(y) is infinite then f and g have a common iterate.

The second one is on the unit disk

Theorem 4.1.5. Let x, y be points in P1(C) and let f, g ̸∈AutC(E) be finite

Blaschke products. If Of (x) ∩ Og(y) is infinite then f and g have a common

iterate.

By carrying out more tedious analysis but without any essentially new tech-

niques other than those required for the proof of Theorem 4.1.2 one may deduce

Theorem 4.1.6. Let p be a point in Ed, L in Ed a complex geodesic line, e

a positive integer, Fi ̸∈ AutC(Ed) for 1 ≤ i ≤ e pairwise commutative finite

endomorphisms of Ed and S the semigroup generated by Fi. The intersection

L∩OS(p) can be written as OT (p) where T is a union of at most finitely many

cosets of subsemigroups of S.

This work follows the strategy of Ghioca-Tucker-Zieve which will be sum-

marized in Section 4.2, but our work carries several new features. Firstly we

have to look at rational points instead of integral points and therefore we shall

employ Faltings’ theorem instead of Siegel’s theorem. Secondly we shall prove

a hyperbolic version of Bilu-Tichy’s theorem. Thirdly we need Ritt’s theory

on the unit disk which was established in [132] and [98]. Moreover we have

to investigate the family of elliptic rational functions Tn, τ for n ∈ N and for

τ ∈ H. Functions Tn, τ are descents of cyclic isogenies of elliptic curves by

Jacobian cd functions and they provide a large part of non-trivial exceptional

cases to the reach of Faltings’ theorem. Furthermore, we shall invoke a recent

work of M. Baker [9] on the theory of heights. Lastly a classical result of

Remmert-Stein [104] and Rischel [107] make it possible to manage all finite

endomorphisms of polydisks. The basic new idea of this work is to adopt the

topological viewpoint and to make use of a simple fact, that topologically the

Poincaré unit disk agrees with the Gaussian complex plane, in several different

respects.

Concerning Zhang’s dynamical conjectures and the dynamical Mordell-Lang
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conjecture complemented by Ghioca-Tucker we refer to [138] and [58, Question

1.5]. For recent progress in the dynamical Mordell-Lang problem in various

contexts, we refer the reader to [11], [13], [55] and [56]. Regarding another

similar problem, the so called “unlikely intersection” which was originated

from Bombieri-Masser-Zannier in [23] and developed by Habegger, Maurin,

Rémond, Viada and many others, we refer to [66] and references there for a

recent account.

4.2 The strategy of Ghioca-Tucker-Zieve

We sketch briefly in this section Ghioca-Tucker-Zieve’s strategy in their

proof of Theorem 4.1.4. Their method is based on the following two facts.

• Speciality: The existence of infinitely many intersections gives, for any

positive integers i and j, infinitely many integral points on the curve

C×f i, gjC. As a consequence of Bilu-Tichy’s theorem the polynomials f i

and gj admit very special decompositions.

• Rigidity: By Ritt’s theory the decomposition of polynomials is very rigid.

Now the existence of special decompositions and the rigidity of polynomial

decompositions are kind of incompatible and this makes it possible to continue

by lengthy discussions to reach the desired goal.

Ghioca-Tucker-Zieve’s work explains how dynamics could be controlled by

arithmetics and therefore by the underlying geometric structure. We shall pro-

ceed a bit more with the adoption of this idea to touch the following Conjecture

which is formalized by Chioca-Tucker.

Conjecture 4.2.1 (Dynamical Mordell-Lang Conjecture). Let X be a com-

plex algebraic variety, F a finite endomorphism of X and V a closed subvariety

in X. If there is a point p in X such that V ∩ OF (p) = V then V is periodic

under F in the sense that there exists a positive integer k such that F k maps

V to itself.

In light of Ghioca-Tucker-Zieve’s method one might try to argue as follows.

Firstly we can assume that all objects are defined over a field k of finite type

over Q. Moreover we write ΓFn for the graph of F n in X×X and ΓFn,V for
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the intersection of ΓFn with X×V . The canonical projection πn from ΓFn,V to

V is finite, and if a projective embedding of X(C) is fixed then as remarked

in Section 1.1 that given complex subvariety C of X the notation C(k) causes

no confusion even if C is not defined over k. Now we have

Lemma 4.2.2. With notations and assumptions as above there exists an ir-

reducible component Cn of ΓFn, V (C) such that Cn(k) = Cn.

Proof. By assumption given a positive integer n there exists xn in X(k)

such that OFn(xn) ∩ V = V . This means that there exists an increasing se-

quence of positive integers ri for all i ∈ N such that F nrm(xn) lies in V and

{F nrm(xn) : m ∈ N}=V . Taking yk as (F n(rm−1)(xn), F
nrm(xn)) which lies in

ΓFn, V we obtain

πn({ym : m ∈ N})={F nrm(xn) : m ∈ N} = V.

The map πn is finite and as a consequence there exists an irreducible compo-

nent Cn of ΓFn, V such that {ym : m∈N} ∩ Cn = Cn. It is clear that the se-

quence ym(m∈N) are defined over k and therefore we conclude that Cn(k)=Cn

as desired.

We shall give several simple examples to explain the effect of arithmetics in

dynamics and we begin with

Corollary 4.2.3. Let X be a complex algebraic variety, V a subvariety in X

and F a finite endomorphism of X. If V is mordellic then for an arbitrary

point p in X the intersection OF (p) ∩ V is finite.

The above argument generalizes easily to the following correspondence.

Corollary 4.2.4. Let X be a complex algebraic variety, V its subvariety,

fi(1 ≤ i ≤ d) finite endomorphisms of X and F a correspondence in X×X
which is given by (x, y) ∈ F if and only if there exists 1 ≤ i ≤ d such that

y=fi(x). If a subvariety V of X is mordellic then for an arbitrary point p∈X
the intersection OF (p) ∩ V is finite.

Now we deduce a small part of Hurwitz’s theorem ([73]) from the point of

view of arithmetic and of dynamics.

Proposition 4.2.5. If X is an irreducible curve of genus greater than one

and if f is a finite endomorphism of X then f is an automorphism of finite



86 Mingxi Wang

order. In other words there exists a positive integer n such that fn= id.

Proof. We assume that X and f are defined over a field k of finite type over

Q. If f is not of finite order then all preperiodic points of f are k-rational

points since they are discrete solutions of equations defined over k. Choose

any point x ∈ X(C)\X(K). Now x is not preperiodic and this means that

|Of (x) ∩X(k(x))| =∞ which contradicts the mordellicity of X.

The major difficulty in applying Lemma 4.2.2 is the large open part of

Bombieri-Lang’s conjecture which was only verified by Faltings in the case

when X is a subvariety of a abelian variety in [42] and [43]. Fortunately this

is not an issue for curves since Diophantine geometry in dimension one is well-

understood. Indeed in the context of curves C×f, g C defined by polynomials

it seems reasonable to expect the following decomposition principle, suggested

by the work of Bilu-Tichy and of Avanzi-Zannier, that exceptional arithmetical

properties of C×f, g C leads to special decompositions of f and of g.

To adopt the strategy of Ghioca-Tucker-Zieve in new cases, on the one hand

given exceptional arithmetic properties we need a criterion of Bilu-Tichy’s type

to obtain special decompositions and on the other hand we need a counterpart

of Ritt’s type to deduce the rigidity of decompositions.

We now explain briefly how can we adopt the strategy of Ghioca-Tucker-

Zieve in our context.

• Rigidity: The decomposition property is encoded in the monodromy

action of fundamental groups and therefore is topological in nature. This

enables us to put Ritt’s original theory on the Gaussian complex plane

to the context of the Poincaré unit disk since E∼=C as topological spaces.

Many details was already carried out in Chapter 2 and this leads to the

rigidity of decompositions of finite maps between the unit disk.

• Speciality: The arithmetic of curves as summarized in Theorem 1.2.1 is

also topological in nature. This together with the topological nature of

decompositions enable us to obtain many results, including a hyperbolic

version of Bilu-Tichy’s criterion, on curves defined by finite Blaschke

products which fits into the decomposition principle. This is based on

the topological fact that E∼=C and was already discussed in Chapter 3.
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Under the assumption of Theorem 4.1.5 we now have at hand both speciality

and rigidity of decompositions of f i as well as of gj for all positive integers

i and j. If we continue with the proof along this way we have to handle

explicit analytic functions and this issue is not of topological nature any more.

In the complex plane case Ghioca-Tucker-Zieve have to deal with Chebyshev

polynomials which are connected to trigonometric functions. However in the

unit disk case we have to play with elliptic rational functions which arise from

elliptic functions and fortunately the theory was already sufficiently touched

in the previous chapter.

4.3 Linear equations in finite Blaschke prod-

ucts

We begin with recalling a well-known fact, and for which we refer to [123,

p.1–p.14].

Lemma 4.3.1. Any ι ̸= id in AutC(E) is parabolic, hyperbolic or elliptic.

Moreover if ι is parabolic or hyperbolic then it is fixed point free in E and there

exists p in T such that

lim
n→∞

fn(z) = p

for all z in E. If ι is elliptic then it admits a unique fixed point p in E and

there exists ξ∈T such that

ιp◦ι◦ι−1
p (z) = ξz.

Lemma 4.3.2. Let Ω ̸= ∅ be a finite subset of E and ι ̸= id an element in

AutC(E). If ι(Ω)=Ω then there exist p∈E and ζ ∈T such that ι= ιp ◦ζ ◦ ι−1
p .

Moreover if deg Ω≥2 then ζ is a root of unity.

Proof. For the first claim it suffices to show that ι is elliptic. Indeed if ι is

hyperbolic or parabolic then we deduce from Lemma 4.3.1 that ι cannot fix

any non-empty finite subset of E, and this contradicts our assumption. The

set Ω is finite and therefore there exists a positive integer n such that ιn|Ω = id.

If deg Ω≥2 then we must have ιn= id and therefore ζn = 1 as desired.
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The following lemma is a hyperbolic analogue of Lemma 2.4 in [57].

Lemma 4.3.3. Let f be a finite Blaschke product which is not totally ramified.

If ϵ◦f=f◦ε for ϵ, ε in AutC(E) then there exist p and q in E, nonegative integers

r and s, a s-th root of unity ζ and a finite Blaschke product f̄ such that

ε= ιq◦ζz◦ι−q, ϵ= ιp◦ζrz◦ι−p, f= ιp◦zrf̄(zs)◦ι−q.

Proof. By assumption that the finite map f : E→ E is not totally ramified

it is clear that deg df ≥ 2 and deg supp Df ≥ 2. Moreover we deduce from

the functional equation ϵ◦f = f ◦ε that ϵ(df )= df and ε(supp Df )= supp Df .

Lemma 4.3.2 implies that there exist points p, q in E and roots of unit ζ, γ such

that ε= ιq◦ζ◦ι−q, ϵ= ιp◦γ◦ι−p and consequently ιp◦γ◦ι−p◦f=f◦ιq◦ζ◦ι−q. If we

write h= ι−p◦f◦ιq then we have γ◦h=h◦ζ and this gives (h)0 =ζ(h)0. If ζ is a

primitive s-th root of unity then it follows immediately that there exists a finite

Blaschke product f̄ such that h(z)=zrf̄(zs) and therefore f= ιp◦zrf̄(zs)◦ι−q

as desired.

Proposition 4.3.4. If f and g are finite Blaschke products and if at least one

of them is not totally ramified then the functional equation ϵ◦f=g◦ε has only

finitely many solutions (ϵ, ε) in AutC(E).

Proof. We assume that f is not totally ramified and consequently the degree

of the support supp Df of Df and the degree of df are at least two. If two

elements ϵ, ε in AutC(E) gives a solution to ϵ◦f=g◦ε then ϵ induces a bijection

from df to dg and ε induces a bijection from supp Df to supp Dg. The natural

map

{(ϵ, ε) | ϵ◦f=g◦ε} → Hom(df , dg)×Hom(supp Df , supp Dg)

is injective since the only element in AutC(E) which fixes at least 2 points

must be the identity map and this clearly induces the desired conclusion.

We get immediately the following corollaries.

Corollary 4.3.5. If f is a finite Blaschke product which is not totally ramified

then the functional equation ϵ◦f =f ◦ε has only finitely many solutions (ϵ, ε)

in AutC(E).

Proof. This easily follows from Proposition 4.3.4, but we would like to point

out that it also follows from Lemma 4.3.3. To apply Lemma 4.3.3 it is crucial
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to notice that since E is a CAT(0) space points p and q in the conclusion there

are uniquely determined by f . Indeed p is the center of df and q is the center

of supp Df .

Corollary 4.3.6. If ι is in AutC(E) and if there exists a finite Blaschke prod-

uct which is not totally ramified such that ι◦f=f◦ι then there exists a positive

integer n such that ιn= id.

4.4 Dynamical Mordell-Lang for linear maps

Theorem 4.1.2 reduces to the following simple lemma of Skolem-Mahler-

Lech type as soon as F ∈AutC(Ed).

Lemma 4.4.1. Let x, y be points in E and ϵ, ε elements of AutC(E). If the

intersection of Oϵ×ε(x, y) with the diagonal ∆E of E2 is infinite then there exists

a positive integer n such that ϵn=εn.

Proof. If p is a point in E and if ι is an element in AutC(E) then by Lemma

4.3.1 the orbit Oι(p) either lies on a circle inside E (when ι is elliptic) or tends

to a point q in T (when ι is parabolic or hyperbolic). This together with the

assumption that Oϵ×ε(x, y)∩∆E is infinite implies that ϵ and ε are both elliptic

or both non-elliptic.

In the former case the intersection of two circles is infinite, and this forces

that two circles to coincide. Consequently their hyperbolic centers also coincide

and by taking a conjugation we may assume that there are γ, ξ∈T such that

ϵ(z)=γz and ε(z)= ξz. The hypothesis is not affected if we replace (x, y) by

(ϵn(x), εn(y)) for any positive integer n and therefore we may assume x=y=p.

It is clear that p ̸=0, otherwise the intersection of the two orbits is a single point

which contradicts the assumption. Moreover there exists a positive integer k

such that ϵk(p) = εk(p) and this together with p ̸= 0 leads to γk = ξk which

implies ϵk=εk as desired.

In the latter case we shall work on the upper half plane H instead of the

unit disk E. For the same reason as in the previous case we may assume

x= y= p and moreover we can assume q =∞. This implies that both Oϵ(p)

and Oε(p) tend to ∞ and therefore there are real numbers a > 0, b, c > 0, d
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such that ϵ(z) = az+b and ε(z) = cz+d. Now by comparing the imaginary

parts of ϵk(p) and εk(p) we deduce that a=c. Neither the hypothesis nor the

conclusion is affected if we replace (ϵ, ε) by (ϵn, εn) for any positive integer n

and therefore after doing so for a suitable n we may assume that ϵ(p)= ε(p).

This immediately gives b=d and therefore ϵ=ε as desired.

Lemma 4.4.1 is a special case of the main theorem of [11], where the au-

thors completely proved the dynamical Mordell-Lang conjecture for étale maps

by using methods from p-adic analysis. I am grateful to D. Ghioca for this

reference.

4.5 Rigidity

The decomposition of finite endomorphisms of the complex plane or of the

unit disk is very rigid, which follows from a transitive monodromy action of

an element of corresponding topological fundamental groups. The rigidity

is encoded in elements of fundamental groups generated by for polynomials

paths around the infinity and for finite Blaschke products paths around the

unit circle. In general we have

Proposition 4.5.1. Let f be a finite map from M to N, α: [0, 1]→ N a closed

path over which f is unramified and consider finite maps b from M to A, a

from A to N, d from M to R, c from R to N satisfying a◦b = c◦d= f . If

the monodromy action of α is transitive then there exist Riemann surfaces T

and W and finite maps h: M → T, b: T → A, d: T → R, a: A → W, c: R →
W, g: W → N such that the diagram in Figure 4.1 commutates. In other

words

(i) g◦a=a, g◦c=c, deg g=(deg a, deg c);

(ii) b◦h=b, d◦h=d, deg h=(deg b, deg d);

(iii) a◦b=c◦d.

Proof. It is clear from the proof of Theorem 2.1.3 that the lattice of groups

intermediate between π1(N\df ) and π1(M\f−1(df )) is isomorphic to a sublat-

tice of Ln. By Corollary 1.3.3 it suffices to verify the following: if L is a

sublattice of (Ln;≤) and contains a and b then it also contains (a, b) and [a, b].



Chapter 4 Dynamical Mordell-Lang 91

M N

A

R

T W

f

b

d c

ah g

b

d

a

c

Figure 4.1: Finite maps.

Indeed this follows immediately from the definition of sublattice and it can

be illustrated by Figure 4.2 where we use s → t to denote s ≤ t (for lattice

n 1

a

b

[a, b] (a, b)

Figure 4.2: Lattice.

structure) or equivalently t|s.

Ritt [109] proved this proposition in the case f is a polynomial and deg c=

deg a. Levi [85] proved Ritt’s result for polynomials defined over any field

of characteristic zero. For a polynomial f and deg c | deg a or deg d | deg b,

Proposition 4.5.1 is due to Engstrom [40]. The complete version of Proposition

4.5.1 for polynomials first appeared in [127].

Proposition 4.5.1 applies to finite Blaschke products and gives

Proposition 4.5.2. If a, b, c, d, f are finite Blaschke products and satisfy a ◦
b = c ◦ d = f then there exist finite Blaschke products a, b, c, d, h, g such that

(i) g◦a=a, g◦c=c, deg g=(deg a, deg c);

(ii) b◦h=b, d◦h=d, deg h=(deg b, deg d);

(iii) a◦b=c◦d.

We give a simple example to explain how to apply the above rigidity prop-

erties.
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Corollary 4.5.3. Let f be a finite map from M to N which satisfies the

conditions required for Proposition 4.5.1. If we have two decompositions of f

into finite maps f=a◦b=c◦d with deg a=deg c, then there exist biholomorphic

maps ι such that

a=c◦ι−1, b= ι◦d.

Proof. Applying Proposition 4.5.1 we obtain a, b, c, d, h and g with properties

as stated there. Because deg a=deg c and deg b=deg d it is clear that a, b, c, d

are all biholomorphic maps. One may choose ι= a−1◦c to fulfill the desired

assertion.

The next corollary is about totally ramified maps.

Corollary 4.5.4. If f is a finite Blaschke product of degree s>1 and if f t is

totally ramified for some integer t> 1, then there exists p∈E and ρ∈T such

that f= ιp◦ρzs◦ι−p.

Proof. By assumption there exist ϵ, ε in AutC(E) such that f t = ϵ◦zst ◦ε. In

other words we have

f ◦f t−1 =(ϵ◦zs)◦(zst−1◦ε),

which together with Corollary 4.5.3 implies that f is linearly related to ϵ◦zs

and is in particular totally ramified. Writing p respectively q for critical value

respectively critical point of f , we mush have p=q since otherwise f t cannot

be totally ramified. It is then clear that f= ιp◦ρzs◦ι−p for some ρ∈T.

Our proposition also applies to elliptic finite Blaschke products.

Corollary 4.5.5. If f is a finite Blaschke product of degree s>1 and if n>1

is a positive integer then fn is not elliptic.

Proof. If there exist ϵ, ε in AutC(P1) and a positive real number t such that

fn=ϵ◦Tsn, t◦ε then it follows from the nesting property Theorem 2.3.5 that

f ◦fn−2◦f=(ϵ◦Ts, sn−1t)◦Tsn−2, st◦(Ts, t◦ε).

Because of Proposition 3.1.10 we may apply Proposition 4.5.1 or Corollary

4.5.3 to elliptic rational functions, and consequently the rational function f

is equivalent to both Ts, sn−1t and Ts, t but this contradicts to Corollary 3.2.2

since sn−1t is greater than t.
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Corollary 4.5.6. Let f be an elliptic rational function and let f =a◦b be its

decomposition into rational functions. Then a and b are both elliptic.

Proof. Let m=deg a and let n=deg b. There exist ϵ, ε in AutC(P1) and τ ∈H
such that f=ϵ◦(mn)τ◦ε, and it follows from the nesting property Proposition

3.1.11 that

a◦b=(ϵ◦mnτ )◦(nτ ◦ε).

Applying Corollary 4.5.3 directly it is clear that a and b are both elliptic.

Zieve-Müller discovered in [139] the following property.

Theorem 4.5.7 (Zieve-Müller). Let a, b and f ̸∈AutC(C) be complex polyno-

mials, n=deg f and e a positive integer. If a◦b=f e and if ι◦f◦ι−1 ̸=zn, Tn or

T−n for all ι∈AutC(C) then there exist polynomials a, b and positive integers

i, j, k with k≤ log2(n+2) such that

a=f i◦a and b=b◦f j and a◦b=fk.

We shall show that Zieve-Müller’s phenomenon also holds in the Blaschke

case.

Theorem 4.5.8. Let a, b and f ̸∈ AutC(E) be finite Blaschke products, n=

deg f , k a positive integer and assume a◦b = fk. If ι◦f ◦ ι−1 ̸= zn for all ι

in AutC(E) and if there does not exist a finite Blaschke product g for which

either a=f ◦g or b=g◦f then k≤max (8, 2+2 log2 n).

The proof of Theorem 4.5.8 follows techniques developed in Zieve-Müller’s

original work and therefore our arguments are completely similar to that in

[139] except the appearance of elliptic rational functions. We will be sketchy

at many places and refer to [139] for more details.

Lemma 4.5.9. If (a, b, c, d) is a generalized Ritt move in finite Blaschke prod-

ucts and if the finite map b(or a): E→E is neither totally ramified nor elliptic

then

deg a<deg b ( or deg b<deg a ).

Proof. This follows immediately from Theorem 2.4.4.

Lemma 4.5.10. Let h be a finite Blaschke product with h(0) ̸= 0 and s, n
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coprime positive integers with n at least 2. If an elliptic rational function f(z)

is of the form zsh(z)n or zsh(zn) then we must have n=2 and s=1

Proof. Firstly consider the case f = zsh(z)n. By the assumption that f is

elliptic any point p in E contributes at most once in Df . Choose any w in E
for which h(w) = 0. Then we have (s−1)(0)≤Df and (n−1)(w)≤Df , and

this together with our other assumptions on n and s leads to n=2 and s=1.

Now consider the case f = zsh(zn). Again any point p in E contributes at

most once in Df . It is clear that (s−1)(0)≤Df and therefore s≤2. Moreover

since f elliptic its critical points Df are contained in a hyperbolic geodesic

line. Using the fact that f = zsh(zn) one can check if w ̸= 0 is a point in Df

then for any n-th root ζ of unity ζw is also contained in Df . These two facts

excludes the case that n≥ 3, since otherwise Df contains at least two points

which determine a hyperbolic geodesic line l preserved by a primitive n-th root

of unity ζ. This is impossible and consequently n≤2 and we are done.

Corollary 4.5.11. If (a, b, c, d) is a generalized Ritt move in finite Blaschke

products and if b (or a) is elliptic with degree at least three then d (or c) is

also elliptic.

Proof. If b is elliptic with degree at least three and if assume that d is not

elliptic then we are in the second case of Theorem 2.4.4. Therefore there exist

ϵ, ε in AutC(E) such that ϵ◦b◦ε is of the form zsh(zdeg d) and we deduce from

Lemma 4.5.10 that deg d=2. This contradicts to the assumption that a is not

elliptic.

If a is elliptic with degree at least three and if b is not elliptic then a similar

argument applies.

Let f ̸∈ AutC(E) be a finite Blaschke product and U = (u1, . . . , ur),V =

(v1, . . . , vr) its maximal decompositions. Here the terminology that U is a

maximal decomposition means that f = u1◦ · · · ◦ur is a decomposition of f

into prime finite Blaschke products. By Theorem 2.1.4 we can pass from U

to V, and this gives a unique permutation σU,V of {1, 2, . . . , r} which satisfies

deg ui=deg vσU ,V (i). In addition we have

Lemma 4.5.12. If i<j and if σU,V(i)>σU,V(j) then (deg ui, deg uj)=1.
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Here we need some notations introduced in [139]. We define

LL(U,V, i, j) = {k : k < i, σ(k) < σ(j)},

LR(U,V, i, j) = {k : k < i, σ(k) > σ(j)},

RL(U,V, i, j) = {k : k > i, σ(k) < σ(j)},

RR(U,V, i, j) = {k : k > i, σ(k) > σ(j)}

and we write

LL(U,V, i, j) =
∏

k∈LL (U ,V ,i,j)

deg uk,

LR(U,V, i, j) =
∏

k∈LR (U ,V ,i,j)

deg uk,

RL(U,V, i, j) =
∏

k∈RL (U ,V ,i,j)

deg uk,

RR(U,V, i, j) =
∏

k∈RR (U ,V ,i,j)

deg uk.

Let U=(u1, . . . , ur) be a complete decomposition of a finite Blaschke prod-

uct f and let uk∈U be an elliptic rational function with deg uk≥3. The length

of uk with respect to U, denoted by hU(uk), is defined as hU(uk)=Πk−1
i=1 deg (ui).

If ui is an elliptic rational function then so is vσU ,V (i). We recall from Corollary

3.2.2 that for elliptic rational functions which are linear equivalent to finite

Blaschke products, χ taking values in R>0 is well-defined.

Lemma 4.5.13. If ui is elliptic with degree at least three then

h(ui)χ(ui) = h(vσU ,V (i))χ(vσU ,V (i)).

Proof. This follows immediately from Theorem 2.4.4.

Moreover we also have

Lemma 4.5.14. If i < j and if ui, uj, ui ◦ui+1 ◦ · · · ◦uj are elliptic finite

Blaschke products with degree at least three then

h(ui)χ(ui)=h(uj)χ(uj).

Proof. Assuming ui◦ui+1◦ · · · ◦uj is linearly equivalent to Tn, t and applying

Corollary 4.5.3, it is clear that uj is linearly equivalent to Tdeg uj , t and ui

is linearly equivalent to Tdeg ui, tΠ
j
k=i+1 deg uk

. As a consequence χ(uj) = t and
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χ(ui)= tΠj
k=i+1 deg uk which immediately gives the desired assertion.

Proposition 4.5.15. Let f ̸∈ AutC(E) be a finite Blaschke product, U =

(u1, . . . , ur) and V=(v1, . . . , vr) its maximal decompositions and k an integer

between 1 and r. If we write LL=LL(U,V, k, k) and LR,RL,RR analogously

then LR,RL and deg uk are coprime and there exist finite Blaschke products

a with degree LL, d with degree RR, b, b̂, b̃ with degree LR, c, c̃, c̄ with degree

RL and û, ũ, ū with degree deg uk such that

(i) u1◦u2◦ · · · ◦uk−1 =a◦b and uk+1◦ · · · ◦ur=c◦d;
(ii) b◦uk= û◦b̂;
(iii) û◦b̂◦c= c̃◦ũ◦b̃;
(iv) uk◦c= c̄◦ū.

Proof. Based on Proposition 4.5.2, some analysis similar to that in proof of

[139, Proposition 4.2] applies to our case.

Proof of Theorem 4.5.8. We assume that k ≥ 2. Choose U = (u1, . . . , ur)

to be a complete decomposition of f , then Uk = (u1, . . . , ukr) is a complete

decomposition of fk where ui = ui−r. Let V = (v1, . . . , vkr) be a complete

decomposition of fk for which a = v1 ◦v2 · · · ◦ve and b = ve+1 ◦ · · · ◦vkr. By

the assumption that fk = a◦b and that there does not exist a finite Blaschke

product g for which either a= f ◦g or b= g◦f , Proposition 4.5.2 applies and

leads to deg f - deg a and deg f - deg b. Therefore there exists 1≤m≤ r such

that σUk,V(m+tr)> e for all 0≤ t≤ k−1 and there exists 1≤ l≤ r such that

σUk,V(l+tr) ≤ e for all 0 ≤ t ≤ k−1. Otherwise it follows from Proposition

4.5.2 immediately gives a contradiction. Moreover by Lemma 4.5.12 we have

(deg um, deg ul)=1.

Case 1. There exists 1≤p≤r such that for any ϵ, ε in AutC(E) the composition

ϵ◦up◦ε−1 is not a power map, elliptic, of the form zsh(zn) or of the form zsh(zn),

where n is an integer greater than one and h a finite Blaschke product.

We claim that k= 2. Suppose, contrary to our claim, that k≥ 3. On the

one hand we deduce from Theorem 2.4.4 that up+r never changes under Ritt

moves and therefore σUk,V(p+r) = p+r, σUk,V(i) < p+r for all i < p+r and

σUk,V(i)>p+r for all i > p+r. On the other hand we have σUk,V(m)>e and

σUk,V(l+(k−1)r)≤e. Notice that m<p+r and l+(k−1)r>p+r, consequently

we have e<p+r and p+r<e respectively which is a contradiction.
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Case 2. There exists 1 ≤ p ≤ r and ϵ, ε in AutC(E) such that up is neither

totally ramified nor elliptic and ϵ◦ up◦ε−1 is of the form zsh(zn) or zsh(z)n,

where n is an integer greater than one and h a finite Blaschke product with

h(0) ̸= 0.

There exists 0≤q≤k−1 for which σUk,V(p+qr)≤e and σUk,V(p+(q+1)r)>e.

By Proposition 4.5.15 and by the fact that σUk,V(m+tr)>e for all 0≤ t≤q−1

we have

(deg um)q|LR(p+qr).

Similarly from the fact that σUk,V(ul+tr)≤e for all q+2≤ t≤k−1 we have

(deg ul)
k−q−2|RL(p+(q+1)r).

By Corollary 4.5.9 and by Proposition 4.5.15 we have

(deg um)q<deg up, (deg ul)
k−q−2<deg up.

This gives 2k−2≤(deg up)
2≤n2 and therefore k≤2+2 log2 n as desired.

Case 3. All ui: E→E in U are totally ramified.

If supp Dui
=dui+1

=p holds for all integer i with 1≤ i≤kr−1 then ιp◦f◦ι−p =

ζzn for some ζ ∈ T, which contradicts to the assumption. As a consequence

there exists 1≤p≤r such that supp Dup ̸=dup+1 . It is clear from Theorem 2.4.4

and from Corollary 2.4.5 that any Ritt move in totally ramified finite Blaschke

products (a, b, c, d) must satisfy da = dc and supp Db = supp Dd. This implies

that if 1≤ i≤ r+p then σUk,V(i)≤ r+p and if (k−2)r+p +1≤ i≤ kr−1 then

σUk,V(i)≥ (k−2)r+p +1. Recall that σUk,V(m)>e and σUk,V(l+(k−1)r)≤ e,
and notice that m<r+p and (k−1)r+l≥(k−2)r+p+1. Consequently we have

e<p+r and (k−2)r+p+ 1≤e which gives k=1.

Case 4. There exist 1≤ p≤ r such that up is elliptic and is of degree at least

three.

We claim that k ≤ 8. If contrary to our claim k ≥ 9 then either

σUk,V(4r+p)≤e or σUk,V(4r+p)>e.

In the former case we deduce from Proposition 4.5.15 that there exist finite

Blaschke products a, b, û, b such that deg b= deg b=LR(Uk,V, p+4r, p+4r) =
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n̂, deg û=deg u and

a◦b = u1◦u2◦ · · · ◦up+4r−1,

û◦b = b◦up+4r.

By Corollary 4.5.11 the finite Blaschke product b is elliptic, and by our as-

sumption that σUk,V(r+m)> σUk,V(m)> e≥ σUk,V(4r+p) we have n̂≥ 4. We

now follow another critical trick of Zieve-Müller in their proof of [139, Propo-

sition 4.4]. If we write n=LR(Uk,V, p+2r, p+4r), h=u1◦u2◦ · · · ◦up+2r−1 and

g=up+2r◦up+2r+1◦ · · · ◦up+4r−1 then apparently

h◦g=a◦b,

and for the same reason to that for n̂ we have n≥4.

By Proposition 4.5.2 there exist finite Blaschke products b̂, ĝ, k, e, â and ĥ

such that deg k=(n̂=deg b, deg g), deg e=(deg a, deg h) and

b̂◦k = b, ĝ◦k = g,

e◦â = a, e◦ĥ = h,

ĥ◦ĝ = â◦b̂.

We denote deg k by s and notice that (ĥ, ĝ, â, b̂) is a generalized Ritt move.

By

n̂/n =
∏

p+2r≤i≤p+4r−1, σ
Uk,V

(i)>σ
Uk,V

(p+4r)

deg ui

and by for all p+2r≤ i≤p+4r−1

(deg ui, n)>1⇒ σUk,V(i)>σUk,V(p+4r)

we have (deg g

n̂/n
, n
)

= 1. (4.1)

Apparently n̂/n|(deg g, n̂) = s and we may set s′ := s/(n̂/n). More-

over we deduce from s′ = n/(n̂/s) that s′|n and this together with s′ =

s/(n̂/n)| deg g/(n̂/n) and (4.1) leads to s′ = 1. Consequently n̂ = ns and
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this gives

deg k =
∏

p+2r≤i≤p+4r−1, σ
Uk,V

(i)>σ
Uk,V

(p+4r)

deg ui.

The rational function b is elliptic and so is b̂. Noticing that deg b̂ =

deg b/ deg k = n̂/ deg k and deg k = n̂/n, we have deg b̂= n. By deg b̂= n > 3

and by (ĥ, ĝ, â, b̂) is a generalized Ritt move we may apply Lemma 4.5.11 and

deduce that ĝ is also elliptic. We now examine

g=up+2r◦up+2r+1◦ · · · ◦up+4r−1 = ĝ◦k

and we write U = (u1 = up+2r, . . . , u2r = up+4r−1) which is a complete decom-

position of g. If V = (v1, . . . , v2r) is a complete decomposition of g for which

ĝ=v1◦v2 · · ·◦vo and k=vo+1◦· · ·◦v2r then we have σU,V(1)≤o and σU,V(1+r)≤o.
By Lemma 4.5.14 we have

h(vσU ,V (1))χ(vσU ,V (1)) = h(vσU ,V (1+r))χ(vσU ,V (1+r)).

and then by Lemma 4.5.13 we have

h(u1)χ(u1) = h(u1+r)χ(u1+r).

This is impossible since χ(u1)=χ(u1+r)=χ(up) and h(u1)<h(ur+1).

Similar arguments apply to the case σUk,V(4r+p)>e.

Corollary 4.5.16. Let f, a, b be finite Blaschke products with f ̸∈AutC(E) and

l a positive integer. If there does exist ι in AutC(E) for which ι◦f ◦ι−1 =zdeg f

and if a◦b=f l then there exist Blaschke products a, b and nonnegative integers

i, j, k with k≤max (8, 2+2 log2 deg f) such that

a=f i◦a, b=b◦f j, a◦b=fk.

Proof. There exists a maximal positive integer i such that a=f i◦a for some

finite Blaschke product a, and a maximal j such that b=b◦f j for some finite

Blaschke product b. We have f i◦a◦b◦f j=f l and therefore f i◦a◦b=f l−j. This

together with Corollary 4.5.3 implies that there exists ϵ in AutC(E) for which

f i=f i◦ϵ−1, a◦b=ϵ◦f l−i−j.

Replacing a by ϵ−1◦a we have a=f i◦a, b=b◦f j and a◦b=fk. Lastly the maxi-
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mality of i, j together with Theorem 4.5.8 leads to k≤max (8, 2+2 log2 deg f).

This result tells us that the decomposition of f l is not flexible, and as a

further corollary we have

Corollary 4.5.17. If f ̸∈ AutC(E) is a finite Blaschke product and if there

does not exist ι in AutC(E) for which ι◦f ◦ ι−1 = zdeg f then there is a finite

subset S such that if two finite Blaschke products r and s satisfy r◦s=fd then

the following assertions

(i) either there exists a finite Blaschke product h for which r=f◦h or there

exists an element ι in AutC(E) for which r◦ι ∈ S;

(ii) either there exists a finite Blaschke product h for which s=h◦f or there

exists an element ι in AutC(E) for which ι◦s ∈ S.

are satisfied.

Proof. We only prove the first assertion since a similar argument applies to

the second one. If we are not in the case that r=f◦h for some finite Blaschke

product h, then according to Corollary 4.5.16 r is a left factor of fk for some

k≤max (8, 2+2 log2 deg f). Up to linear equivalence this set is finite and we

are done.

4.6 Height

In this section we shall prove Proposition 4.6.4 by comparing the logarithmic

naive height and Call-Siverman’s canonical height and a key ingredient of

our proof is a recent theorem of M. Baker [9], which improves a result of

Benedetto [12] in the context of polynomials and which proves a special but

important case of a general conjecture of Szpiro-Tucker [126] on the dynamics

over function field. We first recall some basic facts. For a general reference on

the theory of height, we refer to [21]. Associated with any global field E there

is a set ME of normalized absolute values which satisfies product formula and

can be used to define logarithmic height h(x) for all x in E, i.e. the algebraic

closure of E.

Lemma 4.6.1. If E is a global field and if ι is an element in AutK(P1) then
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there exists a positive constant c such that for all x in P1(E) we have |h(ι(x))−
h(x)| ≤ c.

Let f ̸∈ AutE(X) be a polarized endomorphism of an algebraic variety X

defined over K. Then the canonical height ĥf (z) for all z in X(E) is defined in

the sense of Call-Silverman [29] and we shall need the following simple facts.

Lemma 4.6.2. If E is a global field and if f ∈K(P1) is a rational function of

degree at least two then there exists a constant c such that for any z ∈P1(E)

and for any positive integer k we have:

(i) ĥf (f
k(z)) = (deg f)k ĥf (z);

(ii) |h(z)− ĥf (z)| ≤ c;

(iii) if E is a number field then z is preperiodic if and only if ĥf (z) = 0.

The last statement of Lemma 4.6.2 fails if E is a function field. Instead

we have M. Baker’s theorem [9] and to state his result we first recall that a

rational function g in E(x) is said to be isotrivial if there is a finite extension

E ′ of E and a linear fractional transformation ι in AutE′(P) such that ι◦g◦ι−1

is defined over the field of constants of E.

Theorem 4.6.3 (M. Baker). If E is a function field and if f ̸∈ AutE(P1) is a

non-isotrivial rational function in E(P1) then a point z in P1(E) is preperiodic

if and only if ĥf (z) = 0.

This theorem is crucial for the proof of the following main result of this

section,

Proposition 4.6.4. Let f, g be complex rational functions and x0, y0 points

P1. If Of×g(x0, y0) has infinitely many points on the diagonal then deg f =

deg g.

I am not sure whether this result is new or not. In [57, p.478] the authors

remarked that they can prove Proposition 4.6.4 for polynomials and their proof

depends on Benedetto’s theorem and many other results from polynomial dy-

namics. Based on some idea of Ghioca-Tucker-Zieve we shall invoke M. Baker’s

theorem to prove the above proposition by induction on the transcendental de-

gree of a field of definition of f, g, x0, y0 over Q. We start with the following

lemma,

Lemma 4.6.5. Let k be a number field, f, g rational functions in k(P1) and
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x0, y0 points in P1(k). If the orbit Of×g(x0, y0) has infinitely many points on

the diagonal then deg f=deg g.

Proof. It suffices to obtain a contradiction by assuming that deg f < deg g

and that there exists x in k for which Of×g(x, x) has infinitely many points on

the diagonal. It is clear that x is not a preperiodic point of g since otherwise

Of×g(x, x) has at most finitely many points on the diagonal and this leads to

ĥg(x)>0. On the one hand we deduce from Lemma 4.6.2 and from ĥg(x)>0

that there exists a positive constant c1 such that

h(gm(x)) ≥ c1 degm g

for all sufficiently large positive integers m. On the other hand if f ̸∈Autk(P1)

then there exists a positive constant c2 such that

h(fm(x)) ≤ c2 degm f

for all sufficiently large positive integers m and if f is in Autk(P1) then there

exists another positive constant c3 such that

h(fm(x)) ≤ c3m

for m sufficiently large. By comparing the heights of fm(x) and gm(x) we

conclude that there are only finitely many m for which fm(x) = gm(x). This

contradicts our assumption and completes the proof.

The proof of Proposition 4.6.4 is based on Lemma 4.6.5 and the technique

of specialization.

Proof of Proposition 4.6.4. For the same reason as in the proof of Lemma

4.6.5 we may assume x0 = y0 = x, deg f < deg g and x neither a preperiodic

point of f nor of g. Objets f, g and x are all defined over a field k of finite

type over Q and we continue with the proof by induction on tr.deg(k/Q). If

tr.deg(k/Q) = 0 then it reduces to Lemma 4.6.5. If s is a positive integer

greater than 1 and if we assume that the claim holds if tr.deg(K/Q)≤ s−1

then we will prove it for tr.deg(K/Q)=s. Choose a subfield k′ of k such that

tr.deg(k/k′)=1 and then k is the function field of a curve X defined over k′.

Now we restrict our attention to k×k′k′/k′ instead of k/k′. If g is not isotrivial

then we also have ĥg(x)> 0 by M. Baker’s theorem and the argument in the



Chapter 4 Dynamical Mordell-Lang 103

proof of Lemma 4.6.5 still works. Now we assume g is isotrivial. After a

conjugation by a linear fractional transformation and after a finite extension

of k×k′k′, we may assume g is defined over k′. Now we fall into two cases:

Case 1, x∈k′.

We choose α in X(k′) at which f has good reduction and consider the

reduction triple fα, gα = g, xα = x. By assumption x is not preperiodic for g

and therefore xα is not preperiodic for gα. This means that Ofα×gα(xα, xα)

has infinitely many points on the diagonal and we are done by the induction

assumption.

Case 2, x ̸∈k′.

We will give two alternative arguments. For the first proof we notice that x

is a function of positive degree d on X(k′) and therefore gm(x) is a function of

degree d degm g on X. Moreover by induction it follows easily that there exists

a natural number e such that for all positive integer m the function fm(x) is of

degree at most d degm f+em degm f . We obtain a contradiction by comparing

the degrees of fm(x) and of gm(x). For the second proof we notice that g is a

function in k′(z) and there exists q in k′ such that q is not preperiodic. Let α

be a point in X(k′) for which xα equals q. We do the reduction at α and then

we complete the proof by the induction assumption.

Although Siu has remarked that for the proof of Theorem 4.1.2 the use

of Baker’s theorem and of the full version of Proposition 4.6.4 can be easily

avoided, a comparison of height of orbits of a linear map and of a non-linear

map seems to be inevitable. Moreover we think that the statement of Propo-

sition 4.6.4 should be of independent interest.

4.7 Commensurable case

Finite Blaschke products f, g are called commensurable if for any positive

integer m there exist finite Blaschke products h1, h2 and positive integer n

such that

fn=gm◦h1, gn=fm◦h2.
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Lemma 4.7.1. Let f ̸∈AutC(E) be a finite Blaschke product and ι an element

in AutC(E). If for infinitely many positive integers n there exists ιn in AutC(E)

such that fn=(f ◦ι)n◦ιn then one of the following assertions

(i) there exists a positive integer k for which fk=(f ◦ι)k.
(ii) there exist µ, ρ in the unit circle T and ϵ in AutC(E) such that f =

ϵ◦µ zd◦ϵ−1 and ι=ϵ◦ρ z ◦ϵ−1.

is satisfied.

Proof. By Corollary 4.5.3 applied to fn=(f◦ι)n◦ιn we deduce that there exist

ϵn, εn in AutC(E) which satisfy f ◦ι◦ιn=ϵn◦f and f ◦ι◦f ◦ι◦ιn=εn◦f 2.

Case 1: In this case the map f : E→ E is not totally ramified. We obtain

from Proposition 4.3.4 positive integers n < m which satisfy ιn = ιm. This

gives fm = (f ◦ι)m◦ιn = (f ◦ι)m−n◦(f ◦ι)n◦ιn = (f ◦ι)m−n◦fn which leads to

fm−n=(f ◦ι)m−n.

Case 2: If either f2 or f ◦ι◦f is not totally ramified, then we use a similar

argument as in case 1.

Case 3: The maps f, f 2 and f ◦ι◦f are all totally ramified. Firstly we write

q=supp Df and p=df . In our case f 2 is also totally ramified, and this leads

to q = p. Using the fact that f ◦ι◦f is also totally ramified, we deduce that

ι(p) = p. Consequently there exist µ, ρ in T such that f = ιp ◦µ zd ◦ ι−p and

ι= ιp◦ρ z◦ι−p.

Proposition 4.7.2. If f ̸∈ AutC(E) and g ̸∈ AutC(E) are commensurable

finite Blaschke products then either f and g have common iterates or there

exist ι in AutC(E) and µ in T such that

ι◦f ◦ι−1 =µzr, ι◦g◦ι−1 =zs

where r=deg f and s=deg g.

Proof. By the commensurability assumption for all positive integer m there

exists a positive integer n and finite Blaschke products h1, h2 such that

fn=gm◦h1, gn=fm◦h2.

Case 1: In this case there exist positive integers k, t such that rk = st. For

any positive integer m we choose a positive integer nm and a finite Blaschke

product hm for which fmk◦hm = gnm or equivalently fmk◦hm = gmt◦gnm−mt.
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By the condition rk = st we have deg fmk = deg gmt, to which Proposition

4.5.2 applies leads to that there exists ιm in AutC(E) for which gmt=fmk◦ιm.

Consequently for all positive integer m we have (fk)m=(fk◦ι1)m◦ι−1
m , and this

reduces to Lemma 4.7.1.

Case 2: If there does not exist ι in AutC(E) for which ι◦g◦ι−1 = zs. For any

positive integer m we denote by nm the minimal integer for which there exists

a finite Blaschke product hm such that gnm = fm◦hm. The minimality of nm

implies that there does exist a finite Blaschke product t for which hm = t◦g
and therefore we deduce from Corollary 4.5.17 that there exist positive integers

m<p for which deg hm=deg hp. This leads to snp−nm =rp−m and reduces the

problem to the previous case.

Case 3: If there exists ι in AutC(E) for which ι◦g◦ι−1 = zs. For all positive

integer m there exist a finite Blaschke product hm and a positive integer nm

such that fm◦hm=gnm or equivalently

fm◦hm◦ι−1 = ι−1◦zrm◦zsnm/rm

.

By Proposition 4.5.2 there exists ιm in AutC(E) such that ι◦fm=zr
m◦ιm. This

implies in particular that f 2 is totally ramified, and therefore by Lemma 4.5.4

there exists µ in T for which ι◦f ◦ι−1 =µzr.

4.8 Non-commensurable case

This section is devoted to the proof of the following

Proposition 4.8.1. If f ̸∈AutC(E) and g ̸∈AutC(E) are non-commensurable

finite Blaschke products and if for all positive integers m and n the curve

P1×fn, gmP1 admits a Faltings factor then there exist an element ι in AutC(E)

and a complex number µ in T such that

ι◦f ◦ι−1 =zr, ι◦g◦ι−1 =µzs

where r=deg f and s=deg g.

Proof. By the assumption that f and g are non-commensurable we may

assume that there exists a positive integer t such that for any positive integer
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n and for any finite Blaschke product h

gn ̸=f t◦h. (4.2)

Given positive integers i and j, we deduce from the existence of Faltings fac-

tor of P1×(f t)i, gjP1 and from Theorem 3.6.3 that there exist finite Blaschke

products aij, bij, cij and elements ϵij, εij in AutC(E) such that

(f t)i=aij◦bij◦ϵij, gj=aij◦cij◦εij,

where the set {bij, cij} is described in Theorem 3.6.3. We write S= {deg aij :

(i, j)∈N×N} and consider the following two cases.

Case 1. The cardinality of S is infinite.

Given any finite Blaschke product h and given any pair of positive integers

i, j we must have

aij ̸=f t◦h. (4.3)

Otherwise we have gj=aij◦cij◦εij=f t◦(h◦cij◦εij) and this gives a contradiction

to (4.2). Using the assumption that the cardinality of S is infinite and using

(4.3), Corollary 4.5.17 applied to aij ◦(bij ◦ϵij) = (f t)i shows that there exists

ι in AutC(E) for which ι◦ f t ◦ ι−1 = zrt. In particular f t is totally ramified,

and this together with Lemma 4.5.4 leads to the existence of σ∈AutC(E) for

which σ◦f◦σ−1 =zr. Neither the hypothesis nor the conclusion are affected if

we do the following replacement

f 7→ σ◦f ◦σ−1, g 7→ σ◦g◦σ−1.

Therefore we can assume f(z)=zr and then bij is a factor of (f t)i=zrti. This

shows that bij is totally ramified. As a consequently for all positive integers i

andj the pair of functions {bij, cij} falls into either case 1 or case 2 of Theorem

3.6.3. Using this together with the fact bij is totally ramified, if cij is not totally

ramified then it is clear that deg bij≤deg cij and if cij is totally ramified then

by Remark 3.6.4 we may assume that {bij, cij} = {zm̂, zr̂}. The inequality

deg bij≤deg cij is equivalent to deg f ti≤deg gj which fails for large i and small

j. As a result if i is sufficiently larger than j then

(ztr)i=aij◦bij◦ϵij, gj=aij◦cij◦εij (4.4)
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with bij = zm̂, cij = zr̂ and ϵij, εij ∈ AutC(E). We need a simple fact that if

a◦b with min {deg a, deg b}> 1 is totally ramified then so are a, b in addition

supp Da = db, and vice versa. Our decomposition of (ztr)i implies that aij is

totally ramified as well and supp Daij
= dbij . This together with bij = zm̂ and

cij = zr̂ leads to supp Daij
= dcij and therefore gj, which equals aij ◦cij ◦εij, is

also totally ramified. By Corollary 4.5.4 applied to gj there exists ι in AutC(E)

such that ι◦g◦ι−1 = zs. It is clear from (4.4) that dgj = daij
= dztri = 0 and

consequently dg = 0. This together with ι◦g◦ι−1 = zs implies that g(z) =µzs

for some µ in T .

Case 2. The cardinality of S is finite.

If (r, s)=1 then for all positive integers i, j we have deg aij=1 and {bij, cij}
falls into case 1 or case 3 of Theorem 3.6.3. We exclude the case when i=j=1

. This assumption together with Corollary 4.5.5 implies that not both of f ti

and gj are elliptic, and then {bij, cij} falls into the first case of Theorem 3.6.3.

From the expression there the one of {bij, cij} with smaller degree must be

totally ramified. This remains the case with {bij, cij} replaced by {f ti, gj}
since deg aij =1. Because we can choose either i or j to be arbitrary large it

follows in particular that both f 2t and g2 are totally ramified. Using Lemma

4.5.4 there exist ϵ, ε in AutC(E) for which ϵ◦f◦ϵ−1 =zr and ε◦g◦ε−1 =zs. For

the desired assertion it suffices to show that df =dg. Indeed by Remark 3.6.4

we have dbij =dcij and therefore df =dg=aij(0).

If (r, s) ̸= 1 then for sufficiently large i, j we deduce from the finiteness

assumption for |S| that (deg bij, deg cij) is sufficiently large, and hence for

{f ti, gj} the case 4 of Theorem 3.6.3 applies. If we choose sufficiently large

positive integers p, n and m with n+1<m such that deg ap,n=deg ap,m then

gn=ap, n◦cp, n◦εp, n, gm=ap,m◦cp,m◦εp,m

where cp, n, cp,m are elliptic rational functions. This gives

ap, n◦
(
cp, n◦εp, n◦gm−n)=ap,m◦(cp,m◦εp,m).

Using Lemma 4.5.3 we obtain that cp, n◦εp, n◦gm−n is linearly related to the

elliptic rational function cp,m, and then using Corollary 4.5.6 we conclude that

gm−n is elliptic. This contradicts Corollary 4.5.5 and completes the proof.
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4.9 Proof of theorems

We are now ready to prove our main theorems.

Proof of Theorem 4.1.5. The infiniteness assumption on Of (x)∩Og(y) implies

that for all positive integers m,n there are infinitely many rational points on

P1×fn, gmP1 over the absolute field k generated by all coefficients of f, g and

x, y. Indeed by assumption there exist pairwise distinct point pi in P1 for all

i≥1 and positive integers ni,mi such that

fni(x)=pi, gmi(y) =pi.

It is clear from the pairwise distinctness condition of pi that ni are also pairwise

distinct and therefore tends to infinity as i goes to infinity, and this remains

the case for mi. Therefore for all i sufficiently large, (fni−n(x), gmi−m(y))

are k-rational points in P1×fn, gmP1. These points are pairwise distinct, since

otherwise x would be preperiodic for f which contradicts to the infiniteness

assumption on Of (x) ∩ Og(y).

By Faltings’ theorem for finitely generated fields over the rational the curve

P1×fn, gmP1 has a Faltings factor. If f and g have no common iterate then by

Proposition 4.7.2 and Proposition 4.8.1 we may assume that f=zr, g=µzs for

some µ in T. This case is easily covered by Laurent’s theorem.

The following example shows that it is crucial to require that f, g∉ AutC(E)

in Theorem 4.1.5.For convenience we consider AutC(H) instead of AutC(E) and

we will construct f, g in AutC(H) and x, y in P1 for which Of (x0) ∩ Og(y0) is

infinite but without f, g having a common iterate. We just take f(z)= z+1,

g(z)=2z and x=y=1.

It is of no more essential difficulty to generalize Theorem 4.1.5 to the case

of commutative random dynamics.

Corollary 4.9.1. Let x0, y0 be points in P1, fi ̸∈AutC(E)(1≤ i≤ e) a set of

pairwise commutative finite Blaschke products, gj ̸∈AutC(E) (1≤j≤k) another

set of pairwise commutative finite Blaschke products, S = ⟨f1, f2, . . . , fe⟩, G =

⟨g1, g2, . . . , gk⟩ and α: Ne+k
0 →S×G given by (i1, i2, . . . , ie+k) 7→ (f i11 ◦f i22 ◦ · · · ◦

f iee , g
ie+1

1 ◦gie+2

2 ◦ · · · ◦gie+k

k ). Then

OS×G((x0, y0)) ∩∆P1 =Oα(E)((x0, y0)),
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where E is a union of finitely many sets of the form u+ (Ne+k
0 ∩H) with u in

Ne+k
0 and H a subgroup of Ze+k.

Proof. It suffices to prove the statement with S replaced by S′ where S′ is of

the form
⟨
f l11 , f

l2
2 · · · , f lee

⟩
for any tuple of positive integers li.

The proof is by induction on s = e+k. Firstly we check the case when

s = 2 which is equivalent to e = k = 1. If Of1(x0) ∩ Og1(y0) is finite then E

can be chosen to be finitely many elements of N2
0 and we are done. Otherwise

Of1(x0) ∩ Og1(y0) is infinite and we conclude from Theorem 4.1.5 that there

exists positive integers m,n for which fm1 = gn1 . After replacing f1, g1 by

fm1 , g
n
1 we can assume f1 = g1 = f . It is clear that neither x0 nor y0 is a

preperiodic point of f , otherwise it contradicts the infiniteness assumption of

Of1(x0) ∩ Og1(y0). Then we claim that

O⟨f⟩×⟨f⟩((x0, y0)) ∩∆P1 = Oα((p, q)+N2
0∩Z⟨1,1⟩)((x0, y0))

where (p, q) is the smallest pair of positive integers for which fp(x0)=f q(y0).

Indeed, let (p, q) be the pair of positive integers with the smallest p such that

fp(x0) = f q(y0). It is clear that fp+o(x0) = f q+o(y0) for all o ≥ 0, and it

remains to prove that these are all the pairs (m,n) of positive integers that

satisfy fm(x0) = fn(y0). If it is not the case then there according to the

minimality of p there exists (p1>p, q1 ̸= q+p1−p) for which fp1(x0)= f q1(y0).

This implies f q1(y0)=f q+p1−p(y0) which contradicts the non-preperiodicity of

y0. Assuming that the conclusion holds for s≤ e+k−1 we will prove it for

s=e+k.

Case 1. If there exists a positive integer N for which

OS×G((x0, y0)) ∩∆P1 =Oα(FN )((x0, y0)) ∩∆P1

where FN ={(p1, . . . , pe, q1, . . . , qk)∈Ne+k
0 : min{pi, qj}≤N} then equivalently

OS×G((x0, y0)) ∩∆P1 =
∪

1≤l≤e+k, 0≤j≤N

Oα◦il(Ne+k−1
0 )(βl(j)((x0, y0))),

where il is a map from Ne+k−1
0 to Ne+k

0 given by

(n1, · · · , ne+k−1) 7→ (n1, . . . , nl−1, 1, nl, . . . , ne+k−1)

and βl is a map from N0 to S×G given by βl(j) = f jl if l ≤ e or βl(j) = gjl−e
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if l > e. This implies immediately the desired conclusion by the induction

hypothesis.

Case 2. If x0 is preperiodic for S in the sense that α(t)(x0)=α(r)(x0) for some

distinct t= (t1, . . . , te, 1, . . . , 1) and r= (r1, . . . , re, 1, . . . , 1) in Ne+k
0 and if we

assume
∑e

i=1 ti≥
∑e

i=1 ri then we claim that

OS×G((x0, y0)) ∩∆P1 = Oα(F )((x0, y0)) ∩∆P1

where F = {(p1, . . . , pe, q1, . . . , qk) ∈ Ne+k
0 : min1≤i≤e{pi} <max1≤i≤e{ti}}. In-

deed let a = (p1, . . . , pl, q1, . . . , qk) satisfy min1≤i≤e{pi} ≥ max1≤i≤e{ti} and

Oα(a)((x0, y0)) ∈ ∆P1 . Letting b = {p1−t1+r1, . . . , pl−tl+rl, q1, . . . , qk} then

we have Oα(a)((x0, y0))=Oα(b)((x0, y0)). By the standard argument of infinite

descent we continue with a similar replacement and finally obtain some c∈F
satisfying Oα(a)((x0, y0))=Oα(c)((x0, y0)), which proves our claim. This claim

reduces our problem to the previous case and we are done. Our argument here

also works in the case that y0 is preperiodic for G by symmetry.

Case 3. We continue with assuming e to be at least 2 and excluding the

previous cases. If OS×G((x0, y0)) ∩∆P1 is finite then nothing requires a proof.

We assume that the intersection is infinite and let k be the absolute field

generated by coefficients of fis, gis, x0 and y0. Given any 1≤ i≤ e, 1≤ j ≤ k
and given any pair of positive integers {m,n}, because we are not in case 1 by

a similar argument as that in the proof of Theorem 4.1.5 the curve P1×fm
i , gn

j
P1

admits infinitely many k-rational points and therefore has a Faltings factor.

Applying Proposition 4.7.2 and Proposition 4.8.1 we deduce that either fi and

gj have common iterates or fi and gj are both totally ramified, and in the

later case we have in addition that dfi
=dgj

=supp Dfi
=supp Dgj

. This holds

for any 1≤ i≤ e and any 1≤ j≤ k. Using the fact that e ≥ 2 it is clear that

either all f1, . . . , fe, g1, . . . , gk have common iterates or all f1, . . . , fe, g1, . . . , gk

are totally ramified sharing the same critical points and critical values. In the

former case x0 is preperiodic for S which contradicts our assumption. In the

latter case we are reduced to Laurent’s theorem.

Proof of Theorem 4.1.3. It follows immediately from Theorem 4.1.4, Theorem

4.1.5 and the uniformization theorem.

Proof of Theorem 4.1.2. Neither the hypothesis nor the conclusion is af-
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fected if we replace F by F k for some positive integer k. We assume ac-

cording to Theorem 1.5.4, by replacing F by some power, that F (z1, . . . , zd)=

(f1(z1), . . . , fd(zd)) for some finite Blaschke products fi. Moreover we may

assume, after taking conjugations, that the complex geodesic L in question

is the diagonal ∆E. Theorem 4.6.4 applied to any pair {fi, fj} shows that

deg fi is independent of i. This together with Theorem 4.1.5 gives the desired

conclusion if fi ̸∈AutC(E). In the case when fi∈AutC(E) our Theorem 4.4.1

applies.

We need one more lemma for the proof of Theorem 4.1.6.

Lemma 4.9.2. Let x0, y0 be points in E, fi(1≤ i≤ e) a set of pairwise com-

mutative finite Blaschke products for which at least one of the fi is nonlinear,

gj(1≤ j≤k) a set of pairwise commutative finite Blaschke products for which

at least one of gj is nonlinear, S = ⟨f1, f2 · · · , fe⟩, G = ⟨g1, g2 · · · , gk⟩ and

α: Ne+k
0 → S×G the map defined as in Corollary 4.9.1. Then

OS×G((x0, y0)) ∩∆E =Oα(E)((x0, y0))

where E is a union of finitely many sets of the form u + (Ne+k
0 ∩ H) with

u ∈ Ne+k
0 and H a subgroup of Ze+k.

Proof. With an analysis similar to that in the proof of Proposition 4.9.1, we

proceed by induction and can assume that x0 is not preperiodic for S, y0 is not

preperiodic for G and OS×G((x0, y0)) ∩∆E is infinite. If all fi, gj are of degree

greater than 1 then Corollary 4.9.1 gives the desired statement. We assume

therefore there exists linear maps in fi, gj. If at least one of the fi and gj which

is not is AutC(E) and is not conjugate to the power map zn, then according

to the non-periodicity of x0, y0 by Proposition 4.7.2 or by Proposition 4.8.1

so is any nonlinear fi(or gj). This together with Corollary 4.3.6 implies that

all linear maps among fi, gj are of finite order which is in contradiction with

the assumption of non-periodicity. It remains to consider the case that all

fi, gj ̸∈ AutE are conjugate to power maps. This together with Proposition

4.7.2 and Proposition 4.8.1 implies that after suitable conjugations with some

ι ∈ AutC(E) we may assume that all fi, gj ̸∈ AutC(E) are of the form µzr.

Then by the assumption of commutability all fi, gj ∈ AutC(E) are of the form

νz. It is clear that we are reduced to Laurent’s theorem which completes the
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proof.

Proof of Theorem 4.1.6. It suffices to prove the conclusion if Fi are replaced

by F li
i for any tuple of positive integers li. Consequently we shall assume that

Fi(z1, . . . , zd) = (fi1(z1), . . . , fid(zd)) for some finite Blaschke products fij, L

is the diagonal and L ∩ OS(p) is infinite.

Given any j between 1 and d at least one out of the fij where i runs from

1 to e is of degree greater than 1. This follows from the argument similar to

that in the proof of Theorem 4.6.4. The desired conclusion follows immediately

from Lemma 4.9.2 and Proposition 2.6 of [59] for which we recall as the next

lemma.

Lemma 4.9.3 (Chioca-Tucker-Zieve). For any γ1, γ2 in Nr
0 and for any sub-

groups H1, H2 in Zr, the intersection (γ1 + (H1 ∩Nr
0)) ∩ (γ2 + (H2 ∩Nr

0)) is a

union of at most finitely many cosets of subsemigroups of the form β+(H∩Nr
0)

where H = H1 ∩H2.
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Transcendence and Algebraic

Distribution

This chapter is devoted to a generalization of Schneider’s theorem in tran-

scendence. The main result here is Theorem 5.1.5, where we have proved that

under suitable conditions the image of f :C → XC, which is a holomorphic

map from an algebraic curve to an projective algebraic variety X defined over

a number field, assumes finitely many times rational points. This truly gener-

alizes Schneider’s criterion, and the proof is along that of Schneider’s original

work and one of our motivation is to understand an analogy between the first

main theorem of Nevanlinna theory and Schneider’s criterion.

5.1 Schneider-Lang Criterion

In this chapter we prove a generalization of a theorem of Schneider which

can be seen as the counterpart in the theory of transcendental numbers to

work of Chern [33] in value distribution theory.

In the past transcendence theory has been largely related to the study of

values of analytic functions with additional properties. The first remarkable

instance was Hermite’s work on e followed by Lindemann’s spectacular proof

of the transcendence of π as a corollary of his celebrated theorem on the

113
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transcendence of eα for algebraic α ̸= 0. A further example is the solution

of Hilbert’s seventh problem by A. O. Gelfond [54] and independently by Th.

Schneider [113]. All these results are theorems about holomorphic functions of

exponential type which satisfy linear differential equations. In 1936 Schneider

[114] extended the results to elliptic functions which again satisfy a system

of first order differential equations. In contrast to exponential functions they

are only meromorphic and have order of growth 2. Then Schneider [116]

realized in 1948 that the methods which were developed by himself and by

Gelfond can be used to prove a very general and very conceptual transcendence

criterion which included all the results described so far. Schneider pointed

out in $3 b) in loc. cit. that Gelfond’s proof of the Hilbert problem is not

covered by his theorem and he puts this as an open question. In his book

S. Lang [80] streamlined the formulation of the theorem by simplifying the

hypotheses and got a very elegant criterion, now known as the Schneider-Lang

criterion. This has the effect that the theorem becomes less general but has

the advantage that its proof becomes slightly simpler and that the criterion

is much easier to apply. In particular Lang assumes that the functions satisfy

differential equations which is not needed in Schneider’s theorem. However

it still covers the main applications and even includes Gelfond’s proof. It is

clear that requiring differential equations is restrictive and schrinks the general

applicability of the theorem.

Theorem 5.1.1 (Schneider-Lang Criterion). Let K ⊂ C be a number field

and let f1, · · · , fN be meromorphic functions of order ≤ ρ. Assume that the

field K(f) = K(f1, · · · , fN) has transcendence degree ≥ 2 over K and that the

derivative ∇ = d/dt maps the ring K[f ] = K[f1, · · · , fN ] into itself. If S is a

set of points in C such that

fi(w) ∈ K

for all w ∈ S then |S| ≤ 20ρ[K : Q].

The elegance of the criterion was the starting point for further spectacular

progress. In the same book [80] Lang got a version of the theorem for functions

on Cn. However he did not make real use of the much more complicated

complex analysis in the case of several variables. Schneider had already pointed
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out among others in his paper this possibility. Later, in a wonderful paper [19],

Bombieri, using very deep techniques in complex analysis of several variables,

got the genuine several variables version of Schneider’s theorem á la Schneider-

Lang.

Theorem 5.1.2 (Bombieri). Let K ⊂ C be a number field and let f =

(f1, · · · , fn) be meromorphic functions in Cd of finite order. Assume that

(1) tr deg K(f) ≥ d+ 1,

(2) the partial derivatives ∂/∂zα, α = 1, · · · , d, map the ring K[f ] into itself.

Then the set S of points ξ ∈ Cn where f(ξ) takes values in KN is contained

in an algebraic hypersurface.

It is remarkable that the proofs of the two theorems above are closely related

to value distribution theory in the case of functions on C and Cn respectively.

One main topic in Nevanlinna theory is to understand the relation between

the growth of pole divisors and the growth of functions. In the case of ra-

tional functions the situation is very simple because the divisors are all finite

and then the theory dates back to Gauss and his work on the fundamental

theorem of algebra. In the case of meromorphic functions on C the value dis-

tribution theory is highlighted by two Main Theorems which were first given

by Nevanlinna, and we refer to his famous book [97].

The beauty of Nevanlinna’s theory seduced many mathematicians to try

to understand the distribution property of functions in different and more

general situations. First it was extended to functions on Cn by W. Stoll in

[125] and by S. S. Chern [32]. Chern’s insight into the role played by infinity in

Nevanlinna theory lead to an extension of the theory to affine curves which was

published in [33]. The general case of affine varieties has been accomplished

by Ph. Griffiths and J. King in [30] and [63]. They introduced exhaustion

functions to define growth and made use of differential geometric and complex

algebrao-geometric methods.

The work of Schneider, Lang and Bombieri in transcendence theory is re-

lated to the cases C and Cn which were studied by Nevanlinna, Stoll and Chern

whereas our work now deals the first time with affine curves.

Let Z be a smooth projective curve of genus g over C and P a non-empty
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set of l points in Z. Then C := Z − P is an affine algebraic curve. We let X

be a non-singular algebraic variety defined over a number field K with tangent

sheaf TX . Further we assume that ψ : C → XC is an integral curve of a vector

field ∆ ∈ Γ(X,TX⊗MX) which by definition acts on the sheaf of meromorphic

sections MX as derivations. Then for every c ∈ C there is an analytic local

section ∇ at c of the tangent sheaf TC which does not vanish at c and such

that locally we have ψ∗(∇) = ∆C. The section ∇ acts on analytic functions

on C as derivation and the local sections ∇ for varying c ∈ C glue together

and give a nowhere vanishing holomorphic global section ∇ ∈ Γ(C,TC).

Our results, in particular the main theorem, and a fortiori the proofs depend

on the order of the integral curve ψ. There are several essentially equivalent

approaches to a concept of order in our situation. In section 5.5 we shall discuss

the different ways to define an order ρ(ψ) of ψ and we shall show that they

lead to the same value which coincides with the order in the Schneider-Lang

criterion when C = A1(C) and X = An.

Theorem 5.1.3. If dimψ(C) ≥ 2 then

|ψ−1(X(K))| ≤ g + 2 (2 [K : Q] + 1) l max(ρ(ψ), 2g)

In the Main Theorem we start from objects on X. If instead we start with

objects on C we get the following theorem which then takes more the form of

the Schneider-Lang criterion.

Theorem 5.1.4. Let K ⊂ C be a number field and let f1, · · · , fN be holomor-

phic functions on C with order ≤ ρ. We assume that the field K(f1, · · · , fN)

has transcendence degree ≥ 2 over K and that ∇ is an analytic section of TC

which acts as a derivation on K[f1, · · · , fN ]. If S is a subset of C such that

fi(w) ∈ K for all w ∈ S and all i then

|S| ≤ g + 2 (2[K : Q] + 1) ρ l. (5.1)

We give two proofs of the theorem in the last section. One is based on a

Jensen formula which will be discussed in section 5.4 and a second uses the

maximum principle.

Before we state our next theorem we discuss how Theorem 5.1.3 and The-

orem 5.1.4 are related. Let f1, . . . , fN be functions on C as in Theorem 5.1.4
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and let F :C → CN be the map F (z) = (f1(z), . . . , fN(z)). The derivation ∇
of K[f1, · · · , fN ] can be lifted to give a regular algebraic vector field ∆ on AN

K

which can be obtained explicitly. For its construction we expressK[f1, · · · , fN ]

as K[T1, · · · , TN ]/I for an ideal I. If ∇(fi) = gi(f1, f2, . . . , fN) then we take

∆ = gi(T1, · · · , TN)∂/∂Ti. Clearly the choice of ∆ is not unique since taking

∆ + h∂/∂Ti for any h ∈ I is another possibility to select. It is clear however

that their restrictions to K[f1, · · · , fN ] coincide.

For a ∈ C we denote by ∇a the germ of ∇ at a. We have dF (∇a)(Ti) =

∇a(F
∗(Ti)) by the definition of dF , we have∇a(F

∗(Ti)) = gi(F (a)) by hypoth-

esis and we have gi(F (a)) = ∆F (a)(Ti) by construction. Since the differentials

dTi give a basis for Ω1
CN at every point in CN we deduce that dF (∇a) = ∆F (a)

and we conclude that F :C → CN is an integral curve of ∆C provided that ∇
does not have any zero on C. This shows that Theorem 5.1.4 is a special case

of Main Theorem 5.1.3 when X = AN
K . However using a result of Griffiths

the proof of Main Theorem 5.1.3 can be reduced to a situation as given in

Theorem 5.1.4. This will be explained in section 5.6.

At the end of this section, we shall give a variant of the Main Theorem. We

consider a holomorphic mapping f :C → XC where X is a projective variety

defined over K. Let ∇ be a vector field in Γ(C,TC) without zero and assume

that ∇ acts as a derivation on the field f ∗(K(X)). Then ∇ can again be lifted

to a rational vector field ∆ on X, i.e. ∇ ∈ Γ(C,TC) ∩ Γ(C, f−1(TX ⊗MX)).

We call a point x ∈ X a regular point of ∆ if and only if ∆(OX,x) ⊂ OX,x.

Otherwise we call x a pole of ∆. The set of regular points of ∆ is an open

subvariety U of X. As usual we let f(C) be the Zariski closure of f(C).

Theorem 5.1.5. If dim f(C) ≥ 2 then

|f−1(U(K))| ≤ g + 2 (2 [K : Q] + 1) l max(ρ, 2g).

A significant hypothesis in our theorems is the existence of differential equa-

tions. There are two aspects which should be mentioned in this context. The

first concerns the growth. It seems to be possible that in some cases the condi-

tion on the growth of f can be replaced by more accessible data related to the

differential equations which determine the growth behavior of the solutions to

some extend. We intend to come back to this question in the future.
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As Schneider taught us differential equations are not necessary. They can

also be removed from our work in the spirit of Schneider without making our

work obsolete however since expected results without assuming differential

equations are of different nature. We shall also come back to this point later.

Finally we should explain why we for the moment kept off from the higher

dimensional question á la Bombieri. The main reason is that we intended first

to investigate carefully all the possibilities which one has in a very new and

unexplored area. For this we chose the most simplest but still generic new

situation. The next step would then be to extend the work to mappings from

an affine variety into a projective variety along the lines given by Bombieri.

The main work here consists of extending the L2-analysis on Cn developed by

Hörmander in [70] and used by Bombieri in his work to affine varieties. There

are no fundamental obstructions to be expected, in particular since much work

has been done in this direction so far by quite a number of authors, especially

by H. Skoda and J.-P. Demailly.

Since Schneider’s original theorem has stayed relatively unattended we de-

cided to state and discuss the theorem in a version more in the style of today.

We do this at the end of the paper in an appendix and we shall also discuss

possible extensions.

5.2 Standard Estimates

Let K be an algebraic number field of degree d over the rationals Q and

with discriminant D. For a place v of K we denote by | |v the normalized

absolute value such that |p|v = p−[Kv :Qp] when v | p where Kv is the completion

of K at v. For an archimedean place v | ∞ corresponding to the embedding τ

of K into C we define |x|v = |τ(x)|[Kv :R] where |τ(x)| is the Euclidean absolute

value and where Kv is defined as in the non-archimedean case. Let Pn be the

projective space of dimension n. We define the logarithmic (Weil) height h(x)

of a point x = (x0 : x1 : . . . : xn) ∈ Pn(K) as

h(x) =
∑
v

log(max |xi|v).
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and we define the inhomogeneous height of x = (x1, x2, . . . , xn) ∈ Cn(K) as

h+(x) =
∑
v

log+(max |xi|v).

Both sums are taken over all places of K. For α ∈ K the point x = (1 : α) is

in P1(K) and its height is defined as h(α) = h+(α) = h(x). The definition of

the height depends on the choice of a field K for which x ∈ Pn(K).

Lemma 5.2.1 (Liouville Estimate). Let ξ be a non-zero element of K and

let w be an archimedean absolute value of K. Then we have

log |ξ|w ≥ −h(ξ). (5.2)

Proof. By the product formula we have

− log |ξ|w =
∑
v ̸=w

log |ξ|v ≤ Σv log+ |ξ|v = h(ξ)

and the Liouville estimate follows instantly.

The Weil height can be extended to polynomials in n variables T1, . . . , Tn

with coefficients in K. Let P =
∑

i piT
i be such a polynomial with

i: {1, . . . , n} → Nn a multi-index and T i = T
i(1)
1 · . . . · T i(n)

n . Then we de-

fine ∥P∥v = maxi |pi|v and let the height of P be

h(P ) =
∑
v

log ∥P∥v.

We shall also use

h+(P ) =
∑
v

log+ ∥P∥v.

Now we consider a system of linear equations

Li(T1, . . . , TN) =
N∑
j=1

li,jTj = 0 (5.3)

with coefficients in K and 1 ≤ i ≤M .

Lemma 5.2.2 (Siegel’s Lemma). If N > M then (5.3) has a non-trivial

solution x = (x1, . . . , xN) ∈ ON
K such that

h+(x) ≤ 1

2
log |D|+ 1

N −M

M∑
i=1

(1
2
[K : Q] logN + h(Li)

)
.



120 Mingxi Wang

Proof. This is a consequence of Corollary 11 of [20] together with an argument

as is used in the proof of Lemma 1 of [7].

Lemma 5.2.3. Let ∆ be a derivation of K[T1, . . . , TN ], x ∈ KN and

P1, P2, . . . , Pl be polynomials of degree ≤ r in K[T1, . . . , TN ]. Then there exists

a positive constant C depending only on ∆, N and x such that

h+((∆kP1(x), . . . ,∆
kPl(x))) ≤

∑
v

max
i

log+ ∥Pi∥v+[K : Q]k log(r+k)+C(k+r)

for all integers k ≥ 0.

Proof. At the real places v we refer to lemma 1 in [19] and to [80, p.23] for

the inequality

log+ |∆kPi(x)|v ≤ log+ ∥Pi∥v + k log(r + k) + C(k + r).

Similarly, for complex places v

log+ |∆kPi(x)|v ≤ log+ ∥Pi∥v + 2k log(r + k) + C(k + r)

and for finite place v

log+ |∆kPi(x)|v ≤ log+ ∥Pi∥v + C(k + r).

Combining the three inequalities gives the estimate stated in the Lemma.

5.3 Rational Functions on Curves

Let Z be as in the introduction a smooth projective curve of genus g, P

a non-empty finite set of points in Z, S a finite set of points in C = Z \ P

and ∇ ∈ Γ(C,TC). We shall construct in this section rational functions with

prescribed zero and polar divisors using the classical theory of linear systems

and the Riemann-Roch Formula. For a divisor D we write O(D) for the

invertible sheaf associated with D which is L(D) in Hartshorne’s notation.

The first lemma is classical but for convenience we give the short proof.

Lemma 5.3.1. Let Z be a compact Riemann surface of genus g and let D be

a divisor on Z with degD ≥ 2g. Then the complete linear system |D| of O(D)

has no base point.
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Proof. For p ∈ Z the exact sequence

0 −→ O(D − (p)) −→ O(D)
rp−−−→ Lp −→ 0

induces an exact sequence H0(Z,O(D)) −→ H0(Z,Lp) −→ H1(Z,O(D− (p)))

in cohomology. Since the canonical bundle KZ on Z has degree 2g − 2 and

since deg O(D − (p)) = degD − 1 ≥ 2g − 1 we have deg(KZ ⊗ O(p)−D) < 0

and Serre duality gives H1(Z,O(D − (p)) = H0(Z,KZ ⊗ O((p) − D)) = 0 .

We deduce that the connecting homomorphism H0(Z,O(D)) −→ H0(Z,Lp) is

surjective and this means that p is not a base point and the conclusion of the

lemma follows.

Lemma 5.3.2. We assume that |S| ≥ m1|P| + 2g for some m1 ≥ 1. Then

there exists a holomorphic map f :Z → P1 such that (f)0 =
∑

w∈S(w) and

(f)∞ ≥
∑

p∈Pm1 (p).

Proof. We apply the Riemann-Roch formula to the divisor

D =
∑
w∈S

(w)−
∑
p∈P

m1(p)

which has degD = m − m1l ≥ 2g and get l(D) = i(D) + degD + 1 − g ≥
g + 1. The linear system |D| is a projective space of dimension g. By Lemma

5.3.1 we know that |D| has no base points. Therefore for w ∈ S the space

Dw = {D′ ∈ |D|;w ∈ D′} is a hyperplane in |D| and |D| −
∪
w∈SDw is

nonempty. Each D′ ∈ |D| \
∪
w∈SDw is effective and has the property that

D ∼ D′. Therefore
∑

w∈S(w) ∼ m1P + D′. By our selection of D′ we have

w ∈ D′ for w ∈ S and this implies that no (w) with w ∈ S can be canceled

by D′. The difference is linearly equivalent to zero and this means that there

is a holomorphic map f :Z → P1 such that (f)0 =
∑

w∈S(w) and (f)∞ =∑
p∈Pm1(p) +D′ ≥

∑
p∈Pm1(p) as stated.

For each p ∈ P we choose a local coordinate zp in a neighborhood of p. We

assume that |S| ≥ |P|+ 2g and then there exist integers m1 ≥ 1 and 2g ≤ t ≤
l + 2g − 1 such that |S| = m1|P|+ t.

Lemma 5.3.3. There exist constants C1, C2 > 0 such that for all integers

N ≥ 1 there is a holomorphic mapping ϕN :Z → P1 such that

(i) (ϕN)0 =
∑

w∈SN (w),

(ii) |ϕN(zp)| ≥ |C1/zp|m1N for all p ∈ P and all zp sufficiently small,
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(iii) |∇(N)ϕN(w)| ≤ N !CN
2 for all w ∈ S.

Proof. By Lemma 3.2 there exists a function g such that,

(g)0 =
∑
w∈S

(w),

(g)∞ ≥
∑
p∈P

m1(p).

Now we put ϕN = gN and (i) follows. Since g has a pole of order at least m1

at each p in P there exists a constant C1 > 0 such that |g(zp)| ≥ |C1/zp|m1 for

zp sufficiently small and p ∈ P. Therefore the function ϕN can be estimated

from below by |ϕN(zp)| ≥ |C1/zp|m1N for zp sufficiently small and p ∈ P which

gives (ii). Since ∇ is non-zero at w by hypothesis we find a local parameter t

at w ∈ S satisfying t(w) = 0 such that in a neighborhood of w the derivation

∇ takes the form ∂/∂t. Then g(t) can be written as t ϵ(t) near w for some unit

ϵ(t) and ϕN(t) as tNϵ(t)N . Therefor ∇NϕN(w) = N ! ϵ(0)N and if we define C2

as the maximum of |ϵ(0)| taken over all w ∈ S we get (iii).

Remark 5.3.4. The existence of ϕN in Lemma 5.3.3 is essential for the first

proof of Theorem 5.1.4. In classical transcendence proofs there already exist

functions which are analogous to our ϕN . We mention the polynomial
∏

w∈S(t−
w)N in [80] or the Blaschke products

∏
w∈S(

r2−tw
r(w−t))

N in [8] which play the role

of our ϕN there. All such ϕN have the property that they take 0 up to order N

at fixed finitely many points and take large values near the boundary.

In the second proof of Theorem 5.1.4 we need a special exhaustion function

for the affine curve C = Z \ P. This is provided in the next lemma.

Lemma 5.3.5. For all a ∈ C and for all integers q ≥ 0 there exists a rational

map π:Z → P1 such that

(i) (π)0 = t (a), ql ≤ t ≤ ql + g,

(ii) (π)∞ ≥
∑

p∈P q (p).

The projection π only depends on a and q.

Proof. The divisorD = (ql+g)(a)−
∑

p∈P q (p) has degree g and the Riemann-

Roch formula gives l(D) = i(D)+degD+1− g ≥ 1 which implies the desired

conclusion.
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5.4 Jensen’s Formula

In this section we shall discuss Jensen’s formula which was a starting point

for Nevanlinna theory. Although this formula can be stated in very simple and

elementary terms it is conceptually better and advantageously to express the

formula in terms of the standard functions in Nevanlinna theory. We begin

with recalling the definition of the Nevanlinna characteristic function and of

the order of a meromorphic function f on C and we shall state the First Main

Theorem (FMT) in classical Nevanlinna theory which shows how the various

functions are related.

First Main Theorem ([97, p.166]) For any meromorphic function f we

have

N(r, a) +m(r, a) = T (r, f) +O(1).

It is not difficult to see that the First Main Theorem is equivalent to Jensen’s

formula which we shall present only for holomorphic functions since we need

it only in this case. Such an entire function can be expressed as f(z) = zλϵ(z)

for some unit ϵ(z).

Jensen’s Formula ([97, p.164]) We have

log |ϵ(0)|+N(r, 0) =
1

2π

∫ 2π

0

log |f(reiθ)|dθ.

Jensen’s formula is closely related to the Schwarz Lemma as it is used in

transcendence theory. There usually a holomorphic function is constructed

with growth and vanishing conditions. The growth conditions are used to give

an upper bound for the integral in the formula. The vanishing conditions lead

to a lower bound for N(r, 0). Arithmetical data enter through the term log |cλ|
on the left and one derives a lower bound of log |cλ| using Liouville estimates.

In this way a proof of Schneider’s theorem can be obtained, although there

is not too much difference with the standard proof. We shall give one proof

of Theorem 5.1.4 along this lines. This needs a Jensen formula in the more

general situation of an affine algebraic curve which we shall derive now.

Let f be a meromorphic function on a smooth affine algebraic curve C as in
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section 5.3. We recall briefly from [63] some aspects of Nevanlinna theory of

affine varieties in the case of curves, especially the use of a special exhaustion

function. Since Z is a smooth curve we can choose a projection π:Z → P1

such that π−1(∞) =
∑

p∈Pmp (p) with mp ≥ 1. The projection π gives a

special exhaustion function τ(z) = log |π(z)| on C in the sense of Griffiths

and King and for real r ≥ 0 we put C[r] = {z ∈ C : eτ(z) = |π(z)| ≤ r}.
We consider now the curve C as a Riemann surface and for real r ≥ 0 we

define DivC[r] to be the free abelian group generated by C[r]. Its elements

can be expressed as finite suns
∑

z∈C[r] nz(z) with integer coefficients nz and

with a symbol (z) for each z ∈ C[r]. For r ≤ s there is a natural surjective

group homomorphism ps,r: DivC[s] → DivC[r] which maps
∑

z∈C[s] nz(z) to∑
z∈C[r] nz(z). The family {DivC[r], ps,r} is an inverse system and DivC =

lim←−DivC[r] is defined to be the group of analytic divisor on C. Its elements

can be written as

D =
∑
z∈C

D(z)(z)

with D(z) ∈ Z and zero up to a discrete and countable set of points, the

support supp(D) of D. Let pr: DivC → DivC[r] be the natural projection.

Then D[r] = pr(D) has finite support in C[r] and therefore nπ(D, r) =
∫
D[r]

1

is an integer. To characterize the growth of D we define

Nπ(D, r) =

∫ r

0

nπ(D, t)− nπ(D, 0)

t
dt+ nπ(D, 0) log r

Let f :C → P1 be a meromorphic function and ordz f its order at z ∈ C. Then

(f) =
∑
z∈C

(ordz f)(z)

is the divisor of f . To characterize the growth of the function f we define the

Ahlfors-Shimizu characteristic function by

T πAS(r, f) =

∫ r

0

∫
C[t]

f∗(
i

2π

dz ∧ dz
(1 + |z|2)2

)
dt

t
(5.4)

as given by (5.1) in [63] in the case m = q = 1. From the definition we easily

see that T πAS(r, f) ≥ C log r for some positive C and sufficiently large r if f

is non-constant. When we compare the growth of a divisor and the growth

of a function, the FMT in Nevanlinna theory (see [33, p.332] and [63, p.184,
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pp.189-190] for more details) shows us that the error term can be estimated

by the proximity function

mπ
AS(r, f) =

∫
∂C[r]

log (1 + |f(z)|2)dcτ.

First Main Theorem∗. Let D∞ be the polar devisor of f . Then

T πAS(r, f) = Nπ(D∞, r) +mπ
AS(r, f) +O(1) (5.5)

It can be shown that mπ
AS(∞, r) =

∫
∂C[r]

log+ |f(z)|2dcτ +O(1) and therefor,

if we define the Nevanlinna’s characteristic function T π(r, f) as Nπ(D∞, r) +

mπ(r, f), where

mπ(r, f) =

∫
∂C[r]

log+ |f(z)|2dcτ,

we see that the First Main Theorem∗ implies that the Nevanlinna character-

istic function and the Ahlfors-Shimizu characteristic function coincide up to a

bounded term.

As we have already mentioned the FMT is equivalent to a formula of

Jensen’s type. We shall state now a version of a general Jensen Formula

as given in [63], Proposition 3.2, that is adapted to our situation.

Jensen’s Formula∗. Let f be a meromorphic function on C with divisor D.

Then for all real numbers r and r0 with r ≥ r0 we have

Nπ(D, r)−Nπ(D, r0) +

∫
∂C[r0]

log |f |2dcτ =

∫
∂C[r]

log |f |2dcτ. (5.6)

An explicit form of FMT for functions on affine curves goes back to Chern

in [33, p.332]. Later Griffiths and King [63] were able to extend it to affine

varieties using special exhaustion functions. Since Chern’s result does not

depend on any special exhaustion function his result is more general than

the result of Griffiths and King in the one variable case. However we still

prefer their setting because special exhaustion functions make the formula

more applicable. When n(D, 0) = 0 we can take r0 = 0 and then the above

formula becomes

Nπ(D, r) +
∑
π(z)=0

log |f(z)| =
∫
∂C[r]

log |f |2dcτ (5.7)
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In the second proof of Theorem 5.1.4 we construct a holomorphic function f

which satisfies again growth and vanishing conditions. Then from the growth

conditions we derive an upper bound for the integral. The vanishing conditions

lead to a lower bound for N(D, r) and the sum can be bounded from below

by a Liouville estimate. A comparison of the bounds then leads to the stated

result. In the next section we discuss the notion of the order of a function

which is used to characterize growth conditions.

5.5 Functions of finite order on curves

Since there are at least two possible definitions of the order of functions on

curves (see [61] or [63]) we have to discuss the notion carefully. For a clear

and detailed exposition on the different indicators of orders for meromorphic

functions f : C→ P1 we refer to [62].

We discuss first the case when f is an entire function. Here the order of f is

defined using the maximum modulus function or the Nevanlinna characteristic

function. It is given by

ρ(f) = lim
r→∞

log logM(r, f)

log r

and

ρ(f) = lim
r→∞

log T (r, f)

log r

respectively. The two definitions are equivalent and for a proof we refer to [97,

p.216].

When f is a meromorphic function, M(r, f) does not make sense. There

are two variants to overcome the difficulty. The first makes use of the well-

known fact that a meromorphic function is of order ≤ ρ if and only if it

can be expressed as f = h/g where h and g are both entire functions and

of order ≤ ρ (see [97, p.223]). Then ρ(f) is the infimum of max(ρ(h), ρ(g))

with h and g taken over all representations of f = h/g as a quotient of two

holomorphic functions. The second variant uses the Nevanlinna characteristic

function T (r, f) which is also well- defined for meromorphic functions.
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In the case of a meromorphic function on a curve C = Z \ P we again

begin with a holomorphic functions f and define the local maximum modulus

function and the local order of f at p ∈ P by

Mp(r) = max
|zp|=1/r

|f(zp)|

ρp(f) = lim
r→∞

log logMp(r)

log r

Then the order of f is given by ρ(f) = maxp∈P ρp(f) and it is easily seen that

ρp(f) and therefore ρ(f) are independent of the choice of local coordinates.

Moreover f is of order ρ if and only if ρ is maximal with the property that for

any ϵ > 0 we always have log |f(zp)| ≤ 1
|zp|ρ+ϵ for all zp sufficiently small. When

f is a meromorphic function we define ρp(f) as before to be the infimum of

max(ρ(h), ρ(g)) taken over all representations of f = h/g in a neighborhood

of p and ρ(f) = max ρp(f). This definition was suggested by Griffiths in [61].

Another approach to the growth of functions is to use Nevanlinna’s or

Ahlfors-Shimizu’s characteristic function T π(r, f) and T πAS(r, f) respectively

and using a special exhaustion π which was suggested by Griffiths and King

in [63]. As already noted both functions coincide up to O(1). Therefor we

can use either of them to define the order of growth of a function f . We use

Nevanlinna’s characteristic function and put

ρπT (f) = limr→∞
log T π(r, f)

log r
. (5.8)

When f is holomorphic we can also use the maximum modulus function

Mπ(r, f) = max
z∈∂C[r]

|f(z)| (5.9)

and get

ρπ(f) = limr→∞
log logMπ(r, f)

log r
. (5.10)

Although it is not the main purpose of this paper we shall prove that ρπT (f)

and ρπ(f) are equal. This gives a generalization of the classical identity for

holomorphic functions on C described at the beginning of this section. It also

provides an example how the exhaustion function of Griffith and King can be

applied.
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We begin with a simple lemma. Let r: D → D be the ramified covering of

the open unit disk D of degree n given by z 7→ zn and assume that u: D →
R ∪ {−∞} is a subharmonic function on D.

Lemma 5.5.1. The function v: D→ R ∪ {−∞} given by

v(z) = max
r(w)=z

u(w)

is subharmonic.

Proof. The function v is upper semi-continuous and takes values in

[−∞,+∞). According to the proof of Theorem 1.6.3 in [71] it suffices to

show that for all w ∈ D there exists a disk of radius r > 0 centered in w and

contained in D such that

v(w) ≤
∫ 2π

0

v(w + seiθ)dθ. (5.11)

When w ̸= 0 we take a disk Dw(s) with center in w of radius s which does

not contain 0. Then r−1(Dw(s)) is the disjoint union of disks of the form

ζ Dw1/n(s1/n) taken over all n-th root of unity ζ and for some fixed choice of

a n-th root w1/n of w. Then v(z) = maxζ(u(ζz
1/n)) and uζ(z) := u(ζz1/n)

is a subharmonic function on Dw(s) for all ζ. This shows that v(z) can be

expressed as the maximum taken over a finite set of subharmonic functions

and is therefor subharmonic.

When w = 0, for all 0 < s < 1, we have

v(0) = u(0) ≤
∫ 2π

0

u(s
1
n eiθ)dθ

=
n∑
j=1

∫ 2jπ/n

2(j−1)/n

u(s
1
n eiθ)dθ

=
1

n

n∑
j=1

∫ 2jπ

2(j−1)π

u(s
1
n e

iα
n )dα

≤ 1

n

n∑
j=1

∫ 2jπ

2(j−1)π

v(seiα)dα

=

∫ 2π

0

v(seiθ)dθ

The two cases show that (5.11) holds for all w ∈ D in a sufficiently small
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neighborhood and therefor is subharmonic in D.

The lemma is applied to yield a global version for finite (i.e. proper and

non-constant) mapping between Riemann surfaces.

Lemma 5.5.2. Let f :X → Y be a finite mapping between Riemann surfaces

and u a subharmonic function on X. Then the function v(z) = maxf(w)=z u(w)

is a subharmonic function on Y .

Proof. It is known (see [71], Corollary 1.6.5.) that subharmonicity is a local

property. The map f is a finite mapping and if the disk i: D ↪→ Y is small

enough the inverse image f−1(D) = D ×Y X of D under f has only finitely

many connected components and all ramification points are in the fiber over

the center of the disk. The restriction of f to any of the components then

takes the form as described in Lemma 5.5.1 which can be applied now to

all the connected components. We conclude that the restriction of v to D is

subharmonic on D and this proves the Lemma.

We apply the Lemma in the case when X is an affine curve and when Y is the

complex plane C.

Proposition 5.5.3. We have

ρπ(f) = ρπT (f).

Proof. Let d be the degree of π. Since f is holomorphic, Nπ(D∞, r) is zero

and therefor, by the definition of the Nevanlinna characteristic function, we

have

T π(r, f) = mπ(r, f) =

∫
∂A[r]

log+ |f(z)|2dcτ ≤ d log+Mπ(r)

We know that log+ |f(w)| is subharmonic on C for f holomorphic and Lemma

5.5.2 implies that h(z) = maxπ(w)=z(log+ |f(w)|) is a subharmonic function on

C. For z = reiφ and r < ϱ the Harnack inequality gives

h(z) ≤ ϱ+ r

ϱ− r

∫ 2π

0

h(ϱeiθ)dθ ≤ ϱ+ r

ϱ− r

∫
∂C[ϱ]

log+ (|f(z)|2)dcτ =
ϱ+ r

ϱ− r
T π(ϱ, f)

and this implies that log+Mπ(r, f) ≤ ϱ+r
ϱ−rT

π(ϱ, f). On putting the inequalities
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together we deduce that

1

d
T π(r, f) ≤ log+Mπ(r, f) ≤ ϱ+ r

ϱ− r
T π(ϱ, f).

Since f is nontrivial, there exists C > 0 such that T π(r, f) ≥ C log r (see the

remark following (5.4) and notice that T π(r, f) and T πAS(r, f) differ only by

a bounded term). Therefore the left hand side of the inequalities shows that

log+Mπ(r, f) = logMπ(r, f) for sufficiently large r. We put ϱ = r+ϵ for ϵ > 0

and then an easy calculation gives

ρπ(f) = limr→∞
log log+Mπ(r)

log r
= limr→∞

log T π(r, f)

log r
= ρπT (f).

The order ρπT depends on the choice of π whereas the order ρ = maxp ρp

with p ∈ P is independent of any choice. However they can be compared.

Lemma 5.5.4. We have ρπT = maxp(ρp/mp).

Proof. Since we shall not use Lemma 5.5.4 later we only verify it for holomor-

phic f . The function ( 1
π(z)

)
1

mp gives a local coordinate on a neighborhood Up

of p and then for sufficiently large r we have

Mp(r) = max(|f(z)|; z ∈ Up, |π(z)| = rmp)

Since Mπ(r) = max|π(z)|=r(|f(z)|) we conclude that Mπ(r) = maxpMp(r
1

mp ).

This implies that

ρπT (f) = ρπ(f) = limr→∞
log logMπ(r)

log r

= max
p

(
limr→∞

log logMp(r
1

mp )

log r

)
and the latter is maxp(ρp/mp).

We point out that ρ(f) depends only on some smooth completion of C and

therefore is an intrinsic notion in the case of affine curves (since a smooth

completion of a smooth affine curve is unique). However the order function ρπ

depends on a special exhaustion function induced by a projection π:C → C
and is therefor an extrinsic notion. By Lemma 5.5.4 the order function ρ(f)

is finite if and only if ρπ(f) is finite and Griffiths uses both in [61] and [63].

However for our purpose an estimate in terms of ρ(f) is essential.
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Let C be an affine algebraic curve and let V be a projective algebraic vari-

ety. Let as usual R(V ) be the field of rational functions on V . A holomorphic

map f :C → V has order ≤ ρ if and only if f ∗R(V ) consists of meromor-

phic functions of order ≤ ρ. It is easy to see that the latter is equivalent to

ρ(f ∗(zi/zj)) ≤ ρ.

In the next proposition we shall compare the growth of a positive divisor

D =
∑

z∈C D(z) (z) with the growth of a function. We put

n(r,D) =
∑
z

D(z)

where the sum is taken over all z ∈ C not in the union of the sets |zp| ≤ r−1

with p ∈ P and

ρ(D) = lim
r→∞

∫ r
r0
n(t,D)(dt/t)

log r
.

The following proposition is taken from [61], Proposition 5.23,

Proposition 5.5.5. Let D be a positive divisor on C. Then there exists a

function f ∈ O(D) such that (f) = D and

ρ(f) ≤ max(ρ(D), 2g).

and is essential for the proof of the following

Lemma 5.5.6. Let f1, · · · , fn be meromorphic functions of order ≤ ρ on C

and let S ⊂ C be a finite set. If fi(w) ̸= ∞ for 1 ≤ i ≤ n and w ∈ S then

there exists a holomorphic function h on C such that

(i) ρ(h) ≤ max(ρ, 2g),

(ii) hfi are all holomorphic and ρ(hfi) ≤ max(ρ, 2g) for 1 ≤ i ≤ n,

(iii) h(wi) ̸= 0 for 1 ≤ i ≤ m.

Proof. By (5.5) we have ρ((fi)∞) ≤ ρ and this gives

ρ((f1)∞ + · · ·+ (fn)∞) ≤ max
i

(ρ(fi)∞) ≤ ρ.

By Proposition 5.5.5 there is a holomorphic function h of order at most

max(ρ, 2g) on C such that (h) = (f1)∞ + · · · + (fn)∞ and such that h sat-

isfies the conditions in the statement of the lemma.
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5.6 Algebraic points and algebraic distribu-

tions.

In this section we give the proofs of the theorems. We begin with Theorem

5.1.4 for which we shall give two different proofs. As usual the first step in

the proofs is the construction of an auxiliary function F . Here we use Lemma

5.2.2. In the first proof we apply the maximum principle to the function

F/ϕN with ϕN constructed in Lemma 5.3.3. The second proof is based on the

Griffiths-King exhaustion function which was constructed in Lemma 5.3.5 and

on Jensen’s formula associated with the exhaustion function.

Proof of Theorem 5.1.4. Let f, g ∈ {f1, f2, · · · , fN} be algebraically inde-

pendent over K. We define m = |S| and choose integers r, n with n sufficiently

large such that r2 = 2mn. For the construction of the auxiliary function we

consider the polynomial P =
∑r

i,j=1 ai,jS
iT j with undetermined coefficients

ai,j. They will be chosen in OK such that the system of mn linear equations

r∑
i,j=1

ai,j∇k(f igj)(w) = 0 (5.12)

for 0 ≤ k < n and w ∈ S in r2 = 2mn unknowns ai,j is satisfied. By Lemma

5.2.3 we see that the heights and the inhomogeneous heights of the linear forms

Lk,w =
r∑

i,j=1

ai,j∇k(f igj)(w)

in the unknowns ai,j can be estimated from above by

h(Lk,w) ≤ h+(Lk,w) ≤ [K : Q]k log(r + k) + C(k + r).

On applying Lemma 5.2.2 and on observing that r = O(
√
n) we find a non-

trivial solution a = (. . . , ai,j, . . .) ∈ O r2

K such that

h+(P ) = h+(a) ≤ ([K : Q]n/2) log n+ C3 n,

where C3 only depends on w. Since f, g are algebraically independent over K,

the function F = P (f, g) is not identically zero.

From (5.12) we deduce that the holomorphic function F on C satisfies
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(F )0 ≥
∑

w∈S n (w). We let s ≥ n be the largest integer such that

(F )0 ≥
∑
w∈S

s (w) (5.13)

By definition ∇sF does not vanish at some w ∈ S. By Lemma 5.2.3 we have

h+(∇sF (w)) ≤ h+(P )+([K : Q]s) log (s+ 2r)+C(s+2r) ≤ (3/2)[K : Q]s log s+C4s

where C4 only depends on w.

Variant 1. In this variant we obtain a bound which is slightly weaker

than the bound stated in the theorem. We write m = lm1 + t with m1 ≥ 0

and 2g ≤ t ≤ l + 2g − 1 and we may assume that m1 ≥ 1 since otherwise

|S| ≤ 2g + l − 1. Lemma 5.3.3 gives a function ϕs such that

E =
F

ϕs

is holomorphic. We shall derive an upper bound by the maximum principle

and by the Liouville estimate a lower bound for log |E(w)| and compare the

upper and the lower bound. This will eventually give an estimate from above

for |S| which is slightly weaker than (5.1).

We begin with the upper bound. Since f and g are of order ≤ ρ we know

that for all ϵ > 0, for a sufficiently small positive η and for all p ∈ P the

inequality

log max(|f(zp)|, |g(zp)|) ≤ |zp|−(ρ+ϵ)

for |zp| ≤ η gives

log |F (zp)| ≤ ([K : Q]n/2) log n+ C5n+ 2r|zp|−(ρ+ϵ). (5.14)

Together with (ii) in Lemma 5.3.3 we conclude that

log |E(zp)| ≤ ([K : Q]n/2) log n+ C5n+ 2r|zp|−(ρ+ϵ) −m1s log(C1/|zp|).

From the maximum principle applied to the complement of the union of the

discs with radius η around p for p ∈ P we get the upper bound

log |E(w)| ≤ ([K : Q]n/2) log n+ C5n+ 2rη−(ρ+ϵ) −m1s log(C1/η).

For the lower bound we observe that E(w) = ∇sF (w)/∇sϕs(w), that by (iii)
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in Lemma 5.3.3 we have

log |∇sϕs(w)| ≤ s log s+ s logC2

and that

log |∇sF (w)| ≥ −h(∇sF (w)) ≥ −(3/2)[K : Q]s log s− C4s

by the Liouville estimate. We put the estimates together and obtain the lower

bound

log |E(w)| = log |∇sF (w)| − log |∇sϕs(w)| ≥ −((3/2)[K : Q] + 1)s log s− C6s.

Since n ≤ s a comparison of the upper and the lower bound gives

−(3[K : Q] + 2)s log s ≤ [K : Q]s log s+ 4rη−(ρ+ϵ) − 2m1 s log(C1/η) + C7s,

where C7 only depends on w. We relate now η and s by the equation sη2ρ+2ϵ =

1 and find that

0 ≤ 2 (2[K : Q] + 1)s log s−
(
m1/(ρ+ ϵ)

)
s log s+ C8 s

This can hold for large s only if 2 (2[K : Q] + 1)(ρ + ϵ) ≥ m1 for all ϵ > 0 so

that

|S| = m ≤ l(m1 + 1) + 2g − 1 ≤ 2 (2[K : Q] + 1)ρ l + l + 2g − 1.

Variant 2. In this variant we use Jensen’s formula which needs an ex-

haustion function. We fix a positive integer q and then Lemma 5.3.5 gives a

projection π : Z → P 1 with ql ≤ deg π ≤ ql + g. Furthermore the Lemma

shows that there exists a divisor D ≥ 0 such that (π)∞ =
∑

p∈P q(p) +D. We

put C ′ := C \ suppD and see that π restricts to a finite covering π′ : C ′ → C
which is totally ramified above 0 and satisfies π−1(0) = t(w).

Similar to the definition of E we define the function G = F t/πs on C ′ with

t = deg π and s the order of F at w. We choose a local parameter z at w

such that z(w) = 0 and such that ∇ can be written as ∂/∂z. Then we have

F (z)t/zst = (∇sF (w)/s!)t + zϵ(z) and π(z)s/zst = ϵ′(z)s near w where ϵ and

ϵ′ are units. This gives

G(w) =
F (w)t

π(w)s
=

(∇sF (w)/s!)t

ϵ′(0)s
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and the lower bound

log |G(w)| ≥ −((3/2)[K : Q] + 1) t s log s− C9 ts

follows readily. The constant C9 only depends on w and q.

Now we are ready to apply Jensen’s formula (5.7) with C replaced by C ′ and

f replaced by G. Since π is totally ramified in w the sum in Jensen’s formula

becomes t log |G(w)| and from the inequality above we obtain the lower bound∑
π(z)=0

log |G(z)| ≥ −((3/2)[K : Q] + 1) t2 s log s− C9 t
2 s. (5.15)

For the integral we need an estimate from above for ∥G∥R := max |G(z)|
where the maximum is taken over all z ∈ C ′ with |π(z)| = R. The boundary

Γ decomposes into connected components Γp, one for each p ∈ supp(π)∞ for

which we choose local coordinates zp = (1/π(z))1/np . We have

max
z∈Γp

log |G(z)| = tmax
z∈Γp

log |F (z)| − s logR.

Since np ≥ q for p ∈ P the inequality (5.14) gives

max
z∈Γp

log |G(z)| ≤ ([K : Q]/2)nt log n+ C5tn+ 2rtR(ρ+ϵ)/q − s logR

for p ∈ P. This also holds for p ∈ supp(π)∞ \ P since f and g are of order 0

at p. We conclude that∫
∂C′[R]

log |G|2dcτ ≤ ([K : Q]/2)nt2 log n+ C5t
2n+ 2rt2R(ρ+ϵ)/q − s t logR(5.16)

We also need a lower bound for the zero divisor D0 of the holomorphic

function G on C ′. One easily sees from (5.13) and Lemma 5.3.5 that

(G)0 ≥
∑
v

s t (v)

where the sum is taken over all v ̸= w in S∩C ′. Since |C \C ′| ≤ g by Lemma

5.3.5 we get

nπ(D0, r) =

∫
D[r]

1 ≥ st(m− g − 1)

for sufficiently large r. Therefor we obtain

Nπ(D0, R) ≥ (m− g − 1)s t log(R/C10) (5.17)
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for some positive constant C10 which depends only on w and q provided that R

is sufficiently large which is certainly the case for R = sq/(2ρ+2ϵ). A comparison

of the leading terms for n and therefor also for s going to infinity in (5.15),

(5.16) and (5.17) shows that

(m− g)q ≤ 2 (2 [K : Q] + 1)(ρ+ ϵ)t

for all q ≥ 1. Since by (i) in Lemma 5.3.5 we have limq→∞ t/q = l the desired

inequality for |S| follows readily.

Remark 5.6.1. If we take r2 = λmn instead of r2 = 2mn with an extra pa-

rameter λ chosen to be a sufficiently large integer then it is possible to derive

the better estimate |S| ≤ g + (3[K : Q] + 2) ρ l. Moreover by a suitable modifi-

cation of Lemma 5.3.5 and of the second proof of Theorem 5.1.4 the statement

of Theorem 5.1.4 can be improved to |S| ≤ g + (3[K : Q] + 2)
∑

p∈P ρp, where

ρp = maxi ρp(fi).

Proof of Theorem 5.1.5. Let S ⊂ C be a finite set such that f(S) ⊂ U(K).

Let π : X̃ → X be the blow-up of X in X \ U and let E = π−1(X \ U) be

the exceptional divisor. We choose a hyperplane section H of X which does

not meet f(S) and put H̃ = π−1H. Then if n is sufficiently large the divisor

n H̃ +E is very ample. Therefore Ỹ = X̃ \ (H̃ ∪E) takes the form specR for

some K-algebra R of finite type which can be written as R = K[y1, y2, . . . , yn].

Since the rational vector field ∆ is regular on Ỹ we have ∆(O
eY ,y) ⊆ O

eY ,y for

all y ∈ Ỹ and therefor O
eY ,y = Rmy where my denotes the maximal ideal at y.

By Theorem 4.7 in [89] we have R = ∩y∈eYRmy . We conclude that ∆(R) ⊆ R

and hence there exist gi ∈ K[y1, · · · , yn] such that ∆(yi) = gi on Ỹ . Then the

functions fi(z) = f ∗(yi) satisfy ∇(fi) = gi[f1, · · · , fn]. They are meromorphic

of order ≤ ρ on C and satisfy fi(w) ̸= ∞ for 1 ≤ i ≤ n and w ∈ S. Let h be

as in Lemma 5.5.6 and replace in the second proof the function G = F t/πs of

by G = F th2rt/πs. The required estimate follows then similarly.

Remark 5.6.2. Our method still works if the holomorphic tangent vector ∇
has zeroes and we get results similar to Theorem 5.1.4 and Theorem 5.1.5.

For instance the conclusion of Theorem5.1.4 holds for S replaced by S0 =

{w ∈ S;∇w ̸= 0}.
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Proof of the Main Theorem 5.1.3. Our discussion before the statement of

Theorem 5.1.3 shows that the hypothesis of Theorem 5.1.5 are satisfied. By

Theorem 5.1.5, |ψ−1(U(K))| ≤ 2 (2 [K : Q] + 1) max(ρ, 2g)l+ g. However C is

integral and this implies that ψ(C) ⊆ U which implies desired results.

5.7 Singularities

It is critical to exclude singularities from the statement of Theorem 5.1.5.

Otherwise f−1(X(K)) might be infinite as we shall see from the following

examples. Here we assume that g2, g3 are algebraic numbers in K.

Example 5.7.1. Let f be the map from C to P3 given by f(z) = (z : ℘(z) :

℘′(z) : 1) and ∇ a holomorphic vector in Γ(C,TC) given by ∇ = ∂
∂z

. If we

denote by zi projective coordinates of P3 and if we write zij = zi

zj
then ∇ lifts

to an algebraic vector field ∆ on P3 with the following descriptions:

∆(z02) = z32 −
z02z

2
12

z32
+

g2z02z12

2
,

∆(z12) = 1− 6z3
12

z32
+

g2z12z32

2
,

∆(z32) =
g2z

2
32

2
− 6z2

12.

If we let A be the point (0 : 0 : 1 : 0) in P3(K) then we shall have f−1(A) = Λ

which is an infinite set. This doesn’t contradict to Theorem 5.1.5 because A is

not regular with respect to ∆.

With the same notations zij as above we take another example:

Example 5.7.2. Let X be the variety V (z2
2z3 − 4z3

1 + g2z1z
2
3 + g3z

3
3) in P3, f

a map from C to X given by f(z) = (z : ℘(z) : ℘′(z) : 1) and ∇ a holomorphic

vector in Γ(C,TC) given by ∇ = ∂
∂z

. The holomorphic vector ∇ lifts to an

algebraic vector field ∆ on P3 with the following descriptions:

∆(z02) = z32 −
z02z

2
12

z32
+

g2z02z12

2
,

∆(z12) = 1− 6z3
12

z32
+

g2z12z32

2
,

∆(z32) =
g2z

2
32

2
− 6z2

12.
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Now as functions in OA,X , although
6z312
z32

is regular
z02z212
z32

is not. This explains

why the set f−1(A) = Λ is infinite.

We now change a bit from another way and we shall give a slightly new

proof of a theorem of Schneider on the transcendence of periods.

Example 5.7.3. Let E be the elliptic curve in P2 given by V (z2
2z3 − 4z3

1 +

g2z1z
2
3 + g3z

3
3), X a variety given by P1 × E, f a map from C to X given by

f(z) = ((z : 1), (℘(z) : ℘′(z) : 1)) and ∇ a holomorphic vector in Γ(C,TC)

given by ∇ = ∂
∂z

. The holomorphic vector ∇ lifts to an algebraic vector field ∆

on P1 ×E. One can check that for all z in C the algebraic vector ∆ is always

regular at ((z : 1), (0 : 1 : 0)). If an element w ̸= 0 in Λ is an algebraic number

in K, then for all positive integers n we have f(nw) = ((nw : 1), (0 : 1 : 0))

lies in U(K). This contradicts Theorem 5.1.5. Therefore we obtain a classical

theorem of Schneider that any z ̸= 0 in Λ is transcendental.

5.8 Appendix

In this appendix we shall state Schneider’s theorem as announced in the

introduction and we shall comment on it and relate it to our work. We make

the same geometric assumptions as in Theorem 5.1.4. In particular we fix a

vector field ∇.

In section 5.4 we have introduced the notion of an analytic divisor on C

as an element of the group DivC = lim←−DivC[r]. We shall extend the notion

slightly and define D̃ivC using the same direct system and requiring that an

element of D̃ivC is a family D = {D[r] =
∑

z∈C[r]D[r](z) (z)} which satisfies

pr,s(
∑

z∈C[s]D[s](z) (z)) ≥
∑

z∈C[r]D[r](z) (z), i.e. with equality replaced by

” ≥ ” in the sense of divisors. Clearly we have D̃ivC ⊇ DivC. The projection

pr : DivC → DivC[r] extends to a projection p̃r : D̃ivC → DivC[r] and maps

D to D[r]. We identify now the formal divisor D[r] with the (non-reduced)

closed scheme ι[r] : D[r] → C which is attached to D[r] and note that the

collection of morphisms {ι[r]}r≥0 induce a morphism ι : D → C. There

is a canonical surjective homomorphism of sheaves ι[r]♯ : O an
C → ι[r]∗OD[r].

Here O an
C is the sheaf of germs of holomorphic functions on C. The kernel
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of ι[r]♯ is an ideal sheaf J. For z ∈ suppD[r] we choose a local coordinate

τz ∈ Jz at z such that ∇ = d/dτz locally at z. The local coordinate is

uniquely determined by this property. We define R =
⊕

K[τz]/(τ
D(z)
z ) and

then Γ(D[r], ι[r]∗OD[r]) = R ⊗K C. There is a canonical identification of R

considered as a vector space with KD[r] and this is used to define the height

h+(f) of f ∈ R. The homomorphism ι[r]♯ extends to the sheaf of germs

of meromorphic functions on C which are holomorphic on D. We let now

D ∈ D̃ivC be a divisor and define

δ = lim
log degD[r]

log δ(r)

where δ(r) is the smallest real number s ≤ r such that D[r] ∈ C[s]. Let f be

a meromorphic functions on C which is holomorphic on D and which has the

property that ι[r]♯(f) ∈ R for all r. Then the arithmetic growth of F along D

is defined as

µ = lim
log h+(ι[r]♯(f))

log degD[r]
.

The following theorem is an extension of Schneider’s Satz III in [116] men-

tioned in the introduction to Riemann surfaces. Let D ∈ D̃ivC be a divisor

such that D[r](z)/ logD[r](z) ≤ degD[r] for all z ∈ suppD[r]. We choose

meromorphic functions f1, f2, . . . , fn on C which are holomorphic on D and

which satisfy ι[r]♯(fi) ∈ R for 1 ≤ i ≤ n and r sufficiently large. We define

ρ = maxi(ρi) and µ = maxi(µi) where ρ1, ρ2, . . . , ρn and µ1, µ2, . . . , µn are the

growth and arithmetic growth respectively of the functions.

Theorem 5.8.1. If we have µ ≤ ρ/δ < (1 − (1/n)) then the image of the

mapping

f = (f1, f2, . . . , fn) : C → Cn

is contained in an algebraic hypersurface.

The proof of the theorem is very similar to the proof of our main theorems.

But for proving this theorem (5.6) is not sufficient, instead we need to use a

version of Jensen Formula as formulated in [32, p.332]. As an application of

the theorem which is not covered by any of the theorems in the introduction we

take a meromorphic function f on C which has the property that ι[r]♯(f) ∈ R
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for all sufficiently large r. Then we put f1 = f , f2 = ∇f, . . . , fn = ∇n−1f

for n sufficiently large so to satisfy the hypothesis of the theorem. Then the

function f satisfies an algebraic differential equation. As has been mentioned

in the introduction the theorem does not include Gelfond’s proof of the seventh

Hilbert Problem and, as a consequence, does not include the Schneider-Lang

criterion, even in the case when C = C. It would be very interesting to

find a criterion in the style of our theorem above which does include our

main theorems and without making the assumption that the functions satisfy

differential equations.

All theorems that have been mentioned so far deal only with the transcen-

dence of numbers. As already has been pointed out in the last paragraph of

Schneider’s paper in loc. cit. the methods are not strong enough to get a

criterion about algebraic independence. The only substantial contribution in

this very general direction is [135]. The techniques which are applied there are

much more involved.Any further progress in the direction opened there would

be of highest interest.
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[38] L. Denis, Géométrie et suites récurrentes, Bull. Soc. Math.France 122 (1994),

no. 1, 13–27.

[39] A. Diophanti, Arithmetica.

[40] H.T.Engstrom, Polynomial substitutions, Amer. J. Math. 63 (1941), 249-255.
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vent. Math. 73 (1983), 349–366.

[43] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math

133 (1991), 549–576.

[44] G. Faltings, The general case of S. Lang’s theorem, in: Barsotti symposium

in Algebraic Geometry, 175–182, Academic Press, San Diego, 1994.



144 Mingxi Wang

[45] G. Faltings, Curves and their fundamental groups, Ast erisque 252 (1998),

131–150.
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Zürich, Switzerland.

2005–2007 M.Phil. Department of Mathematics, The University

of Hong Kong, Hong Kong, China.

2001–2004 B.S. School of Mathematical Sciences, Peking Univer-

sity, Beijing, China.
Publications

in preparing Dynamical Mordell-Lang for the polydisk.

in preparing Elliptic rational functions with special regard to re-

ducibility.
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